WO2011128527A1 - Dispositif de détente thermostatique et boucle de climatisation comprenant un tel dispositif de détente thermostatique - Google Patents

Dispositif de détente thermostatique et boucle de climatisation comprenant un tel dispositif de détente thermostatique Download PDF

Info

Publication number
WO2011128527A1
WO2011128527A1 PCT/FR2011/000213 FR2011000213W WO2011128527A1 WO 2011128527 A1 WO2011128527 A1 WO 2011128527A1 FR 2011000213 W FR2011000213 W FR 2011000213W WO 2011128527 A1 WO2011128527 A1 WO 2011128527A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion device
refrigerant
needle
circulation channel
outlet
Prior art date
Application number
PCT/FR2011/000213
Other languages
English (en)
Inventor
Jugurtha Benouali
Jin-ming LIU
Régine Haller
Stefan Karl
Mohamed Yahia
Christophe Rousseau
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Priority to JP2013504303A priority Critical patent/JP5805749B2/ja
Priority to CN201180029730.9A priority patent/CN103080670B/zh
Priority to US13/641,283 priority patent/US9459030B2/en
Priority to EP11721801A priority patent/EP2558800A1/fr
Publication of WO2011128527A1 publication Critical patent/WO2011128527A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/002Actuating devices; Operating means; Releasing devices actuated by temperature variation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Definitions

