WO2011129037A1 - 薄膜トランジスタ基板及びその製造方法、表示装置 - Google Patents

薄膜トランジスタ基板及びその製造方法、表示装置 Download PDF

Info

Publication number
WO2011129037A1
WO2011129037A1 PCT/JP2011/000103 JP2011000103W WO2011129037A1 WO 2011129037 A1 WO2011129037 A1 WO 2011129037A1 JP 2011000103 W JP2011000103 W JP 2011000103W WO 2011129037 A1 WO2011129037 A1 WO 2011129037A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
semiconductor layer
film transistor
substrate
channel region
Prior art date
Application number
PCT/JP2011/000103
Other languages
English (en)
French (fr)
Inventor
宮本忠芳
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/640,381 priority Critical patent/US8842229B2/en
Publication of WO2011129037A1 publication Critical patent/WO2011129037A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs

Definitions

  • the present invention relates to a thin film transistor substrate, and more particularly, to a thin film transistor substrate using an oxide semiconductor layer, a method for manufacturing the same, and a display device.
  • a thin film transistor (hereinafter also referred to as “TFT”) is provided as a switching element for each pixel which is the minimum unit of an image.
  • a typical bottom gate type TFT has, for example, a gate electrode provided on an insulating substrate, a gate insulating film provided so as to cover the gate electrode, and an island shape so as to overlap the gate electrode on the gate insulating film. And a source electrode and a drain electrode provided to face each other on the semiconductor layer.
  • a thin film transistor with a low leakage current used for a switching element of a pixel and a thin film transistor that has a low threshold voltage and can be driven at a high speed are used.
  • the threshold voltage of the CMOS inverter that requires both the n-type channel and the p-type channel or the two thin film transistors that constitute the inverter from the viewpoint of high-speed driving.
  • Enhancement-depletion (E / D) inverters with large differences are widely used.
  • an IGZO In—Ga—Zn—
  • a conventional thin film transistor using an amorphous silicon semiconductor layer as a switching element of each pixel that is the minimum unit of an image is used instead of a conventional thin film transistor using an amorphous silicon semiconductor layer as a switching element of each pixel that is the minimum unit of an image.
  • a TFT using an oxide semiconductor layer (hereinafter also referred to as “oxide semiconductor layer”) formed of an O) -based oxide semiconductor film has been proposed.
  • CMOS inverter circuit cannot be used in a circuit using a high-speed moving oxide semiconductor, and an E / D inverter circuit capable of independently controlling the threshold voltage of each thin film transistor and capable of high-speed operation. The production of is needed.
  • an E / D inverter composed of a thin film transistor having an oxide semiconductor as a channel layer. More specifically, an E / D including a first thin film transistor and a second thin film transistor having different channel layer thicknesses, and at least one of the channel layers of the first and second thin film transistors is heat-treated.
  • An inverter is disclosed. With such a configuration, a difference occurs in the threshold voltage due to a difference in channel layer thickness between the first and second thin film transistors constituting the E / D inverter or due to a difference in heat treatment conditions of the channel layer. Therefore, it is described that the difference between the threshold voltages of two thin film transistors constituting the E / D inverter can be sufficiently increased (see, for example, Patent Document 1).
  • the channel layer is heated by contact heating or electromagnetic wave irradiation (high frequency irradiation). Or the ultraviolet light irradiation), the threshold voltage of the first and second thin film transistors is changed.
  • the selective heat treatment in such a local region complicates the process and has high definition and fineness. It can be said that application to a thin film transistor is difficult. As a result, there is a problem that the yield decreases.
  • the present invention has been made in view of the above problems, and a thin film transistor substrate capable of forming a plurality of thin film transistors having different threshold voltages with a simple configuration and suppressing a decrease in yield, and the thin film transistor substrate therefor
  • An object is to provide a manufacturing method and a display device.
  • a thin film transistor substrate of the present invention includes an insulating substrate, a first thin film transistor provided on the insulating substrate and including a first semiconductor layer having a first channel region, and the insulating substrate.
  • a second insulating film formed of a material different from that of the first insulating film is provided between the layer and the first insulating film and in the second channel region of the second semiconductor layer; It is characterized by.
  • the insulating film structure in the channel region of the first semiconductor layer in the first thin film transistor can be different from the insulating film structure in the channel region of the second semiconductor layer in the second thin film transistor.
  • the threshold voltages of the first thin film transistor and the second thin film transistor can be made different, and the difference between the threshold voltages of the two thin film transistors can be made sufficiently large.
  • a thin film transistor substrate including a thin film transistor that is, an E / D inverter
  • a first thin film transistor and a second thin film transistor with different threshold voltages can be manufactured with a simple configuration without reducing the yield.
  • the second insulating film may be a channel protective film that protects the second channel region.
  • the second semiconductor layer is formed. It becomes possible to protect the channel region from being etched.
  • the first insulating film is a silicon oxide film made of TEOS (Tetra Ethyl Ortho Silicate), and the second insulating film is made of N 2 O and SiH 4 as materials. It may be a silicon oxide film.
  • TEOS Tetra Ethyl Ortho Silicate
  • the thin film transistor substrate of the present invention may further include a source electrode and a drain electrode provided on the second insulating film so as to face each other with the second channel region interposed therebetween.
  • the thin film transistor substrate of the present invention further includes a source electrode and a drain electrode provided to face each other with the second channel region interposed between the second semiconductor layer and the second insulating film. It may be.
  • the thin film transistor substrate of the present invention includes an insulating substrate, a first thin film transistor provided on the insulating substrate and including a first semiconductor layer having a first channel region, and a second channel region provided on the insulating substrate.
  • a second thin film transistor having a second semiconductor layer having a first semiconductor layer, and an insulating film covering the second semiconductor layer, wherein the insulating film in the first channel region of the first semiconductor layer The thickness is different from the thickness of the insulating film in the second channel region of the second semiconductor layer.
  • the thickness of the insulating film in the channel region of the first semiconductor layer in the first thin film transistor can be different from the thickness of the insulating film in the channel region of the second semiconductor layer in the second thin film transistor.
  • the threshold voltages of the first thin film transistor and the second thin film transistor can be made different, and the difference between the threshold voltages of the two thin film transistors can be made sufficiently large.
  • a thin film transistor substrate including a thin film transistor that is, an E / D inverter
  • a first thin film transistor and a second thin film transistor with different threshold voltages can be manufactured with a simple configuration without reducing the yield.
  • the semiconductor layer may be an oxide semiconductor layer.
  • the oxide semiconductor layer includes at least one selected from the group consisting of indium (In), gallium (Ga), aluminum (Al), copper (Cu), and zinc (Zn). It is good also as a structure which consists of a metal oxide containing.
  • the oxide semiconductor layer made of these materials has high mobility even if it is amorphous, so that the on-resistance of the switching element can be increased.
  • the oxide semiconductor layer may be formed of an In—Ga—Zn—O-based metal oxide.
  • the semiconductor layer may be a silicon-based semiconductor layer.
  • the thin film transistor substrate of the present invention has a simple structure and includes a thin film transistor (that is, an E / D inverter) including a first thin film transistor and a second thin film transistor having different threshold voltages, without reducing the yield. It has excellent characteristics that it can be manufactured. Therefore, the thin film transistor substrate of the present invention can be suitably used for a display device including a thin film transistor substrate, a counter substrate disposed to face the thin film transistor substrate, and a display medium layer provided between the thin film transistor substrate and the counter substrate. .
  • the display device of the present invention can be suitably used for a display device in which the display medium layer is a liquid crystal layer.
  • the thin film transistor substrate manufacturing method of the present invention includes an insulating substrate, a first thin film transistor provided on the insulating substrate and including a first semiconductor layer having a first channel region, an insulating substrate, A method for manufacturing a thin film transistor substrate, comprising: a second thin film transistor including a second semiconductor layer having a channel region; a first semiconductor layer; and a first insulating film covering the second semiconductor layer.
  • an insulating film formation step of forming a first insulating film so as to cover the first semiconductor layer, the second semiconductor layer, and the second insulating film.
  • a thin film transistor substrate in which the insulating film structure in the channel region of the first semiconductor layer in the first thin film transistor is different from the insulating film structure in the channel region of the second semiconductor layer in the second thin film transistor is manufactured. be able to. Accordingly, the threshold voltages of the first thin film transistor and the second thin film transistor can be made different, and the difference between the threshold voltages of the two thin film transistors can be made sufficiently large. As a result, a thin film transistor substrate including a thin film transistor (that is, an E / D inverter) including a first thin film transistor and a second thin film transistor with different threshold voltages can be manufactured with a simple configuration without reducing the yield.
  • a thin film transistor substrate including a thin film transistor that is, an E / D inverter
  • the method for manufacturing a thin film transistor substrate of the present invention includes an insulating substrate, a first thin film transistor provided on the insulating substrate and including a first semiconductor layer having a first channel region, and a second thin film transistor provided on the insulating substrate.
  • a method of manufacturing a thin film transistor substrate comprising: a second thin film transistor comprising a second semiconductor layer having a channel region; a first semiconductor layer; and an insulating film covering the second semiconductor layer, the method comprising:
  • a semiconductor layer forming step of forming the first semiconductor layer and the second semiconductor layer, and a thickness in the first channel region and a thickness in the second channel region are formed in the first channel region and the second channel region.
  • the thickness of the insulating film in the channel region of the first semiconductor layer in the first thin film transistor can be different from the thickness of the insulating film in the channel region of the second semiconductor layer in the second thin film transistor.
  • the threshold voltages of the first thin film transistor and the second thin film transistor can be made different, and the difference between the threshold voltages of the two thin film transistors can be made sufficiently large.
  • a thin film transistor substrate including a thin film transistor that is, an E / D inverter
  • a first thin film transistor and a second thin film transistor with different threshold voltages can be manufactured with a simple configuration without reducing the yield.
  • a plurality of thin film transistors having different threshold voltages can be formed with a simple configuration, and a reduction in yield of the thin film transistor substrate can be suppressed.
  • FIG. 1 is a plan view of an active matrix substrate including a thin film transistor according to a first embodiment of the present invention.
  • 1 is a plan view of an active matrix substrate including a thin film transistor according to a first embodiment of the present invention.
  • 1 is a cross-sectional view of an active matrix substrate according to a first embodiment of the present invention. It is explanatory drawing which shows the manufacturing process of the 1st thin-film transistor which concerns on the 1st Embodiment of this invention, a 2nd thin-film transistor, and an active matrix substrate in a cross section.
  • Ids-Vg characteristic diagram showing the relationship between drain-source current (Ids) and gate voltage (Vg). It is an Ids-Vg characteristic diagram showing the relationship between drain-source current (Ids) and gate voltage (Vg).
  • Ids-Vg characteristic diagram showing the relationship between drain-source current (Ids) and gate voltage (Vg).
  • FIG. 1 is a sectional view of a liquid crystal display device having an active matrix substrate (thin film transistor substrate) including a thin film transistor according to the first embodiment of the present invention
  • FIG. 2 is a thin film transistor according to the first embodiment of the present invention. It is a top view of an active matrix substrate provided with.
  • FIG. 3 is a plan view of an active matrix substrate including the thin film transistor according to the first embodiment of the present invention
  • FIG. 4 is a cross-sectional view of the active matrix substrate according to the first embodiment of the present invention. .
  • the liquid crystal display device 50 includes an active matrix substrate 20a and a counter substrate 30, which are thin film transistor substrates provided so as to face each other, and a display provided between the active matrix substrate 20a and the counter substrate 30. And a liquid crystal layer 40 which is a medium layer.
  • the liquid crystal display device 50 adheres the active matrix substrate 20a and the counter substrate 30 to each other, and seals 35 provided in a frame shape to enclose the liquid crystal layer 40 between the active matrix substrate 20a and the counter substrate 30. And.
  • a display region D that is composed of a plurality of pixels and the like and that displays an image in an inner portion of the sealing material 35 is defined.
  • a drive circuit region (terminal region) T is defined in a portion protruding from the counter substrate 30 of 20a. The drive circuit region T is provided around the display region D as shown in FIGS.
  • a gate driver region Tg and a source driver region Ts are provided in the drive circuit region T.
  • the gate driver region Tg is provided with a gate driver 26 for driving the scanning wiring (gate wiring) 11a of the display region D, and the signal wiring (source wiring) 16a of the display region D is provided in the source driver region Ts.
  • a source driver 27 for driving is provided.
  • the active matrix substrate 20a includes an insulating substrate 10a, a plurality of scanning wirings 11a provided in the display region D so as to extend parallel to each other, and each scanning wiring.
  • the active matrix substrate 20a includes a thin film transistor 5.
  • the thin film transistor 5 is an active element of a drive circuit (that is, a gate driver 26) as shown in FIG. 4, and is formed on the insulating substrate 10a.
  • the first thin film transistor 5a and the second thin film transistor 5b and a third thin film transistor 5c which is a pixel switching element and is formed on the insulating substrate 10a.
  • the active matrix substrate 20a is an interlayer insulating film that is a first insulating film provided so as to cover the first thin film transistor 5a, the second thin film transistor 5b, and the third thin film transistor 5c. 17, a planarizing film 18 provided so as to cover the interlayer insulating film 17, a plurality of pixel electrodes 19 a provided in a matrix on the planarizing film 18 and connected to the third thin film transistor 5 c, and each pixel And an alignment film (not shown) provided so as to cover the electrode 19a.
