WO2011125971A1 - 波面収差測定装置 - Google Patents

波面収差測定装置 Download PDF

Info

Publication number
WO2011125971A1
WO2011125971A1 PCT/JP2011/058509 JP2011058509W WO2011125971A1 WO 2011125971 A1 WO2011125971 A1 WO 2011125971A1 JP 2011058509 W JP2011058509 W JP 2011058509W WO 2011125971 A1 WO2011125971 A1 WO 2011125971A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
wavefront aberration
aberration measuring
measuring apparatus
Prior art date
Application number
PCT/JP2011/058509
Other languages
English (en)
French (fr)
Inventor
大瀧達朗
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201180017502.XA priority Critical patent/CN102844651B/zh
Priority to JP2012509648A priority patent/JP5725018B2/ja
Publication of WO2011125971A1 publication Critical patent/WO2011125971A1/ja
Priority to US13/645,676 priority patent/US8558996B2/en
Priority to US14/022,762 priority patent/US8687179B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49771Quantitative measuring or gauging

Definitions

  • the present invention relates to a wavefront aberration measuring apparatus used for measuring the wavefront aberration of a lens to be inspected.
  • a Shack-Hartmann sensor is known as a method for measuring wavefront aberration.
  • Tatsuta Tatsuo's “Fourth Pencil of Light” (New Technology Communications, 1997, p. 212) has a description as a typical example of a wavefront measuring sensor.
  • the aperture stop of the lens to be examined is projected and its shape is measured.
  • the aperture stop may be minimized and the shape and position of the projected aperture may be measured.
  • the aperture stop in the test lens is operated to reduce the aperture stop to the minimum, the center of gravity of the test lens is moved by the driving of the aperture stop, or the lens part is deformed, etc. There may be an error in the measurement result of the shape and position of the projected aperture. As a result, an error may occur in the measurement result of the wavefront aberration.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a wavefront aberration measuring apparatus capable of suppressing errors in measurement results.
  • a first aspect of the present invention includes an illumination optical system provided on an entrance side of a test lens and a measurement optical system provided on an exit side of the test lens, and the illumination optical system is freely openable and closable.
  • the illumination optical system is movable along the optical axis of the illumination optical system so as to adjust the aperture stop and the entrance pupil plane of the lens to be optically conjugate to each other.
  • a wavefront aberration measuring device is provided.
  • a second aspect of the present invention includes an illumination optical system provided on the entrance side of the test lens, and a measurement optical system provided on the exit side of the test lens, and the illumination optical system is freely openable and closable.
  • the measurement optical system and the test lens have an optical axis of the test lens so as to adjust the aperture stop and the entrance pupil plane of the test lens to an optically conjugate position.
  • the wavefront aberration measuring device is characterized in that it can move along the line.
  • a third aspect of the present invention is a method of manufacturing a lens system having a plurality of lens parts, wherein the lens system is assembled by disposing the plurality of lens parts in a lens barrel, and the wavefront of the assembled lens system
  • a lens system manufacturing method in which aberration is measured by the wavefront aberration measuring apparatus according to the first aspect of the present invention, and the quality of the lens system is determined based on the measurement result.
  • FIG. 1A and 1B show an embodiment of a wavefront aberration measuring apparatus according to the present invention
  • FIG. 1A shows a state before adjustment to the optical conjugate relationship
  • FIG. 1B shows a state after adjustment to the optical conjugate relationship
  • FIG. 2A and 2B are diagrams showing details of the adjustment in FIGS. 1A and 1B.
  • FIG. 2A shows a state before adjustment in the optical conjugate relationship
  • FIG. 2B shows a state after adjustment.
  • 3A and 3B show another embodiment of the wavefront aberration measuring apparatus according to the present invention.
  • FIG. 3A shows a state before adjustment in the optical conjugate relationship
  • FIG. 3B shows a state after adjustment in the optical conjugate relationship.
  • FIG. 4 is an enlarged view of the test lens 3 shown in FIGS. 3A and 3B.
  • FIG. 5 is a flowchart for explaining the outline of the manufacturing method of the lens system according to the present invention.
  • FIG. 1A and 1B show an embodiment of the wavefront aberration measuring apparatus 1.
  • FIG. The wavefront aberration measuring apparatus 1 includes an illumination optical system 10 and a measurement optical system 20.
  • a test lens 3 to be inspected is disposed between the illumination optical system 10 and the measurement optical system 20, and the wavefront aberration of the test lens 3 is measured.
  • the illumination optical system 10 includes a light source 12 guided by a fiber 11, a lens 13, a filter 14, an aperture stop 15, a lens 16, a stop 17, and a projection lens 18. It is arranged linearly on the incident side.
  • the illumination optical system 10 is movable along the optical axis A.