  • Thermostatic expansion device and air conditioning loop comprising such a thermostatic expansion device.
  • the invention relates to the field of heating, ventilation and / or air conditioning systems, in particular for a motor vehicle. It relates more particularly to a thermostatic expansion device integrated into an air conditioning loop forming part of such a heating, ventilation and / or air conditioning system. Finally, it also relates to an air conditioning loop comprising such a thermostatic expansion device.
  • a motor vehicle is commonly equipped with a heating, ventilation and / or air conditioning system for modifying the aerothermal parameters of a flow of air that can be distributed inside a passenger compartment of the vehicle.
  • the heating, ventilation and / or air conditioning system includes a heating, ventilation and / or air conditioning device capable of channeling the flow of air prior to its distribution inside the passenger compartment.
  • the heating, ventilation and / or air-conditioning apparatus consists mainly of a housing made of plastic housed under a dashboard of the vehicle.
  • the heating, ventilation and / or air-conditioning installation also comprises an air-conditioning loop inside which a cooling fluid circulates, in particular a fluid subcritical refrigerant, such as that known under the name R134a.
  • the air conditioning loop includes, in particular, a compressor, a condenser, an expansion device and an evaporator.
  • the evaporator is housed inside the heater, ventilation and / or air conditioning to cool and / or dehumidify the air flow prior to its distribution inside the passenger compartment.
  • a thermostatic expansion device such as that described by the document FR 2 743 139.
  • a thermostatic expansion device comprises a first refrigerant fluid inlet connected to the condenser and a first refrigerant fluid outlet connected to the evaporator.
  • the first inlet and the first outlet are connected to each other via a first refrigerant circulation channel within which an expansion of the cooling fluid occurs.
  • the thermostatic expansion device also comprises a second refrigerant fluid inlet connected to the evaporator and a second refrigerant fluid outlet connected to the compressor.
  • the second inlet and the second outlet are connected to each other via a second refrigerant circulation channel.
  • the thermostatic expansion device comprises means for regulating the expansion of the refrigerant fluid.
  • the regulating means of the trigger combines a needle housed in the first circulation channel and a thermostatic sensor housed inside the second circulation channel.
  • the needle is movable between an open position in which the needle allows a circulation of the refrigerant from the first inlet of the refrigerant to the first outlet of the refrigerant and a closed position in which the needle prohibits such circulation.
  • the needle is in connection with a spring which tends to hold it in the closed position.
  • the thermostatic sensor exerts on the needle a force opposite and greater than that exerted by the spring on the needle, which causes a setting in the open position of the needle.
  • these provisions are intended to regulate the overheating of the refrigerant at the outlet of the evaporator.
  • the regulation means of the thermostatic expansion device deserves to be improved in order to obtain an optimized thermal performance, that is to say an ability to cool the air flow as well as possible, to reduce energy consumption of the compressor and to improve a thermostatic stability inside the thermostatic expansion device.
  • the object of the present invention is to provide a device for expansion of a refrigerant fluid arranged in an air conditioning loop of a heating, ventilation and / or air conditioning system equipping a motor vehicle, the air conditioning loop providing optimized thermal performance. , that is to say an ability to cool at best a flow of air flowing through an evaporator integrated in the air conditioning loop, low energy consumption of a compressor integrated in the air conditioning loop and improved thermostatic stability inside the relaxation device.
  • the expansion device of a refrigerant of the present invention comprises, on the one hand, a first inlet of the expansion device and a first outlet of the expansion device connected by a first refrigerant circulation channel, the first refrigerant circulation comprising an upstream portion and a downstream portion communicated by a first communication conduit, and, secondly, a second input of the expansion device and a second output of the expansion device connected by a second channel of circulation of the refrigerant.
  • the expansion device comprises means for regulating an expansion of the refrigerant fluid comprising a first valve housed inside the upstream portion of the first refrigerant circulation channel, the first valve being connected via a first connecting rod to a thermostatic sensor in relation to the second refrigerant circulation channel.
  • the first needle is adapted to allow or prohibit a circulation of the refrigerant fluid within the first communication conduit.
  • the regulating means comprises means for measuring a refrigerant fluid pressure at the evaporator inlet taken at the level of the first outlet of the expansion device.
  • the measuring means comprises a second chamber in relation to the downstream portion of the first refrigerant circulation channel via a second communication conduit.
  • the second chamber advantageously houses a return member associated with a plate integral with the first connecting rod.
  • the plate is, for example, slidably mounted inside a sleeve confining the lower face of the plate.
  • the plate is, for example still, provided with a bellows confining the lower face of the plate.
  • the measuring means comprises a support plate housed inside the upstream portion of the first refrigerant circulation channel.
  • the support plate is connected to the first needle via a second connecting rod, the plate having a lower surface in contact with a constraining member, in particular a spring.
  • the support plate is preferably slidably mounted within a sleeve confining the lower surface.
  • the measuring means comprises a second needle housed in the upstream portion of the first refrigerant circulation channel.
  • the second needle is adapted to allow or prohibit a circulation of the refrigerant inside a third communication duct formed between the upstream portion and the downstream portion of the first refrigerant circulation channel.
  • the second needle is preferably carried by a support rod in relation to a plate in contact with a return member.
  • An air conditioning loop comprises a compressor, a condenser, an evaporator and an expansion device as defined above.
  • the air conditioning loop is arranged in such a way that the first inlet of the expansion device is in relation with the condenser, the first outlet of the expansion device is in relation with the evaporator, the second inlet of the expansion device is in connection with the the evaporator and the second outlet of the expansion device is in relation with the compressor.
  • Figure 1 is a schematic illustration of an air conditioning loop according to the present invention.
  • FIGS. 2 to 5 are diagrammatic illustrations of alternative embodiments of an expansion device according to the present invention integrated in the air-conditioning loop illustrated in FIG.
  • a motor vehicle is equipped with a heating, ventilation and / or air conditioning system for modifying the aerothermal parameters of an air flow 1 able to be distributed inside a passenger compartment of the vehicle.
  • the heating, ventilation and / or air-conditioning system includes a heating, ventilation and / or air-conditioning device for channeling the circulation of the air flow 1 prior to its distribution inside the cabin.
  • the heating, ventilation and / or air conditioning system consists mainly of a housing made of plastic housed under a dashboard of the vehicle.
  • the heating, ventilation and / or air conditioning system comprises an air conditioning loop 2, as schematically illustrated in FIG. which circulates a cooling fluid, preferably a subcritical refrigerant fluid such as that known under the name R134a.
  • the air conditioning loop 2 comprises, in particular, a compressor 3, a condenser 4, an expansion device 5 and an evaporator 6.
  • the compressor 3 is designed to carry the refrigerant fluid at high pressure.
  • the condenser 4 is capable of allowing a heat exchange between the refrigerant and its environment, in particular an external air fluid. Preferably, the heat exchange inside the condenser 4 is at a relatively constant pressure.
  • the expansion device 5 is provided to allow expansion of the refrigerant fluid.
  • the evaporator 6 is able to allow a heat exchange between the coolant and the air flow 1.
  • the evaporator 6 is housed inside the heating, ventilation and / or air conditioning apparatus to cool and / or or dehumidify the flow of air 1 which passes through it, prior to its distribution in the passenger compartment.
  • the air conditioning loop 2 comprises a high pressure line HP between an output of the compressor 7 and a first input of the expansion device 8 and a low pressure line LP between a first output of the expansion device 9 and a compressor inlet 10.
  • the expansion device 5 comprises a first refrigerant circulation channel 1 1 connecting the first inlet of the expansion device 8 and the first output of the expansion device 9. The expansion of the refrigerant fluid occurs inside the first refrigerant circulation channel 11.
  • the expansion device 5 comprises a second inlet of the expansion device 12, preferably connected to the evaporator 6, and a second outlet of the expansion device 13, preferably connected to the compressor 3.
  • the second inlet of the expansion device 12 and the second the expansion device 13 are connected to one another via a second refrigerant circulation channel 14.
  • the coolant flows from the outlet of the compressor 7 to the condenser 4, then enters the expansion device 5 via the first inlet of the device 8, then circulates inside the first refrigerant circulation channel 11, is discharged from the expansion device 5 by the first output of the expansion device 9, circulates inside the evaporator 6, penetrates inside the expansion device 5 by the second inlet of the expansion device 12, circulates inside the second refrigerant circulation channel 14, is discharged from the expansion device 5 by the second outlet of the expansion device 13 and returns to compressor 3.
  • the expansion device 5 is a thermostatic expansion device comprising a means 15 for regulating the expansion of the refrigerant fluid.
  • Figures 2 to 5 show schematic illustrations of alternative embodiments of an expansion device according to the present invention integrated in the air conditioning circuit shown in Figure 1.
  • the regulation means 15 for the expansion of the refrigerant fluid comprises a first needle 16, housed in the first circulation channel of the refrigerant 1 1, and a thermostatic sensor 17, in communication with the second refrigerant circulation channel 14.
  • the first refrigerant circulation channel 1 1 comprises a first communication conduit 18 connecting an upstream portion 22 and a downstream portion 25 of the first refrigerant circulation channel 11.
  • the first needle 16 is able to allow or prohibit a circulation of the refrigerant inside the first communication conduit 18 formed inside the first refrigerant circulation channel 11.
  • the first communication duct 18 consists of a restriction of passage of the refrigerant between the first inlet of the expansion device 8 and the first outlet of the expansion device 9.
  • the upstream portion 22 of the first refrigerant circulation channel 1 1 is constituted by a first chamber 22, formed between the first inlet of the expansion device 8 and the first communication conduit 18.
  • the downstream part 25 of the first refrigerant circulation channel 1 1 is formed between the first communication duct 18 and the first outlet of the expansion device 9.
  • the first needle 16 is movable between an open position in which the first needle 16 allows a circulation of the refrigerant inside the first communication conduit 18 and a closed position in which the first needle 16 prohibits such circulation.
  • the first needle 16 is equipped with a first connecting rod 19 which is in relation with the thermostatic sensor 17. More particularly, the sensor thermostatic 17 comprises a membrane 20 whose position is able to vary depending on the pressure.
  • the membrane 20 provides a contact surface S with the refrigerant circulating inside the second refrigerant circulation channel 14.
  • the membrane 20 is sensitive to a refrigerant pressure at the evaporator outlet Ps prevailing inside. of the second refrigerant circulation channel 14.
  • the membrane 20 is a flexible membrane.
  • the refrigerant pressure at the outlet of the evaporator Ps creates on the membrane 20 an evaporator output force Fs, resulting from the product of the contact surface S and the refrigerant pressure at the evaporator outlet Ps.
  • refrigerant fluid pressure at the evaporator outlet Ps is greater than a first reference pressure PR1, in particular exerted on the membrane 20, the membrane 20 tends to place the first needle 16 in the closed position.
  • the refrigerant fluid pressure at the evaporator outlet Ps is lower than the first reference pressure PR1, the membrane 20 tends to place the first needle 16 in the open position.
  • the first reference pressure PR1 is proportional to the temperature of the coolant 2.
  • the first needle 16 is housed inside the first chamber 22 formed inside the first refrigerant circulation channel 11. Inside the first chamber 22, the refrigerant from the condenser 4 is at a high pressure Ph.
  • the first needle 16 is in relation to a constraining member 21, such as a spring 21 or the like.
  • the spring 21 tends to maintain the first needle 16 in the closed position.
  • the spring 21 exerts a first return force Fr1 on the first needle 16.
  • the first return force Fr1 results from the product between a stiffness K1 of the spring 21 and a displacement X of the first needle 16 with respect to a neutral position of origin X0, in particular the position in which the first needle 16 is in the closed position. .
  • the present invention provides that the regulating means 15 of the expansion of the refrigerant fluid takes into account information relating to a refrigerant fluid pressure at the evaporator inlet Pe.
  • the refrigerant pressure at the inlet of the evaporator Pe is substantially equal to the pressure at the first outlet of the expansion device 9.
  • the means 15 for regulating the expansion of the refrigerant fluid comprise a measuring means 23 of the refrigerant pressure at the inlet of the evaporator Pe, advantageously taken at the level of the first outlet of the expansion device 9.
  • the measuring means 23 of the refrigerant fluid pressure at the evaporator inlet Pe is constituted by a second chamber 24, in relation to the downstream part 25 of the first refrigerant circulation channel 1 1 by via a second communication conduit 26.
  • the second chamber 24 houses a return member 27, preferably acting on a plate 28 integral with the first connecting rod 19.
  • the plate 28 has a useful face 29, an upper face 29 according to the embodiments of Figures 2 and 3, in contact with the refrigerant and an insulated face 30, a lower face 30 according to the embodiments of Figures 2 and 3 .
  • the useful face 29 of the plate 28 provides a useful surface subjected to the refrigerant pressure at the evaporator inlet Pe, so that the useful face 29 is subjected to an evaporator inlet force Fe.
  • the return member 27 is constituted in particular by a spring 27 exerting a second return force Fr2, in particular on the plate 28.
  • the second return force Fr2 results from the product between a stiffness K2 of the return member 27 and the displacement X 'of the plate 28 relative to the original neutral position ⁇ .
  • the displacement X of the first needle 16 is identical to the displacement X 'of the plate 28.
  • the plate 28 slides inside a sleeve 31 which isolates the lower face 30 of the plate 28 of the refrigerant.
  • the plate 28 is provided with a bellows 32 made of flexible material which isolates the lower face 30 of the plate 28 of the refrigerant.
  • the bellows 32 is for example arranged accordion to deform during the displacement of the plate 28.
  • the bellows 32 exerts a force complementary to the second restoring force Fr2.
  • the first needle 16 is connected to a support plate 33 arranged inside the upstream portion 22 of the first refrigerant circulation channel 1 1 via a second connecting rod 34.
  • the support plate 33 is interposed between the first needle 16 and the constraint member 21, in particular the spring 21.
  • the support plate 33 has a useful face 35, an upper face 35 according to the embodiment of Figure 4, in contact with the coolant and an insulated face 36, a lower face 36 according to the embodiment of Figure 4 .
  • the insulated surface 36 is not in contact with the coolant via a sleeve 37 within which the support plate 33 is slidable.
  • the coolant exerts on the useful face 35 of the support plate 33 provides a useful surface Si subjected to the refrigerant pressure equal to the high pressure Ph, so that the useful face 35 of the support 33 is subjected to an internal force Fi.
  • the present invention proposes to effectively regulate the expansion of the refrigerant fluid by achieving an optimized thermal performance, a low energy consumption of the compressor 3 and an improved thermostatic stability within the expansion device 5.
  • the pressure measuring means 23 refrigerant fluid at the evaporator inlet Pe is constituted by a second needle 38.
  • the second needle 38 is movable between an open position in which the second needle 38 allows a passage of the refrigerant between the upstream portion 22, in particular the first chamber 22, and the downstream portion 25 of the first refrigerant circulation channel 1 1 via a third communication conduit 39, and a closed position in which the second needle 38 prohibits such a passage.
  • the second needle 38 is carried by a support rod 40 in relation to a return member 41.
  • the return member 41 acts on a plate 42 in connection with the support rod 40.
  • the plate 42 has a useful face 43, an upper face 43 according to the embodiment of FIG. 5, in contact with the refrigerant and an insulated face 44, a lower face 44 according to the embodiment of FIG. 5.
  • the useful face 43 is of a useful surface Su.
  • the coolant exerts on the useful face 43 a useful force Fu.
  • the return member 41 is in particular a spring 41 exerting a third return force Fr3 on the plate 42 which results from the product between a stiffness K3 of the return member 41 and the displacement Y of the plate 42 with respect to a position neutral of origin Y0.
  • the third return force Fr3 to which the second needle 38 is subjected verifies the following relation [9]:

