WO2011125939A1 - Optical waveguide structure and electronic apparatus - Google Patents

Optical waveguide structure and electronic apparatus Download PDF

Info

Publication number
WO2011125939A1
WO2011125939A1 PCT/JP2011/058433 JP2011058433W WO2011125939A1 WO 2011125939 A1 WO2011125939 A1 WO 2011125939A1 JP 2011058433 W JP2011058433 W JP 2011058433W WO 2011125939 A1 WO2011125939 A1 WO 2011125939A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
core
light
waveguide structure
layer
Prior art date
Application number
PCT/JP2011/058433
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 森
誠 藤原
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010088096A external-priority patent/JP5278366B2/en
Priority claimed from JP2010089401A external-priority patent/JP5310633B2/en
Priority claimed from JP2010089167A external-priority patent/JP2011221201A/en
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2011125939A1 publication Critical patent/WO2011125939A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F32/08Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having two condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/18Oxetanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to an optical waveguide structure and an electronic device.
  • This application is based on Japanese Patent Application No. 2010-088096 filed in Japan on April 6, 2010, Japanese Patent Application No. 2010-089167 filed in Japan on April 8, 2010, and April 8, 2010. Furthermore, priority is claimed based on Japanese Patent Application No. 2010-089401 filed in Japan, the contents of which are incorporated herein by reference.
  • optical branching couplers optical couplers
  • optical multiplexers / demultiplexers optical waveguide devices used for these are promising.
  • optical waveguide element hereinafter, also simply referred to as “optical waveguide”
  • polymer optical waveguides that are easy to manufacture (patterning) and are versatile, in addition to the conventional quartz optical waveguides. Is being actively developed.
  • Such an optical waveguide is usually formed in a predetermined arrangement (pattern) on a substrate and handled as an optical waveguide structure.
  • a predetermined electric wiring circuit and an optical waveguide composed of a core part and a cladding part are formed on a substrate, and a light emitting element and a light receiving element are attached to this optical waveguide (electrical element) / Optical hybrid substrate) is disclosed (for example, see Patent Document 1).
  • the optical waveguide structure described in Patent Document 1 has the following problems. 1.
  • the process of forming the optical waveguide is complicated, and the degree of freedom in designing and selecting the pattern shape of the core part constituting the optical path of the transmitted light is narrow. 2.
  • the core pattern shape accuracy and dimensional accuracy are poor. 3.
  • the degree of freedom in designing the wiring pattern is narrow. If priority is given to the design of the electrical wiring pattern, the degree of freedom in designing the optical path of the optical waveguide is reduced. 5. It is disadvantageous for integration and miniaturization.
  • An object of the present invention is to provide an optical waveguide structure having an optical waveguide with a wide degree of freedom in designing a pattern shape and capable of forming a core portion (optical path) with high dimensional accuracy by a simple method. It is to provide a body and an electronic device. In addition, the object of the present invention is to form a core part (optical path) with a high degree of dimensional accuracy by a simple method with a wide degree of freedom in designing a pattern shape in each of an electric circuit and an optical circuit, and durability. It is an object of the present invention to provide an optical waveguide structure provided with an excellent optical waveguide, and an electronic device provided with such an optical waveguide structure.
  • the object of the present invention is to have a wide degree of freedom in designing the pattern shape of the optical circuit, to form a core part (optical path) with high dimensional accuracy by a simple method, and to easily position the electrical element.
  • An object of the present invention is to provide an optical waveguide structure including an optical waveguide. Moreover, it is providing the electronic device provided with the said optical waveguide structure.
  • Such an object is achieved by the present inventions (1) to (131) below.
  • (1) having an optical waveguide comprising a core part and a clad part having different refractive indexes, and an optical path changing part for bending the optical path of the core part,
  • the core part is (A) a cyclic olefin resin;
  • C a photoacid generator;
  • An optical waveguide structure characterized by being formed into a desired shape by selectively irradiating active radiation to a core layer composed of a composition comprising:
  • the refractive index of (B) is lower than that of (A), (1)
  • the cyclic olefin resin has a leaving group that is desorbed by an acid generated from the photoacid generator of (C) and lowers the refractive index of (A) by desorption. Thru
  • the cyclic olefin resin of (A) has a leaving group that is eliminated by an acid generated from the photoacid generator of (C) in the side chain, Said (B) is an optical waveguide structure as described in said (2) containing the 1st monomer as described in following formula (100).
  • the ratio of the second monomer to the first monomer is 0.1 to 1.0 in a weight ratio (weight of the second monomer / weight of the first monomer).
  • the leaving group has any one of the above (4) to (6) having at least one of an —O— structure, an —Si—aryl structure, and an —O—Si— structure.
  • the content of the first monomer described in the formula (100) is 1 part by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the cyclic olefin resin.
  • a region of the core layer that has been irradiated with active radiation is at least a part of the cladding part, and an unirradiated region is at least a part of the core part.
  • Optical waveguide structure In any one of the above (1) to (15), a region of the core layer that has been irradiated with active radiation is at least a part of the cladding part, and an unirradiated region is at least a part of the core part.
  • optical waveguide according to (17) further including a hole provided in the core part, wherein the reflection surface is configured by a part or all of an interface between the core part and the hole. Structure.
  • An area where a projection when the reflecting surface is projected in the direction of the core and a cross section of the core overlaps is smaller than a cross-sectional area of the core, and transmitted light transmitted through the core is The optical waveguide according to any one of (17) to (19), wherein the optical waveguide includes a branching portion that branches into transmission light reflected by the reflection surface and transmission light that travels straight through the core portion other than the reflection surface. Structure.
  • the area where the projection when the reflection surface is projected in the direction of the core and the cross-section of the core overlap is the same as the cross-sectional area of the core.
  • the reflection surface is inclined with respect to the core portion, and at least one of both end portions in the inclined direction of the reflection surface is positioned outside an outer portion extending line of the core portion, and the core.
  • the optical waveguide structure according to any one of (17) to (21), wherein the portion swells in a state of surrounding the reflective surface.
  • the above-mentioned optical waveguide is constituted by a laminate of both clad layers and a core layer interposed between the clad layers that constitute the clad part on both surfaces of the core layer.
  • the core portion is formed so as to be interrupted at an end portion or in the middle thereof,
  • optical waveguide structure according to any one of (1) to (30), wherein the optical waveguide structure has an element having a light emitting part or a light receiving part and a terminal.
  • optical waveguide structure according to (29) or (30), wherein the optical waveguide structure includes an element having a light emitting portion or a light receiving portion and a terminal, and the terminal is electrically connected to the conductor layer.
  • At least one substrate is bonded to the optical waveguide,
  • the substrate includes a translucent part having translucency with respect to transmission light transmitted through the core unit, and is configured to transmit the transmission light in the thickness direction of the substrate through the translucent part.
  • the optical waveguide structure according to any one of (1) to (37).
  • An electronic device comprising the optical waveguide structure according to any one of (1) to (48).
  • (50) It is composed of a laminated structure having an optical waveguide having a core part and a clad part having different refractive indexes, and a conductor layer, A light guide that extends in the thickness direction and is optically connected to the core portion; A conductor portion extending in the thickness direction and electrically connected to the conductor layer;
  • the core part is (A) a cyclic olefin resin;
  • B) The refractive index is different from that of (A), and at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group;
  • An optical waveguide structure (51) which is formed in a desired shape by selectively irradiating active radiation to a core layer composed of a composition containing The optical waveguide structure according to (50), wherein the ether group is an oxetany
  • the cyclic olefin resin of (A) has a leaving group that is eliminated by an acid generated from the photoacid generator of (C) in the side chain, Said (B) is an optical waveguide structure as described in said (51) containing the 1st monomer as described in following formula (100).
  • the content of the first monomer described in the above formula (100) is 1 part by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the cyclic olefin resin.
  • An optical waveguide structure according to claim 1. (63) The light according to any one of (50) to (62), wherein the concentration of the structure derived from (B) is different between a region irradiated with active radiation of the core layer and a non-irradiated region. Waveguide structure. (64) The optical waveguide structure according to any one of (50) to (63), wherein the refractive index difference between the region irradiated with active radiation and the non-irradiated region of the core layer is 0.01 or more.
  • the said conductor part is an optical waveguide structure as described in said (67) arrange
  • the optical waveguide is configured by the clad layer constituting the clad portion being bonded to both surfaces of the core layer, and the optical waveguide is configured by a laminate of both clad layers and the core layer interposed therebetween (50) The optical waveguide structure according to any one of (1) to (76).
  • (81) The optical waveguide structure according to (79) or (80), wherein an outer surface of the element is sealed with a sealing material.
  • (82) The optical waveguide structure according to any one of (50) to (81), which has a hard or flexible substrate.
  • optical waveguide structure according to any one of (50) to (87), including a lens portion that can collect or diffuse transmission light.
  • An electronic apparatus comprising the optical waveguide structure according to any one of (50) to (89).
  • An optical waveguide structure comprising a substrate, an optical waveguide having a core portion and a cladding portion having different refractive indexes, at least one electric element, and positioning means for determining an installation position of the electric element.
  • the core part is (A) a cyclic olefin resin; (B) The refractive index is different from that of (A), and at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group; (C) a photoacid generator; An optical waveguide structure characterized by being formed into a desired shape by selectively irradiating active radiation to a core layer composed of a composition comprising: (92) The optical waveguide structure according to (91), wherein the cyclic ether group of (B) is an oxetanyl group or an epoxy group.
  • the cyclic olefin resin of (A) has a leaving group that is eliminated by an acid generated from the photoacid generator of (C) in the side chain, Said (B) is an optical waveguide structure as described in said (92) containing the 1st monomer as described in following formula (100).
  • the content of the first monomer described in the formula (100) is 1 part by weight or more and 50 parts by weight or less based on 100 parts by weight of the cyclic olefin resin.
  • An optical waveguide structure according to claim 1. (104) The light according to any one of (91) to (103), wherein the concentration of the structure derived from (B) is different between a region irradiated with active radiation of the core layer and a non-irradiated region. Waveguide structure. (105) The optical waveguide structure according to any one of (91) to (104), wherein the refractive index difference between the region irradiated with active radiation and the non-irradiated region of the core layer is 0.01 or more.
  • a region of the core layer that has been irradiated with active radiation is at least a part of the cladding part, and an unirradiated region is at least a part of the core part.
  • Optical waveguide structure (107) The optical waveguide according to any one of (91) to (106), wherein the substrate is made of a resin material or a semiconductor material, or a fiber base material impregnated with a resin material. Structure. (108) The clad layer constituting the clad portion is bonded to both surfaces of the core layer, and the optical waveguide is constituted by a laminate of both clad layers and the core layer interposed therebetween (91) ) To (107).
  • the electric element is an element having a light emitting part or a light receiving part and a terminal.
  • the optical waveguide includes an optical path conversion unit that bends an optical path of transmission light transmitted through the core unit.
  • the positioning unit positions the light emitting unit or the light receiving unit so that the position of the light emitting unit or the light receiving unit overlaps the position of the optical path conversion unit in plan view.
  • the substrate includes a light-transmitting part having a light-transmitting property with respect to transmission light transmitted through the core part, and the light-emitting part or the light-receiving part of the element and the core part through the light-transmitting part.
  • the optical waveguide structure according to any one of (110) to (113).
  • the electric element includes the element having a light emitting part or a light receiving part and a terminal, and the electronic circuit element having a function of driving the element or processing an output signal of the element.
  • the positioning unit When the X direction and the Y direction orthogonal to each other are set on the plane of the substrate, the positioning unit performs positioning in at least one of the X direction and the Y direction.
  • the positioning means When the X direction and the Y direction orthogonal to each other are set on the plane of the substrate, the positioning means performs positioning in each of the X direction and the Y direction (91) to (125) An optical waveguide structure according to any one of the above. (128) The optical waveguide structure according to (126) or (127), wherein a longitudinal direction of the core portion coincides with the X direction or the Y direction.
  • An electronic apparatus comprising the optical waveguide structure according to any one of (91) to (130).
  • the core part can be patterned by a simple method of irradiation with light and active radiation (active energy ray, electron beam, X-ray, etc.), and the pattern of the core part constituting the optical path of the optical circuit A core portion with a wide degree of freedom in shape design and high dimensional accuracy can be obtained.
  • the core layer is made of a desired material
  • the stress is applied to the optical waveguide or when the deformation occurs, in particular, even when repeatedly curved and deformed, delamination between the core portion and the cladding portion, Defects such as the occurrence of microcracks in the core are unlikely to occur, and as a result, the optical transmission performance of the optical waveguide is maintained and the durability is excellent.
  • the core part is composed of a resin composition mainly composed of a norbornene resin (cyclic olefin resin)
  • the core part and the cladding part are highly effective in that they are particularly strong against the deformation and hardly cause defects.
  • the difference in refractive index of the optical waveguide can be further increased, and the optical waveguide is excellent in heat resistance. As a result, an optical waveguide having higher performance and durability is obtained.
  • the optical path conversion unit when the optical path conversion unit is provided, the optical path of the transmission light can be bent in a desired direction, which increases the degree of freedom in designing the optical path and contributes to the integration of the optical circuit.
  • the substrate has a light transmitting portion
  • an optical path that passes through the substrate can be formed, so that the degree of freedom in designing the optical path is further expanded.
  • the light transmitting part has a lens part, it is possible to condense and diffuse the transmission light in the optical path as necessary, and the degree of freedom in designing the optical circuit is further expanded in combination with the bending of the optical path.
  • the optical waveguide structure has an element (light emitting element or light receiving element)
  • the light emitted from the light emitting portion of the element is guided to another place by the optical waveguide by optically connecting to the optical waveguide, or Light from other places can be guided to the light receiving portion of the element by the optical waveguide, a small and integrated optical circuit can be formed, and the operation reliability of the optical circuit is also high.
  • Such an optical waveguide structure of the present invention has a wide range of optical circuit (optical waveguide pattern) and electrical circuit design, high yield, high optical transmission performance, excellent reliability and durability, Rich in versatility. Therefore, by providing the optical waveguide structure of the present invention, various highly reliable electronic parts and electronic devices can be obtained.
  • the optical path conversion unit when the optical path conversion unit is provided, the optical path of the transmission light can be bent in a desired direction, which increases the degree of freedom in designing the optical path and contributes to the integration of the optical circuit.
  • the transmission light can be condensed and diffused as necessary in the optical path, and coupled with the bending of the optical path, the degree of freedom in designing the optical circuit is further expanded.
  • the optical waveguide structure has an element (light emitting element or light receiving element)
  • the light emitted from the light emitting portion of the element is guided to another place by the optical waveguide by optically connecting to the optical waveguide, or Light from other places can be guided to the light receiving portion of the element by the optical waveguide, a small and integrated optical circuit can be formed, and the operation reliability of the optical circuit is also high.
  • wiring to the element can be easily performed, and wiring suitable for the element can be provided regardless of the type of element (terminal installation location). It becomes possible and rich in versatility.
  • a wiring circuit pattern has a wide degree of freedom in design (for example, a degree of freedom in selection of a terminal installation location).
  • Such an optical waveguide structure of the present invention has a wide range of design of optical circuits (patterns of optical waveguides and light guides) and electrical circuits (patterns of conductor layers and conductors), good yield, and optical transmission performance. Is highly reliable, durable and versatile. Therefore, the optical waveguide structure of the present invention can be used for various electronic components, electronic devices, and the like.
  • optical waveguide structure of the present invention By using the optical waveguide structure of the present invention, at least one conductor layer in which an electric circuit is formed and at least one optical waveguide in which an optical path is arranged one- or two-dimensionally in a plane direction are laminated.
  • a multilayer optical / electrical hybrid (fusion) wiring board can be manufactured, and the wiring between layers (in the thickness direction of the layer) is made through a through-hole having both a light guide path and a conductor portion.
  • connection (signal transmission / reception) is possible even in an optical circuit, and as a result, a three-dimensional optical / electrical hybrid substrate with a wide degree of freedom in circuit design can be provided.
  • both electric circuits and optical circuits can be easily formed, and various shapes can be formed with high dimensional accuracy.
  • the optical circuit can be formed with any shape and arrangement of the optical path (core part) by selecting the exposure pattern, and it can be sharply formed even with a thin optical path.
  • the device can be downsized.
  • the positioning means when the positioning means is provided, the positional relationship between the electric element and the optical waveguide (core portion) can be determined easily and accurately, and the manufacturing is easy and the optical transmission characteristics are excellent and the reliability is high. An optical circuit can be obtained, and a finer and more complicated circuit pattern can be formed.
  • a core portion or the like is formed (formed by irradiation with actinic radiation or by further heating), or the core is positioned with respect to the substrate where the position of the electric element is predetermined.
  • the positional relationship between the light emitting part or light receiving part of the electric element and the core part is easy. And can be determined accurately.
  • the optical path conversion unit when the optical path conversion unit is provided, the optical path of the transmitted light can be bent in a desired direction, so that the degree of freedom in designing the optical path is widened, and an optical circuit can be formed with a particularly short optical path length. This contributes to higher integration of optical circuits. Even in this case, the positioning means can be used to easily and accurately position the light emitting portion or the light receiving portion of the electric element and the optical path changing portion.
  • the substrate has a light transmitting portion
  • an optical path passing through the substrate an optical path in the thickness direction of the substrate
  • the degree of freedom in designing the optical path is further expanded.
  • the light transmitting part has a lens part, it is possible to condense and diffuse the transmission light in the optical path as necessary, and the degree of freedom in designing the optical circuit is further expanded in combination with the bending of the optical path.
  • wiring to the electric element can be easily performed, and wiring suitable for the electric element can be made regardless of the type of the electric element (terminal installation location). Rich. Moreover, such a wiring circuit pattern has a wide degree of freedom in design (for example, a degree of freedom in selection of a terminal installation location).
  • Such an optical waveguide structure of the present invention has a wide range of design of optical circuits (patterns of optical waveguides and light guides) and electrical circuits (patterns of conductor layers and conductors), good yield, and optical transmission performance. Is highly reliable, durable and versatile. Therefore, the optical waveguide structure of the present invention can be used for various electronic components, electronic devices, and the like.
  • optical circuits can be easily formed, various shapes can be formed with high dimensional accuracy, and even narrow optical paths can be formed sharply, contributing to circuit integration and reducing device size. Can be achieved.
  • FIG. 1 It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide. It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide. It is a figure which shows typically the measuring method of the bending loss in an Example. It is sectional drawing which shows 14th Embodiment of the optical waveguide structure of this invention. It is sectional drawing which shows 15th Embodiment of the optical waveguide structure of this invention. It is sectional drawing which shows 16th Embodiment of the optical waveguide structure of this invention. It is sectional drawing which shows 17th Embodiment of the optical waveguide structure of this invention. It is sectional drawing which shows 18th Embodiment of the optical waveguide structure of this invention. FIG.
  • FIG. 21 is a sectional view taken along line AA in FIG. 20.
  • FIG. 23 is a sectional view taken along line BB in FIG. It is CC sectional view taken on the line in FIG.
  • It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide.
  • It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide.
  • It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide.
  • It is a figure which shows typically the measuring method of the bending loss in an Example.
  • FIG. 33 is a cross-sectional view taken along line AA in FIG. 32.
  • FIG. 33 is a cross-sectional view taken along line AA in FIG. 32.
  • FIG. 33 is a sectional view taken along line BB in FIG. 32. It is sectional drawing which shows 20th Embodiment of the optical waveguide structure of this invention. It is sectional drawing which shows 21st Embodiment of the optical waveguide structure of this invention. It is sectional drawing which shows 22nd Embodiment of the optical waveguide structure of this invention. It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide. It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide. It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide. It is a figure which shows typically the measuring method of the bending loss in an Example.
  • FIGS. 1 to 11 are cross-sectional views showing embodiments of the optical waveguide structure of the present invention.
  • the upper side in FIGS. 1 to 11 is “upper” or “upper”, and the lower side is “lower” or “lower”.
  • Each figure is exaggerated in the thickness direction of the layer (the vertical direction in each figure).
  • FIGS. 25, 26 and 27 are sectional views taken along line AA in FIG. 25 is a cross-sectional view taken along line BB in FIG. 22 and a cross-sectional view taken along line CC in FIG.
  • AA in FIG. 25 is a cross-sectional view taken along line BB in FIG. 22
  • CC in FIG. is a cross-sectional view taken along line CC in FIG.
  • the upper side in FIGS. 20 to 24 is “upper” or “upper”, and the lower side is “lower” or “lower”. 20 to 24 are exaggerated in the layer thickness direction (vertical direction in each figure).
  • FIG. 32 is a plan view showing a nineteenth embodiment of the optical waveguide structure of the present invention
  • FIG. 33 is a sectional view taken along line AA in FIG. 32
  • FIG. 34 is a sectional view taken along line BB in FIG. 35
  • FIG. 36 is a sectional view showing a twenty-first embodiment of the optical waveguide structure of the present invention
  • FIG. It is sectional drawing which shows 22nd Embodiment of an optical waveguide structure.
  • FIGS. 33 to 37 the upper side in FIGS. 33 to 37 is “upper” or “upper”, and the lower side is “lower” or “lower”. 33 to 37 exaggerate the layer thickness direction (vertical direction in each figure).
  • the horizontal direction (left-right direction) in FIG. 32 will be described as “X direction”
  • the vertical direction (vertical direction) will be described as “Y direction” (however, the X direction and the Y direction are orthogonal to each other).
  • the optical waveguide structure 1 of the present invention includes an optical waveguide 9, conductor layers 51 and 52 bonded to both surfaces of the optical waveguide 9, and an optical path conversion unit that bends the optical path of the optical waveguide 9. 96, a light emitting element 10, and an electric element 12.
  • the optical waveguide 9 is formed by laminating a clad layer (lower clad layer) 91, a core layer 93, and a clad layer (upper clad layer) 92 in this order from the lower side in FIG.
  • a core portion 94 and a clad portion 95 having a predetermined pattern are formed.
  • the core portion 94 is a portion that forms an optical path of the transmission light, and the cladding portion 95 does not form an optical path of the transmission light although it is formed in the core layer 93 and performs the same function as the cladding layers 91 and 92. Part.
  • a core portion 94 is formed on the left side in FIG. 1 of a later-described reflective surface 961 of the core layer 93, and a cladding portion 95 is formed on the other portion of the core layer 93. .
  • the constituent material of the core layer 93 is a material whose refractive index changes by irradiation with light (for example, ultraviolet rays) or by further heating.
  • a resin composition containing a cyclic olefin resin such as a benzocyclobutene polymer and a norbornene polymer (resin) as a main material, and include a norbornene polymer (mainly The material) is particularly preferred.
  • the core layer 93 made of such a material is excellent in resistance to deformation such as bending, and even when it is repeatedly curved and deformed, the core layer 94 and the clad portion 95 are separated from each other, and the layer adjacent to the core layer 93 ( The delamination with the clad layers 91 and 92) hardly occurs, and the occurrence of microcracks in the core portion 94 and the clad portion 95 is also prevented. As a result, the optical transmission performance of the optical waveguide 9 is maintained, and the optical waveguide 9 having excellent durability is obtained.
  • Examples of the constituent material of the core layer 93 include an antioxidant, a refractive index adjuster, a plasticizer, a thickener, a reinforcing agent, a sensitizer, a leveling agent, an antifoaming agent, an adhesion aid, and a flame retardant.
  • the additive may be contained.
  • Addition of an antioxidant has the effect of improving high temperature stability, improving weather resistance, and suppressing light deterioration. Examples of such an antioxidant include phenols such as monophenols, bisphenols, and triphenols, and aromatic amines. Further, the resistance to bending can be further increased by adding a plasticizer, a thickener, and a reinforcing agent.
  • the content of additives typified by the antioxidant is preferably about 0.5 to 40% by weight, preferably 3 to 30% by weight, based on the entire constituent material of the core layer 93.
  • the degree is more preferred. If this amount is too small, the function of the additive cannot be sufficiently exhibited. If the amount is too large, the transmittance of light (transmitted light) transmitted through the core portion 94 depends on the type and characteristics of the additive. Decrease, patterning failure, refractive index instability and the like.
  • An example of a method for forming the core layer 93 is a coating method.
  • the coating method include a method in which a core layer forming composition (varnish or the like) is applied and cured (solidified), and a method in which a curable monomer composition is applied and cured (solidified).
  • a method other than the coating method for example, a method of joining separately manufactured sheet materials may be employed.
  • the core layer 93 obtained as described above is selectively irradiated with light (active radiation) using a mask to pattern the core portion 94 having a desired shape.
  • Examples of light used for exposure include active energy rays such as visible light, ultraviolet light, infrared light, and laser light. Further, instead of using light, electromagnetic waves such as X-rays or particle beams such as electron beams may be used.
  • the part irradiated with light has a lower refractive index, and a difference in refractive index occurs between the part not irradiated with light.
  • a portion of the core layer 93 that is irradiated with light becomes the cladding portion 95, and a portion that is not irradiated becomes the core portion 94.
  • the refractive index of the cladding part 95 is substantially equal to the refractive index of the cladding layers 91 and 92.
  • the core portion 94 may be formed by irradiating the core layer 93 with light in a predetermined pattern and then heating. By adding this heating step, the difference in refractive index between the core portion 94 and the cladding portion 95 becomes larger, which is preferable. This principle will be described later in detail.
  • the pattern shape of the core portion 94 to be formed is not particularly limited, and is a straight shape, a shape having a curved portion, an irregular shape, a shape having a branching portion of a light path, a merging portion or a crossing portion, a condensing portion (a width etc. is reduced). Or a light diffusing part (a part where the width or the like is increased), or a combination of two or more of these.
  • a feature of the present invention is that the core portion 94 having any shape can be easily formed by setting the light irradiation pattern.
  • the conductor layer 51 joined to the lower surface of the optical waveguide 9 and the conductor layer 52 joined to the upper surface are each patterned into a predetermined shape to constitute a desired wiring or circuit.
  • the constituent material of the conductor layers 51 and 52 include various metal materials such as copper, a copper-based alloy, aluminum, and an aluminum-based alloy.
  • the thickness of the conductor layers 51 and 52 is not particularly limited, but is usually preferably about 3 to 120 ⁇ m, and more preferably about 5 to 70 ⁇ m.
  • the conductor layers 51 and 52 are formed by, for example, metal foil bonding (adhesion), metal plating, vapor deposition, sputtering, or the like. For example, etching, printing, masking, or the like can be used for patterning the conductor layers 51 and 52.
  • the light emitting element 10 includes a light emitting unit 101 and a pair of terminals 103 and 105 on the lower surface side in FIG.
  • the light emitting unit 101 is located between the terminal 103 and the terminal 105. When the terminals 103 and 105 are energized, the light emitting unit 101 emits light.
  • the light emitting part in the light emitting element 10 may be composed of one light emitting point, or may be a set of a plurality of light emitting points.
  • the light emitting points are arranged in a row (for example, 1 ⁇ 4, 1 ⁇ 12) or in a matrix (for example, n ⁇ m: n, m And those in which a plurality of light emitting points are arranged randomly (irregularly).
  • a light receiving portion 111 in the light receiving element 11 described later The same applies to a light receiving portion 111 in the light receiving element 11 described later.
  • the light emitting element 10 is mounted on the optical waveguide 9 such that the terminals 103 and 105 are respectively joined (electrically connected) to predetermined portions of the conductor layer 52.
  • the electric element (electronic circuit element) 12 is composed of, for example, a semiconductor element (semiconductor chip). Although the function of the electric element 12 is not particularly limited, an example is one that constitutes a circuit for driving the light emitting element 10.
  • the electric element 12 has two terminals 123 and 125 on the lower surface side in FIG.
  • the electric element 12 is mounted on the optical waveguide 9 such that the terminals 123 and 125 are joined (electrically connected) to predetermined portions of the conductor layer 52, respectively.
  • the lower part including the terminals 103, 105, 123, and 125 of the light emitting element 10 and the electric element 12 is sealed with the underfill material 4.
  • the gap between the light emitting element 10 and the electric element 12 and the optical waveguide 9 is sealed with the underfill material 4 without forming a gap.
  • the entire light emitting element 10 and electric element 12 (outer surface) are covered and sealed with the sealing material 6.
  • the light emitting element 10 and the electric element 12 are entirely sealed, and in particular, the light emitting portion 101 is sealed without being exposed to the outside, so that it is protected from dirt, damage, oxidative degradation, and the like. Contributes to improving the reliability of electronic components.
  • the underfill material 4 is made of a material that substantially transmits light (transmitted light) emitted from the light emitting unit 101, and is preferably made of a transparent material.
  • the constituent material of the underfill material 4 is preferably a resin material having insulating properties, and examples thereof include an epoxy resin, a phenol resin, a urethane resin, and a polyimide resin.
  • a resin material having an insulating property is preferable, and examples thereof include an epoxy resin, a phenol resin, a norbornene resin, and a silicon resin.
  • the optical waveguide 9 is formed with four through holes (through holes) 8 penetrating in the thickness direction.
  • Each through-hole 8 is filled with a conductive material (for example, various metal materials such as copper, copper-based alloy, aluminum, aluminum-based alloy) to form a conductor post 81.
  • the predetermined portions of the conductor layer 51 and the conductor layer 52 are electrically connected to each other through the conductor posts 81.
  • the terminals 103, 105, 123, and 125 of the light emitting element 10 and the electric element 12 can be energized through the conductor layer 51 on the lower surface side of the optical waveguide 9.
  • the terminal 105 and the terminal 123 are electrically connected and are connected to the ground side.
  • the core portion 94 of the optical waveguide 9 has a pattern shape that overlaps with the light emitting portion 101 of the light emitting element 10 in plan view (when viewed from above in FIG. 1) (that is, passes through directly under the light emitting portion 101). Is formed.
  • the core portion 94 has a higher refractive index than that of the cladding portion 95 and has a higher refractive index than the cladding layers 91 and 92.
  • the clad layers 91 and 92 constitute the clad portions located at the lower part and the upper part of the core part 94, respectively. With such a configuration, the core portion 94 functions as a light guide path surrounded by the clad portion on the entire outer periphery.
  • Such an optical waveguide 9 has an optical path conversion section 96 that bends the optical path of the core section 94.
  • the optical path conversion unit 96 includes a reflection surface (mirror) 961 that reflects at least a part of the transmission light.
  • the reflecting surface 961 is provided at a position directly below the light emitting unit 101.
  • the reflecting surface 961 is inclined by approximately 45 ° with respect to the optical path of the optical waveguide 9, that is, the longitudinal direction of the core portion 94, and has a function of reflecting most of the transmitted light (for example, 90% or more).
  • Such an optical path conversion unit 96 removes (deletes) a part of the optical waveguide 9 to form, for example, a triangular concave portion (hole) whose bottom is the bottom, and reflects one inclined surface thereof.
  • the surface 961 is used.
  • the reflection surface 961 may have a reflection film such as a multilayer optical thin film or a metal thin film (for example, an aluminum vapor deposition film) or a reflection increasing film.
  • the concave portion of the optical path conversion unit 96 may be filled with a filler, particularly a filler having a refractive index different from that of the core 94.
  • the reflection surface 961 (the optical path conversion unit 96) is formed across the core layer 93 and the clad layer 92, but may be formed only in the core layer 93.
  • the light emitting unit 101 when power is supplied between the terminals 103 and 105 of the light emitting element 10 via the conductor layer 51, the conductor post 81, and the conductor layer 52, the light emitting unit 101 emits light, and FIG.
  • the light emitted toward the middle and lower is sequentially transmitted through the underfill material 4 and the clad layer 92, reflected by the reflecting surface 961, bent by 90 °, enters the core portion 94 of the optical waveguide 9, and enters the clad portion (cladding). While repeating reflection at the interfaces with the layers 91 and 92 and the side cladding portions 95), the core portion 94 proceeds in the longitudinal direction (left direction in FIG. 1).
  • the electric element 12 is driven.
  • FIG. 1 the leftmost conductor post 81 and the core portion 94 are shown to intersect with each other, but these are shifted in the front-rear direction of the paper surface of FIG. This optical path is designed not to interfere with the conductor post 81.
  • FIG. 2 shows a second embodiment of the optical waveguide structure 1 of the present invention.
  • this optical waveguide structure 1 is demonstrated, the description is abbreviate
  • the optical waveguide structure 1 of the present embodiment is the same as the optical path conversion unit 96 except for the configuration described above.
  • the reflection surface (mirror) 961 constituting the optical path conversion unit 96 is located directly below the light emitting unit 101, but this reflection surface 961 is formed in three layers of the clad layer 91, the core layer 93, and the clad layer 92. It is formed across. That is, the triangular concave portion of the optical path conversion unit 96 is open to the lower surface of the optical waveguide 9.
  • the reflective surface 961 may have a reflective film or a reflection enhancement film such as a multilayer optical thin film or a metal thin film, or the concave portion of the optical path conversion unit 96 may be filled with a filler. Is the same as described above.
  • FIG. 3 shows a third embodiment of the optical waveguide structure 1 of the present invention.
  • this optical waveguide structure 1 is demonstrated, the description is abbreviate
  • the optical waveguide structure 1 of this embodiment has a substrate 2, and an optical waveguide 9 is bonded to the lower surface of the substrate 2 via an adhesive layer 3.
  • the substrate 2 is made of a material that substantially transmits light (transmission light) emitted from the light emitting unit 101 (a material having translucency with respect to the transmission light).
  • a transparent substrate made of a substantially transparent material.
  • the optical characteristics of the substrate 2 are preferably such that the transmittance of transmitted light is 80% or more, more preferably 90% or more, and further preferably 95% or more. Since the board
  • the adhesive layer 3 is made of a material that substantially transmits transmission light emitted from the light emitting unit 101, and is preferably made of a transparent material.
  • Examples of the constituent material of the substrate 2 include epoxy resin, phenol resin, bismaleimide resin, bismaleimide / triazine resin, triazole resin, polycyanurate resin, polyisocyanurate resin, benzocyclobutene resin, polyimide resin, polybenzoxazole. Examples thereof include resins and norbornene resins. These materials may be used alone or in combination.
  • the substrate 2 may be, for example, a fiber base such as glass fiber or resin fiber (woven fabric, nonwoven fabric, woven fabric, knitted fabric, etc.) impregnated with the resin material as described above (prepreg, etc.).
  • a glass cloth impregnated with an epoxy resin is called a glass epoxy substrate, but such a substrate can be used as the substrate 2.
  • the substrate 2 including such a fiber base material is particularly advantageous when the optical waveguide 9 or the conductor layer (metal layer) is bonded to the substrate 2 because the substrate 2 including the fiber base is relatively thin but has high strength and low thermal expansion coefficient. It is.
  • the substrate 2 may be a laminate of a plurality of layers.
  • stacked the layer is mentioned.
  • the layer structure in a laminated body is not limited to this.
  • the thickness of the substrate 2 is not particularly limited, but is usually preferably about 50 ⁇ m to 1.2 mm, more preferably about 100 to 600 ⁇ m.
  • the substrate 2 may be hard (rigid) or flexible (flexible). Moreover, you may have both a hard board
  • the optical waveguide 9 has only to be formed on at least one of a hard substrate and a flexible substrate, and may be formed over both.
  • a sheet material (bonding sheet) can be used, and examples of the constituent material thereof include an epoxy adhesive, an acrylic adhesive, a phenol resin adhesive, a cyanate resin adhesive, and a maleimide resin.
  • System adhesives and the like In particular, it is preferably made of a material having flux activity for preventing oxidation or the like.
  • the adhesive layer 3 may be formed on the lower surface of the substrate 2 or the upper surface of the optical waveguide 9 without using a sheet material as the adhesive layer 3.
  • the adhesive layer 3 may be a laminate of two or more layers.
  • the thickness of the adhesive layer 3 is not particularly limited, but is preferably about 0.5 to 150 ⁇ m, more preferably about 10 to 70 ⁇ m.
  • the conductor layer 52 is formed on the upper surface of the substrate 2. In this case, a part of the conductor layer 52 is exposed outward from the sealing material 6.
  • the conductor layer 51 formed on the lower surface of the optical waveguide 9 has a wiring pattern different from that of the first embodiment.
  • two conductor posts 81 are provided so as to penetrate the optical waveguide 9, the adhesive layer 3, and the substrate 2, and the conductor layer 51 and the conductor layer 52 are predetermined via these conductor posts 81.
  • the parts are conducting. That is, the terminal 105 of the light emitting element 10 and the terminal 123 of the electric element 12 are conducted through the conductor layer 51, the conductor post 81, and the conductor layer 52, and these are connected to the ground side.
  • the light emitting portion 101 emits light, and the other conductor layer 52 and the conductor exposed to the outside from the sealing material 6.
  • the electric element 12 is driven.
  • the optical waveguide structure 1 of the present embodiment when power is applied between the terminals 103 and 105 of the light emitting element 10 through the conductor layer 51, the conductor post 81, and the conductor layer 52, the light emitting unit 101 is turned on, and FIG.
  • the light emitted toward the middle and lower is sequentially transmitted through the underfill material 4, the substrate 2 (translucent portion of the substrate 2), the adhesive layer 3, and the cladding layer 92, reflected by the reflecting surface 961, and bent by 90 °.
  • the core portion 94 of the optical waveguide 9 enters the core portion 94 while being repeatedly reflected at the interface with the clad portions (cladding layers 91 and 92 and the side clad portions 95). )
  • FIG. 4 shows a fourth embodiment of the optical waveguide structure 1 of the present invention.
  • this optical waveguide structure 1 is demonstrated, the description is abbreviate
  • the optical waveguide structure 1 of this embodiment does not have the adhesive layer 3, except that the substrate 2 and the optical waveguide 9 are directly joined and the configuration of the optical path conversion unit 96 is different. This is the same as the embodiment. Since the board
  • the reflection surface (mirror) 961 constituting the optical path conversion unit 96 is located directly below the light emitting unit 101, but the reflection surface 961 extends over the three layers of the clad layer 91, the core layer 93, and the clad layer 92. Is formed.
  • the optical path conversion unit 96 is configured by a triangular recess having a base on the upper side, and a reflecting surface 961 is formed on the slope.
  • Such an optical path conversion unit 96 is provided adjacent to the substrate 2.
  • the reflective surface 961 may have a reflective film or a reflection enhancement film such as a multilayer optical thin film or a metal thin film, or the concave portion of the optical path conversion unit 96 may be filled with a filler. Is the same as described above.
  • the light emitting unit 101 when current is passed between the terminals 103 and 105 of the light emitting element 10 through the conductor layer 51, the conductor post 81, and the conductor layer 52, the light emitting unit 101 emits light, and FIG.
  • the light emitted toward the middle and lower is sequentially transmitted through the underfill material 4 and the substrate 2, reflected by the reflecting surface 961, bent by 90 °, enters the core portion 94 of the optical waveguide 9, and enters the cladding portion (cladding layer). 91, 92, and the clad part 95) on the side, and repeats reflection at the interface with the core part 94 along the longitudinal direction (left direction in FIG. 4).
  • FIG. 5 shows a fifth embodiment of the optical waveguide structure 1 of the present invention.
  • this optical waveguide structure 1 is demonstrated, the description is abbreviate
  • the optical waveguide structure 1 of the present embodiment is the same as the third embodiment except for the configuration of the substrate 2. That is, the substrate 2 does not have a sufficient transmission light transmission property, and a through hole 22 penetrating the substrate 2 is formed at a position directly below the light emitting unit 101 in the substrate 2.
  • the through hole 22 constitutes a light transmitting part 21 that transmits the transmitted light. That is, the through hole 22 serves as a light guide for guiding (transmitting) transmission light in the thickness direction of the substrate 2.
  • the inside (all or a part) of the through-hole 22 is filled with a filler made of a material having a transmission light transmittance of 80% or more, preferably 90% or more, more preferably 95% or more. May be.
  • a filler made of a material having a transmission light transmittance of 80% or more, preferably 90% or more, more preferably 95% or more.
  • the light emitting unit 101 when power is supplied between the terminals 103 and 105 of the light emitting element 10 through the conductor layer 51, the conductor post 81, and the conductor layer 52, the light emitting unit 101 emits light, and FIG.
  • the light emitted toward the lower middle passes through the underfill material 4, passes through the through hole 22, passes through the adhesive layer 3 and the cladding layer 92, is reflected by the reflecting surface 961, and bends by 90 °.
  • the inside of the core portion 94 is in the longitudinal direction (left direction in FIG. 5). Proceed along.
  • FIG. 6 shows a sixth embodiment of the optical waveguide structure 1 of the present invention.
  • this optical waveguide structure 1 is demonstrated, the description is abbreviate
  • the optical waveguide structure 1 of the present embodiment is obtained by replacing the substrate 2 in the optical waveguide structure 1 of the fourth embodiment with the substrate 2 of the fifth embodiment. That is, the substrate 2 in the optical waveguide structure 1 of the present embodiment does not have a sufficient transmission light transmission property, and a through-hole (substrate 2) that penetrates the substrate 2 at a position directly below the light emitting unit 101. ) 22 in the thickness direction.
  • the through hole 22 constitutes the light transmitting part 21.
  • the light emitting unit 101 when power is supplied between the terminals 103 and 105 of the light emitting element 10 through the conductor layer 51, the conductor post 81, and the conductor layer 52, the light emitting unit 101 is turned on, and FIG.
  • Light emitted toward the middle and lower passes through the underfill material 4, passes through the through-hole 22, is reflected by the reflecting surface 961, bends 90 °, enters the core portion 94 of the optical waveguide 9, and enters the cladding portion.
  • the light travels along the longitudinal direction (left direction in FIG. 6) in the core portion 94 while repeating reflection at the interfaces with the cladding layers 91 and 92 and the side cladding portions 95.
  • FIG. 7 shows a seventh embodiment of the optical waveguide structure 1 of the present invention.
  • this optical waveguide structure 1 is demonstrated, the description is abbreviate
  • the optical waveguide structure 1 of the present embodiment is different from the fifth embodiment in the configuration of the light transmitting part (light guide path formed in the thickness direction) 21 of the substrate 2, and the other parts are the same as in the fifth embodiment. . That is, a vertical optical waveguide 23 composed of a core portion 24 and a clad portion 25 surrounding the outer periphery of the core portion 24 is inserted into a through hole 22 formed at a position directly below the light emitting portion 101 of the substrate 2. Has been.
  • the constituent material and the forming method of the core part 24 can be the same as those of the core part 94.
  • the core part 24 may be the same as the filler in the through hole 22 described in the fifth embodiment.
  • the constituent material of the clad part 25 can be the same as that of the clad part 95 or the clad layers 91 and 92.
  • the light emitting unit 101 when current is passed between the terminals 103 and 105 of the light emitting element 10 through the conductor layer 51, the conductor post 81, and the conductor layer 52, the light emitting unit 101 emits light, and FIG.
  • the light emitted toward the middle and lower passes through the underfill material 4, passes through the core portion 24 of the vertical optical waveguide 23, passes through the adhesive layer 3 and the cladding layer 92, and is reflected by the reflecting surface 961 to be 90. ° Bends, enters the core portion 94 of the optical waveguide 9, and repeats reflection at the interface with the clad portions (cladding layers 91 and 92 and the side clad portions 95), while passing through the core portion 94 in the longitudinal direction (FIG. 7). (Middle left)
  • FIG. 8 shows an eighth embodiment of the optical waveguide structure 1 of the present invention.
  • this optical waveguide structure 1 is demonstrated, the description is abbreviate
  • the optical waveguide structure 1 of the present embodiment is the same as that of the seventh embodiment in the configuration of the light guide formed in the thickness direction of the substrate 2 in the optical waveguide structure 1 of the sixth embodiment. is there. That is, a vertical optical waveguide 23 composed of a core portion 24 and a clad portion 25 surrounding the outer periphery of the core portion 24 is inserted into a through hole 22 formed at a position directly below the light emitting portion 101 of the substrate 2. Has been.
  • the light emitting unit 101 when power is supplied between the terminals 103 and 105 of the light emitting element 10 through the conductor layer 51, the conductor post 81, and the conductor layer 52, the light emitting unit 101 emits light, and FIG.
  • the light emitted toward the middle and lower passes through the underfill material 4, passes through the core portion 24 of the vertical optical waveguide 23, is reflected by the reflecting surface 961, and is bent by 90 °, and the core portion 94 of the optical waveguide 9. Then, while reflecting repeatedly at the interface with the cladding part (cladding layers 91 and 92 and the side cladding part 95), the core part 94 advances in the longitudinal direction (left direction in FIG. 8).
  • FIG. 9 shows a ninth embodiment of the optical waveguide structure 1 of the present invention.
  • this optical waveguide structure 1 is demonstrated, the description is abbreviate
  • the optical waveguide structure 1 of the present embodiment is the same as that of the eighth embodiment except that the light transmitting portion 21 is provided with a lens portion 26 that can condense or diffuse transmission light. That is, a lens portion 26 composed of a convex lens (more precisely, a plano-convex lens) is provided on the upper end surface (incident side) of the vertical optical waveguide 23.
  • a lens portion 26 composed of a convex lens (more precisely, a plano-convex lens) is provided on the upper end surface (incident side) of the vertical optical waveguide 23.
  • the light emitted downward from the light emitting unit 101 in FIG. 9 is transmitted through the underfill material 4 and then condensed by the lens unit 26 to narrow the light beam (beam). It passes through the core portion 24 of the optical waveguide 23, is reflected by the reflecting surface 961, is bent by 90 °, enters the core portion 94 of the optical waveguide 9, and passes through the core portion 94 along the longitudinal direction (left direction in FIG. 9). Go ahead.
  • clearer (sharp) transmitted light can be obtained, and more excellent light transmission characteristics can be obtained.
  • the lens unit 26 may be capable of diffusing transmitted light.
  • a concave lens may be used.
  • the installation position of the lens unit 26 is not limited to the position illustrated in FIG. 9, and may be, for example, in the middle or lower part of the translucent unit 21, or other portions, for example, the incident side end of the core unit 94 or It may be an emission side end.
  • FIG. 10 shows a tenth embodiment of the optical waveguide structure 1 of the present invention.
  • this optical waveguide structure 1 is demonstrated, the description is abbreviate
  • Conductive layers 51 and 52 having a predetermined pattern shape are bonded to the lower surface and the upper surface of the optical waveguide 9 constituted by the clad layers 91 and 92 and the core layer 93 located (interposed) therebetween.
  • the predetermined portions of the conductor layer 51 and the conductor layer 52 are electrically connected to each other by two conductor posts 81 formed through the optical waveguide 9.
  • the optical waveguide 9 is formed with two optical path conversion parts 96a and 96b. These optical path conversion units 96a and 96b have reflection surfaces 961a and 961b similar to those described above.
  • a core portion 94 is formed on the left side in FIG. 10 from the reflecting surface 961 a of the core layer 93 and the right side in FIG. 10 from the reflecting surface 961 b, and the other portion of the core layer 93 is the cladding portion 95. Is formed.
  • a chip carrier (element) 13 is mounted on the optical waveguide 9.
  • the chip carrier 13 includes a substrate 2 ′, an optical waveguide 9 ′ different from the optical waveguide 9, a light emitting element 10, a light receiving element 11, conductor layers 54 and 55, and an electric element 12.
  • the configuration of the chip carrier 13 will be described in detail.
  • An optical waveguide 9 ′ composed of clad layers 91, 92 and a core layer 93 positioned (interposed) therebetween is joined to the lower surface of the substrate 2 ′.
  • conductor layers 54 and 55 having a predetermined pattern shape are bonded to the upper surface of the substrate 2 ', respectively.
  • Constituent materials, formation methods, patterning methods, and the like of the conductor layers 54 and 55 are the same as those of the conductor layers 51 and 52.
  • the substrate 2 ' may be substantially transparent or opaque, and may be hard (rigid) or flexible (flexible).
  • the predetermined portions of the conductor layer 54 and the conductor layer 55 are electrically connected to each other by four conductor posts 82 formed through the substrate 2 ′ and the optical waveguide 9 ′.
  • optical path conversion parts 96c, 96d, 96e, 96f are formed in the optical waveguide 9 '. These optical path conversion units 96c, 96d, 96e, and 96f have reflection surfaces 961c, 961d, 961e, and 961f similar to those described above.
  • a core portion 94 is formed at a portion between the reflecting surface 961 c and the reflecting surface 961 d of the core layer 93 and a portion between the reflecting surface 961 e and the reflecting surface 961 f.
  • the clad part 95 is formed in the other part.
  • An electric element (semiconductor element) 12 having four terminals 123, 125, 127, and 129 is mounted on the top of the substrate 2 '.
  • the electric element 12 is mounted on the substrate 2 ′ so that the terminals 123, 125, 127, and 129 are joined (electrically connected) to predetermined portions of the conductor layer 55.
  • the function of the electric element 12 is not particularly limited, an example is one that constitutes a circuit for driving the light emitting element 10.
  • the electric element 12 may further have a function (circuit) for processing (for example, signal amplification) the electric signal output from the light receiving element 11.
  • Such an electrical element 12 is entirely covered (sealed) with a sealing material 61 similar to the sealing material 6 and sealed.
  • a light emitting element 10 and a light receiving element 11 are mounted below the optical waveguide 9 '.
  • the light emitting element 10 is the same as described above.
  • the light receiving element 11 has a light receiving portion 111 and a pair of terminals 113 and 115 on the upper surface side in FIG.
  • the light receiving unit 111 is located between the terminal 113 and the terminal 115. When the light receiving unit 111 receives light (irradiates transmission light), the light is photoelectrically converted, a potential difference is generated between the terminals 113 and 115, and an electric signal is output.
  • the light emitting element 10 is mounted below the optical waveguide 9 ′ so that the terminals 103 and 105 are joined (electrically connected) to predetermined portions of the conductor layer 54.
  • the light receiving element 11 is mounted below the optical waveguide 9 ′ so that the terminals 113 and 115 are respectively joined (electrically connected) to predetermined portions of the conductor layer 54.
  • the light emitting element 10 and the light receiving element 11 have their upper portions including the terminals 103, 105, 113, 115 sealed with the underfill material 4, and the light emitting element 10 and the light receiving element 11 as a whole (outer surface) It is covered and sealed with a sealing material 6.
  • the core portion 94 of the optical waveguide 9 ′ overlaps the light emitting portion 101 of the light emitting element 10 and the light receiving portion 111 of the light receiving element 11 in plan view (when viewed from above in FIG. 10) (that is, the light emitting portion 101). And a pattern shape (passing right above the light receiving portion 111).
  • the reflective surface 961d is provided at a position directly above the light emitting unit 101, the reflective surface 961e is provided at a position directly above the light receiving unit 111, and the reflective surface 961c is at a position directly above the reflective surface 961a.
  • the reflection surface 961f is provided at a position directly above the reflection surface 961b.
  • Such a chip carrier 13 is mounted on the optical waveguide 9 such that predetermined portions of the conductor layer 52 and the conductor layer 54 are electrically connected by solder (solder balls) 7.
  • solder solder balls
  • the space between the optical waveguides 9 and 9 ′ is sealed with an underfill material 41 similar to the underfill material 4.
  • a part of the conductor layer 52 is sealed with the underfill material 41, and a part of the conductor layer 52 is exposed to the outside without being sealed with the underfill material 41.
  • the light emitting unit 101 when power is applied between the terminals 103 and 105 of the light emitting element 10, the light emitting unit 101 emits light, and the light emitted upward in FIG. 4, reflected by the reflecting surface 961 d and bent by 90 °, enters the core portion 94 of the optical waveguide 9 ′, and advances in the core portion 94 along the longitudinal direction (left direction in FIG. 10). Further, the transmission light emitted from the end portion of the core portion 94 is reflected by the reflecting surface 961c, bent 90 °, travels downward, passes through the underfill material 41 and the cladding layer 92, and is reflected by the reflecting surface 961a. It bends by 90 °, enters the core portion 94 of the optical waveguide 9, and advances in the core portion 94 along its longitudinal direction (left direction in FIG. 10).
  • the light that enters the core portion 94 from the right side of the optical waveguide 9 in FIG. 10 travels along the longitudinal direction (left direction in FIG. 10) in the core portion 94, is reflected by the reflecting surface 961b, and bends 90 °. Then, it passes upward, passes through the cladding layer 92 and the underfill material 41, is reflected by the reflecting surface 961f, bends 90 °, enters the core portion 94 of the optical waveguide 9 ′, and enters the core portion 94 in its longitudinal direction ( Proceed along the left direction in FIG.
  • the transmission light emitted from the end portion of the core portion 94 is reflected by the reflecting surface 961e, bent 90 °, travels downward, passes through the underfill material 4, and is received by the light receiving portion 111. As a result, a potential difference is generated between the terminals 113 and 115, and an electric signal is output.
  • FIG. 11 shows an eleventh embodiment of the optical waveguide structure 1 of the present invention.
  • this optical waveguide structure 1 is demonstrated, the description is abbreviate
  • An optical waveguide 9 composed of clad layers 91 and 92 and a core layer 93 positioned (interposed) therebetween is bonded to the lower surface of the substrate 2.
  • the conductor layer 52 having the pattern shape is joined.
  • the optical waveguide 9 is formed with two optical path conversion parts 96a and 96b.
  • the optical path conversion units 96a and 96b have the same configuration as the optical path conversion unit 96 in the fourth, eighth, and ninth embodiments, and have the same reflecting surfaces 961a and 961b, respectively.
  • a core portion 94 is formed on the left side in FIG. 11 from the reflecting surface 961 a of the core layer 93 and the right side in FIG. 11 from the reflecting surface 961 b, and the other portion of the core layer 93 is the cladding portion 95. Is formed.
  • the substrate 2 does not have sufficient transmission light transmission (translucency), and the substrate 2 has a position directly above the reflection surfaces 961a and 961b (a position directly below the reflection surfaces 961c and 961f).
  • Each of the through holes 22 is formed through the substrate 2.
  • These through holes 22 constitute a light transmitting portion 21 that transmits the transmitted light. That is, these through holes 22 serve as a light guide for guiding (transmitting) transmission light in the thickness direction of the substrate 2.
  • the lens portions 26 similar to those in the ninth embodiment are provided on the upper portions of both the through holes 22 (the light transmitting portions 21).
  • the through hole 22 is filled with a transparent first resin material having a relatively low refractive index, and the upper surface thereof is formed into a curved concave surface, and the concave surface is transparent with a higher refractive index than the first resin material.
  • the second resin material By filling the second resin material, it is possible to form the lens portion 26 in which the portion of the second resin material functions as a convex lens (plano-convex lens, biconvex lens, etc.).
  • the present invention is not limited thereto, and only a convex lens (a plano-convex lens, a biconvex lens, etc.) may be installed in the through hole 22.
  • the installation position of the lens part 26 with respect to the through hole 22 is not limited to the upper part as illustrated, and may be in the middle or lower part of the through hole 22.
  • the inside (all or a part) of the through-hole 22 is filled with a filler made of a material having a transmission light transmittance of 80% or more, preferably 90% or more, more preferably 95% or more. May be. Further, as in the seventh and eighth embodiments, the vertical optical waveguide 23 may be formed inside the through hole 22.
  • a chip carrier (element) 13 similar to that of the tenth embodiment is mounted on the optical waveguide 9 with the substrate 2.
  • the light emitting unit 101 when power is applied between the terminals 103 and 105 of the light emitting element 10, the light emitting unit 101 emits light, and the light emitted upward in FIG. 4, reflected by the reflecting surface 961 d and bent by 90 °, enters the core portion 94 of the optical waveguide 9 ′, and advances in the core portion 94 along the longitudinal direction (left direction in FIG. 11). Further, the transmission light emitted from the end portion of the core portion 94 is reflected by the reflecting surface 961c, bent 90 °, travels downward, passes through the underfill material 41, and then is condensed by the lens portion 26 and the light flux.
  • the light that enters the core portion 94 from the right side of the optical waveguide 9 in FIG. 11 travels along the longitudinal direction (left direction in FIG. 11) in the core portion 94, is reflected by the reflecting surface 961b, and bends 90 °. Then, the light passes through the through-hole 22 and is condensed by the lens portion 26 to narrow the light beam (beam). The light beam is transmitted through the underfill material 41, reflected by the reflecting surface 961f, and bent by 90 °. Then, the light enters the core portion 94 of the optical waveguide 9 ′ and proceeds along the longitudinal direction (left direction in FIG. 11) in the core portion 94.
  • the transmission light (condensed light beam) emitted from the end of the core portion 94 is reflected by the reflecting surface 961e, bent 90 °, travels downward, passes through the underfill material 4, and is received by the light receiving portion 111. Received light. As a result, a potential difference is generated between the terminals 113 and 115, and an electric signal is output.
  • FIG. 12 shows a twelfth embodiment of the optical waveguide structure 1 of the present invention.
  • this optical waveguide structure 1 is demonstrated, the description is abbreviate
  • FIG. 12 is a plan view of the optical waveguide structure 1.
  • An optical waveguide 9 (optical waveguide structure 1) having an optical path changing portion shown in FIG. 12 has a branching portion 941 that branches the core portion 94 in a right angle direction in the middle of the core portion 94.
  • a core portion 942 is formed from the branch portion 941 toward the lower side of FIG.
  • a through hole 943 that penetrates the optical waveguide 9 in the thickness direction is formed in the branch portion 941.
  • the through hole 943 has a triangular shape in plan view, and one side thereof is formed at an angle (inclination angle) of 45 ° with respect to both the axis of the core portion 94 and the axis of the core portion 942. It functions as an optical path conversion section that bends the optical path of the core section 94. That is, this one side is a reflection surface 944 that reflects a part of the transmission light that passes through the core portion 94.
  • one of the remaining two sides is parallel to the axis of the core portion 94, and the remaining one side is parallel to the axis of the core portion 942.
  • the reflection surface 944 reflects a part of the transmitted light that travels from the right side to the left side of the core portion 94 in FIG. 12, and changes the traveling direction downward. Further, the transmitted light that is not reflected by the reflecting surface 944 travels straight through the branching portion 941 as it is. In this way, the branching unit 941 can branch the transmitted light into two.
  • the reflective surface 944 may have a reflective film such as a multilayer optical thin film or a metal thin film (for example, an aluminum vapor deposition film) or a reflection increasing film.
  • the through hole 943 may be filled with a filler, particularly a filler having a refractive index different from that of the core portion 94 or the core portion 942.
  • the reflection surface 944 bends the optical path of the core portion 94 or the core portion 942 based on the difference between the refractive index of the core portion 94 or the core portion 942 and the refractive index of air. Since the difference in refractive index between the photosensitive resin composition used in the present invention and air is relatively large, the allowable range of the total reflection angle on the reflecting surface 944 is also relatively large. Therefore, based on Snell's law, the inclination angle of the reflecting surface 944 can be set to an angle that totally reflects light propagating through the core portion 94 or the core portion 942. As a result, attenuation of light accompanying reflection at the reflecting surface 944 is suppressed, and a decrease in light propagation efficiency can be suppressed.
  • the ratio between the transmission light branched downward and the transmission light traveling straight without being branched is a projected image when the reflecting surface 944 is projected in the direction of the core portion 94 (hereinafter referred to as “reflecting surface”). 944 ”) and the cross-section of the core portion 94 changes. Specifically, if the projected image of the reflecting surface 944 does not completely cover the cross section of the core portion 94, the transmitted light can be branched at the branching portion 941.
  • the branching rate at the branching portion 941 can be set simply by setting the area and the formation position of the through-hole 943, so that the branching portion 941 can be easily formed.
  • the reflection surface 944 shown in FIG. 13 is configured such that the projection image completely covers the cross section of the core portion 94, and the cross-sectional area of the core portion 94 is the projection image of the reflection surface 944 and the core portion 94. It is the same as the overlapping area with the cross section of. Therefore, in the branching portion 941 shown in FIG. 13, all the transmitted light that passes through the core portion 94 is reflected by the reflecting surface 944.
  • the core portion 94 shown in FIG. 13 has a widened portion 945 whose width is enlarged at the branching portion 941.
  • the outline of the core portion 94 swells so as not to interfere with the through hole 943.
  • an outer extension line (outer part extension line) S of the core portion 94 is assumed in the widened portion 945, both end portions in the inclined direction of the reflecting surface 944 are located outside the extension line S. .
  • the transmission efficiency of the transmission light by the reflection surface 944 is more reliably improved with respect to the transmission light that passes through the core portion 94.
  • the vicinity of both ends in the slope direction with low surface accuracy does not contribute to the reflection of the transmitted light, and the vicinity of the center with high surface accuracy reflects the transmitted light. For this reason, the accuracy of the reflection angle is increased, and unintended reflection is suppressed. As a result, the leakage of a part of the transmitted light reflected at an unintended angle is greatly reduced.
  • the processing accuracy is lowered when the through-hole 943 is formed, the surface roughness becomes high, or the angle of inclination of the reflective surface 944 is increased. Therefore, providing the widened portion 945 is effective from the viewpoint of preventing a decrease in transmission efficiency.
  • the core portion 94 shown in FIG. 14 has the same structure as the widened portion 945 shown in FIG.
  • the reflection surface 944 shown in FIG. 14 is configured such that the projected image covers a part of the cross section of the core portion 94. A part of the transmitted light passing through the core portion 94 is reflected at an overlapping portion between the projected image of the reflecting surface 944 and the cross section of the core portion 94, and the remaining transmitted light travels straight without being reflected. Therefore, in the branching unit 941 shown in FIG. 14, the transmission light passing through the core unit 94 can be branched into two.
  • one of the end portions in the inclined direction of the reflection surface 944 is located outside the extension line S.
  • the vicinity of one end of the slope direction with low surface accuracy does not contribute to the reflection of the transmitted light, and the central region with high surface accuracy mainly transmits. Reflect light. For this reason, the accuracy of the reflection angle is increased, and unintended reflection is suppressed. As a result, the leakage of a part of the reflected light to the clad portion 95 is greatly reduced.
  • the transmission light is reflected by one reflection surface 944
  • the transmission light may be reflected by two or more reflection surfaces 944.
  • FIG. 15 shows a thirteenth embodiment of the optical waveguide structure 1 of the present invention.
  • this optical waveguide structure 1 is demonstrated, the description is abbreviate
  • FIG. 15 is a perspective view of the optical waveguide structure 1.
  • the core portion 94 is interrupted at the end portion, and the interrupted portion 946 is a clad portion located on the side of the core portion 94. 95.
  • a triangular recess having the base on the clad layer 91 side is formed.
  • the width of the recess is equal to or greater than the width of the core portion 94.
  • one of the two surfaces corresponding to the oblique side of the concave portion is a reflective surface 961.
  • Such a reflection surface 961 includes an exposed surface of the clad layer 91, an exposed surface of the discontinuous portion 946, and an exposed surface of the clad layer 92. Since these exposed surfaces are all formed by processing a clad material, it is difficult to make a difference in processing rate at the time of processing when the reflecting surface 961 is formed. For this reason, processing unevenness hardly occurs and the reflective surface 961 with high smoothness can be formed. When the smoothness of the reflecting surface 961 is increased, the surface accuracy and optical characteristics of the reflecting surface 961 are improved. Therefore, the reflecting surface 961 can prevent a decrease in transmission efficiency during optical path conversion.
  • the reflective surface 961 includes the exposed surface of the core portion 94, the processing rate is easily different between the core material and the clad material. Accuracy and optical characteristics may be reduced.
  • the other surface other than the reflecting surface 961 may also have a function as a reflecting surface.
  • an optical waveguide structure 1001 of the present invention includes a substrate 1002, an optical waveguide 1009 provided adjacent to the substrate 1002, and conductor layers 1051 and 1052 bonded to both surfaces of the optical waveguide 1009, respectively.
  • An optical path conversion unit 96 that bends the optical path of the optical waveguide 1009, a conductor layer 1053 bonded to the upper surface of the substrate 1002, a light emitting element 1010, and an electric element 1012.
  • epoxy resin for example, epoxy resin, phenol resin, bismaleimide resin, bismaleimide / triazine resin, triazole resin, polycyanurate resin, polyisocyanurate resin, benzocyclobutene resin, polyimide, polybenzoxazole resin
  • resin materials such as norbornene resin and semiconductor materials such as silicon, gallium / arsenic, indium / phosphorus, germanium, silicon carbide, and silicon germanium. These materials may be used alone or in combination.
  • the substrate 1002 may be a substrate (such as a prepreg) obtained by impregnating a fiber base material (woven fabric, nonwoven fabric, woven fabric, knitted fabric, etc.) such as glass fiber or resin fiber with a resin material as described above.
  • a fiber base material woven fabric, nonwoven fabric, woven fabric, knitted fabric, etc.
  • a glass cloth impregnated with an epoxy resin is referred to as a glass epoxy substrate, but such a substrate can be used as the substrate 1002.
  • the substrate 1002 including such a fiber base material is particularly advantageous when the optical waveguide 1009 or the conductor layer (metal layer) is bonded to the substrate 1002 because the substrate 1002 including the fiber base is relatively thin but has high strength and low thermal expansion coefficient. It is.
  • the substrate 1002 may be a stacked body of a plurality of layers.
  • stacked the layer is mentioned.
  • the layer structure in a laminated body is not limited to this.
  • the thickness of the substrate 1002 is not particularly limited, but is usually preferably about 10 ⁇ m to 1.2 mm, and more preferably about 50 to 600 ⁇ m.
  • the substrate 1002 may be hard (rigid) or flexible (flexible). Further, both a hard substrate and a flexible substrate may be included. In this case, the optical waveguide 1009 only needs to be formed on at least one of a hard substrate and a flexible substrate, and may be formed over both.
  • An optical waveguide 1009 is bonded to the lower surface of the substrate 1002.
  • the optical waveguide 1009 is formed by laminating a clad layer 1091, a core layer 1093, and a clad layer 1092 in this order from the lower side in FIG. 20.
  • the core layer 1093 includes a core portion 1094 and a clad portion 1095 having a predetermined pattern. Is formed.
  • the core portion 1094 has a higher refractive index than the clad portion 1095, and also has a higher refractive index than the clad layers 1091 and 1092.
  • the clad layers 1091 and 1092 constitute the clad portions located below and above the core portion 1094, respectively. With such a configuration, the core portion 1094 functions as an optical path of the transmission light 1018 surrounded by the cladding portion on the entire outer periphery.
  • a core portion 1094 is formed on the left side in FIG. 20 of a reflection surface 1961 described later of the core layer 1093, and a cladding portion 1095 is formed on the other portion of the core layer 1093. .
  • a material whose refractive index is changed by irradiation with active radiation active energy ray, electron beam, X-ray or the like
  • active radiation active energy ray, electron beam, X-ray or the like
  • resin composition containing a cyclic olefin-based resin such as a benzocyclobutene-based tree polymer or a norbornene-based polymer (resin), including a norbornene-based polymer ( The main material) is particularly preferred.
  • the core layer 1093 made of such a material is excellent in resistance to deformation such as bending, and even when repeatedly bent and deformed repeatedly, the core layer 1094 and the clad portion 1095 are separated from each other, and the layer adjacent to the core layer 1093 ( The delamination with the clad layers 1091 and 1092) hardly occurs, and the occurrence of microcracks in the core portion 1094 and the clad portion 1095 is also prevented. As a result, the optical transmission performance of the optical waveguide 1009 is maintained, and the optical waveguide 1009 excellent in durability is obtained.
  • Examples of the constituent material of the core layer 1093 include antioxidants, refractive index adjusters, plasticizers, thickeners, reinforcing agents, sensitizers, leveling agents, antifoaming agents, adhesion aids, flame retardants, and the like.
  • the additive may be contained. Addition of an antioxidant has the effect of improving high temperature stability, improving weather resistance, and suppressing light deterioration. Examples of such an antioxidant include phenols such as monophenols, bisphenols, and triphenols, and aromatic amines. Further, the resistance to bending can be further increased by adding a plasticizer, a thickener, and a reinforcing agent.
  • the content of additives typified by the antioxidant is preferably about 0.5 to 40% by weight, preferably 3 to 30% by weight, based on the entire constituent material of the core layer 1093.
  • the degree is more preferable. If this amount is too small, the function of the additive cannot be sufficiently exhibited. If the amount is too large, depending on the type and characteristics of the additive, the light transmitted through the core portion 1094 (transmitted light 1018) is transmitted. There is a risk of decreasing the rate, patterning failure, refractive index instability and the like.
  • An example of a method for forming the core layer 1093 is a coating method.
  • the coating method include a method in which a core layer forming composition (varnish or the like) is applied and cured (solidified), and a method in which a curable monomer composition is applied and cured (solidified).
  • a method other than the coating method for example, a method of joining separately manufactured sheet materials may be employed.
  • the core layer 1093 obtained as described above is selectively irradiated with active radiation using a mask to pattern the core portion 1094 having a desired shape.
  • active radiation used for exposure examples include active energy rays such as visible light, ultraviolet light, infrared light, and laser light, electron beams, and X-rays.
  • the electron beam can be irradiated at an irradiation dose of, for example, about 50 to 2000 KGy.
  • the refractive index of the portion irradiated with the active radiation is changed (the refractive index may increase or decrease depending on the material of the core layer 1093), and the active radiation is not irradiated.
  • a difference in refractive index occurs between the parts.
  • the portion of the core layer 1093 that has been irradiated with active radiation becomes the cladding portion 1095, and the portion that has not been irradiated becomes the core portion 1094.
  • the refractive index of the cladding part 1095 is substantially equal to the refractive index of the cladding layers 1091 and 1092.
  • the core portion 1094 may be formed by irradiating the core layer 1093 with actinic radiation in a predetermined pattern and then heating. By adding this heating step, the difference in refractive index between the core portion 1094 and the cladding portion 1095 becomes larger, which is preferable. This principle will be described later in detail.
  • the pattern shape of the core portion 1094 to be formed is not particularly limited, and is linear, a shape having a curved portion, an irregular shape, a shape having a branching portion of a light path, a merging portion or a crossing portion, a condensing portion (a width etc. is reduced) Or a light diffusing part (a part where the width or the like is increased), or a combination of two or more of them.
  • the feature of the present invention is that the core portion 1094 having any shape can be easily formed by setting the irradiation pattern of the active radiation.
  • the conductor layer 1051 bonded to the lower surface of the optical waveguide 1009, the conductor layer 1052 bonded to the upper surface, and the conductor layer 1053 bonded to the upper surface of the substrate 1002 are each patterned into a predetermined shape to obtain a desired wiring. Or it constitutes a circuit.
  • Examples of the constituent materials of the conductor layers 1051 to 1053 include various metal materials such as copper, copper-based alloy, aluminum, and aluminum-based alloy.
  • the thicknesses of the conductor layers 1051 to 1053 are not particularly limited, but are usually preferably about 3 to 120 ⁇ m and more preferably about 5 to 70 ⁇ m.
  • the conductor layers 1051 to 1053 are formed by, for example, metal foil bonding (adhesion), metal plating, vapor deposition, sputtering, or the like.
  • metal foil bonding adheresion
  • metal plating metal plating
  • vapor deposition vapor deposition
  • sputtering or the like.
  • methods such as etching, printing, and masking can be used.
  • the light emitting element 1010 has a light emitting portion 1101 and a pair of terminals 1103 and 1105 on the lower surface side.
  • the light emitting unit 1101 is located between the terminals 1103 and 1105. When the terminals 1103 and 1105 are energized, the light emitting unit 1101 emits light.
  • the light-emitting portion of the light-emitting element 1010 may be a single light-emitting point or a plurality of light-emitting points.
  • the light emitting points are arranged in a row (for example, 1 ⁇ 4, 1 ⁇ 12) or in a matrix (for example, n ⁇ m: n, m And those in which a plurality of light emitting points are arranged randomly (irregularly). The same applies to a light receiving portion in a light receiving element to be described later.
  • the light emitting element 1010 is mounted on the substrate 1002 such that the terminals 1103 and 1105 are bonded (electrically connected) to the portions 1531 and 1532 of the conductor layer 1053, respectively.
  • the electric element (electronic circuit element) 1012 is composed of, for example, a semiconductor element (semiconductor chip). Although the function of the electric element 1012 is not particularly limited, an example is one constituting a circuit for driving the light emitting element 1010.
  • the electric element 1012 has two terminals 1123 and 1125 on the lower surface side thereof.
  • the electric element 1012 is mounted on the optical waveguide 1009 such that the terminals 1123 and 1125 are joined (electrically connected) to the portions 1532 and 1533 of the conductor layer 1053, respectively.
  • the lower part including the terminals 1103, 1105, 1123, and 1125 of the light emitting element 1010 and the electric element 1012 is sealed with an underfill material 1004.
  • an underfill material 1004. As a result, a gap is not formed between the light emitting element 1010 and the electric element 1012 and the optical waveguide 1009, and the underfill material 1004 is sealed.
  • the entire light emitting element 1010 and electric element 1012 (outer surface) are covered with a sealing material 1006 and sealed.
  • the light-emitting element 1010 and the electric element 1012 are entirely sealed, and in particular, the light-emitting portion 1101 is sealed without being exposed to the outside. Contributes to improving the reliability of electronic components.
  • the underfill material 1004 is made of a material that substantially transmits light emitted from the light emitting unit 1101 (transmitted light 1018), and is preferably made of a transparent material.
  • an insulating resin material is preferable, and examples thereof include an epoxy resin, a phenol resin, a urethane resin, and a polyimide resin.
  • an insulating resin material is preferable, and examples thereof include an epoxy resin, a phenol resin, a norbornene resin, and a silicon resin.
  • the optical waveguide 1009 is formed with a through hole (through hole or via hole) 1008 penetrating in the thickness direction.
  • the through hole 1008 is filled with a conductive material (for example, various metal materials such as copper, a copper-based alloy, aluminum, an aluminum-based alloy), and a conductor post (conductor portion) 1081 is formed.
  • a conductor post 1081 Through the conductor post 1081, predetermined portions of the conductor layer 1051 and the conductor layer 1052 are electrically connected to each other.
  • the terminals of the light emitting element 1010 and the electric element 1012 can be energized by the conductor layer 1051 on the lower surface side of the optical waveguide 1009 and the conductor layer 1053 (parts 1531 and 1533) on the upper surface side of the substrate 1002. It has become. Note that the terminal 1105 and the terminal 1123 are electrically connected, and are connected to the ground side.
  • the optical waveguide 1009 has an optical path conversion unit 1096 that bends the optical path of the core unit 1094.
  • the optical path conversion unit 1096 is provided at a connection portion between the core portion 1094 and the light guide path 1024 described later, that is, at the right end portion of the core portion 1094 in FIG. 20 and the lower end portion of the light guide path 1024. Thereby, an optical path can be bent efficiently and reliably.
  • the optical path conversion unit 1096 is configured by a reflection surface (mirror) 1961 that reflects at least a part of the transmission light 1018.
  • the reflection surface 1961 is provided at a position directly below the light emitting unit 1101.
  • the reflecting surface 1961 is inclined by approximately 45 ° with respect to the optical path of the optical waveguide 1009, that is, the longitudinal direction of the core portion 1094, and has a function of reflecting most of the transmitted light 1018 (for example, 90% or more).
  • Such an optical path conversion unit 1096 is formed by removing (deleting) a part of the optical waveguide 1009 to form, for example, a concave portion having a triangular cross section, and using one inclined surface as the reflection surface 1961.
  • the reflection surface 1961 may have a reflection film such as a multilayer optical thin film or a metal thin film (for example, an aluminum vapor deposition film) or a reflection increasing film.
  • the concave portion of the optical path changing unit 1096 may be filled with a filler having a light-transmitting property with respect to the transmission light 1018.
  • the reflection surface 1961 (optical path conversion unit 1096) is formed across the clad layer 1091, the core layer 1093, and the clad layer 1092, but may be formed only in the core layer 1093. Further, a mirror component such as a prism, a mirror mirror, or a silicon mirror may be used.
  • a through hole 1022 penetrating the substrate 1002 is formed at a position directly below the light emitting unit 1101 on the substrate 1002.
  • the cross-sectional shape of the through hole 1022 is not particularly limited, but in the present embodiment, it is circular (see FIG. 25). Other shapes include, for example, an ellipse, an oval, a rectangle (square), a hexagon, and an irregular shape.
  • a layer (conductor portion 1003) made of a conductive material (metal material) similar to that of the conductor layer 1051 is formed on the inner peripheral surface of the through hole 1022.
  • an electric signal or the like can be sent in the thickness direction of the substrate 1002 (hereinafter also simply referred to as “thickness direction”).
  • the conductor portion 1003 is formed over the entire circumference of the inner peripheral surface of the through hole 1022 (in a ring shape), but may be partially formed in the circumferential direction.
  • the conductor portion 1003 is formed substantially perpendicular to the substrate 1002.
  • the present invention is not limited to this, and the conductor portion 1003 may be formed to be inclined at a predetermined angle with respect to the substrate 1002, or a part of the conductor portion 1003 may be deformed (bent, curved, branched, etc.). Good.
  • a method of forming the conductor portion 1003 for example, a method of joining (adhering) a metal foil to the inner surface of the through hole 1022, a method of forming a metal layer on the inner surface of the through hole 1022 by a method such as metal plating, vapor deposition, sputtering, Examples thereof include a method in which a metal paste containing a metal filler is applied and heated (fired, cured, etc.) to form a metal layer.
  • the upper end portion of the conductor portion 1003 is electrically connected to the portion 1532 of the conductor layer 1053, and the lower end portion of the conductor portion 1003 is electrically connected to a predetermined portion of the conductor layer 1052.
  • electrical signals can be exchanged between the conductor layers 1052 and 1053 formed at different positions in the thickness direction via the conductor portion 1003.
  • a portion inside the conductor portion 1003 in the through hole 1022 constitutes a light transmitting portion that transmits the transmission light 1018. That is, this portion serves as a light guide 1024 that guides (transmits) the transmission light 1018 in the thickness direction of the substrate 1002.
  • the conductor portion 1003 is formed so as to surround the light guide path 1024. Thereby, the light guide 1024 and the conductor part 1003 can be efficiently arranged in the through hole 1022 having a limited size (inner diameter).
  • the light guide 1024 is formed substantially perpendicular to the substrate 1002.
  • the present invention is not limited thereto, and the light guide path 1024 may be formed to be inclined at a predetermined angle with respect to the substrate 1002, or a part of the light guide path 1024 may be deformed (curved, branched, etc.).
  • a portion inside the conductor portion 1003 in the through hole 1022 may be a cavity, but in this portion, a light-transmitting filler, that is, the transmittance of the transmitted light 1018 is 80% or more, preferably 90% or more. More preferably, the filler is filled with 95% or more of a material.
  • This filler can be the same material as the core portion 1094 of the core layer 1093. Thereby, the light guide (core) 1024 can be easily formed, and advantages similar to those of the core 1094 described later can be obtained. Further, this filler can be the same material as the clad portion 1095 of the core layer 1093 or the same material as the clad layer 1091 or 1092.
  • the conductor portion 1003 and the light guide path 1024 are in contact with each other.
  • the present invention is not limited to this.
  • the conductor portion 1003 and the light guide path 1024 form an intermediate layer (adhesive layer, insulating layer, etc.) not shown. It may be configured such that they are approaching each other.
  • the inner diameter of the through-hole 1022 is not particularly limited, but is usually preferably about 0.05 to 2 mm, more preferably about 0.1 to 0.5 mm.
  • the outer diameter of the light guide path (core part) 1024 is not particularly limited, but is usually preferably about 0.005 to 0.3 mm, more preferably about 0.02 to 0.15 mm.
  • the conductor portion 1003 extending in the thickness direction and the light guide path 1024 are formed adjacent to each other, so that an electrical signal and an optical signal are transmitted in the thickness direction through one through hole 1022. be able to.
  • the optical waveguide structure 1001 of the present embodiment when energization is performed between the conductor layer 1051 and the portion 1531 of the conductor layer 1053, the conductor layer 1051 and the terminal 1105 are electrically connected via the conductor portion 1003 and the portion 1532. Therefore, power is supplied between the terminals 1103 and 1105 of the light emitting element 1010, and the light emitting unit 1101 is turned on. Transmitted light 1018 emitted downward in FIG. 20 by turning on the light emitting unit 1101 passes through the underfill material 1004, passes through the light guide 1024 (core unit 1024) in the through hole 1022, and is reflected by the reflecting surface 1961.
  • the core portion 1094 of the optical waveguide 1009 is bent, enters the core portion 1094, and repeats reflection at the interface with the clad portions (cladding layers 1091 and 1092 and side clad portions 1095). It advances along the longitudinal direction (the left direction in FIG. 20) in 1094.
  • FIG. 21 shows a fifteenth embodiment of an optical waveguide structure 1001 of the present invention.
  • the optical waveguide structure 1001 will be described, but the description of the same matters (configuration, operation, etc.) as those in the fourteenth embodiment will be omitted, and differences will be mainly described.
  • the optical waveguide structure 1001 of the present embodiment is different from the fourteenth embodiment in the configuration of the light transmitting portion (near the through-hole 1022) of the substrate 1002, and is otherwise the same as the fourteenth embodiment. That is, the same conductor portion 1003 and light guide path 1024 as those described above are formed in the through hole 1022 of the substrate 1002, but a lens capable of condensing or diffusing the transmitted light 1018 below the through hole 1022. A portion 1026 is provided.
  • a lens portion 1026 composed of a convex lens (more precisely, a plano-convex lens) is provided at the lower end of the light guide path 1024 (exit side of the transmission light 1018).
  • the transmission light 1018 emitted from the light emitting unit 1101 downward in FIG. 21 passes through the underfill material 1004, passes through the light guide 1024, and is condensed by the lens unit 1026, and the light beam (beam).
  • the light beam is reflected by the reflecting surface 1961 and bent by 90 °, enters the core portion 1094 of the optical waveguide 1009, and travels in the core portion 1094 along the longitudinal direction (left direction in FIG. 21).
  • lens portion 1026 By providing such a lens portion 1026, clearer (sharp) transmitted light can be obtained, and more excellent light transmission characteristics can be obtained.
  • the lens unit 1026 may be capable of diffusing the transmission light 1018.
  • a concave lens may be used.
  • the material of the lens constituting the lens portion 1026 may be a material different from the refractive index of the light guide 1024. Depending on whether the refractive index of the lens material is higher or lower than the refractive index of the light guide 1024, the function of the lens portion 1026 can be set to either a condenser lens or a diffusing lens.
  • the installation position of the lens unit 1026 is not limited to the position illustrated in FIG. 21, and may be, for example, in the middle or upper end of the light guide 1024 (through hole 1022), or may be incident on another part, for example, the core unit 1094. It may be a side end or an emission side end.
  • FIG. 22 shows a sixteenth embodiment of the optical waveguide structure 1001 of the present invention.
  • the optical waveguide structure 1001 will be described, but the description of the same matters (configuration, operation, etc.) as those in the fourteenth embodiment will be omitted, and differences will be mainly described.
  • the optical waveguide structure 1001 of the present embodiment is different from the fourteenth embodiment in the configuration of the light transmitting portion (near the through-hole 1022) of the substrate 1002, and is otherwise the same as the fourteenth embodiment. That is, a conductor portion 1003 similar to that described above is formed in the through hole 1022 of the substrate 1002, and a vertical optical waveguide 1023 is formed inside thereof.
  • the vertical optical waveguide 1023 includes a core portion 1024 and a clad portion 1025 surrounding the outer periphery of the core portion 1024.
  • the core portion 1024 has a higher refractive index than the clad portion 1025.
  • the constituent material and the formation method of the core part 1024 can be the same as those of the core part 1094.
  • the core portion 1024 may be the same as the light-transmitting filler described in the first embodiment.
  • the constituent material of the clad portion 1025 can be the same as that of the clad portion 1095 or the clad layers 1091 and 1092.
  • FIG. 23 shows a seventeenth embodiment of the optical waveguide structure 1 of the present invention.
  • the optical waveguide structure 1001 will be described, but the description of the same matters (configuration, operation, etc.) as those in the fourteenth to sixteenth embodiments will be omitted, and differences will be mainly described.
  • the optical waveguide structure 1001 of this embodiment is the same as that of the sixteenth embodiment except that a lens portion 1026 is provided. That is, the conductor portion 1003 and the vertical optical waveguide 1023 similar to those described above are formed in the through hole 1022 of the substrate 1002, but the transmission light 1018 can be condensed or diffused below the through hole 1022. A lens portion 1026 similar to the above is provided.
  • the effect of providing the lens unit 1026, the lens material constituting the lens unit 1026, the installation position of the lens unit 1026, and the like are the same as described in the sixteenth embodiment.
  • FIG. 24 shows an eighteenth embodiment of the optical waveguide structure 1001 of the present invention.
  • the optical waveguide structure 1001 will be described, but the description of the same matters (configuration, operation, etc.) as those in the fourteenth to seventeenth embodiments will be omitted, and differences will be mainly described.
  • the optical waveguide structure 1001 of the present embodiment is different from the seventeenth embodiment in the configuration of the light transmitting portion (near the through hole 1022) of the substrate 1002, and is otherwise the same as the seventeenth embodiment. That is, as shown in FIG. 27, the cross-sectional shape of the through-hole 1022 of the substrate 1002 is a shape (an irregular shape) in which a circular portion 1222 and a rectangular portion 1224 are coupled, and the vertical optical waveguide 1023 (or The light guide 1024 may be inserted), and the conductor portion 1003 is inserted into the rectangular portion 1224. The upper end portion and the lower end portion of the conductor portion 1003 are electrically connected to the portion 1532 and the conductor layer 1052 of the conductor layer 1053, respectively.
  • the volume (volume ratio) of the vertical optical waveguide 1023 and the conductor portion 1003 can be more accurately defined by setting the cross-sectional areas in advance in each of the circular portion 1222 and the rectangular portion 1224. There is. In addition, there is an advantage that the conductor portion 1003 can be formed only in a necessary direction in the circumferential direction of the circular portion 1222.
  • an optical waveguide structure 2001 of the present invention includes a substrate 2002, an optical waveguide 2009 formed under the substrate 2002, and an optical path conversion unit 2096 that bends the optical path of the optical waveguide 2009 ( A reflective surface 2961), a light emitting element 2010 and an electronic circuit element 2012 mounted on the substrate 2002, and a conductor layer 2005 formed on the upper surface of the substrate 2002.
  • Examples of the constituent material of the substrate 2002 include an epoxy resin, a phenol resin, a bismaleimide resin, a bismaleimide / triazine resin, a triazole resin, a polycyanurate resin, a polyisocyanurate resin, a benzocyclobutene resin, a polyimide, and a polybenzoxazole resin.
  • resin materials such as norbornene resin and semiconductor materials such as silicon, gallium / arsenic, indium / phosphorus, germanium, silicon carbide, and silicon germanium. These materials may be used alone or in combination.
  • the substrate 2002 may be a substrate in which a fiber base material (woven fabric, nonwoven fabric, woven fabric, knitted fabric, etc.) such as glass fiber or resin fiber is impregnated with the above-described resin material (prepreg, etc.).
  • a fiber base material such as glass fiber or resin fiber
  • prepreg a glass cloth impregnated with an epoxy resin
  • a substrate can be used as the substrate 2.
  • the substrate 2002 including such a fiber base material is particularly advantageous when the optical waveguide 2009 or a conductor layer (metal layer) is bonded to the substrate 2002 because the substrate 2002 including the fiber base is relatively thin but has high strength and a low coefficient of thermal expansion. It is.
  • the substrate 2002 may be a stacked body of a plurality of layers.
  • stacked the layer is mentioned.
  • the layer structure in a laminated body is not limited to this.
  • the thickness of the substrate 2002 is not particularly limited, but is usually preferably about 50 ⁇ m to 4 mm, more preferably about 100 ⁇ m to 1.5 mm, and further preferably about 150 ⁇ m to 1.2 mm.
  • the substrate 2002 may be hard (rigid) or flexible (flexible). Of course, it may have both characteristics.
  • the substrate 2002 since the transmission light 2018 is transmitted through the substrate 2002, the substrate 2002 has a transmittance of the transmission light 2018 of 80% or more, preferably 90% or more, more preferably 95% or more. It is supposed to be.
  • the substrate 2002 itself (all or a part of the substrate 2002) with a material having translucency with respect to the transmission light 2018, that is, by making the substrate 2002 a substantially transparent transparent substrate.
  • the portion immediately below the light emitting portion 2101 in the substrate 2002 constitutes the light transmitting portion 2024 even if a through hole 2025 described later is not formed.
  • the light emitting portion 2101 of the light emitting element 2010 and the core portion 2094 (optical path changing portion 2096) of the optical waveguide 2009 are optically connected via the light transmitting portion 2024.
  • An optical waveguide 2009 is bonded to the lower surface of the substrate 2002.
  • the optical waveguide 2009 is directly bonded to the lower surface of the substrate 2002 (the optical waveguide 2009 is adjacent to the substrate 2002).
  • the configuration is not limited to this, and the optical waveguide 2009 is formed via at least one intermediate layer. It may be.
  • the intermediate layer can be formed for any purpose, and examples thereof include an adhesive layer, a conductor layer (wiring pattern), an insulating layer, or a laminate of two or more layers including these.
  • the adhesive layer for example, a sheet material such as a bonding sheet can be used, and as its constituent materials, for example, an epoxy adhesive, an acrylic adhesive, a phenol resin adhesive, a cyanate resin adhesive Agents, maleimide resin adhesives and the like.
  • a sheet material such as a bonding sheet
  • its constituent materials for example, an epoxy adhesive, an acrylic adhesive, a phenol resin adhesive, a cyanate resin adhesive Agents, maleimide resin adhesives and the like.
  • it is preferably made of a material having flux activity for preventing oxidation or the like.
  • This adhesive layer preferably has electrical insulation.
  • an adhesive layer made of a coating film may be formed on the lower surface of the substrate 2002 or the upper surface of the optical waveguide 2009 without using a sheet material.
  • the thickness of the adhesive layer is not particularly limited, but is preferably about 0.5 to 150 ⁇ m, more preferably about 10 to 70 ⁇ m.
  • the optical waveguide 2009 is formed by laminating a clad layer 2091, a core layer 2093, and a clad layer 2092 in this order from the lower side in FIGS. 33 and 34.
  • the core layer 2093 includes a core portion 2094 having a predetermined pattern and a clad.
  • a portion 2095 is formed (see FIGS. 33 and 34).
  • the core portion 2094 has a higher refractive index than the clad portion 2095, and also has a higher refractive index than the clad layers 2091 and 2092.
  • the clad layers 2091 and 2092 constitute the clad portions located at the lower part and the upper part of the core part 2094, respectively. With such a configuration, the core portion 2094 functions as an optical path of the transmission light 2018 surrounded by the cladding portion on the entire outer periphery.
  • the constituent material of the core layer 2093 is a material whose refractive index changes by irradiation with active radiation (active energy ray, electron beam, X-ray or the like) or by further heating.
  • active radiation active energy ray, electron beam, X-ray or the like
  • Preferable examples of such materials include those containing a resin composition containing a cyclic olefin resin such as a benzocyclobutene polymer and a norbornene polymer (resin) as a main material, and include a norbornene polymer (mainly The material) is particularly preferred.
  • the core layer 2093 made of such a material is excellent in resistance to deformation such as bending, and even when it is repeatedly curved and deformed, the core layer 2094 and the clad portion 2095 are separated from each other, and the layer adjacent to the core layer 2093 ( The delamination with the clad layers 2091 and 2092) hardly occurs, and the occurrence of microcracks in the core portion 2094 and the clad portion 2095 is also prevented. As a result, the optical transmission performance of the optical waveguide 2009 is maintained, and the optical waveguide 2009 having excellent durability is obtained.
  • the constituent material of the core layer 2093 includes, for example, an antioxidant, a refractive index adjuster, a plasticizer, a thickener, a reinforcing agent, a sensitizer, a leveling agent, an antifoaming agent, an adhesion aid and a flame retardant.
  • the additive may be contained.
  • Addition of an antioxidant has the effect of improving high temperature stability, improving weather resistance, and suppressing light deterioration. Examples of such an antioxidant include phenols such as monophenols, bisphenols, and triphenols, and aromatic amines. Further, the resistance to bending can be further increased by adding a plasticizer, a thickener, and a reinforcing agent.
  • the content of additives typified by the antioxidant is preferably about 0.5 to 40% by weight, preferably 3 to 30% by weight, based on the entire constituent material of the core layer 2093.
  • the degree is more preferred. If this amount is too small, the function of the additive cannot be exhibited sufficiently. If the amount is too large, depending on the type and characteristics of the additive, light transmitted through the core portion 2094 (transmitted light 2018) is transmitted. There is a risk of decreasing the rate, patterning failure, refractive index instability and the like.
  • An example of a method for forming the core layer 2093 is a coating method.
  • the coating method include a method in which a core layer forming composition (varnish or the like) is applied and cured (solidified), and a method in which a curable monomer composition is applied and cured (solidified).
  • a method other than the coating method for example, a method of joining separately manufactured sheet materials may be employed.
  • the core layer 2093 obtained as described above is selectively irradiated with actinic radiation using a mask to pattern the core portion 2094 having a desired shape.
  • active radiation used for exposure examples include active energy rays such as visible light, ultraviolet light, infrared light, and laser light, electron beams, and X-rays.
  • the electron beam can be irradiated at an irradiation dose of, for example, about 50 to 2000 KGy.
  • the portion irradiated with active radiation has its refractive index changed (the refractive index may increase or decrease depending on the material of the core layer 2093), and the active radiation was not irradiated.
  • a difference in refractive index occurs between the parts.
  • the portion of the core layer 2093 that has been irradiated with active radiation becomes the cladding portion 2954, and the portion that has not been irradiated becomes the core portion 2094.
  • the refractive index of the cladding part 2095 is substantially equal to the refractive index of the cladding layers 2091 and 2092.
  • the core portion 2094 may be formed by irradiating the core layer 2093 with actinic radiation in a predetermined pattern and then heating. By adding this heating step, the difference in refractive index between the core portion 2094 and the clad portion 2095 becomes larger, which is preferable. This principle will be described later in detail.
  • the pattern shape of the core portion 2094 to be formed is not particularly limited, and is linear, a shape having a curved portion, an irregular shape, a shape having a branching portion of a light path, a merging portion or a crossing portion, a condensing portion (the width and the like are reduced) Or a light diffusing part (a part where the width or the like is increased), or a combination of two or more of these.
  • a feature of the present invention is that the core portion 2094 having any shape can be easily formed by setting the irradiation pattern of actinic radiation.
  • Such an optical waveguide 2009 has an optical path conversion unit 2096 that bends the optical path of the core unit 2094.
  • the optical path conversion unit 2096 includes a reflection surface (mirror) 2961 that reflects at least a part of transmission light (light emitted from the light emitting unit 2101) 2018.
  • the reflection surface 2961 is provided at a position directly below the light emitting unit 2101.
  • the reflecting surface 2961 is inclined by approximately 45 ° with respect to the optical path of the optical waveguide 2009, that is, the longitudinal direction of the core portion 2094 (the X direction in FIGS. 32 and 33, the front-rear direction in FIG. 34), and is emitted from the light emitting portion 2101. It has a function of reflecting most of the transmitted light 2018 (for example, 90% or more).
  • Such an optical path conversion unit 2096 is formed by removing (deleting) a part of the optical waveguide 2009 to form, for example, a concave portion having a triangular cross section (see FIG. 33), and using one inclined surface as the reflective surface 2961. It is.
  • the reflection surface 2961 may have a reflection film or a reflection enhancement film such as a multilayer optical thin film or a metal thin film (for example, an aluminum vapor deposition film).
  • Examples of a method for removing a part of the optical waveguide 2009 include a method such as cutting and laser light irradiation.
  • the concave portion of the optical path changing unit 2096 is filled with a filler, particularly a filler (sealing material) having a refractive index different from that of the core 2094, and a filler (sealing material) made of a metal material. Also good.
  • the reflection surface 2961 is not limited to the total reflection, and may be a part that reflects a part of the transmission light 2018 and transmits the remaining part, such as a half mirror or a dichroic mirror.
  • the optical path conversion unit 2096 has a function as a beam splitter that separates the optical path in two directions (left direction and downward direction in FIG. 33). Such optical characteristics of the reflecting surface 2961 can be appropriately set according to the optical path design of the transmission light 2018.
  • the reflection surface 2961 (optical path conversion unit 2096) is formed across the clad layer 2091, the core layer 2093, and the clad layer 2092.
  • the present invention is not limited to this, and for example, only in the core layer 2093. It may be formed.
  • the formation of the core portion 2094 and the formation of the optical path conversion portion 2096 may be performed before or after mounting (positioning and setting) a light emitting element 2010 or the like to be described later on the substrate 2002.
  • the formation position is easily and accurately. I can grasp it. That is, since the position of the light emitting portion 2101 with respect to the substrate 2002 is specified by the positioning means 2033 described later, when forming the core portion 2094 and the optical path changing portion 2096 in the optical waveguide 2009 on the substrate 2002, the core portion 2094
  • the formation position (exposure location) and the formation position of the optical path conversion unit 2096 can be easily matched with the position corresponding to the light emitting unit 2101 (the position directly below the light emitting unit 2101).
  • two recesses 2003 and 2004 that open to the upper surface and at least one side surface of the substrate 2002 are formed.
  • a light emitting element 2010 and an electronic circuit element 2012 are inserted (installed) into the recesses 2003 and 2004, respectively.
  • the light emitting element 2010 has a light emitting part 2101 on the lower surface side and a pair of terminals 2103 and 2105 on the upper surface side (may further have other terminals). When energization is performed between both terminals 2103 and 2105, the light emitting unit 2101 emits light and the transmission light 2018 is emitted.
  • the light-emitting portion 2101 in the light-emitting element 2010 may be a single light-emitting point or a plurality of light-emitting points.
  • the light emitting points are arranged in a row (for example, 1 ⁇ 4, 1 ⁇ 12) or in a matrix (for example, n ⁇ m: n, m And those in which a plurality of light emitting points are arranged randomly (irregularly). The same applies to a light receiving portion in a light receiving element to be described later.
  • the light emitting element 2010 is installed in the recess 2003 such that the light emitting portion 2101 is joined (contacted) to the bottom surface (lower surface) 2030 of the recess 2003. Note that a plurality of light emitting units 2101 may be arranged along the vertical direction in FIG.
  • the electronic circuit element 2012 is composed of, for example, a semiconductor element (semiconductor chip).
  • the electronic circuit element 2012 has a plurality of terminals (terminals 2123, 2125) on the upper surface side. Note that the electronic circuit element 2012 may have other terminals in addition to the terminals 2123 and 2125.
  • the function of the electronic circuit element 2012 is not particularly limited, an example is one that configures a circuit for driving the light emitting element 2010. Further, as will be described later, when a light receiving element is provided, one having a function of processing (for example, amplifying) an output signal from the light receiving element is exemplified.
  • the optical waveguide structure 2001 includes both the light emitting element 2010 and the light receiving element, the electronic circuit element 2012 can have both of the functions described above.
  • a light emitting element 2010, a light receiving element, an electronic circuit element 2012, other various elements, or an element obtained by combining two or more of these elements is referred to as an “electric element” or simply “element”.
  • the light emitting element 2010, the light receiving element, and the electronic circuit element 2012 are not limited to being configured as separate elements, but a configuration (composite element) in which at least two of them are connected or integrated (one chip). It may be.
  • the substrate 2002 is provided with positioning means 2033 and 2043 for determining an installation position of the electric elements (light emitting element 2010 and electronic circuit element 2012), particularly a position with respect to the substrate 2002.
  • the positioning means 2033 and 2043 will be sequentially described.
  • the recess 2003 opens to the right and below in FIG. 32, and has a step with the upper surface of the substrate 2002 at the edge of the recess 2003, that is, to the left and above in FIG. Of these steps, an abutting surface 2031 is formed on the left side in FIG. 32, and an abutting surface 2032 is formed on the upper side in FIG. 32.
  • the abutting surfaces 2031 and 2032 stand up perpendicularly to the bottom surface 2030 of the recess 2003, and the abutting surfaces 2031 and 2032 are also perpendicular to each other.
  • Positioning means (for light emitting element) 2033 is constituted by the abutting surfaces 2031 and 2032. Note that the positioning means 2033 may include a bottom surface 2030, whereby the substrate 2002 can be positioned in the thickness direction.
  • the light emitting element 2010 has a lower surface abutted against the bottom surface 2030 of the recess 2003 and two adjacent (orthogonal) side surfaces of the light emitting element 2010 abutted (pressed) against the contact surfaces 2031 and 2032 respectively. Installed in 2003. Thereby, the position of the light emitting element 2010 in the X direction is regulated by the abutting surface 2031, and the position in the Y direction is regulated by the abutting surface 2032. That is, the light emitting element 2010 is positioned in both the X direction and the Y direction (two-dimensional direction).
  • the position of the light emitting portion 2101 of the light emitting element 2010 can be accurately overlaid on the core portion 2094 (in plan view).
  • Such positioning means 2033 determines the position of the light emitting element 2010 (light emitting portion 2101) with respect to the substrate 2002. This is also possible by determining the position of the optical waveguide 2009 formed on the lower surface of the substrate 2002 with respect to the core portion 2094. In addition, since the optical path conversion unit 2096 (reflection surface 2961) has a positional relationship with the core unit 2094, the position relative to the optical path conversion unit 2096 (reflection surface 2961) is also determined.
  • the positioning unit 2033 performs positioning so that the position of the light emitting unit 2101 of the light emitting element 2010 overlaps the position of the optical path conversion unit 2096 (reflecting surface 2961) in plan view.
  • the reflecting surface 2961 is positioned directly below the light emitting unit 2101, and the designed optical path can be accurately formed.
  • the depth of the recess 2003 is preferably substantially equal to the thickness of the light emitting element 2010 or larger than the thickness of the light emitting element 2010. As a result, the upper part of the light emitting element 2010 is accommodated in the recess 2003 without protruding from the recess 2003.
  • the recess 2004 is open to the left and below in FIG. 32, and has a step with the upper surface of the substrate 2002 at the edge of the recess 2003, that is, on the left and right and above in FIG. Of these steps, an abutment surface 2041 is formed on the right side in FIG. 32, and an abutment surface 2042 is formed on the upper side in FIG.
  • the abutting surfaces 2041 and 2042 stand up perpendicularly to the bottom surface 2040 of the recess 2004, and the abutting surfaces 2041 and 2042 are also perpendicular to each other.
  • the abutting surfaces 2041 and 2042 constitute positioning means (for electronic circuit element) 2043 of the electronic circuit element 2012. Note that the positioning means 2043 may include a bottom surface 2040, whereby the substrate 2002 can be positioned in the thickness direction.
  • the electronic circuit element 2012 has its lower surface in contact with the bottom surface 2040 of the recess 2004, and two adjacent (orthogonal) side surfaces of the electronic circuit element 2012 are in contact (pressing contact) with the contact surfaces 2041 and 2042, respectively. Is installed in the recess 2004. Accordingly, the position of the electronic circuit element 2012 in the X direction is regulated by the abutting surface 2041 and the position of the electronic circuit element 2012 in the Y direction is regulated by the abutting surface 2042. That is, the electronic circuit element 2012 is positioned in both the X direction and the Y direction (two-dimensional direction).
  • the electronic circuit element 2012 can be reliably positioned in the plane direction (two-dimensional direction) with respect to the substrate 2002, and the operation can be performed by placing the electronic circuit element 2012 in the recess 2004 with respect to the fixed substrate 2002. It is only necessary to make them approach, move (relatively move) in the upper right direction in FIG. 32, and abut against the abutting surfaces 2041 and 2042, respectively, so that the positioning operation can be performed very easily.
  • Such positioning means 2043 determines the position of the electronic circuit element 2012 (terminals 2123 and 2125) with respect to the substrate 2002, which also determines the position with respect to the light emitting element 2010 positioned by the positioning means 2033. Furthermore, the position relative to the optical path conversion unit 2096 (reflection surface 2961) is also determined.
  • the depth of the concave portion 2004 is preferably substantially equal to the thickness of the electronic circuit element 2012 or larger than the thickness of the electronic circuit element 2012.
  • the electronic circuit element 2012 is accommodated in the recess 2004 without the upper portion protruding from the recess 2004.
  • the positioning means 2033 and 2043 in the present embodiment also perform positioning in the thickness direction of the substrate 2002 (directions orthogonal to the X direction and the Y direction) because the lower surface of the electric element also contacts the bottom surfaces 2030 and 2040. Do. Therefore, the positioning means in the present embodiment can accurately perform positioning in the three-dimensional direction.
  • the positioning means in the present embodiment is one directly formed on the substrate 2002 (the abutting surfaces 2031, 2032, 2041, 2042), but is not limited to this, and is not stationary with respect to the substrate 2002, in particular, the substrate Another member may be fixedly installed with respect to 2002.
  • An example of this is a positioning member that is fixed to the substrate 2002 and has an abutment surface on which an electrical element can come into contact.
  • the positioning means may position the electric element only in one of the X direction and the Y direction. In this case, positioning of the substrate 2002 in the thickness direction may or may not be performed.
  • a conductor layer (metal layer) 2005 is formed on the upper surface of the substrate 2002.
  • the conductor layer 2005 is patterned into a predetermined shape to form a desired electrical wiring or electrical circuit.
  • the conductor layer 2005 has portions 2051, 2052, and 2053.
  • the part 2051 is formed across the upper surface of the substrate 2002 and the upper surface of the electronic circuit element 2012 and is electrically connected to the terminal 2125.
  • the region 2052 is formed across the upper surface of the substrate 2002, the upper surface of the light emitting element 2010, and the upper surface of the electronic circuit element 2012, and is electrically connected to the terminals 2103 and 2125, respectively.
  • the region 2053 is formed across the upper surface of the substrate 2002 and the upper surface of the light-emitting element 2010 and is electrically connected to the terminal 2105.
  • the part 2051 or 2053 is connected to, for example, the ground.
  • Examples of the constituent material of the conductor layer 2005 include various metal materials such as copper, a copper alloy, aluminum, an aluminum alloy, gold, a gold alloy, and solder.
  • tungsten, a tungsten alloy, or the like can be used.
  • the thickness of the conductor layer 2005 is not particularly limited, but is usually preferably about 2 to 200 ⁇ m, more preferably about 3 to 120 ⁇ m, and further preferably about 5 to 70 ⁇ m.
  • the conductor layer 2005 is formed by a method such as bonding (adhesion) of metal foil, metal plating, vapor deposition, sputtering, or the like. For example, etching, printing, masking, or the like can be used for patterning on the conductor layer 2005.
  • the junction with the semiconductor material is, for example, titania or tantalum. It is preferable to form via a barrier layer (not shown) composed of, for example.
  • a bonding portion with the semiconductor material improves adhesion. It is preferable to form it through an adhesive layer (not shown) that can be used.
  • the pattern of the conductor layer 2005 is not limited to that shown in FIGS. 32 to 34, and may have any shape and arrangement.
  • the formation position of the conductor layer 2005 is not limited to the upper portion (upper surface) of the optical waveguide structure 2001 as shown in the figure, but for example, the lower surface of the optical waveguide 2009 or the inside of the optical waveguide structure 2001 (for example, the optical waveguide 2009 and the like).
  • a similar conductor layer (electrical wiring or electric circuit) may be formed between the substrate 2002 and the substrate.
  • the electronic circuit element 2012 when the electronic circuit element 2012 is operated to energize between the terminals 2103 and 2105 of the light emitting element 2010, the light emitting unit 2101 is turned on and emitted downward in FIG.
  • the transmitted light 2018 is sequentially transmitted through the light transmitting portion 2024 and the cladding layer 2092 of the substrate 2002, reflected by the reflecting surface 2961, bent by 90 °, enters the core portion 2094 of the optical waveguide 2009, and enters the cladding portion (cladding layer 2091). , 2092 and the side (left and right in FIG. 33) clad portion 2095), and repeats reflection in the core portion 2094 along the longitudinal direction (left direction in FIGS. 32 and 33).
  • FIG. 35 shows a twentieth embodiment of an optical waveguide structure 2001 of the present invention.
  • the optical waveguide structure 2001 will be described, but the description of the same matters (configuration, operation, etc.) as those in the nineteenth embodiment will be omitted, and differences will be mainly described.
  • the optical waveguide structure 2001 of the present embodiment is the same as the nineteenth embodiment except for the configuration of the positioning means.
  • the upper surface of the substrate 2002 is a flat surface
  • the positioning means for determining the installation position of the electric element is composed of the positioning member 2006 fixedly installed on the substrate 2002.
  • the positioning member 2006 is formed of a plate material (or a sheet material) whose thickness is approximately equal to or thinner than the thickness of the light emitting element 2010 and / or the electronic circuit element 2012, and an adhesive layer 2007 is provided on the upper surface of the substrate 2002. Are joined (fixed).
  • the planar shape of the positioning member 2006 is substantially T-shaped, and is an L-shape with which two adjacent (orthogonal) side surfaces (corner portions) of the light emitting element 2010 abut.
  • the lower surface of the light emitting element 2010 is in contact with the upper surface of the substrate 2002, and two adjacent (orthogonal) side surfaces of the light emitting element 2010 are in contact (pressing contact) with the contact surface 2061, so that the X direction and Y Each direction position is regulated. That is, the light emitting element 2010 is positioned in both the X direction and the Y direction (two-dimensional direction).
  • the lower surface of the electronic circuit element 2012 is in contact with the upper surface of the substrate 2002, and two adjacent (orthogonal) side surfaces of the electronic circuit element 2012 are in contact (pressing contact) with the abutting surface 2062.
  • the positions in the X direction and the Y direction are restricted. That is, the electronic circuit element 2012 is positioned in both the X direction and the Y direction (two-dimensional direction).
  • both the light emitting element 2010 and the electronic circuit element 2012 can be simultaneously positioned by one positioning member 2006. Further, by adjusting or changing the fixing position of the positioning member 2006 with respect to the substrate 2002, or selecting the positioning member 2006 having a different shape or size and fixing the positioning member 2006 to the substrate 2002, the electric element (the light emitting element 2010 and / or the electronic device) is selected. There is also an advantage that the installation position of the circuit element 2012) can be freely set or changed.
  • the same adhesive layer as described in the nineteenth embodiment can be used.
  • the planar shape and thickness of the positioning member 2006 are not limited to those shown in the drawings, and may be any shape and size.
  • both the light emitting element 2010 and the electronic circuit element 2012 are positioned by one positioning member 2006.
  • the present invention is not limited thereto, and the light emitting element 2010 and the electronic circuit element 2012 are different positioning members. And the direction of the positioning is not particularly limited.
  • FIG. 36 shows a twenty-first embodiment of an optical waveguide structure 2001 of the present invention.
  • the optical waveguide structure 2001 will be described, but the description of the same matters as in the nineteenth embodiment will be omitted, and differences will be mainly described.
  • the optical waveguide structure 2001 of the present embodiment is the same as the nineteenth embodiment except for the configuration of the substrate 2002. That is, the substrate 2002 may not have sufficient transmission light 2018, and a through hole 2025 penetrating the substrate 2002 is formed at a position directly below the light emitting portion 2101 in the substrate 2002.
  • the through hole 2025 constitutes a light transmitting portion 2024 that transmits the transmission light 2018. That is, the through hole 2025 serves as a light guide for guiding (transmitting) transmission light in the thickness direction of the substrate 2002.
  • the cross-sectional shape of the through-hole 2025 is not particularly limited, and may be any shape such as, for example, a circle, an ellipse, a rectangle (square), a hexagon, other polygons, and an irregular shape.
  • the inside (all or a part) of the through-hole 2025 is filled with a filler made of a material having a transmission light transmittance of 80% or more, preferably 90% or more, more preferably 95% or more. May be.
  • This filler may be made of the same material as the constituent material of any of the core portion 2094, the clad portion 2095, the clad layer 2091, and the clad layer 2092.
  • a layer made of a conductive material may be formed on the inner surface of the through hole 2025 and the like, thereby providing a function of transmitting an electrical signal in addition to the light transmission function.
  • the light emitting unit 2101 when the electronic circuit element 2012 is energized to energize between the terminals 2103 and 2105 of the light emitting element 2010, the light emitting unit 2101 is turned on and emitted downward in FIG.
  • the transmitted light 2018 passes through the through-hole 2025 of the substrate 2002, passes through the cladding layer 2092, is reflected by the reflecting surface 2961, bends 90 °, enters the core portion 2094 of the optical waveguide 2009, and enters the cladding portion (cladding layer).
  • 2091, 2092, and the side (left and right clad portions 2095 in FIG. 33) are repeatedly reflected at the interface between the core portions 2094 along the longitudinal direction (left direction in FIG. 36).
  • FIG. 37 shows a twenty-second embodiment of the optical waveguide structure 2001 of the present invention.
  • the optical waveguide structure 2001 will be described, but the description of the same matters as those in the nineteenth and twenty-first embodiments will be omitted, and differences will be mainly described.
  • the optical waveguide structure 2001 of this embodiment is the same as that of the twenty-first embodiment except that a lens portion 2026 capable of condensing or diffusing the transmission light 2018 is provided in the light transmitting portion 2024 (through hole 2025). It is. That is, a lens portion 2026 formed of a convex lens (more precisely, a plano-convex lens) is provided in a lower portion (incident side to the optical waveguide 2009) in the through hole 2025.
  • the light emitted downward from the light emitting portion 2101 in FIG. 37 passes through the through hole 2025 of the substrate 2002, is condensed by the lens portion 2026, and the luminous flux (beam) is reduced.
  • the light is reflected by the reflecting surface 2961 and bent by 90 °, enters the core portion 2094 of the optical waveguide 2009, and advances in the core portion 2094 along the longitudinal direction (left direction in FIG. 37).
  • the lens unit 2026 may be capable of diffusing the transmission light 2018. In this case, a concave lens may be used.
  • the installation position of the lens unit 2026 is not limited to the position shown in FIG. 37, and may be, for example, in the middle or upper part of the light transmitting unit 2024 (through hole 2025), or in other places, for example, the core unit 2094. It may be on the way or at the exit side end (left end in FIG. 37).
  • Such a lens portion 2026 may be provided for the optical waveguide structure 2001 of the nineteenth and twentieth embodiments.
  • the light emitting element 2010 can be replaced with a light receiving element.
  • the light receiving element has, for example, a light receiving portion on the lower surface side and terminals (for example, a pair of terminals) on the upper surface side.
  • terminals for example, a pair of terminals
  • the light receiving portion receives the transmission light 2018, it is photoelectrically converted and an electrical signal is output from the terminal.
  • This electric signal is input to the electronic circuit element 2012 and subjected to signal processing (for example, signal amplification).
  • the optical waveguide structure 2001 of the present invention may include both a light emitting element and a light receiving element.
  • the light emitted from the light emitting unit of the light emitting element can be received by the light receiving unit of the light receiving element via the optical path conversion unit 2096 and the optical waveguide 2009 (and the optical path conversion unit 2096).
  • the first to twenty-second embodiments have been described above. However, the present invention is not limited to these embodiments, and may have other configurations as long as the gist of the invention is not changed. Further, the present invention may be a combination of configurations included in any two or more of the first to twenty-second embodiments.
  • the optical waveguide structure of the present invention as described above is excellent in light transmission efficiency and durability. For this reason, by providing the optical waveguide structure of the present invention, high-quality optical communication can be performed between two points, and a highly reliable electronic device (electronic device of the present invention) is obtained.
  • examples of the electronic device including the optical waveguide structure of the present invention include electronic devices such as a mobile phone, a game machine, a router device, a WDM device, a personal computer, a television, and a home server.
  • electronic devices such as a mobile phone, a game machine, a router device, a WDM device, a personal computer, a television, and a home server.
  • it is necessary to transmit a large amount of data at high speed between an arithmetic device such as an LSI and a storage device such as a RAM. Therefore, since such an electronic device includes the optical waveguide structure according to the present invention, problems such as noise and signal degradation peculiar to electric wiring are eliminated, and a dramatic improvement in performance can be expected.
  • the amount of heat generated in the optical waveguide portion is greatly reduced compared to electrical wiring. Therefore, the degree of integration in the substrate can be increased to reduce the size, the power required for cooling can be reduced, and the power consumption of the entire electronic device can be reduced.
  • the optical waveguide structure of the present invention as described above is in a state where the substrate or the optical waveguide is bent (bent state) by performing a bending operation, and the state where the bending operation is released and the substrate or the optical waveguide is extended. (Extended state) can be freely taken. For this reason, for example, it can be suitably used for hinges and slides of electronic devices such as mobile phones, game machines, PDAs, and notebook personal computers having hinges or slides.
  • a mobile phone when two points via a hinge part are connected by an optical waveguide structure, when the hinge part of the mobile phone is closed, the optical waveguide structure is bent and when the hinge part is opened, The optical waveguide structure is in an extended state.
  • the optical waveguide structure can maintain the electrical connection and the optical connection between two points sandwiching the movable part over a long period of time. For this reason, the mobile phone (electronic device) provided with the optical waveguide structure can improve the reliability.
  • the electronic device to which the optical waveguide structure of the present invention is applied is not limited to the above-described ones.
  • it is suitable for application to electronic devices such as router devices, WDM devices, personal computers, televisions, home servers, and the like. is there. In any of these electronic devices, it is necessary to transmit a large amount of data at high speed between an arithmetic device such as an LSI and a storage device such as a RAM.
  • optical waveguide manufacturing method Next, the manufacturing method of the optical waveguides 9, 9 ′, 1009, 2009 (hereinafter also referred to as the optical waveguide 9) and the constituent materials of the respective parts in each of the embodiments will be described.
  • the core parts 94, 1094, A method for forming 2094 hereinafter also referred to as a core portion 94
  • the photosensitive resin composition used in this embodiment is (A) a cyclic olefin resin; (B) The refractive index is different from (A), and at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group; (C) a photoacid generator; Is provided.
  • (C) a cyclic olefin resin (A) having a leaving group capable of leaving by an acid generated from a photoacid generator in the side chain; It is preferable to contain the monomer of following formula (100).
  • Such a photosensitive resin composition is formed into a film to be an optical waveguide forming film, and further used as a film including regions having different refractive indexes, for example, an optical waveguide film.
  • an optical / electrical hybrid substrate including an optical wiring using such an optical waveguide film, the optical wiring, and an electric circuit.
  • EMI electromagnetic wave interference
  • optical waveguide film By using the optical waveguide film, space saving can be achieved, which contributes to downsizing of electronic devices.
  • Such electronic devices include computers, servers, mobile phones, game machines, memory testers, appearance inspection robots, and the like.
  • (A) Cyclic olefin resin The cyclic olefin resin of component (A) is added in order to ensure the film moldability of the photosensitive resin composition, and serves as a base polymer.
  • the cyclic olefin resin may be unsubstituted or may be one in which hydrogen is substituted with another group.
  • cyclic olefin resins examples include norbornene resins and benzocyclobutene resins.
  • a norbornene-based resin from the viewpoints of heat resistance and transparency.
  • norbornene resin for example, (1) addition (co) polymer of norbornene type monomer obtained by addition (co) polymerization of norbornene type monomer, (2) addition copolymers of norbornene monomers with ethylene and ⁇ -olefins, (3) an addition polymer such as an addition copolymer of a norbornene-type monomer and a non-conjugated diene and, if necessary, another monomer; (4) a ring-opening (co) polymer of a norbornene-type monomer, and a resin obtained by hydrogenating the (co) polymer if necessary, (5) a ring-opening copolymer of a norbornene-type monomer and ethylene or ⁇ -olefins, and a resin obtained by hydrogenating the (co) polymer if necessary, (6) Ring-opening copolymers such as norbornene-type monomers and non-conjugated dienes, or other monomers, and polymers obtained by hydrogen
  • norbornene resins include, for example, ring-opening metathesis polymerization (ROMP), combination of ROMP and hydrogenation reaction, polymerization by radical or cation, polymerization using cationic palladium polymerization initiator, other polymerization initiators (for example, it can be obtained by any known polymerization method such as polymerization using a polymerization initiator of nickel or another transition metal).
  • ROMP ring-opening metathesis polymerization
  • combination of ROMP and hydrogenation reaction polymerization by radical or cation
  • polymerization using cationic palladium polymerization initiator cationic palladium polymerization initiator
  • other polymerization initiators for example, it can be obtained by any known polymerization method such as polymerization using a polymerization initiator of nickel or another transition metal).
  • addition (co) polymers are preferred as the norbornene-based resin.
  • Addition (co) polymers are also preferred because they are rich in transparency, heat resistance and flexibility.
  • an electrical component or the like may be mounted via solder.
  • an addition (co) polymer is preferable because it needs to have high heat resistance, that is, reflow resistance.
  • a film is formed from the photosensitive resin composition and incorporated in a product, it may be used in an environment of about 80 ° C., for example. Even in such a case, an addition (co) polymer is preferable from the viewpoint of ensuring heat resistance.
  • the norbornene-based resin preferably includes a norbornene repeating unit having a substituent containing a polymerizable group or a norbornene repeating unit having a substituent containing an aryl group.
  • repeating unit of norbornene having a substituent containing a polymerizable group the repeating unit of norbornene having a substituent containing an epoxy group, the repeating unit of norbornene having a substituent containing a (meth) acryl group, and an alkoxysilyl group At least one of the repeating units of norbornene having a substituent containing is preferable.
  • These polymerizable groups are preferable because of their high reactivity among various polymerizable groups.
  • the norbornene-based polymer preferably contains an alkylnorbornene repeating unit.
  • the alkyl group may be linear or branched.
  • the norbornene-based polymer has high flexibility, and therefore can provide high flexibility (flexibility).
  • a norbornene-based polymer containing an alkylnorbornene repeating unit is also preferable because of its excellent transmittance with respect to light in a specific wavelength region (in particular, a wavelength region near 850 nm).
  • R 1 represents an alkyl group having 1 to 10 carbon atoms
  • a represents an integer of 0 to 3
  • b represents an integer of 1 to 3
  • p 1 / q 1 is 20 or less.
  • the norbornene-based resin of the formula (1) can be produced as follows. (1) is obtained by dissolving norbornene having R 1 and norbornene having an epoxy group in the side chain in toluene and solution polymerization using Ni compound (A) as a catalyst.
  • the manufacturing method of norbornene which has an epoxy group in a side chain is as (i) (ii), for example.
  • R 1 is an alkyl group having 4 to 10 carbon atoms
  • R 2 represents an alkyl group having 1 to 10 carbon atoms
  • R 3 represents a hydrogen atom or a methyl group
  • c represents an integer of 0 to 3
  • the norbornene-based resin of the formula (2) is obtained by dissolving norbornene having R 2 and norbornene having acryl and methacryl groups in the side chain in toluene, and performing solution polymerization using the Ni compound (A) described above as a catalyst. Obtainable.
  • R 2 is an alkyl group having 4 to 10 carbon atoms and c is 1 from the viewpoint of achieving both flexibility and heat resistance.
  • Compounds such as copolymers of butylbornene and 2- (5-norbornenyl) methyl acrylate, copolymers of hexylnorbornene and 2- (5-norbornenyl) methyl acrylate, decylnorbornene and 2- (5-norbornenyl) methyl acrylate And a copolymer thereof are preferred.
  • R 4 represents an alkyl group having 1 to 10 carbon atoms
  • each X 3 independently represents an alkyl group having 1 to 3 carbon atoms
  • d represents 0 to 3 carbon atoms. Represents an integer, and p 3 / q 3 is 20 or less.
  • the resin of the formula (3) can be obtained by dissolving norbornene having R 4 and norbornene having an alkoxysilyl group in the side chain in toluene, and solution polymerization using the Ni compound (A) described above as a catalyst. it can.
  • norbornene-based polymers represented by the formula (3) in particular, a compound in which R 4 is an alkyl group having 4 to 10 carbon atoms, d is 1 or 2, and X 3 is a methyl group or an ethyl group,
  • R 5 represents an alkyl group having 1 to 10 carbon atoms
  • a 1 and A 2 each independently represent a substituent represented by the following formulas (5) to (7), (It is not the same substituent at the same time, and p 4 / q 4 + r is 20 or less.)
  • R 6 represents a hydrogen atom or a methyl group, and g represents an integer of 0 to 3.
  • X 4 each independently represents an alkyl group having 1 to 3 carbon atoms, and h represents an integer of 0 to 3)
  • norbornene-based polymer represented by the formula (4) for example, any one of butyl norbornene, hexyl norbornene or decyl norbornene, 2- (5-norbornenyl) methyl acrylate, norbornenyl ethyl trimethoxysilane, Terpolymer with either triethoxysilyl norbornene or trimethoxysilyl norbornene, butyl bornene, hexyl norbornene or decyl norbornene, terpolymer of 2- (5-norbornenyl) methyl acrylate and methylglycidyl ether norbornene, butylbornene, Either hexyl norbornene or decyl norbornene and methyl glycidyl ether norbornene, norbornenyl ethyltrimethoxysilane, triethoxysilyl Terpolymers, etc. with either norborn
  • R 7 represents an alkyl group having 1 to 10 carbon atoms
  • R 8 represents a hydrogen atom, a methyl group or an ethyl group
  • Ar represents an aryl group
  • X 1 represents oxygen Represents an atom or a methylene group
  • X 2 represents a carbon atom or a silicon atom
  • i represents an integer of 0 to 3
  • j represents an integer of 1 to 3
  • p 5 / q 5 is 20 or less is there.
  • Norbornene having R 7 and norbornene containing-(CH 2 ) -X 1 -X 2 (R 8 ) 3-j (Ar) j in the side chain are dissolved in toluene, and solution polymerization is performed using a Ni compound as a catalyst. (8) is obtained.
  • norbornene polymers represented by the formula (8) those in which X 1 is an oxygen atom, X 2 is a silicon atom, and Ar is a phenyl group are preferable.
  • R 7 is an alkyl group having 4 to 10 carbon atoms
  • X 1 is an oxygen atom
  • X 2 is a silicon atom
  • Ar is a phenyl group
  • R 7 is an alkyl group having 4 to 10 carbon atoms
  • X 1 is a methylene group
  • X 2 is a carbon atom
  • Ar is Compounds in which R 8 is a hydrogen atom, i is 0, and j is 1, for example, a copolymer of butylbornene and phenylethylnorbornene, a copolymer of hexylnorbornene and phenylethylnorbornene, a copolymer of decylnorbornene and phenylethylnorbornene Etc. Further, the following may be used as the norbornene resin.
  • R 10 represents an alkyl group having 1 to 10 carbon atoms
  • R 11 represents an aryl group
  • k is 0 or more and 4 or less.
  • P 6 / q 6 is 20 or less. is there.
  • p 1 / q 1 to p 3 / q 3 , p 5 / q 5 , p 6 / q 6 or p 4 / q 4 + r may be 20 or less, preferably 15 or less, About 0.1 to 10 is more preferable. Thereby, the effect including the repeating unit of multiple types of norbornene is exhibited.
  • the norbornene-based resin as described above preferably has a leaving group.
  • the leaving group is a group that is released by the action of an acid.
  • those having at least one of —O— structure, —Si—aryl structure and —O—Si— structure in the molecular structure are preferable.
  • Such an acid leaving group is released relatively easily by the action of a cation.
  • the leaving group that causes a decrease in the refractive index of the resin by leaving at least one of the —Si-diphenyl structure and the —O—Si-diphenyl structure is preferable.
  • the side chain may have an epoxy group.
  • the compound represented by the formula (31) includes, for example, hexyl norbornene, diphenylmethyl norbornene methoxysilane (norbornene containing —CH 2 —O—Si (CH 3 ) (Ph) 2 in the side chain) and epoxy norbornene in toluene. It can be obtained by dissolving and solution polymerization using a Ni compound as a catalyst.
  • Component (B) is at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group.
  • This component (B) may have any refractive index different from that of the resin of component (A) and is compatible with the resin of component (A).
  • the refractive index difference between the component (B) and the resin of the component (A) is preferably 0.01 or more.
  • the refractive index of the component (B) may be higher than that of the resin of the component (A), but the refractive index of the component (B) is preferably lower than that of the resin of the component (A).
  • Component (B) monomer having a cyclic ether group and oligomer having a cyclic ether group are polymerized by ring-opening in the presence of an acid.
  • the molecular weight (weight average molecular weight) of the monomer and the molecular weight (weight average molecular weight) of the oligomer are preferably 100 or more and 400 or less, respectively.
  • Component (B) has, for example, an oxetanyl group or an epoxy group. Such a cyclic ether group is preferable because it is easily opened by an acid.
  • the monomer having an oxetanyl group and the oligomer having an oxetanyl group those selected from the group of the following formulas (11) to (20) are preferable.
  • these there is an advantage that transparency in the vicinity of a wavelength of 850 nm is excellent and both flexibility and heat resistance are possible. These may be used alone or in combination.
  • n is 0 or more and 3 or less.
  • compounds represented by the following formulas (32) and (33) can be used as the compound having an oxetanyl group.
  • the compound represented by the formula (32) trade name TOSOX manufactured by Toagosei Co., Ltd.
  • trade name OX-SQ manufactured by Toagosei Co., Ltd. trade name OX-SQ manufactured by Toagosei Co., Ltd.
  • n 1 or 2
  • examples of the monomer having an epoxy group and the oligomer having an epoxy group include the following.
  • the monomer and oligomer having an epoxy group are polymerized by ring-opening in the presence of an acid.
  • the monomer having an epoxy group and the oligomer having an epoxy group those represented by the following formulas (34) to (39) can be used.
  • the compound represented by the formula (34) is epoxy norbornene, and for example, EpNB manufactured by Promeras Corporation can be used.
  • the compound represented by the formula (35) is ⁇ -glycidoxypropyltrimethoxysilane.
  • Z-6040 manufactured by Toray Dow Corning Silicone can be used.
  • the compound represented by the formula (36) is 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • E0327 manufactured by Tokyo Chemical Industry can be used.
  • the compound represented by the formula (37) is 3,4-epoxycyclohexenylmethyl-3, '4'-epoxycyclohexenecarboxylate, and as this compound, for example, Celoxide 2021P manufactured by Daicel Chemical Industries, Ltd. is used. can do.
  • the compound represented by the formula (38) is 1,2-epoxy-4-vinylcyclohexane, and as this compound, for example, Celoxide 2000 manufactured by Daicel Chemical Industries, Ltd. can be used.
  • the compound represented by the formula (39) is 1,2: 8,9 diepoxy limonene.
  • this compound for example, (Celoxide 3000 manufactured by Daicel Chemical Industries, Ltd.) can be used.
  • a monomer having an oxetanyl group an oligomer having an oxetanyl group, a monomer having an epoxy group, and an oligomer having an epoxy group may be used in combination.
  • the monomer having an oxetanyl group and the oligomer having an oxetanyl group have a slow initiation reaction for initiating polymerization but a fast growth reaction.
  • a monomer having an epoxy group and an oligomer having an epoxy group have a fast initiation reaction for initiating polymerization, but have a slow growth reaction.
  • the addition amount of the component (B) is preferably 1 part by weight or more and 50 parts by weight or less, more preferably 2 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the component (A). .
  • photoacid generator Any photoacid generator may be used as long as it can generate Bronsted acid or Lewis acid by absorbing light (active radiation) energy.
  • photoacid generator triphenylsulfonium trifluoromethanesulfonate, tris (4-t-butyl) can be used.
  • Sulfonium salts such as phenyl) sulfonium-trifluoromethanesulfonate, diazonium salts such as p-nitrophenyldiazonium hexafluorophosphate, ammonium salts, phosphonium salts, diphenyliodonium trifluoromethanesulfonate, (triccumyl) iodonium-tetrakis (pentafluorophenyl) borate, etc.
  • the content of the photoacid generator is preferably 0.01 parts by weight or more and 0.3 parts by weight or less with respect to 100 parts by weight of the component (A), and is 0.02 parts by weight or more and 0.2 parts by weight or less. It is more preferable that Thereby, there exists an effect of a reactive improvement.
  • the photosensitive resin composition may contain additives such as a sensitizer in addition to the above components (A), (B), and (C).
  • the sensitizer increases the sensitivity of the photoacid generator to light (actinic radiation), reduces the time and energy required to activate (react or decompose) the photoacid generator, It has a function of changing the wavelength of light (active radiation) to a wavelength suitable for activation.
  • Such a sensitizer is appropriately selected according to the sensitivity of the photoacid generator and the peak wavelength of absorption of the sensitizer, and is not particularly limited.
  • 9,10-dibutoxyanthracene (CAS No. 76275) is selected.
  • sensitizer examples include, for example, 2-isopropyl-9H-thioxanthen-9-one, 4-isopropyl-9H-thioxanthen-9-one, 1-chloro-4-propoxythioxanthone, phenothiazine Or a mixture thereof.
  • the content of the sensitizer in the photosensitive resin composition is preferably 0.01% by weight or more, more preferably 0.5% by weight or more, and further preferably 1% by weight or more. preferable. In addition, it is preferable that an upper limit is 5 weight% or less.
  • an antioxidant can be added to the core layer forming material 1900. Thereby, generation of undesired free radicals and natural oxidation of the polymer 1915 can be prevented. As a result, the characteristics of the obtained core layer 1093 (optical waveguide 1009) can be improved.
  • antioxidants examples include Ciba (registered trademark, the same applies hereinafter) IRGANOX (registered trademark, the same applies hereinafter) 1076 and Ciba IRGAFOS (registered trademark, available) from Ciba Specialty Chemicals of Tarrytown, New York. The same applies hereinafter.) 168 is preferably used.
  • antioxidants include, for example, Ciba Irganox (registered trademark, hereinafter the same) 129, Ciba Irganox 1330, Ciba Irganox 1010, Ciba Cyanox (registered trademark, the same applies below) 1790, CibaI. (Registered trademark) 3114, Ciba Irganox 3125, etc. can also be used.
  • antioxidant can be omitted, for example, when the film 1910 is not exposed to oxidation conditions or when the period of time is extremely short.
  • the cyclic olefin resin having a leaving group in the side chain as the component (A), the photoacid generator of the component (C), and the following formula (100) as the component (B) is especially preferable.
  • cyclic olefin resin (A) constituting the cyclic olefin resin having a leaving group in the side chain those described above can be used.
  • a polymer of a monocyclic monomer such as cyclohexene or cyclooctene examples include polymers of polycyclic monomers such as norbornene, norbornadiene, dicyclopentadiene, dihydrodicyclopentadiene, tetracyclododecene, tricyclopentadiene, dihydrotricyclopentadiene, tetracyclopentadiene, and dihydrotetracyclopentadiene.
  • one or more cyclic olefin resins selected from polymers of polycyclic monomers are preferably used. Thereby, the heat resistance of resin can be improved.
  • polymerization forms known forms such as random polymerization and block polymerization can be applied.
  • specific examples of polymerization of norbornene monomers include (co) polymers of norbornene monomers, copolymers of norbornene monomers and other copolymerizable monomers such as ⁇ -olefins, A combined hydrogenated product corresponds to a specific example.
  • These cyclic olefin resins can be produced by a known polymerization method.
  • the polymerization methods include an addition polymerization method and a ring-opening polymerization method.
  • Norbornene resin is preferable (that is, an addition polymer of a norbornene compound). Thereby, it is excellent in transparency, heat resistance, and flexibility.
  • the leaving group a part of the molecule is cleaved by the action of an acid (H + ) generated from a photoacid generator, and then leaves.
  • an acid H +
  • those having at least one of the above-described —O— structure, —Si-aryl structure and —O—Si— structure in the molecular structure (side chain) are preferable.
  • the leaving group as described above is released relatively easily by the action of acid (H + ).
  • the leaving group that causes a decrease in the refractive index of the resin by leaving is preferably at least one of a -Si-diphenyl structure and a -O-Si-diphenyl structure.
  • the content of the leaving group is not particularly limited, but is preferably 10 to 80% by weight, particularly 20 to 60% by weight in the cyclic olefin resin having a leaving group in the side chain. Is more preferable. When the content is within the above range, it is particularly excellent in both flexibility and refractive index modulation function (effect of increasing the refractive index difference).
  • a cyclic olefin resin having a leaving group in the side chain one having a repeating unit represented by the following formula (101) and / or the following formula (102) is preferable. Thereby, the refractive index of resin can be made high.
  • n is an integer of 0 or more and 9 or less.
  • the photosensitive resin composition contains a monomer described in the above formula (100) (hereinafter referred to as a first monomer). Thereby, the refractive index difference between the left and right cores / claddings can be further expanded.
  • the content of the first monomer is not particularly limited, but is preferably 1 part by weight or more and 50 parts by weight or less, particularly 2 parts by weight, based on 100 parts by weight of the cyclic olefin resin having a leaving group in the side chain. It is preferable that it is 20 parts by weight or more. Thereby, the refractive index modulation between the core / cladding is made possible, and both flexibility and heat resistance can be achieved.
  • the reason for excellent balance between the refractive index modulation between the core and the clad and flexibility is as follows. It is considered as follows.
  • the reason that the refractive index modulation between the core and the clad is excellent is that the first monomer undergoes a polymerization reaction by an acid generated by light (active radiation) irradiation or the like. This is because the first monomer is excellent in its reactivity when starting. When the reactivity of the first monomer is excellent, the curability of the first monomer is increased, and the diffusibility of the first monomer caused by the concentration gradient of the first monomer is improved. Thereby, the refractive index difference between the light (active radiation) irradiation region and the non-irradiation region can be increased.
  • the polymerization reaction proceeds and the crosslinking density as the photosensitive resin composition does not increase so much. Therefore, it is excellent in flexibility.
  • the photosensitive resin composition is not particularly limited, but may contain a second monomer different from the first monomer.
  • the second monomer different from the first monomer may be a monomer having a different structure or a monomer having a different molecular weight.
  • the second monomer is contained as the component (B), and examples thereof include epoxy compounds, other oxetane compounds different from those represented by the formula (100), vinyl ether compounds, and the like.
  • the second monomer is contained as the component (B), and examples thereof include epoxy compounds, other oxetane compounds different from those represented by the formula (100), vinyl ether compounds, and the like.
  • at least one of an epoxy compound (particularly an alicyclic epoxy compound) and a bifunctional oxetane compound (a monomer having two oxetanyl groups) is preferable.
  • the reactivity of the first monomer and the cyclic olefin resin can be improved, whereby the heat resistance of the waveguide can be improved while maintaining transparency.
  • the second monomer includes the compound of the above formula (15), the compound of the above formula (12), the compound of the above formula (11), the compound of the above formula (18), and the compound of the above formula (19). And compounds of the above formulas (34) to (39).
  • the content of the second monomer is not particularly limited, but is preferably 1 part by weight or more and 50 parts by weight or less, particularly 2 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the cyclic olefin resin. More preferably. Thereby, the reactivity with the first monomer can be improved.
  • the combined ratio of the second monomer and the first monomer is not particularly limited, but is preferably 0.1 to 1, particularly preferably 0 by weight ratio (weight of the second monomer / weight of the first monomer). .1 to 0.6 is preferable. When the combined ratio is within the above range, the balance between the speed of reactivity and the heat resistance of the waveguide is excellent.
  • content of a photo-acid generator is not specifically limited, It is 0.01 weight part or more and 0.3 weight part or less with respect to 100 weight part of cyclic olefin resin which has a leaving group in the said side chain. In particular, it is more preferably 0.02 parts by weight or more and 0.2 parts by weight or less. If the content is less than the lower limit, the reactivity may decrease, and if the content exceeds the upper limit, the optical waveguide may be colored and light loss may decrease.
  • the photosensitive resin composition may contain a curing catalyst, an antioxidant and the like in addition to the above-mentioned cyclic olefin resin, photoacid generator, first monomer and second monomer.
  • the photosensitive resin composition used in the present invention can be used as a composition for forming the core portion 94.
  • Optical waveguide manufacturing method 16 to 18, 28, 29, 30, 38, 39, and 40 are cross-sectional views schematically showing process examples of the method for manufacturing an optical waveguide, respectively.
  • a method for producing an optical waveguide using a photosensitive resin composition when the component (B) has a lower refractive index than the cyclic olefin resin of the component (A) will be described as an example.
  • the method for manufacturing the optical waveguide 9 ′ is the same as that of the optical waveguide 9, and is represented by the optical waveguide 9.
  • the photosensitive resin composition is dissolved in a solvent to prepare varnishes 900, 1900, and 2900 (hereinafter also referred to as varnish 900).
  • varnish 900 is applied on the cladding layers 91, 1091, and 2091 (hereinafter also referred to as the cladding layer 91).
  • Examples of the solvent for preparing the photosensitive resin composition in a varnish form include diethyl ether, diisopropyl ether, 1,2-dimethoxyethane (DME), 1,4-dioxane, tetrahydrofuran (THF), tetrahydropyran (THP), Ether solvents such as anisole, diethylene glycol dimethyl ether (diglyme), diethylene glycol ethyl ether (carbitol), cellosolv solvents such as methyl cellosolve, ethyl cellosolve, phenyl cellosolve, aliphatic hydrocarbon solvents such as hexane, pentane, heptane, cyclohexane , Aromatic hydrocarbon solvents such as toluene, xylene, benzene and mesitylene, and aromatic heterocyclic compounds such as pyridine, pyrazine, furan, pyrrole, thiophene and methylpyrrol
  • the varnish 900 becomes a film 910 for forming an optical waveguide.
  • This film 910 has core layers 93, 1093, and 2093 (hereinafter referred to as core layers) in which a core portion 94 and clad portions 95, 1095, and 2095 (hereinafter also referred to as cladding portions 95) are formed by light irradiation, which will be described later. 93).
  • examples of the method of applying the varnish 900 include a doctor blade method, a spin coating method, a dipping method, a table coating method, a spray method, an applicator method, a curtain coating method, and a die coating method. It is not limited.
  • a sheet having a refractive index lower than that of a core portion 94 described later is used, and for example, a sheet containing a norbornene-based resin and an epoxy resin is used.
  • the film 910 is selectively irradiated with light and actinic radiation (for example, ultraviolet rays).
  • actinic radiation for example, ultraviolet rays.
  • a mask M in which an opening is formed is disposed above films 910, 1910, and 2910 (hereinafter also referred to as film 910).
  • the film 910 is irradiated with light (active radiation) through the opening of the mask M.
  • Examples of the light (active radiation) used include those having a peak wavelength in the wavelength range of 200 to 450 nm. Thereby, although depending on the composition of the photoacid generator, the photoacid generator can be activated relatively easily.
  • the constituent material of the mask M is appropriately selected depending on the active radiation to be irradiated. Specifically, the constituent material of the mask M is a material that can block the active radiation applied to the film 910. Any known material can be used for the mask M as long as it has such characteristics.
  • the mask M may be formed in advance (separately formed) (for example, plate-shaped) or may be formed on the film 910 by, for example, a vapor deposition method or a coating method.
  • Preferred examples of the mask M include photomasks made of quartz glass and PET base materials, stencil masks, metal thin films formed by vapor deposition methods (evaporation, sputtering, etc.), etc. Among these, it is particularly preferable to use a photomask or a stencil mask. This is because a fine pattern can be formed with high accuracy, and handling is easy, which is advantageous in improving productivity.
  • the irradiation amount of light (active radiation) is not particularly limited, but is preferably about 0.1 to 9 J / cm 2 , more preferably about 0.2 to 6 J / cm 2 , and More preferably, it is about 2 to 3 J / cm 2 .
  • the use of the mask M can be omitted when highly directional light (active radiation) such as laser light is used.
  • acid is generated from the photoacid generator.
  • the component (B) is polymerized by the generated acid.
  • component (B) does not polymerize.
  • the amount of the component (B) is reduced.
  • the component (B) of the unirradiated part diffuses into the irradiated part, thereby causing a difference in refractive index between the irradiated part and the unirradiated part.
  • the component (B) of the unirradiated part diffuses into the irradiated part, and the refractive index of the unirradiated part increases. The refractive index of the irradiated part is lowered.
  • the refractive index difference between the polymer obtained by polymerizing the component (B) and the monomer having a cyclic ether group is about 0 or more and 0.001 or less, and the refractive index is considered to be substantially the same.
  • the cyclic olefin resin used in the present invention does not necessarily have a leaving group, but when a cyclic olefin resin having a leaving group is used as the component (A), The following effects occur.
  • the leaving group of the cyclic olefin resin is eliminated by the acid generated from the photoacid generator.
  • a leaving group such as a —Si-aryl structure, —Si-diphenyl structure, and —O—Si-diphenyl structure
  • the refractive index of the resin decreases due to the leaving. Therefore, the refractive index of the irradiated portion is further lowered as compared with that before the leaving group is removed.
  • the film 910 is heated.
  • the component (B) of the irradiated portion irradiated with light (active radiation) is further polymerized.
  • the component (B) in the unirradiated part is volatilized. Thereby, in an unirradiated part, a component (B) decreases and it becomes a refractive index close
  • a region irradiated with light (active radiation) becomes a clad portion 95, and an unirradiated region is a core portion 94.
  • the structure concentration derived from the component (B) in the core portion 94 and the structure concentration derived from the component (B) in the cladding portion 95 are different. Specifically, the structure concentration derived from the component (B) in the core portion 94 is lower than the structure concentration derived from the component (B) in the cladding portion 95.
  • the clad part 95 has a lower refractive index than the core part 94, and the refractive index difference between the clad part 95 and the core part 94 is 0.01 or more. As described above, the core portion 94 and the clad portion 95 are formed on the film 910, and the core layer 93 is obtained.
  • the heating temperature in this heating step is not particularly limited, but is preferably about 30 to 180 ° C., more preferably about 40 to 160 ° C.
  • the heating time is preferably set so that the polymerization reaction of the component (B) of the irradiated portion irradiated with light (active radiation) is almost completed, specifically about 0.1 to 2 hours. It is more preferable that the time is about 0.1 to 1 hour.
  • a film similar to that of the clad layer 91 is stuck on the core layer 93.
  • This film becomes the clad layers 92, 1092, and 2092 (hereinafter also referred to as the clad layer 92).
  • the pair of clad layers 91 and 92 are arranged so as to sandwich the core portion 94 from a direction different from the clad portion 95.
  • the clad layer 92 can also be formed by a method of applying a liquid material on the core layer 93 and curing (solidifying) it, instead of attaching a film-like one.
  • a method for forming the clad layer 91 (92) a method in which a varnish containing a clad material (clad layer forming material) is applied and cured (solidified), and a method in which a curable monomer composition is applied and cured (solidified). Any method may be used.
  • the clad layer 91 (92) is formed by a coating method
  • examples thereof include a spin coating method, a dipping method, a table coating method, a spray method, an applicator method, a curtain coating method, and a die coating method.
  • Examples of the constituent material of the clad layer 91 (92) include cyclic resins such as acrylic resin, methacrylic resin, polycarbonate, polystyrene, epoxy resin, polyamide, polyimide, polybenzoxazole, benzocyclobutene resin, and norbornene resin. These resins can be used, and one or more of these can be used in combination (polymer alloy, polymer blend (mixture), copolymer, composite (laminate), etc.).
  • cyclic resins such as acrylic resin, methacrylic resin, polycarbonate, polystyrene, epoxy resin, polyamide, polyimide, polybenzoxazole, benzocyclobutene resin, and norbornene resin. These resins can be used, and one or more of these can be used in combination (polymer alloy, polymer blend (mixture), copolymer, composite (laminate), etc.).
  • epoxy resins polyimides, polybenzoxazoles, cyclic olefin resins such as benzocyclobutene resins and norbornene resins, and those containing them (mainly) in terms of particularly excellent heat resistance It is preferable to use, and particularly, those mainly composed of norbornene-based resins (norbornene-based polymers) are preferable.
  • the norbornene-based polymer is excellent in heat resistance, in the optical waveguide 9 using this as a constituent material of the cladding layer 91 (92), when the conductor layer is formed on the optical waveguide 9, the conductor layer is processed to form a wiring. At this time, even when the optical element is heated to mount it, the clad layer 91 (92) can be prevented from being softened and deformed.
  • norbornene-based polymers or norbornene-based monomers that are raw materials thereof are preferable because they are relatively inexpensive and easily available.
  • the clad layers 91 and 92 and the core layer 93 are excellent in resistance to deformation such as bending, even when repeatedly bent and deformed. The delamination is difficult to occur, and the occurrence of microcracks in the clad layers 91 and 93 is also prevented.
  • the adhesion with the core layer 93 is further increased, and delamination between the clad layer 91 (92) and the core layer 93 is achieved. Can be prevented. For this reason, the optical transmission performance of the optical waveguide 9 is maintained, and the optical waveguide 9 having excellent durability can be obtained.
  • the average thickness of the clad layers 91 and 92 is preferably about 0.1 to 1.5 times the average thickness of the core layer 93, more preferably about 0.3 to 1.25 times, Specifically, the average thickness of the clad layers 91 and 92 is not particularly limited, but each is preferably about 1 to 200 ⁇ m, more preferably about 5 to 100 ⁇ m, and more preferably about 10 to 60 ⁇ m. More preferably. Thereby, the function as a clad layer is suitably exhibited while preventing the optical waveguide 9 from becoming unnecessarily large (pressure film).
  • the optical waveguide 9 shown in FIGS. Moreover, when the optical waveguide 9 is obtained with the photosensitive resin composition used in the present invention, the solder reflow resistance is particularly excellent. Furthermore, even when the optical waveguide 9 is bent, the optical loss can be reduced.
  • the photosensitive resin composition is directly supplied onto the clad layer 91 to form the film 910 (core layer 93) has been described, but the film 910 (core layer) is formed on another substrate. 93), the obtained core layer 93 may be transferred onto the clad layer 91 or the clad layer 92, and then the clad layer 91 and the clad layer 92 may be overlapped via the core layer 93.
  • the substrate include a silicon substrate, a silicon dioxide substrate, a glass substrate, a quartz substrate, and a polyethylene terephthalate (PET) film.
  • the component (B) in the unirradiated portion is irradiated with the irradiated portion.
  • the refractive index of the unirradiated part becomes higher than the refractive index of the irradiated part.
  • the component (B) volatilizes from the unirradiated portion. Thereby, a refractive index difference further occurs between the irradiated portion and the unirradiated portion.
  • the core portion can be patterned by a simple method of simply irradiating light (active radiation). For example, by appropriately selecting an exposure pattern such as a photomask, an optical path (core part) of any shape and arrangement can be formed, and a thin optical path can be formed sharply. This contributes to integration, and the device can be miniaturized. That is, according to the present invention, a core portion having a wide degree of freedom in designing the pattern shape of the core portion and high dimensional accuracy can be obtained.
  • a technique for crosslinking a norbornene resin having an oxetanyl group or the like with a thermal acid generator is known.
  • the composition used in such a technique contains a norbornene-based resin having an oxetanyl group or the like as a base polymer. And the whole composition is heated and a crosslinked structure is produced in the whole composition. Therefore, this composition that has been conventionally used is selectively irradiated with light (active radiation) to generate an acid, thereby selectively polymerizing the monomer in a region where the monomer concentration is reduced. There is no technical idea that a density difference can be achieved by diffusion.
  • the photosensitive resin composition used in the present embodiment when selectively irradiated with light (active radiation), the amount of the component (B) in the irradiated portion decreases due to the generation of acid, so that the unirradiated portion The component (B) is diffused into the irradiated part, and as a result, a difference in refractive index occurs between the irradiated part and the unirradiated part.
  • the cyclic olefin resin has a leaving group that is desorbed by an acid generated from the photoacid generator and reduces the refractive index of the cyclic olefin resin of the component (A) by desorption,
  • the refractive index of the region irradiated with light (active radiation) can be reliably lowered as compared with the unirradiated region.
  • the side chain is chemically stable, so the core portion, the cladding, and the like can be formed depending on conditions such as light (active radiation) irradiation and heating. It can suppress that the refractive index of a part changes.
  • a norbornene resin is used as the component (A).
  • the light transmittance in a specific wavelength can be improved reliably, and reduction of propagation loss can be aimed at reliably.
  • the clad part 95 has a lower refractive index than the core part 94, and the difference in refractive index between the clad part 95 and the core part 94 is 0.01 or more, so that light can be reliably confined in the core part 94. And the generation of light propagation loss can be suppressed.
  • compositions containing a polymer, a monomer, a promoter and a catalyst precursor is known as a composition for forming an optical waveguide.
  • the monomer can form a reactant upon irradiation with light (active radiation), and the refractive index of the region irradiated with light (active radiation) can be made different from the refractive index of the unirradiated region.
  • the catalyst precursor is a substance capable of initiating a monomer reaction (polymerization reaction, crosslinking reaction, etc.), and a substance whose activation temperature changes due to the action of a co-catalyst activated by irradiation with light (active radiation). It is. Due to the change in the activation temperature, the temperature at which the monomer reaction starts is different between the irradiated region of light (active radiation) and the unirradiated region, and as a result, a reactant can be formed only in the irradiated region. .
  • the photosensitive resin composition used in this embodiment does not require a substance containing such a large amount of metal elements. For this reason, the increase of the propagation loss as described above is prevented, and the optical waveguide 9 excellent in propagation efficiency and heat resistance can be obtained. Even when such a conventional composition is used, the core part and the clad part can be made separately by irradiation with light (active radiation). However, according to the photosensitive resin composition used in this embodiment, the core part Since the difference in refractive index between 94 and the clad portion 95 is further increased and the heat resistance is improved, the optical waveguide 9 with higher reliability can be obtained. This is mainly due to the optimization of the composition of component (A) and component (B).
  • the present invention can provide an optical waveguide film or the like in which generation of light propagation loss is suppressed.
  • generation of light propagation loss can be remarkably suppressed.
  • the optical waveguide 9 having the core portion 94 having a desired shape and high dimensional accuracy can be obtained by a simple process and in a short time.
  • the manufacturing method of a light guide is demonstrated.
  • the conductor portion 3 is first formed on the inner peripheral surface of the through hole 1022 by the method described above,
  • the core layer forming material 1900 is filled inside, and irradiation with active radiation and heating are performed as necessary (according to the composition and characteristics of the core layer forming material 1900) to form the core layer.
  • the light guide 1024 is formed by curing the material 1900.
  • the formation of the core layer 1093 of the optical waveguide 1009 and the formation of the light guide 1024 may be performed separately, but all of the formation process of the core layer 1093 and the formation of the light guide 1024 of the optical waveguide 1009 or Some can be done at the same time. For example, all or part of the heating process can be performed simultaneously. Thereby, the number of manufacturing steps can be reduced, and manufacturing can be performed more easily and in a short time.
  • the vertical optical waveguide 1023 is formed in the through hole 1022 as in the sixteenth, seventeenth and eighteenth embodiments, first, the entire circumference or a part (rectangular portion 1224) of the inner surface of the through hole 1022 is first described above.
  • the conductor portion 1003 is formed by the above-described method, and then the core layer forming material 1900 described above is filled inside (or the circular portion 1222).
  • actinic radiation is selectively radiated only to, for example, a portion to be the clad portion 1025 in the filled core layer forming material 1900 and, if necessary, (the core layer forming material 1900 Depending on the composition and characteristics, heating is performed at least once to form the core portion 1024 and the clad portion 1025.
  • the irradiation method and conditions of actinic radiation, the heating method and conditions, and other matters can be the same as described above.
  • the formation of the core layer 1093 of the optical waveguide 1009 and the formation of the vertical optical waveguide 23 may be performed separately. All or part of it can be performed simultaneously. For example, all or a part of the supplying (coating and filling) step of the core layer forming material 1900, the active radiation irradiation step, the heating step, and the like can be performed simultaneously. Thereby, the number of manufacturing steps can be reduced, and manufacturing can be performed more easily and in a short time.
  • the light emitting element 1010 has been described as a representative example as an element, but a configuration in which a light receiving element having a light receiving portion is mounted instead of the light emitting element 1010 may be used.
  • the transmission light 1018 can be guided to the light receiving unit of the light receiving element by the optical waveguide 1009, the optical path conversion unit 1096, and the light guide (core unit) 1024.
  • the light guide (core unit) 1024 At least one set of both the light emitting element and the light receiving element may be mounted.
  • the example having the light emitting element 2010 has been described.
  • the light emitting element 2010 or the light receiving element may be provided.
  • one or two or more sets of both the light emitting element and the light receiving element may be mounted.
  • the electronic circuit element electronic circuit unit
  • present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within a scope that can achieve the object of the present invention are included in the present invention.
  • the optical waveguide film is formed using the photosensitive resin composition.
  • the present invention is not limited to this, and the optical waveguide film may be used for a hologram or the like.
  • the above-mentioned photosensitive resin composition is suitable for forming a film in which a region having a high refractive index and a region having a low refractive index are mixed.
  • Example 1 Production of optical waveguide (Example 1) (1) Synthesis of norbornene-based resin having a leaving group In a glove box filled with dry nitrogen in which the water and oxygen concentrations are both controlled to 1 ppm or less, 7.2 g (40.1 mmol) of hexylnorbornene (HxNB) ), 12.9 g (40.1 mmol) of diphenylmethylnorbornenemethoxysilane was weighed into a 500 mL vial, 60 g of dehydrated toluene and 11 g of ethyl acetate were added, and the top was sealed with a silicon sealer.
  • HxNB hexylnorbornene
  • Ni catalyst represented by the following chemical formula (B) and 10 mL of dehydrated toluene are weighed in a 100 mL vial, put a stirrer chip and sealed, and the catalyst is thoroughly stirred to completely Dissolved in.
  • the molar ratio of each structural unit in the polymer # 1 was 50 mol% for the hexylbornene structural unit and 50 mol% for the diphenylmethylnorbornenemethoxysilane structural unit according to identification by NMR.
  • the refractive index by Metricon was 1.55 (measurement wavelength: 633 nm).
  • a dry film in which Avatrel 2000P is laminated in advance on a polyethersulfone (PES) film so as to have a dry thickness of 20 ⁇ m is bonded to the above core layer, and put into a vacuum laminator set at 140 ° C. for thermocompression bonding. It was. Thereafter, 100 mJ was irradiated on the entire surface and heated in a dryer at 120 ° C. for 1 hour to cure Avatrel 2000P to form an upper clad layer to obtain an optical waveguide. At this time, the upper cladding layer was colorless and transparent, and its refractive index was 1.52.
  • the optical waveguide was irradiated with a laser beam having a wavelength of 656 nm by “Optical waveguide” analyzer OWA-9500 manufactured by EXFO, Canada, and the refractive index of the core region and the cladding region was measured, and the difference between them was calculated. As a result, the refractive index difference was 0.02.
  • Example 2 (1) Synthesis of norbornene-based resin having no leaving group In a glove box filled with dry nitrogen in which the water and oxygen concentrations are both controlled to 1 ppm or less, 9.4 g of hexylnorbornene (HxNB) (53. 1 mmol) and 10.5 g (53.1 mmol) of phenylethylnorbornene were weighed into a 500 mL vial, 60 g of dehydrated toluene and 11 g of ethyl acetate were added, and the top was sealed with a silicon sealer.
  • HxNB hexylnorbornene
  • the molar ratio of each structural unit in polymer # 2 was 50 mol% for the hexylbornene structural unit and 50 mol% for the phenylethylnorbornene structural unit according to identification by NMR.
  • the refractive index by Metricon was 1.54 (measurement wavelength: 633 nm).
  • Example 3 Synthesis of norbornene-based resin having a leaving group A norbornene-based resin was produced in the same manner as in Example 1.
  • Example 4 Synthesis of norbornene-based resin having a leaving group A norbornene-based resin was produced in the same manner as in Example 1.
  • Example 5 Synthesis of norbornene-based resin having a leaving group A norbornene-based resin was produced in the same manner as in Example 1.
  • Example 6 Synthesis of norbornene-based resin having a leaving group A norbornene-based resin was produced in the same manner as in Example 1.
  • Example 7 (1) Synthesis of norbornene-based resin having a leaving group In a glove box whose water and oxygen concentrations are both controlled to 1 ppm or less and filled with dry nitrogen, 6.4 g (36.1 mmol) of hexylnorbornene (HxNB) ), Diphenylmethylnorbornene methoxysilane (diPhNB) 8.7 g (27.1 mmol), epoxy norbornene (EpNB) 4.9 g (27.1 mmol) were weighed into a 500 mL vial, 60 g of dehydrated toluene and 11 g of ethyl acetate were added, The top was sealed with a silicon sealer.
  • HxNB hexylnorbornene
  • diPhNB Diphenylmethylnorbornene methoxysilane
  • EpNB epoxy norbornene
  • the molar ratio of each structural unit in the polymer # 3 is 40 mol% for the hexylbornene structural unit, 30 mol% for the diphenylmethylnorbornenemethoxysilane structural unit, and 30 mol% for the epoxynorbornene structural unit. there were.
  • the refractive index by Metricon was 1.53 (measurement wavelength: 633 nm).
  • Example 1 (4) Evaluation Evaluation was performed in the same manner as in Example 1.
  • the propagation loss could be calculated as 0.04 dB / cm.
  • the refractive index difference between the core portion and the clad portion was 0.02.
  • the evaluation results of the optical waveguide films obtained in Examples 1 to 7 are shown in Table 1.
  • Examples 1 to 7 when light is applied to the photosensitive resin composition, an acid is generated from the photoacid generator, and the monomer having a cyclic ether group is polymerized only in the irradiated portion. Then, since the amount of unreacted monomer in the irradiated part decreases, the monomer in the unirradiated part diffuses into the irradiated part in order to eliminate the concentration gradient generated between the irradiated part / unirradiated part. Further, when heating is performed after light irradiation, the monomer volatilizes from the unirradiated portion.
  • the structure concentration derived from the monomer is different between the core portion and the cladding portion, the structure derived from the monomer having a cyclic ether group increases in the cladding portion, and the monomer derived from the monomer having a cyclic ether group is present in the core portion.
  • Examples 1 to 7 a linear optical waveguide is formed. However, when a curved optical waveguide (with a radius of curvature of about 10 mm) is formed, the optical loss is remarkable.
  • optical waveguide films obtained in Examples 1 to 7 have high heat resistance and reflow resistance of 260 ° C.
  • Example 8 (1) Synthesis of norbornene resin having a leaving group
  • phenyldimethylnorbornenemethoxysilane was used instead of 12.9 g (40.1 mmol) of diphenylmethylnorbornenemethoxysilane.
  • Example 1 was repeated except that 4 g (40.1 mmol) was used.
  • the molar ratio of each structural unit was 50 mol% for the hexylnorbornene structural unit and 50 mol% for the phenyldimethylnorbornenemethoxysilane structural unit.
  • the refractive index by Metricon was 1.53 (measurement wavelength: 633 nm).
  • optical waveguide film was obtained in the same manner as in Example 1 except that the photosensitive resin composition containing the norbornene-based resin B was used.
  • Example 9 The procedure was the same as Example 1 except that the following photosensitive resin composition was used.
  • Example 10 g of the norbornene-based resin obtained in Example 1 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of an antioxidant Irganox 1076 (manufactured by Ciba Geigy), and a cyclohexyloxetane monomer (formula (100) represented by the formula (100)).
  • optical waveguide film was obtained in the same manner as in Example 1 except that the photosensitive resin composition of (1) above was used.
  • Example 1 when the loss evaluation of the optical waveguide was performed, the propagation loss of the obtained optical waveguide film was 0.04 dB / cm.
  • Example 10 Example 1 was repeated except that the following were used as the cyclic olefin.
  • optical waveguide film was obtained in the same manner as in Example 1 except that the photosensitive resin composition containing the norbornene-based resin C was used.
  • the propagation loss of the obtained optical waveguide film was 0.05 dB / cm.
  • Example 11 An optical waveguide film was produced in the same manner as in Example 1 except that the amount of the first monomer was changed to 0.5 g. The propagation loss of the obtained optical waveguide film was 0.10 dB / cm.
  • Example 12 An optical waveguide film was produced in the same manner as in Example 1 except that the blending amount of the first monomer was 4.0 g. The propagation loss of the obtained optical waveguide film was 0.10 dB / cm.
  • the secondary collection was separated by cooling the filtrate to 0 ° C., washed and dried as above. As a result, a catalyst precursor was obtained.
  • Light loss Light emitted from an 850 nm VCSEL surface emitting laser was introduced into the optical waveguide via a 50 ⁇ m ⁇ optical fiber, and received by a 200 ⁇ m ⁇ optical fiber to measure the light intensity.
  • the cutback method was used for the measurement, and the waveguide length was plotted on the horizontal axis and the insertion loss was plotted on the vertical axis.
  • the measured values were neatly arranged on a straight line, and the propagation loss was calculated from the slope.
  • the optical waveguide was placed in a high-temperature and high-humidity tank (85 ° C., 85% RH), and propagation loss after 500 hours of wet heat treatment was evaluated. It was also confirmed in parallel presence or absence of degradation of the propagation loss due to reflow process (N 2 atmosphere, a maximum temperature of 260 ° C. / 60 seconds). Note that the measurement of the propagation loss here is the same as the one optical loss measurement method.
  • Bending loss of optical waveguide The bending loss of the light intensity of the optical waveguide film having a radius of curvature of 10 mm was evaluated. Light emitted from an 850 nm VCSEL (surface emitting laser) was introduced into the end face of the optical waveguide film via a 50 ⁇ m ⁇ optical fiber, and the light intensity was measured from the other end with a 200 ⁇ m ⁇ optical fiber (see the following formula) ). The increment of the loss that occurs when the optical waveguide film having the same length is bent is defined as “bending loss”. As shown in FIG. 19, the insertion loss and the optical waveguide film are linear when the optical waveguide film is curved. The “bending loss” is expressed by the difference from the insertion loss when the shape is made.
  • Examples 1 and 8-12 showed low optical loss and excellent optical waveguide performance.
  • Examples 1 and 8-12 showed that light loss after high-temperature and high-humidity treatment and after reflow treatment was small, and excellent in heat resistance.
  • Examples 1, 8, 9, and 10 have a small bending loss, and it was suggested that sufficient performance is exhibited even when the optical waveguide is bent.
  • the optical waveguide films obtained in the examples were used.
  • Each of the optical waveguide structures obtained had a lower transmission loss than the optical waveguide structure using the optical waveguide film obtained in each of the comparative examples.
  • the optical waveguide structure according to the fourteenth embodiment was produced using the optical waveguide films obtained in the examples and comparative examples, and the optical waveguide films obtained in the examples and comparative examples were vertically guided.
  • the optical waveguide structure using the optical waveguide film obtained in each example is less in transmission loss than the optical waveguide structure using the optical waveguide film obtained in each comparative example. A low one was obtained.
  • the optical waveguide structure of the present invention has a wide range of optical circuit (optical waveguide pattern) and electrical circuit design, high yield, high optical transmission performance, excellent reliability and durability, and versatility. Rich. Therefore, by providing the optical waveguide structure of the present invention, various highly reliable electronic parts and electronic devices can be obtained. Therefore, the present invention is extremely useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