  • the scanning wiring 11a is led out to the gate driver region Tg of the driving circuit region T, and is connected to the gate terminal 19b in the gate driver region Tg.
  • the signal wiring 16a is led out as a relay wiring to the source driver region Ts in the driving circuit region T, and is connected to the source terminal 19c in the source driver region Ts.
  • the first thin film transistor 5a has a bottom gate structure. As shown in FIG. 4, the gate electrode 11aa provided on the insulating substrate 10a and the gate insulating layer 12 provided so as to cover the gate electrode 11aa. And.
  • the first thin film transistor 5a includes a first oxide semiconductor layer 13a having a first channel region Ca provided in an island shape so as to overlap the gate electrode 11aa on the gate insulating layer 12, and a first oxide semiconductor layer 13a.
  • a source electrode 16aa and a drain electrode 16b are provided on the physical semiconductor layer 13a so as to overlap the gate electrode 11aa and to face each other across the first channel region Ca.
  • the second thin film transistor 5b has a bottom gate structure, and is provided so as to cover the gate electrode 11aa provided on the insulating substrate 10a and the gate electrode 11aa as shown in FIG. And a gate insulating layer 12.
  • the second thin film transistor 5b includes a second oxide semiconductor layer 13b having a second channel region Cb provided in an island shape so as to overlap the gate electrode 11aa on the gate insulating layer 12, and a second oxide semiconductor layer 13b.
  • a source electrode 16aa and a drain electrode 16b are provided on the physical semiconductor layer 13b so as to overlap the gate electrode 11aa and to face each other across the second channel region Cb.
  • the third thin film transistor 5c has a bottom gate structure, and as shown in FIG. 4, a gate electrode 11aa provided on the insulating substrate 10a and a gate insulation provided so as to cover the gate electrode 11aa.
  • Layer 12 The third thin film transistor 5c includes a third oxide semiconductor layer 13c having a third channel region Cc provided in an island shape so as to overlap the gate electrode 11aa on the gate insulating layer 12, and a third oxide semiconductor layer 13c.
  • a source electrode 16aa and a drain electrode 16b are provided on the physical semiconductor layer 13c so as to overlap the gate electrode 11aa and to face each other across the third channel region Cc.
  • the first to third oxide semiconductor layers 13a, 13b, and 13c are formed of, for example, an IGZO (In—Ga—Zn—O) -based oxide semiconductor film.
  • the gate electrode 11aa is a portion where the scanning wiring 11a protrudes to the side.
  • the source electrode 16aa is a portion from which the signal wiring 16a protrudes to the side, and is constituted by a laminated film of the first conductive layer 14a and the second conductive layer 15a as shown in FIG.
  • the drain electrode 16b is composed of a laminated film of a first conductive layer 14b and a second conductive layer 15b.
  • the drain electrode 16b constituting the third thin film transistor 5c is connected to the pixel electrode 19a through a contact hole C formed in the laminated film of the interlayer insulating film 17 and the planarizing film 18.
  • the drain electrode 16b constituting the third thin film transistor 5c forms an auxiliary capacitance by overlapping with the auxiliary capacitance wiring 11b via the gate insulating layer 12.
  • the counter substrate 30 includes an insulating substrate 10b, a black matrix 21 provided in a lattice shape on the insulating substrate 10b, and a red color provided between each lattice of the black matrix 21. And a color filter layer having a colored layer 22 such as a green layer and a blue layer.
  • the counter substrate 30 includes a common electrode 23 provided so as to cover the color filter layer, a photo spacer 24 provided on the common electrode 23, and an alignment film (non-coated) provided so as to cover the common electrode 23. As shown).
  • the liquid crystal layer 40 is made of, for example, a nematic liquid crystal material having electro-optical characteristics.
  • the source driver 27 a source signal is sent to the source electrode 16aa through the signal wiring 16a, and a predetermined charge is written into the pixel electrode 19a through the oxide semiconductor layer 13c and the drain electrode 16b.
  • a predetermined voltage is applied to the auxiliary capacitor.
  • liquid crystal display device 50 in each pixel, an image is displayed by adjusting the light transmittance of the liquid crystal layer 40 by changing the alignment state of the liquid crystal layer 40 according to the magnitude of the voltage applied to the liquid crystal layer 40. .
  • the second channel of the second oxide semiconductor layer 13b in the second thin film transistor 5b functioning as an active element of the drive circuit that is, the gate driver 26.
  • the region Cb is characterized in that a channel protective film 25 which is a second insulating film for protecting the channel region Cb is provided.
  • the first oxide semiconductor layer 13a of the first thin film transistor 5a is first.
  • the interlayer insulating film 17 is provided, the above-described channel protective film 25 is not provided, and the second channel region of the second oxide semiconductor layer 13b in the second thin film transistor 5b is provided.
  • the channel protective film 25 is provided only on Cb.
  • the insulating film structure in the first channel region Ca of the first oxide semiconductor layer 13a in the first thin film transistor 5a and the second oxide semiconductor layer 13b in the second thin film transistor 5b It is possible to vary the insulating film structure in the channel region Cb. Therefore, the threshold voltages of the first thin film transistor 5a and the second thin film transistor 5b can be made different, and the difference between the threshold voltages of the two thin film transistors 5a and 5b can be made sufficiently large. As a result, a thin film transistor (that is, an E / D inverter) including the first thin film transistor 5a and the second thin film transistor 5b having different threshold voltages can be manufactured with a simple configuration.
  • the second thin film transistor is also provided in the third channel region Cc of the third oxide semiconductor layer 13c in the third thin film transistor 5c functioning as a pixel switching element. Similar to 5b, a channel protective film 25 which is a second insulating film for protecting the channel region Cc is provided.
  • the first thin film transistor 5a is used as a depletion type thin film transistor having a low threshold voltage
  • the second thin film transistor 5b is used as an enhancement type thin film transistor having a high threshold voltage.
  • These first and second thin film transistors 5a and 5b constitute an enhancement-depletion (E / D) inverter having a large difference in threshold voltage.
  • the third thin film transistor 5c is used as a switching element for a pixel as an enhancement type thin film transistor having a high threshold voltage and a low leakage current.
  • FIGS. 5 to 11 are explanatory views showing the manufacturing process of the first to third thin film transistors and the active matrix substrate in cross section
  • FIG. 12 is an explanatory view showing the manufacturing process of the counter substrate in cross section.
  • the manufacturing method of this embodiment includes a thin film transistor and active matrix substrate manufacturing step, a counter substrate manufacturing step, and a liquid crystal injection step.
  • a molybdenum film (thickness of about 150 nm) or the like is formed on the entire substrate of the insulating substrate 10a such as a glass substrate, a silicon substrate, or a heat-resistant plastic substrate by a sputtering method. Then, by performing photolithography, wet etching, and resist removal cleaning, the gate electrode 11aa and the auxiliary capacitor wiring 11b are formed on the insulating substrate 10a as shown in FIG. Note that the scanning wiring 11a and the signal wiring 16a are formed simultaneously with the formation of the gate electrode 11aa and the auxiliary capacitance wiring 11b.
  • the molybdenum film having a single-layer structure is exemplified as the metal film constituting the gate electrode 11aa.
  • a metal such as an aluminum film, a tungsten film, a tantalum film, a chromium film, a titanium film, or a copper film is used.
  • the gate electrode 11aa may be formed with a thickness of 50 nm to 300 nm using a film or a film made of such an alloy film or metal nitride.
  • polyethylene terephthalate resin polyethylene naphthalate resin
  • polyether sulfone resin acrylic resin
  • polyimide resin polyimide resin
  • a silicon nitride film (with a thickness of about 200 nm to 500 nm) is formed by CVD on the entire substrate on which the gate electrode 11aa and the auxiliary capacitance wiring 11b are formed, and as shown in FIG.
  • a gate insulating layer 12 is formed so as to cover the gate electrode 11aa and the auxiliary capacitance line 11b.
  • the gate insulating layer 12 may have a two-layer structure.
  • a silicon oxide film (SiOx), a silicon oxynitride film (SiOxNy, x> y), a silicon nitride oxide film (SiNxOy, x> y), or the like is used in addition to the above-described silicon nitride film (SiNx). be able to.
  • a silicon nitride film or a silicon nitride oxide film is used as a lower gate insulating film, and a silicon oxide film, as an upper gate insulating film, Alternatively, a structure using a silicon oxynitride film is preferable.
  • a silicon nitride film having a thickness of 100 nm to 200 nm is formed as a lower gate insulating film using SiH 4 and NH 3 as reaction gases, and N 2 O and SiH 4 are reacted as an upper gate insulating film.
  • a silicon oxide film with a thickness of 50 nm to 100 nm can be formed as the gas.
  • a rare gas such as argon gas in the reaction gas and mix it in the insulating film.
  • an IGZO-based oxide semiconductor film (with a thickness of about 30 nm to 100 nm) is formed by sputtering, and then the photolithography, wet etching, and resist removal cleaning are performed on the oxide semiconductor film.
  • first to third oxide semiconductor layers 13a, 13b, and 13c are formed as shown in FIG.
  • ⁇ Channel protective film forming step (second insulating film forming step)>
  • a silicon nitride film, a silicon oxide film, a silicon nitride oxide film, or the like is formed on the entire substrate on which the first to third oxide semiconductor layers 13a, 13b, and 13c are formed by a plasma CVD method.
  • photolithography, etching, and resist peeling cleaning are performed using the resist as a mask, thereby protecting the channel region Cb in the second channel region Cb of the second oxide semiconductor layer 13b as shown in FIG.
  • a channel protective film 25 is formed to a thickness of about 50 to 100 nm.
  • a channel protective film 25 for protecting the channel region Cc is formed to a thickness of about 50 to 100 nm in the third channel region Cc of the third oxide semiconductor layer 13c.
  • a silicon oxide film with a thickness of 100 nm to 200 nm can be formed using SiH 4 and N 2 O as reaction gases.
  • a titanium film (thickness 30 nm to 150 nm) and a copper film (thickness 30 nm to 150 nm) are formed on the entire substrate on which the first to third oxide semiconductor layers 13a, 13b, 13c and the channel protective film 25 are formed by sputtering.
  • a film having a thickness of about 50 nm to 400 nm) is sequentially formed.
  • the copper film is subjected to photolithography and wet etching, and the titanium film is dry-etched and resist is peeled and washed, so that the signal wiring 16a (see FIG. 3) is obtained. ),
  • the source electrode 16aa and the drain electrode 16b are formed.
  • the first channel region Ca of the first oxide semiconductor layer 13a, the second channel region Cb of the second oxide semiconductor layer 13b covered with the channel protective film 25, and the channel protective film 25 are covered.
  • the third channel region Cc of the third oxide semiconductor layer 13c thus formed is exposed.
  • the source electrode 16aa and the drain electrode 16b are provided on the channel protective film 25 so as to face each other with the second channel region Cb interposed therebetween.
  • the source electrode 16aa and the drain electrode 16b are provided on the channel protective film 25 so as to face each other across the third channel region Cc. It is done.
  • the metal film constituting the source electrode 16aa and the drain electrode 16b a titanium film and a copper film having a laminated structure are exemplified.
  • a metal such as an aluminum film, a tungsten film, a tantalum film, or a chromium film is used.
  • the source electrode 16aa and the drain electrode 16b may be formed by a film, or a film of an alloy film or metal nitride thereof.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ITSO indium tin oxide containing silicon oxide
  • I 2 O 3 indium oxide
  • SnO 2 tin oxide
  • Zinc oxide Zinc oxide
  • TiN titanium nitride
  • etching process either dry etching or wet etching described above may be used. However, when processing a large area substrate, it is preferable to use dry etching.
  • a fluorine-based gas such as CF 4 , NF 3 , SF 6 , or CHF 3
  • a chlorine-based gas such as Cl 2 , BCl 3 , SiCl 4 , or CCl 4
  • an oxygen gas or the like
  • an inert gas such as argon may be added.
  • a silicon nitride film, an oxide film, or the like is formed by plasma CVD.
  • a silicon film, a silicon nitride oxide film, or the like is formed, and covers the first to third thin film transistors 5a, 5b, and 5c as shown in FIG. 9 (that is, the first to third oxide semiconductor layers 13a and 13b).
  • 13c, covering the source electrode 16aa, the drain electrode 16b, and the channel protective film 25) the interlayer insulating film 17 is formed to a thickness of about 200 to 300 nm.
  • a silicon oxide film having a thickness of 200 nm to 300 nm is formed by, for example, plasma CVD using TEOS (TetraTeEthyl Ortho Silicate) as a source gas. be able to.
  • TEOS TetraTeEthyl Ortho Silicate
  • a resist mask is formed on the interlayer insulating film 17 by a photolithography process, and as shown in FIG. 9, the contact hole C is etched, and the entire surface of the substrate is heat-treated.
  • the semiconductor characteristics of a thin film transistor including an oxide semiconductor layer are extremely sensitively influenced by the oxygen vacancy concentration in the oxide semiconductor layer. Even after the oxide semiconductor layer is formed, the oxygen vacancy concentration in the oxide semiconductor layer increases or decreases due to the influence of surrounding moisture and oxygen.
  • the film quality of the protective insulating film greatly affects the characteristics of the thin film transistor.
  • the ratio (flow rate) of N 2 O is large. Since the oxygen concentration increases, the oxidation effect on the second oxide semiconductor layer 13b increases, and the proportion of SiH 4 decreases, so that the hydrogen concentration decreases and the second oxide semiconductor layer 13b is formed. The reduction effect of becomes smaller.
  • the threshold voltage Vth is increased (i.e., shifted in the direction of arrow Y 1 in the figure) will be.
  • the second thin film transistor 5b including the second oxide semiconductor layer 13b in which the channel protective film 25 is provided in the second channel region Cb can be used as an enhancement type thin film transistor having a high threshold voltage Vth. Become.
  • the third thin film transistor 5c including the third oxide semiconductor layer 13c in which the channel protective film 25 is provided in the third channel region Cc is enhanced with a high threshold voltage Vth and a low leakage current. It can be used as a thin film transistor.
  • the current value is increased (i.e., the direction of the arrow X 2 in FIG. while shifting), the threshold voltage Vth is lowered (i.e., shifted in the direction of the arrow Y 2 in the figure) will be.
  • a photosensitive organic insulating film made of photosensitive acrylic resin or the like is formed to a thickness of about 1.0 ⁇ m to 3.0 ⁇ m on the entire substrate on which the interlayer insulating film 17 is formed by spin coating or slit coating.
  • a planarizing film 18 is formed on the surface of the interlayer insulating film 17 as shown in FIG.
  • a transparent conductive film such as, for example, an ITO film (thickness of about 50 nm to 200 nm) made of indium tin oxide is formed on the entire substrate on which the interlayer insulating film 17 and the planarizing film 18 are formed by sputtering. . Thereafter, the transparent conductive film is subjected to photolithography, wet etching, and resist peeling and cleaning, so that the pixel electrode 19a, the gate terminal 19b (see FIG. 3), and the source terminal 19c (see FIG. 3), as shown in FIG. (See FIG. 3).