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

L'invention a pour objet un dispositif de détente (5) d'un fluide réfrigérant comprenant, d'une part, une première entrée du dispositif de détente (8) et une première sortie du dispositif de détente (9) reliées par un premier canal de circulation du fluide réfrigérant (11), le premier canal de circulation du fluide réfrigérant (11) comprenant une partie amont (22) et une partie aval (25) mises en communication par un premier conduit de communication (18), et, d'autre part, une deuxième entrée du dispositif de détente (12) et une deuxième sortie du dispositif de détente (13) reliées par un deuxième canal de circulation du fluide réfrigérant (14). Le dispositif de détente (5) comporte un moyen de régulation (15) d'une détente du fluide réfrigérant comprenant un premier pointeau (16) logé à l'intérieur de la partie amont (22) du premier canal de circulation du fluide réfrigérant (11), le premier pointeau (16) étant relié par l'intermédiaire d'une première tige de liaison (19) à un capteur thermostatique (17) en relation avec le deuxième canal de circulation du fluide réfrigérant (14), le premier pointeau (16) étant apte à autoriser ou interdire une circulation du fluide réfrigérant à l'intérieur du premier conduit de communication (18). Le moyen de régulation (15) comprend un moyen de mesure (23) d'une pression de fluide réfrigérant en entrée d'évaporateur (Pse) prise au niveau de la première sortie du dispositif de détente (9).