Disclosed is an optical waveguide structure that has a wide degree of freedom of pattern shape design, can form a core section (light path) having high dimensional precision via a simple method, and is provided with an optical waveguide having excellent durability. Further disclosed is an electronic apparatus. One embodiment of the present disclosures is cited below. The optical waveguide structure (1) is provided with: an optical waveguide (9) formed from laminating a cladding layer (91, 92) on both surfaces of a core layer (93); conductor layers (51, 52) joined to both surfaces thereof; a light-path transformation unit (96) that bends the light path of the optical waveguide (9) nearly perpendicularly; and a light-emitting element (10) and an electric element (12). The core layer (93) has a core section (94) and cladding sections (95). The core section (94) is formed in a desired shape by means of selectively radiating light to the layer, which is configured from a composition containing: (A) a cyclic olefin resin, (B) at least one of either an oligomer having a cyclic ether group or a monomer having a cyclic ether group and having a refractive index that differs from the aforementioned A; and (C) a photoacid generator.

Description

光導波路構造体および電子機器Optical waveguide structure and electronic device
 本発明は、光導波路構造体および電子機器に関するものである。
 本願は、2010年4月6日に、日本に出願された特願2010-088096号、2010年4月8日に、日本に出願された特願2010-089167号、及び2010年4月8日に、日本に出願された特願2010-089401号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an optical waveguide structure and an electronic device.
This application is based on Japanese Patent Application No. 2010-088096 filed in Japan on April 6, 2010, Japanese Patent Application No. 2010-089167 filed in Japan on April 8, 2010, and April 8, 2010. Furthermore, priority is claimed based on Japanese Patent Application No. 2010-089401 filed in Japan, the contents of which are incorporated herein by reference.
 近年、光通信の分野における光部品として、光分岐結合器(光カプラ)、光合分波器等が開発されており、これらに用いる光導波路型素子が有望視されている。この光導波路型素子(以下、単に「光導波路」ともいう。)としては、従来の石英系光導波路の他、製造(パターニング)が容易で汎用性に富むポリマー系光導波路があり、最近では後者の開発が盛んに行われている。 In recent years, optical branching couplers (optical couplers), optical multiplexers / demultiplexers, and the like have been developed as optical components in the field of optical communications, and optical waveguide devices used for these are promising. As this optical waveguide element (hereinafter, also simply referred to as “optical waveguide”), there are polymer optical waveguides that are easy to manufacture (patterning) and are versatile, in addition to the conventional quartz optical waveguides. Is being actively developed.
 このような光導波路は、通常、基板上に所定の配置(パターン)で形成され、光導波路構造体として取り扱われる。この光導波路構造体としては、基板上に所定の電気配線回路と、コア部およびクラッド部で構成される光導波路とを形成し、さらにこの光導波路に発光素子および受光素子を取り付けたもの(電気/光混成基板)が開示されている(例えば、特許文献1参照)。 Such an optical waveguide is usually formed in a predetermined arrangement (pattern) on a substrate and handled as an optical waveguide structure. As this optical waveguide structure, a predetermined electric wiring circuit and an optical waveguide composed of a core part and a cladding part are formed on a substrate, and a light emitting element and a light receiving element are attached to this optical waveguide (electrical element) / Optical hybrid substrate) is disclosed (for example, see Patent Document 1).
 しかしながら、上記特許文献1に記載の光導波路構造体では、次のような問題点がある。
1.光導波路の形成工程が複雑であり、伝送光の光路を構成するコア部のパターン形状の設計、選択の自由度が狭い。
2.コア部のパターン形状の精度や寸法精度が悪い。
3.製造に際し、発光素子および受光素子と、光導波路との位置決めがし難く、特に構造が複雑な場合や光回路が複雑な場合等、製造(組み立て)が困難な場合がある。
4.電気配線パターンと組み合わせた場合に、該配線パターンの設計における自由度が狭い。また、電気配線パターンの設計を優先すると、光導波路の光路設計の自由度が狭くなる。
5.集積化、小型化に不利である。
However, the optical waveguide structure described in Patent Document 1 has the following problems.
1. The process of forming the optical waveguide is complicated, and the degree of freedom in designing and selecting the pattern shape of the core part constituting the optical path of the transmitted light is narrow.
2. The core pattern shape accuracy and dimensional accuracy are poor.
3. In manufacturing, it is difficult to position the light emitting element and the light receiving element, and the optical waveguide, and manufacturing (assembly) may be difficult particularly when the structure is complicated or the optical circuit is complicated.
4). When combined with an electrical wiring pattern, the degree of freedom in designing the wiring pattern is narrow. If priority is given to the design of the electrical wiring pattern, the degree of freedom in designing the optical path of the optical waveguide is reduced.
5. It is disadvantageous for integration and miniaturization.
特開2004-146602号公報JP 2004-146602 A
 本発明の目的は、パターン形状の設計の自由度が広く、寸法精度の高いコア部(光路)を簡単な方法で形成することができ、また、耐久性に優れる光導波路を備えた光導波路構造体および電子機器を提供することにある。
 また、本発明の目的は、電気回路と光回路のそれぞれにおいてパターン形状の設計の自由度が広く、寸法精度の高いコア部(光路)を簡単な方法で形成することができ、また、耐久性に優れる光導波路を備えた光導波路構造体、およびかかる光導波路構造体を備えた電子機器を提供することにある。
 さらに本発明の目的は、光回路のパターン形状の設計の自由度が広く、寸法精度の高いコア部(光路)を簡単な方法で形成することができ、また、電気素子との位置決めが容易な光導波路を備えた光導波路構造体を提供することにある。また、前記光導波路構造体を備えた電子機器を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical waveguide structure having an optical waveguide with a wide degree of freedom in designing a pattern shape and capable of forming a core portion (optical path) with high dimensional accuracy by a simple method. It is to provide a body and an electronic device.
In addition, the object of the present invention is to form a core part (optical path) with a high degree of dimensional accuracy by a simple method with a wide degree of freedom in designing a pattern shape in each of an electric circuit and an optical circuit, and durability. It is an object of the present invention to provide an optical waveguide structure provided with an excellent optical waveguide, and an electronic device provided with such an optical waveguide structure.
Further, the object of the present invention is to have a wide degree of freedom in designing the pattern shape of the optical circuit, to form a core part (optical path) with high dimensional accuracy by a simple method, and to easily position the electrical element. An object of the present invention is to provide an optical waveguide structure including an optical waveguide. Moreover, it is providing the electronic device provided with the said optical waveguide structure.
 このような目的は、下記(1)~(131)の本発明により達成される。
 (1) 互いに屈折率が異なるコア部とクラッド部とを備える光導波路と、前記コア部の光路を屈曲させる光路変換部と、を有し、
 前記コア部は、
(A)環状オレフィン樹脂と、
(B)前記(A)とは屈折率が異なり、かつ、環状エーテル基を有するモノマーおよび環状エーテル基を有するオリゴマーのうちの少なくとも一方と、
(C)光酸発生剤と、
を含む組成物で構成されたコア層に対し活性放射線を選択的に照射することにより所望の形状に形成されたものであることを特徴とする光導波路構造体。
Such an object is achieved by the present inventions (1) to (131) below.
(1) having an optical waveguide comprising a core part and a clad part having different refractive indexes, and an optical path changing part for bending the optical path of the core part,
The core part is
(A) a cyclic olefin resin;
(B) The refractive index is different from that of (A), and at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group;
(C) a photoacid generator;
An optical waveguide structure characterized by being formed into a desired shape by selectively irradiating active radiation to a core layer composed of a composition comprising:
 (2) 前記(B)の環状エーテル基は、オキセタニル基またはエポキシ基である上記(1)に記載の光導波路構造体。 (2) The optical waveguide structure according to (1), wherein the cyclic ether group in (B) is an oxetanyl group or an epoxy group.
 (3) 前記(A)の環状オレフィン樹脂は、ノルボルネン系樹脂である上記(1)または(2)に記載の光導波路構造体。 (3) The optical waveguide structure according to (1) or (2), wherein the cyclic olefin resin of (A) is a norbornene resin.
 (4) 前記(B)は、前記(A)よりも屈折率が低く、
 前記環状オレフィン樹脂は、前記(C)の光酸発生剤から発生する酸により脱離し、脱離により、前記(A)の屈折率を低下させる脱離性基を有するものである上記(1)ないし(3)のいずれかに記載の光導波路構造体。
(4) The refractive index of (B) is lower than that of (A),
(1) The cyclic olefin resin has a leaving group that is desorbed by an acid generated from the photoacid generator of (C) and lowers the refractive index of (A) by desorption. Thru | or the optical waveguide structure in any one of (3).
 (5) 前記(A)の環状オレフィン樹脂は、側鎖に前記(C)の光酸発生剤から発生する酸により脱離する脱離性基を有し、
 前記(B)は、下記式(100)に記載の第1モノマーを含むものである上記(2)に記載の光導波路構造体。
Figure JPOXMLDOC01-appb-C000002
(5) The cyclic olefin resin of (A) has a leaving group that is eliminated by an acid generated from the photoacid generator of (C) in the side chain,
Said (B) is an optical waveguide structure as described in said (2) containing the 1st monomer as described in following formula (100).
Figure JPOXMLDOC01-appb-C000002
 (6) 前記(B)は、さらに、エポキシ化合物およびオキセタニル基を2つ有するオキセタン化合物のうち、少なくとも一方を第2モノマーとして含むものである上記(5)に記載の光導波路構造体。 (6) The optical waveguide structure according to (5), wherein (B) further includes at least one of the epoxy compound and the oxetane compound having two oxetanyl groups as the second monomer.
 (7) 前記第2モノマーと前記第1モノマーとの割合は、重量比(前記第2モノマーの重量/前記第1モノマーの重量)で、0.1~1.0である上記(6)に記載の光導波路構造体。 (7) The ratio of the second monomer to the first monomer is 0.1 to 1.0 in a weight ratio (weight of the second monomer / weight of the first monomer). The optical waveguide structure described.
 (8) 前記脱離性基は、-O-構造、-Si-アリール構造および-O-Si-構造のうちの少なくとも1つを有するものである上記(4)ないし(6)のいずれかに記載の光導波路構造体。 (8) The leaving group has any one of the above (4) to (6) having at least one of an —O— structure, an —Si—aryl structure, and an —O—Si— structure. The optical waveguide structure described.
 (9) 前記(A)の環状オレフィン樹脂は、ノルボルネン系樹脂である上記(5)ないし(8)のいずれかに記載の光導波路構造体。 (9) The optical waveguide structure according to any one of (5) to (8), wherein the cyclic olefin resin of (A) is a norbornene resin.
 (10) 前記ノルボルネン系樹脂は、ノルボルネンの付加重合体である上記(9)に記載の光導波路構造体。 (10) The optical waveguide structure according to (9), wherein the norbornene-based resin is a norbornene addition polymer.
 (11) 前記ノルボルネンの付加重合体は、下記式(101)に記載の繰り返し単位を有するものである上記(10)に記載の光導波路構造体。
Figure JPOXMLDOC01-appb-C000003
[式中のnは、0以上9以下の整数である。]
(11) The optical waveguide structure according to (10), wherein the norbornene addition polymer has a repeating unit represented by the following formula (101).
Figure JPOXMLDOC01-appb-C000003
[N in the formula is an integer of 0 or more and 9 or less. ]
 (12) 前記ノルボルネンの付加重合体は、下記式(102)に記載の繰り返し単位を有するものである上記(10)または(11)に記載の光導波路構造体。
Figure JPOXMLDOC01-appb-C000004
(12) The optical waveguide structure according to (10) or (11), wherein the norbornene addition polymer has a repeating unit represented by the following formula (102).
Figure JPOXMLDOC01-appb-C000004
 (13) 前記式(100)に記載の第1モノマーの含有量は、前記環状オレフィン樹脂100重量部に対して、1重量部以上50重量部以下である上記(5)ないし(12)のいずれかに記載の光導波路構造体。 (13) The content of the first monomer described in the formula (100) is 1 part by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the cyclic olefin resin. An optical waveguide structure according to claim 1.
 (14) 前記コア層の活性放射線が照射された領域と、未照射領域とで、前記(B)由来の構造体濃度が異なっている上記(1)ないし(13)のいずれかに記載の光導波路構造体。 (14) The light according to any one of (1) to (13), wherein the concentration of the structure derived from (B) is different between a region irradiated with active radiation of the core layer and a non-irradiated region. Waveguide structure.
 (15) 前記コア層の活性放射線が照射された領域と未照射領域の屈折率差が0.01以上である上記(1)ないし(14)のいずれかに記載の光導波路構造体。 (15) The optical waveguide structure according to any one of (1) to (14), wherein the refractive index difference between the region irradiated with active radiation and the non-irradiated region of the core layer is 0.01 or more.
 (16) 前記コア層の活性放射線が照射された領域を前記クラッド部の少なくとも一部とし、未照射領域を前記コア部の少なくとも一部とする上記(1)ないし(15)のいずれかに記載の光導波路構造体。 (16) In any one of the above (1) to (15), a region of the core layer that has been irradiated with active radiation is at least a part of the cladding part, and an unirradiated region is at least a part of the core part. Optical waveguide structure.
 (17) 前記光路変換部は、前記コア部を伝送される伝送光の少なくとも一部を反射する反射面を有するものである上記(1)ないし(16)のいずれかに記載の光導波路構造体。 (17) The optical waveguide structure according to any one of (1) to (16), wherein the optical path conversion unit has a reflection surface that reflects at least part of transmission light transmitted through the core unit. .
 (18) 前記コア部に設けられた空孔を有し、前記反射面は、前記コア部と前記空孔との界面の一部または全部で構成されている上記(17)に記載の光導波路構造体。 (18) The optical waveguide according to (17), further including a hole provided in the core part, wherein the reflection surface is configured by a part or all of an interface between the core part and the hole. Structure.
 (19) 前記反射面は、前記伝送光を全反射させる傾斜角に設定されている上記(17)または(18)に記載の光導波路構造体。 (19) The optical waveguide structure according to (17) or (18), wherein the reflection surface is set to an inclination angle that totally reflects the transmitted light.
 (20) 前記反射面を前記コア部方向に投影した場合の投影と前記コア部の断面とが重なる面積が、前記コア部の断面積よりも小さく、前記コア部を伝送される伝送光を、前記反射面で反射される伝送光と、前記反射面以外の前記コア部を伝送され直進する伝送光とに分岐させる分岐部を有する上記(17)ないし(19)のいずれかに記載の光導波路構造体。 (20) An area where a projection when the reflecting surface is projected in the direction of the core and a cross section of the core overlaps is smaller than a cross-sectional area of the core, and transmitted light transmitted through the core is The optical waveguide according to any one of (17) to (19), wherein the optical waveguide includes a branching portion that branches into transmission light reflected by the reflection surface and transmission light that travels straight through the core portion other than the reflection surface. Structure.
 (21) 前記反射面を前記コア部方向に投影した場合の投影と前記コア部の断面とが重なる面積が、前記コア部の断面積と同一であり、
 前記コア部の前記反射面が存在する部分においてのみ前記コア部が大きく設定されている上記(17)ないし(20)のいずれかに記載の光導波路構造体。
(21) The area where the projection when the reflection surface is projected in the direction of the core and the cross-section of the core overlap is the same as the cross-sectional area of the core.
The optical waveguide structure according to any one of (17) to (20), wherein the core portion is set to be large only in a portion where the reflection surface of the core portion exists.
 (22) 前記反射面は、前記コア部に対して傾斜しており、前記反射面の斜面方向における両端部の少なくとも一方が、前記コア部の外郭部延伸線よりも外側に位置し、前記コア部は、前記反射面を取り囲む状態で膨らんでいる上記(17)ないし(21)のいずれかに記載の光導波路構造体。 (22) The reflection surface is inclined with respect to the core portion, and at least one of both end portions in the inclined direction of the reflection surface is positioned outside an outer portion extending line of the core portion, and the core The optical waveguide structure according to any one of (17) to (21), wherein the portion swells in a state of surrounding the reflective surface.
 (23) 前記コア層の両面に前記クラッド部を構成するクラッド層がそれぞれ接合され、両クラッド層とこれらの間に介挿されたコア層との積層体により前記光導波路が構成される上記(1)ないし(22)のいずれかに記載の光導波路構造体。 (23) The above-mentioned optical waveguide is constituted by a laminate of both clad layers and a core layer interposed between the clad layers that constitute the clad part on both surfaces of the core layer. 1) The optical waveguide structure according to any one of (22).
 (24) 前記クラッド層は、前記コア層と同種の材料で構成されている上記(23)に記載の光導波路構造体。 (24) The optical waveguide structure according to (23), wherein the cladding layer is made of the same kind of material as the core layer.
 (25) 前記光路変換部は、前記コア部と、少なくとも一方の前記クラッド層とにまたがって形成されている上記(23)または(24)に記載の光導波路構造体。 (25) The optical waveguide structure according to (23) or (24), wherein the optical path conversion unit is formed across the core unit and at least one of the cladding layers.
 (26) 前記光路変換部は、前記コア層内にのみ形成されている上記(1)ないし(24)のいずれかに記載の光導波路構造体。 (26) The optical waveguide structure according to any one of (1) to (24), wherein the optical path conversion unit is formed only in the core layer.
 (27) 前記コア層において、前記コア部は、その端部または途中で途切れるよう形成されており、
 前記光路変換部は、前記コア部が途切れた部分に形成されている上記(1)ないし(17)のいずれかに記載の光導波路構造体。
(27) In the core layer, the core portion is formed so as to be interrupted at an end portion or in the middle thereof,
The optical waveguide structure according to any one of (1) to (17), wherein the optical path conversion unit is formed in a portion where the core unit is interrupted.
 (28) 前記コア部が途切れた部分に設けられた空孔を有し、前記反射面が、前記コア部が途切れた部分と前記空孔との界面の一部または全部で構成されている上記(27)に記載の光導波路構造体。 (28) The above-mentioned, wherein the core part has a hole provided in a part where the core part is interrupted, and the reflection surface is configured by a part or all of an interface between the part where the core part is interrupted and the hole. The optical waveguide structure according to (27).
 (29) 前記光導波路に少なくとも1層の導体層が接合されている上記(1)ないし(28)のいずれかに記載の光導波路構造体。 (29) The optical waveguide structure according to any one of (1) to (28), wherein at least one conductor layer is bonded to the optical waveguide.
 (30) 前記光導波路の両面にそれぞれ導体層が接合されている上記(1)ないし(28)のいずれかに記載の光導波路構造体。 (30) The optical waveguide structure according to any one of (1) to (28), wherein a conductor layer is bonded to both surfaces of the optical waveguide.
 (31) 発光部または受光部と、端子とを有する素子を有する上記(1)ないし(30)のいずれかに記載の光導波路構造体。 (31) The optical waveguide structure according to any one of (1) to (30), wherein the optical waveguide structure has an element having a light emitting part or a light receiving part and a terminal.
 (32) 発光部または受光部と、端子とを有する素子を有し、前記端子が前記導体層と電気的に接続されている上記(29)または(30)に記載の光導波路構造体。 (32) The optical waveguide structure according to (29) or (30), wherein the optical waveguide structure includes an element having a light emitting portion or a light receiving portion and a terminal, and the terminal is electrically connected to the conductor layer.
 (33) 前記素子と前記光導波路との間に空隙部を有さない上記(31)または(32)に記載の光導波路構造体。 (33) The optical waveguide structure according to the above (31) or (32), wherein there is no gap between the element and the optical waveguide.
 (34) 前記素子は、その外表面が封止材により封止されている上記(31)ないし(33)のいずれかに記載の光導波路構造体。 (34) The optical waveguide structure according to any one of (31) to (33), wherein an outer surface of the element is sealed with a sealing material.
 (35) 前記光路変換部は、平面視で前記発光部または受光部と重なるような位置に形成されている上記(31)ないし(34)のいずれかに記載の光導波路構造体。 (35) The optical waveguide structure according to any one of (31) to (34), wherein the optical path conversion unit is formed at a position overlapping the light emitting unit or the light receiving unit in plan view.
 (36) 前記素子は、当該素子を少なくとも1個搭載するチップキャリアとして構成されている上記(31)ないし(35)のいずれかに記載の光導波路構造体。 (36) The optical waveguide structure according to any one of (31) to (35), wherein the element is configured as a chip carrier on which at least one of the elements is mounted.
 (37) 前記チップキャリアは、別の光導波路を有する上記(36)に記載の光導波路構造体。 (37) The optical waveguide structure according to (36), wherein the chip carrier has another optical waveguide.
 (38) 前記光導波路に少なくとも1つの基板が接合されており、
 前記基板は、前記コア部を伝送される伝送光に対する透光性を有する透光部を有し、前記透光部を介して前記基板の厚さ方向に前記伝送光を伝送し得るよう構成されている上記(1)ないし(37)のいずれかに記載の光導波路構造体。
(38) At least one substrate is bonded to the optical waveguide,
The substrate includes a translucent part having translucency with respect to transmission light transmitted through the core unit, and is configured to transmit the transmission light in the thickness direction of the substrate through the translucent part. The optical waveguide structure according to any one of (1) to (37).
 (39) 前記基板自体が前記伝送光の透過率が80%以上であり、これにより前記基板の一部が前記透光部を構成する上記(38)に記載の光導波路構造体。 (39) The optical waveguide structure according to (38), wherein the substrate itself has a transmittance of the transmission light of 80% or more, whereby a part of the substrate constitutes the light transmitting part.
 (40) 前記透光部は、前記基板を貫通する貫通孔で構成されている上記(38)または(39)に記載の光導波路構造体。 (40) The optical waveguide structure according to (38) or (39), wherein the light transmitting part is configured by a through-hole penetrating the substrate.
 (41) 前記貫通孔内に前記伝送光の透過率が80%以上の材料が充填されている上記(40)に記載の光導波路構造体。 (41) The optical waveguide structure according to (40), wherein the through-hole is filled with a material having a transmission light transmittance of 80% or more.
 (42) 前記透光部は、前記基板の厚さ方向に前記伝送光を伝送する垂直光導波路で構成されている上記(38)に記載の光導波路構造体。 (42) The optical waveguide structure according to (38), wherein the light transmitting part is configured by a vertical optical waveguide that transmits the transmission light in a thickness direction of the substrate.
 (43) 前記透光部は、前記伝送光を集光または拡散し得るレンズ部を有する上記(38)ないし(42)のいずれかに記載の光導波路構造体。 (43) The optical waveguide structure according to any one of (38) to (42), wherein the light transmitting portion includes a lens portion that can collect or diffuse the transmission light.
 (44) 前記活性放射線は、200~450nmの範囲にピーク波長を有するものである上記(1)ないし(43)のいずれかに記載の光導波路構造体。 (44) The optical waveguide structure according to any one of (1) to (43), wherein the active radiation has a peak wavelength in a range of 200 to 450 nm.
 (45) 前記活性放射線の照射量は、0.1~9J/cmである上記(1)ないし(44)のいずれかに記載の光導波路構造体。 (45) The optical waveguide structure according to any one of (1) to (44), wherein an irradiation amount of the active radiation is 0.1 to 9 J / cm 2 .
 (46) 前記活性放射線は、マスクを介して前記コア層に照射される上記(1)ないし(45)のいずれかに記載の光導波路構造体。 (46) The optical waveguide structure according to any one of (1) to (45), wherein the active radiation is applied to the core layer through a mask.
 (47) 前記コア層は、さらに、酸化防止剤を含む上記(1)ないし(46)のいずれかに記載の光導波路構造体。 (47) The optical waveguide structure according to any one of (1) to (46), wherein the core layer further includes an antioxidant.
 (48) 前記コア層は、さらに、増感剤を含む上記(1)ないし(47)のいずれかに記載の光導波路構造体。 (48) The optical waveguide structure according to any one of (1) to (47), wherein the core layer further includes a sensitizer.
 (49) 上記(1)ないし(48)のいずれかに記載の光導波路構造体を備えたことを特徴とする電子機器。
(50) 互いに屈折率が異なるコア部とクラッド部とを有する光導波路と、導体層とを有する積層構造体で構成され、
 厚さ方向に延在し、前記コア部に光学的に接続される導光路と、
 厚さ方向に延在し、前記導体層に電気的に接続される導体部とを有し、
 前記コア部は、
(A)環状オレフィン樹脂と、
(B)前記(A)とは屈折率が異なり、かつ、環状エーテル基を有するモノマーおよび環状エーテル基を有するオリゴマーのうちの少なくとも一方と、
(C)光酸発生剤と、
を含む組成物で構成されたコア層に対し活性放射線を選択的に照射することにより所望の形状に形成されたものであることを特徴とする光導波路構造体
(51) 前記(B)の環状エーテル基は、オキセタニル基またはエポキシ基である上記(50)に記載の光導波路構造体。
(52) 前記(A)の環状オレフィン樹脂は、ノルボルネン系樹脂である上記(50)または(51)に記載の光導波路構造体。
(53) 前記(B)は、前記(A)よりも屈折率が低く、
 前記環状オレフィン樹脂は、前記(C)の光酸発生剤から発生する酸により脱離し、脱離により、前記(A)の屈折率を低下させる脱離性基を有するものである上記(50)ないし(52)のいずれかに記載の光導波路構造体。
(54) 前記(A)の環状オレフィン樹脂は、側鎖に前記(C)の光酸発生剤から発生する酸により脱離する脱離性基を有し、
 前記(B)は、下記式(100)に記載の第1モノマーを含むものである上記(51)に記載の光導波路構造体。
(49) An electronic device comprising the optical waveguide structure according to any one of (1) to (48).
(50) It is composed of a laminated structure having an optical waveguide having a core part and a clad part having different refractive indexes, and a conductor layer,
A light guide that extends in the thickness direction and is optically connected to the core portion;
A conductor portion extending in the thickness direction and electrically connected to the conductor layer;
The core part is
(A) a cyclic olefin resin;
(B) The refractive index is different from that of (A), and at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group;
(C) a photoacid generator;
An optical waveguide structure (51), which is formed in a desired shape by selectively irradiating active radiation to a core layer composed of a composition containing The optical waveguide structure according to (50), wherein the ether group is an oxetanyl group or an epoxy group.
(52) The optical waveguide structure according to (50) or (51), wherein the cyclic olefin resin of (A) is a norbornene resin.
(53) The refractive index of (B) is lower than that of (A),
The cyclic olefin resin has a leaving group that is detached by an acid generated from the photoacid generator of (C) and lowers the refractive index of (A) by the elimination. Thru | or the optical waveguide structure in any one of (52).
(54) The cyclic olefin resin of (A) has a leaving group that is eliminated by an acid generated from the photoacid generator of (C) in the side chain,
Said (B) is an optical waveguide structure as described in said (51) containing the 1st monomer as described in following formula (100).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(55) 前記(B)は、さらに、エポキシ化合物およびオキセタニル基を2つ有するオキセタン化合物のうち、少なくとも一方を第2モノマーとして含むものである上記(54)に記載の光導波路構造体。
(56) 前記第2モノマーと前記第1モノマーとの割合は、重量比(前記第2モノマーの重量/前記第1モノマーの重量)で、0.1~1.0である上記(55)に記載の光導波路構造体。
(57) 前記脱離性基は、-O-構造、-Si-アリール構造および-O-Si-構造のうちの少なくとも1つを有するものである上記(54)ないし(55)のいずれかに記載の光導波路構造体。
(58) 前記(A)の環状オレフィン樹脂は、ノルボルネン系樹脂である上記(54)ないし(57)のいずれかに記載の光導波路構造体。
(59) 前記ノルボルネン系樹脂は、ノルボルネンの付加重合体である上記(58)に記載の光導波路構造体。
(60) 前記ノルボルネンの付加重合体は、下記式(101)に記載の繰り返し単位を有するものである上記(59)に記載の光導波路構造体。
(55) The optical waveguide structure according to (54), wherein (B) further includes at least one of the epoxy compound and the oxetane compound having two oxetanyl groups as a second monomer.
(56) In the above (55), the ratio of the second monomer to the first monomer is 0.1 to 1.0 by weight ratio (weight of the second monomer / weight of the first monomer). The optical waveguide structure described.
(57) In any one of the above (54) to (55), the leaving group has at least one of an —O— structure, an —Si—aryl structure, and an —O—Si— structure. The optical waveguide structure described.
(58) The optical waveguide structure according to any one of (54) to (57), wherein the cyclic olefin resin of (A) is a norbornene resin.
(59) The optical waveguide structure according to (58), wherein the norbornene-based resin is a norbornene addition polymer.
(60) The optical waveguide structure according to (59), wherein the norbornene addition polymer has a repeating unit represented by the following formula (101).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(61) 前記ノルボルネンの付加重合体は、下記式(102)に記載の繰り返し単位を有するものである上記(59)または(60)に記載の光導波路構造体。 (61) The optical waveguide structure according to (59) or (60), wherein the norbornene addition polymer has a repeating unit represented by the following formula (102).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(62) 上記式(100)に記載の第1モノマーの含有量は、前記環状オレフィン樹脂100重量部に対して、1重量部以上50重量部以下である上記(54)ないし(61)のいずれかに記載の光導波路構造体。
(63) 前記コア層の活性放射線が照射された領域と、未照射領域とで、前記(B)由来の構造体濃度が異なっている上記(50)ないし(62)のいずれかに記載の光導波路構造体。
(64) 前記コア層の活性放射線が照射された領域と未照射領域の屈折率差が0.01以上である上記(50)ないし(63)のいずれかに記載の光導波路構造体。
(65) 前記コア層の活性放射線が照射された領域を前記クラッド部の少なくとも一部とし、未照射領域を前記コア部の少なくとも一部とする上記(50)ないし(64)のいずれかに記載の光導波路構造体。
(66) 前記導光路と前記導体部とが接触または接近している上記(50)ないし(65)のいずれかに記載の光導波路構造体。
(67) 貫通孔を有し、前記導光路と前記導体部とが前記貫通孔内に形成されている上記(50)ないし(66)に記載の光導波路構造体。
(68) 前記貫通孔内において、前記導体部は前記導光路の周囲に配置されている上記(67)に記載の光導波路構造体。
(69) 前記導光路は、前記光導波路のコア部と同様のコア部で構成されている上記(50)ないし(68)のいずれかに記載の光導波路構造体。
(70) 前記導光路は、互いに屈折率が異なるコア部とクラッド部とを有する垂直光導波路で構成されている上記(50)ないし(68)のいずれかに記載の光導波路構造体。
(71) 前記導光路のコア部は、前記光導波路のコア部またはクラッド部と同様の材料で構成されている上記(50)ないし(70)のいずれかに記載の光導波路構造体。
(72) 前記導光路のコア部は、前記光導波路のコア部と同様の方法で形成されたものである上記(71)に記載の光導波路構造体。
(73) 前記導光路の横断面形状は、円形をなしている上記(50)ないし(72)のいずれかに記載の光導波路構造体。
(74) 前記光導波路の光路を屈曲させる光路変換部を有する上記(50)ないし(73)のいずれかに記載の光導波路構造体。
(75) 前記光路変換部は、前記光導波路のコア部と前記導光路との接続部に設けられている上記(74)に記載の光導波路構造体。
(76) 前記光路変換部は、前記コア部を伝送される伝送光の少なくとも一部を反射する反射面を有するものである上記(74)または(75)に記載の光導波路構造体。
(77) 前記コア層の両面に前記クラッド部を構成するクラッド層がそれぞれ接合され、両クラッド層とこれらの間に介挿されたコア層の積層体により前記光導波路が構成される上記(50)ないし(76)のいずれかに記載の光導波路構造体。
(78) 前記導体層は、前記光導波路の少なくとも一方の面に接合されている上記(50)ないし(77)のいずれかに記載の光導波路構造体。
(79) 発光部または受光部と、端子とを有する素子を有する上記(50)ないし(78)のいずれかに記載の光導波路構造体。
(80) 前記素子の端子が前記導体層と電気的に接続されている上記(79)に記載の光導波路構造体。
(81) 前記素子は、その外表面が封止材により封止されている上記(79)または(80)に記載の光導波路構造体。
(82) 硬質なまたは可撓性を有する基板を有する上記(50)ないし(81)のいずれかに記載の光導波路構造体。
(83) 前記光導波路は、前記基板に隣接して設けられている上記(82)に記載の光導波路構造体。
(84) 前記導光路と前記導体部の少なくとも一方は、前記基板を貫通するように形成されている上記(82)または(83)に記載の光導波路構造体。
(85) 前記導光路と前記導体部の少なくとも一方は、前記基板に対しほぼ垂直に形成されている上記(82)ないし(84)のいずれかに記載の光導波路構造体。
(86) 厚さ方向の異なる位置に形成された複数の導体層を有し、これらの導体層同士が前記導体部を介して電気的に接続されている上記(50)ないし(85)のいずれかに記載の光導波路構造体。
(87) 前記導光路と前記コア部とは、それらの形成工程の少なくとも一部を同時に行って得られたものである上記(50)ないし(86)のいずれかに記載の光導波路構造体。
(88) 伝送光を集光または拡散し得るレンズ部を有する上記(50)ないし(87)のいずれかに記載の光導波路構造体。
(89) 前記レンズ部は、前記導光路の端部または内部に設けられている上記(88)に記載の光導波路構造体。
(90) 上記(50)ないし(89)のいずれかに記載の光導波路構造体を備えたことを特徴とする電子機器。
(91) 基板と、互いに屈折率が異なるコア部とクラッド部とを有する光導波路と、少なくとも1つの電気素子と、前記電気素子の設置位置を定める位置決め手段とを備える光導波路構造体であって、
 前記コア部は、
(A)環状オレフィン樹脂と、
(B)前記(A)とは屈折率が異なり、かつ、環状エーテル基を有するモノマーおよび環状エーテル基を有するオリゴマーのうちの少なくとも一方と、
(C)光酸発生剤と、
を含む組成物で構成されたコア層に対し活性放射線を選択的に照射することにより所望の形状に形成されたものであることを特徴とする光導波路構造体。
(92) 前記(B)の環状エーテル基は、オキセタニル基またはエポキシ基である上記(91)に記載の光導波路構造体。
(93) 前記(A)の環状オレフィン樹脂は、ノルボルネン系樹脂である上記(91)または(92)に記載の光導波路構造体。
(94) 前記(B)は、前記(A)よりも屈折率が低く、
 前記環状オレフィン樹脂は、前記(C)の光酸発生剤から発生する酸により脱離し、脱離により、前記(A)の屈折率を低下させる脱離性基を有するものである上記(91)ないし(93)のいずれかに記載の光導波路構造体。
(95) 前記(A)の環状オレフィン樹脂は、側鎖に前記(C)の光酸発生剤から発生する酸により脱離する脱離性基を有し、
 前記(B)は、下記式(100)に記載の第1モノマーを含むものである上記(92)に記載の光導波路構造体。
(62) The content of the first monomer described in the above formula (100) is 1 part by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the cyclic olefin resin. An optical waveguide structure according to claim 1.
(63) The light according to any one of (50) to (62), wherein the concentration of the structure derived from (B) is different between a region irradiated with active radiation of the core layer and a non-irradiated region. Waveguide structure.
(64) The optical waveguide structure according to any one of (50) to (63), wherein the refractive index difference between the region irradiated with active radiation and the non-irradiated region of the core layer is 0.01 or more.
(65) The structure according to any one of (50) to (64), wherein the region of the core layer that has been irradiated with the active radiation is at least a part of the cladding part, and the unirradiated region is at least a part of the core part. Optical waveguide structure.
(66) The optical waveguide structure according to any one of (50) to (65), wherein the light guide path and the conductor portion are in contact with or close to each other.
(67) The optical waveguide structure according to (50) to (66), wherein the optical waveguide structure has a through hole, and the light guide path and the conductor portion are formed in the through hole.
(68) In the said through-hole, the said conductor part is an optical waveguide structure as described in said (67) arrange | positioned around the said light guide.
(69) The optical waveguide structure according to any one of (50) to (68), wherein the light guide path includes a core part similar to the core part of the optical waveguide.
(70) The optical waveguide structure according to any one of (50) to (68), wherein the light guide path includes a vertical optical waveguide having a core part and a clad part having different refractive indexes.
(71) The optical waveguide structure according to any one of (50) to (70), wherein the core portion of the light guide path is made of a material similar to that of the core portion or the cladding portion of the optical waveguide.
(72) The optical waveguide structure according to (71), wherein the core portion of the light guide path is formed by a method similar to that of the core portion of the optical waveguide.
(73) The optical waveguide structure according to any one of (50) to (72), wherein the light guide path has a circular cross-sectional shape.
(74) The optical waveguide structure according to any one of (50) to (73), further including an optical path conversion unit that bends the optical path of the optical waveguide.
(75) The optical waveguide structure according to (74), wherein the optical path conversion unit is provided at a connection portion between the core of the optical waveguide and the light guide.
(76) The optical waveguide structure according to (74) or (75), wherein the optical path conversion unit has a reflection surface that reflects at least a part of transmission light transmitted through the core unit.
(77) The optical waveguide is configured by the clad layer constituting the clad portion being bonded to both surfaces of the core layer, and the optical waveguide is configured by a laminate of both clad layers and the core layer interposed therebetween (50) The optical waveguide structure according to any one of (1) to (76).
(78) The optical waveguide structure according to any one of (50) to (77), wherein the conductor layer is bonded to at least one surface of the optical waveguide.
(79) The optical waveguide structure according to any one of (50) to (78), which includes an element having a light emitting part or a light receiving part and a terminal.
(80) The optical waveguide structure according to (79), wherein a terminal of the element is electrically connected to the conductor layer.
(81) The optical waveguide structure according to (79) or (80), wherein an outer surface of the element is sealed with a sealing material.
(82) The optical waveguide structure according to any one of (50) to (81), which has a hard or flexible substrate.
(83) The optical waveguide structure according to (82), wherein the optical waveguide is provided adjacent to the substrate.
(84) The optical waveguide structure according to (82) or (83), wherein at least one of the light guide path and the conductor portion is formed so as to penetrate the substrate.
(85) The optical waveguide structure according to any one of (82) to (84), wherein at least one of the light guide path and the conductor portion is formed substantially perpendicular to the substrate.
(86) Any of the above (50) to (85), having a plurality of conductor layers formed at different positions in the thickness direction, and these conductor layers are electrically connected to each other through the conductor portion An optical waveguide structure according to claim 1.
(87) The optical waveguide structure according to any one of (50) to (86), wherein the light guide path and the core portion are obtained by simultaneously performing at least a part of the forming process.
(88) The optical waveguide structure according to any one of (50) to (87), including a lens portion that can collect or diffuse transmission light.
(89) The optical waveguide structure according to (88), wherein the lens unit is provided at an end or inside of the light guide.
(90) An electronic apparatus comprising the optical waveguide structure according to any one of (50) to (89).
(91) An optical waveguide structure comprising a substrate, an optical waveguide having a core portion and a cladding portion having different refractive indexes, at least one electric element, and positioning means for determining an installation position of the electric element. ,
The core part is
(A) a cyclic olefin resin;
(B) The refractive index is different from that of (A), and at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group;
(C) a photoacid generator;
An optical waveguide structure characterized by being formed into a desired shape by selectively irradiating active radiation to a core layer composed of a composition comprising:
(92) The optical waveguide structure according to (91), wherein the cyclic ether group of (B) is an oxetanyl group or an epoxy group.
(93) The optical waveguide structure according to (91) or (92), wherein the cyclic olefin resin of (A) is a norbornene resin.
(94) The refractive index of (B) is lower than that of (A),
The cyclic olefin resin has a leaving group that is eliminated by an acid generated from the photoacid generator of (C), and has a leaving group that lowers the refractive index of (A) by elimination. Thru | or the optical waveguide structure in any one of (93).
(95) The cyclic olefin resin of (A) has a leaving group that is eliminated by an acid generated from the photoacid generator of (C) in the side chain,
Said (B) is an optical waveguide structure as described in said (92) containing the 1st monomer as described in following formula (100).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(96) 前記(B)は、さらに、エポキシ化合物およびオキセタニル基を2つ有するオキセタン化合物のうち、少なくとも一方を第2モノマーとして含むものである上記(95)に記載の光導波路構造体。
(97) 前記第2モノマーと前記第1モノマーとの割合は、重量比(前記第2モノマーの重量/前記第1モノマーの重量)で、0.1~1.0である上記(96)に記載の光導波路構造体。
(98) 前記脱離性基は、-O-構造、-Si-アリール構造および-O-Si-構造のうちの少なくとも1つを有するものである上記(95)ないし(97)のいずれかに記載の光導波路構造体。
(99) 前記(A)の環状オレフィン樹脂は、ノルボルネン系樹脂である上記(95)ないし(98)のいずれかに記載の光導波路構造体。
(100) 前記ノルボルネン系樹脂は、ノルボルネンの付加重合体である上記(99)に記載の光導波路構造体。
(101) 前記ノルボルネンの付加重合体は、下記式(101)に記載の繰り返し単位を有するものである上記(100)に記載の光導波路構造体。
(96) The optical waveguide structure according to (95), wherein (B) further includes at least one of the epoxy compound and the oxetane compound having two oxetanyl groups as a second monomer.
(97) The ratio of the second monomer to the first monomer is 0.1 to 1.0 by weight ratio (weight of the second monomer / weight of the first monomer). The optical waveguide structure described.
(98) The leaving group has any one of the above (95) to (97) having at least one of an —O— structure, an —Si—aryl structure and an —O—Si— structure. The optical waveguide structure described.
(99) The optical waveguide structure according to any one of (95) to (98), wherein the cyclic olefin resin of (A) is a norbornene resin.
(100) The optical waveguide structure according to (99), wherein the norbornene-based resin is an addition polymer of norbornene.
(101) The optical waveguide structure according to (100), wherein the addition polymer of norbornene has a repeating unit represented by the following formula (101).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(102) 前記ノルボルネンの付加重合体は、下記式(102)に記載の繰り返し単位を有するものである上記(100)または11に記載の光導波路構造体。 (102) The optical waveguide structure according to (100) or 11, wherein the norbornene addition polymer has a repeating unit represented by the following formula (102).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(103) 上記式(100)に記載の第1モノマーの含有量は、前記環状オレフィン樹脂100重量部に対して、1重量部以上50重量部以下である上記(95)ないし(102)のいずれかに記載の光導波路構造体。
(104) 前記コア層の活性放射線が照射された領域と、未照射領域とで、前記(B)由来の構造体濃度が異なっている上記(91)ないし(103)のいずれかに記載の光導波路構造体。
(105) 前記コア層の活性放射線が照射された領域と未照射領域の屈折率差が0.01以上である上記(91)ないし(104)のいずれかに記載の光導波路構造体。
(106) 前記コア層の活性放射線が照射された領域を前記クラッド部の少なくとも一部とし、未照射領域を前記コア部の少なくとも一部とする上記(91)ないし(105)のいずれかに記載の光導波路構造体。
(107) 前記基板は、樹脂材料または半導体材料で構成されたもの、あるいは繊維基材に樹脂材料を含浸させたもので構成される上記(91)ないし(106)のいずれかに記載の光導波路構造体。
(108) 前記コア層の両面に前記クラッド部を構成するクラッド層がそれぞれ接合され、両クラッド層とこれらの間に介挿されたコア層の積層体により前記光導波路が構成される上記(91)ないし(107)のいずれかに記載の光導波路構造体。
(109) 前記位置決め手段は、前記コア部に対する位置を定めるものである上記(91)ないし(108)のいずれかに記載の光導波路構造体。
(110) 前記電気素子は、発光部または受光部と端子とを有する素子である上記(91)ないし(109)のいずれかに記載の光導波路構造体。
(111) 前記光導波路は、前記コア部を伝送される伝送光の光路を屈曲させる光路変換部を有する上記(91)ないし(110)のいずれかに記載の光導波路構造体。
(112) 前記位置決め手段は、平面視で、前記発光部または前記受光部の位置が前記光路変換部の位置と重なるように位置決めする上記(111)に記載の光導波路構造体。
(113) 前記光路変換部は、前記コア部を伝送される伝送光の少なくとも一部を反射する反射面で構成される上記(111)または(112)に記載の光導波路構造体。
(114) 前記基板は、前記コア部を伝送される伝送光に対する透光性を有する透光部を有し、該透光部を介して前記素子の前記発光部または前記受光部と前記コア部とが光学的に接続されている上記(110)ないし(113)のいずれかに記載の光導波路構造体。
(115) 前記基板の少なくとも一部が前記伝送光に対する透光性を有しており、これにより前記透光部が構成される上記(114)に記載の光導波路構造体。
(116) 前記透光部は、前記基板を貫通する貫通孔で構成されている上記(114)に記載の光導波路構造体。
(117) 前記光導波路は、前記基板に隣接して設けられている上記(91)ないし(116)のいずれかに記載の光導波路構造体。
(118) 前記電気素子は、電子回路素子を含む上記(91)ないし(117)のいずれかに記載の光導波路構造体。
(119) 前記電気素子は、発光部または受光部と端子とを有する素子と、前記素子を駆動するかまたは前記素子の出力信号を処理する機能を有する電子回路素子とを含む上記(91)ないし(117)のいずれかに記載の光導波路構造体。
(120) 少なくとも1層の導体層を有する上記(91)ないし(119)のいずれかに記載の光導波路構造体。
(121) 前記電気素子の端子が前記導体層と電気的に接続されている上記(120)に記載の光導波路構造体。
(122) 前記位置決め手段は、前記基板に形成された凹部の縁部に形成された段差を利用したものである上記(91)ないし(121)のいずれかに記載の光導波路構造体。
(123) 前記位置決め手段は、前記基板に対し固定的に設置された位置決め部材である上記(91)ないし(121)のいずれかに記載の光導波路構造体。
(124) 前記位置決め部材は、前記基板に接合された板材またはシート材である上記(123)に記載の光導波路構造体。
(125) 前記位置決め手段は、前記基板に形成された、または前記基板に対し不動の当て付け面で構成される上記(91)ないし(124)のいずれかに記載の光導波路構造体。
(126) 前記基板の平面上に互いに直交するX方向およびY方向を設定したとき、前記位置決め手段は、前記X方向および前記Y方向のうちの少なくとも一方の方向に対する位置決めを行う上記(91)ないし(125)のいずれかに記載の光導波路構造体。
(127) 前記基板の平面上に互いに直交するX方向およびY方向を設定したとき、前記位置決め手段は、前記X方向および前記Y方向のそれぞれの方向に対する位置決めを行う上記(91)ないし(125)のいずれかに記載の光導波路構造体。
(128) 前記コア部の長手方向が前記X方向または前記Y方向と一致している上記(126)または(127)に記載の光導波路構造体。
(129) 前記コア部を伝送される伝送光を集光または拡散し得るレンズ部を有する上記(91)ないし(128)のいずれかに記載の光導波路構造体。
(130) 前記レンズ部は、前記基板の内部または表面付近に設けられている上記(129)に記載の光導波路構造体。
(131) 上記(91)ないし(130)のいずれかに記載の光導波路構造体を備えたことを特徴とする電子機器。
(103) The content of the first monomer described in the formula (100) is 1 part by weight or more and 50 parts by weight or less based on 100 parts by weight of the cyclic olefin resin. An optical waveguide structure according to claim 1.
(104) The light according to any one of (91) to (103), wherein the concentration of the structure derived from (B) is different between a region irradiated with active radiation of the core layer and a non-irradiated region. Waveguide structure.
(105) The optical waveguide structure according to any one of (91) to (104), wherein the refractive index difference between the region irradiated with active radiation and the non-irradiated region of the core layer is 0.01 or more.
(106) In any one of (91) to (105), a region of the core layer that has been irradiated with active radiation is at least a part of the cladding part, and an unirradiated region is at least a part of the core part. Optical waveguide structure.
(107) The optical waveguide according to any one of (91) to (106), wherein the substrate is made of a resin material or a semiconductor material, or a fiber base material impregnated with a resin material. Structure.
(108) The clad layer constituting the clad portion is bonded to both surfaces of the core layer, and the optical waveguide is constituted by a laminate of both clad layers and the core layer interposed therebetween (91) ) To (107).
(109) The optical waveguide structure according to any one of (91) to (108), wherein the positioning means determines a position with respect to the core portion.
(110) The optical waveguide structure according to any one of (91) to (109), wherein the electric element is an element having a light emitting part or a light receiving part and a terminal.
(111) The optical waveguide structure according to any one of (91) to (110), wherein the optical waveguide includes an optical path conversion unit that bends an optical path of transmission light transmitted through the core unit.
(112) The optical waveguide structure according to (111), wherein the positioning unit positions the light emitting unit or the light receiving unit so that the position of the light emitting unit or the light receiving unit overlaps the position of the optical path conversion unit in plan view.
(113) The optical waveguide structure according to (111) or (112), wherein the optical path conversion unit includes a reflection surface that reflects at least a part of transmission light transmitted through the core unit.
(114) The substrate includes a light-transmitting part having a light-transmitting property with respect to transmission light transmitted through the core part, and the light-emitting part or the light-receiving part of the element and the core part through the light-transmitting part. And the optical waveguide structure according to any one of (110) to (113).
(115) The optical waveguide structure according to (114), wherein at least a part of the substrate has a light-transmitting property with respect to the transmission light, thereby forming the light-transmitting portion.
(116) The optical waveguide structure according to (114), wherein the translucent part is configured by a through-hole penetrating the substrate.
(117) The optical waveguide structure according to any one of (91) to (116), wherein the optical waveguide is provided adjacent to the substrate.
(118) The optical waveguide structure according to any one of (91) to (117), wherein the electric element includes an electronic circuit element.
(119) The electric element includes the element having a light emitting part or a light receiving part and a terminal, and the electronic circuit element having a function of driving the element or processing an output signal of the element. (117) The optical waveguide structure according to any one of (117).
(120) The optical waveguide structure according to any one of (91) to (119), which has at least one conductor layer.
(121) The optical waveguide structure according to (120), wherein a terminal of the electric element is electrically connected to the conductor layer.
(122) The optical waveguide structure according to any one of (91) to (121), wherein the positioning means uses a step formed at an edge of a recess formed in the substrate.
(123) The optical waveguide structure according to any one of (91) to (121), wherein the positioning unit is a positioning member fixedly installed on the substrate.
(124) The optical waveguide structure according to (123), wherein the positioning member is a plate material or a sheet material bonded to the substrate.
(125) The optical waveguide structure according to any one of (91) to (124), wherein the positioning means is configured by an abutting surface formed on the substrate or immovable with respect to the substrate.
(126) When the X direction and the Y direction orthogonal to each other are set on the plane of the substrate, the positioning unit performs positioning in at least one of the X direction and the Y direction. The optical waveguide structure according to any one of (125).
(127) When the X direction and the Y direction orthogonal to each other are set on the plane of the substrate, the positioning means performs positioning in each of the X direction and the Y direction (91) to (125) An optical waveguide structure according to any one of the above.
(128) The optical waveguide structure according to (126) or (127), wherein a longitudinal direction of the core portion coincides with the X direction or the Y direction.
(129) The optical waveguide structure according to any one of (91) to (128), further including a lens unit capable of collecting or diffusing transmission light transmitted through the core unit.
(130) The optical waveguide structure according to (129), wherein the lens portion is provided inside or near the surface of the substrate.
(131) An electronic apparatus comprising the optical waveguide structure according to any one of (91) to (130).
 本発明によれば、光、活性放射線(活性エネルギー光線、電子線、X線等)の照射という簡単な方法でコア部のパターニングをすることができ、光回路の光路を構成するコア部のパターン形状の設計の自由度が広く、しかも寸法精度の高いコア部が得られる。 According to the present invention, the core part can be patterned by a simple method of irradiation with light and active radiation (active energy ray, electron beam, X-ray, etc.), and the pattern of the core part constituting the optical path of the optical circuit A core portion with a wide degree of freedom in shape design and high dimensional accuracy can be obtained.
 また、コア層を所望の材料で構成した場合には、光導波路に応力が作用したり変形が生じたりした場合、特に、繰り返し湾曲変形した場合でも、コア部とクラッド部との層間剥離や、コア部内にマイクロクラックが発生すること等の欠陥が生じ難く、その結果、光導波路の光伝送性能が維持され、耐久性に優れる。 In addition, when the core layer is made of a desired material, when the stress is applied to the optical waveguide or when the deformation occurs, in particular, even when repeatedly curved and deformed, delamination between the core portion and the cladding portion, Defects such as the occurrence of microcracks in the core are unlikely to occur, and as a result, the optical transmission performance of the optical waveguide is maintained and the durability is excellent.
 さらに、コア部をノルボルネン系樹脂(環状オレフィン系樹脂)を主とする樹脂組成物で構成した場合には、前記変形に対し特に強く欠陥が生じ難いという効果が高い他、コア部とクラッド部との屈折率の差をより大きくすることができ、しかも、耐熱性に優れ、その結果、より高性能で耐久性に優れる光導波路が得られる。 Furthermore, when the core part is composed of a resin composition mainly composed of a norbornene resin (cyclic olefin resin), the core part and the cladding part are highly effective in that they are particularly strong against the deformation and hardly cause defects. The difference in refractive index of the optical waveguide can be further increased, and the optical waveguide is excellent in heat resistance. As a result, an optical waveguide having higher performance and durability is obtained.
 また、光路変換部を有する場合には、伝送光の光路を所望の方向へ屈曲させることができ、そのため、光路の設計の自由度が広がり、光回路の集積化にも寄与する。 In addition, when the optical path conversion unit is provided, the optical path of the transmission light can be bent in a desired direction, which increases the degree of freedom in designing the optical path and contributes to the integration of the optical circuit.
 そして、基板が透光部を有する場合には、基板を通過する光路を形成することができるので、光路の設計の自由度がさらに広がる。また、透光部がレンズ部を有する場合には、光路において必要に応じ伝送光の集光、拡散が可能となり、光路の屈曲等と相まって、光回路の設計の自由度がさらに広がる。 When the substrate has a light transmitting portion, an optical path that passes through the substrate can be formed, so that the degree of freedom in designing the optical path is further expanded. Further, when the light transmitting part has a lens part, it is possible to condense and diffuse the transmission light in the optical path as necessary, and the degree of freedom in designing the optical circuit is further expanded in combination with the bending of the optical path.
 また、光導波路構造体が素子(発光素子または受光素子)を有する場合には、光導波路と光学的に接続することにより、素子の発光部から発せられた光を光導波路により他所へ導くことあるいは他所からの光を光導波路により素子の受光部へ導くことができ、小型で集積された光回路を形成することができ、また当該光回路の作動の信頼性も高い。 Further, when the optical waveguide structure has an element (light emitting element or light receiving element), the light emitted from the light emitting portion of the element is guided to another place by the optical waveguide by optically connecting to the optical waveguide, or Light from other places can be guided to the light receiving portion of the element by the optical waveguide, a small and integrated optical circuit can be formed, and the operation reliability of the optical circuit is also high.
 また、導体層を形成した場合には、前記素子への配線が容易であるとともに、素子の種類(端子の設置箇所)等にかかわらずそれに適した配線が可能となり、汎用性に富む。しかも、このような導体層による配線回路のパターンは、設計の自由度(例えば、端子の設置箇所の選択の自由度)が広い。 In addition, when a conductor layer is formed, wiring to the element is easy and wiring suitable for the element is possible regardless of the type of element (terminal installation location) and the like, so that versatility is enhanced. Moreover, such a wiring circuit pattern using a conductor layer has a wide degree of freedom in design (for example, a degree of freedom in selection of a terminal installation location).
 このような本発明の光導波路構造体は、光回路(光導波路のパターン)や電気回路の設計の幅が広く、歩留まりが高く、光伝送性能を高く維持し、信頼性、耐久性に優れ、汎用性に富む。そのため、本発明の光導波路構造体を備えることにより、信頼性の高い種々の電子部品および電子機器が得られる。 Such an optical waveguide structure of the present invention has a wide range of optical circuit (optical waveguide pattern) and electrical circuit design, high yield, high optical transmission performance, excellent reliability and durability, Rich in versatility. Therefore, by providing the optical waveguide structure of the present invention, various highly reliable electronic parts and electronic devices can be obtained.
 また、積層構造体の厚さ方向に延在する導光路と導体部とを有する場合には、電気回路、光回路ともに3次元的な回路設計が可能となり、それぞれの回路設計において設計の自由度が広がる。特に、導光路と導体部とをまとめて配置すること、特に貫通孔内に両者を形成することにより、光導波路構造体の集積化、小型化に寄与する。 In addition, in the case of having a light guide path and a conductor portion extending in the thickness direction of the laminated structure, it is possible to design a three-dimensional circuit for both an electric circuit and an optical circuit, and the degree of design freedom in each circuit design. Spread. In particular, by arranging the light guide path and the conductor portion together, particularly by forming both in the through hole, it contributes to the integration and miniaturization of the optical waveguide structure.
 また、光路変換部を有する場合には、伝送光の光路を所望の方向へ屈曲させることができ、そのため、光路の設計の自由度が広がり、光回路の集積化にも寄与する。 In addition, when the optical path conversion unit is provided, the optical path of the transmission light can be bent in a desired direction, which increases the degree of freedom in designing the optical path and contributes to the integration of the optical circuit.
 レンズ部を有する場合には、光路において必要に応じ伝送光の集光、拡散が可能となり、光路の屈曲等と相まって、光回路の設計の自由度がさらに広がる。 When the lens portion is provided, the transmission light can be condensed and diffused as necessary in the optical path, and coupled with the bending of the optical path, the degree of freedom in designing the optical circuit is further expanded.
 また、光導波路構造体が素子(発光素子または受光素子)を有する場合には、光導波路と光学的に接続することにより、素子の発光部から発せられた光を光導波路により他所へ導くことあるいは他所からの光を光導波路により素子の受光部へ導くことができ、小型で集積された光回路を形成することができ、また当該光回路の作動の信頼性も高い。 Further, when the optical waveguide structure has an element (light emitting element or light receiving element), the light emitted from the light emitting portion of the element is guided to another place by the optical waveguide by optically connecting to the optical waveguide, or Light from other places can be guided to the light receiving portion of the element by the optical waveguide, a small and integrated optical circuit can be formed, and the operation reliability of the optical circuit is also high.
 また、導体層とこれに導通する導体部とを有する場合には、例えば前記素子への配線を容易に行うことができ、素子の種類(端子の設置箇所)等に係わらずそれに適した配線が可能となり、汎用性に富む。しかも、このような配線回路のパターンは、設計の自由度(例えば、端子の設置箇所の選択の自由度)が広い。 In addition, in the case of having a conductor layer and a conductor portion conducting to the conductor layer, for example, wiring to the element can be easily performed, and wiring suitable for the element can be provided regardless of the type of element (terminal installation location). It becomes possible and rich in versatility. Moreover, such a wiring circuit pattern has a wide degree of freedom in design (for example, a degree of freedom in selection of a terminal installation location).
 このような本発明の光導波路構造体は、光回路(光導波路および導光部のパターン)や電気回路(導体層および導体部のパターン)の設計の幅が広く、歩留まりが良く、光伝送性能を高く維持し、信頼性、耐久性に優れ、汎用性に富む。そのため、本発明の光導波路構造体は、種々の電子部品、電子機器等に対し用いることができる。 Such an optical waveguide structure of the present invention has a wide range of design of optical circuits (patterns of optical waveguides and light guides) and electrical circuits (patterns of conductor layers and conductors), good yield, and optical transmission performance. Is highly reliable, durable and versatile. Therefore, the optical waveguide structure of the present invention can be used for various electronic components, electronic devices, and the like.
 本発明の光導波路構造体を用いることにより、電気回路が形成された少なくとも1層の導体層と、光路が面方向に1または2次元的に配置された少なくとも1層の光導波路とを積層してなる多層光・電混成(融合)配線基板を製造することができ、層間の(層の厚さ方向の)接続を、導光路と導体部を共に有する貫通孔にて行うことにより、電気配線でも光回路でも接続(信号の授受)が可能になり、その結果、回路設計の自由度が広い3次元の光・電混成基板を提供することができる。 By using the optical waveguide structure of the present invention, at least one conductor layer in which an electric circuit is formed and at least one optical waveguide in which an optical path is arranged one- or two-dimensionally in a plane direction are laminated. A multilayer optical / electrical hybrid (fusion) wiring board can be manufactured, and the wiring between layers (in the thickness direction of the layer) is made through a through-hole having both a light guide path and a conductor portion. However, connection (signal transmission / reception) is possible even in an optical circuit, and as a result, a three-dimensional optical / electrical hybrid substrate with a wide degree of freedom in circuit design can be provided.
 また、電気回路、光回路共に、形成が容易で、種々の形状のものを寸法精度良く形成することができる。特に、光回路については、露光パターンの選択により、どのような形状や配置の光路(コア部)でも形成することができ、また、細い光路でもシャープに形成することができるので、回路の集積化に寄与し、デバイスの小型化が図れる。 Also, both electric circuits and optical circuits can be easily formed, and various shapes can be formed with high dimensional accuracy. In particular, the optical circuit can be formed with any shape and arrangement of the optical path (core part) by selecting the exposure pattern, and it can be sharply formed even with a thin optical path. The device can be downsized.
 また、位置決め手段を有する場合には、電気素子と光導波路(コア部)との位置関係を容易かつ正確に定めることができ、製造が容易であるとともに、光伝送特性に優れ、信頼性の高い光回路を得ることができ、また、より微細で複雑な回路パターンを形成することができる。 In addition, when the positioning means is provided, the positional relationship between the electric element and the optical waveguide (core portion) can be determined easily and accurately, and the manufacturing is easy and the optical transmission characteristics are excellent and the reliability is high. An optical circuit can be obtained, and a finer and more complicated circuit pattern can be formed.
 特に、基板に対し電気素子の位置決めをした後にコア部等を形成(活性放射線の照射により、またはさらに加熱することにより形成)すること、あるいは、電気素子の位置が予め定められた基板に対しコア層を形成しさらにコア部等を形成することにより、電気素子の発光部または受光部とコア部(特に伝送光のコア部への入射部またはコア部からの出射部)との位置関係を容易かつ正確に定めることができる。 In particular, after positioning the electric element with respect to the substrate, a core portion or the like is formed (formed by irradiation with actinic radiation or by further heating), or the core is positioned with respect to the substrate where the position of the electric element is predetermined. By forming a layer and further forming a core part, etc., the positional relationship between the light emitting part or light receiving part of the electric element and the core part (especially the incident part of the transmitted light to the core part or the outgoing part from the core part) is easy. And can be determined accurately.
 また、光路変換部を有する場合には、伝送光の光路を所望の方向へ屈曲させることができ、そのため、光路の設計の自由度が広がり、特に短い光路長で光回路を形成することができ、光回路の高集積化に寄与する。この場合でも、位置決め手段を有することにより、電気素子の発光部または受光部と、光路変換部との位置決めを容易かつ正確に行うことができる。 In addition, when the optical path conversion unit is provided, the optical path of the transmitted light can be bent in a desired direction, so that the degree of freedom in designing the optical path is widened, and an optical circuit can be formed with a particularly short optical path length. This contributes to higher integration of optical circuits. Even in this case, the positioning means can be used to easily and accurately position the light emitting portion or the light receiving portion of the electric element and the optical path changing portion.
 また、基板が透光部を有する場合には、基板を通過する光路(基板の厚さ方向の光路)を形成することができるので、光路の設計の自由度がさらに広がる。また、透光部がレンズ部を有する場合には、光路において必要に応じ伝送光の集光、拡散が可能となり、光路の屈曲等と相まって、光回路の設計の自由度がさらに広がる。 In addition, when the substrate has a light transmitting portion, an optical path passing through the substrate (an optical path in the thickness direction of the substrate) can be formed, so that the degree of freedom in designing the optical path is further expanded. Further, when the light transmitting part has a lens part, it is possible to condense and diffuse the transmission light in the optical path as necessary, and the degree of freedom in designing the optical circuit is further expanded in combination with the bending of the optical path.
 また、導体層を有する場合には、例えば前記電気素子への配線を容易に行うことができ、電気素子の種類(端子の設置箇所)等に係わらずそれに適した配線が可能となり、汎用性に富む。しかも、このような配線回路のパターンは、設計の自由度(例えば、端子の設置箇所の選択の自由度)が広い。 In addition, when a conductor layer is provided, for example, wiring to the electric element can be easily performed, and wiring suitable for the electric element can be made regardless of the type of the electric element (terminal installation location). Rich. Moreover, such a wiring circuit pattern has a wide degree of freedom in design (for example, a degree of freedom in selection of a terminal installation location).
 このような本発明の光導波路構造体は、光回路(光導波路および導光部のパターン)や電気回路(導体層および導体部のパターン)の設計の幅が広く、歩留まりが良く、光伝送性能を高く維持し、信頼性、耐久性に優れ、汎用性に富む。そのため、本発明の光導波路構造体は、種々の電子部品、電子機器等に対し用いることができる。 Such an optical waveguide structure of the present invention has a wide range of design of optical circuits (patterns of optical waveguides and light guides) and electrical circuits (patterns of conductor layers and conductors), good yield, and optical transmission performance. Is highly reliable, durable and versatile. Therefore, the optical waveguide structure of the present invention can be used for various electronic components, electronic devices, and the like.
 また、光回路の形成が容易で、種々の形状のものを寸法精度良く形成することができ、しかも、細い光路でもシャープに形成することができるので、回路の集積化に寄与し、デバイスの小型化が図れる。 In addition, optical circuits can be easily formed, various shapes can be formed with high dimensional accuracy, and even narrow optical paths can be formed sharply, contributing to circuit integration and reducing device size. Can be achieved.
本発明の光導波路構造体の第1実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the optical waveguide structure of this invention. 本発明の光導波路構造体の第2実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the optical waveguide structure of this invention. 本発明の光導波路構造体の第3実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the optical waveguide structure of this invention. 本発明の光導波路構造体の第4実施形態を示す断面図である。It is sectional drawing which shows 4th Embodiment of the optical waveguide structure of this invention. 本発明の光導波路構造体の第5実施形態を示す断面図である。It is sectional drawing which shows 5th Embodiment of the optical waveguide structure of this invention. 本発明の光導波路構造体の第6実施形態を示す断面図である。It is sectional drawing which shows 6th Embodiment of the optical waveguide structure of this invention. 本発明の光導波路構造体の第7実施形態を示す断面図である。It is sectional drawing which shows 7th Embodiment of the optical waveguide structure of this invention. 本発明の光導波路構造体の第8実施形態を示す断面図である。It is sectional drawing which shows 8th Embodiment of the optical waveguide structure of this invention. 本発明の光導波路構造体の第9実施形態を示す断面図である。It is sectional drawing which shows 9th Embodiment of the optical waveguide structure of this invention. 本発明の光導波路構造体の第10実施形態を示す断面図である。It is sectional drawing which shows 10th Embodiment of the optical waveguide structure of this invention. 本発明の光導波路構造体の第11実施形態を示す断面図である。It is sectional drawing which shows 11th Embodiment of the optical waveguide structure of this invention. 本発明の光導波路構造体の第12実施形態を示す平面図である。It is a top view which shows 12th Embodiment of the optical waveguide structure of this invention. 第12実施形態の他の構成例を示す平面図である。It is a top view which shows the other structural example of 12th Embodiment. 第12実施形態の他の構成例を示す平面図である。It is a top view which shows the other structural example of 12th Embodiment. 本発明の光導波路構造体の第13実施形態を示す斜視図である。It is a perspective view which shows 13th Embodiment of the optical waveguide structure of this invention. 光導波路の製造方法の工程例を模式的に示す断面図である。It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide. 光導波路の製造方法の工程例を模式的に示す断面図である。It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide. 光導波路の製造方法の工程例を模式的に示す断面図である。It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide. 実施例における曲げ損失の測定方法を模式的に示す図である。It is a figure which shows typically the measuring method of the bending loss in an Example. 本発明の光導波路構造体の第14実施形態を示す断面図である。It is sectional drawing which shows 14th Embodiment of the optical waveguide structure of this invention. 本発明の光導波路構造体の第15実施形態を示す断面図である。It is sectional drawing which shows 15th Embodiment of the optical waveguide structure of this invention. 本発明の光導波路構造体の第16実施形態を示す断面図である。It is sectional drawing which shows 16th Embodiment of the optical waveguide structure of this invention. 本発明の光導波路構造体の第17実施形態を示す断面図である。It is sectional drawing which shows 17th Embodiment of the optical waveguide structure of this invention. 本発明の光導波路構造体の第18実施形態を示す断面図である。It is sectional drawing which shows 18th Embodiment of the optical waveguide structure of this invention. 図20中のA-A線断面図である。FIG. 21 is a sectional view taken along line AA in FIG. 20. 図22中のB-B線断面図である。FIG. 23 is a sectional view taken along line BB in FIG. 図24中のC-C線断面図である。It is CC sectional view taken on the line in FIG. 光導波路の製造方法の工程例を模式的に示す断面図である。It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide. 光導波路の製造方法の工程例を模式的に示す断面図である。It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide. 光導波路の製造方法の工程例を模式的に示す断面図である。It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide. 実施例における曲げ損失の測定方法を模式的に示す図である。It is a figure which shows typically the measuring method of the bending loss in an Example. 本発明の光導波路構造体の第19実施形態を示す平面図である。It is a top view which shows 19th Embodiment of the optical waveguide structure of this invention. 図32中のA-A線断面図である。FIG. 33 is a cross-sectional view taken along line AA in FIG. 32. 図32中のB-B線断面図である。FIG. 33 is a sectional view taken along line BB in FIG. 32. 本発明の光導波路構造体の第20実施形態を示す断面図である。It is sectional drawing which shows 20th Embodiment of the optical waveguide structure of this invention. 本発明の光導波路構造体の第21実施形態を示す断面図である。It is sectional drawing which shows 21st Embodiment of the optical waveguide structure of this invention. 本発明の光導波路構造体の第22実施形態を示す断面図である。It is sectional drawing which shows 22nd Embodiment of the optical waveguide structure of this invention. 光導波路の製造方法の工程例を模式的に示す断面図である。It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide. 光導波路の製造方法の工程例を模式的に示す断面図である。It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide. 光導波路の製造方法の工程例を模式的に示す断面図である。It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide. 実施例における曲げ損失の測定方法を模式的に示す図である。It is a figure which shows typically the measuring method of the bending loss in an Example.
 以下、本発明の光導波路構造体および電子機器について添付図面に示す好適実施形態に基づき詳細に説明する。 Hereinafter, the optical waveguide structure and the electronic device of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
 図1~図11は、それぞれ、本発明の光導波路構造体の実施形態を示す断面図である。以下これらの図を参照しつつ、光導波路構造体の構成例について説明する。なお、以下の説明では、図1~図11中の上側を「上」または「上方」とし、下側を「下」または「下方」とする。また、各図は、層の厚さ方向(各図の上下方向)が誇張して描かれている。 1 to 11 are cross-sectional views showing embodiments of the optical waveguide structure of the present invention. Hereinafter, a configuration example of the optical waveguide structure will be described with reference to these drawings. In the following description, the upper side in FIGS. 1 to 11 is “upper” or “upper”, and the lower side is “lower” or “lower”. Each figure is exaggerated in the thickness direction of the layer (the vertical direction in each figure).
 図20~図24は、それぞれ、本発明の光導波路構造体の実施形態を示す断面図であり、図25、図26および図27は、それぞれ、図20中のA-A線断面図、図22中のB-B線断面図および図24中のC-C線断面図である。以下これらの図を参照しつつ、光導波路構造体の構成例について説明する。なお、以下の説明では、図20~図24中の上側を「上」または「上方」とし、下側を「下」または「下方」とする。また、図20~図24は、層の厚さ方向(各図の上下方向)が誇張して描かれている。 20 to 24 are sectional views showing embodiments of the optical waveguide structure according to the present invention. FIGS. 25, 26 and 27 are sectional views taken along line AA in FIG. 25 is a cross-sectional view taken along line BB in FIG. 22 and a cross-sectional view taken along line CC in FIG. Hereinafter, a configuration example of the optical waveguide structure will be described with reference to these drawings. In the following description, the upper side in FIGS. 20 to 24 is “upper” or “upper”, and the lower side is “lower” or “lower”. 20 to 24 are exaggerated in the layer thickness direction (vertical direction in each figure).
 図32は、本発明の光導波路構造体の第19実施形態を示す平面図、図33は、図32中のA-A線断面図、図34は、図32中のB-B線断面図、図35は、本発明の光導波路構造体の第20実施形態を示す断面図、図36は、本発明の光導波路構造体の第21実施形態を示す断面図、図37は、本発明の光導波路構造体の第22実施形態を示す断面図である。以下これらの図を参照しつつ、光導波路構造体の構成例について説明する。 32 is a plan view showing a nineteenth embodiment of the optical waveguide structure of the present invention, FIG. 33 is a sectional view taken along line AA in FIG. 32, and FIG. 34 is a sectional view taken along line BB in FIG. 35 is a sectional view showing a twentieth embodiment of the optical waveguide structure of the present invention, FIG. 36 is a sectional view showing a twenty-first embodiment of the optical waveguide structure of the present invention, and FIG. It is sectional drawing which shows 22nd Embodiment of an optical waveguide structure. Hereinafter, a configuration example of the optical waveguide structure will be described with reference to these drawings.
 なお、以下の説明では、図33~図37中の上側を「上」または「上方」とし、下側を「下」または「下方」とする。また、図33~図37は、層の厚さ方向(各図の上下方向)が誇張して描かれている。また、図32中の横方向(左右方向)を「X方向」、縦方向(上下方向)を「Y方向」(但しX方向とY方向は直交する)として説明する。 In the following description, the upper side in FIGS. 33 to 37 is “upper” or “upper”, and the lower side is “lower” or “lower”. 33 to 37 exaggerate the layer thickness direction (vertical direction in each figure). In addition, the horizontal direction (left-right direction) in FIG. 32 will be described as “X direction”, and the vertical direction (vertical direction) will be described as “Y direction” (however, the X direction and the Y direction are orthogonal to each other).
<第1実施形態:図1>
 図1に示すように、本発明の光導波路構造体1は、光導波路9と、光導波路9の両面にそれぞれ接合された導体層51、52と、光導波路9の光路を屈曲させる光路変換部96と、発光素子10と、電気素子12とを備えている。
<First Embodiment: FIG. 1>
As shown in FIG. 1, the optical waveguide structure 1 of the present invention includes an optical waveguide 9, conductor layers 51 and 52 bonded to both surfaces of the optical waveguide 9, and an optical path conversion unit that bends the optical path of the optical waveguide 9. 96, a light emitting element 10, and an electric element 12.
 光導波路9は、図1中下側からクラッド層(下側クラッド層)91、コア層93およびクラッド層(上側クラッド層)92をこの順に積層してなるものであり、コア層93には、所定パターンのコア部94とクラッド部95とが形成されている。コア部94は、伝送光の光路を形成する部分であり、クラッド部95は、コア層93に形成されているものの伝送光の光路を形成せず、クラッド層91、92と同様の機能を果たす部分である。 The optical waveguide 9 is formed by laminating a clad layer (lower clad layer) 91, a core layer 93, and a clad layer (upper clad layer) 92 in this order from the lower side in FIG. A core portion 94 and a clad portion 95 having a predetermined pattern are formed. The core portion 94 is a portion that forms an optical path of the transmission light, and the cladding portion 95 does not form an optical path of the transmission light although it is formed in the core layer 93 and performs the same function as the cladding layers 91 and 92. Part.
 図1に示す構成では、コア層93の後述する反射面961より図1中左側の部位は、コア部94が形成され、コア層93のそれ以外の部分は、クラッド部95が形成されている。 In the configuration shown in FIG. 1, a core portion 94 is formed on the left side in FIG. 1 of a later-described reflective surface 961 of the core layer 93, and a cladding portion 95 is formed on the other portion of the core layer 93. .
 コア層93の構成材料としては、光(例えば紫外線)の照射により、あるいはさらに加熱することにより屈折率が変化する材料とされる。このような材料の好ましい例としては、ベンゾシクロブテン系ポリマー、ノルボルネン系ポリマー(樹脂)等の環状オレフィン系樹脂を含む樹脂組成物を主材料とするものが挙げられ、ノルボルネン系ポリマーを含む(主材料とする)ものが特に好ましい。 The constituent material of the core layer 93 is a material whose refractive index changes by irradiation with light (for example, ultraviolet rays) or by further heating. Preferable examples of such materials include those containing a resin composition containing a cyclic olefin resin such as a benzocyclobutene polymer and a norbornene polymer (resin) as a main material, and include a norbornene polymer (mainly The material) is particularly preferred.
 このような材料で構成されたコア層93は、曲げ等の変形に対する耐性に優れ、特に繰り返し湾曲変形した場合でも、コア部94とクラッド部95との剥離や、コア層93と隣接する層(クラッド層91、92)との層間剥離が生じ難く、コア部94内やクラッド部95内にマイクロクラックが発生することも防止される。その結果、光導波路9の光伝送性能が維持され、耐久性に優れた光導波路9が得られる。 The core layer 93 made of such a material is excellent in resistance to deformation such as bending, and even when it is repeatedly curved and deformed, the core layer 94 and the clad portion 95 are separated from each other, and the layer adjacent to the core layer 93 ( The delamination with the clad layers 91 and 92) hardly occurs, and the occurrence of microcracks in the core portion 94 and the clad portion 95 is also prevented. As a result, the optical transmission performance of the optical waveguide 9 is maintained, and the optical waveguide 9 having excellent durability is obtained.
 また、コア層93の構成材料には、例えば、酸化防止剤、屈折率調整剤、可塑剤、増粘剤、補強剤、増感剤、レベリング剤、消泡剤、密着助剤および難燃剤等の添加剤が含まれていてもよい。酸化防止剤の添加は、高温安定性の向上、耐候性の向上、光劣化の抑制という効果がある。このような酸化防止剤としては、例えば、モノフェノール系、ビスフェノール系、トリフェノール系等のフェノール系や、芳香族アミン系のものが挙げられる。また、可塑剤、増粘剤、補強剤の添加により、曲げに対する耐性をさらに増大させることもできる。 Examples of the constituent material of the core layer 93 include an antioxidant, a refractive index adjuster, a plasticizer, a thickener, a reinforcing agent, a sensitizer, a leveling agent, an antifoaming agent, an adhesion aid, and a flame retardant. The additive may be contained. Addition of an antioxidant has the effect of improving high temperature stability, improving weather resistance, and suppressing light deterioration. Examples of such an antioxidant include phenols such as monophenols, bisphenols, and triphenols, and aromatic amines. Further, the resistance to bending can be further increased by adding a plasticizer, a thickener, and a reinforcing agent.
 前記酸化防止剤に代表される添加剤の含有率(2種以上の場合は合計)は、コア層93の構成材料全体に対し、0.5~40重量%程度が好ましく、3~30重量%程度がより好ましい。この量が少なすぎると、添加剤の機能を十分に発揮することができず、量が多すぎると、添加剤の種類や特性によっては、コア部94を伝送する光(伝送光)の透過率の低下、パターニング不良、屈折率不安定等を生じるおそれがある。 The content of additives typified by the antioxidant (the total in the case of two or more types) is preferably about 0.5 to 40% by weight, preferably 3 to 30% by weight, based on the entire constituent material of the core layer 93. The degree is more preferred. If this amount is too small, the function of the additive cannot be sufficiently exhibited. If the amount is too large, the transmittance of light (transmitted light) transmitted through the core portion 94 depends on the type and characteristics of the additive. Decrease, patterning failure, refractive index instability and the like.
 コア層93の形成方法としては、塗布法が挙げられる。塗布法としては、コア層形成用組成物(ワニス等)を塗布し硬化(固化)させる方法、硬化性を有するモノマー組成物を塗布し硬化(固化)させる方法が挙げられる。また、塗布法以外の方法、例えば、別途製造されたシート材を接合する方法を採用することもできる。 An example of a method for forming the core layer 93 is a coating method. Examples of the coating method include a method in which a core layer forming composition (varnish or the like) is applied and cured (solidified), and a method in which a curable monomer composition is applied and cured (solidified). In addition, a method other than the coating method, for example, a method of joining separately manufactured sheet materials may be employed.
 以上のようにして得られたコア層93に対し、マスクを用いて光(活性放射線)を選択的に照射し、所望の形状のコア部94をパターニングする。 The core layer 93 obtained as described above is selectively irradiated with light (active radiation) using a mask to pattern the core portion 94 having a desired shape.
 露光に用いる光としては、可視光、紫外光、赤外光、レーザー光等の活性エネルギー光線が挙げられる。また、光を用いるのではなく、X線等の電磁波や、電子線等の粒子線を用いるようにしてもよい。 Examples of light used for exposure include active energy rays such as visible light, ultraviolet light, infrared light, and laser light. Further, instead of using light, electromagnetic waves such as X-rays or particle beams such as electron beams may be used.
 コア層93において、光が照射された部位は、その屈折率が低下し、光が照射されなかった部位との間で屈折率の差が生じる。例えば、コア層93の光が照射された部位がクラッド部95となり、照射されなかった部位がコア部94となる。クラッド部95の屈折率は、クラッド層91、92の屈折率とほぼ等しい。 In the core layer 93, the part irradiated with light has a lower refractive index, and a difference in refractive index occurs between the part not irradiated with light. For example, a portion of the core layer 93 that is irradiated with light becomes the cladding portion 95, and a portion that is not irradiated becomes the core portion 94. The refractive index of the cladding part 95 is substantially equal to the refractive index of the cladding layers 91 and 92.
 また、コア層93に対し光を所定のパターンで照射した後、加熱することにより、コア部94を形成する場合もある。この加熱工程を付加することにより、コア部94とクラッド部95との屈折率の差がより大きくなるので好ましい。なお、この原理等については、後に詳述する。 Further, the core portion 94 may be formed by irradiating the core layer 93 with light in a predetermined pattern and then heating. By adding this heating step, the difference in refractive index between the core portion 94 and the cladding portion 95 becomes larger, which is preferable. This principle will be described later in detail.
 形成されるコア部94のパターン形状としては、特に限定されず、直線状、湾曲部を有する形状、異形、光路の分岐部、合流部または交差部を有する形状、集光部(幅等が減少している部分)または光拡散部(幅等が増大している部分)、あるいはこれらのうちの2以上を組み合わせた形状等、いかなるものでもよい。光の照射パターンの設定により、いかなる形状のコア部94をも容易に形成することができる点が、本発明の特徴である。 The pattern shape of the core portion 94 to be formed is not particularly limited, and is a straight shape, a shape having a curved portion, an irregular shape, a shape having a branching portion of a light path, a merging portion or a crossing portion, a condensing portion (a width etc. is reduced). Or a light diffusing part (a part where the width or the like is increased), or a combination of two or more of these. A feature of the present invention is that the core portion 94 having any shape can be easily formed by setting the light irradiation pattern.
 光導波路9の各部の構成材料およびコア部94の形成方法等については、後に詳述する。 The constituent material of each part of the optical waveguide 9 and the method of forming the core part 94 will be described in detail later.
 光導波路9の下面に接合された導体層51および上面に接合された導体層52は、それぞれ、所定の形状にパターニングされて、所望の配線または回路を構成している。導体層51、52の構成材料としては、例えば、銅、銅系合金、アルミニウム、アルミニウム系合金等の各種金属材料が挙げられる。導体層51、52の厚さは、特に限定されないが、通常、3~120μm程度が好ましく、5~70μm程度がより好ましい。 The conductor layer 51 joined to the lower surface of the optical waveguide 9 and the conductor layer 52 joined to the upper surface are each patterned into a predetermined shape to constitute a desired wiring or circuit. Examples of the constituent material of the conductor layers 51 and 52 include various metal materials such as copper, a copper-based alloy, aluminum, and an aluminum-based alloy. The thickness of the conductor layers 51 and 52 is not particularly limited, but is usually preferably about 3 to 120 μm, and more preferably about 5 to 70 μm.
 導体層51、52は、例えば、金属箔の接合(接着)、金属メッキ、蒸着、スパッタリング等の方法により形成されたものである。導体層51、52へのパターニングは、例えばエッチング、印刷、マスキング等の方法を用いることができる。 The conductor layers 51 and 52 are formed by, for example, metal foil bonding (adhesion), metal plating, vapor deposition, sputtering, or the like. For example, etching, printing, masking, or the like can be used for patterning the conductor layers 51 and 52.