  • ITO film thickness of about 50 nm to 200 nm
  • the transparent conductive film is subjected to photolithography, wet etching, and resist peeling and cleaning, so that the pixel electrode 19a, the gate terminal 19b (see FIG. 3), and the source terminal 19c (see FIG. 3), as shown in FIG. (See FIG. 3).
  • the pixel electrode 19a is formed on the surface of the planarizing film 18 and the interlayer insulating film 17 so as to cover the surface of the contact hole C.
  • the pixel electrode 19a is made of indium oxide or indium zinc oxide (IZO) containing tungsten oxide, indium oxide or indium tin oxide (ITO) containing titanium oxide. ) Etc. can be used. In addition to the above-mentioned indium zinc oxide and indium tin oxide, indium tin oxide containing silicon oxide (ITSO) can also be used.
  • IZO indium oxide or indium zinc oxide
  • ITO indium tin oxide
  • Etc. Etc.
  • indium zinc oxide and indium tin oxide indium tin oxide containing silicon oxide (ITSO) can also be used.
  • the conductive thin film is made of titanium, tungsten, nickel, gold, platinum, silver, aluminum, magnesium, calcium, lithium, or an alloy thereof. A film can be used, and this metal thin film can be used as the pixel electrode 19a.
  • the active matrix substrate 20a shown in FIG. 4 can be manufactured.
  • ⁇ Opposite substrate manufacturing process First, by applying, for example, a photosensitive resin colored in black to the entire substrate of the insulating substrate 10b such as a glass substrate by spin coating or slit coating, the coating film is exposed and developed. As shown in FIG. 12A, the black matrix 21 is formed to a thickness of about 1.0 ⁇ m.
  • a photosensitive resin colored in red, green, or blue is applied to the entire substrate on which the black matrix 21 is formed by spin coating or slit coating. Thereafter, the coating film is exposed and developed to form a colored layer 22 (for example, a red layer) of a selected color with a thickness of about 2.0 ⁇ m as shown in FIG. The same process is repeated for the other two colors to form the other two colored layers 22 (for example, a green layer and a blue layer) with a thickness of about 2.0 ⁇ m.
  • the common electrode 23 has a thickness as shown in FIG. It is formed to have a thickness of about 50 nm to 200 nm.
  • the photo spacer 24 is formed to a thickness of about 4 ⁇ m.
  • the counter substrate 30 can be manufactured as described above.
  • a polyimide resin film is applied to each surface of the active matrix substrate 20a manufactured in the active matrix substrate manufacturing process and the counter substrate 30 manufactured in the counter substrate manufacturing process by a printing method, and then the coating film is applied.
  • an alignment film is formed by performing baking and rubbing treatment.
  • a sealing material 35 made of UV (ultraviolet) curing and thermosetting resin is printed on the surface of the counter substrate 30 on which the alignment film is formed in a frame shape, a liquid crystal material is formed inside the sealing material. Is dripped.
  • the bonded bonded body is released to atmospheric pressure. The surface and the back surface of the bonded body are pressurized.
  • the sealing material 35 is hardened by heating the bonding body.
  • the unnecessary part is removed by dividing the bonded body in which the sealing material 35 is cured, for example, by dicing.
  • the liquid crystal display device 50 of the present embodiment can be manufactured.
  • the second channel region of the second oxide semiconductor layer 13b is between the second oxide semiconductor layer 13b and the interlayer insulating film 17 that is the first insulating film.
  • a channel protective film 25 that is a second insulating film formed of a material different from that of the interlayer insulating film 17 is provided on Cb. Therefore, the insulating film structure in the first channel region Ca of the first oxide semiconductor layer 13a in the first thin film transistor 5a and the second channel region Cb of the second oxide semiconductor layer 13b in the second thin film transistor 5b. It is possible to vary the insulating film structure in.
  • the threshold voltages of the first thin film transistor 5a and the second thin film transistor 5b can be made different, and the difference between the threshold voltages of the two thin film transistors 5a and 5b can be made sufficiently large.
  • an active matrix substrate 20a including a thin film transistor (that is, an E / D inverter) including a first thin film transistor 5a and a second thin film transistor 5b having different threshold voltages can be manufactured with a simple configuration.
  • a high-quality device capable of high current driving and low voltage driving can be realized, and for example, high-functional circuits such as a pixel memory circuit, a photosensor circuit, and an OLED driving circuit can be realized.
  • the channel protective film 25 that protects the channel region Cb is provided in the second channel region Cb of the second oxide semiconductor layer 13b. Therefore, in the step of forming the source electrode 16aa and the drain electrode 16b, when the source electrode 16aa and the drain electrode 16b are formed by patterning by etching, the second channel region Cb of the second oxide semiconductor layer 13b is formed. Can be protected from being etched.
  • the first and second oxide semiconductor layers 13a and 13b are used as the semiconductor layers. Accordingly, it is possible to form a thin film transistor that has a higher electron mobility and can be processed at a lower temperature than a thin film transistor using amorphous silicon as a semiconductor layer.
  • FIG. 15 is a cross-sectional view of an active matrix substrate including a thin film transistor according to the second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the overall configuration and the manufacturing method of the liquid crystal display device are the same as those described in the first embodiment, and thus detailed description thereof is omitted here.
  • interlayer insulating film 28 is provided as the second insulating film instead of the channel protective film 25 described above. There is a feature in that.
  • an interlayer insulating film 17 is formed in the first channel region Ca of the first oxide semiconductor layer 13a in the first thin film transistor 5a that functions as an active element of the drive circuit.
  • the interlayer insulating film 28 is provided, but the interlayer insulating film 28 is not provided, and the interlayer insulating film 28 is provided in the second channel region Cb of the second oxide semiconductor layer 13b in the second thin film transistor 5b.
  • the insulating film structure in the first channel region Ca of the first oxide semiconductor layer 13a in the first thin film transistor 5a and the second thin film transistor as in the case of the first embodiment described above.
  • the insulating film structure in the second channel region Cb of the second oxide semiconductor layer 13b in 5b can be made different.
  • the threshold voltages of the first thin film transistor 5a and the second thin film transistor 5b can be made different, and the difference between the threshold voltages of the two thin film transistors 5a and 5b can be made sufficiently large. Therefore, an active matrix substrate including a thin film transistor (that is, an E / D inverter) including the first thin film transistor 5a and the second thin film transistor 5b having different threshold voltages can be manufactured with a simple configuration.
  • a thin film transistor that is, an E / D inverter
  • the second thin film transistor is also provided in the third channel region Cc of the third oxide semiconductor layer 13c in the third thin film transistor 5c functioning as a switching element of the pixel. Similar to 5b, an interlayer insulating film 28 which is a second insulating film for protecting the channel region Cc is provided.
  • FIG. 16 is an explanatory view showing the manufacturing process of the thin film transistor and the active matrix substrate in cross section.
  • the gate electrode forming process and the semiconductor layer forming process are performed as in FIGS. 5 and 6 described in the first embodiment.
  • a titanium film (thickness of 30 nm to 150 nm) and a copper film (thickness of about 50 nm to 400 nm) are formed on the entire substrate on which the first to third oxide semiconductor layers 13a, 13b, and 13c are formed by sputtering. ) Etc. in order. Thereafter, the copper film is subjected to photolithography and wet etching, and the titanium film is dry-etched and the resist is peeled and washed, so that the signal wiring 16a (see FIG. 3) is obtained. ), The source electrode 16aa and the drain electrode 16b are formed. At this time, the first channel region Ca of the first oxide semiconductor layer 13a, the second channel region Cb of the second oxide semiconductor layer 13b, and the third channel region of the third oxide semiconductor layer 13c. Cc is exposed.
  • the source electrode 16aa and the drain electrode 16b are opposed to each other on the second oxide semiconductor layer 13b with the second channel region Cb interposed therebetween. Provided.
  • the source electrode 16aa and the drain electrode 16b are opposed to each other on the third oxide semiconductor layer 13c with the third channel region Cc interposed therebetween. To be provided.
  • a silicon nitride film, a silicon oxide film, a silicon nitride oxide film, or the like is formed on the surface of the substrate on which the second and third thin film transistors 5b and 5c are formed by plasma CVD, and is selectively etched.
  • the second and third thin film transistors 5b and 5c are covered by patterning (that is, the second and third oxide semiconductor layers 13b and 13c, the source electrode 16aa, and the drain electrode 16b are covered).
  • a cover) interlayer insulating film 28 is formed to a thickness of about 200 to 300 nm.
  • the source is arranged so as to face each other with the second channel region Cb interposed between the second oxide semiconductor layer 13b and the interlayer insulating film 28.
  • An electrode 16aa and a drain electrode 16b are provided.
  • a silicon nitride film, a silicon oxide film, or a silicon nitride oxide film is formed on the entire substrate on which the first to third thin film transistors 5a, 5b, and 5c are formed by plasma CVD.
  • Etc. to cover the first to third thin film transistors 5a, 5b, 5c that is, the first to third oxide semiconductor layers 13a, 13b, 13c, the source electrode 16aa, the drain electrode 16b, and the interlayer insulation
  • An interlayer insulating film 17 (covering the film 28) is formed to a thickness of about 200 to 300 nm.
  • a resist mask is formed on the interlayer insulating film 17 by a photolithography process, etching for the contact hole C is performed, and heat treatment is performed on the entire surface of the substrate.
  • a silicon oxide film having a thickness of 200 nm to 300 nm can be formed using N 2 O and SiH 4 .
  • the planarization film forming step, the opening forming step, and the pixel electrode forming step are performed, whereby the active matrix substrate 20a shown in FIG. Can be produced.
  • liquid crystal display device 50 of the present embodiment can be manufactured by performing the counter substrate manufacturing process and the liquid crystal injection process described in the first embodiment.
  • an oxide semiconductor layer is used as the semiconductor layer.
  • the semiconductor layer is not limited to this.
  • a silicon-based semiconductor layer made of amorphous silicon or polysilicon is used as a thin film transistor instead of the oxide semiconductor layer.
  • the semiconductor layer may be used as a semiconductor layer.
  • an oxide semiconductor layer made of an In—Ga—Zn—O-based metal oxide is used as the oxide semiconductor layer.
  • the oxide semiconductor layer is not limited to this, and indium (In ), Gallium (Ga), aluminum (Al), copper (Cu), zinc (Zn), magnesium (Mg), and cadmium (Cd), a material made of a metal oxide containing at least one kind may be used.
  • the oxide semiconductor layer 13a made of these materials has high mobility even if it is amorphous, the on-resistance of the switching element can be increased. Therefore, the difference in output voltage at the time of data reading becomes large, and the S / N ratio can be improved.
  • oxide semiconductor films such as InGaO 3 (ZnO) 5 , Mg x Zn 1-x O, Cd x Zn 1-x O, and CdO can be given. it can.
  • an amorphous state, a polycrystalline state, or a non-crystalline state of ZnO to which one or more kinds of impurity elements of Group 1 element, Group 13 element, Group 14 element, Group 15 element, or Group 17 element are added is also possible to use a microcrystalline state in which a crystalline state and a polycrystalline state are mixed, or a material to which the above impurities are not added.
  • the thickness of the interlayer insulating film 17 may be different without providing the channel protective film 25 and the interlayer insulating film 28 described above. More specifically, as shown in FIG. 17, the thickness T 1 of the interlayer insulating film 17 in the first channel region Ca of the first oxide semiconductor layer 13a in the first thin film transistor 5a, and the second thin film transistor 5b. in (in FIG. 17, T 2> T 1) of the second thickness T 2 of the interlayer insulating film 17 in the channel region Cb is different of the second oxide semiconductor layer 13b may be configured.
  • the threshold voltage of the thin film transistor varies.
  • the thickness T 1 of the interlayer insulating film 17 a second for the thickness T 2 of the interlayer insulating film 17 in the channel region Cb are different, the first channel region Ca and the second channel region of the second oxide semiconductor layer 13b In Cb, the charges generated at the interface between the interlayer insulating film 17 and the planarizing film 18 are different.
  • the amount of variation in the threshold voltage of the first thin film transistor 5a is different from the amount of variation in the threshold voltage of the second thin film transistor 5b, the same as in the case where the channel protective film 25 and the interlayer insulating film 28 are provided.
  • the threshold voltages of the first thin film transistor 5a and the second thin film transistor 5b can be made different.
  • the difference between the threshold voltages of the two thin film transistors 5a and 5b can be made sufficiently large.
  • an active matrix substrate 20a having a thin film transistor that is, an E / D inverter
  • the first thin film transistor 5a and the second thin film transistor 5b having different threshold voltages can be manufactured with a simple configuration.
  • a high-quality device capable of high current drive and low voltage drive can be realized, and for example, high-functional circuits such as a pixel memory circuit, a photo sensor circuit, and an OLED drive circuit can be realized.
  • the gate electrode forming process, the semiconductor layer forming process, and the source / drain forming process are performed as in the second embodiment.
  • a silicon nitride film, a silicon oxide film, a silicon nitride oxide film, or the like is formed on the surface of the substrate on which the first to third thin film transistors 5a, 5b, and 5c are formed by plasma CVD, and is etched.
  • the first to third thin film transistors 5a, 5b and 5c are covered (that is, the first to third oxide semiconductor layers 13a, 13b and 13c, the source electrode).
  • An interlayer insulating film 17 is formed to cover 16aa and the drain electrode 16b.
  • the thickness of the interlayer insulating film 17 in the third channel region Cc of the third oxide semiconductor layer 13c included in the third thin film transistor 5c functioning as a pixel switching element is The thickness is set to be the same as the thickness of the interlayer insulating film 17 in the second channel region Cb of the second oxide semiconductor layer 13b (that is, T 2 ).
  • a resist mask is formed on the interlayer insulating film 17 by a photolithography process, etching for the contact hole C is performed, and heat treatment is performed on the entire surface of the substrate.
  • the planarization film forming step, the opening portion forming step, and the pixel electrode forming step are performed, whereby the active matrix substrate 20a shown in FIG. Can be produced.
  • liquid crystal display device 50 of the present embodiment can be manufactured by performing the counter substrate manufacturing process and the liquid crystal injection process described in the first embodiment.
  • Examples of utilization of the present invention include a thin film transistor substrate using an oxide semiconductor layer, a method for manufacturing the same, and a display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)