Description

Dispositif de détente thermostatique et boucle de climatisation comprenant un tel dispositif de détente thermostatique.
L'invention concerne le domaine des installations de chauffage, ventilation et/ou climatisation, notamment pour un véhicule automobile. Elle a plus particulièrement pour objet un dispositif de détente thermostatique intégré à une boucle de climatisation faisant partie intégrante d'une telle installation de chauffage, ventilation et/ou climatisation. Enfin, elle a aussi pour objet une boucle de climatisation comprenant un tel dispositif de détente thermostatique.
Un véhicule automobile est couramment équipé d'une installation de chauffage, ventilation et/ou climatisation pour modifier les paramètres aérothermiques d'un flux d'air susceptible d'être distribué à l'intérieur d'un habitacle du véhicule. A cet effet, l'installation de chauffage, ventilation et/ou climatisation comprend un appareil de chauffage, ventilation et/ou climatisation apte à canaliser le flux d'air préalablement à sa distribution à l'intérieur de l'habitacle. L'appareil de chauffage, ventilation et/ou climatisation est principalement constituée d'un boîtier réalisé en matière plastique logé sous une planche de bord du véhicule. Pour modifier la température du flux d'air préalablement à sa diffusion dans l'habitacle, l'installation de chauffage, ventilation et/ou climatisation comprend également une boucle de climatisation à l'intérieur de laquelle circule un fluide réfrigérant, en particulier un fluide réfrigérant sous-critique, tel que celui connu sous la dénomination R134a. La boucle de climatisation comprend, notamment, un compresseur, un condenseur, un dispositif de détente et un évaporateur. L'évaporateur est logé à l'intérieur de l'appareil de chauffage, ventilation et/ou climatisation afin refroidir et/ou déshumidifier le flux d'air préalablement à sa distribution à l'intérieur de l'habitacle. Parmi les dispositifs de détente, on connaît un dispositif de détente thermostatique, tel que celui décrit par le document FR 2 743 139. Un dispositif de détente thermostatique comporte une première entrée du fluide réfrigérant reliée au condenseur et une première sortie du fluide réfrigérant reliée à l'évaporateur. La première entrée et la première sortie sont reliées l'une à l'autre par l'intermédiaire d'un premier canal de circulation du fluide réfrigérant à l'intérieur duquel se produit une détente du fluide réfrigérant.
Le dispositif de détente thermostatique comporte également une deuxième entrée du fluide réfrigérant reliée à l'évaporateur et une deuxième sortie du fluide réfrigérant reliée au compresseur. La deuxième entrée et la deuxième sortie sont reliées l'une à l'autre par l'intermédiaire d'un deuxième canal de circulation du fluide réfrigérant.
Le dispositif de détente thermostatique comporte un moyen de régulation de la détente du fluide réfrigérant. Le moyen de régulation de la détente associe un pointeau logé dans le premier canal de circulation et un capteur thermostatique logé à l'intérieur du deuxième canal de circulation. Le pointeau est mobile entre une position d'ouverture dans laquelle le pointeau autorise une circulation du fluide réfrigérant depuis la première entrée du fluide réfrigérant vers la première sortie du fluide réfrigérant et une position de fermeture dans laquelle le pointeau interdit une telle circulation. Le pointeau est en relation avec un ressort qui tend à le maintenir en position de fermeture. Lorsque le fluide réfrigérant à l'intérieur du deuxième canal de circulation est à une pression supérieure à une pression de référence, le capteur thermostatique exerce sur le pointeau une force opposée et supérieure à celle exercée par le ressort sur le pointeau, ce qui provoque une mise en position d'ouverture du pointeau.
Avantageusement, ces dispositions visent à réguler la surchauffe du fluide réfrigérant à la sortie de l'évaporateur. Le moyen de régulation du dispositif de détente thermostatique mérite d'être amélioré afin d'obtenir une performance thermique optimisée, c'est-à-dire une faculté à refroidir au mieux le flux d'air, de réduite une consommation énergétique du compresseur et améliorer une stabilité thermostatique à l'intérieur du dispositif de détente thermostatique.
Le but de la présente invention est de proposer un dispositif de détente d'un fluide réfrigérant agencé dans une boucle de climatisation d'une installation de chauffage, ventilation et/ou climatisation équipant un véhicule automobile, la boucle de climatisation offrant une performance thermique optimisée, c'est-à-dire une faculté à refroidir au mieux un flux d'air circulant à travers un évaporateur intégré à la boucle de climatisation, une faible consommation énergétique d'un compresseur intégré à la boucle de climatisation et une stabilité thermostatique améliorée à l'intérieur du dispositif de détente.
Le dispositif de détente d'un fluide réfrigérant de la présente invention comprend, d'une part, une première entrée du dispositif de détente et une première sortie du dispositif de détente reliées par un premier canal de circulation du fluide réfrigérant, le premier canal de circulation du fluide réfrigérant comprenant une partie amont et une partie aval mises en communication par un premier conduit de communication, et, d'autre part, une deuxième entrée du dispositif de détente et une deuxième sortie du dispositif de détente reliées par un deuxième canal de circulation du fluide réfrigérant. De plus, le dispositif de détente comporte un moyen de régulation d'une détente du fluide réfrigérant comprenant un premier pointeau logé à l'intérieur de la partie amont du premier canal de circulation du fluide réfrigérant, le premier pointeau étant relié par l'intermédiaire d'une première tige de liaison à un capteur thermostatique en relation avec le deuxième canal de circulation du fluide réfrigérant. Le premier pointeau est apte à autoriser ou interdire une circulation du fluide réfrigérant à l'intérieur du premier conduit de communication. Selon la présente invention, le moyen de régulation comprend un moyen mesure d'une pression de fluide réfrigérant en entrée d'évaporateur prise au niveau de la de la première sortie du dispositif de détente. Selon une première variante de réalisation, le moyen de mesure comprend une deuxième chambre en relation avec la partie aval du premier canal de circulation du fluide réfrigérant par l'intermédiaire d'un deuxième conduit de communication.
La deuxième chambre loge avantageusement un organe de rappel associé à une platine solidaire de la première tige de liaison.
Selon une première alternative, la platine est, par exemple, montée coulissante à l'intérieur d'un fourreau confinant la face inférieure de la platine. Selon une deuxième alternative, la platine est, par exemple encore, pourvue d'un soufflet confinant la face inférieure de la platine.
Selon une deuxième variante de réalisation, complémentaire ou alternative à la première variante de réalisation, le moyen de mesure comprend une plaque de support logée à l'intérieur de la partie amont du premier canal de circulation du fluide réfrigérant. Selon cet agencement, la plaque de support est reliée au premier pointeau par l'intermédiaire d'une deuxième tige de liaison, la plaque comportant une surface inférieure en contact avec un organe de contrainte, en particulier un ressort. La plaque de support est préférentiellement montée coulissante à l'intérieur d'un manchon confinant la surface inférieure.
Selon une troisième variante de réalisation, complémentaire ou alternative aux première et deuxième variantes de réalisation, le moyen de mesure comprend un deuxième pointeau logé dans la partie amont du premier canal de circulation du fluide réfrigérant. Selon cet agencement, le deuxième pointeau est apte à autoriser ou interdire une circulation du fluide réfrigérant à l'intérieur d'un troisième conduit de communication ménagé entre la partie amont et la partie aval du premier canal de circulation du fluide réfrigérant. Le deuxième pointeau est préférentiellement porté par une tige de support en relation avec une plaque en contact avec un organe de rappel.
Une boucle de climatisation selon la présente invention comprend un compresseur, un condenseur, un évaporateur et un dispositif de détente tel que défini précédemment. La boucle de climatisation est agencée de telle sorte que la première entrée du dispositif de détente est en relation avec le condenseur, la première sortie du dispositif de détente est en relation avec l'évaporateur, la deuxième entrée du dispositif de détente est en relation avec l'évaporateur et la deuxième sortie du dispositif de détente est en relation avec le compresseur.
La présente invention sera mieux comprise, d'autres caractéristiques et avantages apparaîtront encore à la lecture de la description détaillée qui suit, comprenant des modes de réalisation donnés à titre illustratif en référence avec les figures annexées, fournis à titre d'exemples non limitatifs, qui pourront servir à compléter la compréhension de la présente invention et l'exposé de sa réalisation et, le cas échéant, contribuer à sa définition, sur lesquelles :