 発光素子10は、図1中下面側に、発光部101と、一対の端子103、105とを有している。発光部101は、端子103と端子105の間に位置している。端子103、105間に通電がなされると、発光部101が発光する。 The light emitting element 10 includes a light emitting unit 101 and a pair of terminals 103 and 105 on the lower surface side in FIG. The light emitting unit 101 is located between the terminal 103 and the terminal 105. When the terminals 103 and 105 are energized, the light emitting unit 101 emits light.
 なお、発光素子10における発光部は、1つの発光点で構成されているものの他、発光点が複数個集合したものでもよい。発光点が複数個集合したものとしては、例えば、発光点が列状(例えば発光点が1×4個、1×12個)または行列状(例えば発光点がn×m個:n、mは2以上の整数)に配置されたものや、複数の発光点がランダム(不規則)に配置されたもの等が挙げられる。後述する受光素子11における受光部111についても同様である。 It should be noted that the light emitting part in the light emitting element 10 may be composed of one light emitting point, or may be a set of a plurality of light emitting points. As a set of a plurality of light emitting points, for example, the light emitting points are arranged in a row (for example, 1 × 4, 1 × 12) or in a matrix (for example, n × m: n, m And those in which a plurality of light emitting points are arranged randomly (irregularly). The same applies to a light receiving portion 111 in the light receiving element 11 described later.
 発光素子10は、それらの端子103、105がそれぞれ導体層52の所定部位に接合(電気的に接続)されるようにして光導波路9上に搭載されている。 The light emitting element 10 is mounted on the optical waveguide 9 such that the terminals 103 and 105 are respectively joined (electrically connected) to predetermined portions of the conductor layer 52.
 電気素子(電子回路素子)12は、例えば半導体素子(半導体チップ)で構成されている。電気素子12の機能は特に限定されないが、一例として、発光素子10を駆動するための回路を構成するものが挙げられる。この電気素子12は、図1中下面側に、2つの端子123、125を有している。 The electric element (electronic circuit element) 12 is composed of, for example, a semiconductor element (semiconductor chip). Although the function of the electric element 12 is not particularly limited, an example is one that constitutes a circuit for driving the light emitting element 10. The electric element 12 has two terminals 123 and 125 on the lower surface side in FIG.
 電気素子12は、それらの端子123、125がそれぞれ導体層52の所定部位に接合(電気的に接続)されるようにして光導波路9上に搭載されている。 The electric element 12 is mounted on the optical waveguide 9 such that the terminals 123 and 125 are joined (electrically connected) to predetermined portions of the conductor layer 52, respectively.
 発光素子10および電気素子12は、それらの端子103、105、123、125を含む下部がアンダーフィル材4により封止されている。これにより、発光素子10および電気素子12と、光導波路9との間には、空隙部が形成されることなくアンダーフィル材4により封止されることとなる。さらに、発光素子10および電気素子12は、その全体(外表面)が封止材6により覆われ、封止されている。このように、発光素子10および電気素子12は、その全体が封止され、特に発光部101が外部に露出することなく封止された構造であるため、汚れ、損傷、酸化劣化等から保護され、電子部品の信頼性向上に寄与する。 The lower part including the terminals 103, 105, 123, and 125 of the light emitting element 10 and the electric element 12 is sealed with the underfill material 4. As a result, the gap between the light emitting element 10 and the electric element 12 and the optical waveguide 9 is sealed with the underfill material 4 without forming a gap. Further, the entire light emitting element 10 and electric element 12 (outer surface) are covered and sealed with the sealing material 6. As described above, the light emitting element 10 and the electric element 12 are entirely sealed, and in particular, the light emitting portion 101 is sealed without being exposed to the outside, so that it is protected from dirt, damage, oxidative degradation, and the like. Contributes to improving the reliability of electronic components.
 アンダーフィル材4は、発光部101から発せられる光(伝送光)を実質的に透過する材料で構成されており、好ましくは、透明な材料で構成されている。 The underfill material 4 is made of a material that substantially transmits light (transmitted light) emitted from the light emitting unit 101, and is preferably made of a transparent material.
 アンダーフィル材4の構成材料としては、絶縁性を有する樹脂材料が好ましく、例えば、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、ポリイミド樹脂等が挙げられる。 The constituent material of the underfill material 4 is preferably a resin material having insulating properties, and examples thereof include an epoxy resin, a phenol resin, a urethane resin, and a polyimide resin.
 また、封止材6の構成材料としては、絶縁性を有する樹脂材料が好ましく、例えば、エポキシ樹脂、フェノール樹脂、ノルボルネン樹脂、シリコン樹脂等が挙げられる。 Further, as the constituent material of the sealing material 6, a resin material having an insulating property is preferable, and examples thereof include an epoxy resin, a phenol resin, a norbornene resin, and a silicon resin.
 図1に示すように、光導波路9には、その厚さ方向に貫通する4つの貫通孔(スルーホール)8が形成されている。各貫通孔8には、導電材料(例えば、銅、銅系合金、アルミニウム、アルミニウム系合金等の各種金属材料)が充填され、導体ポスト81を形成している。これらの導体ポスト81を介して、導体層51と導体層52の所定部位同士が導通している。すなわち、発光素子10および電気素子12の端子103、105、123、125への通電は、光導波路9の下面側の導体層51を介して行うことができるようになっている。なお、端子105と端子123とは導通し、これらはグランド側に接続されている。 As shown in FIG. 1, the optical waveguide 9 is formed with four through holes (through holes) 8 penetrating in the thickness direction. Each through-hole 8 is filled with a conductive material (for example, various metal materials such as copper, copper-based alloy, aluminum, aluminum-based alloy) to form a conductor post 81. The predetermined portions of the conductor layer 51 and the conductor layer 52 are electrically connected to each other through the conductor posts 81. In other words, the terminals 103, 105, 123, and 125 of the light emitting element 10 and the electric element 12 can be energized through the conductor layer 51 on the lower surface side of the optical waveguide 9. Note that the terminal 105 and the terminal 123 are electrically connected and are connected to the ground side.
 光導波路9のコア部94は、平面視で(図1の上方から見たとき)発光素子10の発光部101と重なるような(すなわち、発光部101の真下を通過するような)パターン形状で形成されている。このコア部94は、クラッド部95に比べて屈折率が高く、また、クラッド層91、92に対しても屈折率が高い。クラッド層91および92は、それぞれ、コア部94の下部および上部に位置するクラッド部を構成するものである。このような構成により、コア部94は、その外周の全周をクラッド部に囲まれた導光路として機能する。 The core portion 94 of the optical waveguide 9 has a pattern shape that overlaps with the light emitting portion 101 of the light emitting element 10 in plan view (when viewed from above in FIG. 1) (that is, passes through directly under the light emitting portion 101). Is formed. The core portion 94 has a higher refractive index than that of the cladding portion 95 and has a higher refractive index than the cladding layers 91 and 92. The clad layers 91 and 92 constitute the clad portions located at the lower part and the upper part of the core part 94, respectively. With such a configuration, the core portion 94 functions as a light guide path surrounded by the clad portion on the entire outer periphery.
 このような光導波路9は、コア部94の光路を屈曲させる光路変換部96を有している。この光路変換部96は、伝送光の少なくとも一部を反射する反射面(ミラー)961で構成されている。この反射面961は、発光部101の真下の位置に設けられている。 Such an optical waveguide 9 has an optical path conversion section 96 that bends the optical path of the core section 94. The optical path conversion unit 96 includes a reflection surface (mirror) 961 that reflects at least a part of the transmission light. The reflecting surface 961 is provided at a position directly below the light emitting unit 101.
 反射面961は、光導波路9の光路、すなわちコア部94の長手方向に対しほぼ45°傾斜しており、伝送光の大半(例えば90%以上)を反射する機能を有している。 The reflecting surface 961 is inclined by approximately 45 ° with respect to the optical path of the optical waveguide 9, that is, the longitudinal direction of the core portion 94, and has a function of reflecting most of the transmitted light (for example, 90% or more).
 このような光路変換部96は、光導波路9の一部を除去(欠損)することにより、例えば断面が下方を底辺とする三角形の凹部(空孔)を形成し、その1つの傾斜面を反射面961として用いるものである。反射面961は、例えば多層光学薄膜や金属薄膜(例えばアルミ蒸着膜)のような反射膜あるいは反射増加膜を有していてもよい。また、図示しないが、光路変換部96の凹部には、充填材、特にコア部94と屈折率の異なる充填材が充填されていてもよい。 Such an optical path conversion unit 96 removes (deletes) a part of the optical waveguide 9 to form, for example, a triangular concave portion (hole) whose bottom is the bottom, and reflects one inclined surface thereof. The surface 961 is used. The reflection surface 961 may have a reflection film such as a multilayer optical thin film or a metal thin film (for example, an aluminum vapor deposition film) or a reflection increasing film. Although not shown, the concave portion of the optical path conversion unit 96 may be filled with a filler, particularly a filler having a refractive index different from that of the core 94.
 図示の構成では、反射面961(光路変換部96)は、コア層93とクラッド層92とにまたがって形成されているが、コア層93内のみに形成されていてもよい。 In the configuration shown in the figure, the reflection surface 961 (the optical path conversion unit 96) is formed across the core layer 93 and the clad layer 92, but may be formed only in the core layer 93.
 本実施形態の光導波路構造体1では、導体層51、導体ポスト81および導体層52を介して発光素子10の端子103、105間へ通電がなされると、発光部101が発光し、図1中下方へ向かって発せられた光は、アンダーフィル材4およびクラッド層92を順次透過し、反射面961で反射されて90°屈曲し、光導波路9のコア部94に入り、クラッド部(クラッド層91、92および側方のクラッド部95)との界面で反射を繰り返しながら、コア部94内をその長手方向(図1中左方向)に沿って進む。 In the optical waveguide structure 1 of the present embodiment, when power is supplied between the terminals 103 and 105 of the light emitting element 10 via the conductor layer 51, the conductor post 81, and the conductor layer 52, the light emitting unit 101 emits light, and FIG. The light emitted toward the middle and lower is sequentially transmitted through the underfill material 4 and the clad layer 92, reflected by the reflecting surface 961, bent by 90 °, enters the core portion 94 of the optical waveguide 9, and enters the clad portion (cladding). While repeating reflection at the interfaces with the layers 91 and 92 and the side cladding portions 95), the core portion 94 proceeds in the longitudinal direction (left direction in FIG. 1).
 また、導体層51、導体ポスト81および導体層52を介して電気素子12の端子123、125間へ通電がなされると、電気素子12が駆動する。 Further, when energization is performed between the terminals 123 and 125 of the electric element 12 through the conductor layer 51, the conductor post 81, and the conductor layer 52, the electric element 12 is driven.
 なお、図1では、図中最も左側にある導体ポスト81とコア部94とが交差しているように示されているが、これらは図1の紙面の前後方向にずれており、コア部94の光路は、導体ポスト81と干渉しないようになっている。 In FIG. 1, the leftmost conductor post 81 and the core portion 94 are shown to intersect with each other, but these are shifted in the front-rear direction of the paper surface of FIG. This optical path is designed not to interfere with the conductor post 81.
<第2実施形態:図2>
 図2には、本発明の光導波路構造体1の第2実施形態が示されている。以下、この光導波路構造体1について説明するが、前記第1実施形態と同様の事項についてはその説明を省略し、相違点を中心に説明する。
Second Embodiment: FIG. 2
FIG. 2 shows a second embodiment of the optical waveguide structure 1 of the present invention. Hereinafter, although this optical waveguide structure 1 is demonstrated, the description is abbreviate | omitted about the matter similar to the said 1st Embodiment, and it demonstrates centering around difference.
 本実施形態の光導波路構造体1は、光路変換部96の構成が前記と異なり、それ以外は同様である。すなわち、光路変換部96を構成する反射面(ミラー)961は、発光部101の真下に位置しているが、この反射面961は、クラッド層91とコア層93とクラッド層92の3層にまたがって形成されている。すなわち、光路変換部96の三角形の凹部は、光導波路9の下面に開放している。 The optical waveguide structure 1 of the present embodiment is the same as the optical path conversion unit 96 except for the configuration described above. In other words, the reflection surface (mirror) 961 constituting the optical path conversion unit 96 is located directly below the light emitting unit 101, but this reflection surface 961 is formed in three layers of the clad layer 91, the core layer 93, and the clad layer 92. It is formed across. That is, the triangular concave portion of the optical path conversion unit 96 is open to the lower surface of the optical waveguide 9.
 なお、反射面961が、多層光学薄膜や金属薄膜のような反射膜あるいは反射増加膜を有していてもよいことや、光路変換部96の凹部に、充填材が充填されていてもよいことは、前記と同様である。 The reflective surface 961 may have a reflective film or a reflection enhancement film such as a multilayer optical thin film or a metal thin film, or the concave portion of the optical path conversion unit 96 may be filled with a filler. Is the same as described above.
<第3実施形態:図3>
 図3には、本発明の光導波路構造体1の第3実施形態が示されている。以下、この光導波路構造体1について説明するが、前記第1実施形態と同様の事項についてはその説明を省略し、相違点を中心に説明する。
<Third Embodiment: FIG. 3>
FIG. 3 shows a third embodiment of the optical waveguide structure 1 of the present invention. Hereinafter, although this optical waveguide structure 1 is demonstrated, the description is abbreviate | omitted about the matter similar to the said 1st Embodiment, and it demonstrates centering around difference.
 本実施形態の光導波路構造体1は、基板2を有し、この基板2の下面に接着層3を介して光導波路9が接着されている。基板2は、アンダーフィル材4と同様に、発光部101から発せられる光(伝送光)を実質的に透過する材料(伝送光に対する透光性を有する材料)で構成されており、好ましくは、実質的に透明な材料で構成された透明基板である。 The optical waveguide structure 1 of this embodiment has a substrate 2, and an optical waveguide 9 is bonded to the lower surface of the substrate 2 via an adhesive layer 3. Similarly to the underfill material 4, the substrate 2 is made of a material that substantially transmits light (transmission light) emitted from the light emitting unit 101 (a material having translucency with respect to the transmission light). A transparent substrate made of a substantially transparent material.
 詳述すると、基板2の光学的特性は、伝送光の透過率が80%以上であるのが好ましく、90%以上であるのがより好ましく、95%以上であるのがさらに好ましい。基板2がこのような光学的特性を有することから、基板2における発光部101の真下の部位は、伝送光を透光する透光部21を構成している。 Specifically, the optical characteristics of the substrate 2 are preferably such that the transmittance of transmitted light is 80% or more, more preferably 90% or more, and further preferably 95% or more. Since the board | substrate 2 has such an optical characteristic, the site | part just under the light emission part 101 in the board | substrate 2 comprises the translucent part 21 which permeate | transmits transmission light.
 接着層3についても同様に、発光部101から発せられる伝送光を実質的に透過する材料で構成されており、好ましくは、透明な材料で構成されている。 Similarly, the adhesive layer 3 is made of a material that substantially transmits transmission light emitted from the light emitting unit 101, and is preferably made of a transparent material.
 基板2の構成材料としては、例えば、エポキシ樹脂、フェノール樹脂、ビスマレイミド樹脂、ビスマレイミド・トリアジン樹脂、トリアゾール樹脂、ポリシアヌレート樹脂、ポリイソシアヌレート樹脂、ベンゾシクロブテン樹脂、ポリイミド樹脂、ポリベンザオキサゾール樹脂、ノルボルネン樹脂等が挙げられる。また、これらの材料は、単独で使用してもよく、複数を混合して使用してもよい。 Examples of the constituent material of the substrate 2 include epoxy resin, phenol resin, bismaleimide resin, bismaleimide / triazine resin, triazole resin, polycyanurate resin, polyisocyanurate resin, benzocyclobutene resin, polyimide resin, polybenzoxazole. Examples thereof include resins and norbornene resins. These materials may be used alone or in combination.
 また、基板2は、例えばガラス繊維、樹脂繊維等の繊維基材(織布、不織布、織物、編物等)に前述したような樹脂材料を含浸させたもの(プリプレグ等)であってもよい。例えば、ガラスクロスにエポキシ樹脂を含浸させたものをガラスエポキシ基板と言うが、このようなものを基板2として用いることができる。このような繊維基材を含む基板2は、比較的薄くても高強度で、また、熱膨張率も低いため、基板2に光導波路9や導体層(金属層)を接合した場合に特に有利である。 Further, the substrate 2 may be, for example, a fiber base such as glass fiber or resin fiber (woven fabric, nonwoven fabric, woven fabric, knitted fabric, etc.) impregnated with the resin material as described above (prepreg, etc.). For example, a glass cloth impregnated with an epoxy resin is called a glass epoxy substrate, but such a substrate can be used as the substrate 2. The substrate 2 including such a fiber base material is particularly advantageous when the optical waveguide 9 or the conductor layer (metal layer) is bonded to the substrate 2 because the substrate 2 including the fiber base is relatively thin but has high strength and low thermal expansion coefficient. It is.
 また、基板2は、複数の層の積層体であってもよい。例えば、それぞれ組成(種類)が異なる樹脂材料からなる第1の層と第2の層とを積層したもの、前記繊維基材に樹脂材料を含浸させた層(シート材)と、樹脂材料からなる層とを積層したものが挙げられる。なお、積層体における層構成は、これに限定されないことは言うまでもない。 Further, the substrate 2 may be a laminate of a plurality of layers. For example, a laminate of a first layer and a second layer made of resin materials having different compositions (kinds), a layer (sheet material) in which the fiber base material is impregnated with a resin material, and a resin material The thing which laminated | stacked the layer is mentioned. In addition, it cannot be overemphasized that the layer structure in a laminated body is not limited to this.
 基板2の厚さは、特に限定されないが、通常、50μm~1.2mm程度が好ましく、100~600μm程度がより好ましい。 The thickness of the substrate 2 is not particularly limited, but is usually preferably about 50 μm to 1.2 mm, more preferably about 100 to 600 μm.
 基板2は、硬質(リジッド)のものでも、可撓性(フレキシブル)を有するものでもよい。また、硬質の基板と可撓性を有する基板の双方を有していてもよい。この場合、光導波路9は、硬質の基板と可撓性を有する基板の少なくとも一方に形成されていればよく、双方にまたがって形成されていてもよい。 The substrate 2 may be hard (rigid) or flexible (flexible). Moreover, you may have both a hard board | substrate and a flexible board | substrate. In this case, the optical waveguide 9 has only to be formed on at least one of a hard substrate and a flexible substrate, and may be formed over both.
 接着層3としては、シート材(ボンディングシート)を用いることができ、その構成材料としては、例えば、エポキシ系接着剤、アクリル系接着剤、フェノール樹脂系接着剤、シアネート樹脂系接着剤、マレイミド樹脂系接着剤等が挙げられる。特に、酸化防止等のために、フラックス活性を有する材料で構成されているのが好ましい。 As the adhesive layer 3, a sheet material (bonding sheet) can be used, and examples of the constituent material thereof include an epoxy adhesive, an acrylic adhesive, a phenol resin adhesive, a cyanate resin adhesive, and a maleimide resin. System adhesives and the like. In particular, it is preferably made of a material having flux activity for preventing oxidation or the like.
 接着層3としてシート材を用いず、基板2の下面または光導波路9の上面に塗膜による接着層3を形成してもよい。また、接着層3は、2層以上を積層したものでもよい。 The adhesive layer 3 may be formed on the lower surface of the substrate 2 or the upper surface of the optical waveguide 9 without using a sheet material as the adhesive layer 3. The adhesive layer 3 may be a laminate of two or more layers.
 接着層3の厚さは、特に限定されないが、0.5~150μm程度が好ましく、10~70μm程度がより好ましい。 The thickness of the adhesive layer 3 is not particularly limited, but is preferably about 0.5 to 150 μm, more preferably about 10 to 70 μm.
 導体層52は、基板2の上面に形成されている。この場合、導体層52の一部は、封止材6より外方に露出している。また、光導波路9の下面に形成された導体層51は、前記第1実施形態のそれとは配線パターンが異なっている。 The conductor layer 52 is formed on the upper surface of the substrate 2. In this case, a part of the conductor layer 52 is exposed outward from the sealing material 6. The conductor layer 51 formed on the lower surface of the optical waveguide 9 has a wiring pattern different from that of the first embodiment.
 図3に示すように、2つの導体ポスト81が光導波路9、接着層3および基板2を貫通して設けられており、これらの導体ポスト81を介して、導体層51と導体層52の所定部位同士が導通している。すなわち、発光素子10の端子105と、電気素子12の端子123とが、導体層51、導体ポスト81および導体層52を介して導通し、これらはグランド側に接続されている。 As shown in FIG. 3, two conductor posts 81 are provided so as to penetrate the optical waveguide 9, the adhesive layer 3, and the substrate 2, and the conductor layer 51 and the conductor layer 52 are predetermined via these conductor posts 81. The parts are conducting. That is, the terminal 105 of the light emitting element 10 and the terminal 123 of the electric element 12 are conducted through the conductor layer 51, the conductor post 81, and the conductor layer 52, and these are connected to the ground side.
 封止材6より外方に露出した一方の導体層52と導体層51との間に通電すると、発光部101が発光し、封止材6より外方に露出した他方の導体層52と導体層51との間に通電すると、電気素子12が駆動する。 When a current is applied between one conductor layer 52 and the conductor layer 51 exposed to the outside from the sealing material 6, the light emitting portion 101 emits light, and the other conductor layer 52 and the conductor exposed to the outside from the sealing material 6. When energized with the layer 51, the electric element 12 is driven.
 本実施形態の光導波路構造体1では、導体層51、導体ポスト81および導体層52を介して発光素子10の端子103、105間へ通電がなされると、発光部101が点灯し、図3中下方へ向かって発せられた光は、アンダーフィル材4、基板2(基板2の透光部)、接着層3およびクラッド層92を順次透過し、反射面961で反射されて90°屈曲し、光導波路9のコア部94に入り、クラッド部(クラッド層91、92および側方のクラッド部95)との界面で反射を繰り返しながら、コア部94内をその長手方向(図3中左方向)に沿って進む。 In the optical waveguide structure 1 of the present embodiment, when power is applied between the terminals 103 and 105 of the light emitting element 10 through the conductor layer 51, the conductor post 81, and the conductor layer 52, the light emitting unit 101 is turned on, and FIG. The light emitted toward the middle and lower is sequentially transmitted through the underfill material 4, the substrate 2 (translucent portion of the substrate 2), the adhesive layer 3, and the cladding layer 92, reflected by the reflecting surface 961, and bent by 90 °. The core portion 94 of the optical waveguide 9 enters the core portion 94 while being repeatedly reflected at the interface with the clad portions (cladding layers 91 and 92 and the side clad portions 95). )
<第4実施形態:図4>
 図4には、本発明の光導波路構造体1の第4実施形態が示されている。以下、この光導波路構造体1について説明するが、前記第1および第3実施形態と同様の事項についてはその説明を省略し、相違点を中心に説明する。
<Fourth Embodiment: FIG. 4>
FIG. 4 shows a fourth embodiment of the optical waveguide structure 1 of the present invention. Hereinafter, although this optical waveguide structure 1 is demonstrated, the description is abbreviate | omitted about the matter similar to the said 1st and 3rd embodiment, and it demonstrates centering around difference.
 本実施形態の光導波路構造体1は、接着層3を有さず、基板2と光導波路9とが直接接合されている点、および光路変換部96の構成が異なる点を除き、前記第3実施形態と同様である。基板2と光導波路9とが直接接合されているため、光導波路構造体1の薄型化に寄与する。 The optical waveguide structure 1 of this embodiment does not have the adhesive layer 3, except that the substrate 2 and the optical waveguide 9 are directly joined and the configuration of the optical path conversion unit 96 is different. This is the same as the embodiment. Since the board | substrate 2 and the optical waveguide 9 are directly joined, it contributes to thickness reduction of the optical waveguide structure 1. FIG.
 光路変換部96を構成する反射面(ミラー)961は、発光部101の真下に位置しているが、この反射面961は、クラッド層91とコア層93とクラッド層92の3層にまたがって形成されている。すなわち、光路変換部96は、上方を底辺とする三角形の凹部で構成され、その斜面に反射面961が形成されている。このような光路変換部96は、基板2に隣接して設けられている。 The reflection surface (mirror) 961 constituting the optical path conversion unit 96 is located directly below the light emitting unit 101, but the reflection surface 961 extends over the three layers of the clad layer 91, the core layer 93, and the clad layer 92. Is formed. In other words, the optical path conversion unit 96 is configured by a triangular recess having a base on the upper side, and a reflecting surface 961 is formed on the slope. Such an optical path conversion unit 96 is provided adjacent to the substrate 2.
 なお、反射面961が、多層光学薄膜や金属薄膜のような反射膜あるいは反射増加膜を有していてもよいことや、光路変換部96の凹部に、充填材が充填されていてもよいことは、前記と同様である。 The reflective surface 961 may have a reflective film or a reflection enhancement film such as a multilayer optical thin film or a metal thin film, or the concave portion of the optical path conversion unit 96 may be filled with a filler. Is the same as described above.
 本実施形態の光導波路構造体1では、導体層51、導体ポスト81および導体層52を介して発光素子10の端子103、105間へ通電がなされると、発光部101が発光し、図4中下方へ向かって発せられた光は、アンダーフィル材4および基板2を順次透過し、反射面961で反射されて90°屈曲し、光導波路9のコア部94に入り、クラッド部(クラッド層91、92および側方のクラッド部95)との界面で反射を繰り返しながら、コア部94内をその長手方向(図4中左方向)に沿って進む。 In the optical waveguide structure 1 of the present embodiment, when current is passed between the terminals 103 and 105 of the light emitting element 10 through the conductor layer 51, the conductor post 81, and the conductor layer 52, the light emitting unit 101 emits light, and FIG. The light emitted toward the middle and lower is sequentially transmitted through the underfill material 4 and the substrate 2, reflected by the reflecting surface 961, bent by 90 °, enters the core portion 94 of the optical waveguide 9, and enters the cladding portion (cladding layer). 91, 92, and the clad part 95) on the side, and repeats reflection at the interface with the core part 94 along the longitudinal direction (left direction in FIG. 4).
<第5実施形態:図5>
 図5には、本発明の光導波路構造体1の第5実施形態が示されている。以下、この光導波路構造体1について説明するが、前記第1および第3実施形態と同様の事項についてはその説明を省略し、相違点を中心に説明する。
<Fifth Embodiment: FIG. 5>
FIG. 5 shows a fifth embodiment of the optical waveguide structure 1 of the present invention. Hereinafter, although this optical waveguide structure 1 is demonstrated, the description is abbreviate | omitted about the matter similar to the said 1st and 3rd embodiment, and it demonstrates centering around difference.
 本実施形態の光導波路構造体1は、基板2の構成が異なり、それ以外は前記第3実施形態と同様である。すなわち、基板2は、伝送光の透過性を十分に有さないものであり、基板2における発光部101の真下の位置には、基板2を貫通する貫通孔22が形成されている。この貫通孔22は、伝送光を透光する透光部21を構成するものである。すなわち、この貫通孔22が、伝送光を基板2の厚さ方向に導光(伝送)する導光路となる。 The optical waveguide structure 1 of the present embodiment is the same as the third embodiment except for the configuration of the substrate 2. That is, the substrate 2 does not have a sufficient transmission light transmission property, and a through hole 22 penetrating the substrate 2 is formed at a position directly below the light emitting unit 101 in the substrate 2. The through hole 22 constitutes a light transmitting part 21 that transmits the transmitted light. That is, the through hole 22 serves as a light guide for guiding (transmitting) transmission light in the thickness direction of the substrate 2.
 なお、図示されていないが、貫通孔22の内部(全部または一部)に、伝送光の透過率が80%以上、好ましくは90%以上、より好ましくは95%以上の材料による充填材が充填されていてもよい。また、図示されていないが、貫通孔22の内面等に導電材料による層を形成することによって、光伝送機能の他に、電気信号を伝送する機能を持たせてもよい。 Although not shown in the drawing, the inside (all or a part) of the through-hole 22 is filled with a filler made of a material having a transmission light transmittance of 80% or more, preferably 90% or more, more preferably 95% or more. May be. Although not shown, by forming a layer made of a conductive material on the inner surface of the through hole 22 or the like, in addition to the optical transmission function, a function of transmitting an electrical signal may be provided.
 本実施形態の光導波路構造体1では、導体層51、導体ポスト81および導体層52を介して発光素子10の端子103、105間へ通電がなされると、発光部101が発光し、図5中下方へ向かって発せられた光は、アンダーフィル材4を透過し、貫通孔22内を通り、接着層3およびクラッド層92を透過し、反射面961で反射されて90°屈曲し、光導波路9のコア部94に入り、クラッド部(クラッド層91、92および側方のクラッド部95)との界面で反射を繰り返しながら、コア部94内をその長手方向(図5中左方向)に沿って進む。 In the optical waveguide structure 1 of the present embodiment, when power is supplied between the terminals 103 and 105 of the light emitting element 10 through the conductor layer 51, the conductor post 81, and the conductor layer 52, the light emitting unit 101 emits light, and FIG. The light emitted toward the lower middle passes through the underfill material 4, passes through the through hole 22, passes through the adhesive layer 3 and the cladding layer 92, is reflected by the reflecting surface 961, and bends by 90 °. While entering the core portion 94 of the waveguide 9 and repeating reflection at the interface with the cladding portions (cladding layers 91 and 92 and the side cladding portions 95), the inside of the core portion 94 is in the longitudinal direction (left direction in FIG. 5). Proceed along.
<第6実施形態:図6>
 図6には、本発明の光導波路構造体1の第6実施形態が示されている。以下、この光導波路構造体1について説明するが、前記第1、第4および第5実施形態と同様の事項についてはその説明を省略し、相違点を中心に説明する。
<Sixth Embodiment: FIG. 6>
FIG. 6 shows a sixth embodiment of the optical waveguide structure 1 of the present invention. Hereinafter, although this optical waveguide structure 1 is demonstrated, the description is abbreviate | omitted about the matter similar to the said 1st, 4th and 5th embodiment, and it demonstrates centering around difference.
 本実施形態の光導波路構造体1は、前記第4実施形態の光導波路構造体1において、基板2を、前記第5実施形態の基板2に置き換えたものである。すなわち、本実施形態の光導波路構造体1における基板2は、伝送光の透過性を十分に有さないものであり、発光部101の真下の位置に、基板2を貫通する貫通孔(基板2の厚さ方向の導光路)22が形成されている。この貫通孔22は、透光部21を構成するものである。 The optical waveguide structure 1 of the present embodiment is obtained by replacing the substrate 2 in the optical waveguide structure 1 of the fourth embodiment with the substrate 2 of the fifth embodiment. That is, the substrate 2 in the optical waveguide structure 1 of the present embodiment does not have a sufficient transmission light transmission property, and a through-hole (substrate 2) that penetrates the substrate 2 at a position directly below the light emitting unit 101. ) 22 in the thickness direction. The through hole 22 constitutes the light transmitting part 21.
 本実施形態の光導波路構造体1では、導体層51、導体ポスト81および導体層52を介して発光素子10の端子103、105間へ通電がなされると、発光部101が点灯し、図6中下方へ向かって発せられた光は、アンダーフィル材4を透過し、貫通孔22内を通り、反射面961で反射されて90°屈曲し、光導波路9のコア部94に入り、クラッド部(クラッド層91、92および側方のクラッド部95)との界面で反射を繰り返しながら、コア部94内をその長手方向(図6中左方向)に沿って進む。 In the optical waveguide structure 1 of the present embodiment, when power is supplied between the terminals 103 and 105 of the light emitting element 10 through the conductor layer 51, the conductor post 81, and the conductor layer 52, the light emitting unit 101 is turned on, and FIG. Light emitted toward the middle and lower passes through the underfill material 4, passes through the through-hole 22, is reflected by the reflecting surface 961, bends 90 °, enters the core portion 94 of the optical waveguide 9, and enters the cladding portion. The light travels along the longitudinal direction (left direction in FIG. 6) in the core portion 94 while repeating reflection at the interfaces with the cladding layers 91 and 92 and the side cladding portions 95.
<第7実施形態:図7>
 図7には、本発明の光導波路構造体1の第7実施形態が示されている。以下、この光導波路構造体1について説明するが、前記第1および第5実施形態と同様の事項についてはその説明を省略し、相違点を中心に説明する。
<Seventh Embodiment: FIG. 7>
FIG. 7 shows a seventh embodiment of the optical waveguide structure 1 of the present invention. Hereinafter, although this optical waveguide structure 1 is demonstrated, the description is abbreviate | omitted about the matter similar to the said 1st and 5th embodiment, and it demonstrates centering around difference.
 本実施形態の光導波路構造体1は、基板2の透光部(厚さ方向に形成された導光路)21の構成が前記第5実施形態と異なり、その他は第5実施形態と同様である。すなわち、基板2の発光部101の真下の位置に形成された貫通孔22内には、コア部24と、該コア部24の外周を囲むクラッド部25とで構成された垂直光導波路23が挿入されている。 The optical waveguide structure 1 of the present embodiment is different from the fifth embodiment in the configuration of the light transmitting part (light guide path formed in the thickness direction) 21 of the substrate 2, and the other parts are the same as in the fifth embodiment. . That is, a vertical optical waveguide 23 composed of a core portion 24 and a clad portion 25 surrounding the outer periphery of the core portion 24 is inserted into a through hole 22 formed at a position directly below the light emitting portion 101 of the substrate 2. Has been.
 コア部24の構成材料や形成方法は、コア部94と同様とすることができる。あるいは、コア部24は、前記第5実施形態において述べた貫通孔22内への充填材と同様のものを用いてもよい。クラッド部25の構成材料は、クラッド部95またはクラッド層91、92と同様とすることができる。 The constituent material and the forming method of the core part 24 can be the same as those of the core part 94. Alternatively, the core part 24 may be the same as the filler in the through hole 22 described in the fifth embodiment. The constituent material of the clad part 25 can be the same as that of the clad part 95 or the clad layers 91 and 92.
 本実施形態の光導波路構造体1では、導体層51、導体ポスト81および導体層52を介して発光素子10の端子103、105間へ通電がなされると、発光部101が発光し、図7中下方へ向かって発せられた光は、アンダーフィル材4を透過し、垂直光導波路23のコア部24内を通り、接着層3およびクラッド層92を透過し、反射面961で反射されて90°屈曲し、光導波路9のコア部94に入り、クラッド部(クラッド層91、92および側方のクラッド部95)との界面で反射を繰り返しながら、コア部94内をその長手方向(図7中左方向)に沿って進む。 In the optical waveguide structure 1 of the present embodiment, when current is passed between the terminals 103 and 105 of the light emitting element 10 through the conductor layer 51, the conductor post 81, and the conductor layer 52, the light emitting unit 101 emits light, and FIG. The light emitted toward the middle and lower passes through the underfill material 4, passes through the core portion 24 of the vertical optical waveguide 23, passes through the adhesive layer 3 and the cladding layer 92, and is reflected by the reflecting surface 961 to be 90. ° Bends, enters the core portion 94 of the optical waveguide 9, and repeats reflection at the interface with the clad portions (cladding layers 91 and 92 and the side clad portions 95), while passing through the core portion 94 in the longitudinal direction (FIG. 7). (Middle left)
<第8実施形態:図8>
 図8には、本発明の光導波路構造体1の第8実施形態が示されている。以下、この光導波路構造体1について説明するが、前記第1および第6実施形態と同様の事項についてはその説明を省略し、相違点を中心に説明する。
<Eighth embodiment: FIG. 8>
FIG. 8 shows an eighth embodiment of the optical waveguide structure 1 of the present invention. Hereinafter, although this optical waveguide structure 1 is demonstrated, the description is abbreviate | omitted about the matter similar to the said 1st and 6th embodiment, and it demonstrates centering around difference.
 本実施形態の光導波路構造体1は、前記第6実施形態の光導波路構造体1において、基板2の厚さ方向に形成された導光路の構成を第7実施形態のそれと同様としたものである。すなわち、基板2の発光部101の真下の位置に形成された貫通孔22内には、コア部24と、該コア部24の外周を囲むクラッド部25とで構成された垂直光導波路23が挿入されている。 The optical waveguide structure 1 of the present embodiment is the same as that of the seventh embodiment in the configuration of the light guide formed in the thickness direction of the substrate 2 in the optical waveguide structure 1 of the sixth embodiment. is there. That is, a vertical optical waveguide 23 composed of a core portion 24 and a clad portion 25 surrounding the outer periphery of the core portion 24 is inserted into a through hole 22 formed at a position directly below the light emitting portion 101 of the substrate 2. Has been.
 本実施形態の光導波路構造体1では、導体層51、導体ポスト81および導体層52を介して発光素子10の端子103、105間へ通電がなされると、発光部101が発光し、図8中下方へ向かって発せられた光は、アンダーフィル材4を透過し、垂直光導波路23のコア部24内を通り、反射面961で反射されて90°屈曲し、光導波路9のコア部94に入り、クラッド部(クラッド層91、92および側方のクラッド部95)との界面で反射を繰り返しながら、コア部94内をその長手方向(図8中左方向)に沿って進む。 In the optical waveguide structure 1 of the present embodiment, when power is supplied between the terminals 103 and 105 of the light emitting element 10 through the conductor layer 51, the conductor post 81, and the conductor layer 52, the light emitting unit 101 emits light, and FIG. The light emitted toward the middle and lower passes through the underfill material 4, passes through the core portion 24 of the vertical optical waveguide 23, is reflected by the reflecting surface 961, and is bent by 90 °, and the core portion 94 of the optical waveguide 9. Then, while reflecting repeatedly at the interface with the cladding part (cladding layers 91 and 92 and the side cladding part 95), the core part 94 advances in the longitudinal direction (left direction in FIG. 8).
<第9実施形態:図9>
 図9には、本発明の光導波路構造体1の第9実施形態が示されている。以下、この光導波路構造体1について説明するが、前記第1および第8実施形態と同様の事項についてはその説明を省略し、相違点を中心に説明する。
<Ninth Embodiment: FIG. 9>
FIG. 9 shows a ninth embodiment of the optical waveguide structure 1 of the present invention. Hereinafter, although this optical waveguide structure 1 is demonstrated, the description is abbreviate | omitted about the matter similar to the said 1st and 8th embodiment, and it demonstrates centering around difference.
 本実施形態の光導波路構造体1は、透光部21に、伝送光を集光または拡散し得るレンズ部26を設けた以外は、前記第8実施形態と同様のものである。すなわち、垂直光導波路23の上端面(入射側)に凸レンズ(正確には、平凸レンズ)で構成されるレンズ部26が設けられている。 The optical waveguide structure 1 of the present embodiment is the same as that of the eighth embodiment except that the light transmitting portion 21 is provided with a lens portion 26 that can condense or diffuse transmission light. That is, a lens portion 26 composed of a convex lens (more precisely, a plano-convex lens) is provided on the upper end surface (incident side) of the vertical optical waveguide 23.
 これにより、発光部101から図9中下方へ向かって発せられた光は、アンダーフィル材4を透過した後、レンズ部26で集光されてその光束(ビーム)が絞られ、この光束が垂直光導波路23のコア部24内を通り、反射面961で反射されて90°屈曲し、光導波路9のコア部94に入り、コア部94内をその長手方向(図9中左方向)に沿って進む。このようなレンズ部26を設けることにより、より明確な(シャープな)伝送光を得ることができ、より優れた光伝送特性を得ることができる。 As a result, the light emitted downward from the light emitting unit 101 in FIG. 9 is transmitted through the underfill material 4 and then condensed by the lens unit 26 to narrow the light beam (beam). It passes through the core portion 24 of the optical waveguide 23, is reflected by the reflecting surface 961, is bent by 90 °, enters the core portion 94 of the optical waveguide 9, and passes through the core portion 94 along the longitudinal direction (left direction in FIG. 9). Go ahead. By providing such a lens portion 26, clearer (sharp) transmitted light can be obtained, and more excellent light transmission characteristics can be obtained.
 なお、レンズ部26は、伝送光を拡散し得るものでもよい。この場合には、凹レンズを用いればよい。 Note that the lens unit 26 may be capable of diffusing transmitted light. In this case, a concave lens may be used.
 また、レンズ部26の設置位置は、図9に示す位置に限らず、例えば透光部21の途中や下部であってもよく、あるいは、その他の箇所、例えばコア部94の入射側端部や出射側端部であってもよい。 In addition, the installation position of the lens unit 26 is not limited to the position illustrated in FIG. 9, and may be, for example, in the middle or lower part of the translucent unit 21, or other portions, for example, the incident side end of the core unit 94 or It may be an emission side end.
<第10実施形態:図10>
 図10には、本発明の光導波路構造体1の第10実施形態が示されている。以下、この光導波路構造体1について説明するが、前記第1、第2実施形態等と同様の事項についてはその説明を省略し、相違点を中心に説明する。
<Tenth Embodiment: FIG. 10>
FIG. 10 shows a tenth embodiment of the optical waveguide structure 1 of the present invention. Hereinafter, although this optical waveguide structure 1 is demonstrated, the description is abbreviate | omitted about the matter similar to the said 1st, 2nd embodiment, etc., and it demonstrates centering around difference.
 クラッド層91、92とそれらの間に位置する(介挿された)コア層93とで構成された光導波路9の下面および上面には、それぞれ、所定のパターン形状の導体層51および52が接合されており、導体層51および導体層52の所定の部位同士は、光導波路9を貫通して形成された2つの導体ポスト81によりそれぞれ電気的に接続されている。 Conductive layers 51 and 52 having a predetermined pattern shape are bonded to the lower surface and the upper surface of the optical waveguide 9 constituted by the clad layers 91 and 92 and the core layer 93 located (interposed) therebetween. The predetermined portions of the conductor layer 51 and the conductor layer 52 are electrically connected to each other by two conductor posts 81 formed through the optical waveguide 9.
 また、光導波路9には、2つの光路変換部96a、96bが形成されている。これらの光路変換部96a、96bは、それぞれ、前記と同様の反射面961a、961bを有している。光導波路9において、コア層93の反射面961aより図10中左側および反射面961bより図10中右側の部位は、コア部94が形成され、コア層93のそれ以外の部分は、クラッド部95が形成されている。 The optical waveguide 9 is formed with two optical path conversion parts 96a and 96b. These optical path conversion units 96a and 96b have reflection surfaces 961a and 961b similar to those described above. In the optical waveguide 9, a core portion 94 is formed on the left side in FIG. 10 from the reflecting surface 961 a of the core layer 93 and the right side in FIG. 10 from the reflecting surface 961 b, and the other portion of the core layer 93 is the cladding portion 95. Is formed.
 このような光導波路9の上部には、チップキャリア(素子)13が搭載されている。チップキャリア13は、基板2’と、光導波路9とは別の光導波路9’と、発光素子10と、受光素子11と、導体層54、55と、電気素子12とを備えている。以下、チップキャリア13の構成について詳述する。 A chip carrier (element) 13 is mounted on the optical waveguide 9. The chip carrier 13 includes a substrate 2 ′, an optical waveguide 9 ′ different from the optical waveguide 9, a light emitting element 10, a light receiving element 11, conductor layers 54 and 55, and an electric element 12. Hereinafter, the configuration of the chip carrier 13 will be described in detail.
 基板2’の下面には、クラッド層91、92とそれらの間に位置する(介挿された)コア層93とで構成された光導波路9’が接合されており、光導波路9’の下面および基板2’の上面には、それぞれ、所定のパターン形状の導体層54および55が接合されている。導体層54、55の構成材料、形成方法、パターニング方法等については、前記導体層51、52と同様である。 An optical waveguide 9 ′ composed of clad layers 91, 92 and a core layer 93 positioned (interposed) therebetween is joined to the lower surface of the substrate 2 ′. In addition, conductor layers 54 and 55 having a predetermined pattern shape are bonded to the upper surface of the substrate 2 ', respectively. Constituent materials, formation methods, patterning methods, and the like of the conductor layers 54 and 55 are the same as those of the conductor layers 51 and 52.
 基板2’は、実質的に透明のものでも、不透明のものでもよく、また、硬質(リジッド)のものでも、可撓性(フレキシブル)を有するものでもよい。 The substrate 2 'may be substantially transparent or opaque, and may be hard (rigid) or flexible (flexible).
 導体層54および導体層55の所定の部位同士は、基板2’および光導波路9’を貫通して形成された4つの導体ポスト82によりそれぞれ電気的に接続されている。 The predetermined portions of the conductor layer 54 and the conductor layer 55 are electrically connected to each other by four conductor posts 82 formed through the substrate 2 ′ and the optical waveguide 9 ′.
 また、光導波路9’には、4つの光路変換部96c、96d、96e、96fが形成されている。これらの光路変換部96c、96d、96e、96fは、それぞれ、前記と同様の反射面961c、961d、961e、961fを有している。 Further, four optical path conversion parts 96c, 96d, 96e, 96f are formed in the optical waveguide 9 '. These optical path conversion units 96c, 96d, 96e, and 96f have reflection surfaces 961c, 961d, 961e, and 961f similar to those described above.
 光導波路9’において、コア層93の反射面961cと反射面961dとの間の部位、および反射面961eと反射面961fとの間の部位は、コア部94が形成され、コア層93のそれ以外の部分は、クラッド部95が形成されている。 In the optical waveguide 9 ′, a core portion 94 is formed at a portion between the reflecting surface 961 c and the reflecting surface 961 d of the core layer 93 and a portion between the reflecting surface 961 e and the reflecting surface 961 f. The clad part 95 is formed in the other part.
 基板2’の上部には、4つの端子123、125、127、129を備える電気素子(半導体素子)12が搭載されている。電気素子12は、それらの端子123、125、127、129がそれぞれ導体層55の所定部位に接合(電気的に接続)されるようにして基板2’上に搭載されている。 An electric element (semiconductor element) 12 having four terminals 123, 125, 127, and 129 is mounted on the top of the substrate 2 '. The electric element 12 is mounted on the substrate 2 ′ so that the terminals 123, 125, 127, and 129 are joined (electrically connected) to predetermined portions of the conductor layer 55.
 電気素子12の機能は特に限定されないが、一例として、発光素子10を駆動するための回路を構成するものが挙げられる。また、電気素子12は、さらに、受光素子11が出力した電気信号を処理(例えば信号の増幅)する機能(回路)を備えていてもよい。 Although the function of the electric element 12 is not particularly limited, an example is one that constitutes a circuit for driving the light emitting element 10. The electric element 12 may further have a function (circuit) for processing (for example, signal amplification) the electric signal output from the light receiving element 11.
 このような電気素子12は、その全体(外表面)が前記封止材6と同様の封止材61により覆われ、封止されている。 Such an electrical element 12 is entirely covered (sealed) with a sealing material 61 similar to the sealing material 6 and sealed.
 光導波路9’の下部には、発光素子10および受光素子11が搭載されている。発光素子10は、前記と同様のものである。受光素子11は、図10中上面側に、受光部111と、一対の端子113、115とを有している。受光部111は、端子113と端子115の間に位置している。受光部111が受光する(伝送光が照射される)と、その光が光電変換され、端子113、115間に電位差が生じ、電気信号が出力される。 A light emitting element 10 and a light receiving element 11 are mounted below the optical waveguide 9 '. The light emitting element 10 is the same as described above. The light receiving element 11 has a light receiving portion 111 and a pair of terminals 113 and 115 on the upper surface side in FIG. The light receiving unit 111 is located between the terminal 113 and the terminal 115. When the light receiving unit 111 receives light (irradiates transmission light), the light is photoelectrically converted, a potential difference is generated between the terminals 113 and 115, and an electric signal is output.
 発光素子10は、それらの端子103、105がそれぞれ導体層54の所定部位に接合(電気的に接続)されるようにして光導波路9’の下部に搭載されている。受光素子11は、それらの端子113、115がそれぞれ導体層54の所定部位に接合(電気的に接続)されるようにして光導波路9’の下部に搭載されている。 The light emitting element 10 is mounted below the optical waveguide 9 ′ so that the terminals 103 and 105 are joined (electrically connected) to predetermined portions of the conductor layer 54. The light receiving element 11 is mounted below the optical waveguide 9 ′ so that the terminals 113 and 115 are respectively joined (electrically connected) to predetermined portions of the conductor layer 54.
 発光素子10および受光素子11は、それらの端子103、105、113、115を含む上部がアンダーフィル材4により封止されており、さらに、発光素子10および受光素子11の全体(外表面)が封止材6により覆われ、封止されている。 The light emitting element 10 and the light receiving element 11 have their upper portions including the terminals 103, 105, 113, 115 sealed with the underfill material 4, and the light emitting element 10 and the light receiving element 11 as a whole (outer surface) It is covered and sealed with a sealing material 6.
 光導波路9’のコア部94は、平面視で(図10の上方から見たとき)発光素子10の発光部101と重なるとともに受光素子11の受光部111と重なるような(すなわち、発光部101の真上および受光部111の真上を通過するような)パターン形状で形成されている。 The core portion 94 of the optical waveguide 9 ′ overlaps the light emitting portion 101 of the light emitting element 10 and the light receiving portion 111 of the light receiving element 11 in plan view (when viewed from above in FIG. 10) (that is, the light emitting portion 101). And a pattern shape (passing right above the light receiving portion 111).
 また、反射面961dは、発光部101の真上の位置に設けられ、反射面961eは、受光部111の真上の位置に設けられ、反射面961cは、反射面961aの真上の位置に設けられ、反射面961fは、反射面961bの真上の位置に設けられている。 The reflective surface 961d is provided at a position directly above the light emitting unit 101, the reflective surface 961e is provided at a position directly above the light receiving unit 111, and the reflective surface 961c is at a position directly above the reflective surface 961a. The reflection surface 961f is provided at a position directly above the reflection surface 961b.
 このようなチップキャリア13は、導体層52と導体層54の所定部位同士が半田(半田ボール)7により電気的に接続されるようにして光導波路9上に搭載されている。この場合、光導波路9、9’間は、前記アンダーフィル材4と同様のアンダーフィル材41により封止されている。 Such a chip carrier 13 is mounted on the optical waveguide 9 such that predetermined portions of the conductor layer 52 and the conductor layer 54 are electrically connected by solder (solder balls) 7. In this case, the space between the optical waveguides 9 and 9 ′ is sealed with an underfill material 41 similar to the underfill material 4.
 導体層52の一部は、アンダーフィル材41により封止され、導体層52の一部は、アンダーフィル材41で封止されずに外部に露出している。 A part of the conductor layer 52 is sealed with the underfill material 41, and a part of the conductor layer 52 is exposed to the outside without being sealed with the underfill material 41.
 本実施形態の光導波路構造体1では、発光素子10の端子103、105間へ通電がなされると、発光部101が発光し、図10中上方へ向かって発せられた光は、アンダーフィル材4を透過し、反射面961dで反射されて90°屈曲し、光導波路9’のコア部94に入り、コア部94内をその長手方向(図10中左方向)に沿って進む。さらに、コア部94の端部から出射した伝送光は、反射面961cで反射されて90°屈曲し、下方へ向かい、アンダーフィル材41およびクラッド層92を透過し、反射面961aで反射されて90°屈曲し、光導波路9のコア部94に入り、コア部94内をその長手方向(図10中左方向)に沿って進む。 In the optical waveguide structure 1 of the present embodiment, when power is applied between the terminals 103 and 105 of the light emitting element 10, the light emitting unit 101 emits light, and the light emitted upward in FIG. 4, reflected by the reflecting surface 961 d and bent by 90 °, enters the core portion 94 of the optical waveguide 9 ′, and advances in the core portion 94 along the longitudinal direction (left direction in FIG. 10). Further, the transmission light emitted from the end portion of the core portion 94 is reflected by the reflecting surface 961c, bent 90 °, travels downward, passes through the underfill material 41 and the cladding layer 92, and is reflected by the reflecting surface 961a. It bends by 90 °, enters the core portion 94 of the optical waveguide 9, and advances in the core portion 94 along its longitudinal direction (left direction in FIG. 10).
 一方、光導波路9の図10中右側からコア部94に入った光は、コア部94内をその長手方向(図10中左方向)に沿って進み、反射面961bで反射されて90°屈曲し、上方へ向かい、クラッド層92およびアンダーフィル材41を透過し、反射面961fで反射されて90°屈曲し、光導波路9’のコア部94に入り、コア部94内をその長手方向(図10中左方向)に沿って進む。さらに、コア部94の端部から出射した伝送光は、反射面961eで反射されて90°屈曲し、下方へ向かい、アンダーフィル材4を透過して受光部111で受光される。これにより、端子113、115間に電位差が生じ、電気信号が出力される。 On the other hand, the light that enters the core portion 94 from the right side of the optical waveguide 9 in FIG. 10 travels along the longitudinal direction (left direction in FIG. 10) in the core portion 94, is reflected by the reflecting surface 961b, and bends 90 °. Then, it passes upward, passes through the cladding layer 92 and the underfill material 41, is reflected by the reflecting surface 961f, bends 90 °, enters the core portion 94 of the optical waveguide 9 ′, and enters the core portion 94 in its longitudinal direction ( Proceed along the left direction in FIG. Further, the transmission light emitted from the end portion of the core portion 94 is reflected by the reflecting surface 961e, bent 90 °, travels downward, passes through the underfill material 4, and is received by the light receiving portion 111. As a result, a potential difference is generated between the terminals 113 and 115, and an electric signal is output.
<第11実施形態:図11>
 図11には、本発明の光導波路構造体1の第11実施形態が示されている。以下、この光導波路構造体1について説明するが、前記第1、第6および第10実施形態等と同様の事項についてはその説明を省略し、相違点を中心に説明する。
<Eleventh embodiment: FIG. 11>
FIG. 11 shows an eleventh embodiment of the optical waveguide structure 1 of the present invention. Hereinafter, although this optical waveguide structure 1 is demonstrated, the description is abbreviate | omitted about the matter similar to the said 1st, 6th, 10th Embodiment, etc., and it demonstrates centering around difference.
 基板2の下面には、クラッド層91、92とそれらの間に位置する(介挿された)コア層93とで構成された光導波路9が接合されており、基板2の上面には、所定のパターン形状の導体層52が接合されている。 An optical waveguide 9 composed of clad layers 91 and 92 and a core layer 93 positioned (interposed) therebetween is bonded to the lower surface of the substrate 2. The conductor layer 52 having the pattern shape is joined.
 また、光導波路9には、2つの光路変換部96a、96bが形成されている。光路変換部96aおよび96bは、前記第4、第8、第9実施形態における光路変換部96と同様の構成であり、それぞれ、前記と同様の反射面961a、961bを有している。 The optical waveguide 9 is formed with two optical path conversion parts 96a and 96b. The optical path conversion units 96a and 96b have the same configuration as the optical path conversion unit 96 in the fourth, eighth, and ninth embodiments, and have the same reflecting surfaces 961a and 961b, respectively.
 光導波路9において、コア層93の反射面961aより図11中左側および反射面961bより図11中右側の部位は、コア部94が形成され、コア層93のそれ以外の部分は、クラッド部95が形成されている。 In the optical waveguide 9, a core portion 94 is formed on the left side in FIG. 11 from the reflecting surface 961 a of the core layer 93 and the right side in FIG. 11 from the reflecting surface 961 b, and the other portion of the core layer 93 is the cladding portion 95. Is formed.
 基板2は、伝送光の透過性(透光性)を十分に有さないものであり、基板2における反射面961a、961bの真上の位置(反射面961c、961fの真下の位置)には、それぞれ、基板2を貫通する貫通孔22が形成されている。これらの貫通孔22は、伝送光を透光する透光部21を構成するものである。すなわち、これらの貫通孔22が、伝送光を基板2の厚さ方向に導光(伝送)する導光路となる。 The substrate 2 does not have sufficient transmission light transmission (translucency), and the substrate 2 has a position directly above the reflection surfaces 961a and 961b (a position directly below the reflection surfaces 961c and 961f). Each of the through holes 22 is formed through the substrate 2. These through holes 22 constitute a light transmitting portion 21 that transmits the transmitted light. That is, these through holes 22 serve as a light guide for guiding (transmitting) transmission light in the thickness direction of the substrate 2.
 また、両貫通孔22(透光部21)の上部には、それぞれ、前記第9実施形態と同様のレンズ部26が設けられている。例えば、貫通孔22内に比較的屈折率の低い透明な第1の樹脂材料を充填し、その上面を湾曲凹面に形成し、該凹面内に前記第1の樹脂材料より高屈折率の透明な第2の樹脂材料を充填することにより、前記第2の樹脂材料の部分が凸レンズ(平凸レンズ、両凸レンズ等)として機能するレンズ部26を形成することができる。また、これに限らず、貫通孔22内に凸レンズ(平凸レンズ、両凸レンズ等)のみを設置してもよい。 Further, the lens portions 26 similar to those in the ninth embodiment are provided on the upper portions of both the through holes 22 (the light transmitting portions 21). For example, the through hole 22 is filled with a transparent first resin material having a relatively low refractive index, and the upper surface thereof is formed into a curved concave surface, and the concave surface is transparent with a higher refractive index than the first resin material. By filling the second resin material, it is possible to form the lens portion 26 in which the portion of the second resin material functions as a convex lens (plano-convex lens, biconvex lens, etc.). In addition, the present invention is not limited thereto, and only a convex lens (a plano-convex lens, a biconvex lens, etc.) may be installed in the through hole 22.
 また、貫通孔22(透光部21)に対するレンズ部26の設置位置は、図示のような上部に限らず、貫通孔22の途中や下部であってもよい。 Further, the installation position of the lens part 26 with respect to the through hole 22 (the light transmitting part 21) is not limited to the upper part as illustrated, and may be in the middle or lower part of the through hole 22.
 なお、図示されていないが、貫通孔22の内部(全部または一部)に、伝送光の透過率が80%以上、好ましくは90%以上、より好ましくは95%以上の材料による充填材が充填されていてもよい。また、前記第7、第8実施形態と同様に、貫通孔22の内部に垂直光導波路23が形成されていてもよい。 Although not shown in the drawing, the inside (all or a part) of the through-hole 22 is filled with a filler made of a material having a transmission light transmittance of 80% or more, preferably 90% or more, more preferably 95% or more. May be. Further, as in the seventh and eighth embodiments, the vertical optical waveguide 23 may be formed inside the through hole 22.
 このような基板2付きの光導波路9の上部には、前記第10実施形態と同様のチップキャリア(素子)13が搭載されている。 A chip carrier (element) 13 similar to that of the tenth embodiment is mounted on the optical waveguide 9 with the substrate 2.
 本実施形態の光導波路構造体1では、発光素子10の端子103、105間へ通電がなされると、発光部101が発光し、図11中上方へ向かって発せられた光は、アンダーフィル材4を透過し、反射面961dで反射されて90°屈曲し、光導波路9’のコア部94に入り、コア部94内をその長手方向(図11中左方向)に沿って進む。さらに、コア部94の端部から出射した伝送光は、反射面961cで反射されて90°屈曲し、下方へ向かい、アンダーフィル材41を透過した後、レンズ部26で集光されてその光束(ビーム)が絞られ、この光束が貫通孔22内を通り、反射面961aで反射されて90°屈曲し、光導波路9のコア部94に入り、コア部94内をその長手方向(図11中左方向)に沿って進む。 In the optical waveguide structure 1 of the present embodiment, when power is applied between the terminals 103 and 105 of the light emitting element 10, the light emitting unit 101 emits light, and the light emitted upward in FIG. 4, reflected by the reflecting surface 961 d and bent by 90 °, enters the core portion 94 of the optical waveguide 9 ′, and advances in the core portion 94 along the longitudinal direction (left direction in FIG. 11). Further, the transmission light emitted from the end portion of the core portion 94 is reflected by the reflecting surface 961c, bent 90 °, travels downward, passes through the underfill material 41, and then is condensed by the lens portion 26 and the light flux. (Beam) is narrowed down, this light beam passes through the through hole 22, is reflected by the reflecting surface 961 a, bends 90 °, enters the core portion 94 of the optical waveguide 9, and enters the core portion 94 in its longitudinal direction (FIG. 11). (Middle left)
 一方、光導波路9の図11中右側からコア部94に入った光は、コア部94内をその長手方向(図11中左方向)に沿って進み、反射面961bで反射されて90°屈曲し、貫通孔22内を上方へ向かい、レンズ部26で集光されてその光束(ビーム)が絞られ、この光束がアンダーフィル材41を透過し、反射面961fで反射されて90°屈曲し、光導波路9’のコア部94に入り、コア部94内をその長手方向(図11左方向)に沿って進む。さらに、コア部94の端部から出射した伝送光(集光された光束)は、反射面961eで反射されて90°屈曲し、下方へ向かい、アンダーフィル材4を透過して受光部111で受光される。これにより、端子113、115間に電位差が生じ、電気信号が出力される。 On the other hand, the light that enters the core portion 94 from the right side of the optical waveguide 9 in FIG. 11 travels along the longitudinal direction (left direction in FIG. 11) in the core portion 94, is reflected by the reflecting surface 961b, and bends 90 °. Then, the light passes through the through-hole 22 and is condensed by the lens portion 26 to narrow the light beam (beam). The light beam is transmitted through the underfill material 41, reflected by the reflecting surface 961f, and bent by 90 °. Then, the light enters the core portion 94 of the optical waveguide 9 ′ and proceeds along the longitudinal direction (left direction in FIG. 11) in the core portion 94. Further, the transmission light (condensed light beam) emitted from the end of the core portion 94 is reflected by the reflecting surface 961e, bent 90 °, travels downward, passes through the underfill material 4, and is received by the light receiving portion 111. Received light. As a result, a potential difference is generated between the terminals 113 and 115, and an electric signal is output.
<第12実施形態:図12>
 図12には、本発明の光導波路構造体1の第12実施形態が示されている。以下、この光導波路構造体1について説明するが、前記第1実施形態等と同様の事項についてはその説明を省略し、相違点を中心に説明する。
<Twelfth embodiment: FIG. 12>
FIG. 12 shows a twelfth embodiment of the optical waveguide structure 1 of the present invention. Hereinafter, although this optical waveguide structure 1 is demonstrated, the description is abbreviate | omitted about the matter similar to the said 1st Embodiment etc., and it demonstrates centering around difference.
 図12は、光導波路構造体1の平面図である。図12に示す光路変換部を有する光導波路9(光導波路構造体1)は、そのコア部94の途中に、コア部94を直角方向に分岐する分岐部941を有している。分岐部941からは、コア部942が図12の下方に向かって形成されている。 FIG. 12 is a plan view of the optical waveguide structure 1. An optical waveguide 9 (optical waveguide structure 1) having an optical path changing portion shown in FIG. 12 has a branching portion 941 that branches the core portion 94 in a right angle direction in the middle of the core portion 94. A core portion 942 is formed from the branch portion 941 toward the lower side of FIG.
 また、分岐部941には、光導波路9を厚さ方向に貫通する貫通孔943が形成されている。貫通孔943は、平面視で三角形の形状をなしており、そのうちの1辺は、コア部94の軸線およびコア部942の軸線の双方に対してそれぞれ45°をなす角度(傾斜角)で形成されており、コア部94の光路を屈曲させる光路変換部として機能する。すなわち、この1辺は、コア部94を通過する伝送光の一部を反射する反射面944である。一方、残る2辺のうちの1辺は、コア部94の軸線に平行になっており、残る1辺は、コア部942の軸線に平行になっている。 Further, a through hole 943 that penetrates the optical waveguide 9 in the thickness direction is formed in the branch portion 941. The through hole 943 has a triangular shape in plan view, and one side thereof is formed at an angle (inclination angle) of 45 ° with respect to both the axis of the core portion 94 and the axis of the core portion 942. It functions as an optical path conversion section that bends the optical path of the core section 94. That is, this one side is a reflection surface 944 that reflects a part of the transmission light that passes through the core portion 94. On the other hand, one of the remaining two sides is parallel to the axis of the core portion 94, and the remaining one side is parallel to the axis of the core portion 942.
 反射面944では、コア部94を図12の右方から左方へと進む伝送光の一部を反射させ、進行方向を下方に変更する。また、反射面944により反射されない伝送光は、分岐部941をそのまま直進する。このようにして、分岐部941では、伝送光を2つに分岐することができる。 The reflection surface 944 reflects a part of the transmitted light that travels from the right side to the left side of the core portion 94 in FIG. 12, and changes the traveling direction downward. Further, the transmitted light that is not reflected by the reflecting surface 944 travels straight through the branching portion 941 as it is. In this way, the branching unit 941 can branch the transmitted light into two.
 なお、反射面944は、例えば多層光学薄膜や金属薄膜(例えばアルミ蒸着膜)のような反射膜あるいは反射増加膜を有していてもよい。また、図示しないが、貫通孔943には、充填材、特にコア部94やコア部942と屈折率の異なる充填材が充填されていてもよい。 The reflective surface 944 may have a reflective film such as a multilayer optical thin film or a metal thin film (for example, an aluminum vapor deposition film) or a reflection increasing film. Although not shown, the through hole 943 may be filled with a filler, particularly a filler having a refractive index different from that of the core portion 94 or the core portion 942.
 ここで、貫通孔943内に充填材を充填しない場合には、通常、空気が存在している。反射面944は、コア部94やコア部942の屈折率と、空気の屈折率との差に基づいて、コア部94やコア部942の光路を屈曲させるものである。本発明に用いられる感光性樹脂組成物と空気との屈折率差は比較的大きいため、反射面944における全反射可能な角度の許容範囲も、比較的大きくなる。したがって、スネルの法則に基づくことで、反射面944の傾斜角を、コア部94またはコア部942を伝搬する光を全反射させる角度に設定することが可能になる。その結果、反射面944での反射に伴う光の減衰が抑制され、光の伝搬効率の低下を抑制することができる。 Here, air is usually present when the through hole 943 is not filled with a filler. The reflection surface 944 bends the optical path of the core portion 94 or the core portion 942 based on the difference between the refractive index of the core portion 94 or the core portion 942 and the refractive index of air. Since the difference in refractive index between the photosensitive resin composition used in the present invention and air is relatively large, the allowable range of the total reflection angle on the reflecting surface 944 is also relatively large. Therefore, based on Snell's law, the inclination angle of the reflecting surface 944 can be set to an angle that totally reflects light propagating through the core portion 94 or the core portion 942. As a result, attenuation of light accompanying reflection at the reflecting surface 944 is suppressed, and a decrease in light propagation efficiency can be suppressed.
 また、分岐部941において、下方に分岐される伝送光と、分岐されずに直進する伝送光との比率は、反射面944をコア部94方向に投影した場合の投影像(以下、「反射面944の投影像」という。)と、コア部94の横断面との重なり方に応じて変化する。具体的には、反射面944の投影像が、コア部94の横断面を完全に覆うものでなければ、分岐部941における伝送光の分岐が可能になる。すなわち、コア部94の横断面積よりも、反射面944の投影像とコア部94の横断面との重複面積が小さければ、分岐部941において分岐されずに直進する伝送光が生じるため、分岐部941における分岐が可能になる。そして、コア部94の横断面積に対する、反射面944の投影像とコア部94の横断面との重複面積の割合が、分岐される伝送光の割合となる。このようにして、貫通孔943の面積や形成位置を単に設定することのみで、分岐部941における分岐率を設定することができるので、分岐部941の形成が容易になる。 Further, in the branching portion 941, the ratio between the transmission light branched downward and the transmission light traveling straight without being branched is a projected image when the reflecting surface 944 is projected in the direction of the core portion 94 (hereinafter referred to as “reflecting surface”). 944 ”) and the cross-section of the core portion 94 changes. Specifically, if the projected image of the reflecting surface 944 does not completely cover the cross section of the core portion 94, the transmitted light can be branched at the branching portion 941. That is, if the overlapping area between the projected image of the reflecting surface 944 and the cross section of the core portion 94 is smaller than the cross-sectional area of the core portion 94, transmission light that travels straight without being branched at the branching portion 941 is generated. A branch at 941 is possible. The ratio of the overlapping area between the projected image of the reflecting surface 944 and the cross section of the core part 94 to the cross-sectional area of the core part 94 is the ratio of the transmitted light to be branched. In this way, the branching rate at the branching portion 941 can be set simply by setting the area and the formation position of the through-hole 943, so that the branching portion 941 can be easily formed.
 図13、14は、それぞれ、第12実施形態の他の構成例を示す平面図である。
 図13に示す反射面944は、その投影像が、コア部94の横断面を完全に覆うよう構成されており、かつ、コア部94の横断面積は、反射面944の投影像とコア部94の横断面との重複面積と同じである。したがって、図13に示す分岐部941では、コア部94を通過する全ての伝送光が反射面944で反射されることとなる。
13 and 14 are plan views showing other configuration examples of the twelfth embodiment, respectively.
The reflection surface 944 shown in FIG. 13 is configured such that the projection image completely covers the cross section of the core portion 94, and the cross-sectional area of the core portion 94 is the projection image of the reflection surface 944 and the core portion 94. It is the same as the overlapping area with the cross section of. Therefore, in the branching portion 941 shown in FIG. 13, all the transmitted light that passes through the core portion 94 is reflected by the reflecting surface 944.
 また、図13に示すコア部94は、分岐部941において、幅が拡大された拡幅部945を有している。拡幅部945では、コア部94の外郭が貫通孔943と干渉しないように膨らんでいる。具体的には、拡幅部945にコア部94の外郭の延伸線(外郭部延伸線)Sを仮想したとき、反射面944の斜面方向における両端部は、延伸線Sより外側に位置している。このようになっていると、コア部94を通過する伝送光について、反射面944による伝送光の反射効率がより確実に向上する。 Further, the core portion 94 shown in FIG. 13 has a widened portion 945 whose width is enlarged at the branching portion 941. In the widened portion 945, the outline of the core portion 94 swells so as not to interfere with the through hole 943. Specifically, when an outer extension line (outer part extension line) S of the core portion 94 is assumed in the widened portion 945, both end portions in the inclined direction of the reflecting surface 944 are located outside the extension line S. . With this configuration, the transmission efficiency of the transmission light by the reflection surface 944 is more reliably improved with respect to the transmission light that passes through the core portion 94.
 さらに、この場合、反射面944のうち、面精度の低い斜面方向の両端部付近は伝送光の反射に寄与せず、面精度の高い中央付近が伝送光を反射させる。このため、反射角度の精度も高くなり、意図しない反射が抑制されることとなる。その結果、意図しない角度で反射した伝送光の一部がクラッド部95へ漏れ出てしまうのを大幅に低減する。なお、反射面944のうち、斜面方向の両端部付近は、貫通孔943を形成する際に、加工精度が低下することが避けられず、表面粗さが高くなったり、反射面944の傾斜角が目的とする角度からずれてしまうおそれがあるので、上記拡幅部945を設けることは、伝送効率の低下を防止するという観点から有効である。 Further, in this case, in the reflecting surface 944, the vicinity of both ends in the slope direction with low surface accuracy does not contribute to the reflection of the transmitted light, and the vicinity of the center with high surface accuracy reflects the transmitted light. For this reason, the accuracy of the reflection angle is increased, and unintended reflection is suppressed. As a result, the leakage of a part of the transmitted light reflected at an unintended angle is greatly reduced. It should be noted that, in the vicinity of both end portions in the slope direction of the reflective surface 944, it is inevitable that the processing accuracy is lowered when the through-hole 943 is formed, the surface roughness becomes high, or the angle of inclination of the reflective surface 944 is increased. Therefore, providing the widened portion 945 is effective from the viewpoint of preventing a decrease in transmission efficiency.
 一方、図14に示すコア部94も、図13に示す拡幅部945と同様のものを有している。図14に示す反射面944は、その投影像が、コア部94の横断面の一部を覆うよう構成されている。コア部94を通過する伝送光は、その一部が、反射面944の投影像とコア部94の横断面との重複部分において反射され、残る伝送光は、反射されずにそのまま直進する。よって、図14に示す分岐部941では、コア部94を通過する伝送光を2つに分岐することができる。 On the other hand, the core portion 94 shown in FIG. 14 has the same structure as the widened portion 945 shown in FIG. The reflection surface 944 shown in FIG. 14 is configured such that the projected image covers a part of the cross section of the core portion 94. A part of the transmitted light passing through the core portion 94 is reflected at an overlapping portion between the projected image of the reflecting surface 944 and the cross section of the core portion 94, and the remaining transmitted light travels straight without being reflected. Therefore, in the branching unit 941 shown in FIG. 14, the transmission light passing through the core unit 94 can be branched into two.
 また、図14に示す拡幅部945にコア部94の外郭の延伸線Sを仮想したとき、反射面944の斜面方向における両端部のうち、一方が延伸線Sより外側に位置している。この場合、前述した図13の場合と同様、反射面944のうち、面精度の低い斜面方向の一方の両端部付近は伝送光の反射に寄与せず、主に面精度の高い中央付近が伝送光を反射させる。このため、反射角度の精度も高くなり、意図しない反射が抑制されることとなる。その結果、反射光の一部がクラッド部95へ漏れ出てしまうのを大幅に低減する。 Further, when the extension line S on the outer periphery of the core portion 94 is assumed in the widened portion 945 shown in FIG. 14, one of the end portions in the inclined direction of the reflection surface 944 is located outside the extension line S. In this case, as in the case of FIG. 13 described above, of the reflecting surface 944, the vicinity of one end of the slope direction with low surface accuracy does not contribute to the reflection of the transmitted light, and the central region with high surface accuracy mainly transmits. Reflect light. For this reason, the accuracy of the reflection angle is increased, and unintended reflection is suppressed. As a result, the leakage of a part of the reflected light to the clad portion 95 is greatly reduced.
 以上の第12実施形態では、いずれも、1つの反射面944で伝送光を反射する場合について説明したが、2つ以上の反射面944で伝送光を反射させるようにしてもよい。 In the above twelfth embodiment, the case where the transmission light is reflected by one reflection surface 944 has been described, but the transmission light may be reflected by two or more reflection surfaces 944.
<第13実施形態:図15>
 図15には、本発明の光導波路構造体1の第13実施形態が示されている。以下、この光導波路構造体1について説明するが、前記第1実施形態等と同様の事項についてはその説明を省略し、相違点を中心に説明する。
<13th Embodiment: FIG. 15>
FIG. 15 shows a thirteenth embodiment of the optical waveguide structure 1 of the present invention. Hereinafter, although this optical waveguide structure 1 is demonstrated, the description is abbreviate | omitted about the matter similar to the said 1st Embodiment etc., and it demonstrates centering around difference.
 図15は、光導波路構造体1の斜視図である。図15に示す光路変換部を有する光導波路9(光導波路構造体1)では、コア部94がその端部において途切れており、この途切れ部分946は、コア部94の側方に位置するクラッド部95と一体化している。そして、コア層93の途切れ部分946の一部と、その両面側に位置する各クラッド層91、92の一部とを除去することにより、クラッド層91側を底辺とする三角形の凹部を形成する。この凹部の幅は、コア部94の幅以上とされる。また、凹部の斜辺に相当する2面のうちの一方は、反射面961となる。 FIG. 15 is a perspective view of the optical waveguide structure 1. In the optical waveguide 9 (optical waveguide structure 1) having the optical path changing portion shown in FIG. 15, the core portion 94 is interrupted at the end portion, and the interrupted portion 946 is a clad portion located on the side of the core portion 94. 95. Then, by removing a part of the interrupted portion 946 of the core layer 93 and a part of each of the clad layers 91 and 92 located on both sides thereof, a triangular recess having the base on the clad layer 91 side is formed. . The width of the recess is equal to or greater than the width of the core portion 94. In addition, one of the two surfaces corresponding to the oblique side of the concave portion is a reflective surface 961.
 このような反射面961は、クラッド層91の露出面、途切れ部分946の露出面、およびクラッド層92の露出面で構成される。これらの露出面は、いずれもクラッド材料を加工して形成されたものであるため、反射面961の形成に際して加工時の加工レートに差が付き難い。このため、加工ムラが生じ難く、平滑性の高い反射面961を形成することができる。反射面961の平滑性が高くなると、反射面961の面精度および光学特性が向上するため、反射面961は、光路変換時の伝送効率の低下を防止し得るものとなる。 Such a reflection surface 961 includes an exposed surface of the clad layer 91, an exposed surface of the discontinuous portion 946, and an exposed surface of the clad layer 92. Since these exposed surfaces are all formed by processing a clad material, it is difficult to make a difference in processing rate at the time of processing when the reflecting surface 961 is formed. For this reason, processing unevenness hardly occurs and the reflective surface 961 with high smoothness can be formed. When the smoothness of the reflecting surface 961 is increased, the surface accuracy and optical characteristics of the reflecting surface 961 are improved. Therefore, the reflecting surface 961 can prevent a decrease in transmission efficiency during optical path conversion.
 これに対して、反射面961にコア部94の露出面が含まれていると、コア材料とクラッド材料との間で加工レートに差が付き易いため、加工ムラが生じ、反射面961の面精度および光学特性が低下するおそれがある。 On the other hand, if the reflective surface 961 includes the exposed surface of the core portion 94, the processing rate is easily different between the core material and the clad material. Accuracy and optical characteristics may be reduced.
 なお、凹部の斜辺に相当する2面のうち、反射面961以外のもう1面についても、反射面としての機能を有していてもよい。 Of the two surfaces corresponding to the hypotenuse of the recess, the other surface other than the reflecting surface 961 may also have a function as a reflecting surface.
<第14実施形態:図20>
 図20に示すように、本発明の光導波路構造体1001は、基板1002と、基板1002に隣接して設けられた光導波路1009と、光導波路1009の両面にそれぞれ接合された導体層1051、1052と、光導波路1009の光路を屈曲させる光路変換部96と、基板1002の上面に接合された導体層1053と、発光素子1010と、電気素子1012とを備えている。
<Fourteenth embodiment: FIG. 20>
As shown in FIG. 20, an optical waveguide structure 1001 of the present invention includes a substrate 1002, an optical waveguide 1009 provided adjacent to the substrate 1002, and conductor layers 1051 and 1052 bonded to both surfaces of the optical waveguide 1009, respectively. An optical path conversion unit 96 that bends the optical path of the optical waveguide 1009, a conductor layer 1053 bonded to the upper surface of the substrate 1002, a light emitting element 1010, and an electric element 1012.
 基板1002の構成材料としては、例えば、エポキシ樹脂、フェノール樹脂、ビスマレイミド樹脂、ビスマレイミド・トリアジン樹脂、トリアゾール樹脂、ポリシアヌレート樹脂、ポリイソシアヌレート樹脂、ベンゾシクロブテン樹脂、ポリイミド、ポリベンザオキサゾール樹脂、ノルボルネン樹脂等の樹脂材料や、シリコン、ガリウム・ヒ素、インジウム・リン、ゲルマニウム、シリコンカーバイド、シリコンゲルマニウム等の半導体材料が挙げられる。また、これらの材料は、単独で使用してもよく、複数を混合して使用してもよい。 As a constituent material of the substrate 1002, for example, epoxy resin, phenol resin, bismaleimide resin, bismaleimide / triazine resin, triazole resin, polycyanurate resin, polyisocyanurate resin, benzocyclobutene resin, polyimide, polybenzoxazole resin And resin materials such as norbornene resin and semiconductor materials such as silicon, gallium / arsenic, indium / phosphorus, germanium, silicon carbide, and silicon germanium. These materials may be used alone or in combination.
 また、基板1002は、例えばガラス繊維、樹脂繊維等の繊維基材(織布、不織布、織物、編物等)に前述したような樹脂材料を含浸させたもの(プリプレグ等)であってもよい。例えば、ガラスクロスにエポキシ樹脂を含浸させたものをガラスエポキシ基板と言うが、このようなものを基板1002として用いることができる。このような繊維基材を含む基板1002は、比較的薄くても高強度で、また、熱膨張率も低いため、基板1002に光導波路1009や導体層(金属層)を接合した場合に特に有利である。 Further, the substrate 1002 may be a substrate (such as a prepreg) obtained by impregnating a fiber base material (woven fabric, nonwoven fabric, woven fabric, knitted fabric, etc.) such as glass fiber or resin fiber with a resin material as described above. For example, a glass cloth impregnated with an epoxy resin is referred to as a glass epoxy substrate, but such a substrate can be used as the substrate 1002. The substrate 1002 including such a fiber base material is particularly advantageous when the optical waveguide 1009 or the conductor layer (metal layer) is bonded to the substrate 1002 because the substrate 1002 including the fiber base is relatively thin but has high strength and low thermal expansion coefficient. It is.
 また、基板1002は、複数の層の積層体であってもよい。例えば、それぞれ組成(種類)が異なる樹脂材料からなる第1の層と第2の層とを積層したもの、前記繊維基材に樹脂材料を含浸させた層(シート材)と、樹脂材料からなる層とを積層したものが挙げられる。なお、積層体における層構成は、これに限定されないことは言うまでもない。 Further, the substrate 1002 may be a stacked body of a plurality of layers. For example, a laminate of a first layer and a second layer made of resin materials having different compositions (kinds), a layer (sheet material) in which the fiber base material is impregnated with a resin material, and a resin material The thing which laminated | stacked the layer is mentioned. In addition, it cannot be overemphasized that the layer structure in a laminated body is not limited to this.
 基板1002の厚さは、特に限定されないが、通常、10μm~1.2mm程度が好ましく、50~600μm程度がより好ましい。 The thickness of the substrate 1002 is not particularly limited, but is usually preferably about 10 μm to 1.2 mm, and more preferably about 50 to 600 μm.
 基板1002は、硬質(リジッド)のものでも、可撓性(フレキシブル)を有するものでもよい。また、硬質の基板と可撓性を有する基板の双方を有していてもよい。この場合、光導波路1009は、硬質の基板と可撓性を有する基板の少なくとも一方に形成されていればよく、双方にまたがって形成されていてもよい。 The substrate 1002 may be hard (rigid) or flexible (flexible). Further, both a hard substrate and a flexible substrate may be included. In this case, the optical waveguide 1009 only needs to be formed on at least one of a hard substrate and a flexible substrate, and may be formed over both.
 基板1002の下面には、光導波路1009が接合されている。光導波路1009は、図20中下側からクラッド層1091、コア層1093およびクラッド層1092をこの順に積層してなるものであり、コア層1093には、所定パターンのコア部1094とクラッド部1095とが形成されている。 An optical waveguide 1009 is bonded to the lower surface of the substrate 1002. The optical waveguide 1009 is formed by laminating a clad layer 1091, a core layer 1093, and a clad layer 1092 in this order from the lower side in FIG. 20. The core layer 1093 includes a core portion 1094 and a clad portion 1095 having a predetermined pattern. Is formed.
 コア部1094は、クラッド部1095に比べて屈折率が高く、また、クラッド層1091、1092に対しても屈折率が高い。クラッド層1091および1092は、それぞれ、コア部1094の下部および上部に位置するクラッド部を構成するものである。このような構成により、コア部1094は、その外周の全周をクラッド部に囲まれた伝送光1018の光路として機能する。 The core portion 1094 has a higher refractive index than the clad portion 1095, and also has a higher refractive index than the clad layers 1091 and 1092. The clad layers 1091 and 1092 constitute the clad portions located below and above the core portion 1094, respectively. With such a configuration, the core portion 1094 functions as an optical path of the transmission light 1018 surrounded by the cladding portion on the entire outer periphery.
 図20に示す構成では、コア層1093の後述する反射面1961より図20中左側の部位は、コア部1094が形成され、コア層1093のそれ以外の部分は、クラッド部1095が形成されている。 In the configuration shown in FIG. 20, a core portion 1094 is formed on the left side in FIG. 20 of a reflection surface 1961 described later of the core layer 1093, and a cladding portion 1095 is formed on the other portion of the core layer 1093. .
 コア層1093の構成材料としては、活性放射線(活性エネルギー光線、電子線またはX線等)の照射により、あるいはさらに加熱することにより屈折率が変化する材料とされる。このような材料の好ましい例としては、ベンゾシクロブテン系樹ポリマー、ノルボルネン系ポリマー(樹脂)等の環状オレフィン系樹脂を含む樹脂組成物を主材料とするものが挙げられ、ノルボルネン系ポリマーを含む(主材料とする)ものが特に好ましい。 As a constituent material of the core layer 1093, a material whose refractive index is changed by irradiation with active radiation (active energy ray, electron beam, X-ray or the like) or further heating is used. Preferable examples of such materials include those mainly composed of a resin composition containing a cyclic olefin-based resin such as a benzocyclobutene-based tree polymer or a norbornene-based polymer (resin), including a norbornene-based polymer ( The main material) is particularly preferred.
 このような材料で構成されたコア層1093は、曲げ等の変形に対する耐性に優れ、特に繰り返し湾曲変形した場合でも、コア部1094とクラッド部1095との剥離や、コア層1093と隣接する層(クラッド層1091、1092)との層間剥離が生じ難く、コア部1094内やクラッド部1095内にマイクロクラックが発生することも防止される。その結果、光導波路1009の光伝送性能が維持され、耐久性に優れた光導波路1009が得られる。 The core layer 1093 made of such a material is excellent in resistance to deformation such as bending, and even when repeatedly bent and deformed repeatedly, the core layer 1094 and the clad portion 1095 are separated from each other, and the layer adjacent to the core layer 1093 ( The delamination with the clad layers 1091 and 1092) hardly occurs, and the occurrence of microcracks in the core portion 1094 and the clad portion 1095 is also prevented. As a result, the optical transmission performance of the optical waveguide 1009 is maintained, and the optical waveguide 1009 excellent in durability is obtained.