Abstract

 アクティブマトリクス基板(20a)は、絶縁基板(10a)と、絶縁基板(10a)上に設けられ、第1のチャネル領域(Ca)を有する第1の酸化物半導体層(13a)を備える第1の薄膜トランジスタ(5a)と、絶縁基板(10a)上に設けられ、第2のチャネル領域(Cb)を有する第2の酸化物半導体層(13b)を備える第2の薄膜トランジスタ(5b)と、第1の酸化物半導体層(13a)及び第2の酸化物半導体層(13b)を覆う層間絶縁膜(17)とを備える。そして、第2の酸化物半導体層(13b)と層間絶縁膜(17)との間であって、第2の酸化物半導体層(13b)の第2のチャネル領域(Cb)に、層間絶縁膜(17)と異なる材料により形成されたチャネル保護膜(25)が設けられている。

Description

薄膜トランジスタ基板及びその製造方法、表示装置
 本発明は、薄膜トランジスタ基板に関し、特に、酸化物半導体の半導体層を用いた薄膜トランジスタ基板及びその製造方法、表示装置に関する。
 アクティブマトリクス基板では、画像の最小単位である各画素毎に、スイッチング素子として、例えば、薄膜トランジスタ(Thin Film Transistor、以下、「TFT」とも称する)が設けられている。
 一般的なボトムゲート型のTFTは、例えば、絶縁基板上に設けられたゲート電極と、ゲート電極を覆うように設けられたゲート絶縁膜と、ゲート絶縁膜上にゲート電極に重なるように島状に設けられた半導体層と、半導体層上に互いに対峙するように設けられたソース電極及びドレイン電極とを備えている。
 また、一般的な周辺回路一体型の表示装置においては、例えば、画素のスイッチング素子に用いられるリーク電流の低い薄膜トランジスタと、周辺回路に用いられる閾値電圧が低く、高速駆動が可能な薄膜トランジスタが要求される。
 また、複数の薄膜トランジスタを使用して周辺回路を作製する場合、高速駆動の観点から、n型チャネルとp型チャネルとの両方が必要なCMOSインバータや、インバータを構成する2つの薄膜トランジスタの閾値電圧の差が大きいエンハンスメント-ディプリーション(E/D)インバータが広く使用されている。
 また、近年、アクティブマトリクス基板では、画像の最小単位である各画素のスイッチング素子として、アモルファスシリコンの半導体層を用いた従来の薄膜トランジスタに代わって、高速移動が可能なIGZO(In-Ga-Zn-O)系の酸化物半導体膜により形成された酸化物半導体の半導体層(以下、「酸化物半導体層」とも称する)を用いたTFTが提案されている。
 ここで、アモルファスIGZO等の高速移動酸化物半導体は、その多くがn型(電子)伝導であり、ドーピングによってもp型(ホール)伝導化しないため、CMOS回路構成が使用できない。従って、高速移動酸化物半導体を使用した回路においては、CMOSインバータ回路を利用することができないという課題があり、各薄膜トランジスタの閾値電圧を独立に制御し、かつ高速動作が可能なE/Dインバータ回路の作製が必要とされている。
 そこで、酸化物半導体をチャネル層とする薄膜トランジスタからなるE/Dインバータが開示されている。より具体的には、チャネル層の膜厚が互いに異なる第1の薄膜トランジスタと第2の薄膜トランジスタとを備え、第1及び第2の薄膜トランジスタのチャネル層のうち、少なくとも1つが熱処理されているE/Dインバータが開示されている。そして、このような構成により、E/Dインバータを構成する第1及び第2の薄膜トランジスタのチャネル層の膜厚の差によって、または、チャネル層の加熱処理条件の差によって、閾値電圧に差が生じるため、E/Dインバータを構成する2つの薄膜トランジスタの閾値電圧の差を十分に大きくすることができると記載されている(例えば、特許文献1参照)。
特開2009-4733号公報
 しかし、上記特許文献1に記載のE/Dインバータにおいては、チャネル層となるアモルファスIGZO膜を基板上に成膜した後、アモルファスIGZO膜に対してエッチング(ドライエッチングまたはウェットエッチング)を行うことにより、チャネル層の膜厚が互いに異なる第1及び第2の薄膜トランジスタを形成するため、基板のサイズが大きくなると、チャネル層の膜厚の制御が困難になり、膜厚の均一性が低下するという問題があった。
 より具体的には、上記特許文献1に記載のE/Dインバータにおいては、第1及び第2の薄膜トランジスタの各チャネル層に相当する部分において60nmの膜厚でアモルファスIGZO膜を成膜した後、ドライエッチングにより、第2の薄膜トランジスタのチャネル層となるアモルファスIGZO膜の膜厚を成膜時の半分の厚み(即ち、30nm)になるようにエッチングを行うが、基板サイズが大きくなると、基板全体に渡って、均一に、成膜時の半分の厚みにエッチングすることは、相当高度な技術の確立と高価な装置導入の両方が要求される。そのため、薄膜トランジスタの製造が困難になり、結果として、歩留まりが低下するという問題があった。
 また、上記特許文献1に記載のE/Dインバータにおいては、チャネル層となるアモルファスIGZO膜を基板上に成膜した後、例えば、チャネル層に対して接触加熱や電磁波の照射による加熱(高周波照射や紫外光照射)を行うことにより、第1及び第2の薄膜トランジスタの閾値電圧を変化させるが、このような局所領域での選択的な加熱処理は、工程が複雑化するとともに、高精細かつ微細な薄膜トランジスタへの適用は困難であると言える。その結果、歩留まりが低下するという問題があった。
 そこで、本発明は、上述の問題に鑑みてなされたものであり、簡単な構成で、閾値電圧の異なる複数の薄膜トランジスタを形成することができ、歩留まりの低下を抑制することができる薄膜トランジスタ基板及びその製造方法、表示装置を提供することを目的とする。
 上記目的を達成するために、本発明の薄膜トランジスタ基板は、絶縁基板と、絶縁基板上に設けられ、第1のチャネル領域を有する第1の半導体層を備える第1の薄膜トランジスタと、絶縁基板上に設けられ、第2のチャネル領域を有する第2の半導体層を備える第2の薄膜トランジスタと、第1の半導体層、及び第2の半導体層を覆う第1の絶縁膜とを備え、第2の半導体層と第1の絶縁膜との間であって、第2の半導体層の第2のチャネル領域に、第1の絶縁膜と異なる材料により形成された第2の絶縁膜が設けられていることを特徴とする。
 同構成によれば、第1の薄膜トランジスタにおける第1の半導体層のチャネル領域における絶縁膜構造と、第2の薄膜トランジスタにおける第2の半導体層のチャネル領域における絶縁膜構造を異ならせることが可能になる。従って、第1の薄膜トランジスタと第2の薄膜トランジスタの閾値電圧を異ならせることが可能になり、2つの薄膜トランジスタの閾値電圧の差を十分に大きくすることが可能になる。その結果、簡単な構成で、閾値電圧の異なる第1の薄膜トランジスタと第2の薄膜トランジスタからなる薄膜トランジスタ(即ち、E/Dインバータ)を備える薄膜トランジスタ基板を、歩留まりを低下させることなく作製することができる。
 また、本発明の薄膜トランジスタ基板においては、第2の絶縁膜が、第2のチャネル領域を保護するチャネル保護膜であってもよい。
 同構成によれば、例えば、第2の半導体層上にソース電極及びドレイン電極を形成する工程において、エッチングによりパターンニングして、ソース電極、ドレイン電極を形成する際に、第2の半導体層のチャネル領域をエッチングしないように保護することが可能になる。
 また、本発明の薄膜トランジスタ基板においては、第1の絶縁膜が、TEOS(Tetra Ethyl Ortho Silicate)を材料とする酸化シリコン膜であり、第2の絶縁膜が、NOとSiHを材料とする酸化シリコン膜であってもよい。
 また、本発明の薄膜トランジスタ基板においては、第2の絶縁膜上に、第2のチャネル領域を挟んで互いに対峙するように設けられたソース電極及びドレイン電極を更に備えていてもよい。
 また、本発明の薄膜トランジスタ基板においては、第2の半導体層と第2の絶縁膜との間に、第2のチャネル領域を挟んで互いに対峙するように設けられたソース電極及びドレイン電極を更に備えていてもよい。
 本発明の薄膜トランジスタ基板は、絶縁基板と、絶縁基板上に設けられ、第1のチャネル領域を有する第1の半導体層を備える第1の薄膜トランジスタと、絶縁基板上に設けられ、第2のチャネル領域を有する第2の半導体層を備える第2の薄膜トランジスタと、第1の半導体層、及び第2の半導体層を覆う絶縁膜とを備え、第1の半導体層の第1のチャネル領域における絶縁膜の厚みと、第2の半導体層の第2のチャネル領域における絶縁膜の厚みが異なることを特徴とする。
 同構成によれば、第1の薄膜トランジスタにおける第1の半導体層のチャネル領域における絶縁膜の厚みと、第2の薄膜トランジスタにおける第2の半導体層のチャネル領域における絶縁膜の厚みを異ならせることが可能になる。従って、第1の薄膜トランジスタと第2の薄膜トランジスタの閾値電圧を異ならせることが可能になり、2つの薄膜トランジスタの閾値電圧の差を十分に大きくすることが可能になる。その結果、簡単な構成で、閾値電圧の異なる第1の薄膜トランジスタと第2の薄膜トランジスタからなる薄膜トランジスタ(即ち、E/Dインバータ)を備える薄膜トランジスタ基板を、歩留まりを低下させることなく作製することができる。
 また、本発明の薄膜トランジスタ基板においては、半導体層が、酸化物半導体層であってもよい。
 同構成によれば、アモルファスシリコンを半導体層に使用した薄膜トランジスタに比し、電子移動度が大きく、かつ低温プロセスが可能である薄膜トランジスタを形成することができる。
 また、本発明の薄膜トランジスタ基板においては、酸化物半導体層が、インジウム(In)、ガリウム(Ga)、アルミニウム(Al)、銅(Cu)及び亜鉛(Zn)からなる群より選ばれる少なくとも1種を含む金属酸化物からなる構成としても良い。
 同構成によれば、これらの材料からなる酸化物半導体層は、アモルファスであっても移動度が高いため、スイッチング素子のオン抵抗を大きくすることができる。
 また、本発明の薄膜トランジスタ基板においては、酸化物半導体層が、In-Ga-Zn-O系の金属酸化物からなる構成としてもよい。
 同構成によれば、薄膜トランジスタにおいて、高移動度、低オフ電流という良好な特性を得ることができる。
 また、本発明の薄膜トランジスタ基板においては、半導体層がシリコン系半導体層であってもよい。
 また、本発明の薄膜トランジスタ基板は、簡単な構成で、閾値電圧の異なる第1の薄膜トランジスタと第2の薄膜トランジスタからなる薄膜トランジスタ(即ち、E/Dインバータ)を備える薄膜トランジスタ基板を、歩留まりを低下させることなく作製することができるという優れた特性を備えている。従って、本発明の薄膜トランジスタ基板は、薄膜トランジスタ基板と、薄膜トランジスタ基板に対向して配置された対向基板と、薄膜トランジスタ基板及び対向基板の間に設けられた表示媒体層とを備える表示装置に好適に使用できる。また、本発明の表示装置は、表示媒体層が液晶層である表示装置に好適に使用できる。
 本発明の薄膜トランジスタ基板の製造方法は、絶縁基板と絶縁基板上に設けられ、第1のチャネル領域を有する第1の半導体層を備える第1の薄膜トランジスタと、絶縁基板上に設けられ、第2のチャネル領域を有する第2の半導体層を備える第2の薄膜トランジスタと、第1の半導体層、及び第2の半導体層を覆う第1の絶縁膜とを備えた薄膜トランジスタ基板の製造方法であって、絶縁基板上に、第1の半導体層及び第2の半導体層を形成する半導体層形成工程と、第2の半導体層の第2のチャネル領域に第1の絶縁膜と異なる材料からなる第2の絶縁膜を形成し、第1の半導体層、第2の半導体層、及び第2の絶縁膜を覆うように第1の絶縁膜を形成する絶縁膜形成工程とを少なくとも備えることを特徴とする。
 同構成によれば、第1の薄膜トランジスタにおける第1の半導体層のチャネル領域における絶縁膜構造と、第2の薄膜トランジスタにおける第2の半導体層のチャネル領域における絶縁膜構造とが異なる薄膜トランジスタ基板を製造することができる。従って、第1の薄膜トランジスタと第2の薄膜トランジスタの閾値電圧を異ならせることが可能になり、2つの薄膜トランジスタの閾値電圧の差を十分に大きくすることが可能になる。その結果、簡単な構成で、閾値電圧の異なる第1の薄膜トランジスタと第2の薄膜トランジスタからなる薄膜トランジスタ(即ち、E/Dインバータ)を備える薄膜トランジスタ基板を、歩留まりを低下させることなく作製することができる。
 本発明の薄膜トランジスタ基板の製造方法は、絶縁基板と、絶縁基板上に設けられ、第1のチャネル領域を有する第1の半導体層を備える第1の薄膜トランジスタと、絶縁基板上に設けられ、第2のチャネル領域を有する第2の半導体層を備える第2の薄膜トランジスタと、第1の半導体層、及び第2の半導体層を覆う絶縁膜とを備えた薄膜トランジスタ基板の製造方法であって、絶縁基板上に、第1の半導体層及び第2の半導体層を形成する半導体層形成工程と、第1のチャネル領域及び第2のチャネル領域に、第1のチャネル領域における厚みと第2のチャネル領域における厚みとが異なる絶縁膜を形成する絶縁膜形成工程とを少なくとも備えることを特徴とする。
 同構成によれば、第1の薄膜トランジスタにおける第1の半導体層のチャネル領域における絶縁膜の厚みと、第2の薄膜トランジスタにおける第2の半導体層のチャネル領域における絶縁膜の厚みを異ならせることが可能になる。従って、第1の薄膜トランジスタと第2の薄膜トランジスタの閾値電圧を異ならせることが可能になり、2つの薄膜トランジスタの閾値電圧の差を十分に大きくすることが可能になる。その結果、簡単な構成で、閾値電圧の異なる第1の薄膜トランジスタと第2の薄膜トランジスタからなる薄膜トランジスタ(即ち、E/Dインバータ)を備える薄膜トランジスタ基板を、歩留まりを低下させることなく作製することができる。
 本発明によれば、簡単な構成で、閾値電圧の異なる複数の薄膜トランジスタを形成することができ、薄膜トランジスタ基板の歩留まりの低下を抑制することができる。