• La figure 1 est une illustration schématique d'une boucle de climatisation selon la présente invention.
• Les figures 2 à 5 sont des illustrations schématiques de variantes de réalisation d'un dispositif de détente selon la présente invention intégré à la boucle de climatisation illustrée sur la figure 1.
Un véhicule automobile est équipé d'une installation de chauffage, ventilation et/ou climatisation pour modifier les paramètres aérothermiques d'un flux d'air 1 apte à être distribué à l'intérieur d'un habitacle du véhicule. A cet effet, l'installation de chauffage, ventilation et/ou climatisation comprend un appareil de chauffage, ventilation et/ou climatisation permettant de canaliser la circulation du flux d'air 1 préalablement à sa distribution à l'intérieur de l'habitacle. Le système de chauffage, ventilation et/ou climatisation est principalement constitué d'un boîtier réalisé en matière plastique logé sous une planche de bord du véhicule. Pour refroidir le flux d'air 1 préalablement à sa distribution dans l'habitacle, l'installation de chauffage, ventilation et/ou climatisation comprend une boucle de climatisation 2, telle qu'illustrée schématiquement sur la figure 1 , à l'intérieur de laquelle circule un fluide réfrigérant, avantageusement un fluide réfrigérant sous- critique tel que celui connu sous la dénomination R134a.
La boucle de climatisation 2 comprend, notamment, un compresseur 3, un condenseur 4, un dispositif de détente 5 et un évaporateur 6. Le compresseur 3 est prévu pour porter le fluide réfrigérant à haute pression. Le condenseur 4 est apte à permettre un échange de chaleur entre le fluide réfrigérant à son environnement, notamment un fluide d'air extérieur. Préférentiellement, l'échange de chaleur à l'intérieur du condenseur 4 se fait à pression relativement constante. Le dispositif de détente 5 est prévu pour permettre une détente du fluide réfrigérant. L'évaporateur 6 est apte à permettre un échange de chaleur entre le fluide réfrigérant et le flux d'air 1. L'évaporateur 6 est logé à l'intérieur de l'appareil de chauffage, ventilation et/ou climatisation afin refroidir et/ou déshumidifier le flux d'air 1 qui le traverse, préalablement à sa distribution dans l'habitacle.
Ainsi, la boucle de climatisation 2 comprend une ligne haute pression HP comprise entre une sortie du compresseur 7 et une première entrée du dispositif de détente 8 et une ligne basse pression BP comprise entre une première sortie du dispositif de détente 9 et une entrée du compresseur 10.
Le dispositif de détente 5 comporte un premier canal de circulation du fluide réfrigérant 1 1 reliant la première entrée du dispositif de détente 8 et la première sortie du dispositif de détente 9. La détente du fluide réfrigérant se produit à l'intérieur du premier canal de circulation du fluide réfrigérant 11.
Le dispositif de détente 5 comporte une deuxième entrée du dispositif de détente 12, préférentiellement reliée à l'évaporateur 6, et une deuxième sortie du dispositif de détente 13, préférentiellement reliée au compresseur 3. La deuxième entrée du dispositif de détente 12 et la deuxième sortie du dispositif de détente 13 sont reliées l'une à l'autre par l'intermédiaire d'un deuxième canal de circulation du fluide réfrigérant 14.
Ainsi, à l'intérieur de la boucle de climatisation 2, le fluide réfrigérant circule depuis la sortie du compresseur 7 jusqu'au condenseur 4, puis pénètre à l'intérieur du dispositif de détente 5 par l'intermédiaire de la première entrée du dispositif de détente 8, puis circule à l'intérieur du premier canal de circulation du fluide réfrigérant 11 , est évacué hors du dispositif de détente 5 par la première sortie du dispositif de détente 9, circule à l'intérieur de l'évaporateur 6, pénètre à l'intérieur du dispositif de détente 5 par la deuxième entrée du dispositif de détente 12, circule à l'intérieur du deuxième canal de circulation du fluide réfrigérant 14, est évacué hors du dispositif de détente 5 par la deuxième sortie du dispositif de détente 13 et retourne au compresseur 3.
Le dispositif de détente 5 est un dispositif de détente thermostatique comportant un moyen de régulation 15 de la détente du fluide réfrigérant. On se réfère dorénavant aux figures 2 à 5 qui présentent des illustrations schématiques de variantes de réalisation d'un dispositif de détente selon la présente invention intégré à la boucle de climatisation illustrée sur la figure 1.
Sur les figure 2 à 5, le moyen de régulation 15 de la détente du fluide réfrigérant comprend un premier pointeau 16, logé dans le premier canal de circulation du fluide réfrigérant 1 1 , et un capteur thermostatique 17, en communication avec le deuxième canal de circulation du fluide réfrigérant 14.
Selon les exemples de réalisation des figures 2 à 5, le premier canal de circulation du fluide réfrigérant 1 1 comporte un premier conduit de communication 18 reliant une partie amont 22 et une partie aval 25 du premier canal de circulation du fluide réfrigérant 11.
Le premier pointeau 16 est apte à autoriser ou interdire une circulation du fluide réfrigérant à l'intérieur du premier conduit de communication 18, ménagé à l'intérieur du premier canal de circulation du fluide réfrigérant 11.
Le premier conduit de communication 18 est constitué d'une restriction de passage du fluide réfrigérant entre la première entrée du dispositif de détente 8 et la première sortie du dispositif de détente 9.
A cet effet, et selon un exemple avantageux de réalisation, la partie amont 22 du premier canal de circulation du fluide réfrigérant 1 1 est constitué par une première chambre 22, ménagée entre la première entrée du dispositif de détente 8 et le premier conduit de communication 18. La partie aval 25 du premier canal de circulation du fluide réfrigérant 1 1 est ménagée entre le premier conduit de communication 18 et la première sortie du dispositif de détente 9.
Le premier pointeau 16 est mobile entre une position d'ouverture dans laquelle le premier pointeau 16 autorise une circulation du fluide réfrigérant à l'intérieur du premier conduit de communication 18 et une position de fermeture dans laquelle le premier pointeau 16 interdit une telle circulation.
Le premier pointeau 16 est équipé d'une première tige de liaison 19 qui est en relation avec le capteur thermostatique 17. Plus particulièrement, le capteur thermostatique 17 comprend une membrane 20 dont la position est apte à varier en fonction de la pression.
La membrane 20 offre une surface de contact S avec le fluide réfrigérant circulant à l'intérieur du deuxième canal de circulation du fluide réfrigérant 14. La membrane 20 est sensible à une pression de fluide réfrigérant en sortie d'évaporateur Ps régnant à l'intérieur du deuxième canal de circulation du fluide réfrigérant 14. Pour ce faire, avantageusement, la membrane 20 est une membrane souple.
La pression de fluide réfrigérant en sortie d'évaporateur Ps crée sur la membrane 20 une force de sortie d'évaporateur Fs, résultant du produit de la surface de contact S et de la pression de fluide réfrigérant en sortie d'évaporateur Ps. Lorsque la pression de fluide réfrigérant en sortie d'évaporateur Ps est supérieure à une première pression de référence PR1 , en particulier exercée sur la membrane 20, la membrane 20 tend à placer le premier pointeau 16 en position de fermeture. A l'inverse, lorsque la pression de fluide réfrigérant en sortie d'évaporateur Ps est inférieure à la première pression de référence PR1 , la membrane 20 tend à placer le premier pointeau 16 en position d'ouverture.
Préférentiellement, la première pression de référence PR1 est proportionnelle à la température du fluide réfrigérant 2. La force de sortie d'évaporateur Fs à laquelle est soumise la membrane 20 et, en conséquence, le premier pointeau 16 par l'intermédiaire de la première tige de liaison 19, vérifie la relation [1] suivante :
Fs = Ps * S [1] Le premier pointeau 16 est logé à l'intérieur de la première chambre 22 ménagée à l'intérieur du premier canal de circulation du fluide réfrigérant 11. A l'intérieur de la première chambre 22, le fluide réfrigérant en provenance du condenseur 4 est à une haute pression Ph.
Sur les figures 2 à 4, le premier pointeau 16 est en relation avec un organe de contrainte 21 , tel qu'un ressort 21 ou analogue. Dans les exemples de réalisation, le ressort 21 tend à maintenir le premier pointeau 16 en position de fermeture. Le ressort 21 exerce une première force de rappel Fr1 sur le premier pointeau 16.
La première force de rappel Fr1 résulte du produit entre une raideur K1 du ressort 21 et un déplacement X du premier pointeau 16 par rapport à une position neutre d'origine X0, en particulier la positon dans laquelle le premier pointeau 16 est en position de fermeture.
La première force de rappel Fr1 à laquelle sont soumis le premier pointeau 16 et en conséquence, la membrane 20, par l'intermédiaire de la première tige 19 vérifie la relation [2] suivante :