 また、コア層1093の構成材料には、例えば、酸化防止剤、屈折率調整剤、可塑剤、増粘剤、補強剤、増感剤、レベリング剤、消泡剤、密着助剤および難燃剤等の添加剤が含まれていてもよい。酸化防止剤の添加は、高温安定性の向上、耐候性の向上、光劣化の抑制という効果がある。このような酸化防止剤としては、例えば、モノフェノール系、ビスフェノール系、トリフェノール系等のフェノール系や、芳香族アミン系のものが挙げられる。また、可塑剤、増粘剤、補強剤の添加により、曲げに対する耐性をさらに増大させることもできる。 Examples of the constituent material of the core layer 1093 include antioxidants, refractive index adjusters, plasticizers, thickeners, reinforcing agents, sensitizers, leveling agents, antifoaming agents, adhesion aids, flame retardants, and the like. The additive may be contained. Addition of an antioxidant has the effect of improving high temperature stability, improving weather resistance, and suppressing light deterioration. Examples of such an antioxidant include phenols such as monophenols, bisphenols, and triphenols, and aromatic amines. Further, the resistance to bending can be further increased by adding a plasticizer, a thickener, and a reinforcing agent.
 前記酸化防止剤に代表される添加剤の含有率(2種以上の場合は合計)は、コア層1093の構成材料全体に対し、0.5~40重量%程度が好ましく、3~30重量%程度がより好ましい。この量が少なすぎると、添加剤の機能を十分に発揮することができず、量が多すぎると、添加剤の種類や特性によっては、コア部1094を伝送する光(伝送光1018)の透過率の低下、パターニング不良、屈折率不安定等を生じるおそれがある。 The content of additives typified by the antioxidant (the total in the case of two or more types) is preferably about 0.5 to 40% by weight, preferably 3 to 30% by weight, based on the entire constituent material of the core layer 1093. The degree is more preferable. If this amount is too small, the function of the additive cannot be sufficiently exhibited. If the amount is too large, depending on the type and characteristics of the additive, the light transmitted through the core portion 1094 (transmitted light 1018) is transmitted. There is a risk of decreasing the rate, patterning failure, refractive index instability and the like.
 コア層1093の形成方法としては、塗布法が挙げられる。塗布法としては、コア層形成用組成物(ワニス等)を塗布し硬化(固化)させる方法、硬化性を有するモノマー組成物を塗布し硬化(固化)させる方法が挙げられる。また、塗布法以外の方法、例えば、別途製造されたシート材を接合する方法を採用することもできる。 An example of a method for forming the core layer 1093 is a coating method. Examples of the coating method include a method in which a core layer forming composition (varnish or the like) is applied and cured (solidified), and a method in which a curable monomer composition is applied and cured (solidified). In addition, a method other than the coating method, for example, a method of joining separately manufactured sheet materials may be employed.
 以上のようにして得られたコア層1093に対し、マスクを用いて活性放射線を選択的に照射し、所望の形状のコア部1094をパターニングする。 The core layer 1093 obtained as described above is selectively irradiated with active radiation using a mask to pattern the core portion 1094 having a desired shape.
 露光に用いる活性放射線としては、可視光、紫外光、赤外光、レーザ光等の活性エネルギー光線や電子線、X線等が挙げられる。電子線は、例えば50~2000KGy程度の照射量で照射することができる。 Examples of active radiation used for exposure include active energy rays such as visible light, ultraviolet light, infrared light, and laser light, electron beams, and X-rays. The electron beam can be irradiated at an irradiation dose of, for example, about 50 to 2000 KGy.
 コア層1093において、活性放射線が照射された部位は、その屈折率が変化し(コア層1093の材料により、屈折率が増大する場合と減少する場合とがある)、活性放射線が照射されなかった部位との間で屈折率の差が生じる。例えば、コア層1093の活性放射線が照射された部位がクラッド部1095となり、照射されなかった部位がコア部1094となる。また、この逆の場合もある。クラッド部1095の屈折率は、クラッド層1091、1092の屈折率とほぼ等しい。 In the core layer 1093, the refractive index of the portion irradiated with the active radiation is changed (the refractive index may increase or decrease depending on the material of the core layer 1093), and the active radiation is not irradiated. A difference in refractive index occurs between the parts. For example, the portion of the core layer 1093 that has been irradiated with active radiation becomes the cladding portion 1095, and the portion that has not been irradiated becomes the core portion 1094. The reverse is also true. The refractive index of the cladding part 1095 is substantially equal to the refractive index of the cladding layers 1091 and 1092.
 また、コア層1093に対し活性放射線を所定のパターンで照射した後、加熱することにより、コア部1094を形成する場合もある。この加熱工程を付加することにより、コア部1094とクラッド部1095との屈折率の差がより大きくなるので好ましい。なお、この原理等については、後に詳述する。 Also, the core portion 1094 may be formed by irradiating the core layer 1093 with actinic radiation in a predetermined pattern and then heating. By adding this heating step, the difference in refractive index between the core portion 1094 and the cladding portion 1095 becomes larger, which is preferable. This principle will be described later in detail.
 形成されるコア部1094のパターン形状としては、特に限定されず、直線状、湾曲部を有する形状、異形、光路の分岐部、合流部または交差部を有する形状、集光部(幅等が減少している部分)または光拡散部(幅等が増大している部分)、あるいはこれらのうちの2以上を組み合わせた形状等、いかなるものでもよい。活性放射線の照射パターンの設定により、いかなる形状のコア部1094をも容易に形成することができる点が、本発明の特徴である。 The pattern shape of the core portion 1094 to be formed is not particularly limited, and is linear, a shape having a curved portion, an irregular shape, a shape having a branching portion of a light path, a merging portion or a crossing portion, a condensing portion (a width etc. is reduced) Or a light diffusing part (a part where the width or the like is increased), or a combination of two or more of them. The feature of the present invention is that the core portion 1094 having any shape can be easily formed by setting the irradiation pattern of the active radiation.
 光導波路1009の各部の構成材料およびコア部1094の形成方法等については、後に詳述する。 The constituent material of each part of the optical waveguide 1009 and the method of forming the core part 1094 will be described in detail later.
 光導波路1009の下面に接合された導体層1051および上面に接合された導体層1052、ならびに基板1002の上面に接合された導体層1053は、それぞれ、所定の形状にパターンニングされて、所望の配線または回路を構成している。導体層1051~1053の構成材料としては、それぞれ、例えば、銅、銅系合金、アルミニウム、アルミニウム系合金等の各種金属材料が挙げられる。導体層1051~1053の厚さは、特に限定されないが、それぞれ、通常、3~120μm程度が好ましく、5~70μm程度がより好ましい。 The conductor layer 1051 bonded to the lower surface of the optical waveguide 1009, the conductor layer 1052 bonded to the upper surface, and the conductor layer 1053 bonded to the upper surface of the substrate 1002 are each patterned into a predetermined shape to obtain a desired wiring. Or it constitutes a circuit. Examples of the constituent materials of the conductor layers 1051 to 1053 include various metal materials such as copper, copper-based alloy, aluminum, and aluminum-based alloy. The thicknesses of the conductor layers 1051 to 1053 are not particularly limited, but are usually preferably about 3 to 120 μm and more preferably about 5 to 70 μm.
 導体層1051~1053は、例えば、金属箔の接合(接着)、金属メッキ、蒸着、スパッタリング等の方法により形成されたものである。導体層1051~1053へのパターニングは、例えばエッチング、印刷、マスキング等の方法を用いることができる。 The conductor layers 1051 to 1053 are formed by, for example, metal foil bonding (adhesion), metal plating, vapor deposition, sputtering, or the like. For patterning the conductor layers 1051 to 1053, for example, methods such as etching, printing, and masking can be used.
 発光素子1010は、その下面側に、発光部1101と、一対の端子1103、1105とを有している。発光部1101は、端子1103と端子1105の間に位置している。端子1103、1105間に通電がなされると、発光部1101が発光する。 The light emitting element 1010 has a light emitting portion 1101 and a pair of terminals 1103 and 1105 on the lower surface side. The light emitting unit 1101 is located between the terminals 1103 and 1105. When the terminals 1103 and 1105 are energized, the light emitting unit 1101 emits light.
 なお、発光素子1010における発光部は、1つの発光点で構成されているものの他、発光点が複数個集合したものでもよい。発光点が複数個集合したものとしては、例えば、発光点が列状(例えば発光点が1×4個、1×12個)または行列状(例えば発光点がn×m個:n、mは2以上の整数)に配置されたものや、複数の発光点がランダム(不規則)に配置されたもの等が挙げられる。後述する受光素子における受光部についても同様である。 Note that the light-emitting portion of the light-emitting element 1010 may be a single light-emitting point or a plurality of light-emitting points. As a set of a plurality of light emitting points, for example, the light emitting points are arranged in a row (for example, 1 × 4, 1 × 12) or in a matrix (for example, n × m: n, m And those in which a plurality of light emitting points are arranged randomly (irregularly). The same applies to a light receiving portion in a light receiving element to be described later.
 発光素子1010は、それらの端子1103、1105がそれぞれ導体層1053の部位1531、1532に接合(電気的に接続)されるようにして基板1002上に搭載されている。 The light emitting element 1010 is mounted on the substrate 1002 such that the terminals 1103 and 1105 are bonded (electrically connected) to the portions 1531 and 1532 of the conductor layer 1053, respectively.
 電気素子(電子回路素子)1012は、例えば半導体素子(半導体チップ)で構成されている。電気素子1012の機能は特に限定されないが、一例として、発光素子1010を駆動するための回路を構成するものが挙げられる。この電気素子1012は、その下面側に、2つの端子1123、1125を有している。 The electric element (electronic circuit element) 1012 is composed of, for example, a semiconductor element (semiconductor chip). Although the function of the electric element 1012 is not particularly limited, an example is one constituting a circuit for driving the light emitting element 1010. The electric element 1012 has two terminals 1123 and 1125 on the lower surface side thereof.
 電気素子1012は、それらの端子1123、1125がそれぞれ導体層1053の部位1532、1533に接合(電気的に接続)されるようにして光導波路1009上に搭載されている。 The electric element 1012 is mounted on the optical waveguide 1009 such that the terminals 1123 and 1125 are joined (electrically connected) to the portions 1532 and 1533 of the conductor layer 1053, respectively.
 発光素子1010および電気素子1012は、それらの端子1103、1105、1123、1125を含む下部がアンダーフィル材1004により封止されている。これにより、発光素子1010および電気素子1012と、光導波路1009との間には、空隙部が形成されることなくアンダーフィル材1004により封止されることとなる。さらに、発光素子1010および電気素子1012は、その全体(外表面)が封止材1006により覆われ、封止されている。このように、発光素子1010および電気素子1012は、その全体が封止され、特に発光部1101が外部に露出することなく封止された構造であるため、汚れ、損傷、酸化劣化等から保護され、電子部品の信頼性向上に寄与する。 The lower part including the terminals 1103, 1105, 1123, and 1125 of the light emitting element 1010 and the electric element 1012 is sealed with an underfill material 1004. As a result, a gap is not formed between the light emitting element 1010 and the electric element 1012 and the optical waveguide 1009, and the underfill material 1004 is sealed. Further, the entire light emitting element 1010 and electric element 1012 (outer surface) are covered with a sealing material 1006 and sealed. As described above, the light-emitting element 1010 and the electric element 1012 are entirely sealed, and in particular, the light-emitting portion 1101 is sealed without being exposed to the outside. Contributes to improving the reliability of electronic components.
 アンダーフィル材1004は、発光部1101から発せられる光(伝送光1018)を実質的に透過する材料で構成されており、好ましくは、透明な材料で構成されている。 The underfill material 1004 is made of a material that substantially transmits light emitted from the light emitting unit 1101 (transmitted light 1018), and is preferably made of a transparent material.
 アンダーフィル材1004の構成材料としては、絶縁性を有する樹脂材料が好ましく、例えば、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、ポリイミド樹脂等が挙げられる。 As a constituent material of the underfill material 1004, an insulating resin material is preferable, and examples thereof include an epoxy resin, a phenol resin, a urethane resin, and a polyimide resin.
 また、封止材1006の構成材料としては、絶縁性を有する樹脂材料が好ましく、例えば、エポキシ樹脂、フェノール樹脂、ノルボルネン樹脂、シリコン樹脂等が挙げられる。 Further, as a constituent material of the sealing material 1006, an insulating resin material is preferable, and examples thereof include an epoxy resin, a phenol resin, a norbornene resin, and a silicon resin.
 図20に示すように、光導波路1009には、その厚さ方向に貫通する貫通孔(スルーホールまたはビアホール)1008が形成されている。この貫通孔1008には、導電材料(例えば、銅、銅系合金、アルミニウム、アルミニウム系合金等の各種金属材料)が充填され、導体ポスト(導体部)1081を形成している。この導体ポスト1081を介して、導体層1051と導体層1052の所定部位同士が電気的に接続されている。すなわち、発光素子1010および電気素子1012の各端子への通電は、光導波路1009の下面側の導体層1051と基板1002の上面側の導体層1053(部位1531、1533)とで行うことができるようになっている。なお、端子1105と端子1123とは導通し、これらはグランド側に接続されている。 As shown in FIG. 20, the optical waveguide 1009 is formed with a through hole (through hole or via hole) 1008 penetrating in the thickness direction. The through hole 1008 is filled with a conductive material (for example, various metal materials such as copper, a copper-based alloy, aluminum, an aluminum-based alloy), and a conductor post (conductor portion) 1081 is formed. Through the conductor post 1081, predetermined portions of the conductor layer 1051 and the conductor layer 1052 are electrically connected to each other. In other words, the terminals of the light emitting element 1010 and the electric element 1012 can be energized by the conductor layer 1051 on the lower surface side of the optical waveguide 1009 and the conductor layer 1053 (parts 1531 and 1533) on the upper surface side of the substrate 1002. It has become. Note that the terminal 1105 and the terminal 1123 are electrically connected, and are connected to the ground side.
 光導波路1009は、コア部1094の光路を屈曲させる光路変換部1096を有している。この光路変換部1096は、コア部1094と後述する導光路1024の接続部、すなわち、コア部1094の図20中右端部でかつ導光路1024の下端部の箇所に設けられている。これにより、光路を効率良く確実に屈曲させることができる。 The optical waveguide 1009 has an optical path conversion unit 1096 that bends the optical path of the core unit 1094. The optical path conversion unit 1096 is provided at a connection portion between the core portion 1094 and the light guide path 1024 described later, that is, at the right end portion of the core portion 1094 in FIG. 20 and the lower end portion of the light guide path 1024. Thereby, an optical path can be bent efficiently and reliably.
 この光路変換部1096は、伝送光1018の少なくとも一部を反射する反射面(ミラー)1961で構成されている。この反射面1961は、発光部1101の真下の位置に設けられている。 The optical path conversion unit 1096 is configured by a reflection surface (mirror) 1961 that reflects at least a part of the transmission light 1018. The reflection surface 1961 is provided at a position directly below the light emitting unit 1101.
 反射面1961は、光導波路1009の光路、すなわちコア部1094の長手方向に対しほぼ45°傾斜しており、伝送光1018の大半(例えば90%以上)を反射する機能を有している。 The reflecting surface 1961 is inclined by approximately 45 ° with respect to the optical path of the optical waveguide 1009, that is, the longitudinal direction of the core portion 1094, and has a function of reflecting most of the transmitted light 1018 (for example, 90% or more).
 このような光路変換部1096は、光導波路1009の一部を除去(欠損)することにより例えば断面が三角形の凹部を形成し、その1つの傾斜面を反射面1961として用いるものである。反射面1961は、例えば多層光学薄膜や金属薄膜(例えばアルミ蒸着膜)のような反射膜あるいは反射増加膜を有していてもよい。また、図示しないが、光路変換部1096の凹部には、伝送光1018に対する透光性を有する充填材が充填されていてもよい。 Such an optical path conversion unit 1096 is formed by removing (deleting) a part of the optical waveguide 1009 to form, for example, a concave portion having a triangular cross section, and using one inclined surface as the reflection surface 1961. The reflection surface 1961 may have a reflection film such as a multilayer optical thin film or a metal thin film (for example, an aluminum vapor deposition film) or a reflection increasing film. Although not illustrated, the concave portion of the optical path changing unit 1096 may be filled with a filler having a light-transmitting property with respect to the transmission light 1018.
 図示の構成では、反射面1961(光路変換部1096)は、クラッド層1091、コア層1093およびクラッド層1092にまたがって形成されているが、コア層1093内のみに形成されていてもよい。また、ミラー部品、例えば、プリズム、鏡面ミラー、シリコンミラー等を用いてもよい。 In the illustrated configuration, the reflection surface 1961 (optical path conversion unit 1096) is formed across the clad layer 1091, the core layer 1093, and the clad layer 1092, but may be formed only in the core layer 1093. Further, a mirror component such as a prism, a mirror mirror, or a silicon mirror may be used.
 基板1002における発光部1101の真下の位置には、基板1002を貫通する貫通孔1022が形成されている。貫通孔1022の断面形状は、特に限定されないが、本実施形態では、円形とされている(図25参照)。その他の形状としては、例えば、楕円形、長円形、矩形(四角形)、六角形、異形等が挙げられる。 A through hole 1022 penetrating the substrate 1002 is formed at a position directly below the light emitting unit 1101 on the substrate 1002. The cross-sectional shape of the through hole 1022 is not particularly limited, but in the present embodiment, it is circular (see FIG. 25). Other shapes include, for example, an ellipse, an oval, a rectangle (square), a hexagon, and an irregular shape.
 貫通孔1022の内周面には、前記導体層1051と同様の導電材料(金属材料)による層(導体部1003)が形成されている。この導体部1003により、基板1002の厚さ方向(以下単に「厚さ方向」とも言う)に電気信号等を送ることが可能となる。なお、図25では、導体部1003は、貫通孔1022の内周面の全周にわたって(リング状に)形成されているが、周方向に部分的に形成されていてもよい。 A layer (conductor portion 1003) made of a conductive material (metal material) similar to that of the conductor layer 1051 is formed on the inner peripheral surface of the through hole 1022. With this conductor portion 1003, an electric signal or the like can be sent in the thickness direction of the substrate 1002 (hereinafter also simply referred to as “thickness direction”). In FIG. 25, the conductor portion 1003 is formed over the entire circumference of the inner peripheral surface of the through hole 1022 (in a ring shape), but may be partially formed in the circumferential direction.
 また、導体部1003は、基板1002に対しほぼ垂直に形成されている。ただし、これに限らず、導体部1003は、基板1002に対し所定角度傾斜して形成されていてもよく、あるいは、導体部1003の一部が変形(屈曲、湾曲、分岐等)していてもよい。 Further, the conductor portion 1003 is formed substantially perpendicular to the substrate 1002. However, the present invention is not limited to this, and the conductor portion 1003 may be formed to be inclined at a predetermined angle with respect to the substrate 1002, or a part of the conductor portion 1003 may be deformed (bent, curved, branched, etc.). Good.
 導体部1003の形成方法としては、例えば、貫通孔1022の内面に金属箔を接合(接着)する方法、貫通孔1022の内面に金属メッキ、蒸着、スパッタリング等の方法により金属層を形成する方法、金属フィラーを含有する金属ペーストを塗布し、加熱(焼成、硬化等)して金属層を形成する方法などが挙げられる。 As a method of forming the conductor portion 1003, for example, a method of joining (adhering) a metal foil to the inner surface of the through hole 1022, a method of forming a metal layer on the inner surface of the through hole 1022 by a method such as metal plating, vapor deposition, sputtering, Examples thereof include a method in which a metal paste containing a metal filler is applied and heated (fired, cured, etc.) to form a metal layer.
 導体部1003の上端部は、導体層1053の部位1532に電気的に接続され、導体部1003の下端部は、導体層1052の所定部位に電気的に接続されている。これにより、導体部1003を介して、厚さ方向の異なる位置に形成された導体層1052、1053間で電気信号の授受を行うことができる。 The upper end portion of the conductor portion 1003 is electrically connected to the portion 1532 of the conductor layer 1053, and the lower end portion of the conductor portion 1003 is electrically connected to a predetermined portion of the conductor layer 1052. Thus, electrical signals can be exchanged between the conductor layers 1052 and 1053 formed at different positions in the thickness direction via the conductor portion 1003.
 また、貫通孔1022内の前記導体部1003より内側の部分は、伝送光1018を透光する透光部を構成する。すなわち、この部分は、伝送光1018を基板1002の厚さ方向に導光(伝送)する導光路1024となる。換言すれば、導体部1003は、導光路1024の周囲を囲むように形成されている。これにより、限られた大きさ(内径)の貫通孔1022内において、導光路1024と導体部1003とを効率良く配置することができる。 In addition, a portion inside the conductor portion 1003 in the through hole 1022 constitutes a light transmitting portion that transmits the transmission light 1018. That is, this portion serves as a light guide 1024 that guides (transmits) the transmission light 1018 in the thickness direction of the substrate 1002. In other words, the conductor portion 1003 is formed so as to surround the light guide path 1024. Thereby, the light guide 1024 and the conductor part 1003 can be efficiently arranged in the through hole 1022 having a limited size (inner diameter).
 また、導光路1024は、基板1002に対しほぼ垂直に形成されている。ただし、これに限らず、導光路1024は、基板1002に対し所定角度傾斜して形成されていてもよく、あるいは、導光路1024の一部が変形(湾曲、分岐等)していてもよい。 Further, the light guide 1024 is formed substantially perpendicular to the substrate 1002. However, the present invention is not limited thereto, and the light guide path 1024 may be formed to be inclined at a predetermined angle with respect to the substrate 1002, or a part of the light guide path 1024 may be deformed (curved, branched, etc.).
 貫通孔1022内の前記導体部1003より内側の部分は、空洞でもよいが、この部分には、透光性を有する充填材、すなわち伝送光1018の透過率が80%以上、好ましくは90%以上、より好ましくは95%以上の材料による充填材が充填されているのが好ましい。この充填材は、コア層1093のコア部1094と同様の材料とすることができる。これにより、導光路(コア部)1024の形成が容易であるとともに、後述するコア部1094と同様の利点を得ることができる。また、この充填材は、コア層1093のクラッド部1095と同様の材料、あるいはクラッド層1091または1092と同様の材料とすることもできる。 A portion inside the conductor portion 1003 in the through hole 1022 may be a cavity, but in this portion, a light-transmitting filler, that is, the transmittance of the transmitted light 1018 is 80% or more, preferably 90% or more. More preferably, the filler is filled with 95% or more of a material. This filler can be the same material as the core portion 1094 of the core layer 1093. Thereby, the light guide (core) 1024 can be easily formed, and advantages similar to those of the core 1094 described later can be obtained. Further, this filler can be the same material as the clad portion 1095 of the core layer 1093 or the same material as the clad layer 1091 or 1092.
 貫通孔1022内において、導体部1003と導光路1024とは接触しているが、これに限らず、例えば、導体部1003と導光路1024とが図示しない中間層(接着層、絶縁層等)を介して接近しているような構成であってもよい。 In the through hole 1022, the conductor portion 1003 and the light guide path 1024 are in contact with each other. However, the present invention is not limited to this. For example, the conductor portion 1003 and the light guide path 1024 form an intermediate layer (adhesive layer, insulating layer, etc.) not shown. It may be configured such that they are approaching each other.
 貫通孔1022の内径は、特に限定されないが、通常、0.05~2mm程度が好ましく、0.1~0.5mm程度がより好ましい。 The inner diameter of the through-hole 1022 is not particularly limited, but is usually preferably about 0.05 to 2 mm, more preferably about 0.1 to 0.5 mm.
 また、導光路(コア部)1024の外径は、特に限定されないが、通常、0.005~0.3mm程度が好ましく0.02~0.15mm程度がより好ましい。 Further, the outer diameter of the light guide path (core part) 1024 is not particularly limited, but is usually preferably about 0.005 to 0.3 mm, more preferably about 0.02 to 0.15 mm.
 以上のように、厚さ方向に延在する導体部1003と導光路1024とが隣接して形成されていることにより、1つの貫通孔1022で電気信号と光信号とを厚さ方向に伝送することができる。 As described above, the conductor portion 1003 extending in the thickness direction and the light guide path 1024 are formed adjacent to each other, so that an electrical signal and an optical signal are transmitted in the thickness direction through one through hole 1022. be able to.
 本実施形態の光導波路構造体1001では、導体層1051と導体層1053の部位1531との間に通電がなされると、導体層1051と端子1105とは導体部1003および部位1532を介して導通していることから、発光素子1010の端子1103、1105間へ通電がなされることとなり、発光部1101が点灯する。発光部1101の点灯により図20中下方へ向かって発せられた伝送光1018は、アンダーフィル材1004を透過し、貫通孔1022内の導光路1024(コア部1024)を通り、反射面1961で反射されて90°屈曲し、光導波路1009のコア部1094に入り、クラッド部(クラッド層1091、1092および側方(図20中前後)のクラッド部1095)との界面で反射を繰り返しながら、コア部1094内をその長手方向(図20中左方向)に沿って進む。 In the optical waveguide structure 1001 of the present embodiment, when energization is performed between the conductor layer 1051 and the portion 1531 of the conductor layer 1053, the conductor layer 1051 and the terminal 1105 are electrically connected via the conductor portion 1003 and the portion 1532. Therefore, power is supplied between the terminals 1103 and 1105 of the light emitting element 1010, and the light emitting unit 1101 is turned on. Transmitted light 1018 emitted downward in FIG. 20 by turning on the light emitting unit 1101 passes through the underfill material 1004, passes through the light guide 1024 (core unit 1024) in the through hole 1022, and is reflected by the reflecting surface 1961. The core portion 1094 of the optical waveguide 1009 is bent, enters the core portion 1094, and repeats reflection at the interface with the clad portions ( cladding layers 1091 and 1092 and side clad portions 1095). It advances along the longitudinal direction (the left direction in FIG. 20) in 1094.
<第15実施形態:図21>
 図21には、本発明の光導波路構造体1001の第15実施形態が示されている。以下、この光導波路構造体1001について説明するが、前記第14実施形態と同様の事項(構成、作動等)についてはその説明を省略し、相違点を中心に説明する。
<Fifteenth embodiment: FIG. 21>
FIG. 21 shows a fifteenth embodiment of an optical waveguide structure 1001 of the present invention. Hereinafter, the optical waveguide structure 1001 will be described, but the description of the same matters (configuration, operation, etc.) as those in the fourteenth embodiment will be omitted, and differences will be mainly described.
 本実施形態の光導波路構造体1001は、基板1002の透光部(貫通孔1022付近)の構成が前記第14実施形態と異なり、その他は第14実施形態と同様である。すなわち、基板1002の貫通孔1022内には、前記と同様の導体部1003と導光路1024とが形成されているが、貫通孔1022の下部には、伝送光1018を集光または拡散し得るレンズ部1026が設けられている。 The optical waveguide structure 1001 of the present embodiment is different from the fourteenth embodiment in the configuration of the light transmitting portion (near the through-hole 1022) of the substrate 1002, and is otherwise the same as the fourteenth embodiment. That is, the same conductor portion 1003 and light guide path 1024 as those described above are formed in the through hole 1022 of the substrate 1002, but a lens capable of condensing or diffusing the transmitted light 1018 below the through hole 1022. A portion 1026 is provided.
 すなわち、導光路1024の下端(伝送光1018の出射側)に凸レンズ(正確には、平凸レンズ)で構成されるレンズ部1026が設けられている。 That is, a lens portion 1026 composed of a convex lens (more precisely, a plano-convex lens) is provided at the lower end of the light guide path 1024 (exit side of the transmission light 1018).
 これにより、発光部1101から図21中下方へ向かって発せられた伝送光1018は、アンダーフィル材1004を透過した後、導光路1024を通り、レンズ部1026で集光されてその光束(ビーム)が絞られ、この光束が反射面1961で反射されて90°屈曲し、光導波路1009のコア部1094に入り、コア部1094内をその長手方向(図21中左方向)に沿って進む。 Accordingly, the transmission light 1018 emitted from the light emitting unit 1101 downward in FIG. 21 passes through the underfill material 1004, passes through the light guide 1024, and is condensed by the lens unit 1026, and the light beam (beam). The light beam is reflected by the reflecting surface 1961 and bent by 90 °, enters the core portion 1094 of the optical waveguide 1009, and travels in the core portion 1094 along the longitudinal direction (left direction in FIG. 21).
 このようなレンズ部1026を設けることにより、より明確な(シャープな)伝送光を得ることができ、より優れた光伝送特性を得ることができる。 By providing such a lens portion 1026, clearer (sharp) transmitted light can be obtained, and more excellent light transmission characteristics can be obtained.
 なお、レンズ部1026は、伝送光1018を拡散し得るものでもよい。この場合には、凹レンズを用いればよい。 The lens unit 1026 may be capable of diffusing the transmission light 1018. In this case, a concave lens may be used.
 レンズ部1026を構成するレンズの材料は、導光路1024の屈折率と異なる材料を用いればよい。レンズ材料の屈折率を導光路1024の屈折率より高くするか低くするかにより、レンズ部1026の機能を集光レンズまたは拡散レンズのいずれかに設定することができる。 The material of the lens constituting the lens portion 1026 may be a material different from the refractive index of the light guide 1024. Depending on whether the refractive index of the lens material is higher or lower than the refractive index of the light guide 1024, the function of the lens portion 1026 can be set to either a condenser lens or a diffusing lens.
 また、レンズ部1026の設置位置は、図21に示す位置に限らず、例えば導光路1024(貫通孔1022)の途中や上端であってもよく、あるいは、その他の箇所、例えばコア部1094の入射側端部や出射側端部であってもよい。 Further, the installation position of the lens unit 1026 is not limited to the position illustrated in FIG. 21, and may be, for example, in the middle or upper end of the light guide 1024 (through hole 1022), or may be incident on another part, for example, the core unit 1094. It may be a side end or an emission side end.
<第16実施形態:図22>
 図22には、本発明の光導波路構造体1001の第16実施形態が示されている。以下、この光導波路構造体1001について説明するが、前記第14実施形態と同様の事項(構成、作動等)についてはその説明を省略し、相違点を中心に説明する。
<Sixteenth Embodiment: FIG. 22>
FIG. 22 shows a sixteenth embodiment of the optical waveguide structure 1001 of the present invention. Hereinafter, the optical waveguide structure 1001 will be described, but the description of the same matters (configuration, operation, etc.) as those in the fourteenth embodiment will be omitted, and differences will be mainly described.
 本実施形態の光導波路構造体1001は、基板1002の透光部(貫通孔1022付近)の構成が前記第14実施形態と異なり、その他は第14実施形態と同様である。すなわち、基板1002の貫通孔1022内には、前記と同様の導体部1003が形成され、その内側に垂直光導波路1023が形成されている。 The optical waveguide structure 1001 of the present embodiment is different from the fourteenth embodiment in the configuration of the light transmitting portion (near the through-hole 1022) of the substrate 1002, and is otherwise the same as the fourteenth embodiment. That is, a conductor portion 1003 similar to that described above is formed in the through hole 1022 of the substrate 1002, and a vertical optical waveguide 1023 is formed inside thereof.
 垂直光導波路1023は、コア部1024と、該コア部1024の外周を囲むクラッド部1025とで構成されている。コア部1024は、クラッド部1025に比べて屈折率が高い。貫通孔1022内にこのような垂直光導波路1023を形成したことにより、前記第14実施形態における導体部1024に比べ、光の漏れ等による光量のロスがより低減され、伝送光1018の伝送特性がより向上する。 The vertical optical waveguide 1023 includes a core portion 1024 and a clad portion 1025 surrounding the outer periphery of the core portion 1024. The core portion 1024 has a higher refractive index than the clad portion 1025. By forming such a vertical optical waveguide 1023 in the through-hole 1022, loss of light quantity due to light leakage or the like is further reduced as compared with the conductor portion 1024 in the fourteenth embodiment, and the transmission characteristics of the transmission light 1018 are improved. More improved.
 コア部1024の構成材料や形成方法は、コア部1094と同様とすることができる。あるいは、コア部1024は、前記1実施形態において述べた透光性を有する充填材と同様のものを用いてもよい。クラッド部1025の構成材料は、クラッド部1095またはクラッド層1091、1092と同様とすることができる。 The constituent material and the formation method of the core part 1024 can be the same as those of the core part 1094. Alternatively, the core portion 1024 may be the same as the light-transmitting filler described in the first embodiment. The constituent material of the clad portion 1025 can be the same as that of the clad portion 1095 or the clad layers 1091 and 1092.
<第17実施形態:図23>
 図23には、本発明の光導波路構造体1の第17実施形態が示されている。以下、この光導波路構造体1001について説明するが、前記第14~第16実施形態と同様の事項(構成、作動等)についてはその説明を省略し、相違点を中心に説明する。
<Seventeenth Embodiment: FIG. 23>
FIG. 23 shows a seventeenth embodiment of the optical waveguide structure 1 of the present invention. Hereinafter, the optical waveguide structure 1001 will be described, but the description of the same matters (configuration, operation, etc.) as those in the fourteenth to sixteenth embodiments will be omitted, and differences will be mainly described.
 本実施形態の光導波路構造体1001は、レンズ部1026を設けた以外は前記第16実施形態と同様である。すなわち、基板1002の貫通孔1022内には、前記と同様の導体部1003と垂直光導波路1023とが形成されているが、貫通孔1022の下部には、伝送光1018を集光または拡散し得る前記と同様のレンズ部1026が設けられている。 The optical waveguide structure 1001 of this embodiment is the same as that of the sixteenth embodiment except that a lens portion 1026 is provided. That is, the conductor portion 1003 and the vertical optical waveguide 1023 similar to those described above are formed in the through hole 1022 of the substrate 1002, but the transmission light 1018 can be condensed or diffused below the through hole 1022. A lens portion 1026 similar to the above is provided.
 レンズ部1026を設けることの効果、レンズ部1026を構成するレンズ材料、レンズ部1026の設置位置等については、前記第16実施形態で述べたのと同様である。 The effect of providing the lens unit 1026, the lens material constituting the lens unit 1026, the installation position of the lens unit 1026, and the like are the same as described in the sixteenth embodiment.
<第18実施形態:図24>
 図24には、本発明の光導波路構造体1001の第18実施形態が示されている。以下、この光導波路構造体1001について説明するが、前記第14~第17実施形態と同様の事項(構成、作動等)についてはその説明を省略し、相違点を中心に説明する。
<Eighteenth embodiment: FIG. 24>
FIG. 24 shows an eighteenth embodiment of the optical waveguide structure 1001 of the present invention. Hereinafter, the optical waveguide structure 1001 will be described, but the description of the same matters (configuration, operation, etc.) as those in the fourteenth to seventeenth embodiments will be omitted, and differences will be mainly described.
 本実施形態の光導波路構造体1001は、基板1002の透光部(貫通孔1022付近)の構成が前記第17実施形態と異なり、その他は第17実施形態と同様である。すなわち、図27に示すように、基板1002の貫通孔1022の横断面形状は、円形部1222と矩形部1224とを結合した形状(異形)であり、円形部1222内に垂直光導波路1023(または導光路1024でもよい)が挿入され、矩形部1224内に導体部1003が挿入されている。導体部1003の上端部および下端部は、それぞれ、導体層1053の部位1532および導体層1052に電気的に接続されている。 The optical waveguide structure 1001 of the present embodiment is different from the seventeenth embodiment in the configuration of the light transmitting portion (near the through hole 1022) of the substrate 1002, and is otherwise the same as the seventeenth embodiment. That is, as shown in FIG. 27, the cross-sectional shape of the through-hole 1022 of the substrate 1002 is a shape (an irregular shape) in which a circular portion 1222 and a rectangular portion 1224 are coupled, and the vertical optical waveguide 1023 (or The light guide 1024 may be inserted), and the conductor portion 1003 is inserted into the rectangular portion 1224. The upper end portion and the lower end portion of the conductor portion 1003 are electrically connected to the portion 1532 and the conductor layer 1052 of the conductor layer 1053, respectively.
 このような構成では、円形部1222と矩形部1224のそれぞれに横断面積を予め設定することにより、垂直光導波路1023と導体部1003の体積(体積比)をより正確に規定することができるという利点がある。また、導体部1003を円形部1222の周方向の必要な方向にのみ形成することができるという利点もある。 In such a configuration, the volume (volume ratio) of the vertical optical waveguide 1023 and the conductor portion 1003 can be more accurately defined by setting the cross-sectional areas in advance in each of the circular portion 1222 and the rectangular portion 1224. There is. In addition, there is an advantage that the conductor portion 1003 can be formed only in a necessary direction in the circumferential direction of the circular portion 1222.
<第19実施形態:図32~図34>
 図32~図34に示すように、本発明の光導波路構造体2001は、基板2002と、基板2002の下部に形成された光導波路2009と、光導波路2009の光路を屈曲させる光路変換部2096(反射面2961)と、基板2002に搭載された発光素子2010および電子回路素子2012と、基板2002の上面に形成された導体層2005とを有している。
<Nineteenth Embodiment: FIGS. 32 to 34>
As shown in FIGS. 32 to 34, an optical waveguide structure 2001 of the present invention includes a substrate 2002, an optical waveguide 2009 formed under the substrate 2002, and an optical path conversion unit 2096 that bends the optical path of the optical waveguide 2009 ( A reflective surface 2961), a light emitting element 2010 and an electronic circuit element 2012 mounted on the substrate 2002, and a conductor layer 2005 formed on the upper surface of the substrate 2002.
 基板2002の構成材料としては、例えば、エポキシ樹脂、フェノール樹脂、ビスマレイミド樹脂、ビスマレイミド・トリアジン樹脂、トリアゾール樹脂、ポリシアヌレート樹脂、ポリイソシアヌレート樹脂、ベンゾシクロブテン樹脂、ポリイミド、ポリベンゾオキサゾール樹脂、ノルボルネン樹脂等の樹脂材料や、シリコン、ガリウム・ヒ素、インジウム・リン、ゲルマニウム、シリコンカーバイド、シリコンゲルマニウム等の半導体材料が挙げられる。また、これらの材料は、単独で使用してもよく、複数を混合して使用してもよい。 Examples of the constituent material of the substrate 2002 include an epoxy resin, a phenol resin, a bismaleimide resin, a bismaleimide / triazine resin, a triazole resin, a polycyanurate resin, a polyisocyanurate resin, a benzocyclobutene resin, a polyimide, and a polybenzoxazole resin. And resin materials such as norbornene resin and semiconductor materials such as silicon, gallium / arsenic, indium / phosphorus, germanium, silicon carbide, and silicon germanium. These materials may be used alone or in combination.
 また、基板2002は、例えばガラス繊維、樹脂繊維等の繊維基材(織布、不織布、織物、編物等)に前述したような樹脂材料を含浸させたもの(プリプレグ等)であってもよい。例えば、ガラスクロスにエポキシ樹脂を含浸させたものをガラスエポキシ基板と言うが、このようなものを基板2として用いることができる。このような繊維基材を含む基板2002は、比較的薄くても高強度で、また、熱膨張率も低いため、基板2002に光導波路2009や導体層(金属層)を接合した場合に特に有利である。 Further, the substrate 2002 may be a substrate in which a fiber base material (woven fabric, nonwoven fabric, woven fabric, knitted fabric, etc.) such as glass fiber or resin fiber is impregnated with the above-described resin material (prepreg, etc.). For example, a glass cloth impregnated with an epoxy resin is called a glass epoxy substrate, but such a substrate can be used as the substrate 2. The substrate 2002 including such a fiber base material is particularly advantageous when the optical waveguide 2009 or a conductor layer (metal layer) is bonded to the substrate 2002 because the substrate 2002 including the fiber base is relatively thin but has high strength and a low coefficient of thermal expansion. It is.
 また、基板2002は、複数の層の積層体であってもよい。例えば、それぞれ組成(種類)が異なる樹脂材料からなる第1の層と第2の層とを積層したもの、前記繊維基材に樹脂材料を含浸させた層(シート材)と、樹脂材料からなる層とを積層したものが挙げられる。なお、積層体における層構成は、これに限定されないことは言うまでもない。 Further, the substrate 2002 may be a stacked body of a plurality of layers. For example, a laminate of a first layer and a second layer made of resin materials having different compositions (kinds), a layer (sheet material) in which the fiber base material is impregnated with a resin material, and a resin material The thing which laminated | stacked the layer is mentioned. In addition, it cannot be overemphasized that the layer structure in a laminated body is not limited to this.
 基板2002の厚さは、特に限定されないが、通常、50μm~4mm程度が好ましく、100μm~1.5mm程度がより好ましく、150μm~1.2mm程度がさらに好ましい。基板2002は、硬質(リジッド)のものでも、可撓性(フレキシブル)を有するものでもよい。もちろん、それぞれの特性を併有するものでもよい。 The thickness of the substrate 2002 is not particularly limited, but is usually preferably about 50 μm to 4 mm, more preferably about 100 μm to 1.5 mm, and further preferably about 150 μm to 1.2 mm. The substrate 2002 may be hard (rigid) or flexible (flexible). Of course, it may have both characteristics.
 また、基板2002は、本実施形態では、基板2002を伝送光2018が透過するため、基板2002は、伝送光2018の透過率が80%以上、好ましくは90%以上、より好ましくは95%以上のものとされる。このように、基板2002自体(基板2002の全部または一部)を、伝送光2018に対する透光性を有する材料で構成すること、すなわち、基板2002を実質的に透明な透明基板とすることにより、基板2002における発光部2101の真下の部分は、後述する貫通孔2025が形成されていなくても透光部2024を構成することとなる。この透光部2024を介して、発光素子2010の発光部2101と光導波路2009のコア部2094(光路変換部2096)とが光学的に接続される。 In this embodiment, since the transmission light 2018 is transmitted through the substrate 2002, the substrate 2002 has a transmittance of the transmission light 2018 of 80% or more, preferably 90% or more, more preferably 95% or more. It is supposed to be. In this manner, by configuring the substrate 2002 itself (all or a part of the substrate 2002) with a material having translucency with respect to the transmission light 2018, that is, by making the substrate 2002 a substantially transparent transparent substrate, The portion immediately below the light emitting portion 2101 in the substrate 2002 constitutes the light transmitting portion 2024 even if a through hole 2025 described later is not formed. The light emitting portion 2101 of the light emitting element 2010 and the core portion 2094 (optical path changing portion 2096) of the optical waveguide 2009 are optically connected via the light transmitting portion 2024.
 基板2002の下面には、光導波路2009が接合されている。図示の構成では、基板2002の下面に光導波路2009が直接接合されている(光導波路2009が基板2002に隣接している)が、これに限らず、少なくとも1層の中間層を介して形成されていてもよい。この中間層としては、任意の目的で形成することができ、例えば、接着層、導体層(配線パターン)、絶縁層、あるいはこれらを含む2層以上の積層体が挙げられる。 An optical waveguide 2009 is bonded to the lower surface of the substrate 2002. In the configuration shown in the drawing, the optical waveguide 2009 is directly bonded to the lower surface of the substrate 2002 (the optical waveguide 2009 is adjacent to the substrate 2002). However, the configuration is not limited to this, and the optical waveguide 2009 is formed via at least one intermediate layer. It may be. The intermediate layer can be formed for any purpose, and examples thereof include an adhesive layer, a conductor layer (wiring pattern), an insulating layer, or a laminate of two or more layers including these.
 このうち、接着層としては、例えばボンディングシートのようなシート材を用いることができ、その構成材料としては、例えば、エポキシ系接着剤、アクリル系接着剤、フェノール樹脂系接着剤、シアネート樹脂系接着剤、マレイミド樹脂系接着剤等が挙げられる。特に、酸化防止等のために、フラックス活性を有する材料で構成されているのが好ましい。この接着層は、電気絶縁性を有するのが好ましい。 Among these, as the adhesive layer, for example, a sheet material such as a bonding sheet can be used, and as its constituent materials, for example, an epoxy adhesive, an acrylic adhesive, a phenol resin adhesive, a cyanate resin adhesive Agents, maleimide resin adhesives and the like. In particular, it is preferably made of a material having flux activity for preventing oxidation or the like. This adhesive layer preferably has electrical insulation.
 また、接着層としては、シート材を用いず、基板2002の下面または光導波路2009の上面に塗膜による接着層を形成してもよい。接着層の厚さは、特に限定されないが、0.5~150μm程度が好ましく、10~70μm程度がより好ましい。 Further, as the adhesive layer, an adhesive layer made of a coating film may be formed on the lower surface of the substrate 2002 or the upper surface of the optical waveguide 2009 without using a sheet material. The thickness of the adhesive layer is not particularly limited, but is preferably about 0.5 to 150 μm, more preferably about 10 to 70 μm.
 光導波路2009は、図33および図34中下側からクラッド層2091、コア層2093およびクラッド層2092をこの順に積層してなるものであり、コア層2093には、所定パターンのコア部2094とクラッド部2095とが形成されている(図33、図34参照)。 The optical waveguide 2009 is formed by laminating a clad layer 2091, a core layer 2093, and a clad layer 2092 in this order from the lower side in FIGS. 33 and 34. The core layer 2093 includes a core portion 2094 having a predetermined pattern and a clad. A portion 2095 is formed (see FIGS. 33 and 34).
 コア部2094は、クラッド部2095に比べて屈折率が高く、また、クラッド層2091、2092に対しても屈折率が高い。クラッド層2091および2092は、それぞれ、コア部2094の下部および上部に位置するクラッド部を構成するものである。このような構成により、コア部2094は、その外周の全周をクラッド部に囲まれた伝送光2018の光路として機能する。 The core portion 2094 has a higher refractive index than the clad portion 2095, and also has a higher refractive index than the clad layers 2091 and 2092. The clad layers 2091 and 2092 constitute the clad portions located at the lower part and the upper part of the core part 2094, respectively. With such a configuration, the core portion 2094 functions as an optical path of the transmission light 2018 surrounded by the cladding portion on the entire outer periphery.
 コア層2093の構成材料としては、活性放射線(活性エネルギー光線、電子線またはX線等)の照射により、あるいはさらに加熱することにより屈折率が変化する材料とされる。このような材料の好ましい例としては、ベンゾシクロブテン系ポリマー、ノルボルネン系ポリマー(樹脂)等の環状オレフィン系樹脂を含む樹脂組成物を主材料とするものが挙げられ、ノルボルネン系ポリマーを含む(主材料とする)ものが特に好ましい。 The constituent material of the core layer 2093 is a material whose refractive index changes by irradiation with active radiation (active energy ray, electron beam, X-ray or the like) or by further heating. Preferable examples of such materials include those containing a resin composition containing a cyclic olefin resin such as a benzocyclobutene polymer and a norbornene polymer (resin) as a main material, and include a norbornene polymer (mainly The material) is particularly preferred.
 このような材料で構成されたコア層2093は、曲げ等の変形に対する耐性に優れ、特に繰り返し湾曲変形した場合でも、コア部2094とクラッド部2095との剥離や、コア層2093と隣接する層(クラッド層2091、2092)との層間剥離が生じ難く、コア部2094内やクラッド部2095内にマイクロクラックが発生することも防止される。その結果、光導波路2009の光伝送性能が維持され、耐久性に優れた光導波路2009が得られる。 The core layer 2093 made of such a material is excellent in resistance to deformation such as bending, and even when it is repeatedly curved and deformed, the core layer 2094 and the clad portion 2095 are separated from each other, and the layer adjacent to the core layer 2093 ( The delamination with the clad layers 2091 and 2092) hardly occurs, and the occurrence of microcracks in the core portion 2094 and the clad portion 2095 is also prevented. As a result, the optical transmission performance of the optical waveguide 2009 is maintained, and the optical waveguide 2009 having excellent durability is obtained.
 また、コア層2093の構成材料には、例えば、酸化防止剤、屈折率調整剤、可塑剤、増粘剤、補強剤、増感剤、レベリング剤、消泡剤、密着助剤および難燃剤等の添加剤が含まれていてもよい。酸化防止剤の添加は、高温安定性の向上、耐候性の向上、光劣化の抑制という効果がある。このような酸化防止剤としては、例えば、モノフェノール系、ビスフェノール系、トリフェノール系等のフェノール系や、芳香族アミン系のものが挙げられる。また、可塑剤、増粘剤、補強剤の添加により、曲げに対する耐性をさらに増大させることもできる。 The constituent material of the core layer 2093 includes, for example, an antioxidant, a refractive index adjuster, a plasticizer, a thickener, a reinforcing agent, a sensitizer, a leveling agent, an antifoaming agent, an adhesion aid and a flame retardant. The additive may be contained. Addition of an antioxidant has the effect of improving high temperature stability, improving weather resistance, and suppressing light deterioration. Examples of such an antioxidant include phenols such as monophenols, bisphenols, and triphenols, and aromatic amines. Further, the resistance to bending can be further increased by adding a plasticizer, a thickener, and a reinforcing agent.
 前記酸化防止剤に代表される添加剤の含有率(2種以上の場合は合計)は、コア層2093の構成材料全体に対し、0.5~40重量%程度が好ましく、3~30重量%程度がより好ましい。この量が少なすぎると、添加剤の機能を十分に発揮することができず、量が多すぎると、添加剤の種類や特性によっては、コア部2094を伝送する光(伝送光2018)の透過率の低下、パターニング不良、屈折率不安定等を生じるおそれがある。 The content of additives typified by the antioxidant (the total in the case of two or more types) is preferably about 0.5 to 40% by weight, preferably 3 to 30% by weight, based on the entire constituent material of the core layer 2093. The degree is more preferred. If this amount is too small, the function of the additive cannot be exhibited sufficiently. If the amount is too large, depending on the type and characteristics of the additive, light transmitted through the core portion 2094 (transmitted light 2018) is transmitted. There is a risk of decreasing the rate, patterning failure, refractive index instability and the like.
 コア層2093の形成方法としては、塗布法が挙げられる。塗布法としては、コア層形成用組成物(ワニス等)を塗布し硬化(固化)させる方法、硬化性を有するモノマー組成物を塗布し硬化(固化)させる方法が挙げられる。また、塗布法以外の方法、例えば、別途製造されたシート材を接合する方法を採用することもできる。 An example of a method for forming the core layer 2093 is a coating method. Examples of the coating method include a method in which a core layer forming composition (varnish or the like) is applied and cured (solidified), and a method in which a curable monomer composition is applied and cured (solidified). In addition, a method other than the coating method, for example, a method of joining separately manufactured sheet materials may be employed.
 以上のようにして得られたコア層2093に対し、マスクを用いて活性放射線を選択的に照射し、所望の形状のコア部2094をパターニングする。 The core layer 2093 obtained as described above is selectively irradiated with actinic radiation using a mask to pattern the core portion 2094 having a desired shape.
 露光に用いる活性放射線としては、可視光、紫外光、赤外光、レーザ光等の活性エネルギー光線や電子線、X線等が挙げられる。電子線は、例えば50~2000KGy程度の照射量で照射することができる。 Examples of active radiation used for exposure include active energy rays such as visible light, ultraviolet light, infrared light, and laser light, electron beams, and X-rays. The electron beam can be irradiated at an irradiation dose of, for example, about 50 to 2000 KGy.
 コア層2093において、活性放射線が照射された部位は、その屈折率が変化し(コア層2093の材料により、屈折率が増大する場合と減少する場合とがある)、活性放射線が照射されなかった部位との間で屈折率の差が生じる。例えば、コア層2093の活性放射線が照射された部位がクラッド部2954となり、照射されなかった部位がコア部2094となる。また、この逆の場合もある。クラッド部2095の屈折率は、クラッド層2091、2092の屈折率とほぼ等しい。 In the core layer 2093, the portion irradiated with active radiation has its refractive index changed (the refractive index may increase or decrease depending on the material of the core layer 2093), and the active radiation was not irradiated. A difference in refractive index occurs between the parts. For example, the portion of the core layer 2093 that has been irradiated with active radiation becomes the cladding portion 2954, and the portion that has not been irradiated becomes the core portion 2094. The reverse is also true. The refractive index of the cladding part 2095 is substantially equal to the refractive index of the cladding layers 2091 and 2092.
 また、コア層2093に対し活性放射線を所定のパターンで照射した後、加熱することにより、コア部2094を形成する場合もある。この加熱工程を付加することにより、コア部2094とクラッド部2095との屈折率の差がより大きくなるので好ましい。なお、この原理等については、後に詳述する。 Also, the core portion 2094 may be formed by irradiating the core layer 2093 with actinic radiation in a predetermined pattern and then heating. By adding this heating step, the difference in refractive index between the core portion 2094 and the clad portion 2095 becomes larger, which is preferable. This principle will be described later in detail.
 形成されるコア部2094のパターン形状としては、特に限定されず、直線状、湾曲部を有する形状、異形、光路の分岐部、合流部または交差部を有する形状、集光部(幅等が減少している部分)または光拡散部(幅等が増大している部分)、あるいはこれらのうちの2以上を組み合わせた形状等、いかなるものでもよい。活性放射線の照射パターンの設定により、いかなる形状のコア部2094をも容易に形成することができる点が、本発明の特徴である。 The pattern shape of the core portion 2094 to be formed is not particularly limited, and is linear, a shape having a curved portion, an irregular shape, a shape having a branching portion of a light path, a merging portion or a crossing portion, a condensing portion (the width and the like are reduced) Or a light diffusing part (a part where the width or the like is increased), or a combination of two or more of these. A feature of the present invention is that the core portion 2094 having any shape can be easily formed by setting the irradiation pattern of actinic radiation.
 光導波路2009の各部の構成材料およびコア部2094の形成方法等については、後に詳述する。 The constituent material of each part of the optical waveguide 2009 and the method of forming the core part 2094 will be described in detail later.
 このような光導波路2009は、コア部2094の光路を屈曲させる光路変換部2096を有している。この光路変換部2096は、伝送光(発光部2101から出射された光)2018の少なくとも一部を反射する反射面(ミラー)2961で構成されている。この反射面2961は、発光部2101の真下の位置に設けられる。 Such an optical waveguide 2009 has an optical path conversion unit 2096 that bends the optical path of the core unit 2094. The optical path conversion unit 2096 includes a reflection surface (mirror) 2961 that reflects at least a part of transmission light (light emitted from the light emitting unit 2101) 2018. The reflection surface 2961 is provided at a position directly below the light emitting unit 2101.
 反射面2961は、光導波路2009の光路、すなわちコア部2094の長手方向(図32および33中のX方向、図34中の前後方向)に対しほぼ45°傾斜しており、発光部2101から発せられた伝送光2018の大半(例えば90%以上)を反射する機能を有している。 The reflecting surface 2961 is inclined by approximately 45 ° with respect to the optical path of the optical waveguide 2009, that is, the longitudinal direction of the core portion 2094 (the X direction in FIGS. 32 and 33, the front-rear direction in FIG. 34), and is emitted from the light emitting portion 2101. It has a function of reflecting most of the transmitted light 2018 (for example, 90% or more).
 このような光路変換部2096は、光導波路2009の一部を除去(欠損)することにより例えば断面が三角形の凹部を形成し(図33参照)、その1つの傾斜面を反射面2961として用いるものである。反射面2961は、例えば多層光学薄膜や金属薄膜(例えばアルミ蒸着膜)のような反射膜あるいは反射増加膜を有していてもよい。光導波路2009の一部を除去する方法としては、切削、レーザ光の照射等の方法が挙げられる。 Such an optical path conversion unit 2096 is formed by removing (deleting) a part of the optical waveguide 2009 to form, for example, a concave portion having a triangular cross section (see FIG. 33), and using one inclined surface as the reflective surface 2961. It is. The reflection surface 2961 may have a reflection film or a reflection enhancement film such as a multilayer optical thin film or a metal thin film (for example, an aluminum vapor deposition film). Examples of a method for removing a part of the optical waveguide 2009 include a method such as cutting and laser light irradiation.
 また、図示しないが、光路変換部2096の凹部には、充填材、特にコア部2094と屈折率の異なる充填材(封止材)、金属材料による充填材(封止材)が充填されていてもよい。なお、反射面2961は、全反射するものに限らず、例えば、ハーフミラー、ダイクロイックミラー等のように、伝送光2018の一部を反射し、残部を透過するようなものでもよい。この場合には、光路変換部2096は、光路を2方向(図33中左方向と下方向)に分離するビームスプリッターとしての機能を有する。このような反射面2961の光学的特性は、伝送光2018の光路設計に応じで適宜設定することができる。 Although not shown, the concave portion of the optical path changing unit 2096 is filled with a filler, particularly a filler (sealing material) having a refractive index different from that of the core 2094, and a filler (sealing material) made of a metal material. Also good. Note that the reflection surface 2961 is not limited to the total reflection, and may be a part that reflects a part of the transmission light 2018 and transmits the remaining part, such as a half mirror or a dichroic mirror. In this case, the optical path conversion unit 2096 has a function as a beam splitter that separates the optical path in two directions (left direction and downward direction in FIG. 33). Such optical characteristics of the reflecting surface 2961 can be appropriately set according to the optical path design of the transmission light 2018.
 なお、図示の構成では、反射面2961(光路変換部2096)は、クラッド層2091とコア層2093とクラッド層2092とにまたがって形成されているが、これに限らず、例えばコア層2093内のみに形成されていてもよい。 In the configuration shown in the figure, the reflection surface 2961 (optical path conversion unit 2096) is formed across the clad layer 2091, the core layer 2093, and the clad layer 2092. However, the present invention is not limited to this, and for example, only in the core layer 2093. It may be formed.
 コア部2094の形成および光路変換部2096の形成は、基板2002に後述する発光素子2010等を搭載(位置決めして設置)する前でも後でもよく、いずれの場合でもその形成位置を容易かつ正確に把握することができる。すなわち、後述する位置決め手段2033により基板2002に対する発光部2101の位置が特定されているため、基板2002上の光導波路2009にコア部2094や光路変換部2096を形成する際には、コア部2094の形成位置(露光箇所)や光路変換部2096の形成位置を発光部2101に対応する位置(発光部2101の真下の位置)に容易に一致させることができる。 The formation of the core portion 2094 and the formation of the optical path conversion portion 2096 may be performed before or after mounting (positioning and setting) a light emitting element 2010 or the like to be described later on the substrate 2002. In any case, the formation position is easily and accurately. I can grasp it. That is, since the position of the light emitting portion 2101 with respect to the substrate 2002 is specified by the positioning means 2033 described later, when forming the core portion 2094 and the optical path changing portion 2096 in the optical waveguide 2009 on the substrate 2002, the core portion 2094 The formation position (exposure location) and the formation position of the optical path conversion unit 2096 can be easily matched with the position corresponding to the light emitting unit 2101 (the position directly below the light emitting unit 2101).
 基板2002の上部には、基板2002の上面および少なくとも1つの側面に開放する2つの凹部2003および2004が形成されている。これらの凹部2003および2004には、それぞれ、発光素子2010および電子回路素子2012が挿入(設置)されている。 In the upper part of the substrate 2002, two recesses 2003 and 2004 that open to the upper surface and at least one side surface of the substrate 2002 are formed. A light emitting element 2010 and an electronic circuit element 2012 are inserted (installed) into the recesses 2003 and 2004, respectively.
 発光素子2010は、その下面側に発光部2101を有し、上面側に一対の端子2103、2105を有している(さらに他の端子を有していてもよい)。両端子2103、2105間に通電がなされると、発光部2101が発光し、伝送光2018が出射される。 The light emitting element 2010 has a light emitting part 2101 on the lower surface side and a pair of terminals 2103 and 2105 on the upper surface side (may further have other terminals). When energization is performed between both terminals 2103 and 2105, the light emitting unit 2101 emits light and the transmission light 2018 is emitted.
 なお、発光素子2010における発光部2101は、1つの発光点で構成されているものの他、発光点が複数個集合したものでもよい。発光点が複数個集合したものとしては、例えば、発光点が列状(例えば発光点が1×4個、1×12個)または行列状(例えば発光点がn×m個:n、mは2以上の整数)に配置されたものや、複数の発光点がランダム(不規則)に配置されたもの等が挙げられる。後述する受光素子における受光部についても同様である。 Note that the light-emitting portion 2101 in the light-emitting element 2010 may be a single light-emitting point or a plurality of light-emitting points. As a set of a plurality of light emitting points, for example, the light emitting points are arranged in a row (for example, 1 × 4, 1 × 12) or in a matrix (for example, n × m: n, m And those in which a plurality of light emitting points are arranged randomly (irregularly). The same applies to a light receiving portion in a light receiving element to be described later.
 発光素子2010は、その発光部2101が凹部2003の底面(下面)2030に接合(当接)するようにして凹部2003内に設置されている。なお、発光部2101は、図32中上下方向に沿って複数個配置されていてもよい。 The light emitting element 2010 is installed in the recess 2003 such that the light emitting portion 2101 is joined (contacted) to the bottom surface (lower surface) 2030 of the recess 2003. Note that a plurality of light emitting units 2101 may be arranged along the vertical direction in FIG.
 電子回路素子2012は、例えば半導体素子(半導体チップ)で構成されている。この電子回路素子2012は、その上面側に、複数の端子(端子2123、2125)を有している。なお、電子回路素子2012は、端子2123、2125以外にさらに他の端子を有していてもよい。 The electronic circuit element 2012 is composed of, for example, a semiconductor element (semiconductor chip). The electronic circuit element 2012 has a plurality of terminals (terminals 2123, 2125) on the upper surface side. Note that the electronic circuit element 2012 may have other terminals in addition to the terminals 2123 and 2125.
 電子回路素子2012の機能は特に限定されないが、一例として、発光素子2010を駆動するための回路を構成するものが挙げられる。また、後述するように、受光素子を有する場合、該受光素子からの出力信号を処理(例えば増幅)する機能を有するものが挙げられる。
光導波路構造体2001が発光素子2010と受光素子の双方を有する場合には、電子回路素子2012は、前記の両方の機能を有するものとすることができる。
Although the function of the electronic circuit element 2012 is not particularly limited, an example is one that configures a circuit for driving the light emitting element 2010. Further, as will be described later, when a light receiving element is provided, one having a function of processing (for example, amplifying) an output signal from the light receiving element is exemplified.
When the optical waveguide structure 2001 includes both the light emitting element 2010 and the light receiving element, the electronic circuit element 2012 can have both of the functions described above.
 なお、本明細書では、発光素子2010、受光素子、電子回路素子2012、その他各種素子、またはこれらのうちの2以上を複合した素子を、「電気素子」または単に「素子」と言う。 In this specification, a light emitting element 2010, a light receiving element, an electronic circuit element 2012, other various elements, or an element obtained by combining two or more of these elements is referred to as an “electric element” or simply “element”.
 また、発光素子2010、受光素子および電子回路素子2012は、それぞれ別の素子で構成する場合に限らず、これらのうちの少なくとも2つを連結または一体化(1つのチップ)した構成(複合素子)であってもよい。 In addition, the light emitting element 2010, the light receiving element, and the electronic circuit element 2012 are not limited to being configured as separate elements, but a configuration (composite element) in which at least two of them are connected or integrated (one chip). It may be.
 基板2002には、前記電気素子(発光素子2010および電子回路素子2012)の設置位置、特に基板2002に対する位置を定める位置決め手段2033、2043が設けられている。以下、この位置決め手段2033、2043について順次説明する。 The substrate 2002 is provided with positioning means 2033 and 2043 for determining an installation position of the electric elements (light emitting element 2010 and electronic circuit element 2012), particularly a position with respect to the substrate 2002. Hereinafter, the positioning means 2033 and 2043 will be sequentially described.
 基板2002の上部には、基板2002の上面に開放する凹部2003および2004が形成されている。凹部2003は、図32中右方および下方に開放しており、凹部2003の縁部、すなわち、図32中左方および上方に、基板2002の上面との段差を有する。この段差のうち、図32中左方には当て付け面2031が形成され、図32中上方には当て付け面2032が形成されている。当て付け面2031および2032は、それぞれ、凹部2003の底面2030に対し垂直に立ち上がっており、当て付け面2031、2032同士も直角である。この当て付け面2031および2032により、位置決め手段(発光素子用)2033が構成される。なお、位置決め手段2033には、底面2030が含まれていてもよく、これにより、基板2002の厚さ方向の位置決めも行うことができる。 In the upper part of the substrate 2002, recesses 2003 and 2004 that are opened on the upper surface of the substrate 2002 are formed. The recess 2003 opens to the right and below in FIG. 32, and has a step with the upper surface of the substrate 2002 at the edge of the recess 2003, that is, to the left and above in FIG. Of these steps, an abutting surface 2031 is formed on the left side in FIG. 32, and an abutting surface 2032 is formed on the upper side in FIG. 32. The abutting surfaces 2031 and 2032 stand up perpendicularly to the bottom surface 2030 of the recess 2003, and the abutting surfaces 2031 and 2032 are also perpendicular to each other. Positioning means (for light emitting element) 2033 is constituted by the abutting surfaces 2031 and 2032. Note that the positioning means 2033 may include a bottom surface 2030, whereby the substrate 2002 can be positioned in the thickness direction.
 発光素子2010は、その下面を凹部2003の底面2030に当接するとともに、発光素子2010の隣り合う(直交する)2つの側面をそれぞれ当て付け面2031および2032に当接(押接)することにより凹部2003内に設置される。これにより、発光素子2010は、当て付け面2031によりX方向の位置が規制され、かつ、当て付け面2032によりY方向の位置が規制される。すなわち、発光素子2010は、X方向およびY方向の双方(2次元方向)に対する位置決めがなされる。このように、発光素子2010の基板2002に対する面方向(2次元方向)の位置決めを確実に行うことができ、しかも、その操作は、固定された基板2002に対し発光素子2010を凹部2003に接近させ、図32中左上方向に移動(相対的に移動)し、当て付け面2031および2032にそれぞれ当接させればよいため、その位置決め操作を極めて簡単に行うことができる。 The light emitting element 2010 has a lower surface abutted against the bottom surface 2030 of the recess 2003 and two adjacent (orthogonal) side surfaces of the light emitting element 2010 abutted (pressed) against the contact surfaces 2031 and 2032 respectively. Installed in 2003. Thereby, the position of the light emitting element 2010 in the X direction is regulated by the abutting surface 2031, and the position in the Y direction is regulated by the abutting surface 2032. That is, the light emitting element 2010 is positioned in both the X direction and the Y direction (two-dimensional direction). In this way, positioning of the light emitting element 2010 in the plane direction (two-dimensional direction) with respect to the substrate 2002 can be reliably performed, and the operation allows the light emitting element 2010 to approach the recess 2003 with respect to the fixed substrate 2002. 32, it is only necessary to move (relatively move) in the upper left direction in FIG. 32 and bring it into contact with the abutting surfaces 2031 and 2032 respectively, so that the positioning operation can be performed very easily.
 特に、コア部2094の長手方向(X方向)のみならず、コア部2094の幅方向(Y方向)にも位置決めがなされるため、例えばコア部2094の幅が小さい場合(微細な光回路)でも、発光素子2010の発光部2101の位置をコア部2094に正確に重ねる(平面視で)ことができる。 In particular, since positioning is performed not only in the longitudinal direction (X direction) of the core portion 2094 but also in the width direction (Y direction) of the core portion 2094, for example, even when the width of the core portion 2094 is small (fine optical circuit). In addition, the position of the light emitting portion 2101 of the light emitting element 2010 can be accurately overlaid on the core portion 2094 (in plan view).
 このような位置決め手段2033により、発光素子2010(発光部2101)の基板2002に対する位置が定められるが、これは、基板2002の下面に形成された光導波路2009のコア部2094に対する位置を定めることでもあり、さらに、光路変換部2096(反射面2961)は、コア部2094に対する位置関係が規定されているため、光路変換部2096(反射面2961)に対する位置を定めることでもある。 Such positioning means 2033 determines the position of the light emitting element 2010 (light emitting portion 2101) with respect to the substrate 2002. This is also possible by determining the position of the optical waveguide 2009 formed on the lower surface of the substrate 2002 with respect to the core portion 2094. In addition, since the optical path conversion unit 2096 (reflection surface 2961) has a positional relationship with the core unit 2094, the position relative to the optical path conversion unit 2096 (reflection surface 2961) is also determined.
 すなわち、位置決め手段2033は、図32に示すように、平面視で、発光素子2010の発光部2101の位置が光路変換部2096(反射面2961)の位置と重なるように位置決めをする。これにより、発光部2101の真下に反射面2961が位置することとなり、設計通りの光路を正確に形成することができる。 That is, as shown in FIG. 32, the positioning unit 2033 performs positioning so that the position of the light emitting unit 2101 of the light emitting element 2010 overlaps the position of the optical path conversion unit 2096 (reflecting surface 2961) in plan view. As a result, the reflecting surface 2961 is positioned directly below the light emitting unit 2101, and the designed optical path can be accurately formed.
 凹部2003の深さは、発光素子2010の厚さとほぼ等しいかまたは発光素子2010の厚さより大きいのが好ましい。これにより、発光素子2010は、その上部が凹部2003から突出することなく凹部2003内に収納される。 The depth of the recess 2003 is preferably substantially equal to the thickness of the light emitting element 2010 or larger than the thickness of the light emitting element 2010. As a result, the upper part of the light emitting element 2010 is accommodated in the recess 2003 without protruding from the recess 2003.
 凹部2004は、図32中左方および下方に開放しており、凹部2003の縁部、すなわち、図32中左右および上方に、基板2002の上面との段差を有する。この段差のうち、図32中右方には当て付け面2041が形成され、図32中上方には当て付け面2042が形成されている。当て付け面2041および2042は、それぞれ、凹部2004の底面2040に対し垂直に立ち上がっており、当て付け面2041、2042同士も直角である。この当て付け面2041および2042により、電子回路素子2012の位置決め手段(電子回路素子用)2043が構成される。なお、位置決め手段2043には、底面2040が含まれていてもよく、これにより、基板2002の厚さ方向の位置決めも行うことができる。 The recess 2004 is open to the left and below in FIG. 32, and has a step with the upper surface of the substrate 2002 at the edge of the recess 2003, that is, on the left and right and above in FIG. Of these steps, an abutment surface 2041 is formed on the right side in FIG. 32, and an abutment surface 2042 is formed on the upper side in FIG. The abutting surfaces 2041 and 2042 stand up perpendicularly to the bottom surface 2040 of the recess 2004, and the abutting surfaces 2041 and 2042 are also perpendicular to each other. The abutting surfaces 2041 and 2042 constitute positioning means (for electronic circuit element) 2043 of the electronic circuit element 2012. Note that the positioning means 2043 may include a bottom surface 2040, whereby the substrate 2002 can be positioned in the thickness direction.
 電子回路素子2012は、その下面を凹部2004の底面2040に当接するとともに、電子回路素子2012の隣り合う(直交する)2つの側面をそれぞれ当て付け面2041および2042に当接(押接)することにより凹部2004内に設置される。これにより、電子回路素子2012は、当て付け面2041によりX方向の位置が規制され、かつ、当て付け面2042によりY方向の位置が規制される。すなわち、電子回路素子2012は、X方向およびY方向の双方(2次元方向)に対する位置決めがなされる。このように、電子回路素子2012の基板2002に対する面方向(2次元方向)の位置決めを確実に行うことができ、しかも、その操作は、固定された基板2002に対し電子回路素子2012を凹部2004に接近させ、図32中右上方向に移動(相対的に移動)し、当て付け面2041および2042にそれぞれ当接させればよいため、その位置決め操作を極めて簡単に行うことができる。 The electronic circuit element 2012 has its lower surface in contact with the bottom surface 2040 of the recess 2004, and two adjacent (orthogonal) side surfaces of the electronic circuit element 2012 are in contact (pressing contact) with the contact surfaces 2041 and 2042, respectively. Is installed in the recess 2004. Accordingly, the position of the electronic circuit element 2012 in the X direction is regulated by the abutting surface 2041 and the position of the electronic circuit element 2012 in the Y direction is regulated by the abutting surface 2042. That is, the electronic circuit element 2012 is positioned in both the X direction and the Y direction (two-dimensional direction). As described above, the electronic circuit element 2012 can be reliably positioned in the plane direction (two-dimensional direction) with respect to the substrate 2002, and the operation can be performed by placing the electronic circuit element 2012 in the recess 2004 with respect to the fixed substrate 2002. It is only necessary to make them approach, move (relatively move) in the upper right direction in FIG. 32, and abut against the abutting surfaces 2041 and 2042, respectively, so that the positioning operation can be performed very easily.
 このような位置決め手段2043により、電子回路素子2012(端子2123、2125)の基板2002に対する位置が定められるが、これは、位置決め手段2033により位置決めされている発光素子2010に対する位置を定めることでもあり、さらに、光路変換部2096(反射面2961)に対する位置を定めることでもある。 Such positioning means 2043 determines the position of the electronic circuit element 2012 (terminals 2123 and 2125) with respect to the substrate 2002, which also determines the position with respect to the light emitting element 2010 positioned by the positioning means 2033. Furthermore, the position relative to the optical path conversion unit 2096 (reflection surface 2961) is also determined.
 このように、電子回路素子2012と発光素子2010との位置関係が正確に定められることにより、後述する導体層2005を形成(パターンニング)する際、特に電子回路素子2012と発光素子2010との間に架け渡される部位2052を形成する際に、これをより正確な形状および位置に形成することができる。 As described above, when the positional relationship between the electronic circuit element 2012 and the light emitting element 2010 is accurately determined, when the conductor layer 2005 described later is formed (patterning), particularly between the electronic circuit element 2012 and the light emitting element 2010. When forming the portion 2052 spanned over, it can be formed in a more accurate shape and position.
 凹部2004の深さは、電子回路素子2012の厚さとほぼ等しいかまたは電子回路素子2012の厚さより大きいのが好ましい。これにより、電子回路素子2012は、その上部が凹部2004から突出することなく凹部2004内に収納される。 The depth of the concave portion 2004 is preferably substantially equal to the thickness of the electronic circuit element 2012 or larger than the thickness of the electronic circuit element 2012. Thus, the electronic circuit element 2012 is accommodated in the recess 2004 without the upper portion protruding from the recess 2004.
 なお、本実施形態における位置決め手段2033、2043は、電気素子の下面が底面2030、2040にも当接するため、基板2002の厚さ方向(X方向およびY方向のそれぞれに直交する方向)に対する位置決めも行う。従って、本実施形態における位置決め手段は、正確には、3次元方向の位置決めを行うことができるものである。 Note that the positioning means 2033 and 2043 in the present embodiment also perform positioning in the thickness direction of the substrate 2002 (directions orthogonal to the X direction and the Y direction) because the lower surface of the electric element also contacts the bottom surfaces 2030 and 2040. Do. Therefore, the positioning means in the present embodiment can accurately perform positioning in the three-dimensional direction.
 また、本実施形態における位置決め手段は、基板2002に直接形成されたもの(当て付け面2031、2032、2041、2042)であるが、これに限らず、基板2002に対し不動のもの、特に、基板2002に対し別部材を固定的に設置したものでもよい。この例としては、基板2002に固定され、電気素子が当接し得る当て付け面を有する位置決め部材が挙げられる。 Further, the positioning means in the present embodiment is one directly formed on the substrate 2002 (the abutting surfaces 2031, 2032, 2041, 2042), but is not limited to this, and is not stationary with respect to the substrate 2002, in particular, the substrate Another member may be fixedly installed with respect to 2002. An example of this is a positioning member that is fixed to the substrate 2002 and has an abutment surface on which an electrical element can come into contact.
 また、本発明において、位置決め手段は、電気素子をX方向およびY方向のいずれか一方の方向にのみ位置決めするものであってもよい。この場合、基板2002の厚さ方向の位置決めは、行っても行わなくてもよい。 In the present invention, the positioning means may position the electric element only in one of the X direction and the Y direction. In this case, positioning of the substrate 2002 in the thickness direction may or may not be performed.
 基板2002の上面には、導体層(金属層)2005が形成されている。この導体層2005は、所定の形状にパターンニングされて、所望の電気配線または電気回路を構成している。 A conductor layer (metal layer) 2005 is formed on the upper surface of the substrate 2002. The conductor layer 2005 is patterned into a predetermined shape to form a desired electrical wiring or electrical circuit.
 本実施形態では、導体層2005は、部位2051、2052および2053を有している。部位2051は、基板2002の上面と電子回路素子2012の上面とにまたがって形成され、端子2125に電気的に接続されている。部位2052は、基板2002の上面と発光素子2010の上面と電子回路素子2012の上面とにまたがって形成され、端子2103および2125にそれぞれ電気的に接続されている。部位2053は、基板2002の上面と発光素子2010の上面とにまたがって形成され、端子2105に電気的に接続されている。部位2051または2053は、例えばグランドに接続される。 In this embodiment, the conductor layer 2005 has portions 2051, 2052, and 2053. The part 2051 is formed across the upper surface of the substrate 2002 and the upper surface of the electronic circuit element 2012 and is electrically connected to the terminal 2125. The region 2052 is formed across the upper surface of the substrate 2002, the upper surface of the light emitting element 2010, and the upper surface of the electronic circuit element 2012, and is electrically connected to the terminals 2103 and 2125, respectively. The region 2053 is formed across the upper surface of the substrate 2002 and the upper surface of the light-emitting element 2010 and is electrically connected to the terminal 2105. The part 2051 or 2053 is connected to, for example, the ground.
 導体層2005の構成材料としては、それぞれ、例えば、銅、銅系合金、アルミニウム、アルミニウム系合金、金、金系合金、半田等の各種金属材料が挙げられる。また、基板2002の構成材料によっては(例えば半導体材料による基板2002)、タングステン、タングステン合金等を用いることもできる。 Examples of the constituent material of the conductor layer 2005 include various metal materials such as copper, a copper alloy, aluminum, an aluminum alloy, gold, a gold alloy, and solder. Depending on the constituent material of the substrate 2002 (for example, a substrate 2002 made of a semiconductor material), tungsten, a tungsten alloy, or the like can be used.
 導体層2005の厚さは、特に限定されないが、通常、2~200μm程度が好ましく、3~120μm程度がより好ましく、5~70μm程度がさらに好ましい。 The thickness of the conductor layer 2005 is not particularly limited, but is usually preferably about 2 to 200 μm, more preferably about 3 to 120 μm, and further preferably about 5 to 70 μm.
 導体層2005は、例えば、金属箔の接合(接着)、金属メッキ、蒸着、スパッタリング等の方法により形成されたものである。導体層2005へのパターニングは、例えばエッチング、印刷、マスキング等の方法を用いることができる。 The conductor layer 2005 is formed by a method such as bonding (adhesion) of metal foil, metal plating, vapor deposition, sputtering, or the like. For example, etching, printing, masking, or the like can be used for patterning on the conductor layer 2005.
 導体層2005の構成材料として、半導体材料に拡散し易い金属、例えば銅を用いる(含む)場合には、半導体材料(基板2を半導体材料で構成した場合)との接合部は、例えばチタニアやタンタルなどで構成されたバリア層(図示せず)を介して形成することが好ましい。 When a metal that easily diffuses into the semiconductor material, such as copper, is used (contained) as the constituent material of the conductor layer 2005, the junction with the semiconductor material (when the substrate 2 is made of a semiconductor material) is, for example, titania or tantalum. It is preferable to form via a barrier layer (not shown) composed of, for example.
 また、導体層2005の構成材料として、半導体材料と密着性の悪い金属、例えばタングステンを用いる場合は、半導体材料(基板2002を半導体材料で構成した場合)との接合部は、密着力を向上させることができる密着層(図示せず)を介して形成することが好ましい。 In addition, when a metal having poor adhesion to a semiconductor material, such as tungsten, is used as a constituent material of the conductor layer 2005, a bonding portion with the semiconductor material (when the substrate 2002 is formed of a semiconductor material) improves adhesion. It is preferable to form it through an adhesive layer (not shown) that can be used.
 なお、導体層2005のパターンは、図32~図34に示すものに限らず、いかなる形状、配置のものでもよい。 Note that the pattern of the conductor layer 2005 is not limited to that shown in FIGS. 32 to 34, and may have any shape and arrangement.
 また、導体層2005の形成箇所は、図示のような光導波路構造体2001の上部(上面)に限らず、例えば、光導波路2009の下面や、光導波路構造体2001の内部(例えば光導波路2009と基板2002との間)に同様の導体層(電気配線または電気回路)が形成されていてもよい。 In addition, the formation position of the conductor layer 2005 is not limited to the upper portion (upper surface) of the optical waveguide structure 2001 as shown in the figure, but for example, the lower surface of the optical waveguide 2009 or the inside of the optical waveguide structure 2001 (for example, the optical waveguide 2009 and the like). A similar conductor layer (electrical wiring or electric circuit) may be formed between the substrate 2002 and the substrate.
 本実施形態の光導波路構造体2001では、電子回路素子2012の作動により発光素子2010の端子2103、2105間へ通電がなされると、発光部2101が点灯し、図33中下方へ向かって発せられた伝送光2018は、基板2002の透光部2024およびクラッド層2092を順次透過し、反射面2961で反射されて90°屈曲し、光導波路2009のコア部2094に入り、クラッド部(クラッド層2091、2092および側方(図33中左右)のクラッド部2095)との界面で反射を繰り返しながら、コア部2094内をその長手方向(図32および図33中左方向)に沿って進む。 In the optical waveguide structure 2001 of the present embodiment, when the electronic circuit element 2012 is operated to energize between the terminals 2103 and 2105 of the light emitting element 2010, the light emitting unit 2101 is turned on and emitted downward in FIG. The transmitted light 2018 is sequentially transmitted through the light transmitting portion 2024 and the cladding layer 2092 of the substrate 2002, reflected by the reflecting surface 2961, bent by 90 °, enters the core portion 2094 of the optical waveguide 2009, and enters the cladding portion (cladding layer 2091). , 2092 and the side (left and right in FIG. 33) clad portion 2095), and repeats reflection in the core portion 2094 along the longitudinal direction (left direction in FIGS. 32 and 33).
<第20実施形態:図35>
 図35には、本発明の光導波路構造体2001の第20実施形態が示されている。以下、この光導波路構造体2001について説明するが、前記第19実施形態と同様の事項(構成、作動等)についてはその説明を省略し、相違点を中心に説明する。
<20th Embodiment: FIG. 35>
FIG. 35 shows a twentieth embodiment of an optical waveguide structure 2001 of the present invention. Hereinafter, the optical waveguide structure 2001 will be described, but the description of the same matters (configuration, operation, etc.) as those in the nineteenth embodiment will be omitted, and differences will be mainly described.
 本実施形態の光導波路構造体2001は、位置決め手段の構成が異なり、それ以外は前記第19実施形態と同様である。すなわち、本実施形態では、基板2002の上面は平坦面をなしており、電気素子の設置位置を定める位置決め手段は、基板2002に対し固定的に設置された位置決め部材2006で構成されている。 The optical waveguide structure 2001 of the present embodiment is the same as the nineteenth embodiment except for the configuration of the positioning means. In other words, in the present embodiment, the upper surface of the substrate 2002 is a flat surface, and the positioning means for determining the installation position of the electric element is composed of the positioning member 2006 fixedly installed on the substrate 2002.
 この位置決め部材2006は、その厚さが発光素子2010および/または電子回路素子2012の厚さとほぼ同等かまたはそれより薄い板材(またはシート材)で構成され、基板2002の上面に接着層2007を介して接合(固着)されている。 The positioning member 2006 is formed of a plate material (or a sheet material) whose thickness is approximately equal to or thinner than the thickness of the light emitting element 2010 and / or the electronic circuit element 2012, and an adhesive layer 2007 is provided on the upper surface of the substrate 2002. Are joined (fixed).
 図35の上部に示すように、位置決め部材2006の平面形状は、ほぼT字状をなしており、発光素子2010の隣り合う(直交する)2つの側面(角部)が当接するL字状の当て付け面2061と、電子回路素子2012の隣り合う(直交する)2つの側面(角部)が当接するL字状の当て付け面2062とを有している。 As shown in the upper part of FIG. 35, the planar shape of the positioning member 2006 is substantially T-shaped, and is an L-shape with which two adjacent (orthogonal) side surfaces (corner portions) of the light emitting element 2010 abut. The abutting surface 2061 and an L-shaped abutting surface 2062 with which two adjacent (orthogonal) side surfaces (corner portions) of the electronic circuit element 2012 abut are provided.
 発光素子2010は、その下面が基板2002の上面に当接するとともに、発光素子2010の隣り合う(直交する)2つの側面が当て付け面2061に当接(押接)することにより、X方向およびY方向の位置がそれぞれ規制される。すなわち、発光素子2010は、X方向およびY方向の双方(2次元方向)に対する位置決めがなされる。 The lower surface of the light emitting element 2010 is in contact with the upper surface of the substrate 2002, and two adjacent (orthogonal) side surfaces of the light emitting element 2010 are in contact (pressing contact) with the contact surface 2061, so that the X direction and Y Each direction position is regulated. That is, the light emitting element 2010 is positioned in both the X direction and the Y direction (two-dimensional direction).
 同様に、電子回路素子2012は、その下面が基板2002の上面に当接するとともに、電子回路素子2012の隣り合う(直交する)2つの側面が当て付け面2062に当接(押接)することにより、X方向およびY方向の位置がそれぞれ規制される。すなわち、電子回路素子2012は、X方向およびY方向の双方(2次元方向)に対する位置決めがなされる。 Similarly, the lower surface of the electronic circuit element 2012 is in contact with the upper surface of the substrate 2002, and two adjacent (orthogonal) side surfaces of the electronic circuit element 2012 are in contact (pressing contact) with the abutting surface 2062. The positions in the X direction and the Y direction are restricted. That is, the electronic circuit element 2012 is positioned in both the X direction and the Y direction (two-dimensional direction).