本発明の第1の実施形態に係る薄膜トランジスタを備えるアクティブマトリクス基板(薄膜トランジスタ基板)を有する液晶表示装置の断面図である。 本発明の第1の実施形態に係る薄膜トランジスタを備えるアクティブマトリクス基板の平面図である。 本発明の第1の実施形態に係る薄膜トランジスタを備えるアクティブマトリクス基板の平面図である。 本発明の第1の実施形態に係るアクティブマトリクス基板の断面図である。 本発明の第1の実施形態に係る第1の薄膜トランジスタ、第2の薄膜トランジスタ、及びアクティブマトリクス基板の製造工程を断面で示す説明図である。 本発明の第1の実施形態に係る第1の薄膜トランジスタ、第2の薄膜トランジスタ、及びアクティブマトリクス基板の製造工程を断面で示す説明図である。 本発明の第1の実施形態に係る第1の薄膜トランジスタ、第2の薄膜トランジスタ、及びアクティブマトリクス基板の製造工程を断面で示す説明図である。 本発明の第1の実施形態に係る第1の薄膜トランジスタ、第2の薄膜トランジスタ、及びアクティブマトリクス基板の製造工程を断面で示す説明図である。 本発明の第1の実施形態に係る第1の薄膜トランジスタ、第2の薄膜トランジスタ、及びアクティブマトリクス基板の製造工程を断面で示す説明図である。 本発明の第1の実施形態に係る第1の薄膜トランジスタ、第2の薄膜トランジスタ、及びアクティブマトリクス基板の製造工程を断面で示す説明図である。 本発明の第1の実施形態に係る第1の薄膜トランジスタ、第2の薄膜トランジスタ、及びアクティブマトリクス基板の製造工程を断面で示す説明図である。 対向基板の製造工程を断面で示す説明図である。 ドレイン・ソース電流(Ids)とゲート電圧(Vg)との関係を示すIds-Vg特性図である。 ドレイン・ソース電流(Ids)とゲート電圧(Vg)との関係を示すIds-Vg特性図である。 本発明の第2の実施形態に係る薄膜トランジスタを備えるアクティブマトリクス基板の断面図である。 本発明の第2の実施形態に係る第2の薄膜トランジスタ及びアクティブマトリクス基板の製造工程を断面で示す説明図である。 本発明の実施形態に係る薄膜トランジスタを備えるアクティブマトリクス基板の変形例を示す断面図である。
 (第1の実施形態)
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。尚、本発明は以下の実施形態に限定されるものではない。
 図1は、本発明の第1の実施形態に係る薄膜トランジスタを備えるアクティブマトリクス基板(薄膜トランジスタ基板)を有する液晶表示装置の断面図であり、図2は、本発明の第1の実施形態に係る薄膜トランジスタを備えるアクティブマトリクス基板の平面図である。また、図3は、本発明の第1の実施形態に係る薄膜トランジスタを備えるアクティブマトリクス基板の平面図であり、図4は、本発明の第1の実施形態に係るアクティブマトリクス基板の断面図である。
 液晶表示装置50は、図1に示すように、互いに対向するように設けられた薄膜トランジスタ基板であるアクティブマトリクス基板20aと対向基板30と、アクティブマトリクス基板20a及び対向基板30の間に設けられた表示媒体層である液晶層40とを備えている。また、液晶表示装置50は、アクティブマトリクス基板20a及び対向基板30を互いに接着するとともに、アクティブマトリクス基板20a及び対向基板30の間に液晶層40を封入するために枠状に設けられたシール材35とを備えている。
 また、液晶表示装置50では、図1~図3に示すように、複数の画素等で構成され、シール材35の内側の部分に画像表示を行う表示領域Dが規定され、また、アクティブマトリクス基板20aの対向基板30から突出する部分に駆動回路領域(端子領域)Tが規定されている。この駆動回路領域Tは、図2、図3に示すように、表示領域Dの周辺に設けられている。
 また、駆動回路領域Tには、ゲートドライバ領域Tgとソースドライバ領域Tsとが設けられている。そして、ゲートドライバ領域Tgには、表示領域Dの走査配線(ゲート配線)11aを駆動するゲートドライバ26が設けられており、ソースドライバ領域Tsには、表示領域Dの信号配線(ソース配線)16aを駆動するソースドライバ27が設けられている。
 アクティブマトリクス基板20aは、図3、図4に示すように、絶縁基板10aと、表示領域Dにおいて、絶縁基板10a上に互いに平行に延びるように設けられた複数の走査配線11aと、各走査配線11aの間にそれぞれ設けられた複数の補助容量配線11bと、絶縁基板10a上に互いに平行に延びるように設けられた複数の信号配線16aとを備えている。
 また、アクティブマトリクス基板20aは、薄膜トランジスタ5を備えており、この薄膜トランジスタ5は、図4に示すように、駆動回路(即ち、ゲートドライバ26)の能動素子であって、絶縁基板10a上に形成された第1の薄膜トランジスタ5a及び第2の薄膜トランジスタ5bと、画素のスイッチング素子であって、絶縁基板10a上に形成された第3の薄膜トランジスタ5cとにより構成されている。
 また、アクティブマトリクス基板20aは、図4に示すように、第1の薄膜トランジスタ5a、第2の薄膜トランジスタ5b、及び第3の薄膜トランジスタ5cを覆うように設けられた第1の絶縁膜である層間絶縁膜17と、層間絶縁膜17を覆うように設けられた平坦化膜18と、平坦化膜18上にマトリクス状に設けられ、第3の薄膜トランジスタ5cに接続された複数の画素電極19aと、各画素電極19aを覆うように設けられた配向膜(不図示)とを備えている。
 走査配線11aは、図3に示すように、駆動回路領域Tのゲートドライバ領域Tgに引き出され、そのゲートドライバ領域Tgにおいて、ゲート端子19bに接続されている。
 また、信号配線16aは、図3に示すように、駆動回路領域Tのソースドライバ領域Tsに中継用の配線として引き出され、そのソースドライバ領域Tsにおいて、ソース端子19cに接続されている。
 第1の薄膜トランジスタ5aは、ボトムゲート構造を有しており、図4に示すように、絶縁基板10a上に設けられたゲート電極11aaと、ゲート電極11aaを覆うように設けられたゲート絶縁層12とを備えている。また、第1の薄膜トランジスタ5aは、ゲート絶縁層12上でゲート電極11aaに重なるように島状に設けられた第1のチャネル領域Caを有する第1の酸化物半導体層13aと、第1の酸化物半導体層13a上にゲート電極11aaに重なるとともに第1のチャネル領域Caを挟んで互いに対峙するように設けられたソース電極16aa及びドレイン電極16bとを備えている。
 また、同様に、第2の薄膜トランジスタ5bは、ボトムゲート構造を有しており、図4に示すように、絶縁基板10a上に設けられたゲート電極11aaと、ゲート電極11aaを覆うように設けられたゲート絶縁層12とを備えている。また、第2の薄膜トランジスタ5bは、ゲート絶縁層12上でゲート電極11aaに重なるように島状に設けられた第2のチャネル領域Cbを有する第2の酸化物半導体層13bと、第2の酸化物半導体層13b上にゲート電極11aaに重なるとともに第2のチャネル領域Cbを挟んで互いに対峙するように設けられたソース電極16aa及びドレイン電極16bとを備えている。
 また、第3の薄膜トランジスタ5cは、ボトムゲート構造を有しており、図4に示すように、絶縁基板10a上に設けられたゲート電極11aaと、ゲート電極11aaを覆うように設けられたゲート絶縁層12とを備えている。また、第3の薄膜トランジスタ5cは、ゲート絶縁層12上でゲート電極11aaに重なるように島状に設けられた第3のチャネル領域Ccを有する第3の酸化物半導体層13cと、第3の酸化物半導体層13c上にゲート電極11aaに重なるとともに第3のチャネル領域Ccを挟んで互いに対峙するように設けられたソース電極16aa及びドレイン電極16bとを備えている。
 第1~第3の酸化物半導体層13a,13b,13cは、例えば、IGZO(In-Ga-Zn-O)系の酸化物半導体膜により形成されている。
 なお、ゲート電極11aaは、走査配線11aが側方への突出した部分である。また、ソース電極16aaは、信号配線16aが側方への突出した部分であり、図4に示すように、第1導電層14a及び第2導電層15aの積層膜により構成されている。
 さらに、ドレイン電極16bは、図4に示すように、第1導電層14b及び第2導電層15bの積層膜により構成されている。
 そして、第3の薄膜トランジスタ5cを構成するドレイン電極16bは、層間絶縁膜17及び平坦化膜18の積層膜に形成されたコンタクトホールCを介して画素電極19aに接続されている。また、第3の薄膜トランジスタ5cを構成するドレイン電極16bは、ゲート絶縁層12を介して補助容量配線11bと重なることにより補助容量を構成している。
 対向基板30は、後述する図12(c)に示すように、絶縁基板10bと、絶縁基板10b上に格子状に設けられたブラックマトリクス21並びにブラックマトリクス21の各格子間にそれぞれ設けられた赤色層、緑色層及び青色層などの着色層22を有するカラーフィルター層とを備えている。また、対向基板30は、そのカラーフィルター層を覆うように設けられた共通電極23と、共通電極23上に設けられたフォトスペーサ24と、共通電極23を覆うように設けられた配向膜(不図示)とを備えている。
 液晶層40は、例えば、電気光学特性を有するネマチックの液晶材料などにより構成されている。
 上記構成の液晶表示装置50では、各画素において、ゲートドライバ26からゲート信号が走査配線11aを介してゲート電極11aaに送られて、第3の薄膜トランジスタ5cがオン状態になったときに、ソースドライバ27からソース信号が信号配線16aを介してソース電極16aaに送られて、酸化物半導体層13c及びドレイン電極16bを介して、画素電極19aに所定の電荷が書き込まれる。
 この際、アクティブマトリクス基板20aの各画素電極19aと対向基板30の共通電極23との間において電位差が生じ、液晶層40、すなわち、各画素の液晶容量、及びその液晶容量に並列に接続された補助容量に所定の電圧が印加される。
 そして、液晶表示装置50では、各画素において、液晶層40に印加する電圧の大きさによって液晶層40の配向状態を変えることにより、液晶層40の光透過率を調整して画像が表示される。
 ここで、本実施形態においては、図4に示すように、駆動回路(即ち、ゲートドライバ26)の能動素子として機能する第2の薄膜トランジスタ5bにおける第2の酸化物半導体層13bの第2のチャネル領域Cbに、当該チャネル領域Cbを保護するための第2の絶縁膜であるチャネル保護膜25が設けられている点に特徴がある。
 より具体的には、図4に示すように、駆動回路の能動素子を構成する第1及び第2の薄膜トランジスタ5a,5bにおいて、第1の薄膜トランジスタ5aにおける第1の酸化物半導体層13aの第1のチャネル領域Caには、層間絶縁膜17が設けられており、上述のチャネル保護膜25が設けられておらず、第2の薄膜トランジスタ5bにおける第2の酸化物半導体層13bの第2のチャネル領域Cbにのみチャネル保護膜25が設けられている点に特徴がある。
 このような構成により、第1の薄膜トランジスタ5aにおける第1の酸化物半導体層13aの第1のチャネル領域Caにおける絶縁膜構造と、第2の薄膜トランジスタ5bにおける第2の酸化物半導体層13bの第2のチャネル領域Cbにおける絶縁膜構造を異ならせることが可能になる。従って、第1の薄膜トランジスタ5aと第2の薄膜トランジスタ5bの閾値電圧を異ならせることが可能になり、2つの薄膜トランジスタ5a,5bの閾値電圧の差を十分に大きくすることが可能になる。その結果、簡単な構成で、閾値電圧の異なる第1の薄膜トランジスタ5aと第2の薄膜トランジスタ5bからなる薄膜トランジスタ(即ち、E/Dインバータ)を作製することができる。
 なお、本実施形態においては、図4に示すように、画素のスイッチング素子として機能する第3の薄膜トランジスタ5cにおける第3の酸化物半導体層13cの第3のチャネル領域Ccにも、第2の薄膜トランジスタ5bと同様に、当該チャネル領域Ccを保護するための第2の絶縁膜であるチャネル保護膜25が設けられている。
 そして、本実施形態においては、第1の薄膜トランジスタ5aが、閾値電圧が低いディプリーション型の薄膜トランジスタとして使用されるとともに、第2の薄膜トランジスタ5bが、閾値電圧が高いエンハンスメント型の薄膜トランジスタとして使用され、これらの第1及び第2の薄膜トランジスタ5a,5bにより、閾値電圧の差が大きいエンハンスメント-ディプリーション(E/D)インバータが構成されている。
 また、第3の薄膜トランジスタ5cが、閾値電圧が高く、リーク電流の低いエンハンスメント型の薄膜トランジスタとして画素のスイッチング素子に使用される。
 次に、本実施形態の液晶表示装置50の製造方法の一例について図5~図12を用いて説明する。図5~図11は、第1~第3の薄膜トランジスタ、及びアクティブマトリクス基板の製造工程を断面で示す説明図であり、図12は、対向基板の製造工程を断面で示す説明図である。なお、本実施形態の製造方法は、薄膜トランジスタ及びアクティブマトリクス基板作製工程、対向基板作製工程及び液晶注入工程を備える。
 まず、薄膜トランジスタ及びアクティブマトリクス基板作製工程について説明する。
 <ゲート電極形成工程>
 まず、ガラス基板、シリコン基板、耐熱性を有するプラスチック基板などの絶縁基板10aの基板全体に、スパッタリング法により、例えば、モリブテン膜(厚さ150nm程度)などを成膜した後に、そのモリブテン膜に対して、フォトリソグラフィ、ウエットエッチング及びレジストの剥離洗浄を行うことにより、図5に示すように、絶縁基板10a上にゲート電極11aa、及び補助容量配線11bを形成する。なお、ゲート電極11aa、補助容量配線11bの形成と同時に、走査配線11a及び信号配線16aを形成する。
 また、本実施形態では、ゲート電極11aaを構成する金属膜として、単層構造のモリブテン膜を例示したが、例えば、アルミニウム膜、タングステン膜、タンタル膜、クロム膜、チタン膜、銅膜等の金属膜、または、これらの合金膜や金属窒化物による膜によりゲート電極11aaを、50nm~300nmの厚さで形成する構成としても良い。
 また、上記プラスチック基板を形成する材料としては、例えば、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリエーテルサルフォン樹脂、アクリル樹脂、及びポリイミド樹脂を使用することができる。
 <半導体層形成工程>