Fr1 = K1 * X [2]
Afin d'optimiser une performance thermique, c'est-à-dire une faculté à refroidir au mieux le flux d'air 2, de réduire une consommation énergétique du compresseur 3 et d'améliorer une stabilité thermostatique à l'intérieur du dispositif de détente 5, la présente invention propose que le moyen de régulation 15 de la détente du fluide réfrigérant prenne en compte une information relative à une pression de fluide réfrigérant en entrée d'évaporateur Pe. La pression de fluide réfrigérant en entrée d'évaporateur Pe est sensiblement égale à la pression régnant à la première sortie du dispositif de détente 9. Pour ce faire, le moyen de régulation 15 de la détente du fluide réfrigérant comprend un moyen de mesure 23 de la pression de fluide réfrigérant en entrée d'évaporateur Pe, prise avantageusement au niveau de la première sortie du dispositif de détente 9. Sur les figures 2 et 3, le moyen de mesure 23 de la pression de fluide réfrigérant en entrée d'évaporateur Pe est constitué par une deuxième chambre 24, en relation avec la partie aval 25 du premier canal de circulation du fluide réfrigérant 1 1 par l'intermédiaire d'un deuxième conduit de communication 26.
La deuxième chambre 24 loge un organe de rappel 27, préférentiellement agissant sur une platine 28 solidaire de la première tige de liaison 19.
La platine 28 comporte une face utile 29, une face supérieure 29 selon les modes de réalisation des figure 2 et 3, en contact avec le fluide réfrigérant et une face isolée 30, une face inférieure 30 selon les modes de réalisation des figure 2 et 3.
La face utile 29 de la platine 28 offre une surface utile Se soumis à la pression de fluide réfrigérant en entrée d'évaporateur Pe, de telle sorte que la face utile 29 est soumise à une force d'entrée d'évaporateur Fe.
Par l'intermédiaire de la première tige de liaison 19, la force d'entrée d'évaporateur Fe est soumise au premier pointeau 16 et, en conséquence, à la membrane 20, vérifie la relation [3] suivante :
Fe = Pe * Se [3]
L'organe de rappel 27 est notamment constitué par un ressort 27 exerçant une deuxième force de rappel Fr2, notamment sur la platine 28. La deuxième force de rappel Fr2 résulte du produit entre une raideur K2 de l'organe de rappel 27 et le déplacement X' de la platine 28 par rapport à la position neutre d'origine ΧΌ.
Selon un mode particulier, le déplacement X du premier pointeau 16 est identique au déplacement X' de la platine 28. La deuxième force de rappel Fr2 à laquelle sont soumis le premier pointeau 16 et la membrane 20 par l'intermédiaire de la première tige 19, vérifie la relation [4] suivante :
Fr2 = K2 * X' [4]
A l'équilibre, le bilan des forces appliquées à la membrane 20 est donné par la relation [5] suivante :
PR1 * S + Pe * Se = K1 * X + K2 * X' + Ps * S [5] Ces dispositions sont telles qu'à partir d'un choix approprié des valeurs de la surface de contact S, de la surface utile Se du moyen de mesure 23, de la raideur K1 de l'organe de contrainte 21 et de la raideur K2 de l'organe de rappel 27, la présente invention propose de réguler efficacement la détente du fluide réfrigérant avec une performance thermique optimisée, une faible consommation énergétique du compresseur 3 et une stabilité thermostatique améliorée à l'intérieur du dispositif de détente 5.
Sur la figure 2, la platine 28 coulisse à l'intérieur d'un fourreau 31 qui isole la face inférieure 30 de la platine 28 du fluide réfrigérant.
Sur la figure 3, la platine 28 est pourvue d'un soufflet 32 réalisé en matière souple qui isole la face inférieure 30 de la platine 28 du fluide réfrigérant. Le soufflet 32 est par exemple agencé en accordéon pour se déformer lors du déplacement de la platine 28. Le soufflet 32 exerce une force complémentaire à la deuxième force de rappel Fr2.
Sur la figure 4, le premier pointeau 16 est relié à une plaque de support 33 agencée à l'intérieur de la partie amont 22 du premier canal de circulation du fluide réfrigérant 1 1 par l'intermédiaire d'une deuxième tige de liaison 34. La plaque de support 33 est interposée entre le premier pointeau 16 et l'organe de contrainte 21 , en particulier le ressort 21 . La plaque de support 33 comporte une face utile 35, une face supérieure 35 selon le mode de réalisation de la figure 4, en contact avec le liquide réfrigérant et une face isolée 36, une face inférieure 36 selon le mode de réalisation de la figure 4. . En particulier, la surface isolée 36 n'est pas en contact avec le liquide réfrigérant par l'intermédiaire d'un manchon 37 à l'intérieur duquel la plaque de support 33 est apte à coulisser.
Il en résulte que le fluide réfrigérant exerce sur la face utile 35 de la plaque de support 33 offre une surface utile Si soumis à la pression de fluide réfrigérant égale à la haute pression Ph, de telle sorte que la face utile 35 de la plaque de support 33 est soumise à une force interne Fi.
La force interne Fi à laquelle sont soumis le premier pointeau 16 et, en conséquence, la membrane 20 par l'intermédiaire de la première tige de liaison 19 et de la deuxième tige de liaison 34, vérifie la relation [6] suivante :
Fi = Ph * Si [6]
A l'équilibre, le bilan des forces appliquées à la membrane 20 est donné par la relation [7] suivante :
PR1 * S + Ph * Si = Ps * S + K1 * X [7]
Ces dispositions sont telles qu'à partir d'un choix approprié des valeurs de la surface de contact S, de la surface utile Si de la plaque de support 33 et de la raideur K1 de l'organe de contrainte 21 , la présente invention propose de réguler efficacement la détente du fluide réfrigérant en atteignant une performance thermique optimisée, une faible consommation énergétique du compresseur 3 et une stabilité thermostatique améliorée à l'intérieur du dispositif de détente 5. Sur la figure 5, le moyen de mesure 23 de la pression de fluide réfrigérant en entrée d'évaporateur Pe est constitué par un deuxième pointeau 38. Le deuxième pointeau 38 est mobile entre une position d'ouverture dans laquelle le deuxième pointeau 38 autorise un passage du fluide réfrigérant entre la partie amont 22, en particulier la première chambre 22, et la partie aval 25 du premier canal de circulation du fluide réfrigérant 1 1 par l'intermédiaire d'un troisième conduit de communication 39, et une position de fermeture dans laquelle le deuxième pointeau 38 interdit un tel passage.
Le deuxième pointeau 38 est porté par une tige de support 40 en relation avec un organe de rappel 41. En particulier, l'organe de rappel 41 agit sur une plaque 42 en liaison avec la tige de support 40.
La plaque 42 offre une face utile 43, une face supérieure 43 selon le mode de réalisation de la figure 5, en contact avec le fluide réfrigérant et une face isolée 44, une face inférieure 44 selon le mode de réalisation de la figure 5.
La face utile 43 est d'une surface utile Su. Il en résulte que le fluide réfrigérant exerce, sur la face utile 43, une force utile Fu. La force utile Fu à laquelle est soumis le deuxième pointeau 38 par l'intermédiaire de la tige de support 40, vérifie la relation [8] suivante :
Fu = Ph * Su [8]
L'organe de rappel 41 est notamment un ressort 41 exerçant une troisième force de rappel Fr3 sur la plaque 42 qui résulte du produit entre une raideur K3 de l'organe de rappel 41 et le déplacement Y de la plaque 42 par rapport à une position neutre d'origine Y0. La troisième force de rappel Fr3 à laquelle est soumis le deuxième pointeau 38, vérifie la relation [9] suivante :
Fr3 = K3 * Y [9]
A l'équilibre, le bilan des forces appliquées au deuxième pointeau 38 est donné par la relation [10] suivante :
Ph * Su = K3 * Y [10] Ces dispositions sont telles qu'à partir d'un choix approprié des valeurs de la surface utile Su de la plaque 42 et de la raideur K3 de l'organe de rappel 41 , la présente invention propose de réguler efficacement la détente du fluide réfrigérant en atteignant une performance thermique optimisée, une faible consommation énergétique du compresseur 3 et une stabilité thermostatique améliorée à l'intérieur du dispositif de détente 5.
On remarque enfin que diverses mises en œuvre peuvent être réalisées selon les principes de l'invention. Il doit être bien entendu toutefois que ces exemples de fonctionnement sont donnés à titre d'illustration de l'objet de l'invention. Bien évidemment, l'invention n'est pas limitée à ces modes de réalisation décrits précédemment et fournis uniquement à titre d'exemple. Elle englobe diverses modifications, formes alternatives et autres variantes que pourra envisager l'homme du métier dans le cadre de la présente invention et notamment toutes combinaisons des différents modes de réalisation décrits précédemment.
De plus, les différents modes de fonctionnement décrits précédemment peuvent être pris séparément ou en combinaison afin de réaliser des alternatives de réalisations et diverses configuration d'une installation de chauffage, ventilation et/ou climatisation telle que définie selon la présente invention.