 このような位置決め部材2006を用いることにより、1つの位置決め部材2006で発光素子2010と電子回路素子2012の双方を同時に位置決めすることができるという利点がある。また、基板2002に対する位置決め部材2006の固定位置を調整または変更すること、あるいは、形状や寸法の異なる位置決め部材2006を選択し、基板2002に固定することにより、電気素子(発光素子2010および/または電子回路素子2012)の設置位置を自由に設定または変更することができるという利点もある。 By using such a positioning member 2006, there is an advantage that both the light emitting element 2010 and the electronic circuit element 2012 can be simultaneously positioned by one positioning member 2006. Further, by adjusting or changing the fixing position of the positioning member 2006 with respect to the substrate 2002, or selecting the positioning member 2006 having a different shape or size and fixing the positioning member 2006 to the substrate 2002, the electric element (the light emitting element 2010 and / or the electronic device) is selected. There is also an advantage that the installation position of the circuit element 2012) can be freely set or changed.
 なお、接着層2007としては、前記第19実施形態で述べた接着層と同様のものを用いることができる。 As the adhesive layer 2007, the same adhesive layer as described in the nineteenth embodiment can be used.
 本実施形態において、位置決め部材2006の平面形状や厚さは、図示のものに限定されず、いかなる形状、寸法のものでもよい。また、本実施形態では、1つの位置決め部材2006で発光素子2010と電子回路素子2012の双方の位置決めを行っているが、これに限らず、発光素子2010および電子回路素子2012は、それぞれ異なる位置決め部材により位置決めされていてもよく、またそれらの位置決めの方向も、特に限定されない。 In the present embodiment, the planar shape and thickness of the positioning member 2006 are not limited to those shown in the drawings, and may be any shape and size. In this embodiment, both the light emitting element 2010 and the electronic circuit element 2012 are positioned by one positioning member 2006. However, the present invention is not limited thereto, and the light emitting element 2010 and the electronic circuit element 2012 are different positioning members. And the direction of the positioning is not particularly limited.
<第21実施形態:図36>
 図36には、本発明の光導波路構造体2001の第21実施形態が示されている。以下、この光導波路構造体2001について説明するが、前記第19実施形態と同様の事項についてはその説明を省略し、相違点を中心に説明する。
<21st Embodiment: FIG. 36>
FIG. 36 shows a twenty-first embodiment of an optical waveguide structure 2001 of the present invention. Hereinafter, the optical waveguide structure 2001 will be described, but the description of the same matters as in the nineteenth embodiment will be omitted, and differences will be mainly described.
 本実施形態の光導波路構造体2001は、基板2002の構成が異なり、それ以外は前記第19実施形態と同様である。すなわち、基板2002は、伝送光2018の透過性を十分に有さないものでもよく、基板2002における発光部2101の真下の位置には、基板2002を貫通する貫通孔2025が形成されている。この貫通孔2025は、伝送光2018を透光する透光部2024を構成するものである。すなわち、この貫通孔2025が、伝送光を基板2002の厚さ方向に導光(伝送)する導光路となる。 The optical waveguide structure 2001 of the present embodiment is the same as the nineteenth embodiment except for the configuration of the substrate 2002. That is, the substrate 2002 may not have sufficient transmission light 2018, and a through hole 2025 penetrating the substrate 2002 is formed at a position directly below the light emitting portion 2101 in the substrate 2002. The through hole 2025 constitutes a light transmitting portion 2024 that transmits the transmission light 2018. That is, the through hole 2025 serves as a light guide for guiding (transmitting) transmission light in the thickness direction of the substrate 2002.
 貫通孔2025の横断面形状は、特に限定されず、例えば、円形、楕円形、矩形(四角形)、六角形、その他多角形、異形等、いかなる形状でもよい。 The cross-sectional shape of the through-hole 2025 is not particularly limited, and may be any shape such as, for example, a circle, an ellipse, a rectangle (square), a hexagon, other polygons, and an irregular shape.
 なお、図示されていないが、貫通孔2025の内部(全部または一部)に、伝送光の透過率が80%以上、好ましくは90%以上、より好ましくは95%以上の材料による充填材が充填されていてもよい。この充填材は、コア部2094、クラッド部2095、クラッド層2091またはクラッド層2092のいずれかの構成材料と同様の材料で構成されていてもよい。 Although not shown, the inside (all or a part) of the through-hole 2025 is filled with a filler made of a material having a transmission light transmittance of 80% or more, preferably 90% or more, more preferably 95% or more. May be. This filler may be made of the same material as the constituent material of any of the core portion 2094, the clad portion 2095, the clad layer 2091, and the clad layer 2092.
 また、図示されていないが、貫通孔2025の内面等に導電材料による層を形成し、これにより、光伝送機能の他に、電気信号を伝送する機能を持たせてもよい。 Although not shown, a layer made of a conductive material may be formed on the inner surface of the through hole 2025 and the like, thereby providing a function of transmitting an electrical signal in addition to the light transmission function.
 本実施形態の光導波路構造体2001では、電子回路素子2012の作動により発光素子2010の端子2103、2105間へ通電がなされると、発光部2101が点灯し、図36中下方へ向かって発せられた伝送光2018は、基板2002の貫通孔2025内を通り、クラッド層2092を透過し、反射面2961で反射されて90°屈曲し、光導波路2009のコア部2094に入り、クラッド部(クラッド層2091、2092および側方(図33中左右)のクラッド部2095)との界面で反射を繰り返しながら、コア部2094内をその長手方向(図36中左方向)に沿って進む。 In the optical waveguide structure 2001 of this embodiment, when the electronic circuit element 2012 is energized to energize between the terminals 2103 and 2105 of the light emitting element 2010, the light emitting unit 2101 is turned on and emitted downward in FIG. The transmitted light 2018 passes through the through-hole 2025 of the substrate 2002, passes through the cladding layer 2092, is reflected by the reflecting surface 2961, bends 90 °, enters the core portion 2094 of the optical waveguide 2009, and enters the cladding portion (cladding layer). 2091, 2092, and the side (left and right clad portions 2095 in FIG. 33) are repeatedly reflected at the interface between the core portions 2094 along the longitudinal direction (left direction in FIG. 36).
<第22実施形態:図37>
 図37には、本発明の光導波路構造体2001の第22実施形態が示されている。以下、この光導波路構造体2001について説明するが、前記第19および第21実施形態と同様の事項についてはその説明を省略し、相違点を中心に説明する。
<Twenty-second embodiment: FIG. 37>
FIG. 37 shows a twenty-second embodiment of the optical waveguide structure 2001 of the present invention. Hereinafter, the optical waveguide structure 2001 will be described, but the description of the same matters as those in the nineteenth and twenty-first embodiments will be omitted, and differences will be mainly described.
 本実施形態の光導波路構造体2001は、透光部2024(貫通孔2025)に、伝送光2018を集光または拡散し得るレンズ部2026を設けた以外は、前記第21実施形態と同様のものである。すなわち、貫通孔2025内の下部(光導波路2009への入射側)に凸レンズ(正確には、平凸レンズ)で構成されるレンズ部2026が設けられている。 The optical waveguide structure 2001 of this embodiment is the same as that of the twenty-first embodiment except that a lens portion 2026 capable of condensing or diffusing the transmission light 2018 is provided in the light transmitting portion 2024 (through hole 2025). It is. That is, a lens portion 2026 formed of a convex lens (more precisely, a plano-convex lens) is provided in a lower portion (incident side to the optical waveguide 2009) in the through hole 2025.
 これにより、発光部2101から図37中下方へ向かって発せられた光は、基板2002の貫通孔2025内を通り、レンズ部2026で集光されてその光束(ビーム)が絞られ、この光束が反射面2961で反射されて90°屈曲し、光導波路2009のコア部2094に入り、コア部2094内をその長手方向(図37中左方向)に沿って進む。このようなレンズ部2026を設けることにより、より明確な(シャープな)伝送光を得ることができ、より優れた光伝送特性を得ることができる。 As a result, the light emitted downward from the light emitting portion 2101 in FIG. 37 passes through the through hole 2025 of the substrate 2002, is condensed by the lens portion 2026, and the luminous flux (beam) is reduced. The light is reflected by the reflecting surface 2961 and bent by 90 °, enters the core portion 2094 of the optical waveguide 2009, and advances in the core portion 2094 along the longitudinal direction (left direction in FIG. 37). By providing such a lens portion 2026, clearer (sharp) transmitted light can be obtained, and more excellent light transmission characteristics can be obtained.
 なお、レンズ部2026は、伝送光2018を拡散し得るものでもよい。この場合には、凹レンズを用いればよい。 The lens unit 2026 may be capable of diffusing the transmission light 2018. In this case, a concave lens may be used.
 また、レンズ部2026の設置位置は、図37に示す位置に限らず、例えば透光部2024(貫通孔2025)の途中や上部であってもよく、あるいは、その他の箇所、例えばコア部2094の途中や出射側端部(図37中左端部)であってもよい。 Further, the installation position of the lens unit 2026 is not limited to the position shown in FIG. 37, and may be, for example, in the middle or upper part of the light transmitting unit 2024 (through hole 2025), or in other places, for example, the core unit 2094. It may be on the way or at the exit side end (left end in FIG. 37).
 また、このようなレンズ部2026は、前記第19および第20実施形態の光導波路構造体2001に対して設けられていてもよい。 Also, such a lens portion 2026 may be provided for the optical waveguide structure 2001 of the nineteenth and twentieth embodiments.
 前記各実施形態において、発光素子2010を受光素子に代えた構成とすることができる。受光素子は、例えばその下面側に受光部、上面側に端子(例えば一対の端子)を有し、受光部が伝送光2018を受光すると、光電変換され、端子より電気信号が出力される。この電気信号は、電子回路素子2012へ入力され、信号処理(例えば信号の増幅)される。 In each of the above embodiments, the light emitting element 2010 can be replaced with a light receiving element. The light receiving element has, for example, a light receiving portion on the lower surface side and terminals (for example, a pair of terminals) on the upper surface side. When the light receiving portion receives the transmission light 2018, it is photoelectrically converted and an electrical signal is output from the terminal. This electric signal is input to the electronic circuit element 2012 and subjected to signal processing (for example, signal amplification).
 また、本発明の光導波路構造体2001は、発光素子と受光素子の双方を備えていてもよい。この場合、発光素子の発光部から発せられた光が、光路変換部2096、光導波路2009(さらに光路変換部2096)を経て受光素子の受光部で受光されるような構成とすることができる。 Further, the optical waveguide structure 2001 of the present invention may include both a light emitting element and a light receiving element. In this case, the light emitted from the light emitting unit of the light emitting element can be received by the light receiving unit of the light receiving element via the optical path conversion unit 2096 and the optical waveguide 2009 (and the optical path conversion unit 2096).
 以上、第1~第22実施形態について説明したが、本発明はこれらに限定されるものではなく、発明の要旨を変更しない限り、他の構成のものでもよい。また、本発明は、第1~第22実施形態のうちの任意の2以上の実施形態が備える構成を組み合わせたものでもよい。 The first to twenty-second embodiments have been described above. However, the present invention is not limited to these embodiments, and may have other configurations as long as the gist of the invention is not changed. Further, the present invention may be a combination of configurations included in any two or more of the first to twenty-second embodiments.
 上述したような本発明の光導波路構造体は、光伝送効率および耐久性に優れたものとなる。このため、本発明の光導波路構造体を備えることにより、2点間で高品質の光通信を行うことができ、信頼性の高い電子機器(本発明の電子機器)が得られる。 The optical waveguide structure of the present invention as described above is excellent in light transmission efficiency and durability. For this reason, by providing the optical waveguide structure of the present invention, high-quality optical communication can be performed between two points, and a highly reliable electronic device (electronic device of the present invention) is obtained.
 なお、本発明の光導波路構造体を備える電子機器としては、例えば、携帯電話、ゲーム機、ルーター装置、WDM装置、パソコン、テレビ、ホーム・サーバー等の電子機器類が挙げられる。これらの電子機器では、いずれも、例えばLSI等の演算装置とRAM等の記憶装置との間で、大容量のデータを高速に伝送する必要がある。したがって、このような電子機器が本発明の光導波路構造体を備えることにより、電気配線に特有なノイズ、信号劣化等の不具合が解消されるため、その性能の飛躍的な向上が期待できる。 Note that examples of the electronic device including the optical waveguide structure of the present invention include electronic devices such as a mobile phone, a game machine, a router device, a WDM device, a personal computer, a television, and a home server. In any of these electronic devices, it is necessary to transmit a large amount of data at high speed between an arithmetic device such as an LSI and a storage device such as a RAM. Therefore, since such an electronic device includes the optical waveguide structure according to the present invention, problems such as noise and signal degradation peculiar to electric wiring are eliminated, and a dramatic improvement in performance can be expected.
 さらに、光導波路部分では、電気配線に比べて発熱量が大幅に削減される。このため、基板内の集積度を高めて小型化が図られるとともに、冷却に要する電力を削減することができ、電子機器全体の消費電力を削減することができる。 Furthermore, the amount of heat generated in the optical waveguide portion is greatly reduced compared to electrical wiring. Therefore, the degree of integration in the substrate can be increased to reduce the size, the power required for cooling can be reduced, and the power consumption of the entire electronic device can be reduced.
 また、上述したような本発明の光導波路構造体は、折り曲げ操作を行うことにより、基板や光導波路屈曲した状態(屈曲状態)と、折り曲げ操作を解除し、基板や光導波路を伸張させた状態(伸張状態)とを自在にとり得るものとなる。このため、例えばヒンジ部またはスライド部を有する携帯電話、ゲーム機、PDA、ノート型パソコン等の電子機器のヒンジ部やスライド部に対して好適に用いることができる。例えば携帯電話において、ヒンジ部を介した2点間を光導波路構造体で接続した場合、携帯電話のヒンジ部を閉じたときには、光導波路構造体が屈曲状態をとり、ヒンジ部を開いたときには、光導波路構造体が伸張状態をとることとなる。 Further, the optical waveguide structure of the present invention as described above is in a state where the substrate or the optical waveguide is bent (bent state) by performing a bending operation, and the state where the bending operation is released and the substrate or the optical waveguide is extended. (Extended state) can be freely taken. For this reason, for example, it can be suitably used for hinges and slides of electronic devices such as mobile phones, game machines, PDAs, and notebook personal computers having hinges or slides. For example, in a mobile phone, when two points via a hinge part are connected by an optical waveguide structure, when the hinge part of the mobile phone is closed, the optical waveguide structure is bent and when the hinge part is opened, The optical waveguide structure is in an extended state.
 このようにすれば、光導波路構造体は、可動部を挟む2点間の電気的接続および光学的接続を、長期にわたって維持することができる。このため、光導波路構造体を備えた携帯電話(電子機器)は、その信頼性を高めることができる。
 なお、本発明の光導波路構造体を適用する電子機器は、上記のものに限定されず、例えば、ルーター装置、WDM装置、パソコン、テレビ、ホーム・サーバー等の電子機器類への適用が好適である。これらの電子機器では、いずれも、例えばLSI等の演算装置とRAM等の記憶装置との間で、大容量のデータを高速に伝送する必要がある。したがって、このような電子機器が本発明の光電気混載基板を備えることにより、電気配線に特有なノイズ、信号劣化等の不具合が解消されるため、その性能の飛躍的な向上が期待できる。
 さらに、光導波路部分では、電気配線に比べて発熱量が大幅に削減される。このため、基板内の集積度を高めて小型化が図られるとともに、冷却に要する電力を削減することができ、電子機器全体の消費電力を削減することができる。
In this way, the optical waveguide structure can maintain the electrical connection and the optical connection between two points sandwiching the movable part over a long period of time. For this reason, the mobile phone (electronic device) provided with the optical waveguide structure can improve the reliability.
Note that the electronic device to which the optical waveguide structure of the present invention is applied is not limited to the above-described ones. For example, it is suitable for application to electronic devices such as router devices, WDM devices, personal computers, televisions, home servers, and the like. is there. In any of these electronic devices, it is necessary to transmit a large amount of data at high speed between an arithmetic device such as an LSI and a storage device such as a RAM. Therefore, by providing such an electronic device with the opto-electric hybrid board according to the present invention, problems such as noise and signal deterioration peculiar to the electric wiring are eliminated, and a dramatic improvement in the performance can be expected.
In addition, the amount of heat generated in the optical waveguide portion is greatly reduced compared to electrical wiring. Therefore, the degree of integration in the substrate can be increased to reduce the size, the power required for cooling can be reduced, and the power consumption of the entire electronic device can be reduced.
<光導波路の製造方法>
 次に、前記各実施形態における、光導波路9、9’、1009、2009(以下、光導波路9とも表記する)の製造方法および各部の構成材料等について説明するが、特にコア部94、1094、2094(以下、コア部94とも表記する)の形成方法について詳細に説明する。
<Optical waveguide manufacturing method>
Next, the manufacturing method of the optical waveguides 9, 9 ′, 1009, 2009 (hereinafter also referred to as the optical waveguide 9) and the constituent materials of the respective parts in each of the embodiments will be described. In particular, the core parts 94, 1094, A method for forming 2094 (hereinafter also referred to as a core portion 94) will be described in detail.
 まず、コア部94の形成方法の説明に先立って、コア部94の形成に用いられる感光性樹脂組成物について説明する。 First, prior to the description of the method for forming the core portion 94, the photosensitive resin composition used for forming the core portion 94 will be described.
(感光性樹脂組成物)
 本実施形態に用いられる感光性樹脂組成物は、
(A)環状オレフィン樹脂と、
(B)(A)とは屈折率が異なり、かつ、環状エーテル基を有するモノマーおよび環状エーテル基を有するオリゴマーのうち少なくともいずれか一方と、
(C)光酸発生剤と、
を備える。
(Photosensitive resin composition)
The photosensitive resin composition used in this embodiment is
(A) a cyclic olefin resin;
(B) The refractive index is different from (A), and at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group;
(C) a photoacid generator;
Is provided.
 なかでも、光の伝搬損失の発生を確実に抑制するという観点から、
 側鎖に(C)光酸発生剤から発生する酸により脱離する脱離性基を有する環状オレフィン樹脂(A)と、
 下記式(100)のモノマーとを含むことが好ましい。
Among these, from the viewpoint of reliably suppressing the occurrence of light propagation loss,
(C) a cyclic olefin resin (A) having a leaving group capable of leaving by an acid generated from a photoacid generator in the side chain;
It is preferable to contain the monomer of following formula (100).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 このような感光性樹脂組成物は、フィルム状に成形されて光導波路形成用フィルムとされ、さらに、屈折率が異なる領域を含むフィルム、例えば、光導波路フィルムとして使用される。 Such a photosensitive resin composition is formed into a film to be an optical waveguide forming film, and further used as a film including regions having different refractive indexes, for example, an optical waveguide film.
 すなわち、このような感光性樹脂組成物を使用することで、光の伝搬損失の発生が抑制された光導波路フィルム等を提供することができる。なかでも、湾曲した光導波路を形成した場合において、光の伝搬損失の発生を顕著に抑制することができる。 That is, by using such a photosensitive resin composition, it is possible to provide an optical waveguide film or the like in which generation of light propagation loss is suppressed. In particular, when a curved optical waveguide is formed, generation of light propagation loss can be remarkably suppressed.
 さらに、このような光導波路フィルムを使用した光配線、前記光配線と、電気回路とを備える光電気混載基板を提供することができる。このような光配線および光電気混載基板によれば、従来の電気配線で問題となっていたEMI(電磁波障害)の改善が可能となり、従来よりも信号伝達速度を大幅に向上することができる。 Furthermore, it is possible to provide an optical / electrical hybrid substrate including an optical wiring using such an optical waveguide film, the optical wiring, and an electric circuit. According to such an optical wiring and an opto-electric hybrid board, it is possible to improve EMI (electromagnetic wave interference), which has been a problem with the conventional electrical wiring, and the signal transmission speed can be greatly improved as compared with the conventional one.
 また、光導波路フィルムを使用した電子機器も提供できる。光導波路フィルムを用いることにより、省スペース化が図られるため、電子機器の小型化に寄与する。 Also, electronic equipment using optical waveguide film can be provided. By using the optical waveguide film, space saving can be achieved, which contributes to downsizing of electronic devices.
 このような電子機器としては、具体的には、コンピューター、サーバー、携帯電話、ゲーム機器、メモリーテスター、外観検査ロボット等を挙げることができる。 Specific examples of such electronic devices include computers, servers, mobile phones, game machines, memory testers, appearance inspection robots, and the like.
 以下、感光性樹脂組成物の成分について順次詳述する。
 ((A)環状オレフィン樹脂)
 成分(A)の環状オレフィン樹脂は、感光性樹脂組成物のフィルム成形性を確保するために添加されるものであり、ベースポリマーとなるものである。
Hereinafter, the components of the photosensitive resin composition will be described in detail.
((A) Cyclic olefin resin)
The cyclic olefin resin of component (A) is added in order to ensure the film moldability of the photosensitive resin composition, and serves as a base polymer.
 ここで、環状オレフィン樹脂は、無置換のものであってもよいし、水素が他の基により置換されたものであってもよい。 Here, the cyclic olefin resin may be unsubstituted or may be one in which hydrogen is substituted with another group.
 環状オレフィン樹脂としては、例えばノルボルネン系樹脂、ベンゾシクロブテン系樹脂等が挙げられる。 Examples of cyclic olefin resins include norbornene resins and benzocyclobutene resins.
 なかでも、耐熱性、透明性等の観点からノルボルネン系樹脂を使用することが好ましい。 Among these, it is preferable to use a norbornene-based resin from the viewpoints of heat resistance and transparency.
 ノルボルネン系樹脂としては、例えば、
(1)ノルボルネン型モノマーを付加(共)重合して得られるノルボルネン型モノマーの付加(共)重合体、
(2)ノルボルネン型モノマーとエチレンやα-オレフィン類との付加共重合体、
(3)ノルボルネン型モノマーと非共役ジエン、および必要に応じて他のモノマーとの付加共重合体のような付加重合体、
(4)ノルボルネン型モノマーの開環(共)重合体、および必要に応じて該(共)重合体を水素添加した樹脂、
(5)ノルボルネン型モノマーとエチレンやα-オレフィン類との開環共重合体、および必要に応じて該(共)重合体を水素添加した樹脂、
(6)ノルボルネン型モノマーと非共役ジエン、または他のモノマーとの開環共重合体、および必要に応じて該(共)重合体を水素添加したポリマーのような開環重合体が挙げられる。これらの重合体としては、ランダム共重合体、ブロック共重合体、交互共重合体等が挙げられる。
As norbornene resin, for example,
(1) addition (co) polymer of norbornene type monomer obtained by addition (co) polymerization of norbornene type monomer,
(2) addition copolymers of norbornene monomers with ethylene and α-olefins,
(3) an addition polymer such as an addition copolymer of a norbornene-type monomer and a non-conjugated diene and, if necessary, another monomer;
(4) a ring-opening (co) polymer of a norbornene-type monomer, and a resin obtained by hydrogenating the (co) polymer if necessary,
(5) a ring-opening copolymer of a norbornene-type monomer and ethylene or α-olefins, and a resin obtained by hydrogenating the (co) polymer if necessary,
(6) Ring-opening copolymers such as norbornene-type monomers and non-conjugated dienes, or other monomers, and polymers obtained by hydrogenating the (co) polymers as necessary. Examples of these polymers include random copolymers, block copolymers, and alternating copolymers.
 これらのノルボルネン系樹脂は、例えば、開環メタセシス重合(ROMP)、ROMPと水素化反応との組み合わせ、ラジカルまたはカチオンによる重合、カチオン性パラジウム重合開始剤を用いた重合、これ以外の重合開始剤(例えば、ニッケルや他の遷移金属の重合開始剤)を用いた重合等、公知のすべての重合方法で得ることができる。 These norbornene resins include, for example, ring-opening metathesis polymerization (ROMP), combination of ROMP and hydrogenation reaction, polymerization by radical or cation, polymerization using cationic palladium polymerization initiator, other polymerization initiators ( For example, it can be obtained by any known polymerization method such as polymerization using a polymerization initiator of nickel or another transition metal).
 これらの中でも、ノルボルネン系樹脂としては、付加(共)重合体が好ましい。付加(共)重合体は、透明性、耐熱性および可撓性に富むことからも好ましい。たとえば、感光性樹脂組成物によりフィルムを形成した後、電気部品等を、半田を介して実装することがある。このような場合において、高い耐熱性、すなわち、耐リフロー性を有することが必要となるため、付加(共)重合体が好ましい。また、感光性樹脂組成物によりフィルムを形成し、製品に組み込んだ際に、たとえば、80℃程度の環境下にて使用される場合がある。このような場合においても、耐熱性を確保するという観点から、付加(共)重合体が好ましい。 Of these, addition (co) polymers are preferred as the norbornene-based resin. Addition (co) polymers are also preferred because they are rich in transparency, heat resistance and flexibility. For example, after forming a film with the photosensitive resin composition, an electrical component or the like may be mounted via solder. In such a case, an addition (co) polymer is preferable because it needs to have high heat resistance, that is, reflow resistance. Further, when a film is formed from the photosensitive resin composition and incorporated in a product, it may be used in an environment of about 80 ° C., for example. Even in such a case, an addition (co) polymer is preferable from the viewpoint of ensuring heat resistance.
 なかでも、ノルボルネン系樹脂は、重合性基を含む置換基を有するノルボルネンの繰り返し単位や、アリール基を含む置換基を有するノルボルネンの繰り返し単位を含むものが好ましい。 Among them, the norbornene-based resin preferably includes a norbornene repeating unit having a substituent containing a polymerizable group or a norbornene repeating unit having a substituent containing an aryl group.
 重合性基を含む置換基を有するノルボルネンの繰り返し単位としては、エポキシ基を含む置換基を有するノルボルネンの繰り返し単位、(メタ)アクリル基を含む置換基を有するノルボルネンの繰り返し単位、および、アルコキシシリル基を含む置換基を有するノルボルネンの繰り返し単位がのうちの少なくとも1種が好適である。これらの重合性基は、各種重合性基の中でも、反応性が高いことから好ましい。 As the repeating unit of norbornene having a substituent containing a polymerizable group, the repeating unit of norbornene having a substituent containing an epoxy group, the repeating unit of norbornene having a substituent containing a (meth) acryl group, and an alkoxysilyl group At least one of the repeating units of norbornene having a substituent containing is preferable. These polymerizable groups are preferable because of their high reactivity among various polymerizable groups.
 また、このような重合性基を含むノルボルネンの繰り返し単位を、2種以上含むものを用いれば、可撓性と耐熱性の両立を図ることができる。 Moreover, if one containing two or more norbornene repeating units containing such a polymerizable group is used, both flexibility and heat resistance can be achieved.
 一方、アリール基を含む置換基を有するノルボルネンの繰り返し単位を含むことにより、アリール基に由来する極めて高い疎水性によって、吸水による寸法変化等をより確実に防止することができる。 On the other hand, by including a norbornene repeating unit having a substituent containing an aryl group, it is possible to more reliably prevent dimensional change due to water absorption due to the extremely high hydrophobicity derived from the aryl group.
 さらに、ノルボルネン系ポリマーは、アルキルノルボルネンの繰り返し単位を含むものが好ましい。なお、アルキル基は、直鎖状または分岐状のいずれであってもよい。 Furthermore, the norbornene-based polymer preferably contains an alkylnorbornene repeating unit. The alkyl group may be linear or branched.
 アルキルノルボルネンの繰り返し単位を含むことにより、ノルボルネン系ポリマーは、柔軟性が高くなるため、高いフレキシビリティ(可撓性)を付与することができる。 By including a repeating unit of alkyl norbornene, the norbornene-based polymer has high flexibility, and therefore can provide high flexibility (flexibility).
 また、アルキルノルボルネンの繰り返し単位を含むノルボルネン系ポリマーは、特定の波長領域(特に、850nm付近の波長領域)の光に対する透過率が優れることからも好ましい。 Further, a norbornene-based polymer containing an alkylnorbornene repeating unit is also preferable because of its excellent transmittance with respect to light in a specific wavelength region (in particular, a wavelength region near 850 nm).
 このようなことから、ノルボルネン系樹脂としては、以下の式(1)~(4)、(8)~(10)で表されるものが好適である。 For these reasons, as the norbornene-based resin, those represented by the following formulas (1) to (4) and (8) to (10) are preferable.
Figure JPOXMLDOC01-appb-C000012
 (式(1)中、Rは、炭素数1~10のアルキル基を表し、aは、0~3の整数を表し、bは、1~3の整数を表し、p/qが20以下である。)
Figure JPOXMLDOC01-appb-C000012
(In the formula (1), R 1 represents an alkyl group having 1 to 10 carbon atoms, a represents an integer of 0 to 3, b represents an integer of 1 to 3, and p 1 / q 1 is 20 or less.)
 式(1)のノルボルネン系樹脂は、以下のようにして製造することができる。
 Rを有するノルボルネンと、側鎖にエポキシ基を有するノルボルネンとをトルエンに溶かし、Ni化合物(A)を触媒として用いて溶液重合させることで(1)を得る。
The norbornene-based resin of the formula (1) can be produced as follows.
(1) is obtained by dissolving norbornene having R 1 and norbornene having an epoxy group in the side chain in toluene and solution polymerization using Ni compound (A) as a catalyst.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 なお、側鎖にエポキシ基を有するノルボルネンの製造方法は、たとえば、(i)(ii)の通りである。 In addition, the manufacturing method of norbornene which has an epoxy group in a side chain is as (i) (ii), for example.
(i)ノルボルネンメタノール(NB-CH-OH)の合成
 DCPD(ジシクロペンタジエン)のクラッキングにより生成したCPD(シクロペンタジエン)とαオレフィン(CH2=CH-CH2-OH)を高温高圧下で反応させる。
(I) Synthesis of norbornenemethanol (NB—CH 2 —OH) CPD (cyclopentadiene) and α-olefin (CH 2 ═CH—CH 2 —OH) produced by cracking of DCPD (dicyclopentadiene) under high temperature and high pressure React.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(ii)エポキシノルボルネンの合成
 ノルボルネンメタノールとエピクロルヒドリンとの反応により生成する。
(Ii) Synthesis of epoxy norbornene It is formed by the reaction of norbornene methanol and epichlorohydrin.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 なお、式(1)において、bが2もしくは3の場合には、エピクロルヒドリンのメチレン基がエチレン基、プロピレン基等になったものを使用する。 In the formula (1), when b is 2 or 3, epichlorohydrin in which the methylene group is an ethylene group, a propylene group or the like is used.
 式(1)で表されるノルボルネン系樹脂の中でも、可撓性と耐熱性の両立を図ることが可能との観点から、特に、Rが炭素数4~10のアルキル基であり、aおよびbがそれぞれ1である化合物、例えば、ブチルボルネンとメチルグリシジルエーテルノルボルネンとのコポリマー、ヘキシルノルボルネンとメチルグリシジルエーテルノルボルネンとのコポリマー、デシルノルボルネンとメチルグリシジルエーテルノルボルネンとのコポリマー等が好ましい。 Among the norbornene-based resins represented by the formula (1), from the viewpoint that both flexibility and heat resistance can be achieved, in particular, R 1 is an alkyl group having 4 to 10 carbon atoms, and a and A compound in which each b is 1, for example, a copolymer of butylbornene and methyl glycidyl ether norbornene, a copolymer of hexyl norbornene and methyl glycidyl ether norbornene, a copolymer of decyl norbornene and methyl glycidyl ether norbornene, or the like is preferable.
Figure JPOXMLDOC01-appb-C000016
 (式(2)中、Rは、炭素数1~10のアルキル基を表し、Rは、水素原子またはメチル基を表し、cは、0~3の整数を表し、p/qが20以下である。)
Figure JPOXMLDOC01-appb-C000016
(In Formula (2), R 2 represents an alkyl group having 1 to 10 carbon atoms, R 3 represents a hydrogen atom or a methyl group, c represents an integer of 0 to 3, and p 2 / q 2 Is 20 or less.)
 式(2)のノルボルネン系樹脂は、R2を有するノルボルネンと、側鎖にアクリルおよびメタクリル基を有するノルボルネンとをトルエンに溶かし、上述したNi化合物(A)を触媒に用いて溶液重合させることで得ることができる。 The norbornene-based resin of the formula (2) is obtained by dissolving norbornene having R 2 and norbornene having acryl and methacryl groups in the side chain in toluene, and performing solution polymerization using the Ni compound (A) described above as a catalyst. Obtainable.
 なお、式(2)で表されるノルボルネン系ポリマーの中でも、可撓性と耐熱性との両立の観点から、特に、Rが炭素数4~10のアルキル基であり、cが1である化合物、例えば、ブチルボルネンとアクリル酸2-(5-ノルボルネニル)メチルとのコポリマー、ヘキシルノルボルネンとアクリル酸2-(5-ノルボルネニル)メチルとのコポリマー、デシルノルボルネンとアクリル酸2-(5-ノルボルネニル)メチルとのコポリマー等が好ましい。 Among the norbornene-based polymers represented by the formula (2), R 2 is an alkyl group having 4 to 10 carbon atoms and c is 1 from the viewpoint of achieving both flexibility and heat resistance. Compounds such as copolymers of butylbornene and 2- (5-norbornenyl) methyl acrylate, copolymers of hexylnorbornene and 2- (5-norbornenyl) methyl acrylate, decylnorbornene and 2- (5-norbornenyl) methyl acrylate And a copolymer thereof are preferred.
Figure JPOXMLDOC01-appb-C000017
(式(3)中、Rは、炭素数1~10のアルキル基を表し、各Xは、それぞれ独立して、炭素数1~3のアルキル基を表し、dは、0~3の整数を表し、p/qが20以下である。)
Figure JPOXMLDOC01-appb-C000017
(In Formula (3), R 4 represents an alkyl group having 1 to 10 carbon atoms, each X 3 independently represents an alkyl group having 1 to 3 carbon atoms, and d represents 0 to 3 carbon atoms. Represents an integer, and p 3 / q 3 is 20 or less.)
 式(3)の樹脂は、R4を有するノルボルネンと、側鎖にアルコキシシリル基を有するノルボルネンとをトルエンに溶かし、上述したNi化合物(A)を触媒に用いて溶液重合させることで得ることができる。 The resin of the formula (3) can be obtained by dissolving norbornene having R 4 and norbornene having an alkoxysilyl group in the side chain in toluene, and solution polymerization using the Ni compound (A) described above as a catalyst. it can.
 なお、式(3)で表されるノルボルネン系ポリマーの中でも、特に、Rが炭素数4~10のアルキル基であり、dが1または2、Xがメチル基またはエチル基である化合物、例えば、ブチルボルネンとノルボルネニルエチルトリメトキシシランとのコポリマー、ヘキシルノルボルネンとノルボルネニルエチルトリメトキシシランとのコポリマー、デシルノルボルネンとノルボルネニルエチルトリメトキシシランとのコポリマー、ブチルボルネンとトリエトキシシリルノルボルネンとのコポリマー、ヘキシルノルボルネンとトリエトキシシリルノルボルネンとのコポリマー、デシルノルボルネンとトリエトキシシリルノルボルネンとのコポリマー、ブチルボルネンとトリメトキシシリルノルボルネンとのコポリマー、ヘキシルノルボルネンとトリメトキシシリルノルボルネンとのコポリマー、デシルノルボルネンとトリメトキシシリルノルボルネンとのコポリマー等が好ましい。 Among the norbornene-based polymers represented by the formula (3), in particular, a compound in which R 4 is an alkyl group having 4 to 10 carbon atoms, d is 1 or 2, and X 3 is a methyl group or an ethyl group, For example, a copolymer of butylbornene and norbornenylethyltrimethoxysilane, a copolymer of hexylnorbornene and norbornenylethyltrimethoxysilane, a copolymer of decylnorbornene and norbornenylethyltrimethoxysilane, butylbornene and triethoxysilylnorbornene Copolymer of hexyl norbornene and triethoxysilyl norbornene, copolymer of decyl norbornene and triethoxysilyl norbornene, copolymer of butylbornene and trimethoxysilyl norbornene, hexyl norbornene And copolymers of trimethoxysilyl norbornene, copolymers, etc. of decyl norbornene and trimethoxysilyl norbornene are preferred.
Figure JPOXMLDOC01-appb-C000018
 (式中、Rは、炭素数1~10のアルキル基を表し、AおよびAは、それぞれ独立して、下記式(5)~(7)で表される置換基を表すが、同時に同一の置換基であることはない。また、p/q+rが20以下である。)
Figure JPOXMLDOC01-appb-C000018
(Wherein R 5 represents an alkyl group having 1 to 10 carbon atoms, and A 1 and A 2 each independently represent a substituent represented by the following formulas (5) to (7), (It is not the same substituent at the same time, and p 4 / q 4 + r is 20 or less.)
 R5を有するノルボルネンと、側鎖にA1およびA2を有するノルボルネンとをトルエンに溶かし、Ni化合物(A)を触媒に用いて溶液重合させることで(4)を得る。 (4) is obtained by dissolving norbornene having R 5 and norbornene having A 1 and A 2 in the side chain in toluene and solution polymerization using Ni compound (A) as a catalyst.
Figure JPOXMLDOC01-appb-C000019
 (式(5)中、eは、0~3の整数を表し、fは、1~3の整数を表す。)
Figure JPOXMLDOC01-appb-C000019
(In the formula (5), e represents an integer of 0 to 3, and f represents an integer of 1 to 3.)
Figure JPOXMLDOC01-appb-C000020
 (式(6)中、Rは、水素原子またはメチル基を表し、gは、0~3の整数を表す。)
Figure JPOXMLDOC01-appb-C000020
(In formula (6), R 6 represents a hydrogen atom or a methyl group, and g represents an integer of 0 to 3.)
Figure JPOXMLDOC01-appb-C000021
 (式(7)中、Xは、それぞれ独立して、炭素数1~3のアルキル基を表し、hは、0~3の整数を表す。)
Figure JPOXMLDOC01-appb-C000021
(In Formula (7), X 4 each independently represents an alkyl group having 1 to 3 carbon atoms, and h represents an integer of 0 to 3)
 なお、式(4)で表されるノルボルネン系ポリマーとしては、例えば、ブチルノルボルネン、ヘキシルノルボルネンまたはデシルノルボルネンのいずれかと、アクリル酸2-(5-ノルボルネニル)メチルと、ノルボルネニルエチルトリメトキシシラン、トリエトキシシリルノルボルネンまたはトリメトキシシリルノルボルネンのいずれかとのターポリマー、ブチルボルネン、ヘキシルノルボルネンまたはデシルノルボルネンのいずれかと、アクリル酸2-(5-ノルボルネニル)メチルと、メチルグリシジルエーテルノルボルネンとのターポリマー、ブチルボルネン、ヘキシルノルボルネンまたはデシルノルボルネンのいずれかと、メチルグリシジルエーテルノルボルネン、ノルボルネニルエチルトリメトキシシラン、トリエトキシシリルノルボルネンまたはトリメトキシシリルノルボルネンのいずれかとのターポリマー等が挙げられる。 As the norbornene-based polymer represented by the formula (4), for example, any one of butyl norbornene, hexyl norbornene or decyl norbornene, 2- (5-norbornenyl) methyl acrylate, norbornenyl ethyl trimethoxysilane, Terpolymer with either triethoxysilyl norbornene or trimethoxysilyl norbornene, butyl bornene, hexyl norbornene or decyl norbornene, terpolymer of 2- (5-norbornenyl) methyl acrylate and methylglycidyl ether norbornene, butylbornene, Either hexyl norbornene or decyl norbornene and methyl glycidyl ether norbornene, norbornenyl ethyltrimethoxysilane, triethoxysilyl Terpolymers, etc. with either norbornene or trimethoxysilyl norbornene.
Figure JPOXMLDOC01-appb-C000022
 (式(8)中、Rは、炭素数1~10のアルキル基を表し、Rは、水素原子、メチル基またはエチル基を表し、Arは、アリール基を表し、Xは、酸素原子またはメチレン基を表し、Xは、炭素原子またはシリコン原子を表し、iは、0~3の整数を表し、jは、1~3の整数を表し、p/qが20以下である。)
Figure JPOXMLDOC01-appb-C000022
(In formula (8), R 7 represents an alkyl group having 1 to 10 carbon atoms, R 8 represents a hydrogen atom, a methyl group or an ethyl group, Ar represents an aryl group, and X 1 represents oxygen Represents an atom or a methylene group, X 2 represents a carbon atom or a silicon atom, i represents an integer of 0 to 3, j represents an integer of 1 to 3, and p 5 / q 5 is 20 or less is there.)
 Rを有するノルボルネンと、側鎖に-(CH2)-X1-X2(R8)3-j(Ar)jを含むノルボルネンとをトルエンに溶かし、Ni化合物を触媒に用いて溶液重合させることで(8)を得る。 Norbornene having R 7 and norbornene containing-(CH 2 ) -X 1 -X 2 (R 8 ) 3-j (Ar) j in the side chain are dissolved in toluene, and solution polymerization is performed using a Ni compound as a catalyst. (8) is obtained.
 なお、式(8)で表されるノルボルネン系ポリマーの中でも、Xが酸素原子、Xがシリコン原子、Arがフェニル基であるものが好ましい。 Of the norbornene polymers represented by the formula (8), those in which X 1 is an oxygen atom, X 2 is a silicon atom, and Ar is a phenyl group are preferable.
 さらには、可撓性、耐熱性および屈折率制御の観点から特に、Rが炭素数4~10のアルキル基であり、Xが酸素原子、Xがシリコン原子、Arがフェニル基、Rがメチル基、iが1、jが2である化合物、例えば、ブチルボルネンとジフェニルメチルノルボルネンメトキシシランとのコポリマー、ヘキシルノルボルネンとジフェニルメチルノルボルネンメトキシシランとのコポリマー、デシルノルボルネンとジフェニルメチルノルボルネンメトキシシランとのコポリマー等が好ましい。
 具体的には、以下のようなノルボルネン系樹脂を使用することが好ましい。
Further, particularly from the viewpoint of flexibility, heat resistance and refractive index control, R 7 is an alkyl group having 4 to 10 carbon atoms, X 1 is an oxygen atom, X 2 is a silicon atom, Ar is a phenyl group, R A compound in which 8 is a methyl group, i is 1 and j is 2, for example, a copolymer of butylbornene and diphenylmethylnorbornenemethoxysilane, a copolymer of hexylnorbornene and diphenylmethylnorbornenemethoxysilane, decylnorbornene and diphenylmethylnorbornenemethoxysilane Of these, the copolymer is preferred.
Specifically, it is preferable to use the following norbornene resin.
Figure JPOXMLDOC01-appb-C000023
 (式(9)におけるR、R,p、q、iは、式(8)と同じである。)
Figure JPOXMLDOC01-appb-C000023
(R 7 , R 8 , p 5 , q 5 , and i in Formula (9) are the same as in Formula (8).)
 また、可撓性と耐熱性および屈折率制御の観点から、式(8)において、Rが炭素数4~10のアルキル基であり、Xがメチレン基、Xが炭素原子、Arがフェニル基、Rが水素原子、iが0、jが1である化合物、例えば、ブチルボルネンとフェニルエチルノルボルネンとのコポリマー、ヘキシルノルボルネンとフェニルエチルノルボルネンとのコポリマー、デシルノルボルネンとフェニルエチルノルボルネンとのコポリマー等であってもよい。
 さらに、ノルボルネン系樹脂として、次のようなものを使用してもよい。
From the viewpoint of flexibility, heat resistance, and refractive index control, in formula (8), R 7 is an alkyl group having 4 to 10 carbon atoms, X 1 is a methylene group, X 2 is a carbon atom, and Ar is Compounds in which R 8 is a hydrogen atom, i is 0, and j is 1, for example, a copolymer of butylbornene and phenylethylnorbornene, a copolymer of hexylnorbornene and phenylethylnorbornene, a copolymer of decylnorbornene and phenylethylnorbornene Etc.
Further, the following may be used as the norbornene resin.
Figure JPOXMLDOC01-appb-C000024
 (式(10)において、R10は、炭素数1~10のアルキル基を表し、R11は、アリール基を示し、kは0以上、4以下である。p/qは20以下である。)
Figure JPOXMLDOC01-appb-C000024
(In Formula (10), R 10 represents an alkyl group having 1 to 10 carbon atoms, R 11 represents an aryl group, and k is 0 or more and 4 or less. P 6 / q 6 is 20 or less. is there.)
 また、p/q~p/q、p/q、p/qまたはp/q+rは、20以下であればよいが、15以下であるのが好ましく、0.1~10程度がより好ましい。これにより、複数種のノルボルネンの繰り返し単位を含む効果が如何なく発揮される。 Further, p 1 / q 1 to p 3 / q 3 , p 5 / q 5 , p 6 / q 6 or p 4 / q 4 + r may be 20 or less, preferably 15 or less, About 0.1 to 10 is more preferable. Thereby, the effect including the repeating unit of multiple types of norbornene is exhibited.
 以上のようなノルボルネン系樹脂は、脱離性基を有するものであることが好ましい。ここで、脱離性基とは、酸の作用により離脱するものである。 The norbornene-based resin as described above preferably has a leaving group. Here, the leaving group is a group that is released by the action of an acid.
 具体的には、分子構造中に、-O-構造、-Si-アリール構造および-O-Si-構造のうちの少なくとも1つを有するものが好ましい。かかる酸離脱性基は、カチオンの作用により比較的容易に離脱する。 Specifically, those having at least one of —O— structure, —Si—aryl structure and —O—Si— structure in the molecular structure are preferable. Such an acid leaving group is released relatively easily by the action of a cation.
 このうち、離脱により樹脂の屈折率に低下を生じさせる離脱性基としては、-Si-ジフェニル構造および-O-Si-ジフェニル構造の少なくとも一方が好ましい。 Among these, as the leaving group that causes a decrease in the refractive index of the resin by leaving, at least one of the —Si-diphenyl structure and the —O—Si-diphenyl structure is preferable.
 例えば、式(8)で表されるノルボルネン系ポリマーの中で、Xが酸素原子、Xがシリコン原子、Arがフェニル基であるものが脱離性基を有するものとなる。 For example, among the norbornene polymers represented by the formula (8), those in which X 1 is an oxygen atom, X 2 is a silicon atom, and Ar is a phenyl group have a leaving group.
 また、式(3)においては、アルコキシシリル基のSi-O-Xの部分で脱離する場合がある。 In the formula (3), there are cases where the Si—O—X 3 portion of the alkoxysilyl group is eliminated.
 例えば、式(9)のノルボルネン系樹脂を使用した場合、光酸発生剤(PAGと表記)から発生した酸により、以下のように反応が進むと推測される。なお、ここでは、脱離性基の部分のみを示し、また、i=1の場合で説明している。 For example, when the norbornene-based resin of the formula (9) is used, it is presumed that the reaction proceeds as follows by the acid generated from the photoacid generator (denoted as PAG). Here, only the leaving group portion is shown, and the case where i = 1 is described.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 さらに、式(9)の構造に加えて、側鎖にエポキシ基を有するものであってもよい。このようなものを使用することで密着性に優れたフィルムが形成可能という効果がある。
 具体例として以下のようなものとなる。
Furthermore, in addition to the structure of the formula (9), the side chain may have an epoxy group. By using such a material, there is an effect that a film having excellent adhesion can be formed.
A specific example is as follows.
Figure JPOXMLDOC01-appb-C000026
 (式(31)において、p/q+rは、20以下である。)
Figure JPOXMLDOC01-appb-C000026
(In formula (31), p 7 / q 7 + r 2 is 20 or less.)
 式(31)で示される化合物は、たとえば、ヘキシルノルボルネンと、ジフェニルメチルノルボルネンメトキシシラン(側鎖に-CH2-O-Si(CH3)(Ph)2を含むノルボルネン)およびエポキシノルボルネンをトルエンに溶かし、Ni化合物を触媒に用いて溶液重合させることで得ることができる。 The compound represented by the formula (31) includes, for example, hexyl norbornene, diphenylmethyl norbornene methoxysilane (norbornene containing —CH 2 —O—Si (CH 3 ) (Ph) 2 in the side chain) and epoxy norbornene in toluene. It can be obtained by dissolving and solution polymerization using a Ni compound as a catalyst.
 ((B)環状エーテル基を有するモノマー、環状エーテル基を有するオリゴマー)
 次に、(B)の成分について説明する。
((B) Monomer having a cyclic ether group, oligomer having a cyclic ether group)
Next, the component (B) will be described.
 成分(B)は、環状エーテル基を有するモノマーおよび環状エーテル基を有するオリゴマーのうちの少なくとも一方である。この成分(B)は、成分(A)の樹脂と屈折率が異なり、かつ、成分(A)の樹脂と相溶性のあるものであればよい。成分(B)と、成分(A)の樹脂との屈折率差は、0.01以上であることが好ましい。 Component (B) is at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group. This component (B) may have any refractive index different from that of the resin of component (A) and is compatible with the resin of component (A). The refractive index difference between the component (B) and the resin of the component (A) is preferably 0.01 or more.
 なお、成分(B)の屈折率は、成分(A)の樹脂よりも高いものであってもよいが、成分(B)は、成分(A)の樹脂よりも屈折率が低いことが好ましい。 The refractive index of the component (B) may be higher than that of the resin of the component (A), but the refractive index of the component (B) is preferably lower than that of the resin of the component (A).
 成分(B)の環状エーテル基を有するモノマー、環状エーテル基を有するオリゴマーは、酸の存在下において開環により重合するものである。モノマー、オリゴマーの拡散性を考慮すると、このモノマーの分子量(重量平均分子量)、オリゴマーの分子量(重量平均分子量)は、それぞれ100以上、400以下であることが好ましい。 Component (B) monomer having a cyclic ether group and oligomer having a cyclic ether group are polymerized by ring-opening in the presence of an acid. Considering the diffusibility of the monomer and oligomer, the molecular weight (weight average molecular weight) of the monomer and the molecular weight (weight average molecular weight) of the oligomer are preferably 100 or more and 400 or less, respectively.
 成分(B)は、たとえば、オキセタニル基あるいは、エポキシ基を有する。このような環状エーテル基は、酸により開環しやすいため、好ましい。 Component (B) has, for example, an oxetanyl group or an epoxy group. Such a cyclic ether group is preferable because it is easily opened by an acid.
 オキセタニル基を有するモノマー、オキセタニル基を有するオリゴマーとしては、下記式(11)~(20)の群から選ばれるものが好ましい。これらを使用することで波長850nm近傍での透明性に優れ、可撓性と耐熱性の両立が可能という利点がある。また、これらを単独でも混合して用いても差し支えない。 As the monomer having an oxetanyl group and the oligomer having an oxetanyl group, those selected from the group of the following formulas (11) to (20) are preferable. By using these, there is an advantage that transparency in the vicinity of a wavelength of 850 nm is excellent and both flexibility and heat resistance are possible. These may be used alone or in combination.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 (式(18)においてnは0以上、3以下である。)
Figure JPOXMLDOC01-appb-C000034
(In formula (18), n is 0 or more and 3 or less.)
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 以上のようなモノマーおよびオリゴマーのなかでも、成分(A)の樹脂との屈折率差を確保する観点から式(13)、(15)、(16)、(17)、(20)で表される化合物を使用することが好ましい。 Among the above monomers and oligomers, they are represented by the formulas (13), (15), (16), (17), and (20) from the viewpoint of ensuring a difference in refractive index from the resin of the component (A). It is preferable to use a compound.
 さらには、成分(A)の樹脂との屈折率差がある点、分子量が小さく、モノマーの運動性が高い点、モノマーが容易に揮発しない点を考慮すると、式(20)、式(15)で表される化合物を使用することが特に好ましい。 Furthermore, considering the point that there is a difference in refractive index from the resin of component (A), the point that the molecular weight is small, the mobility of the monomer is high, and the point that the monomer does not easily volatilize, the formulas (20) and (15) It is particularly preferable to use a compound represented by:
 また、オキセタニル基を有する化合物としては、以下の式(32)、式(33)で表される化合物を使用することができる。式(32)で表される化合物としては、東亞合成製の商品名TESOX等、式(33)で表される化合物としては、東亞合成製の商品名OX-SQ等を使用することができる。 Further, as the compound having an oxetanyl group, compounds represented by the following formulas (32) and (33) can be used. As the compound represented by the formula (32), trade name TOSOX manufactured by Toagosei Co., Ltd., and as the compound represented by formula (33), trade name OX-SQ manufactured by Toagosei Co., Ltd. can be used.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 (式(33)において、nは1または2である)
Figure JPOXMLDOC01-appb-C000038
(In formula (33), n is 1 or 2)
 また、エポキシ基を有するモノマー、エポキシ基を有するオリゴマーとしては、たとえば、以下のようなものがあげられる。このエポキシ基を有するモノマー、オリゴマーは、酸の存在下において開環により重合するものである。 Further, examples of the monomer having an epoxy group and the oligomer having an epoxy group include the following. The monomer and oligomer having an epoxy group are polymerized by ring-opening in the presence of an acid.
 エポキシ基を有するモノマー、エポキシ基を有するオリゴマーとしては、以下の式(34)~(39)で表されるものを使用することができる。なかでも、エポキシ環のひずみエネルギーが大きく反応性に優れるという観点から式(36)~(39)で表される脂環式エポキシモノマーを使用することが好ましい。 As the monomer having an epoxy group and the oligomer having an epoxy group, those represented by the following formulas (34) to (39) can be used. Among them, it is preferable to use an alicyclic epoxy monomer represented by the formulas (36) to (39) from the viewpoint that the strain energy of the epoxy ring is large and the reactivity is excellent.
 なお、式(34)で表される化合物は、エポキシノルボルネンであり、このような化合物としては、たとえば、プロメラス社製 EpNBを使用することができる。式(35)で表される化合物は、γ-グリシドキシプロピルトリメトキシシランであり、この化合物としては、たとえば、東レ・ダウコーニング・シリコーン社製 Z-6040を使用することができる。また、式(36)で表される化合物は、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランであり、この化合物としては、たとえば、東京化成製 E0327を使用することができる。 In addition, the compound represented by the formula (34) is epoxy norbornene, and for example, EpNB manufactured by Promeras Corporation can be used. The compound represented by the formula (35) is γ-glycidoxypropyltrimethoxysilane. As this compound, for example, Z-6040 manufactured by Toray Dow Corning Silicone can be used. The compound represented by the formula (36) is 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. As this compound, for example, E0327 manufactured by Tokyo Chemical Industry can be used.
 さらに、式(37)で表される化合物は、3、4-エポキシシクロヘキセニルメチル-3、’4’-エポキシシクロヘキセンカルボキシレートであり、この化合物としては、たとえば、ダイセル化学社製 セロキサイド2021Pを使用することができる。また、式(38)で表される化合物は、1,2-エポキシ-4-ビニルシクロヘキサンであり、この化合物としては、たとえば、ダイセル化学社製 セロキサイド2000を使用することができる。 Furthermore, the compound represented by the formula (37) is 3,4-epoxycyclohexenylmethyl-3, '4'-epoxycyclohexenecarboxylate, and as this compound, for example, Celoxide 2021P manufactured by Daicel Chemical Industries, Ltd. is used. can do. The compound represented by the formula (38) is 1,2-epoxy-4-vinylcyclohexane, and as this compound, for example, Celoxide 2000 manufactured by Daicel Chemical Industries, Ltd. can be used.
 さらに、式(39)で表される化合物は、1,2:8,9ジエポキシリモネンであり、この化合物としては、たとえば、(ダイセル化学社製 セロキサイド3000)を使用することができる。 Furthermore, the compound represented by the formula (39) is 1,2: 8,9 diepoxy limonene. As this compound, for example, (Celoxide 3000 manufactured by Daicel Chemical Industries, Ltd.) can be used.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 さらに、(B)の成分として、オキセタニル基を有するモノマー、オキセタニル基を有するオリゴマーと、エポキシ基を有するモノマー、エポキシ基を有するオリゴマーとが併用されていてもよい。 Furthermore, as the component (B), a monomer having an oxetanyl group, an oligomer having an oxetanyl group, a monomer having an epoxy group, and an oligomer having an epoxy group may be used in combination.
 オキセタニル基を有するモノマー、オキセタニル基を有するオリゴマーは重合を開始する開始反応が遅いが、生長反応が速い。これに対し、エポキシ基を有するモノマー、エポキシ基を有するオリゴマーは、重合を開始する開始反応が速いが、生長反応が遅い。そのため、オキセタニル基を有するモノマー、オキセタニル基を有するオリゴマーと、エポキシ基を有するモノマー、エポキシ基を有するオリゴマーとを併用することで、光や活性放射線を照射した際に、光や活性放射線の照射部分と、未照射部分との屈折率差を確実に生じさせることができる。 The monomer having an oxetanyl group and the oligomer having an oxetanyl group have a slow initiation reaction for initiating polymerization but a fast growth reaction. On the other hand, a monomer having an epoxy group and an oligomer having an epoxy group have a fast initiation reaction for initiating polymerization, but have a slow growth reaction. Therefore, by using a monomer having an oxetanyl group, an oligomer having an oxetanyl group, a monomer having an epoxy group, and an oligomer having an epoxy group, when irradiated with light or actinic radiation, a portion irradiated with light or actinic radiation And a refractive index difference with an unirradiated part can be produced reliably.
 この(B)成分の添加量は、(A)成分100重量部に対し、1重量部以上、50重量部以下であることが好ましく、2重量部以上、20重量部以下であることがより好ましい。これにより、コア/クラッド間の屈折率変調を可能にし、可撓性と耐熱性との両立が図れるという効果がある。 The addition amount of the component (B) is preferably 1 part by weight or more and 50 parts by weight or less, more preferably 2 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the component (A). . Thereby, the refractive index modulation between the core and the clad is possible, and there is an effect that both flexibility and heat resistance can be achieved.
 ((C)光酸発生剤)
 光酸発生剤としては、光(活性放射線)のエネルギーを吸収してブレンステッド酸あるいはルイス酸を生成するものであればよく、例えば、トリフェニルスルフォニウムトリフルオロメタンスルホネート、トリス(4-t-ブチルフェニル)スルホニウム-トリフルオロメタンスルホネートなどのスルホニウム塩類、p-ニトロフェニルジアゾニウムヘキサフルオロホスフェートなどのジアゾニウム塩類、アンモニウム塩類、ホスホニウム塩類、ジフェニルヨードニウムトリフルオロメタンスルホネート、(トリキュミル)ヨードニウム-テトラキス(ペンタフルオロフェニル)ボレートなどのヨードニウム塩類、キノンジアジド類、ビス(フェニルスルホニル)ジアゾメタンなどのジアゾメタン類、1-フェニル-1-(4-メチルフェニル)スルホニルオキシ-1-ベンゾイルメタン、N-ヒドロキシナフタルイミド-トリフルオロメタンサルホネートなどのスルホン酸エステル類、ジフェニルジスルホンなどのジスルホン類、トリス(2,4,6-トリクロロメチル)-s-トリアジン、2-(3.4-メチレンジオキシフェニル)-4,6-ビス-(トリクロロメチル)-s-トリアジンなどのトリアジン類などの化合物を挙げることができる。これらの光酸発生剤は、単独、または複数を組み合わせて使用することができる。
((C) Photoacid generator)
Any photoacid generator may be used as long as it can generate Bronsted acid or Lewis acid by absorbing light (active radiation) energy. For example, triphenylsulfonium trifluoromethanesulfonate, tris (4-t-butyl) can be used. Sulfonium salts such as phenyl) sulfonium-trifluoromethanesulfonate, diazonium salts such as p-nitrophenyldiazonium hexafluorophosphate, ammonium salts, phosphonium salts, diphenyliodonium trifluoromethanesulfonate, (triccumyl) iodonium-tetrakis (pentafluorophenyl) borate, etc. Iazonium salts, quinonediazides, diazomethanes such as bis (phenylsulfonyl) diazomethane, 1-phenyl-1- (4-methylpheny ) Sulfonic acid esters such as sulfonyloxy-1-benzoylmethane, N-hydroxynaphthalimide-trifluoromethanesulfonate, disulfones such as diphenyldisulfone, tris (2,4,6-trichloromethyl) -s-triazine, 2 Mention may be made of compounds such as triazines such as-(3.4-methylenedioxyphenyl) -4,6-bis- (trichloromethyl) -s-triazine. These photoacid generators can be used alone or in combination.
 光酸発生剤の含有量は、(A)成分100重量部に対し0.01重量部以上、0.3重量部以下であることが好ましく、0.02重量部以上、0.2重量部以下であることがより好ましい。これにより、反応性の向上という効果がある。 The content of the photoacid generator is preferably 0.01 parts by weight or more and 0.3 parts by weight or less with respect to 100 parts by weight of the component (A), and is 0.02 parts by weight or more and 0.2 parts by weight or less. It is more preferable that Thereby, there exists an effect of a reactive improvement.
 感光性樹脂組成物は、以上の(A)、(B)、(C)の成分に加えて、増感剤等の添加剤を含有していてもよい。 The photosensitive resin composition may contain additives such as a sensitizer in addition to the above components (A), (B), and (C).
 増感剤は、光(活性放射線)に対する光酸発生剤の感度を増大して、光酸発生剤の活性化(反応または分解)に要する時間やエネルギーを減少させる機能や、光酸発生剤の活性化に適する波長に光(活性放射線)の波長を変化させる機能を有するものである。 The sensitizer increases the sensitivity of the photoacid generator to light (actinic radiation), reduces the time and energy required to activate (react or decompose) the photoacid generator, It has a function of changing the wavelength of light (active radiation) to a wavelength suitable for activation.
 このような増感剤としては、光酸発生剤の感度や増感剤の吸収のピーク波長に応じて適宜選択され、特に限定されないが、たとえば、9,10-ジブトキシアントラセン(CAS番号第76275-14-4番)のようなアントラセン類、キサントン類、アントラキノン類、フェナントレン類、クリセン類、ベンツピレン類、フルオラセン類(fluoranthenes)、ルブレン類、ピレン類、インダンスリーン類、チオキサンテン-9-オン類(thioxanthen-9-ones)等が挙げられ、これらを単独または混合物として用いることができる。 Such a sensitizer is appropriately selected according to the sensitivity of the photoacid generator and the peak wavelength of absorption of the sensitizer, and is not particularly limited. For example, 9,10-dibutoxyanthracene (CAS No. 76275) is selected. -14-4) anthracenes, xanthones, anthraquinones, phenanthrenes, chrysene, benzpyrenes, fluoranthenes, rubrenes, pyrenes, indanthrines, thioxanthen-9-one (Thioxanthen-9-ones) and the like, and these can be used alone or as a mixture.
 増感剤の具体例としては、例えば、2-イソプロピル-9H-チオキサンテン-9-オン、4-イソプロピル-9H-チオキサンテン-9-オン、1-クロロ-4-プロポキシチオキサントン、フェノチアジン(phenothiazine)またはこれらの混合物が挙げられる。 Specific examples of the sensitizer include, for example, 2-isopropyl-9H-thioxanthen-9-one, 4-isopropyl-9H-thioxanthen-9-one, 1-chloro-4-propoxythioxanthone, phenothiazine Or a mixture thereof.
 増感剤の含有量は、感光性樹脂組成物中で、0.01重量%以上であるのが好ましく、0.5重量%以上であるのがより好ましく、1重量%以上であるのがさらに好ましい。なお、上限値は、5重量%以下であるのが好ましい。 The content of the sensitizer in the photosensitive resin composition is preferably 0.01% by weight or more, more preferably 0.5% by weight or more, and further preferably 1% by weight or more. preferable. In addition, it is preferable that an upper limit is 5 weight% or less.
 さらに、コア層形成用材料1900中には、酸化防止剤を添加することができる。これにより、望ましくないフリーラジカルの発生や、ポリマー1915の自然酸化を防止することができる。その結果、得られたコア層1093(光導波路1009)の特性の向上を図ることができる。 Furthermore, an antioxidant can be added to the core layer forming material 1900. Thereby, generation of undesired free radicals and natural oxidation of the polymer 1915 can be prevented. As a result, the characteristics of the obtained core layer 1093 (optical waveguide 1009) can be improved.
 この酸化防止剤としては、ニューヨーク州タリータウンのCiba Specialty Chemicals社から入手可能なCiba(登録商標、以下同様である。) IRGANOX(登録商標、以下同様である。) 1076およびCiba IRGAFOS(登録商標、以下同様である。) 168が好適に用いられる。 Examples of the antioxidant include Ciba (registered trademark, the same applies hereinafter) IRGANOX (registered trademark, the same applies hereinafter) 1076 and Ciba IRGAFOS (registered trademark, available) from Ciba Specialty Chemicals of Tarrytown, New York. The same applies hereinafter.) 168 is preferably used.
 また、他の酸化防止剤としては、例えば、Ciba Irganox(登録商標、以下同様である。) 129、Ciba Irganox 1330、Ciba Irganox 1010、Ciba Cyanox(登録商標、以下同様である。) 1790、Ciba Irganox(登録商標) 3114、Ciba Irganox 3125等を用いることもできる。 Other antioxidants include, for example, Ciba Irganox (registered trademark, hereinafter the same) 129, Ciba Irganox 1330, Ciba Irganox 1010, Ciba Cyanox (registered trademark, the same applies below) 1790, CibaI. (Registered trademark) 3114, Ciba Irganox 3125, etc. can also be used.
 なお、このような酸化防止剤は、例えば、フィルム1910が酸化条件に曝されない場合や、される期間が極めて短い場合等には、省略することもできる。 It should be noted that such an antioxidant can be omitted, for example, when the film 1910 is not exposed to oxidation conditions or when the period of time is extremely short.
 以上の感光性樹脂組成物のうち、成分(A)として側鎖に脱離性基を有する環状オレフィン樹脂と、成分(C)の光酸発生剤と、成分(B)として下記式(100)に記載の第1モノマーと、を含む感光性樹脂組成物が特に好ましい。 Among the above photosensitive resin compositions, the cyclic olefin resin having a leaving group in the side chain as the component (A), the photoacid generator of the component (C), and the following formula (100) as the component (B) The photosensitive resin composition containing the 1st monomer as described in above is especially preferable.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 以下、特に好ましいこの感光性樹脂組成物について説明する。
 前記側鎖に脱離性基を有する環状オレフィン樹脂を構成する環状オレフィン樹脂(A)としては、前述したようなものを使用できるが、例えばシクロヘキセン、シクロオクテン等の単環体モノマーの重合体、ノルボルネン、ノルボルナジエン、ジシクロペンタジエン、ジヒドロジシクロペンタジエン、テトラシクロドデセン、トリシクロペンタジエン、ジヒドロトリシクロペンタジエン、テトラシクロペンタジエン、ジヒドロテトラシクロペンタジエン等の多環体モノマーの重合体等が挙げられる。これらの中でも多環体モノマーの重合体の中から選ばれる1種以上の環状オレフィン樹脂が好ましく用いられる。これにより、樹脂の耐熱性を向上することができる。
Hereinafter, this particularly preferable photosensitive resin composition will be described.
As the cyclic olefin resin (A) constituting the cyclic olefin resin having a leaving group in the side chain, those described above can be used. For example, a polymer of a monocyclic monomer such as cyclohexene or cyclooctene, Examples include polymers of polycyclic monomers such as norbornene, norbornadiene, dicyclopentadiene, dihydrodicyclopentadiene, tetracyclododecene, tricyclopentadiene, dihydrotricyclopentadiene, tetracyclopentadiene, and dihydrotetracyclopentadiene. Among these, one or more cyclic olefin resins selected from polymers of polycyclic monomers are preferably used. Thereby, the heat resistance of resin can be improved.
 なお、重合形態としては、ランダム重合、ブロック重合等の公知の形態を適用することができる。例えばノルボルネン型モノマーの重合の具体例としては、ノルボルネン型モノマーの(共)重合体、ノルボルネン型モノマーとα-オレフィン類などの共重合可能な他のモノマーとの共重合体、およびこれらの共重合体の水素添加物などが具体例に該当する。これら環状オレフィン樹脂は、公知の重合法により製造することが可能であり、その重合方法には付加重合法と開環重合法とがあり、前述の中でも付加重合法で得られる環状オレフィン樹脂(特にノルボルネン系樹脂)が好ましい(すなわち、ノルボルネン系化合物の付加重合体)。これにより、透明性、耐熱性および可撓性に優れる。 In addition, as polymerization forms, known forms such as random polymerization and block polymerization can be applied. For example, specific examples of polymerization of norbornene monomers include (co) polymers of norbornene monomers, copolymers of norbornene monomers and other copolymerizable monomers such as α-olefins, A combined hydrogenated product corresponds to a specific example. These cyclic olefin resins can be produced by a known polymerization method. The polymerization methods include an addition polymerization method and a ring-opening polymerization method. Norbornene resin) is preferable (that is, an addition polymer of a norbornene compound). Thereby, it is excellent in transparency, heat resistance, and flexibility.
 前記脱離性基としては、光酸発生剤から発生する酸(H)の作用により分子の一部が切断されて離脱するものである。具体的には、分子構造中(側鎖)に、前述したような-O-構造、-Si-アリール構造および-O-Si-構造のうちの少なくとも1つを有するものが好ましい。上述したような離脱性基は、酸(H)の作用により比較的容易に離脱する。 As the leaving group, a part of the molecule is cleaved by the action of an acid (H + ) generated from a photoacid generator, and then leaves. Specifically, those having at least one of the above-described —O— structure, —Si-aryl structure and —O—Si— structure in the molecular structure (side chain) are preferable. The leaving group as described above is released relatively easily by the action of acid (H + ).
 上述した脱離性基の中でも離脱により樹脂の屈折率に低下を生じさせる離脱性基としては、-Si-ジフェニル構造および-O-Si-ジフェニル構造の少なくとも一方が好ましい。 Among the above-mentioned leaving groups, the leaving group that causes a decrease in the refractive index of the resin by leaving is preferably at least one of a -Si-diphenyl structure and a -O-Si-diphenyl structure.
 前記脱離性基の含有量は、特に限定されないが、前記側鎖に脱離性基を有する環状オレフィン樹脂中の10~80重量%であるのが好ましく、特に20~60重量%であるのがより好ましい。含有量が前記範囲内であると、特に可撓性と屈折率変調機能(屈折率差を大きくする効果)との両立に優れる。 The content of the leaving group is not particularly limited, but is preferably 10 to 80% by weight, particularly 20 to 60% by weight in the cyclic olefin resin having a leaving group in the side chain. Is more preferable. When the content is within the above range, it is particularly excellent in both flexibility and refractive index modulation function (effect of increasing the refractive index difference).
 このような側鎖に脱離性基を有する環状オレフィン樹脂としては、下記式(101)および/または下記式(102)で示される繰り返し単位を有するものが好ましい。これにより、樹脂の屈折率を高くすることができる。 As such a cyclic olefin resin having a leaving group in the side chain, one having a repeating unit represented by the following formula (101) and / or the following formula (102) is preferable. Thereby, the refractive index of resin can be made high.
Figure JPOXMLDOC01-appb-C000046
 (式101においてnは、0以上、9以下の整数である。)
Figure JPOXMLDOC01-appb-C000046
(In Formula 101, n is an integer of 0 or more and 9 or less.)
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 前記感光性樹脂組成物は、上記式(100)に記載のモノマー(以下、第1モノマーという)を含む。これにより、さらに左右のコア/クラッド間の屈折率差を拡大することができる。 The photosensitive resin composition contains a monomer described in the above formula (100) (hereinafter referred to as a first monomer). Thereby, the refractive index difference between the left and right cores / claddings can be further expanded.
 第1モノマーの含有量は、特に限定されないが、前記側鎖に脱離性基を有する環状オレフィン樹脂100重量部に対して1重量部以上、50重量部以下であることが好ましく、特に2重量部以上、20重量部以下であることが好ましい。これにより、コア/クラッド間の屈折率変調を可能にし、可撓性と耐熱性との両立が図られる。 The content of the first monomer is not particularly limited, but is preferably 1 part by weight or more and 50 parts by weight or less, particularly 2 parts by weight, based on 100 parts by weight of the cyclic olefin resin having a leaving group in the side chain. It is preferable that it is 20 parts by weight or more. Thereby, the refractive index modulation between the core / cladding is made possible, and both flexibility and heat resistance can be achieved.
 このように、上述した第1モノマーを側鎖に脱離性基を有する環状オレフィン樹脂と併用した場合に、コア/クラッド間の屈折率変調と、可撓性とのバランスに優れることの理由は、以下の通りと考えられる。 Thus, when the first monomer described above is used in combination with a cyclic olefin resin having a leaving group in the side chain, the reason for excellent balance between the refractive index modulation between the core and the clad and flexibility is as follows. It is considered as follows.
 まず、以上のような感光性樹脂組成物を用いた場合に、コア/クラッド間の屈折率変調に優れるのは、光(活性放射線)照射等によって発生した酸により、第1モノマーが重合反応を開始するとき、第1モノマーがその反応性に優れているからである。第1モノマーの反応性が優れていると、第1モノマーの硬化性が高くなり、第1モノマーの濃度勾配によって生じる第1モノマーの拡散性が向上する。それによって、光(活性放射線)照射領域と、未照射領域との屈折率差を大きくすることができる。 First, when the photosensitive resin composition as described above is used, the reason that the refractive index modulation between the core and the clad is excellent is that the first monomer undergoes a polymerization reaction by an acid generated by light (active radiation) irradiation or the like. This is because the first monomer is excellent in its reactivity when starting. When the reactivity of the first monomer is excellent, the curability of the first monomer is increased, and the diffusibility of the first monomer caused by the concentration gradient of the first monomer is improved. Thereby, the refractive index difference between the light (active radiation) irradiation region and the non-irradiation region can be increased.
 また、第1モノマーは一官能であるために、重合反応が進行して感光性樹脂組成物としての架橋密度はそれほど高くはならない。そのため、可撓性にも優れている。 Further, since the first monomer is monofunctional, the polymerization reaction proceeds and the crosslinking density as the photosensitive resin composition does not increase so much. Therefore, it is excellent in flexibility.
 前記感光性樹脂組成物は、特に限定されないが、前記第1モノマーと異なる第2モノマーを含んでいてもよい。なお、前記第1モノマーと異なる第2モノマーとは、構造が異なるモノマーでもよく、分子量が異なるモノマーでもよい。 The photosensitive resin composition is not particularly limited, but may contain a second monomer different from the first monomer. The second monomer different from the first monomer may be a monomer having a different structure or a monomer having a different molecular weight.
 なかでも、第2モノマーは、成分(B)として含まれており、例えばエポキシ化合物、式(100)で示されるものと異なる他のオキセタン化合物、ビニルエーテル化合物等が挙げられる。これらの中でもエポキシ化合物(特に脂環式エポキシ化合物)および2官能のオキセタン化合物(オキセタニル基を2つ有するモノマー)の少なくとも1種が好ましい。これにより、前記第1モノマーと前記環状オレフィン樹脂との反応性を向上させることができ、それによって透明性を保持しつつ、導波路の耐熱性を向上させることができる。 Among these, the second monomer is contained as the component (B), and examples thereof include epoxy compounds, other oxetane compounds different from those represented by the formula (100), vinyl ether compounds, and the like. Among these, at least one of an epoxy compound (particularly an alicyclic epoxy compound) and a bifunctional oxetane compound (a monomer having two oxetanyl groups) is preferable. Thereby, the reactivity of the first monomer and the cyclic olefin resin can be improved, whereby the heat resistance of the waveguide can be improved while maintaining transparency.
 第2モノマーとしては、具体的には、上記式(15)の化合物、上記式(12)の化合物、上記式(11)の化合物、上記式(18)の化合物、上記式(19)の化合物、上記式(34)~(39)の化合物が挙げられる。 Specifically, the second monomer includes the compound of the above formula (15), the compound of the above formula (12), the compound of the above formula (11), the compound of the above formula (18), and the compound of the above formula (19). And compounds of the above formulas (34) to (39).
 前記第2モノマーの含有量は、特に限定されないが、前記環状オレフィン樹脂100重量部に対して1重量部以上、50重量部以下であることが好ましく、特に2重量部以上、20重量部以下であることがより好ましい。これにより、前記第1モノマーとの反応性を向上させることができる。 The content of the second monomer is not particularly limited, but is preferably 1 part by weight or more and 50 parts by weight or less, particularly 2 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the cyclic olefin resin. More preferably. Thereby, the reactivity with the first monomer can be improved.
 また、前記第2モノマーと前記第1モノマーとの併用割合も特に限定されないが、重量比(前記第2モノマーの重量/前記第1モノマーの重量)で、0.1~1が好ましく、特に0.1~0.6が好ましい。併用割合が前記範囲内であると、反応性の速さと導波路の耐熱性とのバランスに優れる。 Further, the combined ratio of the second monomer and the first monomer is not particularly limited, but is preferably 0.1 to 1, particularly preferably 0 by weight ratio (weight of the second monomer / weight of the first monomer). .1 to 0.6 is preferable. When the combined ratio is within the above range, the balance between the speed of reactivity and the heat resistance of the waveguide is excellent.
 光酸発生剤の含有量は、特に限定されないが、前記側鎖に脱離性基を有する環状オレフィン系樹脂100重量部に対して0.01重量部以上、0.3重量部以下であることが好ましく、特に0.02重量部以上、0.2重量部以下であることがより好ましい。含有量が下限値未満であると反応性が低下する場合があり、前記上限値を超えると光導波路に着色が生じて光損失が低下する場合がある。 Although content of a photo-acid generator is not specifically limited, It is 0.01 weight part or more and 0.3 weight part or less with respect to 100 weight part of cyclic olefin resin which has a leaving group in the said side chain. In particular, it is more preferably 0.02 parts by weight or more and 0.2 parts by weight or less. If the content is less than the lower limit, the reactivity may decrease, and if the content exceeds the upper limit, the optical waveguide may be colored and light loss may decrease.
 前記感光性樹脂組成物は、上述した環状オレフィン系樹脂、光酸発生剤、第1モノマーおよび第2モノマー以外に、硬化触媒、酸化防止剤等を含んでいてもよい。 The photosensitive resin composition may contain a curing catalyst, an antioxidant and the like in addition to the above-mentioned cyclic olefin resin, photoacid generator, first monomer and second monomer.
 また、本発明に用いられる感光性樹脂組成物は、コア部94の形成用の組成物として用いることができる。 The photosensitive resin composition used in the present invention can be used as a composition for forming the core portion 94.
(光導波路の製造方法)
 図16~18、28、29、30、38、39、40は、それぞれ、光導波路の製造方法の工程例を模式的に示す断面図である。
(Optical waveguide manufacturing method)
16 to 18, 28, 29, 30, 38, 39, and 40 are cross-sectional views schematically showing process examples of the method for manufacturing an optical waveguide, respectively.
 ここでは、成分(B)が成分(A)の環状オレフィン樹脂よりも屈折率が低いものである場合の感光性樹脂組成物を用いて光導波路を製造する方法を例にして説明する。なお、光導波路9’の製造方法は、光導波路9と同様であるため、光導波路9で代表する。 Here, a method for producing an optical waveguide using a photosensitive resin composition when the component (B) has a lower refractive index than the cyclic olefin resin of the component (A) will be described as an example. The method for manufacturing the optical waveguide 9 ′ is the same as that of the optical waveguide 9, and is represented by the optical waveguide 9.
 まず、図16(A)、28(A)、38(A)に示すように、感光性樹脂組成物を溶媒に溶かしてワニス900、1900、2900(以下、ワニス900とも表記する)を調製し、このワニス900をクラッド層91、1091、2091(以下、クラッド層91とも表記する)上に塗布する。 First, as shown in FIGS. 16 (A), 28 (A), and 38 (A), the photosensitive resin composition is dissolved in a solvent to prepare varnishes 900, 1900, and 2900 (hereinafter also referred to as varnish 900). The varnish 900 is applied on the cladding layers 91, 1091, and 2091 (hereinafter also referred to as the cladding layer 91).
 感光性樹脂組成物をワニス状に調製する溶媒としては、たとえば、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン(DME)、1,4-ジオキサン、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)、アニソール、ジエチレングリコールジメチルエーテル(ジグリム)、ジエチレングリコールエチルエーテル(カルビトール)などのエーテル系溶媒、メチルセロソルブ、エチルセロソルブ、フェニルセロソルブなどのセロソルブ系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサンなどの脂肪族炭化水素系溶媒、トルエン、キシレン、ベンゼン、メシチレンなどの芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン、ピロール、チオフェン、メチルピロリドンなどの芳香族複素環化合物系溶媒、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)などのアミド系溶媒、ジクロロメタン、クロロホルム、1,2-ジクロロエタンなどのハロゲン化合物系溶媒、酢酸エチル、酢酸メチル、ギ酸エチルなどのエステル系溶媒、ジメチルスルホキシド(DMSO)、スルホランなどの硫黄化合物系溶媒の各種有機溶媒、または、これらを含む混合溶媒が挙げられる。 Examples of the solvent for preparing the photosensitive resin composition in a varnish form include diethyl ether, diisopropyl ether, 1,2-dimethoxyethane (DME), 1,4-dioxane, tetrahydrofuran (THF), tetrahydropyran (THP), Ether solvents such as anisole, diethylene glycol dimethyl ether (diglyme), diethylene glycol ethyl ether (carbitol), cellosolv solvents such as methyl cellosolve, ethyl cellosolve, phenyl cellosolve, aliphatic hydrocarbon solvents such as hexane, pentane, heptane, cyclohexane , Aromatic hydrocarbon solvents such as toluene, xylene, benzene and mesitylene, and aromatic heterocyclic compounds such as pyridine, pyrazine, furan, pyrrole, thiophene and methylpyrrolidone Amide solvents such as N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMA), halogenated solvents such as dichloromethane, chloroform and 1,2-dichloroethane, ethyl acetate, methyl acetate, ethyl formate And various organic solvents such as a sulfur compound solvent such as dimethyl sulfoxide (DMSO) and sulfolane, or a mixed solvent containing them.
 次に、光導波路9のクラッド層91上にワニス900を塗布した後、乾燥させて、溶媒を蒸発(脱溶媒)させる。これにより、図16(B)、28(B)、38(B)に示すように、ワニス900は、光導波路形成用のフィルム910となる。このフィルム910は、後述する光の照射により、コア部94とクラッド部95、1095、2095(以下、クラッド部95とも表記する)とが形成されたコア層93、1093、2093(以下、コア層93とも表記する)となる。 Next, after applying the varnish 900 on the clad layer 91 of the optical waveguide 9, it is dried and the solvent is evaporated (desolvent). Thereby, as shown in FIGS. 16B, 28B, and 38B, the varnish 900 becomes a film 910 for forming an optical waveguide. This film 910 has core layers 93, 1093, and 2093 (hereinafter referred to as core layers) in which a core portion 94 and clad portions 95, 1095, and 2095 (hereinafter also referred to as cladding portions 95) are formed by light irradiation, which will be described later. 93).
 ここで、ワニス900を塗布する方法としては、たとえば、ドクターブレード法、スピンコート法、ディッピング法、テーブルコート法、スプレー法、アプリケーター法、カーテンコート法、ダイコート法の方法が挙げられるが、これらに限定されるわけではない。クラッド層91としては、たとえば、後述するコア部94よりも屈折率が低いシートが使用され、たとえば、ノルボルネン系樹脂と、エポキシ樹脂とを含むシートが使用される。 Here, examples of the method of applying the varnish 900 include a doctor blade method, a spin coating method, a dipping method, a table coating method, a spray method, an applicator method, a curtain coating method, and a die coating method. It is not limited. As the clad layer 91, for example, a sheet having a refractive index lower than that of a core portion 94 described later is used, and for example, a sheet containing a norbornene-based resin and an epoxy resin is used.
 次に、フィルム910に対し、選択的に光、活性放射線(たとえば、紫外線)を照射する。
 この際、図17(A)、29(A)、39(Aに示すように、フィルム910、1910、2910(以下、フィルム910とも表記する)の上方に開口が形成されたマスクMを配置する。このマスクMの開口を介して、フィルム910に対し、光(活性放射線)を照射する。
Next, the film 910 is selectively irradiated with light and actinic radiation (for example, ultraviolet rays).
At this time, as shown in FIGS. 17A, 29A, and 39 (A, as shown in FIG. 17A, a mask M in which an opening is formed is disposed above films 910, 1910, and 2910 (hereinafter also referred to as film 910). The film 910 is irradiated with light (active radiation) through the opening of the mask M.
 用いられる光(活性放射線)としては、例えば、波長200~450nmの範囲にピーク波長を有するものが挙げられる。これにより、光酸発生剤の組成にもよるが、光酸発生剤を比較的容易に活性化させることができる。
 前記マスクMの構成材料としては、照射する活性放射線により適宜選定される。具体的には、マスクMの構成材料としては、前記フィルム910に照射する活性放射線を遮光し得る材料とされる。このような特性を有するものであれば、マスクMの材料自体は、公知のいずれのものも使用することができる。
Examples of the light (active radiation) used include those having a peak wavelength in the wavelength range of 200 to 450 nm. Thereby, although depending on the composition of the photoacid generator, the photoacid generator can be activated relatively easily.
The constituent material of the mask M is appropriately selected depending on the active radiation to be irradiated. Specifically, the constituent material of the mask M is a material that can block the active radiation applied to the film 910. Any known material can be used for the mask M as long as it has such characteristics.
 マスクMは、予め形成(別途形成)されたもの(例えばプレート状のもの)でも、フィルム910上に例えば気相成膜法や塗布法により形成されたものでもよい。 The mask M may be formed in advance (separately formed) (for example, plate-shaped) or may be formed on the film 910 by, for example, a vapor deposition method or a coating method.
 マスクMとして好ましいものの例としては、石英ガラスやPET基材等で作製されたフォトマスク、ステンシルマスク、気相成膜法(蒸着、スパッタリング等)により形成された金属薄膜等が挙げられるが、これらの中でもフォトマスクやステンシルマスクを用いるのが特に好ましい。微細なパターンを精度良く形成することができるとともに、ハンドリングがし易く、生産性の向上に有利であるからである。 Preferred examples of the mask M include photomasks made of quartz glass and PET base materials, stencil masks, metal thin films formed by vapor deposition methods (evaporation, sputtering, etc.), etc. Among these, it is particularly preferable to use a photomask or a stencil mask. This is because a fine pattern can be formed with high accuracy, and handling is easy, which is advantageous in improving productivity.
 また、光(活性放射線)の照射量は、特に限定されないが、0.1~9J/cm程度であるのが好ましく、0.2~6J/cm程度であるのがより好ましく、0.2~3J/cm程度であるのがさらに好ましい。 The irradiation amount of light (active radiation) is not particularly limited, but is preferably about 0.1 to 9 J / cm 2 , more preferably about 0.2 to 6 J / cm 2 , and More preferably, it is about 2 to 3 J / cm 2 .
 なお、レーザー光のように指向性の高い光(活性放射線)を用いる場合には、マスクMの使用を省略することもできる。 Note that the use of the mask M can be omitted when highly directional light (active radiation) such as laser light is used.
 フィルム910のうち、光(活性放射線)が照射された領域では、光酸発生剤から酸が発生することとなる。発生した酸により、成分(B)が重合する。 In the region of the film 910 irradiated with light (active radiation), acid is generated from the photoacid generator. The component (B) is polymerized by the generated acid.
 光(活性放射線)が照射されていない領域では、光酸発生剤から酸が発生しないため、成分(B)は重合しない。照射部分では、成分(B)が重合しポリマーとなるため、成分(B)量が少なくなる。これに応じて、未照射部分の成分(B)が照射部分に拡散し、これにより、照射部分と未照射部分とで屈折率差が生じる。 In the region not irradiated with light (active radiation), no acid is generated from the photoacid generator, so component (B) does not polymerize. In the irradiated part, since the component (B) is polymerized to become a polymer, the amount of the component (B) is reduced. In response to this, the component (B) of the unirradiated part diffuses into the irradiated part, thereby causing a difference in refractive index between the irradiated part and the unirradiated part.
 ここで、成分(B)が、環状オレフィン樹脂よりも屈折率が低い場合には、未照射部分の成分(B)が照射部分に拡散することで、未照射部分の屈折率が高くなるとともに、照射部分の屈折率は低くなる。 Here, when the component (B) has a lower refractive index than the cyclic olefin resin, the component (B) of the unirradiated part diffuses into the irradiated part, and the refractive index of the unirradiated part increases. The refractive index of the irradiated part is lowered.
 なお、成分(B)が重合したポリマーと、環状エーテル基を有するモノマーとの屈折率差は、0以上、0.001以下程度であり、屈折率は略同じであると考えられる。 Note that the refractive index difference between the polymer obtained by polymerizing the component (B) and the monomer having a cyclic ether group is about 0 or more and 0.001 or less, and the refractive index is considered to be substantially the same.
 このような感光性樹脂組成物を使用した場合には、光酸発生剤から発生する酸により、成分(B)の重合を開始させることが可能である。 When such a photosensitive resin composition is used, it is possible to initiate polymerization of the component (B) with an acid generated from a photoacid generator.
 さらに、本発明に用いられる環状オレフィン樹脂は必ずしも脱離性基を有していなくてもよいが、成分(A)として、脱離性基を有する環状オレフィン樹脂を使用している場合には、以下の作用が生じる。 Furthermore, the cyclic olefin resin used in the present invention does not necessarily have a leaving group, but when a cyclic olefin resin having a leaving group is used as the component (A), The following effects occur.
 光(活性放射線)を照射した部分では、光酸発生剤から発生した酸により、環状オレフィン樹脂の脱離性基が脱離することとなる。-Si-アリール構造、-Si-ジフェニル構造および-O-Si-ジフェニル構造等の脱離性基の場合、離脱により樹脂の屈折率が低下することとなる。そのため、照射部分の屈折率は脱離性基の脱離前に比べてさらに低下することとなる。 In the portion irradiated with light (active radiation), the leaving group of the cyclic olefin resin is eliminated by the acid generated from the photoacid generator. In the case of a leaving group such as a —Si-aryl structure, —Si-diphenyl structure, and —O—Si-diphenyl structure, the refractive index of the resin decreases due to the leaving. Therefore, the refractive index of the irradiated portion is further lowered as compared with that before the leaving group is removed.
 次に、フィルム910を加熱する。この加熱工程において、光(活性放射線)を照射した照射部分の成分(B)がさらに重合する。一方で、この加熱工程において、未照射部分の成分(B)は揮発することとなる。これにより、未照射部分では、成分(B)が少なくなり、環状オレフィン樹脂に近い屈折率となる。 Next, the film 910 is heated. In this heating step, the component (B) of the irradiated portion irradiated with light (active radiation) is further polymerized. On the other hand, in this heating step, the component (B) in the unirradiated part is volatilized. Thereby, in an unirradiated part, a component (B) decreases and it becomes a refractive index close | similar to cyclic olefin resin.
 このフィルム910においては、図17(B)、29(B)、39(B)に示すように、光(活性放射線)が照射された領域がクラッド部95となり、未照射領域がコア部94となる。コア部94における前記成分(B)由来の構造体濃度と、クラッド部95における前記成分(B)由来の構造体濃度とが異なる。具体的には、コア部94における成分(B)由来の構造体濃度は、クラッド部95における成分(B)由来の構造体濃度より低い。 In this film 910, as shown in FIGS. 17 (B), 29 (B), and 39 (B), a region irradiated with light (active radiation) becomes a clad portion 95, and an unirradiated region is a core portion 94. Become. The structure concentration derived from the component (B) in the core portion 94 and the structure concentration derived from the component (B) in the cladding portion 95 are different. Specifically, the structure concentration derived from the component (B) in the core portion 94 is lower than the structure concentration derived from the component (B) in the cladding portion 95.
 また、クラッド部95は、コア部94よりも屈折率が低くなり、クラッド部95とコア部94との屈折率差は、0.01以上となる。以上のようにして、フィルム910には、コア部94とクラッド部95とが形成され、コア層93が得られる。 Further, the clad part 95 has a lower refractive index than the core part 94, and the refractive index difference between the clad part 95 and the core part 94 is 0.01 or more. As described above, the core portion 94 and the clad portion 95 are formed on the film 910, and the core layer 93 is obtained.