  • the projection lens 18 is movable along the optical axis A.
  • the aperture stop 15 is suspended from the optical axis A and can be opened and closed.
  • the aperture of the aperture stop 15 can be set to an arbitrary diameter.
  • the diaphragm 17 is disposed at the front focal point of the projection lens 18.
  • the rear focal point of the projection lens 18 is matched with the entrance pupil of the lens 3 to be examined.
  • the aperture stop 15 is disposed at the front focal point of the lens 16.
  • the diaphragm 17 is disposed at the rear focal point of the lens 16.
  • the aperture stop 15 is disposed at the rear focal point of the lens 13.
  • the aperture stop 15 and the entrance pupil of the lens 3 to be inspected have an optical conjugate relationship, and an image (virtual image) of the diaphragm 17 is formed at the position of the image plane stop 21 to be described later.
  • the entrance pupil of the test lens 3 is at a position where the aperture stop 35 of the test lens 3 is optically projected. Further, the aperture stop 35 of the lens 3 to be tested is kept open.
  • the measurement optical system 20 includes an image plane stop 21, an objective lens 22, a first relay lens 23, a filter stop 24, a second relay lens 25, a Shack-Hartmann wavefront sensor 26, and a switching mirror 27. And the image pickup element 28, and each of the above portions is arranged linearly on the exit side of the lens 3 to be examined.
  • the wavefront sensor 26 includes a multi-lens array 26a and an image sensor 26b.
  • the multi-lens array 26a is formed by arranging a large number of lens elements (not shown) adjacent in two dimensions.
  • Each minute aperture (not shown) of each lens element is provided perpendicular to the optical axis A.
  • the minute apertures of the lens elements have a positive refractive power, and are formed, for example, in the shape of four rectangular bodies on the outer periphery.
  • the lens element is formed by, for example, forming a cross-sectional shape of a surface parallel to the optical axis direction so that only the incident surface is raised in a convex arc shape over the entire minute opening, and the outer periphery is a curved line.
  • the opposing outer periphery is formed in a convex arc shape toward the outside and a concave arc shape corresponding to the inside, respectively, and the other opposing outer periphery is formed in a convex arc shape toward the outside and a corresponding concave arc shape toward the inside, respectively. It is formed. Since the multi-lens array 26a is formed by arranging a large number of two-dimensionally adjacent lens elements having the same element shape, the lens elements are in contact with each other with no gap.
  • the image sensor 26b is formed of a charge coupled device (CCD) and is provided at the focal point of the multi-lens array 26a as described above.
  • CCD charge coupled device
  • the optical path of the multi-lens array 26a and the image pickup device 28 are switched at a right angle by the switching mirror 27, and thus are in an optically conjugate position.
  • the filter diaphragm 24 appropriately limits the frequency of the light beam.
  • the test lens 3 is composed of a group of a large number of lenses 31, 32, 33, and 34 and has a unique aperture stop 35.
  • A is the principal ray of incident light
  • B is the optical axis of the lens groups 31 to 34
  • 3a is the center of the entrance pupil of the test lens 3
  • 3b is the center of the exit pupil of the test lens 3
  • 35a is The center of the aperture stop is shown.
  • the light wave La of the luminous flux is collimated by the lens 13, the aperture is adjusted by the aperture stop 15, and condensed by the lens 16, and then illuminated by the aperture 17.
  • the light wave La illuminated on the diaphragm 17 enters the lens 3 to be examined through the projection lens 18 and forms an image of the diaphragm 17 at the position of the image plane diaphragm 21.
  • the light wave Lb incident on the measurement optical system 20 is collimated into a parallel light beam by the objective lens 22, enlarged by the first relay lens 23 and the second relay lens 25, and projected onto the wavefront sensor 26.
  • An intermediate image plane is formed between the first relay lens 23 and the second relay lens 25, but the frequency of the light beam is appropriately limited by the filter diaphragm 24.
  • the light is divided and condensed by the multi-lens array 26a.
  • the divided and condensed light wave Lb is imaged at a position corresponding to the wavefront aberration, and the imaging position M of each multi-lens array 26a is measured by the imaging device 26b.
  • the measurement data is recorded in a data storage device (not shown), further analyzed by an analysis device (not shown), and displayed on a display device (not shown).
  • the aperture stop 15 shown in FIG. 1A is not in an optically conjugate position with respect to the aperture stop 35 of the test lens 3. For this reason, after the light wave La passes through the test lens 3, the wavefront including the aberrations of the projection lens 18 and the test lens 3 enters the measurement optical system 20. Therefore, the imaging position measured by the image pickup device 26b is deviated from the ideal wavefront M0 and thus appears as wavefront aberration M ′. However, this deviation amount does not accurately represent the wavefront aberration of the lens 3 to be examined.