Claims

Revendications
1 . - Dispositif de détente (5) d'un fluide réfrigérant comprenant, d'une part, une première entrée du dispositif de détente (8) et une première sortie du dispositif de détente (9) reliées par un premier canal de circulation du fluide réfrigérant (11 ), le premier canal de circulation du fluide réfrigérant (1 1 ) comprenant une partie amont (22) et une partie aval (25) mises en communication par un premier conduit de communication (18), et, d'autre part, une deuxième entrée du dispositif de détente (12) et une deuxième sortie du dispositif de détente (13) reliées par un deuxième canal de circulation du fluide réfrigérant (14), le dispositif de détente (5) comportant un moyen de régulation (15) d'une détente du fluide réfrigérant comprenant un premier pointeau (16) logé à l'intérieur de la partie amont (22) du premier canal de circulation du fluide réfrigérant (1 1 ), le premier pointeau (16) étant relié par l'intermédiaire d'une première tige de liaison (19) à un capteur thermostatique (17) en relation avec le deuxième canal de circulation du fluide réfrigérant (14), le premier pointeau (16) étant apte à autoriser ou interdire une circulation du fluide réfrigérant à l'intérieur du premier conduit de communication (18),
caractérisé en ce que le moyen de régulation (15) comprend un moyen de mesure (23) d'une pression de fluide réfrigérant en entrée d'évaporateur (Pse) prise au niveau de la première sortie du dispositif de détente (9).
2. - Dispositif de détente (5) selon la revendication 1 , caractérisé en ce que le moyen de mesure (23) comprend une deuxième chambre (24) en relation avec la partie aval (25) du premier canal de circulation du fluide réfrigérant (11 ) par l'intermédiaire d'un deuxième conduit de communication (26).
3.- Dispositif de détente (5) selon la revendication 2, caractérisé en ce que la deuxième chambre (24) loge un organe de rappel (27) associé à une platine (28) solidaire de la première tige de liaison (19).
4.- Dispositif de détente (5) selon la revendication 3, caractérisé en ce que la platine (28) est montée coulissante à l'intérieur d'un fourreau (31 ).
5.- Dispositif de détente (5) selon la revendication 3, caractérisé en ce que la platine (28) est pourvue d'un soufflet (32).
6. - Dispositif de détente (5) selon l'une quelconque des revendications précédentes, caractérisé en ce que le moyen de mesure (23) comprend une plaque de support (33) logée à l'intérieur de la partie amont (22) du premier canal de circulation du fluide réfrigérant (1 ).
7. - Dispositif de détente (5) selon la revendication 6, caractérisé en ce que la plaque de support (33) est reliée au premier pointeau (16) par l'intermédiaire d'une deuxième tige de liaison (34), la plaque de support (33) comportant une surface inférieure (36) en contact avec un organe de contrainte (21 ), en particulier un ressort (21 ).
8. - Dispositif de détente (5) selon la revendication 6 ou 7, caractérisé en ce que la plaque de support (33) est montée coulissante à l'intérieur d'un manchon
(37).
9. - Dispositif de détente (5) selon l'une quelconque des revendications précédentes, caractérisé en ce que le moyen de mesure (23) comprend un deuxième pointeau (38) logé dans la partie amont (22) du premier canal de circulation du fluide réfrigérant (11 ).
10. - Dispositif de détente (5) selon la revendication 9, caractérisé en ce que le deuxième pointeau (38) est apte à autoriser ou interdire une circulation du fluide réfrigérant à l'intérieur d'un troisième conduit de communication (39) ménagé entre la partie amont (22) et la partie aval (25) du premier canal de circulation du fluide réfrigérant (1 1 ).
Dispositif de détente (5) selon la revendication 9 ou 10, caractérisé en ce que le deuxième pointeau (38) est porté par une tige de support (40) en relation avec une plaque (42) en contact avec un organe de rappel (41 ).
Boucle de climatisation (2) comprenant un compresseur (3), un condenseur (4), un évaporateur (6) et un dispositif de détente (5) selon l'une quelconque des revendications précédentes,
caractérisée en ce que la première entrée de le dispositif de détente (8) est en relation avec le condenseur (4), la première sortie du dispositif de détente (9) est en relation avec l'évaporateur (6), la deuxième entrée du dispositif de détente (12) est en relation avec l'évaporateur (6) et la deuxième sortie du dispositif de détente (13) est en relation avec le compresseur (3).
PCT/FR2011/000213 2010-04-16 2011-04-12 Dispositif de détente thermostatique et boucle de climatisation comprenant un tel dispositif de détente thermostatique WO2011128527A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013504303A JP5805749B2 (ja) 2010-04-16 2011-04-12 自動調温膨張装置、および自動調温膨張装置を備える空調ループ
CN201180029730.9A CN103080670B (zh) 2010-04-16 2011-04-12 恒温膨胀装置和包括这样的恒温膨胀装置的空调环路
US13/641,283 US9459030B2 (en) 2010-04-16 2011-04-12 Thermostatic expansion device and air conditioning loop comprising such a thermostatic expansion device
EP11721801A EP2558800A1 (fr) 2010-04-16 2011-04-12 Dispositif de détente thermostatique et boucle de climatisation comprenant un tel dispositif de détente thermostatique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1001619 2010-04-16
FR1001619A FR2959004B1 (fr) 2010-04-16 2010-04-16 Dispositif de detente thermoplastique et boucle de climatisation comprenant un tel dispositif de detente thermoplastique

Publications (1)

Publication Number Publication Date
WO2011128527A1 true WO2011128527A1 (fr) 2011-10-20

Family

ID=43064575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/000213 WO2011128527A1 (fr) 2010-04-16 2011-04-12 Dispositif de détente thermostatique et boucle de climatisation comprenant un tel dispositif de détente thermostatique

Country Status (6)

Country Link
US (1) US9459030B2 (fr)
EP (1) EP2558800A1 (fr)
JP (1) JP5805749B2 (fr)
CN (1) CN103080670B (fr)
FR (1) FR2959004B1 (fr)
WO (1) WO2011128527A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781812A1 (fr) * 2013-03-18 2014-09-24 Nivaru B.V. Soupape
WO2022194902A1 (fr) * 2021-03-15 2022-09-22 Valeo Systemes Thermiques Système de conditionnement thermique

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102768120A (zh) * 2012-08-07 2012-11-07 长春轨道客车股份有限公司 空调加热系统恒温器功能检测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4303533A1 (de) * 1993-02-06 1994-08-11 Stiebel Eltron Gmbh & Co Kg Verfahren zur Begrenzung der Heißgastemperatur in einem Kältemittelkreislauf und Expansionsventil
FR2743139A1 (fr) 1995-12-27 1997-07-04 Valeo Climatisation Detendeur thermostatique pour appareil de climatisation, en particulier de vehicule automobile
WO2001001053A1 (fr) * 1999-06-29 2001-01-04 Honeywell, Inc. Systeme d'electrovanne a dilatation electrothermique
JP2001116399A (ja) * 1999-10-15 2001-04-27 Zexel Valeo Climate Control Corp 冷凍サイクル
JP2004324936A (ja) * 2003-04-22 2004-11-18 Denso Corp 冷凍サイクル装置および絞り弁
JP2005343285A (ja) * 2004-06-02 2005-12-15 Mitsubishi Heavy Ind Ltd 車両用空調装置、それに用いる弁装置及びこれらを搭載した車両
FR2934039A1 (fr) * 2008-07-18 2010-01-22 Valeo Systemes Thermiques Boucle de climatisation amelioree pour vehicule automobile