 この加熱工程における加熱温度は、特に限定されないが、30~180℃程度であるのが好ましく、40~160℃程度であるのがより好ましい。 The heating temperature in this heating step is not particularly limited, but is preferably about 30 to 180 ° C., more preferably about 40 to 160 ° C.
 また、加熱時間は、光(活性放射線)を照射した照射部分の成分(B)の重合反応がほぼ完了するように設定するのが好ましく、具体的には、0.1~2時間程度であるのが好ましく、0.1~1時間程度であるのがより好ましい。 The heating time is preferably set so that the polymerization reaction of the component (B) of the irradiated portion irradiated with light (active radiation) is almost completed, specifically about 0.1 to 2 hours. It is more preferable that the time is about 0.1 to 1 hour.
 その後、このコア層93上に、クラッド層91と同様のフィルムを貼り付ける。このフィルムがクラッド層92、1092、2092(以下、クラッド層92とも表記する)となる。一対のクラッド層91、92は、クラッド部95とは異なる方向から、コア部94を挟むように配置されることとなる。 Thereafter, a film similar to that of the clad layer 91 is stuck on the core layer 93. This film becomes the clad layers 92, 1092, and 2092 (hereinafter also referred to as the clad layer 92). The pair of clad layers 91 and 92 are arranged so as to sandwich the core portion 94 from a direction different from the clad portion 95.
 なお、クラッド層92は、フィルム状のものを貼り付けるのではなく、コア層93上に液状材料を塗布し硬化(固化)させる方法によっても形成することができる。 The clad layer 92 can also be formed by a method of applying a liquid material on the core layer 93 and curing (solidifying) it, instead of attaching a film-like one.
 クラッド層91(92)の形成方法としては、クラッド材を含むワニス(クラッド層形成用材料)を塗布し硬化(固化)させる方法、硬化性を有するモノマー組成物を塗布し硬化(固化)させる方法等、いかなる方法でもよい。 As a method for forming the clad layer 91 (92), a method in which a varnish containing a clad material (clad layer forming material) is applied and cured (solidified), and a method in which a curable monomer composition is applied and cured (solidified). Any method may be used.
 クラッド層91(92)を塗布法で形成する場合、例えば、スピンコート法、ディッピング法、テーブルコート法、スプレー法、アプリケーター法、カーテンコート法、ダイコート法等の方法が挙げられる。 When the clad layer 91 (92) is formed by a coating method, examples thereof include a spin coating method, a dipping method, a table coating method, a spray method, an applicator method, a curtain coating method, and a die coating method.
 クラッド層91(92)の構成材料としては、例えば、アクリル系樹脂、メタクリル系樹脂、ポリカーボネート、ポリスチレン、エポキシ樹脂、ポリアミド、ポリイミド、ポリベンゾオキサゾール、ベンゾシクロブテン系樹脂やノルボルネン系樹脂等の環状オレフィン系樹脂等が挙げられ、これらのうちの1種または2種以上を組み合わせて(ポリマーアロイ、ポリマーブレンド(混合物)、共重合体、複合体(積層体)など)用いることができる。 Examples of the constituent material of the clad layer 91 (92) include cyclic resins such as acrylic resin, methacrylic resin, polycarbonate, polystyrene, epoxy resin, polyamide, polyimide, polybenzoxazole, benzocyclobutene resin, and norbornene resin. These resins can be used, and one or more of these can be used in combination (polymer alloy, polymer blend (mixture), copolymer, composite (laminate), etc.).
 これらのうち、特に耐熱性に優れるという点で、エポキシ樹脂、ポリイミド、ポリベンゾオキサゾール、ベンゾシクロブテン系樹脂やノルボルネン系樹脂等の環状オレフィン系樹脂、またはそれらを含むもの(主とするもの)を用いるのが好ましく、特に、ノルボルネン系樹脂(ノルボルネン系ポリマー)を主とするものが好ましい。 Of these, epoxy resins, polyimides, polybenzoxazoles, cyclic olefin resins such as benzocyclobutene resins and norbornene resins, and those containing them (mainly) in terms of particularly excellent heat resistance It is preferable to use, and particularly, those mainly composed of norbornene-based resins (norbornene-based polymers) are preferable.
 ノルボルネン系ポリマーは、耐熱性に優れるため、これをクラッド層91(92)の構成材料として使用する光導波路9では、光導波路9に導体層を形成する際、導体層を加工して配線を形成する際、光学素子を実装する等に加熱されたとしても、クラッド層91(92)が軟化して、変形するのを防止することができる。 Since the norbornene-based polymer is excellent in heat resistance, in the optical waveguide 9 using this as a constituent material of the cladding layer 91 (92), when the conductor layer is formed on the optical waveguide 9, the conductor layer is processed to form a wiring. At this time, even when the optical element is heated to mount it, the clad layer 91 (92) can be prevented from being softened and deformed.
 また、高い疎水性を有するため、吸水による寸法変化等を生じ難いクラッド層91(92)を得ることができる。 Moreover, since it has high hydrophobicity, it is possible to obtain the clad layer 91 (92) that is less likely to undergo dimensional changes due to water absorption.
 また、ノルボルネン系ポリマーまたはその原料であるノルボルネン系モノマーは、比較的安価であり、入手が容易であることからも好ましい。 Further, norbornene-based polymers or norbornene-based monomers that are raw materials thereof are preferable because they are relatively inexpensive and easily available.
 さらに、クラッド層91(92)の材料として、ノルボルネン系ポリマーを主とするものを用いると、曲げ等の変形に対する耐性に優れ、繰り返し湾曲変形した場合でも、クラッド層91、92とコア層93との層間剥離が生じ難く、クラッド層91、93の内部にマイクロクラックが発生することも防止される。しかも、コア層93の構成材料として好適に用いられる材料と同種となるため、コア層93との密着性がさらに高いものとなり、クラッド層91(92)とコア層93との間での層間剥離を防止することができる。このようなことから、光導波路9の光伝送性能が維持され、耐久性に優れた光導波路9が得られる。 Furthermore, when a material mainly composed of a norbornene-based polymer is used as the material of the clad layer 91 (92), the clad layers 91 and 92 and the core layer 93 are excellent in resistance to deformation such as bending, even when repeatedly bent and deformed. The delamination is difficult to occur, and the occurrence of microcracks in the clad layers 91 and 93 is also prevented. In addition, since it is the same kind of material that is suitably used as the constituent material of the core layer 93, the adhesion with the core layer 93 is further increased, and delamination between the clad layer 91 (92) and the core layer 93 is achieved. Can be prevented. For this reason, the optical transmission performance of the optical waveguide 9 is maintained, and the optical waveguide 9 having excellent durability can be obtained.
 クラッド層91、92の平均厚さは、コア層93の平均厚さの0.1~1.5倍程度であるのが好ましく、0.3~1.25倍程度であるのがより好ましく、具体的には、クラッド層91、92の平均厚さは、特に限定されないが、それぞれ、通常、1~200μm程度であるのが好ましく、5~100μm程度であるのがより好ましく、10~60μm程度であるのがさらに好ましい。これにより、光導波路9が不要に大型化(圧膜化)するのを防止しつつ、クラッド層としての機能が好適に発揮される。 The average thickness of the clad layers 91 and 92 is preferably about 0.1 to 1.5 times the average thickness of the core layer 93, more preferably about 0.3 to 1.25 times, Specifically, the average thickness of the clad layers 91 and 92 is not particularly limited, but each is preferably about 1 to 200 μm, more preferably about 5 to 100 μm, and more preferably about 10 to 60 μm. More preferably. Thereby, the function as a clad layer is suitably exhibited while preventing the optical waveguide 9 from becoming unnecessarily large (pressure film).
 以上の工程により、図18、30、40に示す光導波路9が得られる。
 また、本発明に用いられる感光性樹脂組成物により光導波路9を得た場合には、特に半田耐リフロー性に優れる。さらに、光導波路9を曲げた場合であっても光損失を少なくすることができる。
Through the above steps, the optical waveguide 9 shown in FIGS.
Moreover, when the optical waveguide 9 is obtained with the photosensitive resin composition used in the present invention, the solder reflow resistance is particularly excellent. Furthermore, even when the optical waveguide 9 is bent, the optical loss can be reduced.
 なお、上記の説明では、クラッド層91上に直接、感光性樹脂組成物を供給し、フィルム910(コア層93)を形成する場合について説明したが、別の基材上にフィルム910(コア層93)を形成した後、得られたコア層93をクラッド層91またはクラッド層92上に転写し、その後、コア層93を介してクラッド層91とクラッド層92とを重ね合わせるようにしてもよい。
 前記基板には、例えば、シリコン基板、二酸化ケイ素基板、ガラス基板、石英基板、ポリエチレンテレフタレート(PET)フィルム等が用いられる。
In the above description, the case where the photosensitive resin composition is directly supplied onto the clad layer 91 to form the film 910 (core layer 93) has been described, but the film 910 (core layer) is formed on another substrate. 93), the obtained core layer 93 may be transferred onto the clad layer 91 or the clad layer 92, and then the clad layer 91 and the clad layer 92 may be overlapped via the core layer 93. .
Examples of the substrate include a silicon substrate, a silicon dioxide substrate, a glass substrate, a quartz substrate, and a polyethylene terephthalate (PET) film.
 次に、本実施形態の作用効果について説明する。
 本実施形態に用いられる感光性樹脂組成物に光を当てると、光酸発生剤から酸が発生し、照射部分のみにおいて、成分(B)が重合されることとなる。そうすると、照射部分における成分(B)の量が少なくなるため、未照射部分の成分(B)が照射部分に拡散し、これにより、照射部分と未照射部分とで屈折率差が生じる。具体的には、本実施形態では、ベースポリマーとして、成分(B)よりも屈折率が高い置換または無置換の環状オレフィン樹脂を使用しているため、未照射部分の成分(B)が照射部分に拡散することで、未照射部分の屈折率が、照射部分の屈折率よりも高くなる。
Next, the effect of this embodiment is demonstrated.
When light is applied to the photosensitive resin composition used in the present embodiment, an acid is generated from the photoacid generator, and the component (B) is polymerized only in the irradiated portion. Then, since the amount of the component (B) in the irradiated part is reduced, the component (B) in the non-irradiated part diffuses into the irradiated part, thereby causing a difference in refractive index between the irradiated part and the unirradiated part. Specifically, in this embodiment, since a substituted or unsubstituted cyclic olefin resin having a higher refractive index than that of the component (B) is used as the base polymer, the component (B) in the unirradiated portion is irradiated with the irradiated portion. The refractive index of the unirradiated part becomes higher than the refractive index of the irradiated part.
 これに加え、光(活性放射線)照射後、感光性樹脂組成物の加熱を行うと、未照射部分から成分(B)が揮発する。これにより、照射部分と未照射部分とでさらに屈折率差が生じる。 In addition to this, when the photosensitive resin composition is heated after irradiation with light (active radiation), the component (B) volatilizes from the unirradiated portion. Thereby, a refractive index difference further occurs between the irradiated portion and the unirradiated portion.
 このように感光性樹脂組成物を使用することで、照射部分と未照射部分とで確実に屈折率差を形成することができる。また、本発明によれば、単に光(活性放射線)を照射するという簡単な方法でコア部をパターニングすることができる。例えば、フォトマスク等の露光パターンを適宜選択することにより、どのような形状や配置の光路(コア部)でも形成することができ、また、細い光路でもシャープに形成することができるので、回路の集積化に寄与し、デバイスの小型化が図られる。すなわち、本発明によれば、コア部のパターン形状の設計の自由度が広く、しかも寸法精度の高いコア部が得られる。 By using the photosensitive resin composition in this way, it is possible to reliably form a refractive index difference between the irradiated part and the non-irradiated part. Further, according to the present invention, the core portion can be patterned by a simple method of simply irradiating light (active radiation). For example, by appropriately selecting an exposure pattern such as a photomask, an optical path (core part) of any shape and arrangement can be formed, and a thin optical path can be formed sharply. This contributes to integration, and the device can be miniaturized. That is, according to the present invention, a core portion having a wide degree of freedom in designing the pattern shape of the core portion and high dimensional accuracy can be obtained.
 なお、従来、オキセタニル基等を有するノルボルネン系樹脂を、熱酸発生剤により架橋させる技術が知られている。しかしながら、このような技術に用いられる組成物は、ベースポリマーとして、オキセタニル基等を有するノルボルネン系樹脂を含有する。そして、組成物全体を加熱させ、組成物全体において架橋構造を生じさせるものである。そのため、従来用いられていたこの組成物には、選択的に光(活性放射線)を照射し、酸を発生させることで、選択的に重合を生じさせ、モノマー濃度が少なくなった領域にモノマーが拡散して、濃度差ができるという技術的思想は全くない。 Conventionally, a technique for crosslinking a norbornene resin having an oxetanyl group or the like with a thermal acid generator is known. However, the composition used in such a technique contains a norbornene-based resin having an oxetanyl group or the like as a base polymer. And the whole composition is heated and a crosslinked structure is produced in the whole composition. Therefore, this composition that has been conventionally used is selectively irradiated with light (active radiation) to generate an acid, thereby selectively polymerizing the monomer in a region where the monomer concentration is reduced. There is no technical idea that a density difference can be achieved by diffusion.
 これに対し、本実施形態に用いられる感光性樹脂組成物は、選択的に光(活性放射線)を照射すると、酸の発生により照射部分における成分(B)の量が少なくなるため、未照射部分の成分(B)が照射部分に拡散し、これにより、照射部分と未照射部分とで屈折率差が生じることを見出したものである。 In contrast, when the photosensitive resin composition used in the present embodiment is selectively irradiated with light (active radiation), the amount of the component (B) in the irradiated portion decreases due to the generation of acid, so that the unirradiated portion The component (B) is diffused into the irradiated part, and as a result, a difference in refractive index occurs between the irradiated part and the unirradiated part.
 また、環状オレフィン樹脂を、光酸発生剤から発生する酸により脱離し、脱離により、成分(A)の環状オレフィン樹脂の屈折率を低下させる脱離性基を有するものとした場合には、光(活性放射線)を照射した領域の屈折率を、未照射領域に比べ確実に低下させることができる。 Further, when the cyclic olefin resin has a leaving group that is desorbed by an acid generated from the photoacid generator and reduces the refractive index of the cyclic olefin resin of the component (A) by desorption, The refractive index of the region irradiated with light (active radiation) can be reliably lowered as compared with the unirradiated region.
 一方で、環状オレフィン樹脂を脱離性基を有しないものとした場合には、側鎖が化学的に安定となるため、光(活性放射線)照射や、加熱等の条件により、コア部、クラッド部の屈折率が変動してしまうことを抑制できる。 On the other hand, when the cyclic olefin resin has no leaving group, the side chain is chemically stable, so the core portion, the cladding, and the like can be formed depending on conditions such as light (active radiation) irradiation and heating. It can suppress that the refractive index of a part changes.
 さらに、本実施形態では、成分(A)としてノルボルネン系樹脂を使用している。これにより、特定波長における光透過性を確実に高めることができ、伝搬損失の低減を確実に図ることができる。 Furthermore, in this embodiment, a norbornene resin is used as the component (A). Thereby, the light transmittance in a specific wavelength can be improved reliably, and reduction of propagation loss can be aimed at reliably.
 また、クラッド部95は、コア部94よりも屈折率が低く、クラッド部95とコア部94との屈折率差を0.01以上とすることで、確実に光をコア部94に閉じ込めることができ、光の伝搬損失の発生を抑制できる。 Further, the clad part 95 has a lower refractive index than the core part 94, and the difference in refractive index between the clad part 95 and the core part 94 is 0.01 or more, so that light can be reliably confined in the core part 94. And the generation of light propagation loss can be suppressed.
 一方、従来、光導波路形成用の組成物として、ポリマー、モノマー、助触媒および触媒前駆体を含むものが知られている。 On the other hand, conventionally, a composition containing a polymer, a monomer, a promoter and a catalyst precursor is known as a composition for forming an optical waveguide.
 このうち、モノマーは、光(活性放射線)の照射により反応物を形成し、光(活性放射線)を照射した領域の屈折率を、未照射領域の屈折率と異ならせ得るものである。 Among these, the monomer can form a reactant upon irradiation with light (active radiation), and the refractive index of the region irradiated with light (active radiation) can be made different from the refractive index of the unirradiated region.
 また、触媒前駆体は、モノマーの反応(重合反応、架橋反応等)を開始させ得る物質であり、光(活性放射線)の照射により活性化した助触媒の作用により、活性化温度が変化する物質である。この活性化温度の変化により、光(活性放射線)の照射領域と未照射領域との間で、モノマーの反応を開始させる温度が異なり、その結果、照射領域のみにおいて反応物を形成させることができる。 The catalyst precursor is a substance capable of initiating a monomer reaction (polymerization reaction, crosslinking reaction, etc.), and a substance whose activation temperature changes due to the action of a co-catalyst activated by irradiation with light (active radiation). It is. Due to the change in the activation temperature, the temperature at which the monomer reaction starts is different between the irradiated region of light (active radiation) and the unirradiated region, and as a result, a reactant can be formed only in the irradiated region. .
 これに対し、本実施形態において用いる感光性樹脂組成物は、このような多量の金属元素を含む物質を必要としない。このため、上述したような伝搬損失の増加が防止され、伝搬効率に優れかつ耐熱性に優れた光導波路9が得られる。
 このような従来の組成物を用いた場合でも光(活性放射線)照射によりコア部とクラッド部とを作り分けることができるが、本実施形態に用いられる感光性樹脂組成物によれば、コア部94とクラッド部95との屈折率差をより拡大するとともに、耐熱性が向上するため、より信頼性の高い光導波路9が得られる。これは主に、成分(A)および成分(B)の組成を最適化したことによるものである。
On the other hand, the photosensitive resin composition used in this embodiment does not require a substance containing such a large amount of metal elements. For this reason, the increase of the propagation loss as described above is prevented, and the optical waveguide 9 excellent in propagation efficiency and heat resistance can be obtained.
Even when such a conventional composition is used, the core part and the clad part can be made separately by irradiation with light (active radiation). However, according to the photosensitive resin composition used in this embodiment, the core part Since the difference in refractive index between 94 and the clad portion 95 is further increased and the heat resistance is improved, the optical waveguide 9 with higher reliability can be obtained. This is mainly due to the optimization of the composition of component (A) and component (B).
 このような感光性樹脂組成物を使用することで、本発明は、光の伝搬損失の発生が抑制された光導波路フィルム等を提供することができる。なかでも、湾曲した光導波路を形成した場合において、光の伝搬損失の発生を顕著に抑制することができる。 By using such a photosensitive resin composition, the present invention can provide an optical waveguide film or the like in which generation of light propagation loss is suppressed. In particular, when a curved optical waveguide is formed, generation of light propagation loss can be remarkably suppressed.
 また、以上のような製造方法によれば、簡単な処理で、しかも短時間に、所望の形状を有し、かつ、寸法精度の高いコア部94を有する光導波路9を得ることができる。 Further, according to the manufacturing method as described above, the optical waveguide 9 having the core portion 94 having a desired shape and high dimensional accuracy can be obtained by a simple process and in a short time.
 次に、導光路の製造方法について説明する。
 前記第14および第15実施形態のように、貫通孔1022内に単一の導体部24を形成する場合には、まず貫通孔1022の内周面に前述した方法により導体部3を形成し、次いで、その内側に前述したコア層形成用材料1900を充填し、必要に応じて(コア層形成用材料1900の組成や特性に応じて)、活性放射線の照射および加熱を行い、コア層形成用材料1900を硬化させることにより導光路1024を形成する。
Next, the manufacturing method of a light guide is demonstrated.
When the single conductor portion 24 is formed in the through hole 1022 as in the fourteenth and fifteenth embodiments, the conductor portion 3 is first formed on the inner peripheral surface of the through hole 1022 by the method described above, Next, the core layer forming material 1900 is filled inside, and irradiation with active radiation and heating are performed as necessary (according to the composition and characteristics of the core layer forming material 1900) to form the core layer. The light guide 1024 is formed by curing the material 1900.
 この場合、光導波路1009のコア層1093の形成と導光路1024の形成とは、それぞれ別個に行ってもよいが、光導波路1009のコア層1093の形成工程と導光路1024の形成工程の全部または一部を同時に行うこともできる。例えば、加熱工程の全部または一部を同時に行うことができる。これにより、製造の工程数を減らし、より容易かつ短時間で製造することができる。 In this case, the formation of the core layer 1093 of the optical waveguide 1009 and the formation of the light guide 1024 may be performed separately, but all of the formation process of the core layer 1093 and the formation of the light guide 1024 of the optical waveguide 1009 or Some can be done at the same time. For example, all or part of the heating process can be performed simultaneously. Thereby, the number of manufacturing steps can be reduced, and manufacturing can be performed more easily and in a short time.
 前記第16、第17および第18実施形態のように、貫通孔1022内に垂直光導波路1023を形成する場合には、まず貫通孔1022の内面の全周または一部(矩形部1224)に前述した方法により導体部1003を形成し、次いで、その内側(または円形部1222)に前述したコア層形成用材料1900を充填する。次に、前述した方法により、充填されたコア層形成用材料1900のうち例えばクラッド部1025となるべき部位にのみ活性放射線を選択的に照射し、必要に応じて(コア層形成用材料1900の組成や特性に応じて)、少なくとも1回加熱を行い、コア部1024とクラッド部1025とを形成する。活性放射線の照射方法や条件、加熱方法や条件、その他の事項については、前記と同様とすることができる。 When the vertical optical waveguide 1023 is formed in the through hole 1022 as in the sixteenth, seventeenth and eighteenth embodiments, first, the entire circumference or a part (rectangular portion 1224) of the inner surface of the through hole 1022 is first described above. The conductor portion 1003 is formed by the above-described method, and then the core layer forming material 1900 described above is filled inside (or the circular portion 1222). Next, by the above-described method, actinic radiation is selectively radiated only to, for example, a portion to be the clad portion 1025 in the filled core layer forming material 1900 and, if necessary, (the core layer forming material 1900 Depending on the composition and characteristics, heating is performed at least once to form the core portion 1024 and the clad portion 1025. The irradiation method and conditions of actinic radiation, the heating method and conditions, and other matters can be the same as described above.
 この場合、光導波路1009のコア層1093の形成と垂直光導波路23の形成とは、それぞれ別個に行ってもよいが、光導波路1009のコア層1093の形成工程と垂直光導波路1023の形成工程の全部または一部を同時に行うこともできる。例えば、コア層形成用材料1900の供給(塗布、充填)工程、活性放射線の照射工程、加熱工程等のうちの全部または一部を同時に行うことができる。これにより、製造の工程数を減らし、より容易かつ短時間で製造することができる。 In this case, the formation of the core layer 1093 of the optical waveguide 1009 and the formation of the vertical optical waveguide 23 may be performed separately. All or part of it can be performed simultaneously. For example, all or a part of the supplying (coating and filling) step of the core layer forming material 1900, the active radiation irradiation step, the heating step, and the like can be performed simultaneously. Thereby, the number of manufacturing steps can be reduced, and manufacturing can be performed more easily and in a short time.
 なお、本発明において、光導波路構造体の基本構造、層構成、各部の形状、数、配置等は、図示のものに限定されないことは言うまでもない。 In the present invention, it goes without saying that the basic structure, layer structure, shape, number, arrangement, etc. of the optical waveguide structure are not limited to those shown in the drawings.
 また、前記各実施形態において、素子としては、発光素子1010を代表例として説明したが、発光素子1010に代え、受光部を有する受光素子を搭載した構成であってもよい。この場合には、例えば、光導波路1009、光路変換部1096および導光路(コア部)1024により、伝送光1018を受光素子の受光部へ導く構成とすることができる。もちろん、発光素子と受光素子の双方を少なくとも1組搭載するものでもよい。 In each of the above embodiments, the light emitting element 1010 has been described as a representative example as an element, but a configuration in which a light receiving element having a light receiving portion is mounted instead of the light emitting element 1010 may be used. In this case, for example, the transmission light 1018 can be guided to the light receiving unit of the light receiving element by the optical waveguide 1009, the optical path conversion unit 1096, and the light guide (core unit) 1024. Of course, at least one set of both the light emitting element and the light receiving element may be mounted.
 また、前記各実施形態において、発光素子2010を有する例について説明したが、発光素子2010および受光素子のいずれか一方を有するものでもよい。もちろん、発光素子と受光素子の双方を1組または2組以上搭載するものでもよい。また、電子回路素子(電子回路部)は、省略されていてもよい。 In each of the above embodiments, the example having the light emitting element 2010 has been described. However, the light emitting element 2010 or the light receiving element may be provided. Of course, one or two or more sets of both the light emitting element and the light receiving element may be mounted. Further, the electronic circuit element (electronic circuit unit) may be omitted.
 以上、本発明を図示の各実施形態に基づいて説明したが、本発明はこれらに限定されるものではなく、各部の構成は、同様の機能を発揮し得る任意の構成と置換することができ、また、任意の構成が付加されていてもよい。 The present invention has been described based on the illustrated embodiments. However, the present invention is not limited to these embodiments, and the configuration of each part can be replaced with any configuration that can exhibit the same function. In addition, an arbitrary configuration may be added.
 また、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。 Further, the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within a scope that can achieve the object of the present invention are included in the present invention.
 また、前記実施形態では、感光性樹脂組成物を使用して、光導波路フィルムを形成したが、これに限らず、ホログラム等に使用してもよい。前述の感光性樹脂組成物は、屈折率が高い領域と、屈折率が低い領域とが混在するフィルムを形成するのに適している。 In the above embodiment, the optical waveguide film is formed using the photosensitive resin composition. However, the present invention is not limited to this, and the optical waveguide film may be used for a hologram or the like. The above-mentioned photosensitive resin composition is suitable for forming a film in which a region having a high refractive index and a region having a low refractive index are mixed.
 次に、本発明の実施例について説明する。
A.光導波路の製造
(実施例1)
(1)脱離性基を有するノルボルネン系樹脂の合成
 水分および酸素濃度がいずれも1ppm以下に制御され、乾燥窒素で充満されたグローブボックス中において、ヘキシルノルボルネン(HxNB)7.2g(40.1mmol)、ジフェニルメチルノルボルネンメトキシシラン12.9g(40.1mmol)を500mLバイアル瓶に計量し、脱水トルエン60gと酢酸エチル11gを加え、シリコン製のシーラーを被せて上部を密栓した。
Next, examples of the present invention will be described.
A. Production of optical waveguide (Example 1)
(1) Synthesis of norbornene-based resin having a leaving group In a glove box filled with dry nitrogen in which the water and oxygen concentrations are both controlled to 1 ppm or less, 7.2 g (40.1 mmol) of hexylnorbornene (HxNB) ), 12.9 g (40.1 mmol) of diphenylmethylnorbornenemethoxysilane was weighed into a 500 mL vial, 60 g of dehydrated toluene and 11 g of ethyl acetate were added, and the top was sealed with a silicon sealer.
 次に、100mLバイアルビン中に下記化学式(B)で表わされるNi触媒1.56g(3.2mmol)と脱水トルエン10mLを計量し、スターラーチップを入れて密栓し、触媒を十分に撹拌して完全に溶解させた。 Next, 1.56 g (3.2 mmol) of Ni catalyst represented by the following chemical formula (B) and 10 mL of dehydrated toluene are weighed in a 100 mL vial, put a stirrer chip and sealed, and the catalyst is thoroughly stirred to completely Dissolved in.
 この下記化学式(B)で表わされるNi触媒溶液1mLをシリンジで正確に計量し、上記2種のノルボルネンを溶解させたバイアル瓶中に定量的に注入し室温で1時間撹拌したところ、著しい粘度上昇が確認された。この時点で栓を抜き、テトラヒドロフラン(THF)60gを加えて撹拌を行い、反応溶液を得た。 When 1 mL of the Ni catalyst solution represented by the following chemical formula (B) is accurately weighed with a syringe, and quantitatively injected into the vial bottle in which the above two types of norbornene are dissolved, and stirred at room temperature for 1 hour, a marked increase in viscosity occurs. Was confirmed. At this point, the stopper was removed, 60 g of tetrahydrofuran (THF) was added, and the mixture was stirred to obtain a reaction solution.
 100mLビーカーに無水酢酸9.5g、過酸化水素水18g(濃度30%)、イオン交換水30gを加えて撹拌し、その場で過酢酸水溶液を調製した。次にこの水溶液全量を上記反応溶液に加えて12時間撹拌してNiの還元処理を行った。 In a 100 mL beaker, 9.5 g of acetic anhydride, 18 g of hydrogen peroxide (concentration 30%) and 30 g of ion-exchanged water were added and stirred to prepare a peracetic acid aqueous solution on the spot. Next, the total amount of this aqueous solution was added to the above reaction solution and stirred for 12 hours to reduce Ni.
 次に、処理の完了した反応溶液を分液ロートに移し替え、下部の水層を除去した後、イソプロピルアルコールの30%水溶液を100mL加えて激しく撹拌を行った。静置して完全に二層分離が行われた後で水層を除去した。この水洗プロセスを合計で3回繰り返した後、油層を大過剰のアセトン中に滴下して生成したポリマーを再沈殿させ、ろ過によりろ液と分別した後、60℃に設定した真空乾燥機中で12時間加熱乾燥を行うことにより、ポリマー#1を得た。ポリマー#1の分子量分布は、GPC測定によると、Mw=10万、Mn=4万であった。また、ポリマー#1中の各構造単位のモル比は、NMRによる同定によると、ヘキシルルボルネン構造単位が50mol%、ジフェニルメチルノルボルネンメトキシシラン構造単位が50mol%であった。またメトリコンによる屈折率は1.55(測定波長;633nm)であった。 Next, the treated reaction solution was transferred to a separatory funnel, the lower aqueous layer was removed, and then 100 mL of a 30% aqueous solution of isopropyl alcohol was added and vigorously stirred. The aqueous layer was removed after standing and completely separating the two layers. After repeating this water washing process three times in total, the oil layer was dropped into a large excess of acetone to reprecipitate the polymer produced, separated from the filtrate by filtration, and then in a vacuum dryer set at 60 ° C. Polymer # 1 was obtained by heating and drying for 12 hours. The molecular weight distribution of the polymer # 1 was Mw = 100,000 and Mn = 40,000 according to GPC measurement. Moreover, the molar ratio of each structural unit in the polymer # 1 was 50 mol% for the hexylbornene structural unit and 50 mol% for the diphenylmethylnorbornenemethoxysilane structural unit according to identification by NMR. The refractive index by Metricon was 1.55 (measurement wavelength: 633 nm).
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
(2)感光性樹脂組成物の製造
 精製した上記ポリマー#1 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、シクロヘキシルオキセタンモノマー(式20(式100)で示した第1モノマー、東亜合成製 CHOX、CAS#483303-25-9、分子量186、沸点125℃/1.33kPa)2g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄な感光性樹脂組成物ワニスV1を得た。
(2) Production of photosensitive resin composition 10 g of the purified polymer # 1 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of antioxidant Irganox 1076 (manufactured by Ciba Geigy), cyclohexyl oxetane monomer (formula 20) 1st monomer represented by (Formula 100), Toa Gosei CHOX, CAS # 483303-25-9, molecular weight 186, boiling point 125 ° C./1.33 kPa) 2 g, photoacid generator Rhodorsil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-72-2) (1.36E-2 g in 0.1 mL of ethyl acetate) and uniformly dissolved, and then filtered through a 0.2 μm PTFE filter to obtain a clean photosensitive resin composition varnish V1. It was.
(3)光導波路フィルムの製造
(下側クラッド層の作製)
 シリコンウエハ上に感光性ノルボルネン樹脂組成物(プロメラス社製 Avatrel2000Pワニス)をドクターブレードにより均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、塗布された全面に紫外線を100mJ照射し、乾燥機中120℃で1時間加熱して、塗膜を硬化させて、下側クラッド層を形成させた。形成された下側クラッド層は、厚みが20μmであり、無色透明であり、屈折率は1.52(測定波長;633nm)であった。
(3) Production of optical waveguide film (production of lower clad layer)
A photosensitive norbornene resin composition (Avatrel 2000P varnish manufactured by Promeras Co., Ltd.) was uniformly applied on a silicon wafer with a doctor blade, and then placed in a dryer at 45 ° C. for 15 minutes. After completely removing the solvent, the entire coated surface was irradiated with 100 mJ of ultraviolet light and heated in a dryer at 120 ° C. for 1 hour to cure the coating film to form a lower clad layer. The formed lower cladding layer had a thickness of 20 μm, was colorless and transparent, and had a refractive index of 1.52 (measurement wavelength: 633 nm).
(コア層の形成)
 上記下側クラッド層上に感光性樹脂組成物ワニスV1をドクターブレードによって均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、フォトマスクを圧着して紫外線を500mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中45℃で30分、85℃で30分、150℃で1時間と三段階で加熱を行った。加熱後、非常に鮮明な導波路パターンが現れているのが確認された。また、コア部およびクラッド部の形成が確認された。
(Formation of core layer)
After the photosensitive resin composition varnish V1 was uniformly applied on the lower clad layer with a doctor blade, it was put into a dryer at 45 ° C. for 15 minutes. After completely removing the solvent, a photomask was pressed and selectively irradiated with ultraviolet rays at 500 mJ / cm 2 . The mask was removed, and heating was performed in three stages in a dryer at 45 ° C. for 30 minutes, 85 ° C. for 30 minutes, and 150 ° C. for 1 hour. It was confirmed that a very clear waveguide pattern appeared after heating. Moreover, formation of the core part and the clad part was confirmed.
(上側クラッド層の形成)
 ポリエーテルスルホン(PES)フィルム上に、予め乾燥厚み20μmになるようにAvatrel2000Pを積層させたドライフィルムを、上記コア層に貼り合わせ、140℃に設定された真空ラミネーターに投入して熱圧着を行った。その後、紫外線を100mJ全面照射し乾燥機中120℃で1時間加熱して、Avatrel2000Pを硬化させて、上側クラッド層を形成させ、光導波路を得た。このとき、上側クラッド層は、無色透明であり、その屈折率は1.52であった。
(Formation of upper cladding layer)
A dry film in which Avatrel 2000P is laminated in advance on a polyethersulfone (PES) film so as to have a dry thickness of 20 μm is bonded to the above core layer, and put into a vacuum laminator set at 140 ° C. for thermocompression bonding. It was. Thereafter, 100 mJ was irradiated on the entire surface and heated in a dryer at 120 ° C. for 1 hour to cure Avatrel 2000P to form an upper clad layer to obtain an optical waveguide. At this time, the upper cladding layer was colorless and transparent, and its refractive index was 1.52.
(4)評価
(光導波路の損失評価)
 850nmVCSEL(面発光レーザー)より発せられた光を50μmφの光ファイバーを経由して上記光導波路に導入し、200μmφの光ファイバーで受光を行って光の強度を測定した。なお、測定にはカットバック法を採用した。光導波路の長手方向を横軸にとり、挿入損失を縦軸にプロットしていったところ、測定値はきれいに直線上に並び、その傾きから伝搬損失は0.03dB/cmと算出することができた。
(4) Evaluation (Evaluation of optical waveguide loss)
Light emitted from an 850 nm VCSEL (surface emitting laser) was introduced into the optical waveguide via a 50 μmφ optical fiber, received by a 200 μmφ optical fiber, and the light intensity was measured. The cutback method was used for the measurement. When the longitudinal direction of the optical waveguide is taken on the horizontal axis and the insertion loss is plotted on the vertical axis, the measured values are neatly arranged on a straight line, and the propagation loss can be calculated as 0.03 dB / cm from the inclination. .
(コア部とクラッド部との屈折率差)
 上記(コア層の形成)で形成した、水平方向に隣接する左右のコア部-クラッド部間の屈折率差は、次のように求めた。
(Refractive index difference between core and clad)
The difference in refractive index between the left and right core portions and the clad portion formed in the above (formation of the core layer) in the horizontal direction was determined as follows.
 カナダ国 EXFO社製 Optical waveguide analyzer OWA-9500により波長656nmのレーザー光を光導波路に照射し、コア領域およびクラッド領域の屈折率をそれぞれ実測して、それらの差を算出した。その結果、屈折率差は0.02であった。 The optical waveguide was irradiated with a laser beam having a wavelength of 656 nm by “Optical waveguide” analyzer OWA-9500 manufactured by EXFO, Canada, and the refractive index of the core region and the cladding region was measured, and the difference between them was calculated. As a result, the refractive index difference was 0.02.
(実施例2)
(1)脱離性基を有しないノルボルネン系樹脂の合成
 水分および酸素濃度がいずれも1ppm以下に制御され、乾燥窒素で充満されたグローブボックス中において、ヘキシルノルボルネン(HxNB)9.4g(53.1mmol)、フェニルエチルノルボルネン10.5g(53.1mmol)を500mLバイアル瓶に計量し、脱水トルエン60gと酢酸エチル11gを加え、シリコン製のシーラーを被せて上部を密栓した。
(Example 2)
(1) Synthesis of norbornene-based resin having no leaving group In a glove box filled with dry nitrogen in which the water and oxygen concentrations are both controlled to 1 ppm or less, 9.4 g of hexylnorbornene (HxNB) (53. 1 mmol) and 10.5 g (53.1 mmol) of phenylethylnorbornene were weighed into a 500 mL vial, 60 g of dehydrated toluene and 11 g of ethyl acetate were added, and the top was sealed with a silicon sealer.
 次に、100mLバイアルビン中に上記化学式(B)で表わされるNi触媒2.06g(3.2mmol)と脱水トルエン10mLを計量し、スターラーチップを入れて密栓し、触媒を十分に撹拌して完全に溶解させた。 Next, weigh 2.06 g (3.2 mmol) of Ni catalyst represented by the above chemical formula (B) and 10 mL of dehydrated toluene in a 100 mL vial, put a stirrer chip and seal tightly, and thoroughly stir the catalyst. Dissolved in.
 上記化学式(B)で表わされるNi触媒溶液1mLをシリンジで正確に計量し、上記2種のノルボルネンを溶解させたバイアル瓶中に定量的に注入し室温で1時間撹拌したところ、著しい粘度上昇が確認された。この時点で栓を抜き、テトラヒドロフラン(THF)60gを加えて撹拌を行い、反応溶液を得た。 When 1 mL of the Ni catalyst solution represented by the chemical formula (B) is accurately weighed with a syringe, and quantitatively injected into the vial bottle in which the two types of norbornene are dissolved and stirred at room temperature for 1 hour, a marked increase in viscosity is observed. confirmed. At this point, the stopper was removed, 60 g of tetrahydrofuran (THF) was added, and the mixture was stirred to obtain a reaction solution.
 100mLビーカーに無水酢酸9.5g、過酸化水素水18g(濃度30%)、イオン交換水30gを加えて撹拌し、その場で過酢酸水溶液を調製した。次にこの水溶液全量を上記反応溶液に加えて12時間撹拌してNiの還元処理を行った。 In a 100 mL beaker, 9.5 g of acetic anhydride, 18 g of hydrogen peroxide (concentration 30%) and 30 g of ion-exchanged water were added and stirred to prepare a peracetic acid aqueous solution on the spot. Next, the total amount of this aqueous solution was added to the above reaction solution and stirred for 12 hours to reduce Ni.
 次に、処理の完了した反応溶液を分液ロートに移し替え、下部の水層を除去した後、イソプロピルアルコールの30%水溶液を100mL加えて激しく撹拌を行った。静置して完全に二層分離が行われた後で水層を除去した。この水洗プロセスを合計で3回繰り返した後、油層を大過剰のアセトン中に滴下して生成したポリマーを再沈殿させ、ろ過によりろ液と分別した後、60℃に設定した真空乾燥機中で12時間加熱乾燥を行うことにより、ポリマー#2を得た。ポリマー#2の分子量分布は、GPC測定によると、Mw=9万、Mn=4万であった。また、ポリマー#2中の各構造単位のモル比は、NMRによる同定によると、ヘキシルルボルネン構造単位が50mol%、フェニルエチルノルボルネン構造単位が50mol%であった。またメトリコンによる屈折率は1.54(測定波長;633nm)であった。 Next, the treated reaction solution was transferred to a separatory funnel, the lower aqueous layer was removed, and then 100 mL of a 30% aqueous solution of isopropyl alcohol was added and vigorously stirred. The aqueous layer was removed after standing and completely separating the two layers. After repeating this water washing process three times in total, the oil layer was dropped into a large excess of acetone to reprecipitate the polymer produced, separated from the filtrate by filtration, and then in a vacuum dryer set at 60 ° C. Polymer # 2 was obtained by heat drying for 12 hours. The molecular weight distribution of the polymer # 2 was Mw = 90,000 and Mn = 40,000 according to GPC measurement. The molar ratio of each structural unit in polymer # 2 was 50 mol% for the hexylbornene structural unit and 50 mol% for the phenylethylnorbornene structural unit according to identification by NMR. The refractive index by Metricon was 1.54 (measurement wavelength: 633 nm).
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
(2)感光性樹脂組成物の製造
 精製した上記ポリマー#2 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、シクロヘキシルオキセタンモノマー(式20で示したもの、東亜合成製 CHOX、CAS#483303-25-9、分子量186、沸点125℃/1.33kPa)2g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄な感光性樹脂組成物ワニスV2を得た。
(2) Production of photosensitive resin composition 10 g of the purified polymer # 2 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of an antioxidant Irganox 1076 (manufactured by Ciba Geigy), cyclohexyloxetane monomer (formula 20) 2 g, photoacid generator Rhodorsil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-72-2), manufactured by Toagosei Co., Ltd. CHOX, CAS # 483303-25-9, molecular weight 186, boiling point 125 ° C./1.33 kPa) (1.36E-2 g, in 0.1 mL of ethyl acetate) was added and dissolved uniformly, and then filtered through a 0.2 μm PTFE filter to obtain a clean photosensitive resin composition varnish V2.
(3)光導波路フィルムの製造
(下側クラッド層の作製)
 実施例1と同様の下側クラッド層を作製した。
(3) Production of optical waveguide film (production of lower clad layer)
A lower clad layer similar to that in Example 1 was produced.
(コア層の形成)
 上記下側クラッド層上に感光性樹脂組成物ワニスV2をドクターブレードによって均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、フォトマスクを圧着して紫外線を500mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中45℃で30分、85℃で30分、150℃で1時間と三段階で加熱を行った。加熱後、非常に鮮明な導波路パターンが現れているのが確認された。また、コア部およびクラッド部の形成が確認された。
(Formation of core layer)
After the photosensitive resin composition varnish V2 was uniformly applied on the lower clad layer with a doctor blade, it was put into a dryer at 45 ° C. for 15 minutes. After completely removing the solvent, a photomask was pressed and selectively irradiated with ultraviolet rays at 500 mJ / cm 2 . The mask was removed, and heating was performed in three stages in a dryer at 45 ° C. for 30 minutes, 85 ° C. for 30 minutes, and 150 ° C. for 1 hour. It was confirmed that a very clear waveguide pattern appeared after heating. Moreover, formation of the core part and the clad part was confirmed.
(上側クラッド層の形成)
 実施例1と同様の上側クラッド層を作製した
(Formation of upper cladding layer)
An upper clad layer similar to that in Example 1 was produced.
(4)評価
 実施例1と同じ方法により、評価を行った。伝搬損失は0.04dB/cmと算出することができた。コア部とクラッド部の屈折率差は0.01であった。
(4) Evaluation Evaluation was performed in the same manner as in Example 1. The propagation loss could be calculated as 0.04 dB / cm. The difference in refractive index between the core portion and the cladding portion was 0.01.
(実施例3)
(1)脱離性基を有するノルボルネン系樹脂の合成
 実施例1と同様の方法でノルボルネン系樹脂を作製した。
(Example 3)
(1) Synthesis of norbornene-based resin having a leaving group A norbornene-based resin was produced in the same manner as in Example 1.
(2)感光性樹脂組成物の製造
 精製した上記ポリマー#1 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、2官能オキセタンモノマー(式(15)で示したもの、東亜合成製、DOX、CAS#18934-00-4、分子量214、沸点119℃/0.67kPa)2g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄な感光性樹脂組成物ワニスV3を得た。
(2) Production of photosensitive resin composition 10 g of the purified polymer # 1 was weighed into a 100 mL glass container, and 40 g of mesitylene, an antioxidant Irganox 1076 (manufactured by Ciba Geigy) 0.01 g, a bifunctional oxetane monomer (formula (15), Toa Gosei, DOX, CAS # 18934-00-4, molecular weight 214, boiling point 119 ° C./0.67 kPa) 2 g, photoacid generator Rhodosil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-) 72-2) (1.36E-2 g in 0.1 mL of ethyl acetate) was added and dissolved uniformly, and then filtered through a 0.2 μm PTFE filter to obtain a clean photosensitive resin composition varnish V3.
(3)光導波路フィルムの製造
(下側クラッド層の作製)
 実施例1と同様の下側クラッド層を作製した。
(3) Production of optical waveguide film (production of lower clad layer)
A lower clad layer similar to that in Example 1 was produced.
(コア層の形成)
 上記下側クラッド層上に感光性樹脂組成物ワニスV3をドクターブレードによって均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、フォトマスクを圧着して紫外線を500mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中45℃で30分、85℃で30分、150℃で1時間と三段階で加熱を行った。加熱後、非常に鮮明な導波路パターンが現れているのが確認された。また、コア部およびクラッド部の形成が確認された。
(Formation of core layer)
After the photosensitive resin composition varnish V3 was uniformly applied on the lower clad layer with a doctor blade, it was put into a dryer at 45 ° C. for 15 minutes. After completely removing the solvent, a photomask was pressed and selectively irradiated with ultraviolet rays at 500 mJ / cm 2 . The mask was removed, and heating was performed in three stages in a dryer at 45 ° C. for 30 minutes, 85 ° C. for 30 minutes, and 150 ° C. for 1 hour. It was confirmed that a very clear waveguide pattern appeared after heating. Moreover, formation of the core part and the clad part was confirmed.
(上側クラッド層の形成)
 実施例1と同様の上側クラッド層を作製した。
(Formation of upper cladding layer)
An upper clad layer similar to that in Example 1 was produced.
(4)評価
 実施例1と同じ方法により、評価を行った。伝搬損失は0.04dB/cmと算出することができた。コア部とクラッド部の屈折率差は0.01であった。
(4) Evaluation Evaluation was performed in the same manner as in Example 1. The propagation loss could be calculated as 0.04 dB / cm. The difference in refractive index between the core portion and the cladding portion was 0.01.
(実施例4)
(1)脱離性基を有するノルボルネン系樹脂の合成
 実施例1と同様の方法でノルボルネン系樹脂を作製した。
Example 4
(1) Synthesis of norbornene-based resin having a leaving group A norbornene-based resin was produced in the same manner as in Example 1.
(2)感光性樹脂組成物の製造
 精製した上記ポリマー#1 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、脂環式エポキシモノマー(式(37)で示したもの、ダイセル化学製、セロキサイド2021P、CAS#2386-87-0、分子量252、沸点188℃/4hPa)2g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄な感光性樹脂組成物ワニスV4を得た。
(2) Production of photosensitive resin composition 10 g of the purified polymer # 1 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of an antioxidant Irganox 1076 (manufactured by Ciba Geigy), an alicyclic epoxy monomer ( Formula (37), manufactured by Daicel Chemical Industries, Celoxide 2021P, CAS # 2386-87-0, molecular weight 252 and boiling point 188 ° C./4 hPa) 2 g, photoacid generator Rhodorsil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233- 72-2) (1.36E-2 g in 0.1 mL of ethyl acetate) was added and dissolved uniformly, and then filtered through a 0.2 μm PTFE filter to obtain a clean photosensitive resin composition varnish V4.
(3)光導波路フィルムの製造
(下側クラッド層の作製)
 実施例1と同様の下側クラッド層を作製した。
(3) Production of optical waveguide film (production of lower clad layer)
A lower clad layer similar to that in Example 1 was produced.
(コア層の形成)
 上記下側クラッド層上に感光性樹脂組成物ワニスV4をドクターブレードによって均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、フォトマスクを圧着して紫外線を500mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中45℃で30分、85℃で30分、150℃で1時間と三段階で加熱を行った。加熱後、非常に鮮明な導波路パターンが現れているのが確認された。また、コア部およびクラッド部の形成が確認された。
(Formation of core layer)
After the photosensitive resin composition varnish V4 was uniformly applied on the lower clad layer with a doctor blade, it was put into a dryer at 45 ° C. for 15 minutes. After completely removing the solvent, a photomask was pressed and selectively irradiated with ultraviolet rays at 500 mJ / cm 2 . The mask was removed, and heating was performed in three stages in a dryer at 45 ° C. for 30 minutes, 85 ° C. for 30 minutes, and 150 ° C. for 1 hour. It was confirmed that a very clear waveguide pattern appeared after heating. Moreover, formation of the core part and the clad part was confirmed.
(上側クラッド層の形成)
 実施例1と同様の上側クラッド層を作製した。
(Formation of upper cladding layer)
An upper clad layer similar to that in Example 1 was produced.
(4)評価
 実施例1と同じ方法により、評価を行った。伝搬損失は0.04dB/cmと算出することができた。コア部とクラッド部の屈折率差は0.01であった。
(4) Evaluation Evaluation was performed in the same manner as in Example 1. The propagation loss could be calculated as 0.04 dB / cm. The difference in refractive index between the core portion and the cladding portion was 0.01.
(実施例5)
(1)脱離性基を有するノルボルネン系樹脂の合成
 実施例1と同様の方法でノルボルネン系樹脂を作製した。
(Example 5)
(1) Synthesis of norbornene-based resin having a leaving group A norbornene-based resin was produced in the same manner as in Example 1.
(2)感光性樹脂組成物の製造
 精製した上記ポリマー#1 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、シクロヘキシルオキセタンモノマー(式20で示したもの、東亜合成製 CHOX)1g、脂環式エポキシモノマー(ダイセル化学製、セロキサイド2021P)1g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄な感光性樹脂組成物ワニスV5を得た。
(2) Production of photosensitive resin composition 10 g of the purified polymer # 1 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of antioxidant Irganox 1076 (manufactured by Ciba Geigy), cyclohexyl oxetane monomer (formula 20) 1 g of CHOX manufactured by Toagosei Co., Ltd., 1 g of an alicyclic epoxy monomer (manufactured by Daicel Chemical Industries, Celoxide 2021P), photoacid generator Rhodorsil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-72-2) (1.36E-) 2 g in 0.1 mL of ethyl acetate) and uniformly dissolved, and then filtered through a 0.2 μm PTFE filter to obtain a clean photosensitive resin composition varnish V5.
(3)光導波路フィルムの製造
(下側クラッド層の作製)
 実施例1と同様の下側クラッド層を作製した。
(3) Production of optical waveguide film (production of lower clad layer)
A lower clad layer similar to that in Example 1 was produced.
(コア層の形成)
 上記下側クラッド層上に感光性樹脂組成物ワニスV5をドクターブレードによって均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、フォトマスクを圧着して紫外線を500mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中45℃で30分、85℃で30分、150℃で1時間と三段階で加熱を行った。加熱後、非常に鮮明な導波路パターンが現れているのが確認された。また、コア部およびクラッド部の形成が確認された。
(Formation of core layer)
After the photosensitive resin composition varnish V5 was uniformly applied on the lower clad layer with a doctor blade, it was put into a dryer at 45 ° C. for 15 minutes. After completely removing the solvent, a photomask was pressed and selectively irradiated with ultraviolet rays at 500 mJ / cm 2 . The mask was removed, and heating was performed in three stages in a dryer at 45 ° C. for 30 minutes, 85 ° C. for 30 minutes, and 150 ° C. for 1 hour. It was confirmed that a very clear waveguide pattern appeared after heating. Moreover, formation of the core part and the clad part was confirmed.
(上側クラッド層の形成)
 実施例1と同様の上側クラッド層を作製した。
(Formation of upper cladding layer)
An upper clad layer similar to that in Example 1 was produced.
(4)評価
 実施例1と同じ方法により、評価を行った。伝搬損失は0.03dB/cmと算出することができた。コア部とクラッド部の屈折率差は0.01であった。
(4) Evaluation Evaluation was performed in the same manner as in Example 1. The propagation loss could be calculated as 0.03 dB / cm. The difference in refractive index between the core portion and the cladding portion was 0.01.
(実施例6)
(1)脱離性基を有するノルボルネン系樹脂の合成
 実施例1と同様の方法でノルボルネン系樹脂を作製した。
(Example 6)
(1) Synthesis of norbornene-based resin having a leaving group A norbornene-based resin was produced in the same manner as in Example 1.
(2)感光性樹脂組成物の製造
 精製した上記ポリマー#1 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、シクロヘキシルオキセタンモノマー(式20で示したもの、東亜合成製 CHOX)1.5g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄な感光性樹脂組成物ワニスV6を得た。
(2) Production of photosensitive resin composition 10 g of the purified polymer # 1 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of antioxidant Irganox 1076 (manufactured by Ciba Geigy), cyclohexyl oxetane monomer (formula 20) And 1.5 g of photoacid generator Rhodosil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-72-2) (1.36E-2 g in 0.1 mL of ethyl acetate) and uniformly added. After dissolution, filtration was performed with a 0.2 μm PTFE filter to obtain a clean photosensitive resin composition varnish V6.
(3)光導波路フィルムの製造
(下側クラッド層の作製)
 実施例1と同様の下側クラッド層を作製した。
(3) Production of optical waveguide film (production of lower clad layer)
A lower clad layer similar to that in Example 1 was produced.
(コア層の形成)
 上記下側クラッド層上に感光性樹脂組成物ワニスV6をドクターブレードによって均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、フォトマスクを圧着して紫外線を500mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中45℃で30分、85℃で30分、150℃で1時間と三段階で加熱を行った。加熱後、非常に鮮明な導波路パターンが現れているのが確認された。また、コア部およびクラッド部の形成が確認された。
(Formation of core layer)
After the photosensitive resin composition varnish V6 was uniformly applied on the lower clad layer with a doctor blade, it was put into a dryer at 45 ° C. for 15 minutes. After completely removing the solvent, a photomask was pressed and selectively irradiated with ultraviolet rays at 500 mJ / cm 2 . The mask was removed, and heating was performed in three stages in a dryer at 45 ° C. for 30 minutes, 85 ° C. for 30 minutes, and 150 ° C. for 1 hour. It was confirmed that a very clear waveguide pattern appeared after heating. Moreover, formation of the core part and the clad part was confirmed.
(上側クラッド層の形成)
 実施例1と同様の上側クラッド層を作製した。
(Formation of upper cladding layer)
An upper clad layer similar to that in Example 1 was produced.
(4)評価
 実施例1と同じ方法により、評価を行った。伝搬損失は0.03dB/cmと算出することができた。コア部とクラッド部の屈折率差は0.01であった。
(4) Evaluation Evaluation was performed in the same manner as in Example 1. The propagation loss could be calculated as 0.03 dB / cm. The difference in refractive index between the core portion and the cladding portion was 0.01.
(実施例7)
(1)脱離性基を有するノルボルネン系樹脂の合成
 水分および酸素濃度がいずれも1ppm以下に制御され、乾燥窒素で充満されたグローブボックス中において、ヘキシルノルボルネン(HxNB)6.4g(36.1mmol)、ジフェニルメチルノルボルネンメトキシシラン(diPhNB)8.7g(27.1mmol)、エポキシノルボルネン(EpNB)4.9g(27.1mmol)を500mLバイアル瓶に計量し、脱水トルエン60gと酢酸エチル11gを加え、シリコン製のシーラーを被せて上部を密栓した。
(Example 7)
(1) Synthesis of norbornene-based resin having a leaving group In a glove box whose water and oxygen concentrations are both controlled to 1 ppm or less and filled with dry nitrogen, 6.4 g (36.1 mmol) of hexylnorbornene (HxNB) ), Diphenylmethylnorbornene methoxysilane (diPhNB) 8.7 g (27.1 mmol), epoxy norbornene (EpNB) 4.9 g (27.1 mmol) were weighed into a 500 mL vial, 60 g of dehydrated toluene and 11 g of ethyl acetate were added, The top was sealed with a silicon sealer.
 次に、100mLバイアルビン中に上記化学式(B)で表わされるNi触媒1.75g(3.2mmol)と脱水トルエン10mLを計量し、スターラーチップを入れて密栓し、触媒を十分に撹拌して完全に溶解させた。 Next, 1.75 g (3.2 mmol) of the Ni catalyst represented by the above chemical formula (B) and 10 mL of dehydrated toluene are weighed in a 100 mL vial, put a stirrer chip and sealed, and the catalyst is thoroughly stirred to completely Dissolved in.
 この上記化学式(B)で表わされるNi触媒溶液1mLをシリンジで正確に計量し、上記3種のノルボルネンを溶解させたバイアル瓶中に定量的に注入し室温で1時間撹拌したところ、著しい粘度上昇が確認された。この時点で栓を抜き、テトラヒドロフラン(THF)60gを加えて撹拌を行い、反応溶液を得た。 When 1 mL of the Ni catalyst solution represented by the above chemical formula (B) is accurately weighed with a syringe, and quantitatively injected into the vial bottle in which the three types of norbornene are dissolved, and stirred at room temperature for 1 hour, a marked increase in viscosity occurs. Was confirmed. At this point, the stopper was removed, 60 g of tetrahydrofuran (THF) was added, and the mixture was stirred to obtain a reaction solution.
 100mLビーカーに無水酢酸9.5g、過酸化水素水18g(濃度30%)、イオン交換水30gを加えて撹拌し、その場で過酢酸水溶液を調製した。次にこの水溶液全量を上記反応溶液に加えて12時間撹拌してNiの還元処理を行った。 In a 100 mL beaker, 9.5 g of acetic anhydride, 18 g of hydrogen peroxide (concentration 30%) and 30 g of ion-exchanged water were added and stirred to prepare a peracetic acid aqueous solution on the spot. Next, the total amount of this aqueous solution was added to the above reaction solution and stirred for 12 hours to reduce Ni.
 次に、処理の完了した反応溶液を分液ロートに移し替え、下部の水層を除去した後、イソプロピルアルコールイソプロピルアルコールの30%水溶液を100mL加えて激しく撹拌を行った。静置して完全に二層分離が行われた後で水層を除去した。この水洗プロセスを合計で3回繰り返した後、油層を大過剰のアセトン中に滴下して生成したポリマーを再沈殿させ、ろ過によりろ液と分別した後、60℃に設定した真空乾燥機中で12時間加熱乾燥を行うことにより、ポリマー#3を得た。ポリマー#3の分子量分布は、GPC測定によると、Mw=8万、Mn=4万であった。また、ポリマー#3中の各構造単位のモル比は、NMRによる同定によると、ヘキシルルボルネン構造単位が40mol%、ジフェニルメチルノルボルネンメトキシシラン構造単位が30mol%、エポキシノルボルネン構造単位が30mol%であった。またメトリコンによる屈折率は1.53(測定波長;633nm)であった。 Next, the treated reaction solution was transferred to a separatory funnel, the lower aqueous layer was removed, and 100 mL of a 30% aqueous solution of isopropyl alcohol isopropyl alcohol was added and vigorously stirred. The aqueous layer was removed after standing and completely separating the two layers. After repeating this water washing process three times in total, the oil layer was dropped into a large excess of acetone to reprecipitate the polymer produced, separated from the filtrate by filtration, and then in a vacuum dryer set at 60 ° C. Polymer # 3 was obtained by heat drying for 12 hours. The molecular weight distribution of the polymer # 3 was Mw = 80,000 and Mn = 40,000 according to GPC measurement. Further, according to the identification by NMR, the molar ratio of each structural unit in the polymer # 3 is 40 mol% for the hexylbornene structural unit, 30 mol% for the diphenylmethylnorbornenemethoxysilane structural unit, and 30 mol% for the epoxynorbornene structural unit. there were. The refractive index by Metricon was 1.53 (measurement wavelength: 633 nm).
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
(2)感光性樹脂組成物の製造
 精製した上記ポリマー#3 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、シクロヘキシルオキセタンモノマー(式20で示したもの、東亜合成製 CHOX)1.0g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄な感光性樹脂組成物ワニスV7を得た。
(2) Production of photosensitive resin composition 10 g of the purified polymer # 3 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of antioxidant Irganox 1076 (manufactured by Ciba Geigy), cyclohexyloxetane monomer (formula 20) And 1.0 g of CHO manufactured by Toa Gosei Co., Ltd. and a photoacid generator Rhodosil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-72-2) (1.36E-2 g in 0.1 mL of ethyl acetate) were uniformly added. After dissolution, filtration was performed with a 0.2 μm PTFE filter to obtain a clean photosensitive resin composition varnish V7.
(3)光導波路フィルムの製造
(下側クラッド層の作製)
 実施例1と同様の下側クラッド層を作製した。
(コア層の形成)
 上記下側クラッド層上に感光性樹脂組成物ワニスV7をドクターブレードによって均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、フォトマスクを圧着して紫外線を500mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中45℃で30分、85℃で30分、150℃で1時間と三段階で加熱を行った。加熱後、非常に鮮明な導波路パターンが現れているのが確認された。また、コア部およびクラッド部の形成が確認された。
(3) Production of optical waveguide film (production of lower clad layer)
A lower clad layer similar to that in Example 1 was produced.
(Formation of core layer)
After the photosensitive resin composition varnish V7 was uniformly applied on the lower clad layer with a doctor blade, it was put into a dryer at 45 ° C. for 15 minutes. After completely removing the solvent, a photomask was pressed and selectively irradiated with ultraviolet rays at 500 mJ / cm 2 . The mask was removed, and heating was performed in three stages in a dryer at 45 ° C. for 30 minutes, 85 ° C. for 30 minutes, and 150 ° C. for 1 hour. It was confirmed that a very clear waveguide pattern appeared after heating. Moreover, formation of the core part and the clad part was confirmed.
(上側クラッド層の形成)
 実施例1と同様の上層クラッドを作製した。
(Formation of upper cladding layer)
An upper clad similar to that of Example 1 was produced.
(4)評価
 実施例1と同じ方法により、評価を行った。伝搬損失は0.04dB/cmと算出することができた。コア部とクラッド部の屈折率差は0.02であった。
 以上、実施例1~7で得られた光導波路フィルムの評価結果を表1に示す。
(4) Evaluation Evaluation was performed in the same manner as in Example 1. The propagation loss could be calculated as 0.04 dB / cm. The refractive index difference between the core portion and the clad portion was 0.02.
The evaluation results of the optical waveguide films obtained in Examples 1 to 7 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
 実施例1~7では、感光性樹脂組成物に光を当てると、光酸発生剤から、酸が発生し、照射部分のみにおいて、環状エーテル基を有するモノマーが重合する。そして、照射部分における未反応モノマー量が少なくなるため、照射部分/未照射部分間で生じた濃度勾配を解消するために未照射部分のモノマーが照射部分に拡散する。
 また、光照射後、加熱を行うと、未照射部分からモノマーが揮発する。
In Examples 1 to 7, when light is applied to the photosensitive resin composition, an acid is generated from the photoacid generator, and the monomer having a cyclic ether group is polymerized only in the irradiated portion. Then, since the amount of unreacted monomer in the irradiated part decreases, the monomer in the unirradiated part diffuses into the irradiated part in order to eliminate the concentration gradient generated between the irradiated part / unirradiated part.
Further, when heating is performed after light irradiation, the monomer volatilizes from the unirradiated portion.
 以上より、コア部とクラッド部との間でモノマー由来の構造体濃度が異なり、クラッド部では、環状エーテル基を有するモノマー由来の構造体が多くなり、コア部では、環状エーテル基を有するモノマー由来の構造体が少なくなる。このことは、コア部とクラッド部との間で0.01以上の比較的大きな屈折率差が生じることから認められる。 As described above, the structure concentration derived from the monomer is different between the core portion and the cladding portion, the structure derived from the monomer having a cyclic ether group increases in the cladding portion, and the monomer derived from the monomer having a cyclic ether group is present in the core portion. There are fewer structures. This is recognized from the fact that a relatively large refractive index difference of 0.01 or more occurs between the core portion and the cladding portion.
 なお、実施例1~7では、直線状の光導波路を形成したが、曲線状(曲率半径10mm程度)の光導波路を形成した場合には、光損失が少ないことが顕著になる。 In Examples 1 to 7, a linear optical waveguide is formed. However, when a curved optical waveguide (with a radius of curvature of about 10 mm) is formed, the optical loss is remarkable.
 さらには、実施例1~7で得られた光導波路フィルムは、耐熱性が高く、260℃の耐リフロー性を有している。 Furthermore, the optical waveguide films obtained in Examples 1 to 7 have high heat resistance and reflow resistance of 260 ° C.
(実施例8)
(1)脱離性基を有するノルボルネン樹脂の合成
 脱離性基を有するノルボルネン系樹脂の合成において、ジフェニルメチルノルボルネンメトキシシラン12.9g(40.1mmol)に代えて、フェニルジメチルノルボルネンメトキシシラン10.4g(40.1mmol)を用いた以外は実施例1と同様にした。得られた側鎖に脱離性基を有するノルボルネン系樹脂B(式103)の分子量は、GPC測定によると、Mw=11万、Mn=5万であった。また、各構造単位のモル比は、NMRによる同定によると、ヘキシルノルボルネン構造単位が50mol%、フェニルジメチルノルボルネンメトキシシラン構造単位が50mol%であった。またメトリコンによる屈折率は1.53(測定波長;633nm)であった。
(Example 8)
(1) Synthesis of norbornene resin having a leaving group In the synthesis of a norbornene resin having a leaving group, phenyldimethylnorbornenemethoxysilane was used instead of 12.9 g (40.1 mmol) of diphenylmethylnorbornenemethoxysilane. Example 1 was repeated except that 4 g (40.1 mmol) was used. The molecular weight of the obtained norbornene resin B (Formula 103) having a leaving group in the side chain was Mw = 110,000 and Mn = 50,000 according to GPC measurement. Further, according to the identification by NMR, the molar ratio of each structural unit was 50 mol% for the hexylnorbornene structural unit and 50 mol% for the phenyldimethylnorbornenemethoxysilane structural unit. The refractive index by Metricon was 1.53 (measurement wavelength: 633 nm).
(2)感光性樹脂組成物の製造
 ポリマー#1に代えて、ノルボルネン系樹脂Bを使用した点以外は、実施例1と同様に感光性樹脂組成物を得た。
(2) Production of photosensitive resin composition A photosensitive resin composition was obtained in the same manner as in Example 1 except that norbornene resin B was used instead of polymer # 1.
(3)光導波路フィルムの製造
 ノルボルネン系樹脂Bを含む上記感光性樹脂組成物を使用した点以外は、実施例1と同様にして、光導波路フィルムを得た。
(3) Production of optical waveguide film An optical waveguide film was obtained in the same manner as in Example 1 except that the photosensitive resin composition containing the norbornene-based resin B was used.
 実施例1と同様に、光導波路の損失評価を行ったところ、得られた光導波路フィルムの伝搬損失は0.03dB/cmであった。 When the loss evaluation of the optical waveguide was performed in the same manner as in Example 1, the propagation loss of the obtained optical waveguide film was 0.03 dB / cm.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
(実施例9)
(1)感光性樹脂組成物として以下のものを用いた以外は、実施例1と同様にした。
Example 9
(1) The procedure was the same as Example 1 except that the following photosensitive resin composition was used.
 実施例1で得られたノルボルネン系樹脂10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、シクロヘキシルオキセタンモノマー(式(100)で示した第1モノマー、東亜合成製 CHOX、CAS#483303-25-9、分子量186、沸点125℃/1.33kPa)1g、2官能オキセタンモノマー(式(104)で示した第2モノマー、東亜合成製、DOX、CAS#18934-00-4、分子量214、沸点119℃/0.67kPa)1g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄なコア層用の感光性樹脂組成物ワニスを調製した。 10 g of the norbornene-based resin obtained in Example 1 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of an antioxidant Irganox 1076 (manufactured by Ciba Geigy), and a cyclohexyloxetane monomer (formula (100) represented by the formula (100)). 1 monomer, manufactured by Toa Gosei Co., CAS # 483303-25-9, molecular weight 186, boiling point 125 ° C./1.33 kPa) 1 g, bifunctional oxetane monomer (second monomer represented by the formula (104), manufactured by Toa Gosei Co., Ltd., DOX , CAS # 18934-00-4, molecular weight 214, boiling point 119 ° C./0.67 kPa) 1 g, photoacid generator Rhodorsil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-72-2) (1.36E-2 g, ethyl acetate In 0.1 mL) After e uniformly dissolved, then filtered through 0.2 [mu] m PTFE filter to prepare a photosensitive resin composition varnish for clean core layer.
(2)光導波路フィルムの製造
 上記(1)の感光性樹脂組成物を使用した点以外は、実施例1と同様にして、光導波路フィルムを得た。
(2) Production of optical waveguide film An optical waveguide film was obtained in the same manner as in Example 1 except that the photosensitive resin composition of (1) above was used.
 実施例1と同様に、光導波路の損失評価を行ったところ、得られた光導波路フィルムの伝搬損失は0.04dB/cmであった。 As in Example 1, when the loss evaluation of the optical waveguide was performed, the propagation loss of the obtained optical waveguide film was 0.04 dB / cm.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
(実施例10)
 環状オレフィンとして以下のものを用いた以外は、実施例1と同様にした。
(Example 10)
Example 1 was repeated except that the following were used as the cyclic olefin.
(1)ノルボルネン系樹脂Cの合成
 公知の手法(例えば特開2003-252963号公報)を用いてフェニルエチルノルボルネン(PENB)モノマーの開環メタセシス重合を行い、下記式(105)で表されるノルボルネン系樹脂Cを得た。
(1) Synthesis of norbornene-based resin C Norbornene represented by the following formula (105) is obtained by ring-opening metathesis polymerization of phenylethylnorbornene (PENB) monomer using a known method (for example, JP-A-2003-252963). System resin C was obtained.
(2)感光性樹脂組成物製造
 ポリマー#1に変えて、ノルボルネン系樹脂Cを使用した点以外は、実施例1と同様に感光性樹脂組成物を得た。
(2) Production of photosensitive resin composition A photosensitive resin composition was obtained in the same manner as in Example 1 except that the norbornene resin C was used instead of the polymer # 1.
(3)光導波路フィルムの製造
 ノルボルネン系樹脂Cを含む上記感光性樹脂組成物を使用した点以外は、実施例1と同様にして、光導波路フィルムを得た。
(3) Production of optical waveguide film An optical waveguide film was obtained in the same manner as in Example 1 except that the photosensitive resin composition containing the norbornene-based resin C was used.
 実施例1と同様に、光導波路の損失評価を行ったところ、得られた光導波路フィルムの伝搬損失は0.05dB/cmであった。 As in Example 1, when the loss evaluation of the optical waveguide was performed, the propagation loss of the obtained optical waveguide film was 0.05 dB / cm.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
(実施例11)
 第1モノマーの配合量を0.5gにした以外は、実施例1と同様にして、光導波路フィルムを作製した。
 なお、得られた光導波路フィルムの伝搬損失は、0.10dB/cmであった。
(Example 11)
An optical waveguide film was produced in the same manner as in Example 1 except that the amount of the first monomer was changed to 0.5 g.
The propagation loss of the obtained optical waveguide film was 0.10 dB / cm.
(実施例12)
 第1モノマーの配合量を4.0gに以外は、実施例1と同様にして、光導波路フィルムを作製した。
 なお、得られた光導波路フィルムの伝搬損失は、0.10dB/cmであった。
(Example 12)
An optical waveguide film was produced in the same manner as in Example 1 except that the blending amount of the first monomer was 4.0 g.
The propagation loss of the obtained optical waveguide film was 0.10 dB / cm.
(比較例1)
 第1モノマーを用いなかった以外は、実施例1と同様にして、光導波路フィルムを作製した。
 なお、得られた光導波路フィルムの伝搬損失は、0.90dB/cmであった。
(Comparative Example 1)
An optical waveguide film was produced in the same manner as in Example 1 except that the first monomer was not used.
The propagation loss of the obtained optical waveguide film was 0.90 dB / cm.
(比較例2)
(1)各成分の合成
<触媒前駆体:Pd(OAc)(P(Cy)の合成>
 漏斗を装備した2口丸底フラスコで、Pd(OAc)(5.00g、22.3mmol)とCHCl(30mL)からなる赤茶色懸濁液を-78℃で攪拌した。
(Comparative Example 2)
(1) Synthesis of each component <Catalyst precursor: Synthesis of Pd (OAc) 2 (P (Cy) 3 ) 2 >
In a 2-neck round bottom flask equipped with a funnel, a reddish brown suspension consisting of Pd (OAc) 2 (5.00 g, 22.3 mmol) and CH 2 Cl 2 (30 mL) was stirred at −78 ° C.
 漏斗に、P(Cy)(13.12mL(44.6mmol))のCHCl溶液(30mL)を入れ、そして、15分かけて上記攪拌懸濁液に滴下した。その結果、徐々に赤褐色から黄色に変化した。 A funnel was charged with a CH 2 Cl 2 solution (30 mL) of P (Cy) 3 (13.12 mL (44.6 mmol)) and added dropwise to the stirred suspension over 15 minutes. As a result, the color gradually changed from reddish brown to yellow.
 -78℃で1時間攪拌した後、懸濁液を室温に温め、さらに2時間攪拌して、ヘキサン(20mL)で希釈した。 After stirring at −78 ° C. for 1 hour, the suspension was warmed to room temperature, further stirred for 2 hours, and diluted with hexane (20 mL).
 次に、この黄色の固体を空気中でろ過し、ペンタンで洗浄し(5×10mL)、真空乾燥させた。 Next, this yellow solid was filtered in the air, washed with pentane (5 × 10 mL), and vacuum-dried.
 2次収集物は、ろ液を0℃に冷却して分離し、上記と同様に洗浄して乾燥させた。これにより、触媒前駆体を得た。 The secondary collection was separated by cooling the filtrate to 0 ° C., washed and dried as above. As a result, a catalyst precursor was obtained.
(2)感光性樹脂組成物の製造
 精製した上記ポリマー#1 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、ジメチルビス(ノルボルネンメトキシ)シラン(SiX)2.4g、上記触媒前駆体(2.6E-2g)、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄な感光性樹脂組成物ワニスを得た。
(2) Production of photosensitive resin composition 10 g of the purified polymer # 1 was weighed into a 100 mL glass container, 40 g of mesitylene, 0.01 g of an antioxidant Irganox 1076 (manufactured by Ciba Geigy), and dimethylbis (norbornenemethoxy). Silane (SiX) 2.4 g, the above catalyst precursor (2.6E-2 g), photoacid generator Rhodorsil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-72-2) (1.36E-2 g, in ethyl acetate 0.1 mL) ) And uniformly dissolved, followed by filtration with a 0.2 μm PTFE filter to obtain a clean photosensitive resin composition varnish.
(3)光導波路フィルムの製造
(下側クラッド層の作製)
 実施例1と同様の下側クラッド層を作製した。
(3) Production of optical waveguide film (production of lower clad layer)
A lower clad layer similar to that in Example 1 was produced.
(コア層の形成)
 上記下側クラッド層上に調製したワニスをドクターブレードによって均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、フォトマスクを圧着して紫外線を500mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中45℃で30分、85℃で30分、150℃で1時間と三段階で加熱を行った。加熱後、導波路パターンが現れているのが確認された。また、コア部およびクラッド部の形成が確認された。
(Formation of core layer)
The varnish prepared on the lower clad layer was uniformly applied by a doctor blade, and then placed in a dryer at 45 ° C. for 15 minutes. After completely removing the solvent, a photomask was pressed and selectively irradiated with ultraviolet rays at 500 mJ / cm 2 . The mask was removed, and heating was performed in three stages in a dryer at 45 ° C. for 30 minutes, 85 ° C. for 30 minutes, and 150 ° C. for 1 hour. It was confirmed that a waveguide pattern appeared after heating. Moreover, formation of the core part and the clad part was confirmed.
(上側クラッド層の形成)
 実施例1と同様の上側クラッド層を作製した
(Formation of upper cladding layer)
An upper clad layer similar to that in Example 1 was produced.
(4)評価
 実施例1と同じ方法により、評価を行った。伝搬損失は0.05dB/cmと算出することができた。コア部とクラッド部の屈折率差は0.005であった。
(4) Evaluation Evaluation was performed in the same manner as in Example 1. The propagation loss could be calculated as 0.05 dB / cm. The difference in refractive index between the core portion and the cladding portion was 0.005.
B.光導波路の評価
 各実施例および比較例で得られた光導波路について、以下の評価を行った。評価項目を内容とともに示す。得られた結果を表2に示す。
B. Evaluation of Optical Waveguide The following evaluations were performed on the optical waveguides obtained in the examples and comparative examples. The evaluation items are shown together with the contents. The obtained results are shown in Table 2.
1.光損失
 850nmVCSEL(面発光レーザー)より発せられた光を50μmφの光ファイバーを経由して上記光導波路に導入し、200μmφの光ファイバーで受光を行って光の強度を測定した。なお、測定にはカットバック法を採用し、導波路長を横軸、挿入損失を縦軸にプロットしていったところ、測定値はきれいに直線上に並び、その傾きから伝搬損失を算出した。
1. Light loss Light emitted from an 850 nm VCSEL (surface emitting laser) was introduced into the optical waveguide via a 50 μmφ optical fiber, and received by a 200 μmφ optical fiber to measure the light intensity. The cutback method was used for the measurement, and the waveguide length was plotted on the horizontal axis and the insertion loss was plotted on the vertical axis. The measured values were neatly arranged on a straight line, and the propagation loss was calculated from the slope.
2.耐熱性
 上記光導波路を高温高湿槽(85℃、85%RH)に投入し、湿熱処理500時間後の伝搬損失を評価した。また、リフロー処理(N雰囲気下、最大温度260℃/60秒)による伝搬損失の劣化の有無も並行して確認した。
 なお、ここでの伝搬損失の測定は、1の光損失の測定方法と同じである。
2. Heat resistance The optical waveguide was placed in a high-temperature and high-humidity tank (85 ° C., 85% RH), and propagation loss after 500 hours of wet heat treatment was evaluated. It was also confirmed in parallel presence or absence of degradation of the propagation loss due to reflow process (N 2 atmosphere, a maximum temperature of 260 ° C. / 60 seconds).
Note that the measurement of the propagation loss here is the same as the one optical loss measurement method.
3.光導波路の曲げ損失
 10mmの曲率半径を有する光導波路フィルムの光強度の曲げ損失を評価した。850nmVCSEL(面発光レーザー)より発せられた光を50μmφの光ファイバーを経由して上記光導波路フィルムの端面に導入し、200μmφの光ファイバーで他端から受光を行って光の強度を測定した(下記式参照)。長さの等しい光導波路フィルムを曲げたときに生じる損失の増分を「曲げ損失」と定義し、図19に示すように、光導波路フィルムを曲線状にした場合の挿入損失と光導波路フィルムを直線状にした場合の挿入損失との差で「曲げ損失」を表した。
3. Bending loss of optical waveguide The bending loss of the light intensity of the optical waveguide film having a radius of curvature of 10 mm was evaluated. Light emitted from an 850 nm VCSEL (surface emitting laser) was introduced into the end face of the optical waveguide film via a 50 μmφ optical fiber, and the light intensity was measured from the other end with a 200 μmφ optical fiber (see the following formula) ). The increment of the loss that occurs when the optical waveguide film having the same length is bent is defined as “bending loss”. As shown in FIG. 19, the insertion loss and the optical waveguide film are linear when the optical waveguide film is curved. The “bending loss” is expressed by the difference from the insertion loss when the shape is made.
 挿入損失[dB]= -10log(出射光強度/入射光強度)
 曲げ損失=(曲線での挿入損失)-(直線での挿入損失)
Insertion loss [dB] =-10 log (outgoing light intensity / incident light intensity)
Bending loss = (insertion loss on a curve)-(insertion loss on a straight line)
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
 表2から明らかなように実施例1,8-12は、光損失が低く、光導波路の性能が優れていることが示された。 As is clear from Table 2, Examples 1 and 8-12 showed low optical loss and excellent optical waveguide performance.
 また、実施例1,8-12は、高温高湿処理後およびリフロー処理後の光損失も小さく、耐熱性にも優れていることが示された。 In addition, Examples 1 and 8-12 showed that light loss after high-temperature and high-humidity treatment and after reflow treatment was small, and excellent in heat resistance.
 また、特に実施例1,8,9,10は、曲げ損失も小さく、光導波路を屈曲させて用いても十分な性能を発揮することが示唆された。 Further, in particular, Examples 1, 8, 9, and 10 have a small bending loss, and it was suggested that sufficient performance is exhibited even when the optical waveguide is bent.
 さらに、各実施例および比較例で得られた光導波路フィルムを用いて、前記第1、第19実施形態にかかる光導波路構造体を作製したところ、各実施例で得られた光導波路フィルムを用いた光導波路構造体は、それぞれ、各比較例で得られた光導波路フィルムを用いた光導波路構造体に比べて、伝送損失の低いものが得られた。
 また、各実施例および比較例で得られた光導波路フィルムを用いて、前記第14実施形態にかかる光導波路構造体を作製し、各実施例および比較例で得られた光導波路フィルムを垂直導波路にもそれぞれ用いたところ、各実施例で得られた光導波路フィルムを用いた光導波路構造体は、各比較例で得られた光導波路フィルムを用いた光導波路構造体に比べて、伝送損失の低いものが得られた。
Furthermore, when the optical waveguide structures according to the first and nineteenth embodiments were produced using the optical waveguide films obtained in the examples and comparative examples, the optical waveguide films obtained in the examples were used. Each of the optical waveguide structures obtained had a lower transmission loss than the optical waveguide structure using the optical waveguide film obtained in each of the comparative examples.
In addition, the optical waveguide structure according to the fourteenth embodiment was produced using the optical waveguide films obtained in the examples and comparative examples, and the optical waveguide films obtained in the examples and comparative examples were vertically guided. When used for each of the waveguides, the optical waveguide structure using the optical waveguide film obtained in each example is less in transmission loss than the optical waveguide structure using the optical waveguide film obtained in each comparative example. A low one was obtained.
本発明の光導波路構造体は、光回路(光導波路のパターン)や電気回路の設計の幅が広く、歩留まりが高く、光伝送性能を高く維持し、信頼性、耐久性に優れ、汎用性に富む。そのため、本発明の光導波路構造体を備えることにより、信頼性の高い種々の電子部品および電子機器が得られる。よって本発明は産業上極めて有用である。 The optical waveguide structure of the present invention has a wide range of optical circuit (optical waveguide pattern) and electrical circuit design, high yield, high optical transmission performance, excellent reliability and durability, and versatility. Rich. Therefore, by providing the optical waveguide structure of the present invention, various highly reliable electronic parts and electronic devices can be obtained. Therefore, the present invention is extremely useful industrially.
 1     光導波路構造体
 2、2’  基板
 21    透光部
 22    貫通孔
 23    垂直光導波路
 24    コア部
 25    クラッド部
 26    レンズ部
 3     接着層
 4、41  アンダーフィル材
 51、52、54、55   導体層
 6、61  封止材
 7     半田
 8     貫通孔(スルーホール)
 81、82 導体ポスト(導電材料)
 9、9’  光導波路
 91    クラッド層
 92    クラッド層
 93    コア層
 94    コア部
 95    クラッド部
 96    光路変換部
 961   反射面
 96a、96b、96c、96d、96e、96f 光路変換部
 961a、961b、961c、961d、961e、961f 反射面
 10    発光素子
 101   発光部
 103   端子
 105   端子
 11    受光素子
 111   受光部
 113   端子
 115   端子
 12    電気素子(半導体素子)
 123   端子
 125   端子
 127   端子
 129   端子
 13    チップキャリア
 900   ワニス
 910   フィルム
 941   分岐部
 942   コア部
 943   貫通孔(空孔)
 944   反射面
 945   拡幅部
 946   途切れ部分
 M     マスク
 S     延伸線
 1001  光導波路構造体
 1002  基板
 1022  貫通孔(スルーホール)
 1222  円形部
 1224  矩形部
 1023  垂直光導波路
 1024  導光路(コア部)
 1025  クラッド部
 1026  レンズ部
 1003  導体部
 1004  アンダーフィル材
 1051、1052、1053 導体層
 1531、1532、1533 部位
 1006  封止材
 1008  貫通孔(スルーホール)
 1081  導体ポスト(導体部)
 1009  光導波路
 1091  クラッド層
 1092  クラッド層
 1093  コア層
 1094  コア部
 1095  クラッド部
 1096  光路変換部
 1961  反射面
 1010  発光素子
 1101  発光部
 1103  端子
 1105  端子
 1012  電気素子(半導体素子)
 1123  端子
 1125  端子
 1018  伝送光
 1900  ワニス(コア層形成用材料)
 1910  フィルム
 2001  光導波路構造体
 2002  基板
 2024  透光部
 2025  貫通孔
 2026  レンズ部
 2003  凹部
 2030  底面(下面)
 2031  当て付け面(X方向規制)
 2032  当て付け面(Y方向規制)
 2033  位置決め手段(発光素子用)
 2004  凹部
 2040  底面(下面)
 2041  当て付け面(X方向規制)
 2042  当て付け面(Y方向規制)
 2043  位置決め手段(電子回路素子用)
 2005  導体層
 2051、2052、2053 部位
 2006  位置決め部材(板材)
 2061、2062 当て付け面
 2007  接着層
 2009  光導波路
 2091  クラッド層
 2092  クラッド層
 2093  コア層
 2094  コア部
 2095  クラッド部
 2096  光路変換部
 2961  反射面
 2010  発光素子
 2101  発光部
 2103、2105 端子
 2012  電子回路素子(半導体素子)
 2123、2125 端子
 2018  伝送光
 2900  ワニス(コア層形成用材料)
 2910  フィルム
DESCRIPTION OF SYMBOLS 1 Optical waveguide structure 2, 2 'board | substrate 21 Translucent part 22 Through-hole 23 Vertical optical waveguide 24 Core part 25 Clad part 26 Lens part 3 Adhesive layer 4, 41 Underfill material 51, 52, 54, 55 Conductor layer 6, 61 Sealing material 7 Solder 8 Through hole (through hole)
81, 82 Conductor post (conductive material)
9, 9 'Optical waveguide 91 Clad layer 92 Clad layer 93 Core layer 94 Core part 95 Clad part 96 Optical path conversion part 961 Reflecting surface 96a, 96b, 96c, 96d, 96e, 96f Optical path conversion part 961a, 961b, 961c, 961d, 961e, 961f Reflecting surface 10 Light emitting element 101 Light emitting part 103 Terminal 105 Terminal 11 Light receiving element 111 Light receiving part 113 Terminal 115 Terminal 12 Electric element (semiconductor element)
123 terminal 125 terminal 127 terminal 129 terminal 13 chip carrier 900 varnish 910 film 941 branch part 942 core part 943 through hole (hole)
944 Reflecting surface 945 Widened portion 946 Interrupted portion M Mask S Stretched line 1001 Optical waveguide structure 1002 Substrate 1022 Through hole (through hole)
1222 Circular portion 1224 Rectangular portion 1023 Vertical optical waveguide 1024 Light guide path (core portion)
1025 Clad part 1026 Lens part 1003 Conductor part 1004 Underfill material 1051, 1052, 1053 Conductor layer 1531, 1532, 1533 Site 1006 Sealing material 1008 Through hole (through hole)
1081 Conductor post (conductor part)
DESCRIPTION OF SYMBOLS 1009 Optical waveguide 1091 Clad layer 1092 Clad layer 1093 Core layer 1094 Core part 1095 Clad part 1096 Optical path conversion part 1961 Reflecting surface 1010 Light emitting element 1101 Light emitting part 1103 Terminal 1105 Terminal 1012 Electrical element (semiconductor element)
1123 Terminal 1125 Terminal 1018 Transmission light 1900 Varnish (core layer forming material)
1910 Film 2001 Optical waveguide structure 2002 Substrate 2024 Translucent part 2025 Through hole 2026 Lens part 2003 Recessed part 2030 Bottom face (lower face)
2031 Abutting surface (X direction regulation)
2032 Abutting surface (Y direction regulation)
2033 Positioning means (for light emitting element)
2004 Concave 2040 Bottom (lower surface)
2041 Abutting surface (X direction regulation)
2042 Abutting surface (Y direction regulation)
2043 Positioning means (for electronic circuit elements)
2005 Conductor layer 2051, 2052, 2053 Site 2006 Positioning member (plate material)
2061, 2062 Application surface 2007 Adhesive layer 2009 Optical waveguide 2091 Clad layer 2092 Clad layer 2093 Core layer 2094 Core part 2095 Clad part 2096 Optical path changing part 2961 Reflecting surface 2010 Light emitting element 2101 Light emitting part 2103, 2105 terminal 2012 Electronic circuit element (semiconductor) element)
2123, 2125 Terminal 2018 Transmission light 2900 Varnish (core layer forming material)
2910 films