  • FIG. 2 is a diagram showing this adjustment in detail.
  • the projection lens 18 is first moved in the optical axis A direction to determine the projection position, and then the entire illumination optical system 10 is moved in the optical axis A direction.
  • 2B adjustment is made so that the exit pupil E of the projection lens 18 comes to the entrance pupil position 35 of the test lens 3 as shown in FIG. 2B.
  • the entire illumination optical system 10 is moved and adjusted in a direction perpendicular to the optical axis A as necessary.
  • the aperture stop 15 can be adjusted to a position having an optical conjugate relationship with the lens 3 to be examined.
  • This state is shown in FIGS. 1B and 2B.
  • the imaging position M of the light wave Lb that has passed through the test lens 3 coincides with the ideal wavefront M0.
  • the wavefront aberration generated in the lens 3 to be measured by the light wave La incident along the optical axis A can be measured.
  • “C” represents the outermost luminous flux incident upon being limited by the aperture stop 15.
  • the aperture stop 15 is narrowed down to accurately know the center M of the light beam Lb. Then, the image of the aperture stop 15 is picked up by the image pickup device 28, and the shape and position thereof are accurately grasped. Thereby, the center M of the light beam can be accurately captured without reducing the stop 35 of the lens 3 to be examined. Therefore, it is possible to measure wavefront aberration while suppressing errors in measurement results.
  • FIGS. 3A and 3B show another embodiment of the wavefront aberration measuring apparatus 1 in which the wavefront aberration of a light beam incident in a direction inclined with respect to the optical axis B of the lens 3 to be examined is measured.
  • the measurement optical system 20 since the measurement optical system 20 is installed inclined with respect to the optical axis A, as shown in FIG. 4, it is an intersection of the optical axis A of the illumination optical system 10 and the optical axis B of the lens 3 to be examined.
  • the center 3a of the entrance pupil of the test lens 3 and the center 3b of the exit pupil of the test lens 3 are shifted in the optical axis B direction of the test lens 3.
  • Others are the same as in the embodiment of FIG.
  • “D” represents the center of the light beam to be directed to the entrance pupil of the lens 3 to be examined.
  • the wavefront aberration measuring apparatus is not limited to the above-described embodiment.
  • the movable component can be the measurement optical system 20 instead of the illumination optical system 10.
  • the illumination optical system 10 is fixed, and only the aperture stop 15 can be opened and closed.
  • the measurement optical system 20 is movable along the optical axis B, and the aperture stop 15 and the entrance pupil of the lens 3 to be measured are adjusted to a position in an optical conjugate relationship together with the openable / closable aperture stop 15.
  • the wavefront sensor 26 can be further moved along the optical axis B, and the aperture stop 15 and the entrance pupil of the lens 3 to be examined can be adjusted to the optical conjugate position.
  • the wavefront sensor 26 of the measurement optical system 20 is movable along the optical axis B with respect to the fixed illumination optical system 10, and coupled with the openable / closable aperture stop 15, the aperture stop 15 and the entrance pupil of the lens 3 to be examined. Can be adjusted to the position of the optical conjugate relationship.
  • the illumination optical system 10 may be further movable along the optical axis A, and the aperture stop 15 and the entrance pupil of the lens 3 to be examined may be adjusted to a position in an optical conjugate relationship.
  • all or part of the illumination optical system 10 (specifically, the projection lens 18) and all or part of the measurement optical system 20 (specifically, the wavefront sensor 26) are both movable, so that the aperture stop 15 And the entrance pupil of the test lens 3 can be matched with the position of the optical conjugate relationship. In this case, the shape and position of the exit pupil of the test lens can be measured more accurately.
  • the shape and position of the exit pupil of the test lens can be determined by opening / closing the diaphragm of the illumination optical system and moving all or part of the illumination optical system or all or part of the measurement optical system along the optical axis. It can be measured.
  • the shape of the lens elements constituting the multi-lens array 26a is arbitrary.
  • an imaging tube and a complementary metal oxide semiconductor (CMOS) can be considered as the imaging device.
  • CMOS complementary metal oxide semiconductor
  • FIG. 1A and 1B an outline of a manufacturing method of a lens system having a plurality of lens parts will be described with reference to FIG.
  • a plurality of lens parts are arranged in a lens barrel to assemble a lens system.
  • the wavefront aberration of the assembled lens system is measured using the wavefront aberration measuring apparatus shown in FIGS. 1A and 1B.
  • the quality of the assembled lens system is judged based on the measurement result.
  • the wavefront aberration measuring apparatus can be used in general optical equipment such as a telescope, a camera, and a microscope objective lens.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