 続いて、ゲート電極11aa、及び補助容量配線11bが形成された基板全体に、CVD法により、例えば、窒化シリコン膜(厚さ200nm~500nm程度)を成膜して、図6に示すように、ゲート電極11aa、及び補助容量配線11bを覆うようにゲート絶縁層12を形成する。
 なお、ゲート絶縁層12を2層の積層構造で形成する構成としても良い。この場合、上述の窒化シリコン膜(SiNx)以外に、例えば、酸化シリコン膜(SiOx)、酸化窒化シリコン膜(SiOxNy、x>y)、窒化酸化シリコン膜(SiNxOy、x>y)等を使用することができる。
 また、絶縁基板10aからの不純物等の拡散防止の観点から、下層側のゲート絶縁膜として、窒化シリコン膜、または窒化酸化シリコン膜を使用するとともに、上層側のゲート絶縁膜として、酸化シリコン膜、または酸化窒化シリコン膜を使用する構成とすることが好ましい。
 例えば、下層側のゲート絶縁膜として、SiHとNHとを反応ガスとして膜厚100nmから200nmの窒化シリコン膜を形成するとともに、上層側のゲート絶縁膜として、NO、SiHを反応ガスとして膜厚50nmから100nmの酸化シリコン膜を形成することができる。
 また、低い成膜温度により、ゲートリーク電流の少ない緻密なゲート絶縁層12を形成するとの観点から、アルゴンガス等の希ガスを反応ガス中に含有させて絶縁膜中に混入させることが好ましい。
 その後、スパッタリング法により、例えば、IGZO系の酸化物半導体膜(厚さ30nm~100nm程度)を成膜し、その後、その酸化物半導体膜に対して、フォトリソグラフィ、ウエットエッチング及びレジストの剥離洗浄を行うことにより、図6に示すように、第1~第3の酸化物半導体層13a,13b,13cを形成する。
 <チャネル保護膜形成工程(第2の絶縁膜形成工程)>
 次いで、第1~第3の酸化物半導体層13a,13b,13cが形成された基板全体に、プラズマCVD法により、例えば、窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜などを成膜する。その後、レジストをマスクとしてフォトリソグラフィ、エッチング及びレジストの剥離洗浄を行うことにより、図7に示すように、第2の酸化物半導体層13bの第2のチャネル領域Cbに当該チャネル領域Cbを保護するためのチャネル保護膜25を厚さ50~100nm程度に形成する。また、同様に、第3の酸化物半導体層13cの第3のチャネル領域Ccに当該チャネル領域Ccを保護するためのチャネル保護膜25を厚さ50~100nm程度に形成する。
 例えば、チャネル保護膜25として、SiHとNOとを反応ガスとして、膜厚100nm~200nmの酸化シリコン膜を形成することができる。
 <ソースドレイン形成工程>
 さらに、第1~第3の酸化物半導体層13a,13b,13c、及びチャネル保護膜25が形成された基板全体に、スパッタリング法により、例えば、チタン膜(厚さ30nm~150nm)及び銅膜(厚さ50nm~400nm程度)などを順に成膜する。その後、その銅膜に対してフォトリソグラフィ及びウエットエッチングを行うとともに、そのチタン膜に対してドライエッチング、並びにレジストの剥離洗浄を行うことにより、図8に示すように、信号配線16a(図3参照)、ソース電極16aa、及びドレイン電極16bを形成する。
 この際、第1の酸化物半導体層13aの第1のチャネル領域Ca、チャネル保護膜25により被覆された第2の酸化物半導体層13bの第2のチャネル領域Cb、及びチャネル保護膜25により被覆された第3の酸化物半導体層13cの第3のチャネル領域Ccを露出させる。
 また、図8に示すように、第2の薄膜トランジスタ5bにおいて、ソース電極16aa及びドレイン電極16bは、チャネル保護膜25上に、第2のチャネル領域Cbを挟んで互いに対峙するように設けられる。
 また、同様に、図8に示すように、第3の薄膜トランジスタ5cにおいて、ソース電極16aa及びドレイン電極16bは、チャネル保護膜25上に、第3のチャネル領域Ccを挟んで互いに対峙するように設けられる。
 なお、本実施形態では、ソース電極16aa及びドレイン電極16bを構成する金属膜として、積層構造のチタン膜及び銅膜を例示したが、例えば、アルミニウム膜、タングステン膜、タンタル膜、クロム膜等の金属膜、または、これらの合金膜や金属窒化物による膜によりソース電極16aa及びドレイン電極16bを形成する構成としても良い。
 また、導電性材料として、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、酸化ケイ素を含有するインジウム錫酸化物(ITSO)、酸化インジウム(In)、酸化錫(SnO)、酸化亜鉛(ZnO)、窒化チタン(TiN)等の透光性を有する材料を使用する構成としても良い。
 また、エッチング加工としては、上述のドライエッチングまたはウェットエッチングのどちらを使用しても良いが、大面積基板を処理する場合は、ドライエッチングを使用する方が好ましい。エッチングガスとしては、CF、NF、SF、CHF等のフッ素系ガス、Cl、BCl、SiCl、CCl等の塩素系ガス、酸素ガス等を使用することができ、ヘリウムやアルゴン等の不活性ガスを添加する構成としても良い。
 <層間絶縁膜形成工程(第1の絶縁膜形成工程)>
 次いで、ソース電極16aa及びドレイン電極16bが形成された(即ち、第1~第3の薄膜トランジスタ5a,5b,5cが形成された)基板の全体に、プラズマCVD法により、例えば、窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜などを成膜し、図9に示すように、第1~第3の薄膜トランジスタ5a,5b,5cを覆う(即ち、第1~第3の酸化物半導体層13a,13b,13c、ソース電極16aa、ドレイン電極16b、及びチャネル保護膜25を覆う)層間絶縁膜17を厚さ200~300nm程度に形成する。
 なお、本実施形態においては、層間絶縁膜17として、例えば、TEOS(Tetra Ethyl Ortho Silicate)を原料ガスとして使用して、例えば、プラズマCVD法により、膜厚200nm~300nmの酸化シリコン膜を形成することができる。
 次いで、層間絶縁膜17上にフォトリソグラフィ工程でレジストマスクを形成し、図9に示すように、コンタクトホールC用のエッチングを行い、基板全面に対して熱処理を行う。
 ここで、酸化物半導体層と接する絶縁膜構造により、薄膜トランジスタの閾値電圧が変化するメカニズムについて説明する。
 一般に、酸化物半導体層を備える薄膜トランジスタの半導体特性は、酸化物半導体層における酸素空孔濃度に極めて敏感に影響される。そして、酸化物半導体層を形成した後においても、周囲の水分や酸素の影響を受け、酸化物半導体層における酸素空孔濃度が増減する。
 そして、本実施形態のごとく、酸化物半導体層上に保護絶縁膜(チャネル保護膜)を設ける絶縁膜構造の場合、保護絶縁膜の膜質自体が薄膜トランジスタの特性に大きく影響を与える。
 例えば、本実施形態のごとく、チャネル保護膜25として、SiHとNOとを反応ガスとして膜厚100nm~200nmの酸化シリコン膜を形成する場合、NOの割合(流量)が多いと、酸素濃度が増加するため、第2の酸化物半導体層13bへの酸化効果が大きくなるとともに、SiHの割合が少なくなるため、水素濃度が低下して、第2の酸化物半導体層13bへの還元効果が小さくなる。
 そうすると、図13に示す、ドレイン・ソース電流(Ids)とゲート電圧(Vg)との関係を示すIds-Vg特性のように、電流値が低下(即ち、図中の矢印Xの方向にシフト)して、リーク電流が低くなるとともに、閾値電圧Vthが増加する(即ち、図中の矢印Yの方向にシフトする)ことになる。
 従って、第2のチャネル領域Cbにチャネル保護膜25が設けられた第2の酸化物半導体層13bを備える第2の薄膜トランジスタ5bを、閾値電圧Vthが高いエンハンスメント型の薄膜トランジスタとして使用することが可能になる。
 また、同様の原理により、第3のチャネル領域Ccにチャネル保護膜25が設けられた第3の酸化物半導体層13cを備える第3の薄膜トランジスタ5cを、閾値電圧Vthが高く、リーク電流の低いエンハンスメント型の薄膜トランジスタとして使用することが可能になる。
 なお、NOの割合(流量)が少ないと、酸素濃度が低下するため、第2の酸化物半導体層13bへの酸化効果が小さくなるとともに、SiHの割合が多くなるため、水素濃度が向上して、第2の酸化物半導体層13bへの還元効果が大きくなる。
 そうすると、図14に示す、ドレイン・ソース電流(Ids)とゲート電圧(Vg)との関係を示すIds-Vg特性に示すように、電流値が増加する(即ち、図中の矢印Xの方向にシフトする)とともに、閾値電圧Vthが低下する(即ち、図中の矢印Yの方向にシフトする)ことになる。
 <平坦化膜形成工程>
 次いで、層間絶縁膜17が形成された基板の全体に、スピンコート法又はスリットコート法により、感光性のアクリル樹脂等からなる感光性の有機絶縁膜を厚さ1.0μm~3.0μm程度に塗布することにより、図10に示すように、層間絶縁膜17の表面上に平坦化膜18を形成する。
 <開口部形成工程>
 次いで、平坦化膜18に対して、露光及び現像を行うことにより、図11に示すように、平坦化膜18に、ドレイン電極16bに達するコンタクトホールCが形成される。
 <画素電極形成工程>
 次いで、層間絶縁膜17及び平坦化膜18が形成された基板全体に、スパッタリング法により、例えば、インジウム錫酸化物からなるITO膜(厚さ50nm~200nm程度)などの透明導電膜を成膜する。その後、その透明導電膜に対して、フォトリソグラフィ、ウエットエッチング及びレジストの剥離洗浄を行うことにより、図4に示すように、画素電極19a、ゲート端子19b(図3を参照)、ソース端子19c(図3を参照)を形成する。
 この際、図4に示すように、画素電極19aは、コンタクトホールCの表面を覆うように、平坦化膜18及び層間絶縁膜17の表面上に形成される。
 なお、画素電極19aは、透過型の液晶表示装置50を形成する場合は、酸化タングステンを含むインジウム酸化物やインジウム亜鉛酸化物(IZO)、酸化チタンを含むインジウム酸化物やインジウム錫酸化物(ITO)等を使用することができる。また、上述のインジウム亜鉛酸化物、インジウム錫酸化物以外に、酸化ケイ素を含有するインジウム錫酸化物(ITSO)等を使用することもできる。
 また、反射型の液晶表示装置50を形成する場合は、反射性を有する金属薄膜として、チタン、タングステン、ニッケル、金、白金、銀、アルミニウム、マグネシウム、カルシウム、リチウム、及びこれらの合金からなる導電膜を使用し、この金属薄膜を画素電極19aとして使用する構成とすることができる。
 以上のようにして、図4に示すアクティブマトリクス基板20aを作製することができる。
 <対向基板作製工程>
 まず、ガラス基板などの絶縁基板10bの基板全体に、スピンコート法又はスリットコート法により、例えば、黒色に着色された感光性樹脂を塗布した後に、その塗布膜を露光及び現像することにより、図12(a)に示すように、ブラックマトリクス21を厚さ1.0μm程度に形成する。
 次いで、ブラックマトリクス21が形成された基板全体に、スピンコート法又はスリットコート法により、例えば、赤色、緑色又は青色に着色された感光性樹脂を塗布する。その後、その塗布膜を露光及び現像することにより、図12(a)に示すように、選択した色の着色層22(例えば、赤色層)を厚さ2.0μm程度に形成する。そして、他の2色についても同様な工程を繰り返して、他の2色の着色層22(例えば、緑色層及び青色層)を厚さ2.0μm程度に形成する。
 さらに、各色の着色層22が形成された基板上に、スパッタリング法により、例えば、ITO膜などの透明導電膜を堆積することにより、図12(b)に示すように、共通電極23を厚さ50nm~200nm程度に形成する。
 最後に、共通電極23が形成された基板全体に、スピンコート法又はスリットコート法により、感光性樹脂を塗布した後に、その塗布膜を露光及び現像することにより、図12(c)に示すように、フォトスペーサ24を厚さ4μm程度に形成する。
 以上のようにして、対向基板30を作製することができる。
 <液晶注入工程>
 まず、上記アクティブマトリクス基板作製工程で作製されたアクティブマトリクス基板20a、及び上記対向基板作製工程で作製された対向基板30の各表面に、印刷法によりポリイミドの樹脂膜を塗布した後に、その塗布膜に対して、焼成及びラビング処理を行うことにより、配向膜を形成する。
 次いで、例えば、上記配向膜が形成された対向基板30の表面に、UV(ultraviolet)硬化及び熱硬化併用型樹脂などからなるシール材35を枠状に印刷した後に、シール材の内側に液晶材料を滴下する。
 さらに、上記液晶材料が滴下された対向基板30と、上記配向膜が形成されたアクティブマトリクス基板20aとを、減圧下で貼り合わせた後に、その貼り合わせた貼合体を大気圧に開放することにより、その貼合体の表面及び裏面を加圧する。
 そして、上記貼合体に挟持されたシール材35にUV光を照射した後に、その貼合体を加熱することによりシール材35を硬化させる。
 最後に、上記シール材35を硬化させた貼合体を、例えば、ダイシングにより分断することにより、その不要な部分を除去する。
 以上のようにして、本実施形態の液晶表示装置50を製造することができる。
 以上に説明した本実施形態によれば、以下の効果を得ることができる。
 (1)本実施形態においては、第2の酸化物半導体層13bと第1の絶縁膜である層間絶縁膜17との間であって、第2の酸化物半導体層13bの第2のチャネル領域Cbに、層間絶縁膜17と異なる材料により形成された第2の絶縁膜であるチャネル保護膜25を設ける構成としている。従って、第1の薄膜トランジスタ5aにおける第1の酸化物半導体層13aの第1のチャネル領域Caにおける絶縁膜構造と、第2の薄膜トランジスタ5bにおける第2の酸化物半導体層13bの第2のチャネル領域Cbにおける絶縁膜構造を異ならせることが可能になる。従って、第1の薄膜トランジスタ5aと第2の薄膜トランジスタ5bの閾値電圧を異ならせることが可能になり、2つの薄膜トランジスタ5a,5bの閾値電圧の差を十分に大きくすることが可能になる。その結果、簡単な構成で、閾値電圧の異なる第1の薄膜トランジスタ5aと第2の薄膜トランジスタ5bからなる薄膜トランジスタ(即ち、E/Dインバータ)を備えたアクティブマトリクス基板20aを作製することができる。