Claims (13)

  1.  互いに屈折率が異なるコア部とクラッド部とを備える光導波路と、前記コア部の光路を屈曲させる光路変換部と、を有し、
     前記コア部は、
    (A)環状オレフィン樹脂と、
    (B)前記(A)とは屈折率が異なり、かつ、環状エーテル基を有するモノマーおよび環状エーテル基を有するオリゴマーのうちの少なくとも一方と、
    (C)光酸発生剤と、
    を含む組成物で構成されたコア層に対し活性放射線を選択的に照射することにより所望の形状に形成されたものであることを特徴とする光導波路構造体。
    An optical waveguide having a core part and a clad part having different refractive indexes, and an optical path conversion part for bending the optical path of the core part,
    The core part is
    (A) a cyclic olefin resin;
    (B) The refractive index is different from that of (A), and at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group;
    (C) a photoacid generator;
    An optical waveguide structure characterized by being formed into a desired shape by selectively irradiating active radiation to a core layer composed of a composition comprising:
  2.  前記(B)の環状エーテル基は、オキセタニル基またはエポキシ基である請求項1に記載の光導波路構造体。 The optical waveguide structure according to claim 1, wherein the cyclic ether group (B) is an oxetanyl group or an epoxy group.
  3.  前記(A)の環状オレフィン樹脂は、側鎖に前記(C)の光酸発生剤から発生する酸により脱離する脱離性基を有し、
     前記(B)は、下記式(100)に記載の第1モノマーを含むものである請求項2に記載の光導波路構造体。
    Figure JPOXMLDOC01-appb-C000001
    The cyclic olefin resin (A) has a leaving group that is eliminated by an acid generated from the photoacid generator (C) in the side chain,
    The optical waveguide structure according to claim 2, wherein (B) includes the first monomer represented by the following formula (100).
    Figure JPOXMLDOC01-appb-C000001
  4.  前記光路変換部は、前記コア部を伝送される伝送光の少なくとも一部を反射する反射面を有するものであり、前記反射面は、前記伝送光を全反射させる傾斜角に設定されている、請求項1ないし3のいずれかに記載の光導波路構造体。 The optical path conversion unit has a reflection surface that reflects at least a part of transmission light transmitted through the core unit, and the reflection surface is set to an inclination angle that totally reflects the transmission light. The optical waveguide structure according to any one of claims 1 to 3.
  5.  前記コア部に設けられた空孔を有し、前記反射面は、前記コア部と前記空孔との界面の一部または全部で構成されており、前記反射面は、前記伝送光を全反射させる傾斜角に設定されている、請求項1ないし4のいずれかに記載の光導波路構造体。 A hole provided in the core portion, and the reflection surface is configured by a part or all of an interface between the core portion and the hole, and the reflection surface totally reflects the transmitted light. The optical waveguide structure according to any one of claims 1 to 4, wherein the optical waveguide structure is set to an inclination angle to be caused.
  6.  前記反射面を前記コア部方向に投影した場合の投影と前記コア部の断面とが重なる面積が、前記コア部の断面積と同一であり、
     前記コア部の前記反射面が存在する部分においてのみ前記コア部が大きく設定されている請求項4または5に記載の光導波路構造体。
    The area where the projection when the reflecting surface is projected in the direction of the core and the cross-section of the core overlap is the same as the cross-sectional area of the core.
    The optical waveguide structure according to claim 4 or 5, wherein the core portion is set to be large only in a portion where the reflection surface of the core portion exists.
  7.  前記光路変換部は、前記コア層内にのみ形成されている請求項1ないし6のいずれかに記載の光導波路構造体。 The optical waveguide structure according to any one of claims 1 to 6, wherein the optical path conversion unit is formed only in the core layer.
  8.  前記コア層において、前記コア部は、その端部または途中で途切れるよう形成されており、
     前記光路変換部は、前記コア部が途切れた部分に形成されている請求項1ないし7のいずれかに記載の光導波路構造体。
    In the core layer, the core portion is formed so as to be interrupted at an end portion or in the middle thereof,
    The optical waveguide structure according to any one of claims 1 to 7, wherein the optical path conversion unit is formed in a portion where the core unit is interrupted.
  9.  互いに屈折率が異なるコア部とクラッド部とを有する光導波路と、導体層とを有する積層構造体で構成され、
     厚さ方向に延在し、前記コア部に光学的に接続される導光路と、
     厚さ方向に延在し、前記導体層に電気的に接続される導体部とを有し、
     前記コア部は、
    (A)環状オレフィン樹脂と、
    (B)前記(A)とは屈折率が異なり、かつ、環状エーテル基を有するモノマーおよび環状エーテル基を有するオリゴマーのうちの少なくとも一方と、
    (C)光酸発生剤と、
    を含む組成物で構成されたコア層に対し活性放射線を選択的に照射することにより所望の形状に形成されたものであることを特徴とする光導波路構造体。
    It is composed of a laminated structure having an optical waveguide having a core part and a clad part having different refractive indexes, and a conductor layer,
    A light guide that extends in the thickness direction and is optically connected to the core portion;
    A conductor portion extending in the thickness direction and electrically connected to the conductor layer;
    The core part is
    (A) a cyclic olefin resin;
    (B) The refractive index is different from that of (A), and at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group;
    (C) a photoacid generator;
    An optical waveguide structure characterized by being formed into a desired shape by selectively irradiating active radiation to a core layer composed of a composition comprising:
  10.  貫通孔を有し、前記導光路と前記導体部とが前記貫通孔内に形成されている請求項9に記載の光導波路構造体。 The optical waveguide structure according to claim 9, further comprising a through hole, wherein the light guide path and the conductor portion are formed in the through hole.
  11.  前記導光路は、互いに屈折率が異なるコア部とクラッド部とを有する垂直光導波路で構成されている請求項9または10に記載の光導波路構造体。 The optical waveguide structure according to claim 9 or 10, wherein the light guide path is constituted by a vertical optical waveguide having a core part and a clad part having different refractive indexes.
  12.  基板と、互いに屈折率が異なるコア部とクラッド部とを有する光導波路と、少なくとも1つの電気素子と、前記電気素子の設置位置を定める位置決め手段とを備える光導波路構造体であって、
     前記コア部は、
    (A)環状オレフィン樹脂と、
    (B)前記(A)とは屈折率が異なり、かつ、環状エーテル基を有するモノマーおよび環状エーテル基を有するオリゴマーのうちの少なくとも一方と、
    (C)光酸発生剤と、
    を含む組成物で構成されたコア層に対し活性放射線を選択的に照射することにより所望の形状に形成されたものであることを特徴とする光導波路構造体。
    An optical waveguide structure comprising a substrate, an optical waveguide having a core portion and a cladding portion having different refractive indexes, at least one electrical element, and positioning means for determining an installation position of the electrical element,
    The core part is
    (A) a cyclic olefin resin;
    (B) The refractive index is different from that of (A), and at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group;
    (C) a photoacid generator;
    An optical waveguide structure characterized by being formed into a desired shape by selectively irradiating active radiation to a core layer composed of a composition comprising:
  13.  前記位置決め手段は、平面視で、前記発光部または前記受光部の位置が前記光路変換部の位置と重なるように位置決めする請求項12に記載の光導波路構造体。 The optical waveguide structure according to claim 12, wherein the positioning means positions the light emitting unit or the light receiving unit so that the position of the light emitting unit or the light receiving unit overlaps with the position of the optical path conversion unit in plan view.
PCT/JP2011/058433 2010-04-06 2011-04-01 Optical waveguide structure and electronic apparatus WO2011125939A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010088096A JP5278366B2 (en) 2010-04-06 2010-04-06 Optical waveguide structure and electronic device
JP2010-088096 2010-04-06
JP2010089401A JP5310633B2 (en) 2010-04-08 2010-04-08 Optical waveguide structure and electronic device
JP2010-089167 2010-04-08
JP2010-089401 2010-04-08
JP2010089167A JP2011221201A (en) 2010-04-08 2010-04-08 Optical waveguide structure and electronic device