 被検レンズの入射側に設けられた照明光学系と、前記被検レンズの射出側に設けられた計測光学系とを備え、前記照明光学系は、開閉自在な開口絞りを有し、前記照明光学系は、前記開口絞りと前記被検レンズの入射瞳面とを光学的共役関係の位置に調整するように、照明光学系の光軸に沿って移動自在であることを特徴とする波面収差測定装置。これにより、測定結果の誤差を抑制することができる波面収差測定装置を提供する。

Description

波面収差測定装置
 本願発明は、検査対象となるレンズの波面収差を測定するために用いられる波面収差測定装置に関する。
 波面収差の測定の方法としてシャック・ハルトマン型センサが知られている。例えば、鶴田匡夫著「第4 光の鉛筆」(新技術コミュニケーションズ、1997年、212頁)に波面測定センサの代表例としての解説がある。
 被検レンズによって生ずる波面収差を測定する波面収差測定装置の光学系には、一般に、被検レンズに光波を入射させる照明光学系と、被検レンズからの光束の波面収差を測定する計測光学系が用いられる。
 計測光学系では被検レンズによって生ずる波面収差を解析する際、投影される開口の形状を知る必要がある。このため、被検レンズの開口絞りを投影し、その形状測定が行なわれる。このとき、開口の中心を求めるために開口絞りを最小に絞って、投影される開口の形状と位置の測定が行なわれることがある。
 しかしながら、開口絞りを最小に絞るために、被検レンズ内の開口絞りを動作させると、開口絞りの駆動により、被検レンズの重心が移動したり、レンズ部分の変形等の影響が発生し、投影される開口の形状と位置の測定結果に誤差が生じる可能性がある。その結果、波面収差の測定結果に誤差が生じる可能性がある。
 本願発明はこのような事情に鑑みてなされたものであって、測定結果の誤差を抑制することができる波面収差測定装置を提供することを目的とする。
 本願発明の第一態様は、被検レンズの入射側に設けられた照明光学系と、前記被検レンズの射出側に設けられた計測光学系と、を備え、前記照明光学系は、開閉自在な開口絞りを有し、前記照明光学系は、前記開口絞りと前記被検レンズの入射瞳面とを光学的共役関係の位置に調整するように、照明光学系の光軸に沿って移動自在であることを特徴とする波面収差測定装置を提供する。
 本願発明の第二態様は、被検レンズの入射側に設けられた照明光学系と、前記被検レンズの射出側に設けられた計測光学系と、を備え、前記照明光学系は、開閉自在な開口絞りを有し、前記計測光学系及び前記被検レンズは、前記開口絞りと前記被検レンズの入射瞳面とを光学的共役関係の位置に調整するように、被検レンズの光軸に沿って移動自在であることを特徴とする波面収差測定装置を提供する。
 本願発明の第三態様は、複数のレンズ部品を有するレンズ系の製造方法であって、レンズ鏡筒内に前記複数のレンズ部品を配置して前記レンズ系を組立て、組み立てた前記レンズ系の波面収差を本願発明の第一態様に係る波面収差測定装置により測定し、測定結果により前記レンズ系の良否を判定するレンズ系の製造方法を提供する。
 本願発明によれば、測定結果の誤差を抑制することができる波面収差測定装置を提供することができる。
図1A、1Bは、本願発明に係る波面収差測定装置の一実施の形態を示し、図1Aは光学的共役関係に調整前の状態を表わし、図1Bは同光学的共役関係に調整後の状態を表わす。 図2A、2Bは、図1A、1Bの調整の詳細を示す図であり、図2Aは光学的共役関係に調整前の状態を表わし、図2Bは調整後の状態を表わす。 図3A、3Bは、本願発明による波面収差測定装置の他の実施形態を示し、図3Aは光学的共役関係に調整前の状態を表わし、図3Bは同光学的共役関係に調整後の状態を表わす。 図4は、図3A、3Bの被検レンズ3の拡大図である。 図5は、本願発明に係るレンズ系の製造方法の概要を説明するためのフローチャートである。
 次に、本願発明の実施の形態を示す図面に基づき、波面収差測定装置をさらに詳しく説明する。なお、便宜上、機械的電気的な駆動部分の図示を省略した。また同一の機能を奏する部分には同一の符号を付して重複した説明を省略する。
 図1A、1Bは、波面収差測定装置1の一実施の形態を示す。波面収差測定装置1は、照明光学系10と計測光学系20とからなる。照明光学系10と計測光学系20の間に検査対象の被検レンズ3が配置され、被検レンズ3の波面収差を測定する。