 (2)また、高電流駆動や低電圧駆動が可能な高品質デバイスが実現可能になり、例えば、画素メモリー回路や光センサー回路、OLED駆動回路等の高機能回路が実現可能になる。
 (3)本実施形態においては、第2の酸化物半導体層13bの第2のチャネル領域Cbに、当該チャネル領域Cbを保護するチャネル保護膜25を設ける構成としている。従って、ソース電極16aa及びドレイン電極16bを形成する工程において、エッチングによりパターンニングして、ソース電極16aa、ドレイン電極16bを形成する際に、第2の酸化物半導体層13bの第2のチャネル領域Cbをエッチングしないように保護することが可能になる。
 (4)本実施形態においては、半導体層として、第1及び第2の酸化物半導体層13a,13bを使用する構成としている。従って、アモルファスシリコンを半導体層に使用した薄膜トランジスタに比し、電子移動度が大きく、かつ低温プロセスが可能である薄膜トランジスタを形成することができる。
 (第2の実施形態)
 次に、本発明の第2の実施形態について説明する。図15は、本発明の第2の実施形態に係る薄膜トランジスタを備えるアクティブマトリクス基板の断面図である。なお、本実施形態においては、上記第1の実施形態と同様の構成部分については同一の符号を付してその説明を省略する。また、液晶表示装置の全体構成及び製造方法については、上述の第1の実施形態において説明したものと同様であるため、ここでは詳しい説明を省略する。
 本実施形態においては、図15に示すように、第2の絶縁膜として、上述のチャネル保護膜25の代わりに、他の層間絶縁膜(以下、「層間絶縁膜」と言う。)28を設けている点に特徴がある。
 より具体的には、図15に示すように、駆動回路の能動素子として機能する第1の薄膜トランジスタ5aにおける第1の酸化物半導体層13aの第1のチャネル領域Caには、層間絶縁膜17が設けられており、上述の層間絶縁膜28が設けられておらず、第2の薄膜トランジスタ5bにおける第2の酸化物半導体層13bの第2のチャネル領域Cbに層間絶縁膜28が設けられている点に特徴がある。
 このような構成により、上述の第1の実施形態の場合と同様に、第1の薄膜トランジスタ5aにおける第1の酸化物半導体層13aの第1のチャネル領域Caにおける絶縁膜構造と、第2の薄膜トランジスタ5bにおける第2の酸化物半導体層13bの第2のチャネル領域Cbにおける絶縁膜構造を異ならせることが可能になる。
 従って、第1の薄膜トランジスタ5aと第2の薄膜トランジスタ5bの閾値電圧を異ならせることが可能になり、2つの薄膜トランジスタ5a,5bの閾値電圧の差を十分に大きくすることが可能になる。従って、簡単な構成で、閾値電圧の異なる第1の薄膜トランジスタ5aと第2の薄膜トランジスタ5bからなる薄膜トランジスタ(即ち、E/Dインバータ)を備えるアクティブマトリクス基板を作製することができる。
 なお、本実施形態においては、図15に示すように、画素のスイッチング素子として機能する第3の薄膜トランジスタ5cにおける第3の酸化物半導体層13cの第3のチャネル領域Ccにも、第2の薄膜トランジスタ5bと同様に、当該チャネル領域Ccを保護するための第2の絶縁膜である層間絶縁膜28が設けられている。
 次に、本実施形態の液晶表示装置の製造方法の一例について、図16を用いて説明する。図16は、薄膜トランジスタ及びアクティブマトリクス基板の製造工程を断面で示す説明図である。
 まず、薄膜トランジスタ及びアクティブマトリクス基板作製工程において、上述の第1の実施形態において説明した図5、図6と同様に、ゲート電極形成工程、及び半導体層形成工程を行う。
 <ソースドレイン形成工程>
 次いで、第1~第3の酸化物半導体層13a,13b,13cが形成された基板全体に、スパッタリング法により、例えば、チタン膜(厚さ30nm~150nm)及び銅膜(厚さ50nm~400nm程度)などを順に成膜する。その後、その銅膜に対してフォトリソグラフィ及びウエットエッチングを行うとともに、そのチタン膜に対してドライエッチング、並びにレジストの剥離洗浄を行うことにより、図16に示すように、信号配線16a(図3参照)、ソース電極16aa、及びドレイン電極16bを形成する。この際、第1の酸化物半導体層13aの第1のチャネル領域Ca、第2の酸化物半導体層13bの第2のチャネル領域Cb、及び第3の酸化物半導体層13cの第3のチャネル領域Ccを露出させる。
 また、図16に示すように、第2の薄膜トランジスタ5bにおいて、ソース電極16aa及びドレイン電極16bは、第2の酸化物半導体層13b上に、第2のチャネル領域Cbを挟んで互いに対峙するように設けられる。
 また、同様に、図16に示すように、第3の薄膜トランジスタ5cにおいて、ソース電極16aa及びドレイン電極16bは、第3の酸化物半導体層13c上に、第3のチャネル領域Ccを挟んで互いに対峙するように設けられる。
 <層間絶縁膜形成工程(第2の絶縁膜形成工程)>
 次いで、第2及び第3の薄膜トランジスタ5b,5cが形成された基板の表面に、プラズマCVD法により、例えば、窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜などを成膜し、エッチングにより選択的にパターニングすることにより、図16に示すように、第2及び第3の薄膜トランジスタ5b,5cを覆う(即ち、第2及び第3の酸化物半導体層13b,13c、ソース電極16aa、ドレイン電極16bを覆う)層間絶縁膜28を厚さ200~300nm程度に形成する。
 この際、本実施形態においては、図16に示すように、第2の酸化物半導体層13bと層間絶縁膜28との間に、第2のチャネル領域Cbを挟んで互いに対峙するように、ソース電極16aa及びドレイン電極16bが設けられる。
 <層間絶縁膜形成工程(第1の絶縁膜形成工程)>
 次いで、上述の図9と同様に、第1~第3の薄膜トランジスタ5a,5b,5cが形成された基板の全体に、プラズマCVD法により、例えば、窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜などを成膜し、第1~第3の薄膜トランジスタ5a,5b,5cを覆う(即ち、第1~第3の酸化物半導体層13a,13b,13c、ソース電極16aa、ドレイン電極16b、及び層間絶縁膜28を覆う)層間絶縁膜17を厚さ200~300nm程度に形成する。
 次いで、上述の図9と同様に、層間絶縁膜17上にフォトリソグラフィ工程でレジストマスクを形成し、コンタクトホールC用のエッチングを行い、基板全面に対して熱処理を行う。
 なお、本実施形態においては、他の層間絶縁膜28として、例えば、NOとSiHを使用して膜厚200nm~300nmの酸化シリコン膜を形成することができる。
 次いで、上述の第1の実施形態において説明した図10、図11と同様に、平坦化膜形成工程、開口部形成工程、及び画素電極形成工程を行うことにより、図15に示すアクティブマトリクス基板20aを作製することができる。
 更に、上述の第1の実施形態において説明した対向基板作製工程、及び液晶注入工程を行うことにより、本実施形態の液晶表示装置50を製造することができる。
 以上に説明した本実施形態によれば、上述の(1)~(4)の効果と同様の効果を得ることができる。
 なお、上記実施形態は以下のように変更しても良い。
 上記実施形態においては、半導体層として酸化物半導体層を使用したが、半導体層はこれに限定されず、酸化物半導体層の代わりに、例えば、アモルファスシリコンやポリシリコンからなるシリコン系半導体層を薄膜トランジスタの半導体層として使用する構成としても良い。
 また、上記実施形態においては、酸化物半導体層としてIn-Ga-Zn-O系の金属酸化物からなる酸化物半導体層を使用したが、酸化物半導体層はこれに限定されず、インジウム(In)、ガリウム(Ga)、アルミニウム(Al)、銅(Cu)、亜鉛(Zn)、マグネシウム(Mg)、カドミウム(Cd)のうち少なくとも1種を含む金属酸化物からなる材料を用いても良い。
 これらの材料からなる酸化物半導体層13aは、アモルファスであっても移動度が高いため、スイッチング素子のオン抵抗を大きくすることができる。従って、データ読み出し時の出力電圧の差が大きくなり、S/N比を向上させることができる。
 例えば、IGZO(In-Ga-Zn-O)の他に、InGaO(ZnO)、MgZn1-xO、CdZn1-xO、CdO等の酸化物半導体膜を挙げることができる。
 また、1族元素、13族元素、14族元素、15族元素、または17族元素のうち1種、または複数種の不純物元素が添加されたZnOの非晶質状態、多結晶状態、または非晶質状態と多結晶状態が混在する微結晶状態のもの、あるいは上記不純物が添加されていないものを使用することもできる。
 また、上述のチャネル保護膜25や層間絶縁膜28を設けずに、層間絶縁膜17の厚みを異ならせる構成としても良い。より具体的には、図17に示すように、第1の薄膜トランジスタ5aにおける第1の酸化物半導体層13aの第1のチャネル領域Caにおける層間絶縁膜17の厚みTと、第2の薄膜トランジスタ5bにおける第2の酸化物半導体層13bの第2のチャネル領域Cbにおける層間絶縁膜17の厚みTが異なる(図17においては、T>T)構成としても良い。
 この場合、ボトムゲート型の薄膜トランジスタが組み込まれた液晶表示装置50においては、ゲート電極11aaの電位等によって、電気光学物質である液晶層40中の水分やイオン(陽イオン)が引きつけられ、これが、平坦化膜18とその上層の液晶層40との界面において陽電荷として滞留する。また、この水分やイオンが平坦化膜18中を下方拡散し、層間絶縁膜17と平坦化膜18の界面に電荷(陽電荷)が生じる。
 そうすると、この電荷により、薄膜トランジスタのチャネル領域中にバックチャネルが形成されてしまい、薄膜トランジスタの閾値電圧に変動が生じるが、上述のごとく、第1の酸化物半導体層13aの第1のチャネル領域Caにおける層間絶縁膜17の厚みTと、第2の酸化物半導体層13bの第2のチャネル領域Cbにおける層間絶縁膜17の厚みTが異なるため、第1のチャネル領域Caと第2のチャネル領域Cbにおいて、層間絶縁膜17と平坦化膜18の界面に生じる電荷が異なることになる。
 従って、第1の薄膜トランジスタ5aの閾値電圧の変動量と、第2の薄膜トランジスタ5bの閾値電圧の変動量が異なることになるため、上述のチャネル保護膜25や層間絶縁膜28を設ける場合と同様に、第1の薄膜トランジスタ5aと第2の薄膜トランジスタ5bの閾値電圧を異ならせることが可能になり、結果として、2つの薄膜トランジスタ5a,5bの閾値電圧の差を十分に大きくすることが可能になる。
 その結果、簡単な構成で、閾値電圧の異なる第1の薄膜トランジスタ5aと第2の薄膜トランジスタ5bからなる薄膜トランジスタ(即ち、E/Dインバータ)を備えたアクティブマトリクス基板20aを作製することができる。
 また、高電流駆動や低電圧駆動が可能な高品質デバイスが実現可能になり、例えば、画素メモリー回路や光センサー回路、OLED駆動回路等の高機能回路が実現可能になる。
 また、この場合、薄膜トランジスタ及びアクティブマトリクス基板作製工程において、まず、上述の第2の実施形態と同様に、ゲート電極形成工程、半導体層形成工程、及びソースドレイン形成工程を行う。
 次いで、第1~第3の薄膜トランジスタ5a,5b,5cが形成された基板の表面に、プラズマCVD法により、例えば、窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜などを成膜し、エッチングにより選択的にパターニングすることにより、図17に示すように、第1~第3の薄膜トランジスタ5a,5b,5cを覆う(即ち、第1~第3の酸化物半導体層13a,13b,13c、ソース電極16aa、ドレイン電極16bを覆う)層間絶縁膜17を形成する。
 この際、図17に示すように、第1のチャネル領域Ca及び第2のチャネル領域Cbに、第1のチャネル領域Caにおける厚みTと第2のチャネル領域Cbにおける厚みTとが異なるように層間絶縁膜17を形成する。
 また、この場合、図17に示すように、画素のスイッチング素子として機能する第3の薄膜トランジスタ5cが備える第3の酸化物半導体層13cの第3のチャネル領域Ccにおける層間絶縁膜17の厚みは、第2の酸化物半導体層13bの第2のチャネル領域Cbにおける層間絶縁膜17の厚みと同じ(即ち、T)に設定される。
 次いで、上述の図9と同様に、層間絶縁膜17上にフォトリソグラフィ工程でレジストマスクを形成し、コンタクトホールC用のエッチングを行い、基板全面に対して熱処理を行う。
 次いで、上述の第1の実施形態において説明した図10、図11と同様に、平坦化膜形成工程、開口部形成工程、及び画素電極形成工程を行うことにより、図17に示すアクティブマトリクス基板20aを作製することができる。
 更に、上述の第1の実施形態において説明した対向基板作製工程、及び液晶注入工程を行うことにより、本実施形態の液晶表示装置50を製造することができる。
 本発明の活用例としては、酸化物半導体の半導体層を用いた薄膜トランジスタ基板及びその製造方法、表示装置が挙げられる。
 5  薄膜トランジスタ
 5a  第1の薄膜トランジスタ
 5b  第2の薄膜トランジスタ
 5c  第3の薄膜トランジスタ
 10a  絶縁基板
 11aa  ゲート電極
 12  ゲート絶縁層
 13a  第1の酸化物半導体層(第1の半導体層)
 13b  第2の酸化物半導体層(第2の半導体層)
 13c  第3の酸化物半導体層
 16aa  ソース電極
 16b  ドレイン電極
 17  層間絶縁膜(第1の絶縁膜)
 18  平坦化膜
 19a  画素電極
 20a  アクティブマトリクス基板(薄膜トランジスタ基板)
 25  チャネル保護膜(第2の絶縁膜)
 28  他の層間絶縁膜(第2の絶縁膜)
 30  対向基板
 40  液晶層(表示媒体層)
 50  液晶表示装置
 Ca  第1のチャネル領域
 Cb  第2のチャネル領域
 Cc  第3のチャネル領域
 T  第1のチャネル領域における層間絶縁膜の厚み
 T  第2のチャネル領域における層間絶縁膜の厚み