Publications (1)

Publication Number Publication Date
WO2011125939A1 true WO2011125939A1 (en) 2011-10-13

Family

ID=44762877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058433 WO2011125939A1 (en) 2010-04-06 2011-04-01 Optical waveguide structure and electronic apparatus

Country Status (2)

Country Link
TW (1) TW201213360A (en)
WO (1) WO2011125939A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116931194A (en) * 2022-04-01 2023-10-24 欣兴电子股份有限公司 Electronic device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146602A (en) * 2002-10-24 2004-05-20 Sony Corp Hybrid circuit board mounting optical wiring and electrical wiring mixedly and its producing process, hybrid circuit module mounting wiring and electrical wiring mixedly and its producing method
JP2006058327A (en) * 2004-08-17 2006-03-02 Sony Corp Optical waveguide device and optical coupling device
JP2006120956A (en) * 2004-10-22 2006-05-11 Ibiden Co Ltd Multilayer printed-wiring board
JP2006292852A (en) * 2005-04-07 2006-10-26 Kyocera Corp Optical-electrical wiring board
JP2006337748A (en) * 2005-06-02 2006-12-14 Fuji Xerox Co Ltd Optical waveguide and its manufacturing method
JP2007148087A (en) * 2005-11-29 2007-06-14 Kyocera Corp Optoelectrical integrated wiring board and optoelectrical integrated wiring system
JP2007309987A (en) * 2006-05-16 2007-11-29 Nec Corp Optical module and manufacturing method therefor
JP2008233673A (en) * 2007-03-22 2008-10-02 Fuji Xerox Co Ltd Optical waveguide and method of manufacturing the same
JP2009067828A (en) * 2007-09-10 2009-04-02 Sumitomo Bakelite Co Ltd Complex composition and molded cured article obtained by crosslinking the same
WO2009151045A1 (en) * 2008-06-10 2009-12-17 住友ベークライト株式会社 Electronic apparatus, cellular phone, flexible cable and method for manufacturing optical waveguide forming body
WO2009154206A1 (en) * 2008-06-20 2009-12-23 住友ベークライト株式会社 Film for optical waveguide, film for laminated optical waveguide, optical waveguide, optical waveguide assembly, optical wiring, optical/electrical hybrid board, and electronic device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146602A (en) * 2002-10-24 2004-05-20 Sony Corp Hybrid circuit board mounting optical wiring and electrical wiring mixedly and its producing process, hybrid circuit module mounting wiring and electrical wiring mixedly and its producing method
JP2006058327A (en) * 2004-08-17 2006-03-02 Sony Corp Optical waveguide device and optical coupling device
JP2006120956A (en) * 2004-10-22 2006-05-11 Ibiden Co Ltd Multilayer printed-wiring board
JP2006292852A (en) * 2005-04-07 2006-10-26 Kyocera Corp Optical-electrical wiring board
JP2006337748A (en) * 2005-06-02 2006-12-14 Fuji Xerox Co Ltd Optical waveguide and its manufacturing method
JP2007148087A (en) * 2005-11-29 2007-06-14 Kyocera Corp Optoelectrical integrated wiring board and optoelectrical integrated wiring system
JP2007309987A (en) * 2006-05-16 2007-11-29 Nec Corp Optical module and manufacturing method therefor
JP2008233673A (en) * 2007-03-22 2008-10-02 Fuji Xerox Co Ltd Optical waveguide and method of manufacturing the same
JP2009067828A (en) * 2007-09-10 2009-04-02 Sumitomo Bakelite Co Ltd Complex composition and molded cured article obtained by crosslinking the same
WO2009151045A1 (en) * 2008-06-10 2009-12-17 住友ベークライト株式会社 Electronic apparatus, cellular phone, flexible cable and method for manufacturing optical waveguide forming body
WO2009154206A1 (en) * 2008-06-20 2009-12-23 住友ベークライト株式会社 Film for optical waveguide, film for laminated optical waveguide, optical waveguide, optical waveguide assembly, optical wiring, optical/electrical hybrid board, and electronic device

Also Published As

Publication number Publication date
TW201213360A (en) 2012-04-01

Similar Documents

Publication Publication Date Title
JP5278366B2 (en) Optical waveguide structure and electronic device
JP5423551B2 (en) Optical waveguide structure and electronic device
US9151888B2 (en) Optical waveguide and electronic device
JP4748229B2 (en) Photosensitive resin composition, photosensitive resin composition for forming optical waveguide, film for forming optical waveguide, optical waveguide, optical wiring, opto-electric hybrid board and electronic device
WO2011125658A1 (en) Optical waveguide structure and electronic apparatus
JP4877305B2 (en) Photosensitive resin composition and optical waveguide film
JP2011221195A (en) Optical waveguide structure and electronic device
JP2011221143A (en) Optical waveguide structure and electronic equipment
JP5310633B2 (en) Optical waveguide structure and electronic device
JP5182227B2 (en) Optical signal transmission boards and electronic devices
WO2011125939A1 (en) Optical waveguide structure and electronic apparatus
JP2011221201A (en) Optical waveguide structure and electronic device
WO2011125799A1 (en) Optical waveguide structure and electronic apparatus
TWI514019B (en) Optical waveguide and electronic device
JP5760628B2 (en) Optical waveguide, opto-electric hybrid board, and electronic equipment
JP2011221193A (en) Optical wave guide structure and electronic device
JP2012181428A (en) Optical waveguide and electronic apparatus
JP2019028115A (en) Optical waveguide, optical waveguide connected body, and electronic apparatus
JP5799592B2 (en) Optical waveguide, opto-electric hybrid board, and electronic equipment
JP5703922B2 (en) Optical waveguide, opto-electric hybrid board, and electronic equipment
JP6017115B2 (en) Photosensitive resin composition for forming optical waveguide, film for forming optical waveguide, and method for producing optical waveguide
WO2012039392A1 (en) Optical waveguide and electronic device
JP5724555B2 (en) Optical waveguide film and method for manufacturing optical waveguide film
JP5321077B2 (en) Optical waveguide and optical waveguide module
JP2012181427A (en) Optical waveguide and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765839

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765839

Country of ref document: EP

Kind code of ref document: A1