 上記照明光学系10は、ファイバ11により導かれた光源12と、レンズ13と、フィルタ14と、開口絞り15と、レンズ16と、絞り17と、投影レンズ18とからなり、被検レンズ3の入射側に直線状に配設される。上記照明光学系10は光軸Aに沿って移動自在である。また、上記投影レンズ18は光軸Aに沿って移動自在である。上記開口絞り15は光軸Aに対し垂設され、開閉自在である。上記開口絞り15の開口は任意の直径に設定可能である。
 上記絞り17は、投影レンズ18の前側焦点に配置される。投影レンズ18の後側焦点は被検レンズ3の入射瞳に合致される。また、上記開口絞り15は上記レンズ16の前側焦点に配置される。上記絞り17は上記レンズ16の後側焦点に配置される。さらに上記開口絞り15は上記レンズ13の後側焦点に配置される。これにより、上記開口絞り15と上記被検レンズ3の入射瞳とは光学的共役関係となり、被検レンズ3で上記絞り17の像(虚像)が後述する像面絞り21の位置に形成される。なお、上記被検レンズ3の入射瞳は、被検レンズ3の開口絞り35を光学的に投影した位置になっている。また被検レンズ3の開口絞り35は開放されたままになっている。
 上記計測光学系20は、像面絞り21と、対物レンズ22と、第1リレーレンズ23と、フィルタ絞り24と、第2リレーレンズ25と、シャック・ハルトマン型の波面センサ26と、切り替えミラー27と、撮像素子28とからなり、被検レンズ3の射出側に上記各部が直線状に配設される。
 上記波面センサ26は、マルチレンズアレイ26a及び撮像素子26bとからなる。上記マルチレンズアレイ26aは、レンズエレメント(図示省略)を二次元状に多数隣接して配列してなる。上記各レンズエレメントの各微小開口(図示省略)は光軸Aに対し直交に設けられる。上記各レンズエレメントの微小開口は、夫々、正の屈折力を有し、例えば外周辺が4個の四角形状体に形成される。上記レンズエレメントは、例えば光軸方向に平行する面の断面形状が入射面のみ上記微小開口の全部にわたって凸弧状に盛り上げられて形成され、外周辺がいずれも曲線からなる。そして対向する外周辺が夫々外側に向かう凸弧状及びこれに対応する内側に向かう凹弧状に形成され、他の対向する外周辺が夫々外側に向かう凸弧状及びこれに対応する内側に向かう凹弧状に形成される。上記マルチレンズアレイ26aはこのように素子の形状が同一のレンズエレメントを二次元状に多数隣接して配列してなるため、各レンズエレメント間は隙間無く接している。撮像素子26bは電荷結合素子(CCD)からなり、上記のようなマルチレンズアレイ26aの焦点に設けられる。
 上記マルチレンズアレイ26aと上記撮像素子28とは、上記切替えミラー27により光路が直角に切り替えられるため、光学的共役関係の位置にある。上記フィルタ絞り24は光束の周波数を適宜に制限する。
 被検レンズ3は、図4に詳しく示すように、多数のレンズ31、32、33、34の群からなり、固有の開口絞り35を備える。図4において、Aは入射光の主光線、Bは上記レンズ群31~34の光軸、3aは被検レンズ3の入射瞳の中心、3bは被検レンズ3の射出瞳の中心、35aは開口絞りの中心を示す。
 照明光学系10において、光束の光波Laは、レンズ13にてコリメートされ、開口絞り15にて開口の調節をされ、レンズ16にて集光された後、絞り17に照明される。絞り17に照明された光波Laは、投影レンズ18を経て被検レンズ3に入射し、絞り17の像を像面絞り21の位置に形成する。計測光学系20に入射された光波Lbは、対物レンズ22により平行光束にコリメートされ、第1リレーレンズ23及び第2リレーレンズ25により拡大されて波面センサ26に投影される。第1リレーレンズ23と第2リレーレンズ25との間には中間像面が形成されるが、フィルタ絞り24により光束の周波数が適宜に制限される。
 波面センサ26では、マルチレンズアレイ26aにて分割集光される。この分割集光された光波Lbは、波面収差に応じた位置で結像され、撮像素子26bにてマルチレンズアレイ26aそれぞれの結像位置Mが計測される。この計測データはデータ記憶装置(図示省略)で記録され、さらに分析装置(図示省略)で解析されて表示装置(図示省略)に表示される。
 ところで、図1Aに示す開口絞り15は、被検レンズ3の開口絞り35に対し光学的共役関係の位置にない状態である。このため、光波Laは被検レンズ3を通過後、投影レンズ18及び被検レンズ3の収差を含んだ波面が上記計測光学系20に入射する。よって撮像素子26bにて計測される結像位置は理想波面M0に対しずれるので波面収差M´となって表われるが、このずれ量は被検レンズ3の波面収差を正確に表していない。
 そこで、上記「ずれ」を補正すべく、投影される絞り17の位置を投影レンズ18の射出瞳の中心に合致させる必要がある。図2は、この調整を詳しく示す図であり、図2Aで示すように、まず投影レンズ18を光軸A方向に移動させて投影位置を決定後、照明光学系10の全体を光軸A方向に移動させ、図2Bに示すように被検レンズ3の入射瞳位置35に投影レンズ18の射出瞳Eがくるように調整する。このとき、必要に応じて、照明光学系10の全体を光軸Aと垂直な方向に移動させて調整する。これにより、開口絞り15を被検レンズ3に対し光学的共役関係の位置に調整することができる。かかる状態を示すのが図1B、図2Bである。この場合、被検レンズ3を通過した光波Lbの結像位置Mは理想波面M0に一致する。これにより、光軸Aに沿って入射する光波Laによって被検レンズ3で生じる波面収差を測定することができる。なお、図1Bにおいて、「C」は開口絞り15にて制限されて入射した最外周の光束を表わす。
 光波Lbの光束の中心Mを正確に知るために開口絞り15を絞り込む。そして、開口絞り15の像を撮像素子28で撮像し、その形状と位置を正確に把握する。これにより、被検レンズ3の絞り35を絞ることなく光束の中心Mを正確に捕らえることができる。したがって、測定結果の誤差を抑制しつつ波面収差を測定することができる。
 図3A、3Bは、波面収差測定装置1の他の実施形態を示し、被検レンズ3の光軸Bに対して傾斜した方向に入射する光束の波面収差を測定する場合である。この場合、計測光学系20は光軸Aに対して傾斜して設置されるので、図4に示すように、照明光学系10の光軸Aと被検レンズ3の光軸Bの交点である被検レンズ3の入射瞳の中心3aと、被検レンズ3の射出瞳の中心3bとが被検レンズ3の光軸B方向にずれている。その他は図1の実施の形態の場合と同様であるので説明を省略する。なお、図3Aにおいて、「D」は被検レンズ3の入射瞳に向かうべき光束の中心を表わす。
 波面収差測定装置は上記した実施の形態に制限されることはない。例えば、移動自在とする構成部分は照明光学系10ではなく、計測光学系20とすることができる。この場合、照明光学系10は固定であり、開口絞り15のみ開閉自在とされる。そして計測光学系20を光軸Bに沿って移動自在とし、開閉自在の開口絞り15と相まって、開口絞り15と被検レンズ3の入射瞳とを光学的共役関係の位置に調整する。この場合、さらに波面センサ26を光軸Bに沿って移動自在とし、開口絞り15と被検レンズ3の入射瞳とを光学的共役関係の位置に調整することができる。
 また固定の照明光学系10に対し、計測光学系20の波面センサ26を光軸Bに沿って移動自在とし、開閉自在の開口絞り15と相まって、開口絞り15と被検レンズ3の入射瞳とを光学的共役関係の位置に調整することが考えられる。この場合においても、さらに照明光学系10を光軸Aに沿って移動自在とし、開口絞り15と被検レンズ3の入射瞳とを光学的共役関係の位置に調整してもよい。
 さらに照明光学系10の全部又は一部(具体的には投影レンズ18)と、計測光学系20の全部又は一部(具体的には波面センサ26)とをいずれも移動自在とし、開口絞り15と被検レンズ3入射瞳とを光学的共役関係の位置に合致させることもできる。この場合は被検レンズの射出瞳の形状と位置をさらに正確に計測することができる。
 このように本実施の形態によれば、被検レンズの開口絞りを駆動させずに、被検レンズの射出瞳の正確な形状と位置を計測することができる。
 また、近年の電化されたカメラ用レンズなどでは、開口絞りを開閉するために電気的な動作を行なわせる必要があるが、駆動用の電気回路や外部接点を省略することができる。
 また、照明光学系の絞りの開閉と、照明光学系の全部又は一部あるいは計測光学系の全部又は一部を光軸に沿って移動することより、被検レンズの射出瞳の形状と位置を計測することができる。
 また、被検レンズの開口絞りを開閉させる必要がないので、誤差要因の少ない測定方法となるから、より精密な測定となる。
 よって被検レンズの射出瞳の正確な形状と位置を計測することができる。
 マルチレンズアレイ26aを構成するレンズエレメントの形状は任意である。また、撮像素子としては、CCDの外に、撮像管、相補型金属酸化膜半導体(CMOS)が考えられる。
 以下に、図5を参照して複数のレンズ部品を有するレンズ系の製造方法の概略を説明する。
 まず、レンズ鏡筒内に複数のレンズ部品を配置して、レンズ系を組み立てる。組み立てたレンズ系の波面収差を図1A、1Bに示す波面収差測定装置を用いて測定する。測定結果により組み立てたレンズ系の良否を判定する。
 本願発明による波面収差測定装置は、例えば望遠鏡、カメラ、顕微鏡の対物レンズ等の光学機器一般に利用することができる。

Claims (13)

  1.  被検レンズの入射側に設けられた照明光学系と、前記被検レンズの射出側に設けられた計測光学系とを備え、
     前記照明光学系は、開閉自在な開口絞りを有し、
     前記照明光学系は、前記開口絞りと前記被検レンズの入射瞳面とを光学的共役関係の位置に調整するように、照明光学系の光軸に沿って移動自在であることを特徴とする波面収差測定装置。
  2.  請求項1記載の波面収差測定装置において、
     前記照明光学系は、投影レンズを有し、
     前記投影レンズと他の照明光学系の構成部材とは、照明光学系の光軸に沿って相対的に移動自在であることを特徴とする波面収差測定装置。
  3.  請求項1又は請求項2記載の波面収差測定装置において、
     前記計測光学系は、前記被検レンズの光軸に沿って移動自在であることを特徴とする波面収差測定装置。
  4.  請求項1又は請求項2記載の波面収差測定装置において、
     前記計測光学系は、前記被検レンズの光軸に沿って移動自在な波面センサを有することを特徴とする波面収差測定装置。
  5.  請求項1又は請求項2記載の波面収差測定装置において、
     前記開口絞り及び前記被検レンズの入射瞳面に対し光学的共役関係の位置に設けられた撮像素子を有することを特徴とする波面収差測定装置。
  6.  請求項5記載の波面収差測定装置において、
     前記開口絞り及び前記被検レンズの入射瞳面に対し光学的共役関係の位置に設けられたレンズアレイを有することを特徴とする波面収差測定装置。
  7.  被検レンズの入射側に設けられた照明光学系と、前記被検レンズの射出側に設けられた計測光学系と、を備え、
     前記照明光学系は、開閉自在な開口絞りを有し、
     前記計測光学系及び前記被検レンズは、前記開口絞りと前記被検レンズの入射瞳面とを光学的共役関係の位置に調整するように、被検レンズの光軸に沿って移動自在であることを特徴とする波面収差測定装置。
  8.  請求項7記載の波面収差測定装置において、
     前記計測光学系は、前記被検レンズの光軸に沿って移動自在な波面センサを有することを特徴とする波面収差測定装置。
  9.  被検レンズの入射側に設けられた照明光学系と、前記被検レンズの射出側に設けられた計測光学系とを備え、
     前記照明光学系は、開閉自在な開口絞りを有し、
     前記計測光学系は、前記開口絞りと前記被検レンズの入射瞳面とを光学的共役関係の位置に調整するように、被検レンズの光軸に沿って移動自在な波面センサを有することを特徴とする波面収差測定装置。
  10.  請求項9記載の波面収差測定装置において、
     前記計測光学系は、前記被検レンズの光軸に沿って移動自在であることを特徴とする波面収差測定装置。
  11.  請求項1乃至2、請求項7乃至10のいずれか一項記載の波面収差測定装置において、
     前記計測光学系は、前記照明光学系に対し直線状に配設されることを特徴とする波面収差測定装置。
  12.  請求項1乃至2、請求項7乃至10いずれか一項記載の波面収差測定装置において、
     前記計測光学系は、前記照明光学系に対し傾斜して配設されることを特徴とする波面収差測定装置。
  13.  複数のレンズ部品を有するレンズ系の製造方法であって、
     レンズ鏡筒内に前記複数のレンズ部品を配置して前記レンズ系を組立て、
     組み立てた前記レンズ系の波面収差を請求項1記載の波面収差測定装置により測定し、
     測定結果より前記レンズ系の良否を判定するレンズ系の製造方法。
PCT/JP2011/058509 2010-04-05 2011-04-04 波面収差測定装置 WO2011125971A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180017502.XA CN102844651B (zh) 2010-04-05 2011-04-04 波前像差测定装置
JP2012509648A JP5725018B2 (ja) 2010-04-05 2011-04-04 波面収差測定装置
US13/645,676 US8558996B2 (en) 2010-04-05 2012-10-05 Wavefront aberration measuring apparatus
US14/022,762 US8687179B2 (en) 2010-04-05 2013-09-10 Wavefront aberration measuring apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010087351 2010-04-05
JP2010-087351 2010-04-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/645,676 Continuation US8558996B2 (en) 2010-04-05 2012-10-05 Wavefront aberration measuring apparatus

Publications (1)

Publication Number Publication Date
WO2011125971A1 true WO2011125971A1 (ja) 2011-10-13

Family

ID=44762906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058509 WO2011125971A1 (ja) 2010-04-05 2011-04-04 波面収差測定装置

Country Status (4)

Country Link
US (2) US8558996B2 (ja)
JP (1) JP5725018B2 (ja)
CN (1) CN102844651B (ja)
WO (1) WO2011125971A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003900A (ja) * 2014-06-16 2016-01-12 キヤノン株式会社 計測装置、計測方法、光学素子の加工装置、および、光学素子

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015006198T5 (de) * 2015-03-27 2017-11-09 Olympus Corporation Wellenfrontmessvorrichtung und wellenfrontmessverfahren
CN106483648B (zh) * 2016-12-30 2020-02-04 北京理工大学 大视场长工作距连续变倍手术显微镜光学系统
CN107577065B (zh) * 2017-06-26 2019-09-27 天津大学 一种基于波前分析的眼镜片检测方法和装置
CN107607294B (zh) * 2017-09-14 2020-01-31 歌尔科技有限公司 一种工业相机入瞳位置检测方法及系统
CN108152991A (zh) * 2018-01-02 2018-06-12 北京全欧光学检测仪器有限公司 一种光学镜头的装配方法及装置
CN111386449B (zh) * 2019-03-22 2022-03-25 合刃科技(深圳)有限公司 曲面检材的应力分析系统
CN111076904B (zh) * 2019-12-27 2021-08-03 山东大学 一种高功率薄片激光器动态波前像差检测装置及方法
US20240102865A1 (en) * 2020-12-15 2024-03-28 Quartus Engineering Incorporated Wavefront sensors with irregular aperture masks, diffusers, and cameras, and methods of making and using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1128188A (ja) * 1997-05-13 1999-02-02 Topcon Corp 光学特性測定装置
JP2009288075A (ja) * 2008-05-29 2009-12-10 Nikon Corp 収差測定装置及び収差測定方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929970A (en) 1997-05-13 1999-07-27 Kabushiki Kaisha Topcon Optical characteristic measuring apparatus
US6616279B1 (en) * 2000-10-02 2003-09-09 Johnson & Johnson Vision Care, Inc. Method and apparatus for measuring wavefront aberrations
US6548797B1 (en) * 2000-10-20 2003-04-15 Nikon Corporation Apparatus and method for measuring a wavefront using a screen with apertures adjacent to a multi-lens array
JP2003121300A (ja) * 2001-10-16 2003-04-23 Canon Inc 光学系の波面収差測定方法及び装置
JP2005098933A (ja) 2003-09-26 2005-04-14 Canon Inc 収差測定装置
US20050259269A1 (en) * 2004-05-19 2005-11-24 Asml Holding N.V. Shearing interferometer with dynamic pupil fill
JP4769448B2 (ja) * 2004-10-08 2011-09-07 キヤノン株式会社 干渉計を備えた露光装置及びデバイス製造方法
US7580113B2 (en) * 2006-06-23 2009-08-25 Asml Netherlands B.V. Method of reducing a wave front aberration, and computer program product
JP2008048293A (ja) * 2006-08-18 2008-02-28 Kyocera Corp 撮像装置、およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1128188A (ja) * 1997-05-13 1999-02-02 Topcon Corp 光学特性測定装置
JP2009288075A (ja) * 2008-05-29 2009-12-10 Nikon Corp 収差測定装置及び収差測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016003900A (ja) * 2014-06-16 2016-01-12 キヤノン株式会社 計測装置、計測方法、光学素子の加工装置、および、光学素子

Also Published As

Publication number Publication date
CN102844651B (zh) 2015-07-01
CN102844651A (zh) 2012-12-26
US8558996B2 (en) 2013-10-15
US20140009753A1 (en) 2014-01-09
JPWO2011125971A1 (ja) 2013-07-11
JP5725018B2 (ja) 2015-05-27
US8687179B2 (en) 2014-04-01
US20130027691A1 (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5725018B2 (ja) 波面収差測定装置
JP3176574B2 (ja) 光ファイバ観察装置および光ファイバ融着接続装置
JP6505111B2 (ja) 低ノイズ高安定性の深紫外線連続波レーザー
JP6506908B2 (ja) 合焦方法、計測方法、合焦装置、及び計測装置
JP2006184844A (ja) 結像光学系及びこれを用いた撮像装置
JP5084327B2 (ja) 偏心検査装置及び偏心調整装置
JP3654220B2 (ja) レンズ検査装置
US20140160267A1 (en) Image Pickup Apparatus
US7676147B2 (en) Focus detection apparatus and optical apparatus
JP6512673B2 (ja) 偏心測定装置及び偏心測定方法
JP2012181139A (ja) レンズ検査装置
JP2013195410A (ja) 検出装置及び検出方法
JP2003270091A (ja) 光学系の波面収差測定方法及び波面収差測定装置
CN114270240A (zh) 折叠式数字相机镜头设计
JP5325481B2 (ja) 光学素子の測定方法及び光学素子の製造方法
JP2015094703A (ja) 分光透過率測定機
JP2015129674A (ja) 分光透過率測定装置
JPS591204Y2 (ja) 焦点検出装置における補正装置
JP4591658B2 (ja) 撮像素子検査用照明装置、撮像素子検査装置、撮像素子の検査方法、及び撮像素子の製造方法
JP2000275006A (ja) 干渉計装置用の結像レンズ
KR100703326B1 (ko) 광학계의 성능 평가 장치
CN117337385A (zh) 用于头戴显示设备的检测镜头和检测方法
CN117425847A (zh) 用于头戴显示设备的检测镜头和检测方法
JP2005134158A (ja) 欠陥検出装置
TW202132755A (zh) 光學檢測裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017502.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765871

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509648

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765871

Country of ref document: EP

Kind code of ref document: A1