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1782689A (en) * 1928-04-16 1930-11-25 Baker Ice Machine Co Inc Refrigerating apparatus
US2160453A (en) * 1934-02-26 1939-05-30 Gen Motors Corp Refrigerating apparatus
US2141715A (en) * 1937-06-25 1938-12-27 Raymond G Hilger Refrigeration mechanism
US3667247A (en) * 1970-07-10 1972-06-06 Controls Co Of America Refrigeration system with evaporator outlet control valve
US3817053A (en) * 1972-11-10 1974-06-18 Controls Co Of America Refrigerating system including flow control valve
US3822563A (en) * 1973-04-25 1974-07-09 Controls Co Of America Refrigeration system incorporating temperature responsive wax element valve controlling evaporator outlet temperature
US4065939A (en) * 1976-01-30 1978-01-03 The Singer Company Combination valve
DE4410346C2 (de) * 1994-03-25 1996-04-11 Danfoss As Ventil, insbesondere thermostatisches Expansionsventil
JP2000016068A (ja) * 1998-07-08 2000-01-18 Sanden Corp 温度自動膨張弁
JP2001033123A (ja) * 1999-07-19 2001-02-09 Fuji Koki Corp 温度膨張弁
JP2001201212A (ja) * 2000-01-18 2001-07-27 Fuji Koki Corp 温度膨張弁
JP3998887B2 (ja) * 2000-03-02 2007-10-31 株式会社不二工機 膨張弁
KR100339072B1 (ko) * 2000-05-17 2002-05-31 이계안 자동차용 냉방 장치의 팽창 밸브
JP2001336862A (ja) * 2000-05-26 2001-12-07 Tgk Co Ltd 膨張弁
JP2002054860A (ja) * 2000-08-10 2002-02-20 Fuji Koki Corp 温度式膨張弁
JP2002225546A (ja) * 2001-01-31 2002-08-14 Fuji Koki Corp 温度式膨張弁
JP2002364935A (ja) * 2001-06-07 2002-12-18 Tgk Co Ltd 冷凍サイクル
US20030010832A1 (en) * 2001-07-12 2003-01-16 Eaton Corporation. Reducing flow noise in a refrigerant expansion valve
US6530528B2 (en) * 2001-07-27 2003-03-11 Parker-Hannifin Corporation Refrigerant expansion valve having electrically operated inlet shutoff with improved armature dampening
JP4056378B2 (ja) * 2002-02-01 2008-03-05 株式会社テージーケー 差圧弁
JP2004076920A (ja) * 2002-08-22 2004-03-11 Tgk Co Ltd 差圧制御弁
US7188483B2 (en) * 2003-02-24 2007-03-13 Halla Climate Control Corporation Expansion valve
JP2004270975A (ja) * 2003-03-06 2004-09-30 Tgk Co Ltd 流量制御弁
JP2007085489A (ja) * 2005-09-22 2007-04-05 Fuji Koki Corp 圧力制御弁
JP2007240041A (ja) * 2006-03-07 2007-09-20 Tgk Co Ltd 膨張弁
US7980482B2 (en) * 2007-08-17 2011-07-19 Automotive Components Holdings, Llc Thermostatic expansion valve having a restricted flow passage for noise attenuation
US7819333B2 (en) * 2008-05-20 2010-10-26 Automotive Components Holdings, Llc Air conditioning circuit control using a thermostatic expansion valve and sequence valve
US8047449B2 (en) * 2009-01-28 2011-11-01 Automotive Components Holdings Llc Automotive thermostatic expansion valve with reduced hiss
US8978412B2 (en) * 2009-12-04 2015-03-17 Halla Visteon Climate Control Corporation Air conditioner for vehicles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4303533A1 (de) * 1993-02-06 1994-08-11 Stiebel Eltron Gmbh & Co Kg Verfahren zur Begrenzung der Heißgastemperatur in einem Kältemittelkreislauf und Expansionsventil
FR2743139A1 (fr) 1995-12-27 1997-07-04 Valeo Climatisation Detendeur thermostatique pour appareil de climatisation, en particulier de vehicule automobile
WO2001001053A1 (fr) * 1999-06-29 2001-01-04 Honeywell, Inc. Systeme d'electrovanne a dilatation electrothermique
JP2001116399A (ja) * 1999-10-15 2001-04-27 Zexel Valeo Climate Control Corp 冷凍サイクル
JP2004324936A (ja) * 2003-04-22 2004-11-18 Denso Corp 冷凍サイクル装置および絞り弁
JP2005343285A (ja) * 2004-06-02 2005-12-15 Mitsubishi Heavy Ind Ltd 車両用空調装置、それに用いる弁装置及びこれらを搭載した車両
FR2934039A1 (fr) * 2008-07-18 2010-01-22 Valeo Systemes Thermiques Boucle de climatisation amelioree pour vehicule automobile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781812A1 (fr) * 2013-03-18 2014-09-24 Nivaru B.V. Soupape
WO2022194902A1 (fr) * 2021-03-15 2022-09-22 Valeo Systemes Thermiques Système de conditionnement thermique

Also Published As

Publication number Publication date
CN103080670B (zh) 2016-06-22
FR2959004B1 (fr) 2016-02-05
CN103080670A (zh) 2013-05-01
US20130074536A1 (en) 2013-03-28
JP2013527900A (ja) 2013-07-04
FR2959004A1 (fr) 2011-10-21
EP2558800A1 (fr) 2013-02-20
US9459030B2 (en) 2016-10-04
JP5805749B2 (ja) 2015-11-04

Similar Documents

Publication Publication Date Title
EP2895806B1 (fr) Dispositif de conditionnement thermique d'un habitacle d'un vehicule electrique
FR2958018A1 (fr) Boucle de chauffage, ventilation et/ou climatisation et installation de chauffage, ventilation et/ou climatisation comprenant une telle boucle de chauffage, ventilation et/ou climatisation
FR3057494A1 (fr) Installation de conditionnement thermique d'un habitacle et/ou d'au moins un organe d'un vehicule automobile
FR2937589A1 (fr) Boucle thermodynamique de climatisation integree a une installation de chauffage,ventilation et/ou climatisation equipant un vehicule,notamment a propulsion electrique.
FR2958019A1 (fr) Boucle de chauffage, ventilation et/ou climatisation et installation de chauffage, ventilation et/ou climatisation comprenant une telle boucle de chauffage, ventilation et/ou climatisation
FR2890430A1 (fr) Circuit de refroidissement de l'huile d'une boite de vitesses
WO2011128527A1 (fr) Dispositif de détente thermostatique et boucle de climatisation comprenant un tel dispositif de détente thermostatique
EP2814680B1 (fr) Boucle de climatisation fonctionnant en pompe à chaleur à dégivrage par impulsion
EP2720890A1 (fr) Circuit de fluide refrigerant et procede de controle d'un tel circuit
FR2905633A1 (fr) Boucle de climatisation d'un vehicule automobile dont le fluide refrigerant est a base de 1,1,1,2-tetrafluoroproprene et de trifluoroiodomethane
FR2801008A1 (fr) Systeme de climatisation pour vehicules
EP2748022A1 (fr) Dispositif de controle d'une circulation de fluide refrigerant et circuit incorporant un tel dispositif
FR3014370A1 (fr) Circuit pour le conditionnement thermique d'un habitacle et/ou d'un organe d'un vehicule automobile
EP2699434B1 (fr) Procede de controle d'un systeme de conditionnement thermique d'un habitacle d'un vehicule.
FR2862745A1 (fr) Organe de detente a electronique integree pour boucle a fluide refrigerant, en particulier d'un appareil de climatisation pour habitacle de vehicule
WO2014090963A1 (fr) Dispositif de conditionnement thermique pour vehicule automobile et installation de chauffage, ventilation et/ou climatisation correspondante
WO2019224455A1 (fr) Boitier pour un appareil de chauffage, ventilation et/ou climatisation pour vehicule automobile
EP1482259A1 (fr) Dispositif détendeur pour circuit de climatisation
FR3063250A1 (fr) Appareil de chauffage, ventilation et/ou climatisation pour vehicule automobile comportant au moins un canal de circulation d'un flux d'air
FR2912495A1 (fr) Organe de detente d'un fluide refrigerant circulant a l'interieur d'une boucle de climatisation d'un vehicule automobile
WO2014095592A1 (fr) Systeme de regulation d'une detente d'un fluide refrigerant
FR2821659A1 (fr) Systeme de controle pour une installation de climatisation
WO2014095591A1 (fr) Systeme de regulation electrique d'une detente d'un fluide refrigerant et procede de commande d'un tel systeme
FR2833530A1 (fr) Appareil de chauffage et/ou de climatisation a organe de mixage et de repartition d'air pour habitacle de vehicule automobile
FR3012587A1 (fr) Circuit de conditionnement thermique d'un habitacle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180029730.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11721801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011721801

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013504303

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13641283

Country of ref document: US