Claims (14)

  1.  絶縁基板と、
     前記絶縁基板上に設けられ、第1のチャネル領域を有する第1の半導体層を備える第1の薄膜トランジスタと、
     前記絶縁基板上に設けられ、第2のチャネル領域を有する第2の半導体層を備える第2の薄膜トランジスタと、
     前記第1の半導体層、及び前記第2の半導体層を覆う第1の絶縁膜と
     を備えた薄膜トランジスタ基板であって、
     第2の半導体層と前記第1の絶縁膜との間であって、前記第2の半導体層の前記第2のチャネル領域に、前記第1の絶縁膜と異なる材料により形成された第2の絶縁膜が設けられていることを特徴とする薄膜トランジスタ基板。
  2.  前記第2の絶縁膜が、前記第2のチャネル領域を保護するチャネル保護膜であることを特徴とする請求項1に記載の薄膜トランジスタ基板。
  3.  前記第1の絶縁膜が、TEOS(Tetra Ethyl Ortho Silicate)を材料とする酸化シリコン膜であり、前記第2の絶縁膜が、NOとSiHを材料とする酸化シリコン膜であることを特徴とする請求項2に記載の薄膜トランジスタ基板。
  4.  前記第2の絶縁膜上に、前記第2のチャネル領域を挟んで互いに対峙するように設けられたソース電極及びドレイン電極を更に備えていることを特徴とする請求項1~請求項3のいずれか1項に記載の薄膜トランジスタ基板。
  5.  前記第2の半導体層と前記第2の絶縁膜との間に、前記第2のチャネル領域を挟んで互いに対峙するように設けられたソース電極及びドレイン電極を更に備えていることを特徴とする請求項1に記載の薄膜トランジスタ基板。
  6.  絶縁基板と、
     前記絶縁基板上に設けられ、第1のチャネル領域を有する第1の半導体層を備える第1の薄膜トランジスタと、
     前記絶縁基板上に設けられ、第2のチャネル領域を有する第2の半導体層を備える第2の薄膜トランジスタと、
     前記第1の半導体層、及び前記第2の半導体層を覆う絶縁膜と
     を備えた薄膜トランジスタ基板であって、
     前記第1の半導体層の第1のチャネル領域における前記絶縁膜の厚みと、前記第2の半導体層の第2のチャネル領域における前記絶縁膜の厚みが異なることを特徴とする薄膜トランジスタ基板。
  7.  前記第1の半導体層と前記第2の半導体層が、酸化物半導体層であることを特徴とする請求項1~請求項6のいずれか1項に記載の薄膜トランジスタ基板。
  8.  前記酸化物半導体層が、インジウム(In)、ガリウム(Ga)、アルミニウム(Al)、銅(Cu)及び亜鉛(Zn)からなる群より選ばれる少なくとも1種を含む金属酸化物からなることを特徴とする請求項7に記載の薄膜トランジスタ基板。
  9.  前記酸化物半導体層が、In-Ga-Zn-O系の金属酸化物からなることを特徴とする請求項8に記載の薄膜トランジスタ基板。
  10.  前記半導体層がシリコン系半導体層であることを特徴とする請求項1~請求項6のいずれか1項に記載の薄膜トランジスタ基板。
  11.  請求項1~請求項10のいずれか1項に記載の前記薄膜トランジスタ基板と、
     前記薄膜トランジスタ基板に対向して配置された対向基板と、
     前記薄膜トランジスタ基板及び前記対向基板の間に設けられた表示媒体層と
     を備えることを特徴とする表示装置。
  12.  前記表示媒体層が液晶層であることを特徴とする請求項11に記載の表示装置。
  13.  絶縁基板と、該絶縁基板上に設けられ、第1のチャネル領域を有する第1の半導体層を備える第1の薄膜トランジスタと、前記絶縁基板上に設けられ、第2のチャネル領域を有する第2の半導体層を備える第2の薄膜トランジスタと、前記第1の半導体層、及び前記第2の半導体層を覆う第1の絶縁膜とを備えた薄膜トランジスタ基板の製造方法であって、
     前記絶縁基板上に、前記第1の半導体層及び前記第2の半導体層を形成する半導体層形成工程と、
     前記第2のチャネル領域に前記第1の絶縁膜と異なる材料からなる第2の絶縁膜を形成する第2の絶縁膜形成工程と、
     前記第1の半導体層、前記第2の半導体層、及び前記第2の絶縁膜を覆うように前記第1の絶縁膜を形成する第1の絶縁膜形成工程と
     を少なくとも備えることを特徴とする薄膜トランジスタ基板の製造方法。
  14.  絶縁基板と、該絶縁基板上に設けられ、第1のチャネル領域を有する第1の半導体層を備える第1の薄膜トランジスタと、前記絶縁基板上に設けられ、第2のチャネル領域を有する第2の半導体層を備える第2の薄膜トランジスタと、前記第1の半導体層、及び前記第2の半導体層を覆う絶縁膜とを備えた薄膜トランジスタ基板の製造方法であって、
     前記絶縁基板上に、前記第1の半導体層及び前記第2の半導体層を形成する半導体層形成工程と、
     前記第1のチャネル領域及び前記第2のチャネル領域に、前記第1のチャネル領域における厚みと前記第2のチャネル領域における厚みとが異なる前記絶縁膜を形成する絶縁膜形成工程と
     を少なくとも備えることを特徴とする薄膜トランジスタ基板の製造方法。
PCT/JP2011/000103 2010-04-16 2011-01-12 薄膜トランジスタ基板及びその製造方法、表示装置 WO2011129037A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/640,381 US8842229B2 (en) 2010-04-16 2011-01-12 Thin film transistor substrate, method for producing same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-095013 2010-04-16
JP2010095013 2010-04-16

Publications (1)

Publication Number Publication Date
WO2011129037A1 true WO2011129037A1 (ja) 2011-10-20

Family

ID=44798427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000103 WO2011129037A1 (ja) 2010-04-16 2011-01-12 薄膜トランジスタ基板及びその製造方法、表示装置

Country Status (2)

Country Link
US (1) US8842229B2 (ja)
WO (1) WO2011129037A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794511A (zh) * 2012-10-30 2014-05-14 株式会社半导体能源研究所 显示装置以及电子设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415318B (zh) * 2010-09-14 2013-11-11 E Ink Holdings Inc 電晶體結構
KR102109166B1 (ko) 2013-01-15 2020-05-12 삼성디스플레이 주식회사 박막 트랜지스터 및 이를 구비하는 표시 기판
JP6151070B2 (ja) * 2013-04-11 2017-06-21 株式会社ジャパンディスプレイ 薄膜トランジスタ及びそれを用いた表示装置
KR20150008316A (ko) * 2013-07-12 2015-01-22 삼성디스플레이 주식회사 반도체 장치, 이의 제조 방법 및 시스템.
JP6685675B2 (ja) * 2015-09-07 2020-04-22 株式会社Joled 有機el素子、それを用いた有機el表示パネル、及び有機el表示パネルの製造方法
CN113113424B (zh) * 2021-03-17 2024-02-02 武汉华星光电半导体显示技术有限公司 显示面板
TWI813217B (zh) * 2021-12-09 2023-08-21 友達光電股份有限公司 半導體裝置及其製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08340116A (ja) * 1995-06-09 1996-12-24 Sony Corp ボトムゲート型薄膜トランジスタ
JPH11337974A (ja) * 1998-05-29 1999-12-10 Semiconductor Energy Lab Co Ltd 液晶表示装置およびその作製方法
JP2001250949A (ja) * 2000-03-02 2001-09-14 Semiconductor Energy Lab Co Ltd 半導体装置
JP2009260002A (ja) * 2008-04-16 2009-11-05 Hitachi Ltd 半導体装置及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6839108B1 (en) 1998-05-16 2005-01-04 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method of manufacturing the same
JP5294651B2 (ja) 2007-05-18 2013-09-18 キヤノン株式会社 インバータの作製方法及びインバータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08340116A (ja) * 1995-06-09 1996-12-24 Sony Corp ボトムゲート型薄膜トランジスタ
JPH11337974A (ja) * 1998-05-29 1999-12-10 Semiconductor Energy Lab Co Ltd 液晶表示装置およびその作製方法
JP2001250949A (ja) * 2000-03-02 2001-09-14 Semiconductor Energy Lab Co Ltd 半導体装置
JP2009260002A (ja) * 2008-04-16 2009-11-05 Hitachi Ltd 半導体装置及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794511A (zh) * 2012-10-30 2014-05-14 株式会社半导体能源研究所 显示装置以及电子设备
JP2014090068A (ja) * 2012-10-30 2014-05-15 Semiconductor Energy Lab Co Ltd 表示装置及び電子機器

Also Published As

Publication number Publication date
US20130033655A1 (en) 2013-02-07
US8842229B2 (en) 2014-09-23

Similar Documents

Publication Publication Date Title
WO2012032749A1 (ja) 薄膜トランジスタ基板及びその製造方法、表示装置
JP7472334B2 (ja) 表示装置
WO2011129037A1 (ja) 薄膜トランジスタ基板及びその製造方法、表示装置
JP6215053B2 (ja) 表示装置及びその製造方法
JP6122917B2 (ja) 半導体装置
JP5347071B2 (ja) アクティブマトリクス基板の製造方法及びその方法により製造されたアクティブマトリクス基板、並びに表示パネル
JP5491833B2 (ja) 半導体装置
US8957418B2 (en) Semiconductor device and display apparatus
WO2011104791A1 (ja) 薄膜トランジスタ基板及びその製造方法、表示装置
TWI535033B (zh) A method for manufacturing a thin film transistor substrate, and a thin film transistor substrate manufactured by the method
TW201606988A (zh) 半導體裝置
JP2010141308A (ja) 半導体装置およびその作製方法
WO2014034617A1 (ja) 回路基板及び表示装置
WO2011108199A1 (ja) 薄膜トランジスタの製造方法及びその方法により製造された薄膜トランジスタ、アクティブマトリクス基板
KR101338106B1 (ko) 액정표시장치 및 그 제조방법
WO2011161875A1 (ja) 表示装置用基板及びその製造方法、表示装置
JP5558222B2 (ja) 薄膜トランジスタ基板の製造方法
WO2013008441A1 (ja) アクティブマトリクス基板及びその製造方法
WO2013038646A1 (ja) 薄膜トランジスタ基板及びそれを用いた表示装置
WO2013084452A1 (ja) 表示装置用基板及びそれを備えた表示装置
WO2012124281A1 (ja) 薄膜トランジスタ基板の製造方法およびその方法により製造された薄膜トランジスタ基板、表示装置
JP2010283060A (ja) 表示装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768564

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13640381

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP