WO2011125799A1 - Optical waveguide structure and electronic apparatus - Google Patents

Optical waveguide structure and electronic apparatus Download PDF

Info

Publication number
WO2011125799A1
WO2011125799A1 PCT/JP2011/058137 JP2011058137W WO2011125799A1 WO 2011125799 A1 WO2011125799 A1 WO 2011125799A1 JP 2011058137 W JP2011058137 W JP 2011058137W WO 2011125799 A1 WO2011125799 A1 WO 2011125799A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
core
waveguide structure
structure according
norbornene
Prior art date
Application number
PCT/JP2011/058137
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 森
誠 藤原
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2011125799A1 publication Critical patent/WO2011125799A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/02Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
    • C08F232/04Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F32/02Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
    • C08F32/04Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having one carbon-to-carbon double bond
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12002Three-dimensional structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • the present invention relates to an optical waveguide structure and an electronic device.
  • This application claims priority based on Japanese Patent Application No. 2010-089402 filed in Japan on April 8, 2010, the contents of which are incorporated herein by reference.
  • optical branching couplers optical couplers
  • optical multiplexers / demultiplexers optical waveguide devices used for these are promising.
  • optical waveguide type element hereinafter also simply referred to as “optical waveguide”
  • polymer optical waveguides that are easy to manufacture (patterning) and versatile, in addition to conventional quartz optical waveguides. has been actively conducted.
  • Such an optical waveguide is usually formed in a predetermined arrangement (pattern) on a substrate and handled as an optical waveguide structure.
  • an optical waveguide structure a structure in which a predetermined wiring circuit and an optical waveguide composed of a core portion and a cladding portion are formed on a substrate, and a light emitting element and a light receiving element are attached to the optical waveguide is disclosed. (For example, refer to Patent Document 1).
  • the optical waveguide structure described in Patent Document 1 has the following problems. 1.
  • the process of forming the optical waveguide is complicated, and the degree of freedom in designing and selecting the pattern shape of the core part constituting the optical path of the transmitted light is narrow.
  • the degree of freedom in designing the optical path is narrow.
  • the core pattern shape accuracy and dimensional accuracy are poor.
  • the degree of freedom in designing the wiring pattern is narrow.
  • An object of the present invention is to provide an optical waveguide structure having an optical waveguide with a wide degree of freedom in designing a pattern shape and capable of forming a core portion (optical path) with high dimensional accuracy by a simple method. To provide a body. Moreover, it is providing the electronic device provided with the said optical waveguide structure.
  • Such an object is achieved by the present inventions (1) to (36) below.
  • (1) having an optical waveguide body having a core part forming an optical path and a clad part formed on the outer periphery of the core part and having a refractive index different from that of the core part;
  • the core portion is three-dimensionally arranged in the optical waveguide body,
  • the core part is (A) a cyclic olefin resin;
  • B) The refractive index is different from that of (A), and at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group;
  • C a photoacid generator;
  • An optical waveguide structure characterized by being formed into a desired shape by selectively irradiating active radiation to a core layer composed of a composition comprising: (2) The optical waveguide structure according to (1), wherein the cyclic ether group of (B) is an oxetanyl group or an epoxy group.
  • the cyclic olefin resin of (A) has a leaving group that is eliminated by an acid generated from the photoacid generator of (C) in the side chain, Said (B) is an optical waveguide structure as described in said (2) containing the 1st monomer as described in following formula (100).
  • the content of the first monomer described in the formula (100) is 1 part by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the cyclic olefin resin.
  • An optical waveguide structure according to claim 1. The light according to any one of (1) to (13), wherein the concentration of the structure derived from (B) is different between a region irradiated with active radiation of the core layer and a non-irradiated region. Waveguide structure.
  • optical waveguide structure according to any one of (1) to (18), wherein the optical waveguide body has a portion in which a clad layer and a core layer constituting the clad portion are alternately laminated.
  • the optical waveguide body has any one of the above (1) to (19) having a portion in which two or more laminated bodies each formed by joining the clad layers constituting the clad portion are laminated on both surfaces of the core layer.
  • the said core part is arrange
  • the transmission light is transmitted from another part of the core part to the incident direction.
  • optical waveguide structure according to any one of (1) to (27), wherein the optical waveguide structure is configured to emit in an orthogonal direction.
  • the element is bonded to a surface of the optical waveguide body.
  • the core part is three-dimensionally arranged, and the patterning of the core part can be performed by a simple method of irradiation with active radiation (active energy ray, electron beam, X-ray, etc.). Therefore, a core part having a wide degree of freedom in designing the pattern shape of the core part, that is, the arrangement of the optical path, and high dimensional accuracy is obtained.
  • active radiation active energy ray, electron beam, X-ray, etc.
  • the core layer is made of a desired material, even if stress is applied to the optical waveguide body or deformation occurs, delamination between the core and cladding and microcracks occur in the core. As a result, the optical transmission performance of the optical waveguide is maintained and the durability is excellent.
  • the core part is composed of a resin composition mainly composed of norbornene-based resin
  • the effect of being particularly strong against the deformation and being difficult to cause defects is high, and the difference in refractive index between the core part and the cladding part is increased.
  • the optical waveguide can be made larger, and has excellent heat resistance, and as a result, an optical waveguide with higher performance and durability can be obtained.
  • the optical waveguide structure has an element (light emitting element or light receiving element)
  • the light emitted from the light emitting portion of the element is guided to another place by the optical waveguide by being optically connected to the optical waveguide, or Light from other places can be guided to the light receiving portion of the element by the optical waveguide, and a small and integrated optical circuit can be formed.
  • a conductor layer when a conductor layer is formed, wiring to the element is easy, and wiring suitable for the element can be made regardless of the type of element (terminal installation location), and the versatility is high. Moreover, such a wiring circuit pattern using a conductor layer has a wide degree of freedom in design (for example, a degree of freedom in selection of a terminal installation location).
  • Such an optical waveguide structure of the present invention has a wide range of optical circuit (optical waveguide pattern) and electrical circuit design, good yield, high optical transmission performance, excellent reliability and durability, Rich in versatility. Therefore, the present invention can be used for various electronic components, electronic devices, and the like.
  • FIG. 1st Embodiment of the optical waveguide structure of this invention It is a figure which shows arrangement
  • FIG. 1 is a perspective view showing a first embodiment of the optical waveguide structure of the present invention
  • FIG. 2 is an arrangement (pattern) of the core portion of the first core layer in the optical waveguide structure shown in FIG.
  • FIG. 3 is a diagram showing the arrangement (pattern) of the core portion of the second-stage core layer in the optical waveguide structure shown in FIG. 1
  • FIG. 4 is the three-stage in the optical waveguide structure shown in FIG. It is a figure which shows arrangement
  • FIG. 1 is a perspective view showing a first embodiment of the optical waveguide structure of the present invention
  • FIG. 2 is an arrangement (pattern) of the core portion of the first core layer in the optical waveguide structure shown in FIG.
  • FIG. 3 is a diagram showing the arrangement (pattern) of the core portion of the second-stage core layer in the optical waveguide structure shown in FIG. 1
  • FIG. 4 is the three-stage in the optical waveguide structure shown in FIG. It is
  • directions of X, Y, and Z (X, Y, and Z are directions orthogonal to each other) shown in FIG. 1 are respectively referred to as “X direction”, “Y direction”, and “Z direction”.
  • directions opposite to the X direction, Y direction, and Z direction are referred to as “ ⁇ X direction”, “ ⁇ Y direction”, and “ ⁇ Z direction”, respectively.
  • the upper part in FIG. 1 of the optical waveguide structure is referred to as “upper” or “upper stage”
  • the lower part is referred to as “lower” or “lower stage”
  • an intermediate portion between the upper stage and the lower stage is referred to as “middle stage”.
  • the upper surface of the optical waveguide body in FIG. 1 (FIG. 8) is the “upper surface”, the lower surface is the “lower surface”, the right surface is the “right surface”, the front surface is the “front surface”, and the back surface.
  • the side surface is called the “back”.
  • the optical waveguide structure 1 of the present invention includes a block-shaped optical waveguide body 2 and five light emitting elements 61, 62, 63, 64 and 65.
  • the light emitting elements 61, 62, 63, 64 and 65 have light emitting portions 610, 620, 630, 640 and 650 and a pair of terminals (not shown), respectively. For example, when a current is applied (given a potential difference) between the terminals of the light emitting element 61, the light emitting unit 610 is turned on (emits light). The same applies to the other light emitting elements 62-65.
  • the light emitting units 610 to 650 of the light emitting elements 61 to 65 may each be composed of a single light emitting point, or may be a set of a plurality of light emitting points.
  • the light emitting points are arranged in a row (for example, 1 ⁇ 4, 1 ⁇ 12) or in a matrix (for example, n ⁇ m: n, m And those in which a plurality of light emitting points are arranged randomly (irregularly). The same applies to a light receiving portion in a light receiving element to be described later.
  • the light emitting elements 61 to 65 are joined to the surface of the optical waveguide body 2 such that the light emitting portions 610 to 650 are in contact with or face the surface of the optical waveguide body 2.
  • all or a part of each of the light emitting elements 61 to 65 may be installed (embedded) inside the optical waveguide body 2. The same applies to the case where a light receiving element is installed together with the light emitting elements 61 to 65 or instead of the light emitting elements 61 to 65.
  • Each of the light emitting elements 61 to 65 operates (emits light) independently, but any two or more of them emit light in conjunction (particularly simultaneously) or emit light synchronously. You may do it.
  • the light emission pattern of each of the light emitting elements 61 to 65 can be arbitrarily set, and the light emission pattern may change with time.
  • the optical waveguide body 2 is formed by laminating a clad layer 91 and a core layer 93 in a predetermined order.
  • the optical waveguide body 2 includes a plurality of cladding layers 91 and a plurality of core layers 93 (three steps in the Z direction).
  • Each core layer 93 is formed with a core portion 94 and a clad portion 95 having a predetermined pattern (see FIGS. 1 to 4).
  • the core portion 94 is a portion that forms an optical path of the transmission light
  • the cladding portion 95 is a portion that is formed in the core layer 93 but does not form an optical path of the transmission light and performs the same function as the cladding layer 91. is there.
  • the core portion 94 has a higher refractive index than the clad portion 95, and also has a higher refractive index than the clad layer 91.
  • the clad portion 95 exists on both sides of the core portion 94, and the clad portion 95 or the clad layer 91 exists below and above the core portion 94. With such a configuration, the core portion 94 functions as a light guide path (optical waveguide) surrounded by the clad portion on the entire outer periphery.
  • the core portion 94 is three-dimensionally arranged in the optical waveguide body 2. That is, the core portion 4 preferably has a portion extending in at least one of the X (-X), Y (-Y) and Z (-Z) directions, and X (-X ), Y (-Y), and Z (-Z) directions, and more preferably has a portion extending in at least two directions.
  • the clad layer 91 transmits the transmitted light with a relatively high transmittance when the transmitted light is incident on the clad layer 91 in a layer thickness direction (a direction perpendicular to the clad layer).
  • a material whose refractive index is changed by irradiation with active radiation active energy ray, electron beam, X-ray or the like
  • active radiation active energy ray, electron beam, X-ray or the like
  • materials include those mainly composed of a resin composition containing a cyclic olefin resin such as a benzocyclobutene resin polymer and a norbornene polymer (resin), including a norbornene polymer ( The main material) is particularly preferred.
  • the core layer 93 made of such a material is excellent in resistance to deformation such as bending, and even when it is repeatedly curved and deformed, the core layer 94 and the clad portion 95 are separated from each other, and the layer adjacent to the core layer 93 ( The delamination with the clad layer 91 or the other core layer 93) hardly occurs, and the occurrence of microcracks in the core portion 94 and the clad portion 95 is also prevented. As a result, the optical transmission performance of the optical waveguide is maintained, and an optical waveguide excellent in durability can be obtained.
  • Examples of the constituent material of the core layer 93 include an antioxidant, a refractive index adjuster, a plasticizer, a thickener, a reinforcing agent, a sensitizer, a leveling agent, an antifoaming agent, an adhesion aid, and a flame retardant.
  • the additive may be contained.
  • Addition of an antioxidant has the effect of improving high temperature stability, improving weather resistance, and suppressing light deterioration. Examples of such an antioxidant include phenols such as monophenols, bisphenols, and triphenols, and aromatic amines. Further, the resistance to bending can be further increased by adding a plasticizer, a thickener, and a reinforcing agent.
  • the content of additives typified by the antioxidant is preferably about 0.5 to 40% by weight, preferably 3 to 30% by weight, based on the entire constituent material of the core layer 93.
  • the degree is more preferred. If this amount is too small, the function of the additive cannot be sufficiently exhibited. If the amount is too large, the transmittance of light (transmitted light) transmitted through the core portion 94 depends on the type and characteristics of the additive. Decrease, patterning failure, refractive index instability and the like.
  • An example of a method for forming the core layer 93 is a coating method.
  • the coating method include a method in which a core layer forming composition (varnish or the like) is applied and cured (solidified), and a method in which a curable monomer composition is applied and cured (solidified).
  • a method other than the coating method for example, a method of joining separately manufactured sheet materials may be employed.
  • the core layer 93 obtained as described above is selectively irradiated with actinic radiation using a mask to pattern the core portion 94 having a desired shape.
  • active radiation used for exposure examples include active energy rays such as visible light, ultraviolet light, infrared light, and laser light, electron beams, and X-rays.
  • the electron beam can be irradiated at an irradiation dose of, for example, about 50 to 2000 KGy.
  • the refractive index of the portion irradiated with the active radiation changes (the refractive index may increase or decrease depending on the material of the core layer 93), and the active radiation is not irradiated.
  • a difference in refractive index occurs between the parts. For example, a portion of the core layer 93 that has been irradiated with active radiation becomes the cladding portion 95, and a portion that has not been irradiated becomes the core portion 94. The reverse is also true.
  • the refractive index of the cladding part 95 is substantially equal to the refractive index of the cladding layer 91.
  • the core portion 94 may be formed by irradiating the core layer 93 with active radiation in a predetermined pattern and then heating the core layer 93. By adding this heating step, the difference in refractive index between the core portion 94 and the cladding portion 95 becomes larger, which is preferable. This principle will be described later in detail.
  • the pattern shape of the core portion 94 to be formed is not particularly limited, and is a straight shape, a shape having a curved portion, an irregular shape, a shape having a branching portion of a light path, a merging portion or a crossing portion, a condensing portion (a width etc. is reduced). Or a light diffusing part (a part where the width or the like is increased), or a combination of two or more of these.
  • the feature of the present invention is that the core portion 94 having any shape can be easily formed by setting the irradiation pattern of the active radiation.
  • one end of the core portion 94 in the left column is exposed on the back surface of the optical waveguide body 2, and the exposed surface constitutes an output end 942 of the transmission light 711.
  • An optical path conversion unit (light emitting unit side optical path conversion unit) 4 a that bends the optical path of the core unit 94 is provided at the end of the core unit 94 opposite to the emission end 942.
  • the optical path conversion unit 4a is composed of a reflecting surface (mirror) 5a that reflects at least a part of the transmitted light. The same applies to reflecting surfaces 5b, 5c, 5d and 5e described later.
  • the reflecting surface 5a is inclined by approximately 45 ° with respect to the longitudinal direction of the core portion 94, reflects a part of the transmitted light 71 (for example, 50% of the light amount), and transmits the remaining part of the beam splitter (half mirror or dichroic mirror).
  • the transmission light 71 emitted from the light emitting unit 610 is divided into a plurality of directions (two directions orthogonal to each other). Then, by setting the reflectance (transmittance) of the reflecting surface 5a, the light amounts of the divided transmission lights 711 and 712 can be set to a predetermined ratio. As a typical example, the light amounts of the transmission lights 711 and 712 can be made substantially equal.
  • the optical path conversion unit 4a can, for example, form an inclined surface by obliquely cutting (removing) a part (end portion) of the core portion 94 and using the inclined surface as the reflecting surface 5a.
  • the reflecting surface 5a may have a reflecting film or a reflection increasing film such as a multilayer optical thin film or a metal thin film (for example, an aluminum vapor deposition film).
  • the inclined surface of the optical path changing portion 4a may be filled or joined with a filler, particularly a filler having a refractive index different from that of the core portion 94. The same applies to reflective surfaces 5b, 5c, 5d and 5e described later.
  • the core portions 94 in the right column in FIG. 2 are continuously formed from the back surface to the front surface of the optical waveguide body 2, and the light emitting element 640 faces the exposed surface of the core portion 94 on the back surface. 64, and the exposed surface of the core portion 94 to the front surface constitutes an output end 943 of the transmission light 741.
  • the core part 94 of the right row in FIG. 2 branches in the branch part 941 in the middle, and forms the core part 94 of the center row
  • the core portion 94 is exposed on the front surface of the optical waveguide body 2, and the exposed surface constitutes an output end 944 of the transmission light 742.
  • the transmission light 74 emitted from the light emitting section 640 is separated into transmission lights 741 and 742.
  • the ratio of the light amounts of the transmission light 741 and the transmission light 742 is not particularly limited, and can be, for example, about 1: 9 to 9: 1.
  • a reflection surface (beam splitter: half mirror or dichroic mirror) similar to the reflection surface 5a may be provided to branch (divide) the optical path in a plurality of directions.
  • one long core portion 94 extending in the X direction is formed (arranged) on the second (middle) core layer 93 from the top in the optical waveguide body 2.
  • One end of the core portion 94 is exposed on the right side surface of the optical waveguide body 2, and the exposed surface constitutes an output end 945 of the transmission light 72.
  • An optical path conversion section (light emitting section side optical path conversion section) 4b that bends the optical path of the core section 94 is provided at the end of the core section 94 opposite to the emission end 945.
  • the optical path changing unit 4b is composed of a reflecting surface (mirror) 5b that reflects at least a part of the transmitted light.
  • the reflecting surface 5b is inclined by approximately 45 ° with respect to the longitudinal direction of the core portion 94, and constitutes a total reflection mirror that reflects almost all of the transmitted light 72 (for example, 90% or more of the light amount).
  • ⁇ Third (lower) core layer> As shown in FIG. 4, in the core layer 93 at the third level (lower level) from the top in the optical waveguide body 2, three longitudinal core portions 94 extending in the Y direction have a predetermined interval in the X direction. And formed (arranged) substantially in parallel.
  • one end of the core portion 94 in the left column is exposed on the back surface of the optical waveguide body 2, and the exposed surface constitutes the output end 946 of the transmission light 712.
  • An optical path conversion section (light emitting section side optical path conversion section) 4 c that bends the optical path of the core section 94 is provided at the end of the core section 94 opposite to the emission end 946.
  • the optical path changing unit 4c is composed of a reflecting surface (mirror) 5c that reflects at least a part of the transmitted light.
  • the reflection surface 5c is inclined by approximately 45 ° with respect to the longitudinal direction of the core portion 94, and reflects the entire transmission light 712 (for example, 90% or more of the amount of light) transmitted through the reflection surface 5a located above. Is configured.
  • one end of the core portion 94 in the center row is exposed on the front surface of the optical waveguide body 2, and the exposed surface constitutes an output end 947 of the transmission light 73.
  • An optical path conversion unit (light emitting unit side optical path conversion unit) 4d that bends the optical path of the core unit 94 is provided at the end of the core unit 94 opposite to the emission end 947.
  • the optical path changing unit 4d is composed of a reflecting surface (mirror) 5d that reflects at least a part of the transmitted light.
  • the reflecting surface 5d is inclined by approximately 45 ° with respect to the longitudinal direction of the core portion 94, and constitutes a total reflection mirror that reflects almost all of the transmitted light 73 (for example, 90% or more of the light amount).
  • one end of the core portion 94 in the right column is exposed on the front surface of the optical waveguide body 2, and the exposed surface constitutes the emission end 948 of the transmission light 75.
  • the core portion 94 is bent in an L shape in the X direction in the middle, and an end portion thereof (an end portion opposite to the emission end 948) is exposed on the right side surface of the optical waveguide body 2.
  • the light emitting element 65 is installed so that the light emitting unit 650 faces.
  • the bent portion of the core portion 94 is provided with an optical path changing portion (light emitting portion side optical path changing portion) 4e for bending the optical path of the core portion 94.
  • the optical path conversion unit 4e is composed of a reflective surface (mirror) 5e that reflects at least a part of the transmitted light.
  • the reflection surface 5e is inclined by approximately 45 ° with respect to the longitudinal direction of the core portion 94, and constitutes a total reflection mirror that reflects almost all of the transmitted light 75 (for example, 90% or more of the light amount).
  • light emitting elements 61, 62, and 63 are installed at predetermined positions on the upper surface of the optical waveguide body 2 so that the light emitting portions 610, 620, and 630 face each other.
  • the light emitting element 61 is installed at a position where the reflecting surface 5a of the optical path changing unit 4a is located directly below the light emitting unit 610. Further, the reflection surface 5c of the optical path conversion unit 4c is located directly below the reflection surface 5a. In other words, when viewed in the Z direction, the light emitting unit 610, the reflective surface 5a, and the reflective surface 5c coincide.
  • the light emitting element 62 is installed at a position where the reflecting surface 5b of the optical path changing unit 4b is located directly below the light emitting unit 620. That is, when viewed in the Z direction, the light emitting unit 620 and the reflecting surface 5b coincide.
  • the core portion 94 (see FIG. 2) of the first-stage core layer 93 does not exist immediately below the light emitting portion 620. That is, the transmission light 72 emitted from the light emitting unit 620 does not intersect the core part 94 of the first-stage core layer 93 (transmits through the clad part 95 of the first-stage core layer 93) and is a reflective surface. 5b is reached so that crosstalk is prevented.
  • the light emitting element 63 is installed at a position where the reflecting surface 5d of the optical path changing unit 4d is located directly below the light emitting unit 630. That is, when viewed in the Z direction, the light emitting unit 630 and the reflecting surface 5d are coincident with each other. In this case, the core portion 94 (see FIG. 2) of the first-stage core layer 93 and the core portion 94 (see FIG. 3) of the second-stage core layer 93 are not present immediately below the light emitting portion 630.
  • the transmission light 73 emitted from the light emitting unit 630 does not intersect the core part 94 of the first-stage core layer 93 (transmits through the cladding part 95 of the first-stage core layer 93), and further 2 It does not intersect with the core portion 94 of the core layer 93 at the stage (transmits through the clad portion 95 of the core layer 93 at the second stage) and reaches the reflection surface 5d. Is prevented.
  • the light emitting element 65 is installed at a position where the light emitting unit 650 and the reflecting surface 5e of the optical path changing unit 4e coincide when viewed in the X direction.
  • a light receiving element may be installed in a part or all of the emission ends 942, 943, 944, 945, 946, 947, and 948.
  • the light receiving element includes a light receiving unit and a terminal that photoelectrically converts light received by the light receiving unit and outputs an electrical signal.
  • an electronic signal is output from the terminal of the light receiving element.
  • each core layer 93 includes a core portion 94 and a clad portion 95 having a predetermined pattern.
  • a laminate having a three-layer structure in which the clad layers 91 are bonded to both surfaces of one core layer 93 (in other words, the core layer 93 is interposed between the two clad layers 91).
  • (Optical waveguide) 90 is one unit, and two or more of the laminates 90 are stacked.
  • the core layer 93 in each stacked body 90 includes a core portion 94 and a clad portion 95 having a predetermined pattern.
  • Cladding layers 91 are bonded to the upper surface and the lower surface of the core layer stack portion 92, respectively.
  • Each core layer 93 constituting the core layer laminated portion 92 includes a core portion 94 and a clad portion 95 having a predetermined pattern.
  • the core layer 93 located at the uppermost part in FIG. 7 and the core layer 93 located at the lowermost part are respectively provided with optical path changing parts 4f and 4g composed of reflecting surfaces 5f and 5g.
  • the two core layers 93 are provided with core portions 94 respectively.
  • the core portion 94 formed in the two core layers 93 in the middle proceeds in the Z direction, is reflected by the reflecting surface 5g and bent at a right angle again, and the core portion 94 of the core layer 93 located at the bottom in FIG. Proceed in the Y direction.
  • the optical waveguide body 2 in the present invention has at least one of the configurations shown in FIGS. Further, two or more or all of the configurations shown in FIGS. 5 to 7 may be included.
  • the constituent materials for the core layer 93 and the clad layer 91, the method for forming the core portion 94, and the like will be described in detail later.
  • the optical waveguide structure 1 of the present invention preferably has a conductor layer (not shown) on the surface and / or inside of the optical waveguide body 2.
  • the conductor layer is preferably patterned into a predetermined shape to form a desired wiring (circuit).
  • Such a conductor layer is preferably electrically connected to the terminals of the light emitting elements 61 to 65 and constitutes a current-carrying wiring to the light emitting elements 61 to 65.
  • the conductor layer is preferably electrically connected to a terminal (output terminal) of the light receiving element and used as a circuit for detecting an output signal from the terminal.
  • Such a conductor layer can also be arranged three-dimensionally on the surface and / or inside of the optical waveguide body 2. That is, the wiring in the conductor layer can be installed so as to extend in two or three directions of the X, Y, and Z directions, for example.
  • Examples of the constituent material of the conductor layer include various metal materials such as copper, copper-based alloy, aluminum, and aluminum-based alloy.
  • the thickness of the conductor layer is not particularly limited, but is usually preferably about 3 to 120 ⁇ m, more preferably about 5 to 70 ⁇ m.
  • a conductor layer is formed by methods, such as joining (adhesion) of metal foil, metal plating, vapor deposition, sputtering, etc., for example. For example, etching, printing, masking, or the like can be used for patterning the conductor layer.
  • the operation of the optical waveguide structure 1 shown in FIGS. 1 to 4 will be described.
  • the terminal of the light emitting element 61 When the terminal of the light emitting element 61 is energized, the light emitting portion 610 is turned on, and the transmitted light 71 emitted in the Z direction is transmitted through the cladding portion (cladding layer 91 and cladding portion 95) and reflected on the reflecting surface 5a. It is separated into reflected light and transmitted light (see FIG. 1).
  • the transmitted light (reflected light) 711 reflected by the reflecting surface 5a and bent by approximately 90 ° enters the core portion 94 of the first-stage core layer 93, proceeds in the ⁇ Y direction, and reaches the emission end 942 (FIG. 2). reference).
  • the transmitted light (transmitted light) 712 that has passed through the reflecting surface 5 a and traveled in the Z direction is reflected (substantially totally reflected) by the reflecting surface 5 c and bent by approximately 90 °, and the core portion 94 of the third-stage core layer 93. Enter the -Y direction and reach the exit end 946 (see FIG. 4).
  • the light emitting portion 620 When the terminal of the light emitting element 62 is energized, the light emitting portion 620 is turned on, and the transmitted light 72 emitted in the Z direction is transmitted through the cladding portion (the cladding layer 91 and the cladding portion 95) and reflected by the reflecting surface 5b. The light is reflected (substantially total reflection) and bent by approximately 90 °, enters the core portion 94 of the second-stage core layer 93, proceeds in the X direction, and reaches the emission end 945 (see FIGS. 1 and 3).
  • the light emitting portion 630 When the terminal of the light emitting element 63 is energized, the light emitting portion 630 is turned on, and the transmitted light 73 emitted in the Z direction is transmitted through the clad portion (the clad layer 91 and the clad portion 95) and reflected by the reflecting surface 5d. The light is reflected (substantially total reflection) and bent by approximately 90 °, enters the core portion 94 of the third-stage core layer 93, proceeds in the Y direction, and reaches the emission end 947 (see FIGS. 1 and 4).
  • the light emitting portion 640 When the terminal of the light emitting element 64 is energized, the light emitting portion 640 is turned on, and the transmitted light 74 emitted in the Y direction enters the core portion 94 of the first core layer 93 and proceeds in the Y direction to branch. In the section 941, the transmission light 741 and the transmission light 742 are separated. The transmitted light 741 and 742 respectively travel in the core portion 94 on the Y direction side from the branch portion 941 and reach the emission ends 943 and 944 (see FIGS. 1 and 2).
  • the light emitting portion 650 When the terminal of the light emitting element 65 is energized, the light emitting portion 650 is turned on, and the transmitted light 75 emitted toward the ⁇ X direction enters the core portion 94 of the third core layer 93 and proceeds in the ⁇ X direction. Then, it is reflected by the reflecting surface 5e (substantially totally reflected) and bent by approximately 90 °, proceeds in the Y direction, and reaches the emission end 948 (see FIGS. 1 and 4).
  • FIG. 8 shows a second embodiment of the optical waveguide structure 1 of the present invention.
  • this optical waveguide structure 1 is demonstrated, the description is abbreviate
  • These exposed surfaces 961, 962, 963, 964, and 965 can be used as reflecting surfaces (total reflection surfaces: reflectance of 90% or more).
  • a reflective film such as a multilayer optical thin film or a metal thin film (for example, an aluminum vapor deposition film) or a reflection increasing film can be provided on these exposed surfaces 961 to 965 as described above.
  • the exposed surface 961 reflects the transmitted light 71 in the Z direction emitted from the light emitting unit 610 of the light emitting element 61 so as to bend in the ⁇ Y direction, thereby exposing the exposed surfaces 962, 963, and 964.
  • And 965 respectively reflect the transmitted lights 742, 741, 73, and 75 traveling in the core portion 94 so as to bend in the ⁇ Z direction.
  • the exposed surface 961 is a reflection surface that substantially totally reflects, the left row of core portions 94 (corresponding to the left row of core portions 94 in FIG. 4) of the third-stage core layer 93 and the optical path. There is no conversion unit 4c.
  • the inclination angle ⁇ (angle formed with the XZ plane) ⁇ of the inclined surface 3 is not limited to 45 °, and for example, ⁇ can be about 20 to 70 °.
  • the exposed surfaces 961 to 965 are not limited to the total reflection surface, but may be ones having a function of separating transmitted light into reflected light and transmitted light (beam splitter) such as a half mirror or a dichroic mirror. .
  • the inclined surface 3 is not limited to the one formed for the purpose of bending the optical path by reflection or the like. Such an inclined surface may be formed on a surface other than the front surface of the optical waveguide body 2, or may be formed on two or more surfaces of the optical waveguide body 2.
  • the substrate 2 and the optical waveguide 9 are bent (bent), the bending operation is released, and the substrate 2 and the optical waveguide 9 are extended. It is possible to freely take the stretched state. For this reason, for example, it can be suitably used for hinges and slides of electronic devices such as mobile phones, game machines, PDAs, and notebook personal computers having hinges or slides.
  • hinges and slides of electronic devices such as mobile phones, game machines, PDAs, and notebook personal computers having hinges or slides.
  • a mobile phone when two points via a hinge part are connected by an optical waveguide structure, when the hinge part of the mobile phone is closed, the optical waveguide structure is bent and when the hinge part is opened, The optical waveguide structure is in an extended state.
  • the optical waveguide structure can maintain the electrical connection and the optical connection between two points sandwiching the movable part over a long period of time. For this reason, the mobile phone (electronic device) provided with the optical waveguide structure can improve the reliability.
  • the electronic device to which the optical waveguide structure of the present invention is applied is not limited to the above-described ones.
  • it is suitable for application to electronic devices such as router devices, WDM devices, personal computers, televisions, home servers, and the like. is there. In any of these electronic devices, it is necessary to transmit a large amount of data at high speed between an arithmetic device such as an LSI and a storage device such as a RAM.
  • optical waveguide main body (optical waveguide) 2 the manufacturing method of the optical waveguide main body (optical waveguide) 2 and the constituent materials of each part in each of the above embodiments will be described.
  • the method of forming the core part 94 will be described in detail.
  • the photosensitive resin composition used for forming the core portion 94 is: (A) a cyclic olefin resin; (B) The refractive index is different from (A), and at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group; (C) a photoacid generator; Is provided.
  • Such a photosensitive resin composition is formed into a film to be an optical waveguide forming film, and further used as a film including regions having different refractive indexes, for example, an optical waveguide film.
  • the cyclic olefin resin of component (A) is added in order to ensure the film moldability of the photosensitive resin composition, and serves as a base polymer.
  • the cyclic olefin resin may be unsubstituted, or hydrogen may be substituted with another group.
  • the cyclic olefin resin include norbornene resins and benzocyclobutene resins. Especially, it is preferable to use norbornene-type resin from viewpoints, such as heat resistance and transparency.
  • norbornene resin for example, (1) addition (co) polymer of norbornene type monomer obtained by addition (co) polymerization of norbornene type monomer, (2) addition copolymers of norbornene monomers with ethylene and ⁇ -olefins, (3) an addition polymer such as an addition copolymer of a norbornene-type monomer and a non-conjugated diene and, if necessary, another monomer; (4) a ring-opening (co) polymer of a norbornene-type monomer, and a resin obtained by hydrogenating the (co) polymer if necessary, (5) a ring-opening copolymer of a norbornene-type monomer and ethylene or ⁇ -olefins, and a resin obtained by hydrogenating the (co) polymer if necessary, (6) Ring-opening copolymers such as norbornene-type monomers and non-conjugated dienes, or other monomers, and polymers obtained by hydrogen
  • norbornene resins include, for example, ring-opening metathesis polymerization (ROMP), combination of ROMP and hydrogenation reaction, polymerization by radical or cation, polymerization using cationic palladium polymerization initiator, other polymerization initiators (for example, it can be obtained by any known polymerization method such as polymerization using a polymerization initiator of nickel or another transition metal).
  • ROMP ring-opening metathesis polymerization
  • combination of ROMP and hydrogenation reaction polymerization by radical or cation
  • polymerization using cationic palladium polymerization initiator cationic palladium polymerization initiator
  • other polymerization initiators for example, it can be obtained by any known polymerization method such as polymerization using a polymerization initiator of nickel or another transition metal).
  • addition (co) polymers are preferred as the norbornene-based resin.
  • Addition (co) polymers are also preferred because they are rich in transparency, heat resistance and flexibility.
  • an electrical component or the like may be mounted via solder.
  • an addition (co) polymer is preferable because it needs to have high heat resistance, that is, reflow resistance.
  • a film is formed from the photosensitive resin composition and incorporated in a product, it may be used in an environment of about 80 ° C., for example. Even in such a case, an addition (co) polymer is preferable from the viewpoint of ensuring heat resistance.
  • the norbornene-based resin preferably includes a norbornene repeating unit having a substituent containing a polymerizable group or a norbornene repeating unit having a substituent containing an aryl group.
  • the repeating unit of norbornene having a substituent containing a polymerizable group the repeating unit of norbornene having a substituent containing an epoxy group, the repeating unit of norbornene having a substituent containing a (meth) acryl group, and an alkoxysilyl group At least one of the repeating units of norbornene having a substituent containing is preferable.
  • These polymerizable groups are preferable because of their high reactivity among various polymerizable groups.
  • the norbornene-based polymer preferably contains an alkylnorbornene repeating unit.
  • the alkyl group may be linear or branched.
  • the norbornene-based polymer has high flexibility, and thus can provide high flexibility (flexibility).
  • a norbornene-based polymer containing an alkylnorbornene repeating unit is also preferable because of its excellent transmittance with respect to light in a specific wavelength region (particularly, a wavelength region near 850 nm).
  • the norbornene-based resin of the formula (1) can be produced as follows. (1) is obtained by dissolving norbornene having R 1 and norbornene having an epoxy group in the side chain in toluene and solution polymerization using Ni compound (A) as a catalyst.
  • the manufacturing method of norbornene which has an epoxy group in a side chain is as (i) (ii), for example.
  • R 1 is an alkyl group having 4 to 10 carbon atoms
  • R 1 is an alkyl group having 4 to 10 carbon atoms
  • the norbornene-based resin of the formula (2) is obtained by dissolving norbornene having R 2 and norbornene having acryl and methacryl groups in the side chain in toluene, and performing solution polymerization using the Ni compound (A) described above as a catalyst. Obtainable.
  • R 2 is an alkyl group having 4 to 10 carbon atoms and c is 1 from the viewpoint of achieving both flexibility and heat resistance.
  • Compounds such as copolymers of butylbornene and 2- (5-norbornenyl) methyl acrylate, copolymers of hexylnorbornene and 2- (5-norbornenyl) methyl acrylate, decylnorbornene and 2- (5-norbornenyl) methyl acrylate And a copolymer thereof are preferred.
  • the resin of the formula (3) can be obtained by dissolving norbornene having R 4 and norbornene having an alkoxysilyl group in the side chain in toluene, and solution polymerization using the Ni compound (A) described above as a catalyst. it can.
  • norbornene-based polymers represented by the formula (3) in particular, a compound in which R 4 is an alkyl group having 4 to 10 carbon atoms, d is 1 or 2, and X 3 is a methyl group or an ethyl group,
  • norbornene-based polymer represented by the formula (4) for example, any one of butyl norbornene, hexyl norbornene or decyl norbornene, 2- (5-norbornenyl) methyl acrylate, norbornenyl ethyl trimethoxysilane, Terpolymer with either triethoxysilyl norbornene or trimethoxysilyl norbornene, butyl bornene, hexyl norbornene or decyl norbornene, terpolymer of 2- (5-norbornenyl) methyl acrylate and methylglycidyl ether norbornene, butylbornene, Either hexyl norbornene or decyl norbornene and methyl glycidyl ether norbornene, norbornenyl ethyltrimethoxysilane, triethoxysilyl Terpolymers, etc. with either norborn
  • Norbornene having R 7 and norbornene containing-(CH 2 ) -X 1 -X 2 (R 8 ) 3-j (Ar) j in the side chain are dissolved in toluene, and solution polymerization is performed using a Ni compound as a catalyst. (8) is obtained.
  • norbornene polymers represented by the formula (8) those in which X 1 is an oxygen atom, X 2 is a silicon atom, and Ar is a phenyl group are preferable.
  • R 7 is an alkyl group having 4 to 10 carbon atoms
  • X 1 is an oxygen atom
  • X 2 is a silicon atom
  • Ar is a phenyl group
  • R 7 is an alkyl group having 4 to 10 carbon atoms
  • X 1 is a methylene group
  • X 2 is a carbon atom
  • Ar is Compounds in which R 8 is a hydrogen atom, i is 0, and j is 1, for example, a copolymer of butylbornene and phenylethylnorbornene, a copolymer of hexylnorbornene and phenylethylnorbornene, a copolymer of decylnorbornene and phenylethylnorbornene Etc. Further, the following may be used as the norbornene resin.
  • p 1 / q 1 to p 3 / q 3 , p 5 / q 5 , p 6 / q 6 or p 4 / q 4 + r may be 20 or less, preferably 15 or less, About 0.1 to 10 is more preferable. Thereby, the effect including the repeating unit of multiple types of norbornene is exhibited.
  • the norbornene-based resin as described above preferably has a leaving group.
  • the leaving group is a group that is released by the action of an acid. Specifically, those having at least one of an —O— structure, an —Si—aryl structure and an —O—Si— structure in the molecular structure are preferable. Such an acid leaving group is released relatively easily by the action of a cation.
  • the leaving group that causes a decrease in the refractive index of the resin by leaving is preferably at least one of a —Si-diphenyl structure and a —O—Si-diphenyl structure.
  • the norbornene polymers represented by the formula (8) those in which X 1 is an oxygen atom, X 2 is a silicon atom, and Ar is a phenyl group have a leaving group.
  • the Si—O—X 3 portion of the alkoxysilyl group is eliminated.
  • the side chain may have an epoxy group.
  • the compound represented by the formula (31) includes, for example, hexyl norbornene, diphenylmethyl norbornene methoxysilane (norbornene containing —CH 2 —O—Si (CH 3 ) (Ph) 2 in the side chain) and epoxy norbornene in toluene. It can be obtained by dissolving and solution polymerization using a Ni compound as a catalyst.
  • Component (B) is at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group.
  • This component (B) may have any refractive index different from that of the resin of component (A) and is compatible with the resin of component (A).
  • the refractive index difference between the component (B) and the resin of the component (A) is preferably 0.01 or more.
  • the refractive index of the component (B) may be higher than that of the resin of the component (A), but the refractive index of the component (B) is preferably lower than that of the resin of the component (A).
  • the monomer having a cyclic ether group and the oligomer having a cyclic ether group as component (B) are polymerized by ring-opening in the presence of an acid.
  • the molecular weight (weight average molecular weight) of the monomer and the molecular weight (weight average molecular weight) of the oligomer are preferably 100 or more and 400 or less, respectively.
  • Component (B) has, for example, an oxetanyl group or an epoxy group. Such a cyclic ether group is preferable because it is easily opened by an acid.
  • the monomer having an oxetanyl group and the oligomer having an oxetanyl group those selected from the group of the following formulas (11) to (20) are preferable.
  • these there is an advantage that transparency in the vicinity of a wavelength of 850 nm is excellent and both flexibility and heat resistance are possible. These may be used alone or in combination.
  • the above monomers and oligomers they are represented by the formulas (13), (15), (16), (17), and (20) from the viewpoint of ensuring a difference in refractive index from the resin of the component (A). It is preferable to use a compound. Furthermore, considering the point that there is a difference in refractive index from the resin of component (A), the point that the molecular weight is small, the mobility of the monomer is high, and the point that the monomer does not easily volatilize, the formulas (20) and (15) It is particularly preferable to use a compound represented by: Moreover, as a compound which has an oxetanyl group, the compound represented by the following formula
  • Examples of the monomer having an epoxy group and the oligomer having an epoxy group include the following.
  • the monomer and oligomer having an epoxy group are polymerized by ring-opening in the presence of an acid.
  • those represented by the following formulas (34) to (39) can be used.
  • the compound represented by Formula (34) is epoxy norbornene.
  • EpNB manufactured by Promerus Corporation can be used.
  • the compound represented by the formula (35) is ⁇ -glycidoxypropyltrimethoxysilane.
  • Z-6040 manufactured by Toray Dow Corning Silicone can be used.
  • the compound represented by the formula (36) is 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • E0327 manufactured by Tokyo Chemical Industry can be used.
  • the compound represented by the formula (37) is 3,4-epoxycyclohexenylmethyl-3, '4'-epoxycyclohexenecarboxylate.
  • Celoxide 2021P manufactured by Daicel Chemical Industries, Ltd. is used. can do.
  • the compound represented by the formula (38) is 1,2-epoxy-4-vinylcyclohexane, and as this compound, for example, Celoxide 2000 manufactured by Daicel Chemical Industries, Ltd. can be used. Furthermore, the compound represented by the formula (39) is 1,2: 8,9 diepoxy limonene. As this compound, for example, (Celoxide 3000 manufactured by Daicel Chemical Industries, Ltd.) can be used.
  • a monomer having an oxetanyl group, an oligomer having an oxetanyl group, a monomer having an epoxy group, and an oligomer having an epoxy group may be used in combination.
  • Monomers having an oxetanyl group and oligomers having an oxetanyl group have a slow initiation reaction but a fast growth reaction.
  • a monomer having an epoxy group and an oligomer having an epoxy group have a fast initiation reaction for initiating polymerization, but have a slow growth reaction.
  • the addition amount of the component (B) is preferably 1 part by weight or more and 50 parts by weight or less, more preferably 2 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the component (A). .
  • photoacid generator Any photoacid generator may be used as long as it can generate Bronsted acid or Lewis acid by absorbing light (active radiation) energy.
  • photoacid generator triphenylsulfonium trifluoromethanesulfonate, tris (4-t-butyl) can be used.
  • Sulfonium salts such as phenyl) sulfonium-trifluoromethanesulfonate, diazonium salts such as p-nitrophenyldiazonium hexafluorophosphate, ammonium salts, phosphonium salts, diphenyliodonium trifluoromethanesulfonate, (triccumyl) iodonium-tetrakis (pentafluorophenyl) borate, etc.
  • the content of the photoacid generator is preferably 0.01 parts by weight or more and 0.3 parts by weight or less with respect to 100 parts by weight of the component (A), and is 0.02 parts by weight or more and 0.2 parts by weight or less. It is more preferable that Thereby, there exists an effect of a reactive improvement.
  • the photosensitive resin composition may contain additives such as a sensitizer and an antioxidant in addition to the components (A), (B), and (C).
  • the sensitizer increases the sensitivity of the photoacid generator to actinic radiation, reduces the time and energy required to activate (react or decompose) the photoacid generator, and activates the photoacid generator. It has a function of changing the wavelength of actinic radiation to a suitable wavelength.
  • a sensitizer is appropriately selected according to the sensitivity of the photoacid generator and the peak wavelength of absorption of the sensitizer, and is not particularly limited. For example, 9,10-dibutoxyanthracene (CAS No. 76275) is selected.
  • anthracenes xanthones, anthraquinones, phenanthrenes, chrysene, benzpyrenes, fluoranthenes, rubrenes, pyrenes, indanthrines, thioxanthen-9-one (Thioxanthen-9-ones) and the like, and these can be used alone or as a mixture.
  • the sensitizer include, for example, 2-isopropyl-9H-thioxanthen-9-one, 4-isopropyl-9H-thioxanthen-9-one, 1-chloro-4-propoxythioxanthone, phenothiazine Or a mixture thereof.
  • the content of the sensitizer in the photosensitive resin composition is preferably 0.01% by weight or more, more preferably 0.5% by weight or more, and further preferably 1% by weight or more. preferable. In addition, it is preferable that an upper limit is 5 weight% or less.
  • an antioxidant can be added to the core layer forming material 900.
  • production of an undesirable free radical and the natural oxidation of the polymer 915 can be prevented.
  • the characteristics of the obtained core layer 93 (optical waveguide 9) can be improved.
  • antioxidants examples include Ciba (registered trademark, the same applies hereinafter) IRGANOX (registered trademark, the same applies hereinafter) 1076 and Ciba IRGAFOS (registered trademark, available) from Ciba Specialty Chemicals of Tarrytown, New York. The same applies hereinafter.) 168 is preferably used.
  • antioxidants include, for example, Ciba Irganox (registered trademark, hereinafter the same) 129, Ciba Irganox 1330, Ciba Irganox 1010, Ciba Cyanox (registered trademark, the same applies below) 1790, CibaI. (Registered trademark) 3114, Ciba Irganox 3125, etc. can also be used.
  • antioxidant can be omitted, for example, when the film 910 is not exposed to oxidation conditions or when the period of time is very short.
  • the cyclic olefin resin having a leaving group in the side chain as the component (A), the photoacid generator of the component (C), and the above formula (100) as the component (B) is especially preferable.
  • cyclic olefin resin (A) constituting the cyclic olefin resin having a leaving group in the side chain those described above can be used.
  • a polymer of a monocyclic monomer such as cyclohexene or cyclooctene examples include polymers of polycyclic monomers such as norbornene, norbornadiene, dicyclopentadiene, dihydrodicyclopentadiene, tetracyclododecene, tricyclopentadiene, dihydrotricyclopentadiene, tetracyclopentadiene, and dihydrotetracyclopentadiene.
  • one or more cyclic olefin resins selected from polymers of polycyclic monomers are preferably used. Thereby, the heat resistance of resin can be improved.
  • polymerization forms known forms such as random polymerization and block polymerization can be applied.
  • specific examples of polymerization of norbornene type monomers include (co) polymers of norbornene type monomers, copolymers of norbornene type monomers and other copolymerizable monomers such as ⁇ -olefins, and the like.
  • a hydrogenated product of the above copolymer corresponds to a specific example.
  • These cyclic olefin resins can be produced by a known polymerization method.
  • the polymerization methods include an addition polymerization method and a ring-opening polymerization method.
  • Norbornene resin) is preferable (that is, an addition polymer of a norbornene compound). Thereby, it is excellent in transparency, heat resistance, and flexibility.
  • the leaving group a part of the molecule is cleaved by the action of an acid (H + ) generated from a photoacid generator, and then leaves.
  • an acid H +
  • those having at least one of the above-described —O— structure, —Si-aryl structure and —O—Si— structure in the molecular structure (side chain) are preferable.
  • the leaving group as described above is released relatively easily by the action of acid (H + ).
  • the leaving group that causes a decrease in the refractive index of the resin by leaving is preferably at least one of a —Si-diphenyl structure and a —O—Si-diphenyl structure.
  • the content of the leaving group is not particularly limited, but is preferably 10 to 80% by weight, particularly 20 to 60% by weight in the cyclic olefin resin having a leaving group in the side chain. Is more preferable. When the content is within the above range, it is particularly excellent in both flexibility and refractive index modulation function (effect of increasing the refractive index difference).
  • a cyclic olefin resin having a leaving group in the side chain one having a repeating unit represented by the above formula (101) and / or the above formula (102) is preferable. Thereby, the refractive index of resin can be made high.
  • the photosensitive resin composition contains a monomer described in the above formula (100) (hereinafter referred to as a first monomer). Thereby, the refractive index difference between the left and right cores / claddings can be further expanded.
  • the content of the first monomer is not particularly limited, but is preferably 1 part by weight or more and 50 parts by weight or less, particularly 2 parts by weight, based on 100 parts by weight of the cyclic olefin resin having a leaving group in the side chain. It is preferable that it is 20 parts by weight or more. Thereby, the refractive index modulation between the core / cladding is made possible, and both flexibility and heat resistance can be achieved.
  • the reason for excellent balance between the refractive index modulation between the core and the clad and flexibility is as follows. It is considered as follows. First, when the photosensitive resin composition as described above is used, it is excellent in the refractive index modulation between the core and the clad when the first monomer starts a polymerization reaction due to an acid generated by actinic radiation irradiation or the like. This is because the first monomer is excellent in reactivity.
  • the reactivity of the first monomer is excellent, the curability of the first monomer is increased, and the diffusibility of the first monomer caused by the concentration gradient of the first monomer is improved. Thereby, the refractive index difference between the active radiation irradiated region and the unirradiated region can be increased. Further, since the first monomer is monofunctional, the polymerization reaction proceeds and the crosslinking density as the photosensitive resin composition does not become so high. Therefore, it is excellent in flexibility.
  • the 2nd monomer different from the said 1st monomer may be included.
  • the second monomer different from the first monomer may be a monomer having a different structure or a monomer having a different molecular weight.
  • the 2nd monomer is contained as a component (B), for example, an oxetane compound different from what is shown by an epoxy compound, Formula (100), a vinyl ether compound, etc. are mentioned.
  • a component (B) for example, an oxetane compound different from what is shown by an epoxy compound, Formula (100), a vinyl ether compound, etc. are mentioned.
  • at least one of an epoxy compound (particularly an alicyclic epoxy compound) and a bifunctional oxetane compound (a monomer having two oxetanyl groups) is preferable.
  • the second monomer includes the compound of the above formula (15), the compound of the above formula (12), the compound of the above formula (11), the compound of the above formula (18), and the compound of the above formula (19). And compounds of the above formulas (34) to (39).
  • the content of the second monomer is not particularly limited, but is preferably 1 part by weight or more and 50 parts by weight or less, particularly 2 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the cyclic olefin resin. More preferably. Thereby, the reactivity with the first monomer can be improved.
  • the combined ratio of the second monomer and the first monomer is not particularly limited, but is preferably 0.1 to 1, particularly preferably 0 by weight ratio (weight of the second monomer / weight of the first monomer). .1 to 0.6 is preferable. When the combined ratio is within the above range, the balance between the speed of reactivity and the heat resistance of the waveguide is excellent.
  • content of a photo-acid generator is not specifically limited, It is 0.01 weight part or more and 0.3 weight part or less with respect to 100 weight part of cyclic olefin resin which has a leaving group in the said side chain. In particular, it is more preferably 0.02 parts by weight or more and 0.2 parts by weight or less. If the content is less than the lower limit, the reactivity may decrease, and if the content exceeds the upper limit, the optical waveguide may be colored and light loss may decrease.
  • the photosensitive resin composition may contain a curing catalyst, an antioxidant, and the like in addition to the above-mentioned cyclic olefin resin, photoacid generator, first monomer and second monomer. Further, the above-described photosensitive resin composition can be used as a composition for forming the core portion 94.
  • Optical waveguide manufacturing method 9 10, and 11 are cross-sectional views schematically showing process examples of the method for manufacturing an optical waveguide.
  • a method for producing an optical waveguide using a photosensitive resin composition when the component (B) has a lower refractive index than the cyclic olefin resin of the component (A) will be described as an example.
  • a varnish 900 is prepared by dissolving a photosensitive resin composition in a solvent, and this varnish 900 is applied onto a clad layer 91.
  • the solvent for preparing the photosensitive resin composition in a varnish form include diethyl ether, diisopropyl ether, 1,2-dimethoxyethane (DME), 1,4-dioxane, tetrahydrofuran (THF), tetrahydropyran (THP), Ether solvents such as anisole, diethylene glycol dimethyl ether (diglyme), diethylene glycol ethyl ether (carbitol), cellosolv solvents such as methyl cellosolve, ethyl cellosolve, phenyl cellosolve, aliphatic hydrocarbon solvents such as hexane, pentane, heptane, cyclohexane , Toluene, xylene, benzene, me
  • the varnish 900 is applied on the cladding layer 91 of the optical waveguide 9 and then dried to evaporate (desolve) the solvent.
  • the varnish 900 becomes a film 910 for forming an optical waveguide.
  • the film 910 becomes a core layer 93 in which a core portion 94 and a clad portion 95 are formed by irradiation with actinic radiation described later.
  • examples of the method of applying the varnish 900 include a doctor blade method, a spin coating method, a dipping method, a table coating method, a spray method, an applicator method, a curtain coating method, and a die coating method. It is not limited.
  • the clad layer 91 for example, a sheet having a refractive index lower than that of a core portion 94 described later is used, and for example, a sheet containing a norbornene-based resin and an epoxy resin is used.
  • the film 910 is selectively irradiated with active radiation (for example, ultraviolet rays).
  • active radiation for example, ultraviolet rays
  • a mask M in which an opening is formed is disposed above the film 910.
  • the film 910 is irradiated with active radiation through the opening of the mask M.
  • the actinic radiation used include those having a peak wavelength in the wavelength range of 200 to 450 nm. Thereby, although depending on the composition of the photoacid generator, the photoacid generator can be activated relatively easily.
  • the constituent material of the mask M is appropriately selected depending on the active radiation to be irradiated.
  • the constituent material of the mask M is a material that can block the active radiation applied to the film 910. Any known material can be used for the mask M as long as it has such characteristics.
  • the mask M may be formed in advance (separately formed) (for example, plate-shaped) or may be formed on the film 910 by, for example, a vapor deposition method or a coating method.
  • Preferred examples of the mask M include photomasks made of quartz glass and PET base materials, stencil masks, metal thin films formed by vapor deposition methods (evaporation, sputtering, etc.), etc. Among these, it is particularly preferable to use a photomask or a stencil mask. This is because a fine pattern can be formed with high accuracy, and handling is easy, which is advantageous in improving productivity.
  • the irradiation amount of the active radiation is not particularly limited, but is preferably about 0.1 to 9 J / cm 2 , more preferably about 0.2 to 6 J / cm 2 , and 0.2 to 3 J More preferably, it is about / cm 2 .
  • use of the mask M can also be abbreviate
  • an acid is generated from the photoacid generator.
  • the component (B) is polymerized by the generated acid.
  • no acid is generated from the photoacid generator, so that component (B) is not polymerized.
  • the amount of the component (B) is reduced.
  • the component (B) of the unirradiated part diffuses into the irradiated part, thereby causing a difference in refractive index between the irradiated part and the unirradiated part.
  • the component (B) of the unirradiated part diffuses into the irradiated part, and the refractive index of the unirradiated part increases.
  • the refractive index of the irradiated part is lowered.
  • the refractive index difference between the polymer obtained by polymerizing the component (B) and the monomer having a cyclic ether group is about 0 or more and 0.001 or less, and the refractive indexes are considered to be substantially the same.
  • the polymerization of the component (B) can be initiated by the acid generated from the photoacid generator.
  • the cyclic olefin resin used in the present invention does not necessarily have a leaving group, but when a cyclic olefin resin having a leaving group is used as the component (A), The following effects occur.
  • the leaving group of the cyclic olefin resin is eliminated by the acid generated from the photoacid generator.
  • a leaving group such as a —Si-aryl structure, —Si-diphenyl structure, and —O—Si-diphenyl structure
  • the refractive index of the resin decreases due to the leaving. Therefore, the refractive index of the irradiated portion is further lowered as compared with that before the leaving group is removed.
  • the film 910 is heated.
  • the component (B) of the irradiated portion irradiated with actinic radiation is further polymerized.
  • the component (B) in the unirradiated part is volatilized.
  • a component (B) decreases and it becomes a refractive index close
  • the region irradiated with actinic radiation becomes the clad portion 95 and the unirradiated region becomes the core portion 94.
  • the structure concentration derived from the component (B) in the core portion 94 and the structure concentration derived from the component (B) in the cladding portion 95 are different. Specifically, the structure concentration derived from the component (B) in the core portion 94 is lower than the structure concentration derived from the component (B) in the cladding portion 95.
  • the clad part 95 has a lower refractive index than the core part 94, and the refractive index difference between the clad part 95 and the core part 94 is 0.01 or more. As described above, the core portion 94 and the clad portion 95 are formed on the film 910, and the core layer 93 is obtained.
  • the heating temperature in this heating step is not particularly limited, but is preferably about 30 to 180 ° C., more preferably about 40 to 160 ° C.
  • the heating time is preferably set so that the polymerization reaction of the component (B) in the irradiated part irradiated with actinic radiation is almost completed, and specifically, it is preferably about 0.1 to 2 hours. More preferably, it is about 0.1 to 1 hour.
  • a film similar to the clad layer 91 is attached on the core layer 93.
  • This film becomes the clad layer 96.
  • the pair of clad layers 91 and 96 are arranged so as to sandwich the core portion 94 from a direction different from the clad portion 95.
  • the clad layer 94 can also be formed by a method of applying a liquid material on the core layer 93 and curing (solidifying) instead of attaching a film-like one.
  • a core layer 93 is further laminated instead of the cladding layer 96.
  • the core layer 93 may be laminated by repeating the method for forming the core layer 93 as described above, or a desired number of film-like core layers produced on another base material may be laminated. . Moreover, you may combine these methods.
  • a varnish containing a clad material (clad layer forming material) is applied and cured (solidified), or a curable monomer composition is applied and cured (solidified). Any method may be used.
  • examples thereof include a spin coating method, a dipping method, a table coating method, a spray method, an applicator method, a curtain coating method, and a die coating method.
  • Examples of the constituent material of the cladding layer 91 (96) include cyclic olefins such as acrylic resin, methacrylic resin, polycarbonate, polystyrene, epoxy resin, polyamide, polyimide, polybenzoxazole, benzocyclobutene resin, and norbornene resin. These resins can be used, and one or more of these can be used in combination (polymer alloy, polymer blend (mixture), copolymer, composite (laminate), etc.).
  • cyclic olefins such as acrylic resin, methacrylic resin, polycarbonate, polystyrene, epoxy resin, polyamide, polyimide, polybenzoxazole, benzocyclobutene resin, and norbornene resin. These resins can be used, and one or more of these can be used in combination (polymer alloy, polymer blend (mixture), copolymer, composite (laminate), etc.).
  • epoxy resins polyimides, polybenzoxazoles, cyclic olefin resins such as benzocyclobutene resins and norbornene resins, and those containing them (mainly) in terms of particularly excellent heat resistance It is preferable to use, and particularly, those mainly composed of norbornene-based resins (norbornene-based polymers) are preferable.
  • the norbornene-based polymer is excellent in heat resistance, in the optical waveguide 9 using this as a constituent material of the cladding layer 91 (96), when the conductor layer is formed on the optical waveguide 9, the conductor layer is processed to form a wiring. In this case, even when the optical element is heated to mount it, the clad layer 91 (96) can be softened and prevented from being deformed.
  • norbornene-based polymers or norbornene-based monomers that are raw materials thereof are preferable because they are relatively inexpensive and easily available.
  • the clad layers 91 and 96 and the core layer 93 are excellent in resistance to deformation such as bending, even when repeatedly bent and deformed. The delamination is difficult to occur, and the occurrence of microcracks in the clad layers 91 and 96 is also prevented.
  • the adhesion to the core layer 93 is further increased, and delamination between the cladding layer 91 (96) and the core layer 93 is achieved. Can be prevented. For this reason, the optical transmission performance of the optical waveguide 9 is maintained, and the optical waveguide 9 having excellent durability can be obtained.
  • the average thickness of the cladding layers 91 and 96 is preferably about 0.1 to 1.5 times the average thickness of the core layer 93, more preferably about 0.3 to 1.25 times.
  • the average thickness of the clad layers 91 and 96 is not particularly limited, but each of them is usually preferably about 1 to 200 ⁇ m, more preferably about 5 to 100 ⁇ m, and about 10 to 60 ⁇ m. More preferably. Thereby, the function as a clad layer is suitably exhibited while preventing the optical waveguide 9 from becoming unnecessarily large (pressure film).
  • the optical waveguide 9 shown in FIG. 11 is obtained. Further, when the optical waveguide 9 is obtained from the photosensitive resin composition used in the present invention, the solder reflow resistance is particularly excellent. Furthermore, even when the optical waveguide 9 is bent, the optical loss can be reduced.
  • the photosensitive resin composition is directly supplied onto the clad layer 91 to form the film 910 (core layer 93) has been described, but the film 910 (core layer) is formed on another substrate. 93), the obtained core layer 93 may be transferred onto the clad layer 91 or the clad layer 96, and then the clad layer 91 and the clad layer 96 may be overlapped via the core layer 93.
  • the substrate include a silicon substrate, a silicon dioxide substrate, a glass substrate, a quartz substrate, and a polyethylene terephthalate (PET) film.
  • the component (B) in the unirradiated portion is irradiated with the irradiated portion.
  • the refractive index of the unirradiated part becomes higher than the refractive index of the irradiated part.
  • the core portion can be patterned by a simple method of simply irradiating active radiation. For example, by appropriately selecting an exposure pattern such as a photomask, an optical path (core part) of any shape and arrangement can be formed, and a thin optical path can be formed sharply. This contributes to integration, and the device can be miniaturized. That is, according to the present invention, a core portion having a wide degree of freedom in designing the pattern shape of the core portion and high dimensional accuracy can be obtained.
  • the composition used in such a technique contains a norbornene-based resin having an oxetanyl group or the like as a base polymer. And the whole composition is heated and a crosslinked structure is produced in the whole composition. Therefore, this composition, which has been conventionally used, is selectively irradiated with actinic radiation to generate an acid, thereby selectively causing polymerization, and the monomer diffuses into the region where the monomer concentration is reduced. There is no technical idea that density difference can be made.
  • the photosensitive resin composition used in this embodiment is selectively irradiated with actinic radiation, the amount of the component (B) in the irradiated portion is reduced due to the generation of acid, so the component (B ) Diffuses to the irradiated part, and as a result, a difference in refractive index occurs between the irradiated part and the unirradiated part.
  • the cyclic olefin resin has a leaving group that is desorbed by an acid generated from the photoacid generator and reduces the refractive index of the cyclic olefin resin of the component (A) by desorption,
  • the refractive index of the region irradiated with actinic radiation can be reliably reduced as compared with the unirradiated region.
  • the side chain is chemically stable, so that the core portion and the cladding portion are refracted depending on conditions such as irradiation with actinic radiation and heating. It can suppress that a rate fluctuates.
  • norbornene-type resin is used as a component (A).
  • the light transmittance in a specific wavelength can be improved reliably, and reduction of propagation loss can be aimed at reliably.
  • the clad part 95 has a lower refractive index than the core part 94, and the difference in refractive index between the clad part 95 and the core part 94 is 0.01 or more, so that light can be reliably confined in the core part 94. And the generation of light propagation loss can be suppressed.
  • a composition for forming an optical waveguide a composition containing a polymer, a monomer, a promoter and a catalyst precursor is known.
  • the monomer can form a reactant upon irradiation with actinic radiation, and the refractive index of a region irradiated with actinic radiation can be made different from that of an unirradiated region.
  • the catalyst precursor is a substance capable of initiating a monomer reaction (polymerization reaction, crosslinking reaction, etc.), and is a substance whose activation temperature is changed by the action of a promoter activated by irradiation with actinic radiation. Due to the change in the activation temperature, the temperature at which the monomer reaction is started is different between the irradiated region and the non-irradiated region, and as a result, a reactant can be formed only in the irradiated region.
  • the photosensitive resin composition used in this embodiment does not require a substance containing such a large amount of metal elements. For this reason, the increase of the propagation loss as described above is prevented, and the optical waveguide 9 excellent in propagation efficiency and heat resistance can be obtained. Even when such a conventional composition is used, the core part and the clad part can be separately formed by irradiation with actinic radiation. However, according to the photosensitive resin composition used in the present embodiment, the core part 94 and the clad part are formed. Since the difference in refractive index with the portion 95 is further expanded and the heat resistance is improved, the optical waveguide 9 with higher reliability can be obtained. This is mainly due to the optimization of the composition of component (A) and component (B).
  • the present invention can provide an optical waveguide film or the like in which generation of light propagation loss is suppressed.
  • generation of light propagation loss can be remarkably suppressed.
  • a plurality of core layers 93 are produced by the above-described method, and the core layer laminated portion 92 is obtained by overlapping (bonding) these layers.
  • the pattern of the core portion 94 in each core layer 93 can form a predesigned three-dimensional optical path pattern when the core layers 93 are laminated in a desired order.
  • the configuration shown in FIG. 7 is completed by bonding (crimping) the above-described cladding layer 91 to the upper surface and the lower surface of the core layer laminated portion 92, respectively.
  • a plurality of core layers 93 may be sequentially laminated (bonded) to the lower clad layer 91 in FIG. 6, and finally the upper clad layer 91 in FIG. 6 may be bonded (crimped).
  • a plurality of optical waveguides (laminated body 90) are prepared by the above-described method, and these are overlapped and bonded (crimped).
  • the pattern of the core portion 94 in the core layer 93 of each stacked body 90 can form a pre-designed three-dimensional optical path pattern when the stacked bodies 90 are stacked in a desired order. .
  • first method there is a method in which one optical waveguide (laminated body 90) is produced, a core layer 93 and a clad layer 91 are repeatedly laminated in this order, and these are pressure-bonded.
  • second method there is a method in which two optical waveguides (laminated body 90) are produced, a core layer 93 is interposed between the optical waveguides (laminated body 90), and these are crimped and integrated.
  • a third method there is a method in which a plurality of two-layer laminates in which the clad layer 91 and the core layer 93 are laminated are produced, and the respective two-layer laminates are laminated in a desired order, followed by pressure bonding.
  • a fourth method there is a method in which each of the clad layer 91 and the core layer 93 is produced one by one, these are laminated in a desired order, and pressure-bonded.
  • the pattern of the core portion 94 in each core layer 93 is designed in advance when the clad layers 91 and the core layers 91 are laminated in a desired order.
  • An optical path pattern in a three-dimensional direction can be formed.
  • an optical waveguide having a core portion 94 having a desired shape and high dimensional accuracy can be obtained with a simple process and in a short time.
  • the configuration including the light emitting elements 61 to 65 as the element has been described.
  • the configuration may include one or more light receiving elements, or one or more light emitting elements and one or more.
  • the light receiving element may be provided.
  • the structure which has two or more sets of a light emitting element and a light receiving element may be sufficient.
  • Example 1 Production of optical waveguide (Example 1) (1) Synthesis of norbornene-based resin having a leaving group In a glove box filled with dry nitrogen in which the water and oxygen concentrations are both controlled to 1 ppm or less, 7.2 g (40.1 mmol) of hexylnorbornene (HxNB) ), 12.9 g (40.1 mmol) of diphenylmethylnorbornenemethoxysilane was weighed into a 500 mL vial, 60 g of dehydrated toluene and 11 g of ethyl acetate were added, and the top was sealed with a silicon sealer.
  • HxNB hexylnorbornene
  • Ni catalyst represented by the following chemical formula (B) and 10 mL of dehydrated toluene are weighed in a 100 mL vial, put a stirrer chip and sealed, and the catalyst is thoroughly stirred to completely Dissolved in.
  • 1 mL of the Ni catalyst solution represented by the following chemical formula (B) is accurately weighed with a syringe, and quantitatively injected into the vial bottle in which the above two types of norbornene are dissolved, and stirred at room temperature for 1 hour, a marked increase in viscosity occurs. Was confirmed.
  • the molar ratio of each structural unit in the polymer # 1 was 50 mol% for the hexylbornene structural unit and 50 mol% for the diphenylmethylnorbornenemethoxysilane structural unit according to identification by NMR.
  • the refractive index by Metricon was 1.55 (measurement wavelength: 633 nm).
  • a dry film in which Avatrel 2000P is laminated in advance on a polyethersulfone (PES) film so as to have a dry thickness of 20 ⁇ m is bonded to the above core layer, and put into a vacuum laminator set at 140 ° C. for thermocompression bonding. It was. Thereafter, 100 mJ was irradiated on the entire surface and heated in a dryer at 120 ° C. for 1 hour to cure Avatrel 2000P to form an upper clad layer to obtain an optical waveguide. At this time, the upper cladding layer was colorless and transparent, and its refractive index was 1.52.
  • the difference in refractive index between the left and right core portions and the clad portion formed in the above (formation of the core layer) in the horizontal direction was determined as follows.
  • Optical waveguide analyzer OWA-9500 manufactured by EXFO of Canada was used to irradiate the optical waveguide with laser light having a wavelength of 656 nm, and the refractive indexes of the core region and the cladding region were measured, and the difference between them was calculated. As a result, the refractive index difference was 0.02.
  • Example 2 (1) Synthesis of norbornene-based resin having no leaving group In a glove box filled with dry nitrogen in which the water and oxygen concentrations are both controlled to 1 ppm or less, 9.4 g of hexylnorbornene (HxNB) (53. 1 mmol) and 10.5 g (53.1 mmol) of phenylethylnorbornene were weighed into a 500 mL vial, 60 g of dehydrated toluene and 11 g of ethyl acetate were added, and the top was sealed with a silicon sealer.
  • HxNB hexylnorbornene
  • Example 3 Synthesis of norbornene-based resin having a leaving group A norbornene-based resin was produced in the same manner as in Example 1.
  • Example 4 Synthesis of norbornene-based resin having a leaving group A norbornene-based resin was produced in the same manner as in Example 1.
  • Example 5 Synthesis of norbornene-based resin having a leaving group A norbornene-based resin was produced in the same manner as in Example 1.
  • Example 6 Synthesis of norbornene-based resin having a leaving group A norbornene-based resin was produced in the same manner as in Example 1.
  • Example 7 (1) Synthesis of norbornene-based resin having a leaving group In a glove box whose water and oxygen concentrations are both controlled to 1 ppm or less and filled with dry nitrogen, 6.4 g (36.1 mmol) of hexylnorbornene (HxNB) ), Diphenylmethylnorbornene methoxysilane (diPhNB) 8.7 g (27.1 mmol), epoxy norbornene (EpNB) 4.9 g (27.1 mmol) were weighed into a 500 mL vial, 60 g of dehydrated toluene and 11 g of ethyl acetate were added, The top was sealed with a silicon sealer.
  • HxNB hexylnorbornene
  • diPhNB Diphenylmethylnorbornene methoxysilane
  • EpNB epoxy norbornene
  • the molar ratio of each structural unit in polymer # 3 is 40 mol% for hexylbornene structural unit, 30 mol% for diphenylmethylnorbornenemethoxysilane structural unit, and 30 mol% for epoxynorbornene structural unit. there were.
  • the refractive index by Metricon was 1.53 (measurement wavelength: 633 nm).
  • Example 2 (4) Evaluation Evaluation was performed in the same manner as in Example 1.
  • the propagation loss could be calculated as 0.04 dB / cm.
  • the refractive index difference between the core portion and the clad portion was 0.02.
  • Examples 1 to 7 when light is applied to the photosensitive resin composition, an acid is generated from the photoacid generator, and the monomer having a cyclic ether group is polymerized only in the irradiated portion. Then, since the amount of unreacted monomer in the irradiated part decreases, the monomer in the unirradiated part diffuses into the irradiated part in order to eliminate the concentration gradient generated between the irradiated part / unirradiated part. Further, when heating is performed after light irradiation, the monomer volatilizes from the unirradiated portion.
  • the structure concentration derived from the monomer is different between the core portion and the cladding portion, the structure derived from the monomer having a cyclic ether group increases in the cladding portion, and the monomer derived from the monomer having a cyclic ether group is present in the core portion.
  • a linear optical waveguide is formed.
  • a curved optical waveguide (with a radius of curvature of about 10 mm) is formed, it is remarkable that optical loss is small.
  • the optical waveguide films obtained in Examples 1 to 7 have high heat resistance and reflow resistance of 260 ° C.
  • Example 8 (1) Synthesis of norbornene resin having a leaving group
  • phenyldimethylnorbornenemethoxysilane was used instead of 12.9 g (40.1 mmol) of diphenylmethylnorbornenemethoxysilane.
  • Example 1 was repeated except that 4 g (40.1 mmol) was used.
  • the molar ratio of each structural unit was 50 mol% for the hexylnorbornene structural unit and 50 mol% for the phenyldimethylnorbornenemethoxysilane structural unit.
  • the refractive index by Metricon was 1.53 (measurement wavelength: 633 nm).
  • optical waveguide film was obtained in the same manner as in Example 1 except that the photosensitive resin composition containing the norbornene-based resin B was used.
  • the loss evaluation of the optical waveguide was performed in the same manner as in Example 1, the propagation loss of the obtained optical waveguide film was 0.03 dB / cm.
  • Example 9 The procedure was the same as Example 1 except that the following photosensitive resin composition was used. 10 g of norbornene-based resin obtained in Example 1 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of an antioxidant Irganox 1076 (manufactured by Ciba Geigy), and a cyclohexyloxetane monomer (formula (100) represented by formula (100)).
  • an antioxidant Irganox 1076 manufactured by Ciba Geigy
  • a cyclohexyloxetane monomer (formula (100) represented by formula (100)
  • optical waveguide film was obtained in the same manner as in Example 1 except that the photosensitive resin composition of (1) above was used.
  • the loss evaluation of the optical waveguide was performed in the same manner as in Example 1, the propagation loss of the obtained optical waveguide film was 0.04 dB / cm.
  • Example 10 Example 1 was repeated except that the following were used as the cyclic olefin.
  • Norbornene represented by the following formula (105) is obtained by ring-opening metathesis polymerization of phenylethylnorbornene (PENB) monomer using a known method (for example, JP-A-2003-252963). System resin C was obtained.
  • PENB phenylethylnorbornene
  • optical waveguide film was obtained in the same manner as in Example 1 except that the photosensitive resin composition containing the norbornene-based resin C was used.
  • the loss evaluation of the optical waveguide was performed in the same manner as in Example 1, the propagation loss of the obtained optical waveguide film was 0.05 dB / cm.
  • Example 11 An optical waveguide film was produced in the same manner as in Example 1 except that the amount of the first monomer was changed to 0.5 g. The propagation loss of the obtained optical waveguide film was 0.1 dB / cm.
  • Example 12 An optical waveguide film was produced in the same manner as in Example 1 except that the blending amount of the first monomer was 4.0 g. The propagation loss of the obtained optical waveguide film was 0.1 dB / cm.
  • Light loss Light emitted from an 850 nm VCSEL surface emitting laser was introduced into the optical waveguide via a 50 ⁇ m ⁇ optical fiber, and received by a 200 ⁇ m ⁇ optical fiber to measure the light intensity.
  • the cutback method was used for the measurement, and the waveguide length was plotted on the horizontal axis and the insertion loss was plotted on the vertical axis.
  • the measured values were neatly arranged on a straight line, and the propagation loss was calculated from the slope.
  • the optical waveguide was placed in a high-temperature and high-humidity tank (85 ° C., 85% RH), and propagation loss after 500 hours of wet heat treatment was evaluated. It was also confirmed in parallel presence or absence of degradation of the propagation loss due to reflow process (N 2 atmosphere, a maximum temperature of 260 ° C. / 60 seconds). Note that the measurement of the propagation loss here is the same as the one optical loss measurement method.
  • Examples 1 and 8-12 showed low optical loss and excellent optical waveguide performance.
  • Examples 1 and 8-12 showed small light loss after high-temperature and high-humidity treatment and after reflow treatment, and excellent heat resistance.
  • Examples 1, 8, 9, and 10 have a small bending loss, and it was suggested that sufficient performance was exhibited even when the optical waveguide was bent.
  • the optical waveguide structure according to the first embodiment was produced using the optical waveguide film obtained in each example and comparative example
  • the optical waveguide using the optical waveguide film obtained in each example was produced.
  • a structure having a low transmission loss was obtained as compared with the optical waveguide structure using the optical waveguide film obtained in each comparative example.
  • the optical waveguide structure of the present invention has a wide range of optical circuit (optical waveguide pattern) and electrical circuit design, good yield, high optical transmission performance, excellent reliability and durability, and versatility. Rich. Therefore, the present invention can be used for various electronic parts, electronic devices, and the like, and therefore the present invention is extremely useful in industry.

Abstract

Disclosed is an optical waveguide structure that has a wide degree of freedom of pattern shape design, can form a core section (light path) having high dimensional precision via a simple method, and has excellent durability. Further disclosed is an electronic apparatus provided with the aforementioned optical waveguide structure. One embodiment of the present disclosures is cited below. The optical waveguide structure (1) is provided with: an optical waveguide body (2) that forms a block shape; and five light-emitting elements (61-65). The optical waveguide body (2) is formed from a plurality of cladding layers and a plurality of core layers being laminated in a predetermined order. In each core layer, a predetermined pattern of core sections (94) and cladding sections (95) is formed. The core sections (94) are portions that form a light path for transmitted light, and are three-dimensionally disposed within the optical waveguide body (2). The core sections (94) have as a primary material a resin composition containing, for example, a norbornene resin, and are formed to a desired shape by selectively radiating actinic radiation to the core layer (93) configured from a material of which the refractive index changes by means of irradiation by actinic radiation and also by means of heating.

Description

光導波路構造体および電子機器Optical waveguide structure and electronic device
 本発明は、光導波路構造体および電子機器に関するものである。
 本願は、2010年4月8日に、日本に出願された特願2010-089402号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an optical waveguide structure and an electronic device.
This application claims priority based on Japanese Patent Application No. 2010-089402 filed in Japan on April 8, 2010, the contents of which are incorporated herein by reference.
 近年、光通信の分野における光部品として、光分岐結合器(光カプラ)、光合分波器等が開発されており、これらに用いる光導波路型素子が有望視されている。この光導波路型素子(以下単に「光導波路」とも言う)としては、従来の石英系光導波路の他、製造(パターニング)が容易で汎用性に富むポリマー系光導波路があり、最近では後者の開発が盛んに行われている。 In recent years, optical branching couplers (optical couplers), optical multiplexers / demultiplexers, and the like have been developed as optical components in the field of optical communications, and optical waveguide devices used for these are promising. As this optical waveguide type element (hereinafter also simply referred to as “optical waveguide”), there are polymer optical waveguides that are easy to manufacture (patterning) and versatile, in addition to conventional quartz optical waveguides. Has been actively conducted.
 このような光導波路は、通常、基板上に所定の配置(パターン)で形成され、光導波路構造体として取り扱われる。この光導波路構造体としては、基板上に所定の配線回路と、コア部およびクラッド部で構成される光導波路とを形成し、さらにこの光導波路に発光素子および受光素子を取り付けたものが開示されている(例えば、特許文献1参照)。 Such an optical waveguide is usually formed in a predetermined arrangement (pattern) on a substrate and handled as an optical waveguide structure. As this optical waveguide structure, a structure in which a predetermined wiring circuit and an optical waveguide composed of a core portion and a cladding portion are formed on a substrate, and a light emitting element and a light receiving element are attached to the optical waveguide is disclosed. (For example, refer to Patent Document 1).
 しかしながら、上記特許文献1に記載の光導波路構造体では、次のような問題点がある。
1.光導波路の形成工程が複雑であり、伝送光の光路を構成するコア部のパターン形状の設計、選択の自由度が狭い。特に、光路(コア部)の配置が平面的であるため、光路の設計の自由度が狭い。
2.コア部のパターン形状の精度や寸法精度が悪い。
3.配線パターンと組み合わせた場合に、該配線パターンの設計における自由度が狭い。
However, the optical waveguide structure described in Patent Document 1 has the following problems.
1. The process of forming the optical waveguide is complicated, and the degree of freedom in designing and selecting the pattern shape of the core part constituting the optical path of the transmitted light is narrow. In particular, since the arrangement of the optical path (core part) is planar, the degree of freedom in designing the optical path is narrow.
2. The core pattern shape accuracy and dimensional accuracy are poor.
3. When combined with a wiring pattern, the degree of freedom in designing the wiring pattern is narrow.
特開2004-146602号公報JP 2004-146602 A
 本発明の目的は、パターン形状の設計の自由度が広く、寸法精度の高いコア部(光路)を簡単な方法で形成することができ、また、耐久性に優れる光導波路を備えた光導波路構造体を提供することにある。また、前記光導波路構造体を備えた電子機器を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide an optical waveguide structure having an optical waveguide with a wide degree of freedom in designing a pattern shape and capable of forming a core portion (optical path) with high dimensional accuracy by a simple method. To provide a body. Moreover, it is providing the electronic device provided with the said optical waveguide structure.
 このような目的は、下記(1)~(36)の本発明により達成される。
(1) 光路を形成するコア部と、前記コア部の外周に形成され、前記コア部と屈折率が異なるクラッド部とを有する光導波路本体を有し、
 前記光導波路本体内に前記コア部が3次元的に配置されており、
 前記コア部は、
(A)環状オレフィン樹脂と、
(B)前記(A)とは屈折率が異なり、かつ、環状エーテル基を有するモノマーおよび環状エーテル基を有するオリゴマーのうちの少なくとも一方と、
(C)光酸発生剤と、
を含む組成物で構成されたコア層に対し活性放射線を選択的に照射することにより所望の形状に形成されたものであることを特徴とする光導波路構造体。
(2) 前記(B)の環状エーテル基は、オキセタニル基またはエポキシ基である上記(1)に記載の光導波路構造体。
(3) 前記(A)の環状オレフィン樹脂は、ノルボルネン系樹脂である上記(1)または(2)に記載の光導波路構造体。
(4) 前記(B)は、前記(A)よりも屈折率が低く、
 前記環状オレフィン樹脂は、前記(C)の光酸発生剤から発生する酸により脱離し、脱離により、前記(A)の屈折率を低下させる脱離性基を有するものである上記(1)ないし(3)のいずれかに記載の光導波路構造体。
(5) 前記(A)の環状オレフィン樹脂は、側鎖に前記(C)の光酸発生剤から発生する酸により脱離する脱離性基を有し、
 前記(B)は、下記式(100)に記載の第1モノマーを含むものである上記(2)に記載の光導波路構造体。
Such an object is achieved by the present inventions (1) to (36) below.
(1) having an optical waveguide body having a core part forming an optical path and a clad part formed on the outer periphery of the core part and having a refractive index different from that of the core part;
The core portion is three-dimensionally arranged in the optical waveguide body,
The core part is
(A) a cyclic olefin resin;
(B) The refractive index is different from that of (A), and at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group;
(C) a photoacid generator;
An optical waveguide structure characterized by being formed into a desired shape by selectively irradiating active radiation to a core layer composed of a composition comprising:
(2) The optical waveguide structure according to (1), wherein the cyclic ether group of (B) is an oxetanyl group or an epoxy group.
(3) The optical waveguide structure according to (1) or (2), wherein the cyclic olefin resin (A) is a norbornene resin.
(4) The refractive index of (B) is lower than that of (A),
(1) The cyclic olefin resin has a leaving group that is desorbed by an acid generated from the photoacid generator of (C) and lowers the refractive index of (A) by desorption. Thru | or the optical waveguide structure in any one of (3).
(5) The cyclic olefin resin of (A) has a leaving group that is eliminated by an acid generated from the photoacid generator of (C) in the side chain,
Said (B) is an optical waveguide structure as described in said (2) containing the 1st monomer as described in following formula (100).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(6) 前記(B)は、さらに、エポキシ化合物およびオキセタニル基を2つ有するオキセタン化合物のうち、少なくとも一方を第2モノマーとして含むものである上記(5)に記載の光導波路構造体。
(7) 前記第2モノマーと前記第1モノマーとの割合は、重量比(前記第2モノマーの重量/前記第1モノマーの重量)で、0.1~1.0である上記(6)に記載の光導波路構造体。
(8) 前記脱離性基は、-O-構造、-Si-アリール構造および-O-Si-構造のうちの少なくとも1つを有するものである上記(5)ないし(7)のいずれかに記載の光導波路構造体。
(9) 前記(A)の環状オレフィン樹脂は、ノルボルネン系樹脂である上記(5)ないし(8)のいずれかに記載の光導波路構造体。
(10) 前記ノルボルネン系樹脂は、ノルボルネンの付加重合体である上記(9)に記載の光導波路構造体。
(11) 前記ノルボルネンの付加重合体は、下記式(101)に記載の繰り返し単位を有するものである上記(10)に記載の光導波路構造体。
(6) The optical waveguide structure according to (5), wherein (B) further includes at least one of the epoxy compound and the oxetane compound having two oxetanyl groups as the second monomer.
(7) The ratio of the second monomer to the first monomer is 0.1 to 1.0 in a weight ratio (weight of the second monomer / weight of the first monomer). The optical waveguide structure described.
(8) The leaving group has any one of the above (5) to (7) having at least one of an —O— structure, an —Si—aryl structure and an —O—Si— structure. The optical waveguide structure described.
(9) The optical waveguide structure according to any one of (5) to (8), wherein the cyclic olefin resin of (A) is a norbornene resin.
(10) The optical waveguide structure according to (9), wherein the norbornene-based resin is a norbornene addition polymer.
(11) The optical waveguide structure according to (10), wherein the norbornene addition polymer has a repeating unit represented by the following formula (101).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(12) 前記ノルボルネンの付加重合体は、下記式(102)に記載の繰り返し単位を有するものである上記(10)または(11)に記載の光導波路構造体。 (12) The optical waveguide structure according to (10) or (11), wherein the norbornene addition polymer has a repeating unit represented by the following formula (102).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(13) 上記式(100)に記載の第1モノマーの含有量は、前記環状オレフィン樹脂100重量部に対して、1重量部以上50重量部以下である上記(5)ないし(12)のいずれかに記載の光導波路構造体。
(14) 前記コア層の活性放射線が照射された領域と、未照射領域とで、前記(B)由来の構造体濃度が異なっている上記(1)ないし(13)のいずれかに記載の光導波路構造体。
(15) 前記コア層の活性放射線が照射された領域と未照射領域の屈折率差が0.01以上である上記(1)ないし(14)のいずれかに記載の光導波路構造体。
(16) 前記コア層の活性放射線が照射された領域を前記クラッド部の少なくとも一部とし、未照射領域を前記コア部の少なくとも一部とする上記(1)ないし(15)のいずれかに記載の光導波路構造体。
(17) 前記コア部は、互いに直交するX、YおよびZ方向のうちの少なくとも1つの方向に延在する部分を有している上記(1)ないし(16)のいずれかに記載の光導波路構造体。
(18) 前記コア部は、互いに直交するX、YおよびZ方向のうちの少なくとも2つの方向に延在する部分を有している上記(1)ないし(16)のいずれかに記載の光導波路構造体。
(19) 前記光導波路本体は、前記クラッド部を構成するクラッド層と前記コア層とが交互に積層された部分を有する上記(1)ないし(18)のいずれかに記載の光導波路構造体。
(20) 前記光導波路本体は、前記コア層の両面に前記クラッド部を構成するクラッド層をそれぞれ接合してなる積層体を2つ以上重ねた部分を有する上記(1)ないし(19)のいずれかに記載の光導波路構造体。
(21) 前記光導波路本体は、前記コア層を複数積層したコア層積層部を有する上記(1)ないし(20)のいずれかに記載の光導波路構造体。
(22) 異なる前記コア層間に形成された前記コア部同士の間で伝送光の授受が行われるよう構成された部分を有する上記(8)ないし(21)のいずれかに記載の光導波路構造体。
(23) 前記コア部を伝送される伝送光の光路を屈曲させる光路変換部を有する上記(1)ないし(22)のいずれかに記載の光導波路構造体。
(24) 前記光路変換部は、前記伝送光の少なくとも一部を反射する反射面を有するものである上記(23)に記載の光導波路構造体。
(25) 前記光路変換部は、前記伝送光の光路を複数の方向に分割する機能を有するものである上記(23)または(24)に記載の光導波路構造体。
(26) 前記コア部は、前記光導波路本体の外部より前記コア部の所定部位へ入射される伝送光が、コア部の他の部位と交差しないように配置されている上記(1)ないし(25)のいずれかに記載の光導波路構造体。
(27) 前記コア部は、光路が分岐および/または合流する部分を有する上記(1)ないし(26)のいずれかに記載の光導波路構造体。
(28) 互いに直交するX、YおよびZ方向のうちの1つの入射方向から前記コア部の所定部位へ伝送光が入射したとき、前記伝送光が前記コア部の他の部位から前記入射方向と直交する方向へ出射するよう構成されている上記(1)ないし(27)のいずれかに記載の光導波路構造体。
(29) 前記光導波路本体は、その少なくとも1つの表面が前記コア部の横断面に対し傾斜した傾斜面で構成されている上記(1)ないし(28)のいずれかに記載の光導波路構造体。
(30) 発光部または受光部と、端子とを有する素子を少なくとも1つ備える上記(1)ないし(29)のいずれかに記載の光導波路構造体。
(31) 前記素子は、前記光導波路本体の表面に接合されている上記(1)ないし(30)のいずれかに記載の光導波路構造体。
(32) 前記素子は、その少なくとも一部が前記光導波路本体の内部に設置されている上記(1)ないし(30)のいずれかに記載の光導波路構造体。
(33) 互いに独立して作動するか、連動して作動するか、または同期的に作動する2以上の素子を有する上記(30)ないし(32)のいずれかに記載の光導波路構造体。
(34) 導体層を有する上記(1)ないし(33)のいずれかに記載の光導波路構造体。
(35) 導体層を有し、前記端子が前記導体層に電気的に接続されている上記(30)ないし(34)のいずれかに記載の光導波路構造体。
(36) 上記(1)ないし(35)のいずれかに記載の光導波路構造体を備えたことを特徴とする電子機器。
(13) The content of the first monomer described in the formula (100) is 1 part by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the cyclic olefin resin. An optical waveguide structure according to claim 1.
(14) The light according to any one of (1) to (13), wherein the concentration of the structure derived from (B) is different between a region irradiated with active radiation of the core layer and a non-irradiated region. Waveguide structure.
(15) The optical waveguide structure according to any one of (1) to (14), wherein the refractive index difference between the region irradiated with active radiation and the non-irradiated region of the core layer is 0.01 or more.
(16) The structure according to any one of (1) to (15), wherein the region of the core layer that has been irradiated with active radiation is at least a part of the cladding part, and an unirradiated region is at least a part of the core part. Optical waveguide structure.
(17) The optical waveguide according to any one of (1) to (16), wherein the core portion has a portion extending in at least one of the X, Y, and Z directions orthogonal to each other. Structure.
(18) The optical waveguide according to any one of (1) to (16), wherein the core portion includes a portion extending in at least two of the X, Y, and Z directions orthogonal to each other. Structure.
(19) The optical waveguide structure according to any one of (1) to (18), wherein the optical waveguide body has a portion in which a clad layer and a core layer constituting the clad portion are alternately laminated.
(20) The optical waveguide body has any one of the above (1) to (19) having a portion in which two or more laminated bodies each formed by joining the clad layers constituting the clad portion are laminated on both surfaces of the core layer. An optical waveguide structure according to claim 1.
(21) The optical waveguide structure according to any one of (1) to (20), wherein the optical waveguide main body includes a core layer stacked portion in which a plurality of the core layers are stacked.
(22) The optical waveguide structure according to any one of (8) to (21), including a portion configured to transmit and receive transmission light between the core portions formed between different core layers. .
(23) The optical waveguide structure according to any one of (1) to (22), further including an optical path conversion unit that bends an optical path of transmission light transmitted through the core unit.
(24) The optical waveguide structure according to (23), wherein the optical path conversion unit has a reflection surface that reflects at least a part of the transmission light.
(25) The optical waveguide structure according to (23) or (24), wherein the optical path conversion unit has a function of dividing an optical path of the transmission light in a plurality of directions.
(26) The said core part is arrange | positioned so that the transmission light which injects into the predetermined site | part of the said core part from the outside of the said optical waveguide main body may not cross | intersect the other site | part of a core part. 25) The optical waveguide structure according to any one of 25).
(27) The optical waveguide structure according to any one of (1) to (26), wherein the core portion includes a portion where an optical path branches and / or merges.
(28) When transmission light is incident on a predetermined part of the core part from one incident direction among X, Y, and Z directions orthogonal to each other, the transmission light is transmitted from another part of the core part to the incident direction. The optical waveguide structure according to any one of (1) to (27), wherein the optical waveguide structure is configured to emit in an orthogonal direction.
(29) The optical waveguide structure according to any one of (1) to (28), wherein the optical waveguide body is configured with an inclined surface having at least one surface inclined with respect to a transverse section of the core portion. .
(30) The optical waveguide structure according to any one of (1) to (29), wherein the optical waveguide structure includes at least one element having a light emitting part or a light receiving part and a terminal.
(31) The optical waveguide structure according to any one of (1) to (30), wherein the element is bonded to a surface of the optical waveguide body.
(32) The optical waveguide structure according to any one of (1) to (30), wherein at least a part of the element is installed inside the optical waveguide body.
(33) The optical waveguide structure according to any one of (30) to (32), wherein the optical waveguide structure has two or more elements that operate independently of each other, operate in conjunction with each other, or operate synchronously.
(34) The optical waveguide structure according to any one of (1) to (33), which has a conductor layer.
(35) The optical waveguide structure according to any one of (30) to (34), further including a conductor layer, wherein the terminal is electrically connected to the conductor layer.
(36) An electronic device comprising the optical waveguide structure according to any one of (1) to (35).
 本発明によれば、コア部が3次元的に配置されており、しかも、コア部のパターニングを活性放射線(活性エネルギー光線、電子線、X線等)の照射という簡単な方法で行うことができるので、コア部のパターン形状、すなわち、光路の配置の設計の自由度が広く、しかも寸法精度の高いコア部が得られる。 According to the present invention, the core part is three-dimensionally arranged, and the patterning of the core part can be performed by a simple method of irradiation with active radiation (active energy ray, electron beam, X-ray, etc.). Therefore, a core part having a wide degree of freedom in designing the pattern shape of the core part, that is, the arrangement of the optical path, and high dimensional accuracy is obtained.
 また、コア層を所望の材料で構成した場合には、光導波路本体に応力が作用したり変形が生じたりした場合でも、コア部とクラッド部との層間剥離や、コア部内にマイクロクラックが発生すること等の欠陥が生じ難く、その結果、光導波路の光伝送性能が維持され、耐久性に優れる。 In addition, when the core layer is made of a desired material, even if stress is applied to the optical waveguide body or deformation occurs, delamination between the core and cladding and microcracks occur in the core. As a result, the optical transmission performance of the optical waveguide is maintained and the durability is excellent.
 さらに、コア部をノルボルネン系樹脂を主とする樹脂組成物で構成した場合には、前記変形に対し特に強く欠陥が生じ難いという効果が高い他、コア部とクラッド部との屈折率の差をより大きくすることができ、しかも、耐熱性に優れ、その結果、より高性能で耐久性に優れる光導波路が得られる。 Furthermore, when the core part is composed of a resin composition mainly composed of norbornene-based resin, the effect of being particularly strong against the deformation and being difficult to cause defects is high, and the difference in refractive index between the core part and the cladding part is increased. The optical waveguide can be made larger, and has excellent heat resistance, and as a result, an optical waveguide with higher performance and durability can be obtained.
 また、光導波路構造体が素子(発光素子または受光素子)を有する場合には、光導波路と光学的に接続することにより、素子の発光部から発せられた光を光導波路により他所へ導くことあるいは他所からの光を光導波路により素子の受光部へ導くことができ、小型で集積された光回路を形成することができる。 When the optical waveguide structure has an element (light emitting element or light receiving element), the light emitted from the light emitting portion of the element is guided to another place by the optical waveguide by being optically connected to the optical waveguide, or Light from other places can be guided to the light receiving portion of the element by the optical waveguide, and a small and integrated optical circuit can be formed.
 また、導体層を形成した場合には、前記素子への配線が容易であるとともに、素子の種類(端子の設置箇所)等に係わらずそれに適した配線が可能となり、汎用性に富む。しかも、このような導体層による配線回路のパターンは、設計の自由度(例えば、端子の設置箇所の選択の自由度)が広い。 In addition, when a conductor layer is formed, wiring to the element is easy, and wiring suitable for the element can be made regardless of the type of element (terminal installation location), and the versatility is high. Moreover, such a wiring circuit pattern using a conductor layer has a wide degree of freedom in design (for example, a degree of freedom in selection of a terminal installation location).
 このような本発明の光導波路構造体は、光回路(光導波路のパターン)や電気回路の設計の幅が広く、歩留まりが良く、光伝送性能を高く維持し、信頼性、耐久性に優れ、汎用性に富む。そのため、本発明は、種々の電子部品、電子機器等に対し用いることができる。 Such an optical waveguide structure of the present invention has a wide range of optical circuit (optical waveguide pattern) and electrical circuit design, good yield, high optical transmission performance, excellent reliability and durability, Rich in versatility. Therefore, the present invention can be used for various electronic components, electronic devices, and the like.
本発明の光導波路構造体の第1実施形態を示す斜視図である。It is a perspective view which shows 1st Embodiment of the optical waveguide structure of this invention. 図1に示す光導波路構造体における1段目のコア層のコア部の配置を示す図である。It is a figure which shows arrangement | positioning of the core part of the 1st step | paragraph core layer in the optical waveguide structure shown in FIG. 図1に示す光導波路構造体における2段目のコア層のコア部の配置を示す図である。It is a figure which shows arrangement | positioning of the core part of the 2nd step | paragraph core layer in the optical waveguide structure shown in FIG. 図1に示す光導波路構造体における3段目のコア層のコア部の配置を示す図である。It is a figure which shows arrangement | positioning of the core part of the 3rd step | paragraph core layer in the optical waveguide structure shown in FIG. 光導波路本体の層構成の例を示す断面図である。It is sectional drawing which shows the example of the layer structure of an optical waveguide main body. 光導波路本体の層構成の例を示す断面図である。It is sectional drawing which shows the example of the layer structure of an optical waveguide main body. 光導波路本体の層構成の例を示す断面図である。It is sectional drawing which shows the example of the layer structure of an optical waveguide main body. 本発明の光導波路構造体の第2実施形態を示す斜視図である。It is a perspective view which shows 2nd Embodiment of the optical waveguide structure of this invention. 光導波路の製造方法の工程例を模式的に示す断面図である。It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide. 光導波路の製造方法の工程例を模式的に示す断面図である。It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide. 光導波路の製造方法の工程例を模式的に示す断面図である。It is sectional drawing which shows typically the example of a process of the manufacturing method of an optical waveguide. 実施例における曲げ損失の測定方法を模式的に示す図である。It is a figure which shows typically the measuring method of the bending loss in an Example.
 以下、本発明の光導波路構造体について添付図面に示す好適実施形態に基づき詳細に説明する。 Hereinafter, the optical waveguide structure of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
 図1は、本発明の光導波路構造体の第1実施形態を示す斜視図であり、図2は、図1に示す光導波路構造体における1段目のコア層のコア部の配置(パターン)を示す図、図3は、図1に示す光導波路構造体における2段目のコア層のコア部の配置(パターン)を示す図、図4は、図1に示す光導波路構造体における3段目のコア層のコア部の配置(パターン)を示す図である。以下これらの図を参照しつつ、光導波路構造体の構成例について説明する。 FIG. 1 is a perspective view showing a first embodiment of the optical waveguide structure of the present invention, and FIG. 2 is an arrangement (pattern) of the core portion of the first core layer in the optical waveguide structure shown in FIG. FIG. 3 is a diagram showing the arrangement (pattern) of the core portion of the second-stage core layer in the optical waveguide structure shown in FIG. 1, and FIG. 4 is the three-stage in the optical waveguide structure shown in FIG. It is a figure which shows arrangement | positioning (pattern) of the core part of the core layer of an eye. Hereinafter, a configuration example of the optical waveguide structure will be described with reference to these drawings.
 なお、以下の説明では、図1中に示すX、YおよびZ(ただしX、Y、Zは互いに直交する方向)の方向をそれぞれ、「X方向」、「Y方向」および「Z方向」と言い、X方向、Y方向およびZ方向と反対方向をそれぞれ、「-X方向」、「-Y方向」および「-Z方向」と言う。また、光導波路構造体の図1中の上部を「上」または「上段」と言い、下部を「下」または「下段」と言い、上段と下段の中間部分を「中段」と言う。また、光導波路本体の図1(図8)中の上側の面を「上面」、下側の面を「下面」、右側の面を「右側面」、手前側の面を「前面」、奥側の面を「背面」と言う。 In the following description, directions of X, Y, and Z (X, Y, and Z are directions orthogonal to each other) shown in FIG. 1 are respectively referred to as “X direction”, “Y direction”, and “Z direction”. In other words, directions opposite to the X direction, Y direction, and Z direction are referred to as “−X direction”, “−Y direction”, and “−Z direction”, respectively. Further, the upper part in FIG. 1 of the optical waveguide structure is referred to as “upper” or “upper stage”, the lower part is referred to as “lower” or “lower stage”, and an intermediate portion between the upper stage and the lower stage is referred to as “middle stage”. In addition, the upper surface of the optical waveguide body in FIG. 1 (FIG. 8) is the “upper surface”, the lower surface is the “lower surface”, the right surface is the “right surface”, the front surface is the “front surface”, and the back surface. The side surface is called the “back”.
<第1実施形態:図1>
 図1に示すように、本発明の光導波路構造体1は、ブロック状をなす光導波路本体2と、5個の発光素子61、62、63、64および65とを備えている。
<First Embodiment: FIG. 1>
As shown in FIG. 1, the optical waveguide structure 1 of the present invention includes a block-shaped optical waveguide body 2 and five light emitting elements 61, 62, 63, 64 and 65.
 発光素子61、62、63、64および65は、それぞれ、発光部610、620、630、640および650と、一対の端子(図示せず)とを有している。例えば、発光素子61の端子間に通電(電位差を与える)すると、発光部610が点灯(発光)する。他の発光素子62~65についても同様である。 The light emitting elements 61, 62, 63, 64 and 65 have light emitting portions 610, 620, 630, 640 and 650 and a pair of terminals (not shown), respectively. For example, when a current is applied (given a potential difference) between the terminals of the light emitting element 61, the light emitting unit 610 is turned on (emits light). The same applies to the other light emitting elements 62-65.
 発光素子61~65の発光部610~650は、それぞれ、1つの発光点で構成されているものの他、発光点が複数個集合したものでもよい。発光点が複数個集合したものとしては、例えば、発光点が列状(例えば発光点が1×4個、1×12個)または行列状(例えば発光点がn×m個:n、mは2以上の整数)に配置されたものや、複数の発光点がランダム(不規則)に配置されたもの等が挙げられる。後述する受光素子における受光部についても同様である。 The light emitting units 610 to 650 of the light emitting elements 61 to 65 may each be composed of a single light emitting point, or may be a set of a plurality of light emitting points. As a set of a plurality of light emitting points, for example, the light emitting points are arranged in a row (for example, 1 × 4, 1 × 12) or in a matrix (for example, n × m: n, m And those in which a plurality of light emitting points are arranged randomly (irregularly). The same applies to a light receiving portion in a light receiving element to be described later.
 また、各発光素子61~65は、それらの発光部610~650が光導波路本体2の表面に接触または対面するように光導波路本体2の表面に接合されている。ただし、本発明では、各発光素子61~65は、それぞれ、その全部または一部が光導波路本体2の内部に設置(埋設)されていてもよい。発光素子61~65と共に、または発光素子61~65に代えて受光素子を設置する場合も同様である。 The light emitting elements 61 to 65 are joined to the surface of the optical waveguide body 2 such that the light emitting portions 610 to 650 are in contact with or face the surface of the optical waveguide body 2. However, in the present invention, all or a part of each of the light emitting elements 61 to 65 may be installed (embedded) inside the optical waveguide body 2. The same applies to the case where a light receiving element is installed together with the light emitting elements 61 to 65 or instead of the light emitting elements 61 to 65.
 なお、各発光素子61~65は、それぞれ独立して作動(発光)するものであるが、これらのうちに任意の2以上は、連動して(特に同時に)発光するもの、または同期的に発光するものでもよい。各発光素子61~65の発光パターンは、任意に設定することができ、また、発光パターンが経時的に変化してもよい。 Each of the light emitting elements 61 to 65 operates (emits light) independently, but any two or more of them emit light in conjunction (particularly simultaneously) or emit light synchronously. You may do it. The light emission pattern of each of the light emitting elements 61 to 65 can be arbitrarily set, and the light emission pattern may change with time.
 光導波路本体2は、クラッド層91とコア層93とを所定の順序で積層してなるものである。この場合、光導波路本体2は、複数のクラッド層91と、複数(Z方向に3段)のコア層93とを有している。 The optical waveguide body 2 is formed by laminating a clad layer 91 and a core layer 93 in a predetermined order. In this case, the optical waveguide body 2 includes a plurality of cladding layers 91 and a plurality of core layers 93 (three steps in the Z direction).
 各コア層93には、それぞれ、所定パターンのコア部94とクラッド部95とが形成されている(図1~図4参照)。コア部94は、伝送光の光路を形成する部分であり、クラッド部95は、コア層93に形成されているものの伝送光の光路を形成せず、クラッド層91と同様の機能を果たす部分である。 Each core layer 93 is formed with a core portion 94 and a clad portion 95 having a predetermined pattern (see FIGS. 1 to 4). The core portion 94 is a portion that forms an optical path of the transmission light, and the cladding portion 95 is a portion that is formed in the core layer 93 but does not form an optical path of the transmission light and performs the same function as the cladding layer 91. is there.
 コア部94は、クラッド部95に比べて屈折率が高く、また、クラッド層91に対しても屈折率が高い。コア部94の両側部にはクラッド部95が存在し、コア部94の下部および上部には、クラッド部95またはクラッド層91が存在する。このような構成により、コア部94は、その外周の全周をクラッド部に囲まれた導光路(光導波路)として機能する。 The core portion 94 has a higher refractive index than the clad portion 95, and also has a higher refractive index than the clad layer 91. The clad portion 95 exists on both sides of the core portion 94, and the clad portion 95 or the clad layer 91 exists below and above the core portion 94. With such a configuration, the core portion 94 functions as a light guide path (optical waveguide) surrounded by the clad portion on the entire outer periphery.
 図1に示すように、コア部94は、光導波路本体2内に3次元的に配置されている。すなわち、コア部4は、X(-X)、Y(-Y)およびZ(-Z)方向のうちの少なくとも1つの方向に延在する部分を有しているのが好ましく、X(-X)、Y(-Y)およびZ(-Z)方向のうちの少なくとも2つの方向に延在する部分を有しているのがより好ましい。 As shown in FIG. 1, the core portion 94 is three-dimensionally arranged in the optical waveguide body 2. That is, the core portion 4 preferably has a portion extending in at least one of the X (-X), Y (-Y) and Z (-Z) directions, and X (-X ), Y (-Y), and Z (-Z) directions, and more preferably has a portion extending in at least two directions.
 なお、クラッド層91は、伝送光がクラッド層91に対し層厚方向(クラッド層に対し垂直な方向)に入射したとき、当該伝送光を比較的高い透過率で透過する。 The clad layer 91 transmits the transmitted light with a relatively high transmittance when the transmitted light is incident on the clad layer 91 in a layer thickness direction (a direction perpendicular to the clad layer).
 コア層93の構成材料としては、活性放射線(活性エネルギー光線、電子線またはX線等)の照射により、あるいはさらに加熱することにより屈折率が変化する材料とされる。このような材料の好ましい例としては、ベンゾシクロブテン系樹脂ポリマー、ノルボルネン系ポリマー(樹脂)等の環状オレフィン系樹脂を含む樹脂組成物を主材料とするものが挙げられ、ノルボルネン系ポリマーを含む(主材料とする)ものが特に好ましい。 As a constituent material of the core layer 93, a material whose refractive index is changed by irradiation with active radiation (active energy ray, electron beam, X-ray or the like) or further heating is used. Preferable examples of such materials include those mainly composed of a resin composition containing a cyclic olefin resin such as a benzocyclobutene resin polymer and a norbornene polymer (resin), including a norbornene polymer ( The main material) is particularly preferred.
 このような材料で構成されたコア層93は、曲げ等の変形に対する耐性に優れ、特に繰り返し湾曲変形した場合でも、コア部94とクラッド部95との剥離や、コア層93と隣接する層(クラッド層91または他のコア層93)との層間剥離が生じ難く、コア部94内やクラッド部95内にマイクロクラックが発生することも防止される。その結果、光導波路の光伝送性能が維持され、耐久性に優れた光導波路が得られる。 The core layer 93 made of such a material is excellent in resistance to deformation such as bending, and even when it is repeatedly curved and deformed, the core layer 94 and the clad portion 95 are separated from each other, and the layer adjacent to the core layer 93 ( The delamination with the clad layer 91 or the other core layer 93) hardly occurs, and the occurrence of microcracks in the core portion 94 and the clad portion 95 is also prevented. As a result, the optical transmission performance of the optical waveguide is maintained, and an optical waveguide excellent in durability can be obtained.
 また、コア層93の構成材料には、例えば、酸化防止剤、屈折率調整剤、可塑剤、増粘剤、補強剤、増感剤、レベリング剤、消泡剤、密着助剤および難燃剤等の添加剤が含まれていてもよい。酸化防止剤の添加は、高温安定性の向上、耐候性の向上、光劣化の抑制という効果がある。このような酸化防止剤としては、例えば、モノフェノール系、ビスフェノール系、トリフェノール系等のフェノール系や、芳香族アミン系のものが挙げられる。また、可塑剤、増粘剤、補強剤の添加により、曲げに対する耐性をさらに増大させることもできる。 Examples of the constituent material of the core layer 93 include an antioxidant, a refractive index adjuster, a plasticizer, a thickener, a reinforcing agent, a sensitizer, a leveling agent, an antifoaming agent, an adhesion aid, and a flame retardant. The additive may be contained. Addition of an antioxidant has the effect of improving high temperature stability, improving weather resistance, and suppressing light deterioration. Examples of such an antioxidant include phenols such as monophenols, bisphenols, and triphenols, and aromatic amines. Further, the resistance to bending can be further increased by adding a plasticizer, a thickener, and a reinforcing agent.
 前記酸化防止剤に代表される添加剤の含有率(2種以上の場合は合計)は、コア層93の構成材料全体に対し、0.5~40重量%程度が好ましく、3~30重量%程度がより好ましい。この量が少なすぎると、添加剤の機能を十分に発揮することができず、量が多すぎると、添加剤の種類や特性によっては、コア部94を伝送する光(伝送光)の透過率の低下、パターニング不良、屈折率不安定等を生じるおそれがある。 The content of additives typified by the antioxidant (the total in the case of two or more types) is preferably about 0.5 to 40% by weight, preferably 3 to 30% by weight, based on the entire constituent material of the core layer 93. The degree is more preferred. If this amount is too small, the function of the additive cannot be sufficiently exhibited. If the amount is too large, the transmittance of light (transmitted light) transmitted through the core portion 94 depends on the type and characteristics of the additive. Decrease, patterning failure, refractive index instability and the like.
 コア層93の形成方法としては、塗布法が挙げられる。塗布法としては、コア層形成用組成物(ワニス等)を塗布し硬化(固化)させる方法、硬化性を有するモノマー組成物を塗布し硬化(固化)させる方法が挙げられる。また、塗布法以外の方法、例えば、別途製造されたシート材を接合する方法を採用することもできる。 An example of a method for forming the core layer 93 is a coating method. Examples of the coating method include a method in which a core layer forming composition (varnish or the like) is applied and cured (solidified), and a method in which a curable monomer composition is applied and cured (solidified). In addition, a method other than the coating method, for example, a method of joining separately manufactured sheet materials may be employed.
 以上のようにして得られたコア層93に対し、マスクを用いて活性放射線を選択的に照射し、所望の形状のコア部94をパターニングする。 The core layer 93 obtained as described above is selectively irradiated with actinic radiation using a mask to pattern the core portion 94 having a desired shape.
 露光に用いる活性放射線としては、可視光、紫外光、赤外光、レーザ光等の活性エネルギー光線や電子線、X線等が挙げられる。電子線は、例えば50~2000KGy程度の照射量で照射することができる。 Examples of active radiation used for exposure include active energy rays such as visible light, ultraviolet light, infrared light, and laser light, electron beams, and X-rays. The electron beam can be irradiated at an irradiation dose of, for example, about 50 to 2000 KGy.
 コア層93において、活性放射線が照射された部位は、その屈折率が変化し(コア層93の材料により、屈折率が増大する場合と減少する場合とがある)、活性放射線が照射されなかった部位との間で屈折率の差が生じる。例えば、コア層93の活性放射線が照射された部位がクラッド部95となり、照射されなかった部位がコア部94となる。また、この逆の場合もある。クラッド部95の屈折率は、クラッド層91の屈折率とほぼ等しい。 In the core layer 93, the refractive index of the portion irradiated with the active radiation changes (the refractive index may increase or decrease depending on the material of the core layer 93), and the active radiation is not irradiated. A difference in refractive index occurs between the parts. For example, a portion of the core layer 93 that has been irradiated with active radiation becomes the cladding portion 95, and a portion that has not been irradiated becomes the core portion 94. The reverse is also true. The refractive index of the cladding part 95 is substantially equal to the refractive index of the cladding layer 91.
 また、コア層93に対し活性放射線を所定のパターンで照射した後、加熱することにより、コア部94を形成する場合もある。この加熱工程を付加することにより、コア部94とクラッド部95との屈折率の差がより大きくなるので好ましい。なお、この原理等については、後に詳述する。 Further, the core portion 94 may be formed by irradiating the core layer 93 with active radiation in a predetermined pattern and then heating the core layer 93. By adding this heating step, the difference in refractive index between the core portion 94 and the cladding portion 95 becomes larger, which is preferable. This principle will be described later in detail.
 形成されるコア部94のパターン形状としては、特に限定されず、直線状、湾曲部を有する形状、異形、光路の分岐部、合流部または交差部を有する形状、集光部(幅等が減少している部分)または光拡散部(幅等が増大している部分)、あるいはこれらのうちの2以上を組み合わせた形状等、いかなるものでもよい。活性放射線の照射パターンの設定により、いかなる形状のコア部94をも容易に形成することができる点が、本発明の特徴である。 The pattern shape of the core portion 94 to be formed is not particularly limited, and is a straight shape, a shape having a curved portion, an irregular shape, a shape having a branching portion of a light path, a merging portion or a crossing portion, a condensing portion (a width etc. is reduced). Or a light diffusing part (a part where the width or the like is increased), or a combination of two or more of these. The feature of the present invention is that the core portion 94 having any shape can be easily formed by setting the irradiation pattern of the active radiation.
 以下、光導波路本体2内における各コア層中のコア部94の配置(パターン)について具体的に説明する。 Hereinafter, the arrangement (pattern) of the core portion 94 in each core layer in the optical waveguide body 2 will be specifically described.
<1段目(上段)のコア層>
 図2に示すように、光導波路本体2における上から1段目(上段)のコア層93には、Y方向に延在する長手形状の3つのコア部94が、X方向に所定間隔をおいてほぼ平行に形成(配置)されている。
<First (upper) core layer>
As shown in FIG. 2, three core portions 94 having a longitudinal shape extending in the Y direction are spaced apart from each other in the X direction by a core layer 93 in the first stage (upper stage) from the top in the optical waveguide body 2. And formed (arranged) substantially in parallel.
 図2中左列のコア部94は、その一端が光導波路本体2の背面に露出し、該露出面が伝送光711の出射端942を構成している。該コア部94の出射端942と反対側の端部には、コア部94の光路を屈曲させる光路変換部(発光部側光路変換部)4aが設けられている。 2, one end of the core portion 94 in the left column is exposed on the back surface of the optical waveguide body 2, and the exposed surface constitutes an output end 942 of the transmission light 711. An optical path conversion unit (light emitting unit side optical path conversion unit) 4 a that bends the optical path of the core unit 94 is provided at the end of the core unit 94 opposite to the emission end 942.
 光路変換部4aは、伝送光の少なくとも一部を反射する反射面(ミラー)5aで構成されている。後述する反射面5b、5c、5dおよび5eについても同様である。 The optical path conversion unit 4a is composed of a reflecting surface (mirror) 5a that reflects at least a part of the transmitted light. The same applies to reflecting surfaces 5b, 5c, 5d and 5e described later.
 反射面5aは、コア部94の長手方向に対しほぼ45°傾斜しており、伝送光71の一部(例えば光量の50%)を反射し、残部を透過するビームスプリッター(ハーフミラーまたはダイクロイックミラー等)として機能するものであり、発光部610から発せられた伝送光71を複数の方向(直交する2つの方向)に分割する。そして反射面5aの反射率(透過率)の設定により、分割される各伝送光711、712の光量を、所定の比率に設定することができる。典型例としては、伝送光711と712の光量をほぼ等しいものとすることができる。 The reflecting surface 5a is inclined by approximately 45 ° with respect to the longitudinal direction of the core portion 94, reflects a part of the transmitted light 71 (for example, 50% of the light amount), and transmits the remaining part of the beam splitter (half mirror or dichroic mirror). The transmission light 71 emitted from the light emitting unit 610 is divided into a plurality of directions (two directions orthogonal to each other). Then, by setting the reflectance (transmittance) of the reflecting surface 5a, the light amounts of the divided transmission lights 711 and 712 can be set to a predetermined ratio. As a typical example, the light amounts of the transmission lights 711 and 712 can be made substantially equal.
 この光路変換部4aは、例えば、コア部94の一部(端部)を斜めに切断(除去)して傾斜面を形成し、該傾斜面を反射面5aとして用いることができる。反射面5aは、例えば多層光学薄膜や金属薄膜(例えばアルミ蒸着膜)のような反射膜あるいは反射増加膜を有していてもよい。また、図示しないが、光路変換部4aの傾斜面には、充填材、特にコア部94と屈折率の異なる充填材が充填または接合されていてもよい。これらは、後述する反射面5b、5c、5dおよび5eについても同様である。 The optical path conversion unit 4a can, for example, form an inclined surface by obliquely cutting (removing) a part (end portion) of the core portion 94 and using the inclined surface as the reflecting surface 5a. The reflecting surface 5a may have a reflecting film or a reflection increasing film such as a multilayer optical thin film or a metal thin film (for example, an aluminum vapor deposition film). Although not shown, the inclined surface of the optical path changing portion 4a may be filled or joined with a filler, particularly a filler having a refractive index different from that of the core portion 94. The same applies to reflective surfaces 5b, 5c, 5d and 5e described later.
 図2中右列のコア部94は、光導波路本体2の背面から前面まで連続して形成されており、該コア部94の背面への露出面には、発光部640が対面するよう発光素子64が設置され、該コア部94の前面への露出面は、伝送光741の出射端943を構成している。また、図2中右列のコア部94は、その途中にある分岐部941にて分岐し、図2中中央の列のコア部94を形成している。このコア部94は、光導波路本体2の前面に露出し、該露出面が伝送光742の出射端944を構成している。 The core portions 94 in the right column in FIG. 2 are continuously formed from the back surface to the front surface of the optical waveguide body 2, and the light emitting element 640 faces the exposed surface of the core portion 94 on the back surface. 64, and the exposed surface of the core portion 94 to the front surface constitutes an output end 943 of the transmission light 741. Moreover, the core part 94 of the right row in FIG. 2 branches in the branch part 941 in the middle, and forms the core part 94 of the center row | line | column in FIG. The core portion 94 is exposed on the front surface of the optical waveguide body 2, and the exposed surface constitutes an output end 944 of the transmission light 742.
 分岐部941では、発光部640から発せられた伝送光74が、伝送光741と742とに分離される。伝送光741と伝送光742の光量の比率は、特に限定されず、例えば1:9~9:1程度とすることができる。なお、分岐部941に代え、前記反射面5aと同様の反射面(ビームスプリッター:ハーフミラーまたはダイクロイックミラー)を設置し、光路を複数の方向に分岐(分割)させることもできる。 In the branching section 941, the transmission light 74 emitted from the light emitting section 640 is separated into transmission lights 741 and 742. The ratio of the light amounts of the transmission light 741 and the transmission light 742 is not particularly limited, and can be, for example, about 1: 9 to 9: 1. Instead of the branching portion 941, a reflection surface (beam splitter: half mirror or dichroic mirror) similar to the reflection surface 5a may be provided to branch (divide) the optical path in a plurality of directions.
 また、分岐部941と同様の構成の合流部を有していてもよい。この場合には、図示の分岐部941において、伝送光の方向が反対方向であり、2つのコア部(光路)が1つのコア部(光路)に合流する構成とされる。 Moreover, you may have the confluence | merging part of the structure similar to the branch part 941. FIG. In this case, in the illustrated branching portion 941, the direction of the transmitted light is opposite, and the two core portions (optical paths) are merged into one core portion (optical path).
<2段目(中段)のコア層>
 図3に示すように、光導波路本体2における上から2段目(中段)のコア層93には、X方向に延在する長手形状の1つのコア部94が形成(配置)されている。該コア部94は、その一端が光導波路本体2の右側面に露出し、該露出面が伝送光72の出射端945を構成している。該コア部94の出射端945と反対側の端部には、コア部94の光路を屈曲させる光路変換部(発光部側光路変換部)4bが設けられている。
<Second (middle) core layer>
As shown in FIG. 3, one long core portion 94 extending in the X direction is formed (arranged) on the second (middle) core layer 93 from the top in the optical waveguide body 2. One end of the core portion 94 is exposed on the right side surface of the optical waveguide body 2, and the exposed surface constitutes an output end 945 of the transmission light 72. An optical path conversion section (light emitting section side optical path conversion section) 4b that bends the optical path of the core section 94 is provided at the end of the core section 94 opposite to the emission end 945.
 光路変換部4bは、伝送光の少なくとも一部を反射する反射面(ミラー)5bで構成されている。反射面5bは、コア部94の長手方向に対しほぼ45°傾斜しており、伝送光72のほぼ全部(例えば光量の90%以上)を反射する全反射ミラーを構成している。 The optical path changing unit 4b is composed of a reflecting surface (mirror) 5b that reflects at least a part of the transmitted light. The reflecting surface 5b is inclined by approximately 45 ° with respect to the longitudinal direction of the core portion 94, and constitutes a total reflection mirror that reflects almost all of the transmitted light 72 (for example, 90% or more of the light amount).
<3段目(下段)のコア層>
 図4に示すように、光導波路本体2における上から3段目(下段)のコア層93には、Y方向に延在する長手形状の3つのコア部94が、X方向に所定間隔をおいてほぼ平行に形成(配置)されている。
<Third (lower) core layer>
As shown in FIG. 4, in the core layer 93 at the third level (lower level) from the top in the optical waveguide body 2, three longitudinal core portions 94 extending in the Y direction have a predetermined interval in the X direction. And formed (arranged) substantially in parallel.
 図4中左列のコア部94は、その一端が光導波路本体2の背面に露出し、該露出面が伝送光712の出射端946を構成している。該コア部94の出射端946と反対側の端部には、コア部94の光路を屈曲させる光路変換部(発光部側光路変換部)4cが設けられている。 4, one end of the core portion 94 in the left column is exposed on the back surface of the optical waveguide body 2, and the exposed surface constitutes the output end 946 of the transmission light 712. An optical path conversion section (light emitting section side optical path conversion section) 4 c that bends the optical path of the core section 94 is provided at the end of the core section 94 opposite to the emission end 946.
 光路変換部4cは、伝送光の少なくとも一部を反射する反射面(ミラー)5cで構成されている。反射面5cは、コア部94の長手方向に対しほぼ45°傾斜しており、上方にある反射面5aを透過した伝送光712のほぼ全部(例えば光量の90%以上)を反射する全反射ミラーを構成している。 The optical path changing unit 4c is composed of a reflecting surface (mirror) 5c that reflects at least a part of the transmitted light. The reflection surface 5c is inclined by approximately 45 ° with respect to the longitudinal direction of the core portion 94, and reflects the entire transmission light 712 (for example, 90% or more of the amount of light) transmitted through the reflection surface 5a located above. Is configured.
 図4中中央の列のコア部94は、その一端が光導波路本体2の前面に露出し、該露出面が伝送光73の出射端947を構成している。該コア部94の出射端947と反対側の端部には、コア部94の光路を屈曲させる光路変換部(発光部側光路変換部)4dが設けられている。 4, one end of the core portion 94 in the center row is exposed on the front surface of the optical waveguide body 2, and the exposed surface constitutes an output end 947 of the transmission light 73. An optical path conversion unit (light emitting unit side optical path conversion unit) 4d that bends the optical path of the core unit 94 is provided at the end of the core unit 94 opposite to the emission end 947.
 光路変換部4dは、伝送光の少なくとも一部を反射する反射面(ミラー)5dで構成されている。反射面5dは、コア部94の長手方向に対しほぼ45°傾斜しており、伝送光73のほぼ全部(例えば光量の90%以上)を反射する全反射ミラーを構成している。 The optical path changing unit 4d is composed of a reflecting surface (mirror) 5d that reflects at least a part of the transmitted light. The reflecting surface 5d is inclined by approximately 45 ° with respect to the longitudinal direction of the core portion 94, and constitutes a total reflection mirror that reflects almost all of the transmitted light 73 (for example, 90% or more of the light amount).
 図4中右列のコア部94は、その一端が光導波路本体2の前面に露出し、該露出面が伝送光75の出射端948を構成している。該コア部94は、途中でX方向に向けてL字状に屈曲し、その端部(出射端948と反対側の端部)は、光導波路本体2の右側面に露出している。この露出面には、発光部650が対面するよう発光素子65が設置されている。該コア部94の屈曲部には、コア部94の光路を屈曲させる光路変換部(発光部側光路変換部)4eが設けられている。 4, one end of the core portion 94 in the right column is exposed on the front surface of the optical waveguide body 2, and the exposed surface constitutes the emission end 948 of the transmission light 75. The core portion 94 is bent in an L shape in the X direction in the middle, and an end portion thereof (an end portion opposite to the emission end 948) is exposed on the right side surface of the optical waveguide body 2. On the exposed surface, the light emitting element 65 is installed so that the light emitting unit 650 faces. The bent portion of the core portion 94 is provided with an optical path changing portion (light emitting portion side optical path changing portion) 4e for bending the optical path of the core portion 94.
 光路変換部4eは、伝送光の少なくとも一部を反射する反射面(ミラー)5eで構成されている。反射面5eは、コア部94の長手方向に対しほぼ45°傾斜しており、伝送光75のほぼ全部(例えば光量の90%以上)を反射する全反射ミラーを構成している。 The optical path conversion unit 4e is composed of a reflective surface (mirror) 5e that reflects at least a part of the transmitted light. The reflection surface 5e is inclined by approximately 45 ° with respect to the longitudinal direction of the core portion 94, and constitutes a total reflection mirror that reflects almost all of the transmitted light 75 (for example, 90% or more of the light amount).
 図1に示すように、光導波路本体2の上面には、該上面に発光部610、620および630が対面するよう発光素子61、62および63がそれぞれ所定の位置に設置されている。 As shown in FIG. 1, light emitting elements 61, 62, and 63 are installed at predetermined positions on the upper surface of the optical waveguide body 2 so that the light emitting portions 610, 620, and 630 face each other.
 発光素子61は、発光部610の真下に光路変換部4aの反射面5aが位置するような位置に設置されている。さらに、反射面5aの真下に、光路変換部4cの反射面5cが位置している。すなわち、Z方向に見たとき、発光部610と反射面5aと反射面5cとは、一致している。 The light emitting element 61 is installed at a position where the reflecting surface 5a of the optical path changing unit 4a is located directly below the light emitting unit 610. Further, the reflection surface 5c of the optical path conversion unit 4c is located directly below the reflection surface 5a. In other words, when viewed in the Z direction, the light emitting unit 610, the reflective surface 5a, and the reflective surface 5c coincide.
 また、発光素子62は、発光部620の真下に光路変換部4bの反射面5bが位置するような位置に設置されている。すなわち、Z方向に見たとき、発光部620と反射面5bとは、一致している。この場合、発光部620の真下には、1段目のコア層93のコア部94(図2参照)は存在していない。つまり、発光部620から発せられた伝送光72は、1段目のコア層93のコア部94とは交差せずに(1段目のコア層93のクラッド部95を透過して)反射面5bに到達するようになっており、これにより、クロストークが防止される。 Further, the light emitting element 62 is installed at a position where the reflecting surface 5b of the optical path changing unit 4b is located directly below the light emitting unit 620. That is, when viewed in the Z direction, the light emitting unit 620 and the reflecting surface 5b coincide. In this case, the core portion 94 (see FIG. 2) of the first-stage core layer 93 does not exist immediately below the light emitting portion 620. That is, the transmission light 72 emitted from the light emitting unit 620 does not intersect the core part 94 of the first-stage core layer 93 (transmits through the clad part 95 of the first-stage core layer 93) and is a reflective surface. 5b is reached so that crosstalk is prevented.
 また、発光素子63は、発光部630の真下に光路変換部4dの反射面5dが位置するような位置に設置されている。すなわち、Z方向に見たとき、発光部630と反射面5dとは、一致している。この場合、発光部630の真下には、1段目のコア層93のコア部94(図2参照)も2段目のコア層93のコア部94(図3参照)も存在していない。つまり、発光部630から発せられた伝送光73は、1段目のコア層93のコア部94とは交差せず(1段目のコア層93のクラッド部95を透過して)、さらに2段目のコア層93のコア部94とも交差せず(2段目のコア層93のクラッド部95を透過して)、反射面5dに到達するようになっており、これにより、クロストークが防止される。 Further, the light emitting element 63 is installed at a position where the reflecting surface 5d of the optical path changing unit 4d is located directly below the light emitting unit 630. That is, when viewed in the Z direction, the light emitting unit 630 and the reflecting surface 5d are coincident with each other. In this case, the core portion 94 (see FIG. 2) of the first-stage core layer 93 and the core portion 94 (see FIG. 3) of the second-stage core layer 93 are not present immediately below the light emitting portion 630. That is, the transmission light 73 emitted from the light emitting unit 630 does not intersect the core part 94 of the first-stage core layer 93 (transmits through the cladding part 95 of the first-stage core layer 93), and further 2 It does not intersect with the core portion 94 of the core layer 93 at the stage (transmits through the clad portion 95 of the core layer 93 at the second stage) and reaches the reflection surface 5d. Is prevented.
 また、発光素子65は、X方向に見たとき発光部650と光路変換部4eの反射面5eとが一致するような位置に設置されている。 Further, the light emitting element 65 is installed at a position where the light emitting unit 650 and the reflecting surface 5e of the optical path changing unit 4e coincide when viewed in the X direction.
 図示されていないが、出射端942、943、944、945、946、947、948のうちの一部または全部には、受光素子が設置されていてもよい。この受光素子は、受光部と、受光部で受光した光を光電変換し、電気信号を出力する端子とを有している。出射端942~948から出射された伝送光が受光素子の受光部で受光されると、受光素子の端子より電子信号が出力される。 Although not shown, a light receiving element may be installed in a part or all of the emission ends 942, 943, 944, 945, 946, 947, and 948. The light receiving element includes a light receiving unit and a terminal that photoelectrically converts light received by the light receiving unit and outputs an electrical signal. When the transmission light emitted from the emission ends 942 to 948 is received by the light receiving portion of the light receiving element, an electronic signal is output from the terminal of the light receiving element.
 次に、光導波路本体2を構成するコア層とクラッド層の構成例について、図5~図7を参照しつつ説明する。 Next, configuration examples of the core layer and the clad layer constituting the optical waveguide body 2 will be described with reference to FIGS.
 図5に示す構成では、クラッド層91とコア層93とが交互に積層されている。各コア層93は、それぞれ、所定パターンのコア部94とクラッド部95とを有する。 In the configuration shown in FIG. 5, the clad layers 91 and the core layers 93 are alternately stacked. Each core layer 93 includes a core portion 94 and a clad portion 95 having a predetermined pattern.
 図6に示す構成では、1つのコア層93の両面にそれぞれクラッド層91が接合された(換言すれば、2つのクラッド層91間にコア層93が介挿された)3層構造の積層体(光導波路)90を1単位とし、該積層体90を2つ以上重ねたものである。各積層体90におけるコア層93は、それぞれ、所定パターンのコア部94とクラッド部95とを有する。 In the configuration shown in FIG. 6, a laminate having a three-layer structure in which the clad layers 91 are bonded to both surfaces of one core layer 93 (in other words, the core layer 93 is interposed between the two clad layers 91). (Optical waveguide) 90 is one unit, and two or more of the laminates 90 are stacked. The core layer 93 in each stacked body 90 includes a core portion 94 and a clad portion 95 having a predetermined pattern.
 図7に示す構成では、コア層93を複数積層した(図示の場合、4層積層)コア層積層部92を有する。コア層積層部92の上面および下面には、それぞれ、クラッド層91が接合されている。 7 includes a core layer stacking portion 92 in which a plurality of core layers 93 are stacked (in the illustrated case, four layers are stacked). Cladding layers 91 are bonded to the upper surface and the lower surface of the core layer stack portion 92, respectively.
 コア層積層部92を構成する各コア層93は、それぞれ、所定パターンのコア部94とクラッド部95とを有する。この場合、図7中最上部に位置するコア層93と最下部に位置するコア層93には、それぞれ、反射面5f、5gで構成される光路変換部4f、4gが設けられており、それらの間の2つのコア層93には、それぞれ、コア部94が設けられている。これにより、図7中最上部に位置するコア層93のコア部94をY方向に伝送される伝送光76は、反射面5fで反射されて下方(Z方向)へ向けて直角に屈曲し、中間の2つのコア層93に形成されたコア部94内をZ方向に進み、反射面5gで反射されて再び直角に屈曲し、図7中最下部に位置するコア層93のコア部94をY方向に進む。 Each core layer 93 constituting the core layer laminated portion 92 includes a core portion 94 and a clad portion 95 having a predetermined pattern. In this case, the core layer 93 located at the uppermost part in FIG. 7 and the core layer 93 located at the lowermost part are respectively provided with optical path changing parts 4f and 4g composed of reflecting surfaces 5f and 5g. The two core layers 93 are provided with core portions 94 respectively. Thereby, the transmission light 76 transmitted in the Y direction through the core portion 94 of the core layer 93 positioned at the top in FIG. 7 is reflected by the reflecting surface 5f and bent at a right angle downward (Z direction). The core portion 94 formed in the two core layers 93 in the middle proceeds in the Z direction, is reflected by the reflecting surface 5g and bent at a right angle again, and the core portion 94 of the core layer 93 located at the bottom in FIG. Proceed in the Y direction.
 本発明における光導波路本体2は、図5~図7に示す構成のうちの少なくとも1つを有している。また、図5~図7に示す構成のうちの2以上または全てを有していてもよい。 The optical waveguide body 2 in the present invention has at least one of the configurations shown in FIGS. Further, two or more or all of the configurations shown in FIGS. 5 to 7 may be included.
 なお、コア層93およびクラッド層91の構成材料およびコア部94の形成方法等については、後に詳述する。 The constituent materials for the core layer 93 and the clad layer 91, the method for forming the core portion 94, and the like will be described in detail later.
 本発明の光導波路構造体1は、光導波路本体2の表面および/または内部に、導体層(図示せず)を有しているのが好ましい。この導体層は、所定形状にパターンニングされて所望の配線(回路)を構成しているものが好ましい。このような導体層は、各発光素子61~65の端子に電気的に接続され、各発光素子61~65への通電用配線を構成しているのが好ましい。また、受光素子を設置した構成の場合、導体層は、受光素子の端子(出力端子)に電気的に接続され、該端子からの出力信号を検出する回路として用いられるのが好ましい。 The optical waveguide structure 1 of the present invention preferably has a conductor layer (not shown) on the surface and / or inside of the optical waveguide body 2. The conductor layer is preferably patterned into a predetermined shape to form a desired wiring (circuit). Such a conductor layer is preferably electrically connected to the terminals of the light emitting elements 61 to 65 and constitutes a current-carrying wiring to the light emitting elements 61 to 65. In the case where the light receiving element is installed, the conductor layer is preferably electrically connected to a terminal (output terminal) of the light receiving element and used as a circuit for detecting an output signal from the terminal.
 このような導体層は、光導波路本体2の表面および/または内部において、3次元的に配置することもできる。すなわち、導体層における配線を、例えば、X、YおよびZ方向のうちの2方向または3方向に延在するように設置することができる。 Such a conductor layer can also be arranged three-dimensionally on the surface and / or inside of the optical waveguide body 2. That is, the wiring in the conductor layer can be installed so as to extend in two or three directions of the X, Y, and Z directions, for example.
 導体層の構成材料としては、例えば、銅、銅系合金、アルミニウム、アルミニウム系合金等の各種金属材料が挙げられる。導体層の厚さは、特に限定されないが、通常、3~120μm程度が好ましく、5~70μm程度がより好ましい。
 また、導体層は、例えば、金属箔の接合(接着)、金属メッキ、蒸着、スパッタリング等の方法により形成されたものであるのが好ましい。導体層へのパターニングは、例えばエッチング、印刷、マスキング等の方法を用いることができる。
Examples of the constituent material of the conductor layer include various metal materials such as copper, copper-based alloy, aluminum, and aluminum-based alloy. The thickness of the conductor layer is not particularly limited, but is usually preferably about 3 to 120 μm, more preferably about 5 to 70 μm.
Moreover, it is preferable that a conductor layer is formed by methods, such as joining (adhesion) of metal foil, metal plating, vapor deposition, sputtering, etc., for example. For example, etching, printing, masking, or the like can be used for patterning the conductor layer.
 次に、図1~図4に示す光導波路構造体1の作動について説明する。発光素子61の端子へ通電がなされると発光部610が点灯し、Z方向へ向かって発せられた伝送光71は、クラッド部(クラッド層91およびクラッド部95)を透過し、反射面5aにおいて反射光と透過光とに分離される(図1参照)。反射面5aで反射されてほぼ90°屈曲した伝送光(反射光)711は、1段目のコア層93のコア部94に入り、-Y方向に進み、出射端942に到達する(図2参照)。反射面5aを透過してZ方向へ進んだ伝送光(透過光)712は、反射面5cで反射(ほぼ全反射)されてほぼ90°屈曲し、3段目のコア層93のコア部94に入り、-Y方向に進み、出射端946に到達する(図4参照)。 Next, the operation of the optical waveguide structure 1 shown in FIGS. 1 to 4 will be described. When the terminal of the light emitting element 61 is energized, the light emitting portion 610 is turned on, and the transmitted light 71 emitted in the Z direction is transmitted through the cladding portion (cladding layer 91 and cladding portion 95) and reflected on the reflecting surface 5a. It is separated into reflected light and transmitted light (see FIG. 1). The transmitted light (reflected light) 711 reflected by the reflecting surface 5a and bent by approximately 90 ° enters the core portion 94 of the first-stage core layer 93, proceeds in the −Y direction, and reaches the emission end 942 (FIG. 2). reference). The transmitted light (transmitted light) 712 that has passed through the reflecting surface 5 a and traveled in the Z direction is reflected (substantially totally reflected) by the reflecting surface 5 c and bent by approximately 90 °, and the core portion 94 of the third-stage core layer 93. Enter the -Y direction and reach the exit end 946 (see FIG. 4).
 発光素子62の端子へ通電がなされると発光部620が点灯し、Z方向へ向かって発せられた伝送光72は、クラッド部(クラッド層91およびクラッド部95)を透過し、反射面5bで反射(ほぼ全反射)されてほぼ90°屈曲し、2段目のコア層93のコア部94に入り、X方向に進み、出射端945に到達する(図1、図3参照)。 When the terminal of the light emitting element 62 is energized, the light emitting portion 620 is turned on, and the transmitted light 72 emitted in the Z direction is transmitted through the cladding portion (the cladding layer 91 and the cladding portion 95) and reflected by the reflecting surface 5b. The light is reflected (substantially total reflection) and bent by approximately 90 °, enters the core portion 94 of the second-stage core layer 93, proceeds in the X direction, and reaches the emission end 945 (see FIGS. 1 and 3).
 発光素子63の端子へ通電がなされると発光部630が点灯し、Z方向へ向かって発せられた伝送光73は、クラッド部(クラッド層91およびクラッド部95)を透過し、反射面5dで反射(ほぼ全反射)されてほぼ90°屈曲し、3段目のコア層93のコア部94に入り、Y方向に進み、出射端947に到達する(図1、図4参照)。 When the terminal of the light emitting element 63 is energized, the light emitting portion 630 is turned on, and the transmitted light 73 emitted in the Z direction is transmitted through the clad portion (the clad layer 91 and the clad portion 95) and reflected by the reflecting surface 5d. The light is reflected (substantially total reflection) and bent by approximately 90 °, enters the core portion 94 of the third-stage core layer 93, proceeds in the Y direction, and reaches the emission end 947 (see FIGS. 1 and 4).
 発光素子64の端子へ通電がなされると発光部640が点灯し、Y方向へ向かって発せられた伝送光74は、1段目のコア層93のコア部94に入りY方向に進み、分岐部941にて、伝送光741と伝送光742とに分離される。伝送光741および742は、それぞれ分岐部941よりY方向側にあるコア部94内を進み、出射端943および944に到達する(図1、図2参照)。 When the terminal of the light emitting element 64 is energized, the light emitting portion 640 is turned on, and the transmitted light 74 emitted in the Y direction enters the core portion 94 of the first core layer 93 and proceeds in the Y direction to branch. In the section 941, the transmission light 741 and the transmission light 742 are separated. The transmitted light 741 and 742 respectively travel in the core portion 94 on the Y direction side from the branch portion 941 and reach the emission ends 943 and 944 (see FIGS. 1 and 2).
 発光素子65の端子へ通電がなされると発光部650が点灯し、-X方向へ向かって発せられた伝送光75は、3段目のコア層93のコア部94に入り-X方向に進み、反射面5eで反射(ほぼ全反射)されてほぼ90°屈曲し、Y方向に進み、出射端948に到達する(図1、図4参照)。 When the terminal of the light emitting element 65 is energized, the light emitting portion 650 is turned on, and the transmitted light 75 emitted toward the −X direction enters the core portion 94 of the third core layer 93 and proceeds in the −X direction. Then, it is reflected by the reflecting surface 5e (substantially totally reflected) and bent by approximately 90 °, proceeds in the Y direction, and reaches the emission end 948 (see FIGS. 1 and 4).
 図8は、本発明の光導波路構造体1の第2実施形態を示すが示されている。以下、この光導波路構造体1について説明するが、前記第1実施形態と同様の事項についてはその説明を省略し、相違点を中心に説明する。 FIG. 8 shows a second embodiment of the optical waveguide structure 1 of the present invention. Hereinafter, although this optical waveguide structure 1 is demonstrated, the description is abbreviate | omitted about the matter similar to the said 1st Embodiment, and it demonstrates centering around difference.
 本実施形態の光導波路構造体1は、光導波路本体2の少なくとも1つの表面が傾斜した傾斜面3となっている。すなわち、図8に示すように、光導波路本体2の前面は、1段目と3段目のコア層93のコア部(Y方向に延在するコア部)94の横断面(=XZ平面)に対しほぼ45°(θ=45°)の角度で傾斜した傾斜面3となっている。これにより、傾斜面3に露出するコア部94の露出面(露出端面)961、962、963、964および965も、同角度の傾斜面となる。そして、これらの露出面961、962、963、964および965を反射面(全反射面:反射率90%以上)として用いることができる。例えば、これらの露出面961~965に対し、前記と同様に、多層光学薄膜や金属薄膜(例えばアルミ蒸着膜)のような反射膜あるいは反射増加膜を設けることができる。 The optical waveguide structure 1 of the present embodiment has an inclined surface 3 in which at least one surface of the optical waveguide body 2 is inclined. That is, as shown in FIG. 8, the front surface of the optical waveguide body 2 is a cross section (= XZ plane) of the core portion (core portion extending in the Y direction) 94 of the first and third core layers 93. In contrast, the inclined surface 3 is inclined at an angle of approximately 45 ° (θ = 45 °). As a result, the exposed surfaces (exposed end surfaces) 961, 962, 963, 964, and 965 of the core portion 94 exposed on the inclined surface 3 are also inclined surfaces having the same angle. These exposed surfaces 961, 962, 963, 964, and 965 can be used as reflecting surfaces (total reflection surfaces: reflectance of 90% or more). For example, a reflective film such as a multilayer optical thin film or a metal thin film (for example, an aluminum vapor deposition film) or a reflection increasing film can be provided on these exposed surfaces 961 to 965 as described above.
 このような構成としたことにより、露出面961は、発光素子61の発光部610から発せられたZ方向の伝送光71を-Y方向に屈曲するように反射し、露出面962、963、964および965は、それぞれ、コア部94内を進む伝送光742、741、73および75をそれぞれ-Z方向に屈曲するように反射する。 With this configuration, the exposed surface 961 reflects the transmitted light 71 in the Z direction emitted from the light emitting unit 610 of the light emitting element 61 so as to bend in the −Y direction, thereby exposing the exposed surfaces 962, 963, and 964. And 965 respectively reflect the transmitted lights 742, 741, 73, and 75 traveling in the core portion 94 so as to bend in the −Z direction.
 なお、本実施形態では、露出面961を、ほぼ全反射する反射面としたため、3段目のコア層93の左列のコア部94(図4中左列のコア部94に相当)および光路変換部4cは存在しない。 In the present embodiment, since the exposed surface 961 is a reflection surface that substantially totally reflects, the left row of core portions 94 (corresponding to the left row of core portions 94 in FIG. 4) of the third-stage core layer 93 and the optical path. There is no conversion unit 4c.
 なお、傾斜面3の傾斜角度(XZ平面とのなす角度)θは、45°に限定されるものではなく、例えばθは、20~70°程度とすることができる。また、露出面961~965は、全反射面に限らず、例えばハーフミラーやダイクロイックミラーのような、伝送光を反射光と透過光とに分離するような機能を持つもの(ビームスプリッター)でもよい。 Note that the inclination angle θ (angle formed with the XZ plane) θ of the inclined surface 3 is not limited to 45 °, and for example, θ can be about 20 to 70 °. Further, the exposed surfaces 961 to 965 are not limited to the total reflection surface, but may be ones having a function of separating transmitted light into reflected light and transmitted light (beam splitter) such as a half mirror or a dichroic mirror. .
 また、傾斜面3は、光路を反射等により屈曲させる目的で形成されるものに限定されないことは、言うまでもない。また、このような傾斜面は、光導波路本体2の前面以外の面に形成されていてもよく、光導波路本体2の2以上の面に形成されていてもよい。 Further, it goes without saying that the inclined surface 3 is not limited to the one formed for the purpose of bending the optical path by reflection or the like. Such an inclined surface may be formed on a surface other than the front surface of the optical waveguide body 2, or may be formed on two or more surfaces of the optical waveguide body 2.
 以上、各実施形態について説明したが、本発明はこれらに限定されるものではなく、発明の要旨を変更しない限り、他の構成のものでもよい。また、本発明は、上述した各実施形態のうちの任意の2以上の実施形態を組み合わせたものでもよい。 As mentioned above, although each embodiment was described, this invention is not limited to these, As long as the summary of invention is not changed, the thing of another structure may be sufficient. Further, the present invention may be a combination of any two or more of the embodiments described above.
 上述したような本発明の光導波路構造体は、折り曲げ操作を行うことにより、基板2や光導波路9が屈曲した状態(屈曲状態)と、折り曲げ操作を解除し、基板2や光導波路9を伸張させた状態(伸張状態)とを自在にとり得るものとなる。このため、例えばヒンジ部またはスライド部を有する携帯電話、ゲーム機、PDA、ノート型パソコン等の電子機器のヒンジ部やスライド部に対して好適に用いることができる。例えば携帯電話において、ヒンジ部を介した2点間を光導波路構造体で接続した場合、携帯電話のヒンジ部を閉じたときには、光導波路構造体が屈曲状態をとり、ヒンジ部を開いたときには、光導波路構造体が伸張状態をとることとなる。 In the optical waveguide structure of the present invention as described above, by performing a bending operation, the substrate 2 and the optical waveguide 9 are bent (bent), the bending operation is released, and the substrate 2 and the optical waveguide 9 are extended. It is possible to freely take the stretched state. For this reason, for example, it can be suitably used for hinges and slides of electronic devices such as mobile phones, game machines, PDAs, and notebook personal computers having hinges or slides. For example, in a mobile phone, when two points via a hinge part are connected by an optical waveguide structure, when the hinge part of the mobile phone is closed, the optical waveguide structure is bent and when the hinge part is opened, The optical waveguide structure is in an extended state.
 このようにすれば、光導波路構造体は、可動部を挟む2点間の電気的接続および光学的接続を、長期にわたって維持することができる。このため、光導波路構造体を備えた携帯電話(電子機器)は、その信頼性を高めることができる。
 なお、本発明の光導波路構造体を適用する電子機器は、上記のものに限定されず、例えば、ルーター装置、WDM装置、パソコン、テレビ、ホーム・サーバー等の電子機器類への適用が好適である。これらの電子機器では、いずれも、例えばLSI等の演算装置とRAM等の記憶装置との間で、大容量のデータを高速に伝送する必要がある。したがって、このような電子機器が本発明の光電気混載基板を備えることにより、電気配線に特有なノイズ、信号劣化等の不具合が解消されるため、その性能の飛躍的な向上が期待できる。
 さらに、光導波路部分では、電気配線に比べて発熱量が大幅に削減される。このため、基板内の集積度を高めて小型化が図られるとともに、冷却に要する電力を削減することができ、電子機器全体の消費電力を削減することができる。
In this way, the optical waveguide structure can maintain the electrical connection and the optical connection between two points sandwiching the movable part over a long period of time. For this reason, the mobile phone (electronic device) provided with the optical waveguide structure can improve the reliability.
Note that the electronic device to which the optical waveguide structure of the present invention is applied is not limited to the above-described ones. For example, it is suitable for application to electronic devices such as router devices, WDM devices, personal computers, televisions, home servers, and the like. is there. In any of these electronic devices, it is necessary to transmit a large amount of data at high speed between an arithmetic device such as an LSI and a storage device such as a RAM. Therefore, by providing such an electronic device with the opto-electric hybrid board according to the present invention, problems such as noise and signal deterioration peculiar to the electric wiring are eliminated, and a dramatic improvement in the performance can be expected.
In addition, the amount of heat generated in the optical waveguide portion is greatly reduced compared to electrical wiring. Therefore, the degree of integration in the substrate can be increased to reduce the size, the power required for cooling can be reduced, and the power consumption of the entire electronic device can be reduced.
 次に、前記各実施形態における、光導波路本体(光導波路)2の製造方法および各部の構成材料等について説明するが、特にコア部94の形成方法について詳細に説明する。 Next, the manufacturing method of the optical waveguide main body (optical waveguide) 2 and the constituent materials of each part in each of the above embodiments will be described. In particular, the method of forming the core part 94 will be described in detail.
 まず、コア部94の形成方法の説明に先立って、コア部94の形成に用いられる感光性樹脂組成物について説明する。 First, prior to the description of the method for forming the core portion 94, the photosensitive resin composition used for forming the core portion 94 will be described.
 本実施形態においてコア部94の形成に用いる感光性樹脂組成物は、
(A)環状オレフィン樹脂と、
(B)(A)とは屈折率が異なり、かつ、環状エーテル基を有するモノマーおよび環状エーテル基を有するオリゴマーのうち少なくともいずれか一方と、
(C)光酸発生剤と、
を備える。
 なかでも、光の伝搬損失の発生を確実に抑制するという観点から、
 側鎖に(C)光酸発生剤から発生する酸により脱離する脱離性基を有する環状オレフィン樹脂(A)と、
 上記式(100)のモノマーとを含むことが好ましい。
In the present embodiment, the photosensitive resin composition used for forming the core portion 94 is:
(A) a cyclic olefin resin;
(B) The refractive index is different from (A), and at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group;
(C) a photoacid generator;
Is provided.
Among these, from the viewpoint of reliably suppressing the occurrence of light propagation loss,
(C) a cyclic olefin resin (A) having a leaving group capable of leaving by an acid generated from a photoacid generator in the side chain;
It preferably contains a monomer of the above formula (100).
 このような感光性樹脂組成物は、フィルム状に成形されて光導波路形成用フィルムとされ、さらに、屈折率が異なる領域を含むフィルム、例えば、光導波路フィルムとして使用される。 Such a photosensitive resin composition is formed into a film to be an optical waveguide forming film, and further used as a film including regions having different refractive indexes, for example, an optical waveguide film.
 以下、感光性樹脂組成物の成分について順次詳述する。 Hereinafter, the components of the photosensitive resin composition will be described in detail.
 ((A)環状オレフィン樹脂)
 成分(A)の環状オレフィン樹脂は、感光性樹脂組成物のフィルム成形性を確保するために添加されるものであり、ベースポリマーとなるものである。
 ここで、環状オレフィン樹脂は、無置換のものであってもよいし、水素が他の基により置換されたものであってもよい。
 環状オレフィン樹脂としては、例えばノルボルネン系樹脂、ベンゾシクロブテン系樹脂等が挙げられる。
 なかでも、耐熱性、透明性等の観点からノルボルネン系樹脂を使用することが好ましい。
((A) Cyclic olefin resin)
The cyclic olefin resin of component (A) is added in order to ensure the film moldability of the photosensitive resin composition, and serves as a base polymer.
Here, the cyclic olefin resin may be unsubstituted, or hydrogen may be substituted with another group.
Examples of the cyclic olefin resin include norbornene resins and benzocyclobutene resins.
Especially, it is preferable to use norbornene-type resin from viewpoints, such as heat resistance and transparency.
 ノルボルネン系樹脂としては、例えば、
(1)ノルボルネン型モノマーを付加(共)重合して得られるノルボルネン型モノマーの付加(共)重合体、
(2)ノルボルネン型モノマーとエチレンやα-オレフィン類との付加共重合体、
(3)ノルボルネン型モノマーと非共役ジエン、および必要に応じて他のモノマーとの付加共重合体のような付加重合体、
(4)ノルボルネン型モノマーの開環(共)重合体、および必要に応じて該(共)重合体を水素添加した樹脂、
(5)ノルボルネン型モノマーとエチレンやα-オレフィン類との開環共重合体、および必要に応じて該(共)重合体を水素添加した樹脂、
(6)ノルボルネン型モノマーと非共役ジエン、または他のモノマーとの開環共重合体、および必要に応じて該(共)重合体を水素添加したポリマーのような開環重合体が挙げられる。これらの重合体としては、ランダム共重合体、ブロック共重合体、交互共重合体等が挙げられる。
As norbornene resin, for example,
(1) addition (co) polymer of norbornene type monomer obtained by addition (co) polymerization of norbornene type monomer,
(2) addition copolymers of norbornene monomers with ethylene and α-olefins,
(3) an addition polymer such as an addition copolymer of a norbornene-type monomer and a non-conjugated diene and, if necessary, another monomer;
(4) a ring-opening (co) polymer of a norbornene-type monomer, and a resin obtained by hydrogenating the (co) polymer if necessary,
(5) a ring-opening copolymer of a norbornene-type monomer and ethylene or α-olefins, and a resin obtained by hydrogenating the (co) polymer if necessary,
(6) Ring-opening copolymers such as norbornene-type monomers and non-conjugated dienes, or other monomers, and polymers obtained by hydrogenating the (co) polymers as necessary. Examples of these polymers include random copolymers, block copolymers, and alternating copolymers.
 これらのノルボルネン系樹脂は、例えば、開環メタセシス重合(ROMP)、ROMPと水素化反応との組み合わせ、ラジカルまたはカチオンによる重合、カチオン性パラジウム重合開始剤を用いた重合、これ以外の重合開始剤(例えば、ニッケルや他の遷移金属の重合開始剤)を用いた重合等、公知のすべての重合方法で得ることができる。 These norbornene resins include, for example, ring-opening metathesis polymerization (ROMP), combination of ROMP and hydrogenation reaction, polymerization by radical or cation, polymerization using cationic palladium polymerization initiator, other polymerization initiators ( For example, it can be obtained by any known polymerization method such as polymerization using a polymerization initiator of nickel or another transition metal).
 これらの中でも、ノルボルネン系樹脂としては、付加(共)重合体が好ましい。付加(共)重合体は、透明性、耐熱性および可撓性に富むことからも好ましい。たとえば、感光性樹脂組成物によりフィルムを形成した後、電気部品等を、半田を介して実装することがある。このような場合において、高い耐熱性、すなわち、耐リフロー性を有することが必要となるため、付加(共)重合体が好ましい。また、感光性樹脂組成物によりフィルムを形成し、製品に組み込んだ際に、たとえば、80℃程度の環境下にて使用される場合がある。このような場合においても、耐熱性を確保するという観点から、付加(共)重合体が好ましい。 Of these, addition (co) polymers are preferred as the norbornene-based resin. Addition (co) polymers are also preferred because they are rich in transparency, heat resistance and flexibility. For example, after forming a film with the photosensitive resin composition, an electrical component or the like may be mounted via solder. In such a case, an addition (co) polymer is preferable because it needs to have high heat resistance, that is, reflow resistance. Further, when a film is formed from the photosensitive resin composition and incorporated in a product, it may be used in an environment of about 80 ° C., for example. Even in such a case, an addition (co) polymer is preferable from the viewpoint of ensuring heat resistance.
 なかでも、ノルボルネン系樹脂は、重合性基を含む置換基を有するノルボルネンの繰り返し単位や、アリール基を含む置換基を有するノルボルネンの繰り返し単位を含むものが好ましい。
 重合性基を含む置換基を有するノルボルネンの繰り返し単位としては、エポキシ基を含む置換基を有するノルボルネンの繰り返し単位、(メタ)アクリル基を含む置換基を有するノルボルネンの繰り返し単位、および、アルコキシシリル基を含む置換基を有するノルボルネンの繰り返し単位がのうちの少なくとも1種が好適である。これらの重合性基は、各種重合性基の中でも、反応性が高いことから好ましい。
 また、このような重合性基を含むノルボルネンの繰り返し単位を、2種以上含むものを用いれば、可撓性と耐熱性の両立を図ることができる。
 一方、アリール基を含む置換基を有するノルボルネンの繰り返し単位を含むことにより、アリール基に由来する極めて高い疎水性によって、吸水による寸法変化等をより確実に防止することができる。
 さらに、ノルボルネン系ポリマーは、アルキルノルボルネンの繰り返し単位を含むものが好ましい。なお、アルキル基は、直鎖状または分岐状のいずれであってもよい。
 アルキルノルボルネンの繰り返し単位を含むことにより、ノルボルネン系ポリマーは、柔軟性が高くなるため、高いフレキシビリティ(可撓性)を付与することができる。
 また、アルキルノルボルネンの繰り返し単位を含むノルボルネン系ポリマーは、特定の波長領域(特に、850nm付近の波長領域)の光に対する透過率が優れることからも好ましい。
Among them, the norbornene-based resin preferably includes a norbornene repeating unit having a substituent containing a polymerizable group or a norbornene repeating unit having a substituent containing an aryl group.
As the repeating unit of norbornene having a substituent containing a polymerizable group, the repeating unit of norbornene having a substituent containing an epoxy group, the repeating unit of norbornene having a substituent containing a (meth) acryl group, and an alkoxysilyl group At least one of the repeating units of norbornene having a substituent containing is preferable. These polymerizable groups are preferable because of their high reactivity among various polymerizable groups.
Moreover, if the thing containing 2 or more types of norbornene repeating units containing such a polymeric group is used, both flexibility and heat resistance can be achieved.
On the other hand, by including a norbornene repeating unit having a substituent containing an aryl group, dimensional change due to water absorption can be more reliably prevented by the extremely high hydrophobicity derived from the aryl group.
Furthermore, the norbornene-based polymer preferably contains an alkylnorbornene repeating unit. The alkyl group may be linear or branched.
By including the repeating unit of alkyl norbornene, the norbornene-based polymer has high flexibility, and thus can provide high flexibility (flexibility).
A norbornene-based polymer containing an alkylnorbornene repeating unit is also preferable because of its excellent transmittance with respect to light in a specific wavelength region (particularly, a wavelength region near 850 nm).
 このようなことから、ノルボルネン系樹脂としては、以下の式(1)~(4)、(8)~(10)で表されるものが好適である。 For these reasons, as the norbornene-based resin, those represented by the following formulas (1) to (4) and (8) to (10) are preferable.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)のノルボルネン系樹脂は、以下のようにして製造することができる。
 Rを有するノルボルネンと、側鎖にエポキシ基を有するノルボルネンとをトルエンに溶かし、Ni化合物(A)を触媒として用いて溶液重合させることで(1)を得る。
The norbornene-based resin of the formula (1) can be produced as follows.
(1) is obtained by dissolving norbornene having R 1 and norbornene having an epoxy group in the side chain in toluene and solution polymerization using Ni compound (A) as a catalyst.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 なお、側鎖にエポキシ基を有するノルボルネンの製造方法は、たとえば、(i)(ii)の通りである。
(i)ノルボルネンメタノール(NB-CH-OH)の合成
DCPD(ジシクロペンタジエン)のクラッキングにより生成したCPD(シクロペンタジエン)とαオレフィン(CH2=CH-CH2-OH)を高温高圧下で反応させる。
In addition, the manufacturing method of norbornene which has an epoxy group in a side chain is as (i) (ii), for example.
(I) Synthesis of norbornene methanol (NB—CH 2 —OH) CPD (cyclopentadiene) and α olefin (CH 2 ═CH—CH 2 —OH) produced by cracking of DCPD (dicyclopentadiene) are heated under high temperature and high pressure. React.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(ii)エポキシノルボルネンの合成
 ノルボルネンメタノールとエピクロルヒドリンとの反応により生成する。
(Ii) Synthesis of epoxy norbornene It is formed by the reaction of norbornene methanol and epichlorohydrin.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 なお、式(1)において、bが2もしくは3の場合には、エピクロルヒドリンのメチレン基がエチレン基、プロピレン基等になったものを使用する。
 式(1)で表されるノルボルネン系樹脂の中でも、可撓性と耐熱性の両立を図ることが可能との観点から、特に、Rが炭素数4~10のアルキル基であり、aおよびbがそれぞれ1である化合物、例えば、ブチルボルネンとメチルグリシジルエーテルノルボルネンとのコポリマー、ヘキシルノルボルネンとメチルグリシジルエーテルノルボルネンとのコポリマー、デシルノルボルネンとメチルグリシジルエーテルノルボルネンとのコポリマー等が好ましい。
In the formula (1), when b is 2 or 3, an epichlorohydrin in which the methylene group is an ethylene group, a propylene group or the like is used.
Among the norbornene-based resins represented by the formula (1), from the viewpoint that both flexibility and heat resistance can be achieved, in particular, R 1 is an alkyl group having 4 to 10 carbon atoms, and a and A compound in which each b is 1, for example, a copolymer of butylbornene and methyl glycidyl ether norbornene, a copolymer of hexyl norbornene and methyl glycidyl ether norbornene, a copolymer of decyl norbornene and methyl glycidyl ether norbornene, or the like is preferable.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(2)のノルボルネン系樹脂は、R2を有するノルボルネンと、側鎖にアクリルおよびメタクリル基を有するノルボルネンとをトルエンに溶かし、上述したNi化合物(A)を触媒に用いて溶液重合させることで得ることができる。 The norbornene-based resin of the formula (2) is obtained by dissolving norbornene having R 2 and norbornene having acryl and methacryl groups in the side chain in toluene, and performing solution polymerization using the Ni compound (A) described above as a catalyst. Obtainable.
 なお、式(2)で表されるノルボルネン系ポリマーの中でも、可撓性と耐熱性との両立の観点から、特に、Rが炭素数4~10のアルキル基であり、cが1である化合物、例えば、ブチルボルネンとアクリル酸2-(5-ノルボルネニル)メチルとのコポリマー、ヘキシルノルボルネンとアクリル酸2-(5-ノルボルネニル)メチルとのコポリマー、デシルノルボルネンとアクリル酸2-(5-ノルボルネニル)メチルとのコポリマー等が好ましい。 Among the norbornene-based polymers represented by the formula (2), R 2 is an alkyl group having 4 to 10 carbon atoms and c is 1 from the viewpoint of achieving both flexibility and heat resistance. Compounds such as copolymers of butylbornene and 2- (5-norbornenyl) methyl acrylate, copolymers of hexylnorbornene and 2- (5-norbornenyl) methyl acrylate, decylnorbornene and 2- (5-norbornenyl) methyl acrylate And a copolymer thereof are preferred.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(3)の樹脂は、R4を有するノルボルネンと、側鎖にアルコキシシリル基を有するノルボルネンとをトルエンに溶かし、上述したNi化合物(A)を触媒に用いて溶液重合させることで得ることができる。 The resin of the formula (3) can be obtained by dissolving norbornene having R 4 and norbornene having an alkoxysilyl group in the side chain in toluene, and solution polymerization using the Ni compound (A) described above as a catalyst. it can.
 なお、式(3)で表されるノルボルネン系ポリマーの中でも、特に、Rが炭素数4~10のアルキル基であり、dが1または2、Xがメチル基またはエチル基である化合物、例えば、ブチルボルネンとノルボルネニルエチルトリメトキシシランとのコポリマー、ヘキシルノルボルネンとノルボルネニルエチルトリメトキシシランとのコポリマー、デシルノルボルネンとノルボルネニルエチルトリメトキシシランとのコポリマー、ブチルボルネンとトリエトキシシリルノルボルネンとのコポリマー、ヘキシルノルボルネンとトリエトキシシリルノルボルネンとのコポリマー、デシルノルボルネンとトリエトキシシリルノルボルネンとのコポリマー、ブチルボルネンとトリメトキシシリルノルボルネンとのコポリマー、ヘキシルノルボルネンとトリメトキシシリルノルボルネンとのコポリマー、デシルノルボルネンとトリメトキシシリルノルボルネンとのコポリマー等が好ましい。 Among the norbornene-based polymers represented by the formula (3), in particular, a compound in which R 4 is an alkyl group having 4 to 10 carbon atoms, d is 1 or 2, and X 3 is a methyl group or an ethyl group, For example, a copolymer of butylbornene and norbornenylethyltrimethoxysilane, a copolymer of hexylnorbornene and norbornenylethyltrimethoxysilane, a copolymer of decylnorbornene and norbornenylethyltrimethoxysilane, butylbornene and triethoxysilylnorbornene Copolymer of hexyl norbornene and triethoxysilyl norbornene, copolymer of decyl norbornene and triethoxysilyl norbornene, copolymer of butylbornene and trimethoxysilyl norbornene, hexyl norbornene And copolymers of trimethoxysilyl norbornene, copolymers, etc. of decyl norbornene and trimethoxysilyl norbornene are preferred.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 R5を有するノルボルネンと、側鎖にA1およびA2を有するノルボルネンとをトルエンに溶かし、Ni化合物(A)を触媒に用いて溶液重合させることで(4)を得る。 (4) is obtained by dissolving norbornene having R 5 and norbornene having A 1 and A 2 in the side chain in toluene and solution polymerization using Ni compound (A) as a catalyst.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 なお、式(4)で表されるノルボルネン系ポリマーとしては、例えば、ブチルノルボルネン、ヘキシルノルボルネンまたはデシルノルボルネンのいずれかと、アクリル酸2-(5-ノルボルネニル)メチルと、ノルボルネニルエチルトリメトキシシラン、トリエトキシシリルノルボルネンまたはトリメトキシシリルノルボルネンのいずれかとのターポリマー、ブチルボルネン、ヘキシルノルボルネンまたはデシルノルボルネンのいずれかと、アクリル酸2-(5-ノルボルネニル)メチルと、メチルグリシジルエーテルノルボルネンとのターポリマー、ブチルボルネン、ヘキシルノルボルネンまたはデシルノルボルネンのいずれかと、メチルグリシジルエーテルノルボルネン、ノルボルネニルエチルトリメトキシシラン、トリエトキシシリルノルボルネンまたはトリメトキシシリルノルボルネンのいずれかとのターポリマー等が挙げられる。 As the norbornene-based polymer represented by the formula (4), for example, any one of butyl norbornene, hexyl norbornene or decyl norbornene, 2- (5-norbornenyl) methyl acrylate, norbornenyl ethyl trimethoxysilane, Terpolymer with either triethoxysilyl norbornene or trimethoxysilyl norbornene, butyl bornene, hexyl norbornene or decyl norbornene, terpolymer of 2- (5-norbornenyl) methyl acrylate and methylglycidyl ether norbornene, butylbornene, Either hexyl norbornene or decyl norbornene and methyl glycidyl ether norbornene, norbornenyl ethyltrimethoxysilane, triethoxysilyl Terpolymers, etc. with either norbornene or trimethoxysilyl norbornene.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 Rを有するノルボルネンと、側鎖に-(CH2)-X1-X2(R8)3-j(Ar)jを含むノルボルネンとをトルエンに溶かし、Ni化合物を触媒に用いて溶液重合させることで(8)を得る。 Norbornene having R 7 and norbornene containing-(CH 2 ) -X 1 -X 2 (R 8 ) 3-j (Ar) j in the side chain are dissolved in toluene, and solution polymerization is performed using a Ni compound as a catalyst. (8) is obtained.
 なお、式(8)で表されるノルボルネン系ポリマーの中でも、Xが酸素原子、Xがシリコン原子、Arがフェニル基であるものが好ましい。
 さらには、可撓性、耐熱性および屈折率制御の観点から特に、Rが炭素数4~10のアルキル基であり、Xが酸素原子、Xがシリコン原子、Arがフェニル基、Rがメチル基、iが1、jが2である化合物、例えば、ブチルボルネンとジフェニルメチルノルボルネンメトキシシランとのコポリマー、ヘキシルノルボルネンとジフェニルメチルノルボルネンメトキシシランとのコポリマー、デシルノルボルネンとジフェニルメチルノルボルネンメトキシシランとのコポリマー等が好ましい。
 具体的には、以下のようなノルボルネン系樹脂を使用することが好ましい。
Of the norbornene polymers represented by the formula (8), those in which X 1 is an oxygen atom, X 2 is a silicon atom, and Ar is a phenyl group are preferable.
Further, particularly from the viewpoint of flexibility, heat resistance and refractive index control, R 7 is an alkyl group having 4 to 10 carbon atoms, X 1 is an oxygen atom, X 2 is a silicon atom, Ar is a phenyl group, R A compound in which 8 is a methyl group, i is 1 and j is 2, for example, a copolymer of butylbornene and diphenylmethylnorbornenemethoxysilane, a copolymer of hexylnorbornene and diphenylmethylnorbornenemethoxysilane, decylnorbornene and diphenylmethylnorbornenemethoxysilane Of these, the copolymer is preferred.
Specifically, it is preferable to use the following norbornene resin.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 また、可撓性と耐熱性および屈折率制御の観点から、式(8)において、Rが炭素数4~10のアルキル基であり、Xがメチレン基、Xが炭素原子、Arがフェニル基、Rが水素原子、iが0、jが1である化合物、例えば、ブチルボルネンとフェニルエチルノルボルネンとのコポリマー、ヘキシルノルボルネンとフェニルエチルノルボルネンとのコポリマー、デシルノルボルネンとフェニルエチルノルボルネンとのコポリマー等であってもよい。
 さらに、ノルボルネン系樹脂として、次のようなものを使用してもよい。
From the viewpoint of flexibility, heat resistance, and refractive index control, in formula (8), R 7 is an alkyl group having 4 to 10 carbon atoms, X 1 is a methylene group, X 2 is a carbon atom, and Ar is Compounds in which R 8 is a hydrogen atom, i is 0, and j is 1, for example, a copolymer of butylbornene and phenylethylnorbornene, a copolymer of hexylnorbornene and phenylethylnorbornene, a copolymer of decylnorbornene and phenylethylnorbornene Etc.
Further, the following may be used as the norbornene resin.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 また、p/q~p/q、p/q、p/qまたはp/q+rは、20以下であればよいが、15以下であるのが好ましく、0.1~10程度がより好ましい。これにより、複数種のノルボルネンの繰り返し単位を含む効果が如何なく発揮される。 Further, p 1 / q 1 to p 3 / q 3 , p 5 / q 5 , p 6 / q 6 or p 4 / q 4 + r may be 20 or less, preferably 15 or less, About 0.1 to 10 is more preferable. Thereby, the effect including the repeating unit of multiple types of norbornene is exhibited.
 以上のようなノルボルネン系樹脂は、脱離性基を有するものであることが好ましい。ここで、脱離性基とは、酸の作用により離脱するものである。
 具体的には、分子構造中に、-O-構造、-Si-アリール構造および-O-Si-構造のうちの少なくとも1つを有するものが好ましい。かかる酸離脱性基は、カチオンの作用により比較的容易に離脱する。
The norbornene-based resin as described above preferably has a leaving group. Here, the leaving group is a group that is released by the action of an acid.
Specifically, those having at least one of an —O— structure, an —Si—aryl structure and an —O—Si— structure in the molecular structure are preferable. Such an acid leaving group is released relatively easily by the action of a cation.
 このうち、離脱により樹脂の屈折率に低下を生じさせる離脱性基としては、-Si-ジフェニル構造および-O-Si-ジフェニル構造の少なくとも一方が好ましい。
 例えば、式(8)で表されるノルボルネン系ポリマーの中で、Xが酸素原子、Xがシリコン原子、Arがフェニル基であるものが脱離性基を有するものとなる。
 また、式(3)においては、アルコキシシリル基のSi-O-Xの部分で脱離する場合がある。
Among these, the leaving group that causes a decrease in the refractive index of the resin by leaving is preferably at least one of a —Si-diphenyl structure and a —O—Si-diphenyl structure.
For example, among the norbornene polymers represented by the formula (8), those in which X 1 is an oxygen atom, X 2 is a silicon atom, and Ar is a phenyl group have a leaving group.
In the formula (3), there are cases where the Si—O—X 3 portion of the alkoxysilyl group is eliminated.
 例えば、式(9)のノルボルネン系樹脂を使用した場合、光酸発生剤(PAGと表記)から発生した酸により、以下のように反応が進むと推測される。なお、ここでは、脱離性基の部分のみを示し、また、i=1の場合で説明している。 For example, when the norbornene-based resin of the formula (9) is used, it is presumed that the reaction proceeds as follows by the acid generated from the photoacid generator (denoted as PAG). Here, only the leaving group portion is shown, and the case where i = 1 is described.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 さらに、式(9)の構造に加えて、側鎖にエポキシ基を有するものであってもよい。このようなものを使用することで密着性に優れたフィルムが形成可能という効果がある。
 具体例として以下のようなものとなる。
Furthermore, in addition to the structure of the formula (9), the side chain may have an epoxy group. By using such a material, there is an effect that a film having excellent adhesion can be formed.
A specific example is as follows.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(31)で示される化合物は、たとえば、ヘキシルノルボルネンと、ジフェニルメチルノルボルネンメトキシシラン(側鎖に-CH2-O-Si(CH3)(Ph)2を含むノルボルネン)およびエポキシノルボルネンをトルエンに溶かし、Ni化合物を触媒に用いて溶液重合させることで得ることができる。 The compound represented by the formula (31) includes, for example, hexyl norbornene, diphenylmethyl norbornene methoxysilane (norbornene containing —CH 2 —O—Si (CH 3 ) (Ph) 2 in the side chain) and epoxy norbornene in toluene. It can be obtained by dissolving and solution polymerization using a Ni compound as a catalyst.
 ((B)環状エーテル基を有するモノマー、環状エーテル基を有するオリゴマー)
 次に、(B)の成分について説明する。
 成分(B)は、環状エーテル基を有するモノマーおよび環状エーテル基を有するオリゴマーのうちの少なくとも一方である。この成分(B)は、成分(A)の樹脂と屈折率が異なり、かつ、成分(A)の樹脂と相溶性のあるものであればよい。成分(B)と、成分(A)の樹脂との屈折率差は、0.01以上であることが好ましい。
 なお、成分(B)の屈折率は、成分(A)の樹脂よりも高いものであってもよいが、成分(B)は、成分(A)の樹脂よりも屈折率が低いことが好ましい。
((B) Monomer having a cyclic ether group, oligomer having a cyclic ether group)
Next, the component (B) will be described.
Component (B) is at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group. This component (B) may have any refractive index different from that of the resin of component (A) and is compatible with the resin of component (A). The refractive index difference between the component (B) and the resin of the component (A) is preferably 0.01 or more.
The refractive index of the component (B) may be higher than that of the resin of the component (A), but the refractive index of the component (B) is preferably lower than that of the resin of the component (A).
 成分(B)の環状エーテル基を有するモノマー、環状エーテル基を有するオリゴマーは、酸の存在下において開環により重合するものである。モノマー、オリゴマーの拡散性を考慮すると、このモノマーの分子量(重量平均分子量)、オリゴマーの分子量(重量平均分子量)は、それぞれ100以上、400以下であることが好ましい。
 成分(B)は、たとえば、オキセタニル基あるいは、エポキシ基を有する。このような環状エーテル基は、酸により開環しやすいため、好ましい。
The monomer having a cyclic ether group and the oligomer having a cyclic ether group as component (B) are polymerized by ring-opening in the presence of an acid. Considering the diffusibility of the monomer and oligomer, the molecular weight (weight average molecular weight) of the monomer and the molecular weight (weight average molecular weight) of the oligomer are preferably 100 or more and 400 or less, respectively.
Component (B) has, for example, an oxetanyl group or an epoxy group. Such a cyclic ether group is preferable because it is easily opened by an acid.
 オキセタニル基を有するモノマー、オキセタニル基を有するオリゴマーとしては、下記式(11)~(20)の群から選ばれるものが好ましい。これらを使用することで波長850nm近傍での透明性に優れ、可撓性と耐熱性の両立が可能という利点がある。また、これらを単独でも混合して用いても差し支えない。 As the monomer having an oxetanyl group and the oligomer having an oxetanyl group, those selected from the group of the following formulas (11) to (20) are preferable. By using these, there is an advantage that transparency in the vicinity of a wavelength of 850 nm is excellent and both flexibility and heat resistance are possible. These may be used alone or in combination.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 以上のようなモノマーおよびオリゴマーのなかでも、成分(A)の樹脂との屈折率差を確保する観点から式(13)、(15)、(16)、(17)、(20)で表される化合物を使用することが好ましい。
 さらには、成分(A)の樹脂との屈折率差がある点、分子量が小さく、モノマーの運動性が高い点、モノマーが容易に揮発しない点を考慮すると、式(20)、式(15)で表される化合物を使用することが特に好ましい。
 また、オキセタニル基を有する化合物としては、以下の式(32)、式(33)で表される化合物を使用することができる。式(32)で表される化合物としては、東亞合成製の商品名TESOX等、式(33)で表される化合物としては、東亞合成製の商品名OX-SQ等を使用することができる。
Among the above monomers and oligomers, they are represented by the formulas (13), (15), (16), (17), and (20) from the viewpoint of ensuring a difference in refractive index from the resin of the component (A). It is preferable to use a compound.
Furthermore, considering the point that there is a difference in refractive index from the resin of component (A), the point that the molecular weight is small, the mobility of the monomer is high, and the point that the monomer does not easily volatilize, the formulas (20) and (15) It is particularly preferable to use a compound represented by:
Moreover, as a compound which has an oxetanyl group, the compound represented by the following formula | equation (32) and a formula (33) can be used. As the compound represented by the formula (32), trade name TOSOX manufactured by Toagosei Co., Ltd., and as the compound represented by formula (33), trade name OX-SQ manufactured by Toagosei Co., Ltd. can be used.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 また、エポキシ基を有するモノマー、エポキシ基を有するオリゴマーとしては、たとえば、以下のようなものがあげられる。このエポキシ基を有するモノマー、オリゴマーは、酸の存在下において開環により重合するものである。
 エポキシ基を有するモノマー、エポキシ基を有するオリゴマーとしては、以下の式(34)~(39)で表されるものを使用することができる。なかでも、エポキシ環のひずみエネルギーが大きく反応性に優れるという観点から式(36)~(39)で表される脂環式エポキシモノマーを使用することが好ましい。
 なお、式(34)で表される化合物は、エポキシノルボルネンであり、このような化合物としては、たとえば、プロメラス社製 EpNBを使用することができる。式(35)で表される化合物は、γ-グリシドキシプロピルトリメトキシシランであり、この化合物としては、たとえば、東レ・ダウコーニング・シリコーン社製 Z-6040を使用することができる。また、式(36)で表される化合物は、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランであり、この化合物としては、たとえば、東京化成製 E0327を使用することができる。
 さらに、式(37)で表される化合物は、3、4-エポキシシクロヘキセニルメチル-3、’4’-エポキシシクロヘキセンカルボキシレートであり、この化合物としては、たとえば、ダイセル化学社製 セロキサイド2021Pを使用することができる。また、式(38)で表される化合物は、1,2-エポキシ-4-ビニルシクロヘキサンであり、この化合物としては、たとえば、ダイセル化学社製 セロキサイド2000を使用することができる。
 さらに、式(39)で表される化合物は、1,2:8,9ジエポキシリモネンであり、この化合物としては、たとえば、(ダイセル化学社製 セロキサイド3000)を使用することができる。
Examples of the monomer having an epoxy group and the oligomer having an epoxy group include the following. The monomer and oligomer having an epoxy group are polymerized by ring-opening in the presence of an acid.
As the monomer having an epoxy group and the oligomer having an epoxy group, those represented by the following formulas (34) to (39) can be used. Among them, it is preferable to use an alicyclic epoxy monomer represented by the formulas (36) to (39) from the viewpoint that the strain energy of the epoxy ring is large and the reactivity is excellent.
In addition, the compound represented by Formula (34) is epoxy norbornene. As such a compound, for example, EpNB manufactured by Promerus Corporation can be used. The compound represented by the formula (35) is γ-glycidoxypropyltrimethoxysilane. As this compound, for example, Z-6040 manufactured by Toray Dow Corning Silicone can be used. The compound represented by the formula (36) is 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. As this compound, for example, E0327 manufactured by Tokyo Chemical Industry can be used.
Further, the compound represented by the formula (37) is 3,4-epoxycyclohexenylmethyl-3, '4'-epoxycyclohexenecarboxylate. As this compound, for example, Celoxide 2021P manufactured by Daicel Chemical Industries, Ltd. is used. can do. The compound represented by the formula (38) is 1,2-epoxy-4-vinylcyclohexane, and as this compound, for example, Celoxide 2000 manufactured by Daicel Chemical Industries, Ltd. can be used.
Furthermore, the compound represented by the formula (39) is 1,2: 8,9 diepoxy limonene. As this compound, for example, (Celoxide 3000 manufactured by Daicel Chemical Industries, Ltd.) can be used.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 さらに、(B)の成分として、オキセタニル基を有するモノマー、オキセタニル基を有するオリゴマーと、エポキシ基を有するモノマー、エポキシ基を有するオリゴマーとが併用されていてもよい。
 オキセタニル基を有するモノマー、オキセタニル基を有するオリゴマーは重合を開始する開始反応が遅いが、生長反応が速い。これに対し、エポキシ基を有するモノマー、エポキシ基を有するオリゴマーは、重合を開始する開始反応が速いが、生長反応が遅い。そのため、オキセタニル基を有するモノマー、オキセタニル基を有するオリゴマーと、エポキシ基を有するモノマー、エポキシ基を有するオリゴマーとを併用することで、活性放射線を照射した際に、光照射部分と、未照射部分との屈折率差を確実に生じさせることができる。
Furthermore, as the component (B), a monomer having an oxetanyl group, an oligomer having an oxetanyl group, a monomer having an epoxy group, and an oligomer having an epoxy group may be used in combination.
Monomers having an oxetanyl group and oligomers having an oxetanyl group have a slow initiation reaction but a fast growth reaction. On the other hand, a monomer having an epoxy group and an oligomer having an epoxy group have a fast initiation reaction for initiating polymerization, but have a slow growth reaction. Therefore, by using a monomer having an oxetanyl group, an oligomer having an oxetanyl group, a monomer having an epoxy group, and an oligomer having an epoxy group, when irradiated with actinic radiation, a light irradiated part and an unirradiated part The refractive index difference can be reliably generated.
 この(B)成分の添加量は、(A)成分100重量部に対し、1重量部以上、50重量部以下であることが好ましく、2重量部以上、20重量部以下であることがより好ましい。これにより、コア/クラッド間の屈折率変調を可能にし、可撓性と耐熱性との両立が図れるという効果がある。 The addition amount of the component (B) is preferably 1 part by weight or more and 50 parts by weight or less, more preferably 2 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the component (A). . Thereby, the refractive index modulation between the core and the clad is possible, and there is an effect that both flexibility and heat resistance can be achieved.
 ((C)光酸発生剤)
 光酸発生剤としては、光(活性放射線)のエネルギーを吸収してブレンステッド酸あるいはルイス酸を生成するものであればよく、例えば、トリフェニルスルフォニウムトリフルオロメタンスルホネート、トリス(4-t-ブチルフェニル)スルホニウム-トリフルオロメタンスルホネートなどのスルホニウム塩類、p-ニトロフェニルジアゾニウムヘキサフルオロホスフェートなどのジアゾニウム塩類、アンモニウム塩類、ホスホニウム塩類、ジフェニルヨードニウムトリフルオロメタンスルホネート、(トリキュミル)ヨードニウム-テトラキス(ペンタフルオロフェニル)ボレートなどのヨードニウム塩類、キノンジアジド類、ビス(フェニルスルホニル)ジアゾメタンなどのジアゾメタン類、1-フェニル-1-(4-メチルフェニル)スルホニルオキシ-1-ベンゾイルメタン、N-ヒドロキシナフタルイミド-トリフルオロメタンサルホネートなどのスルホン酸エステル類、ジフェニルジスルホンなどのジスルホン類、トリス(2,4,6-トリクロロメチル)-s-トリアジン、2-(3.4-メチレンジオキシフェニル)-4,6-ビス-(トリクロロメチル)-s-トリアジンなどのトリアジン類などの化合物を挙げることができる。これらの光酸発生剤は、単独、または複数を組み合わせて使用することができる。
((C) Photoacid generator)
Any photoacid generator may be used as long as it can generate Bronsted acid or Lewis acid by absorbing light (active radiation) energy. For example, triphenylsulfonium trifluoromethanesulfonate, tris (4-t-butyl) can be used. Sulfonium salts such as phenyl) sulfonium-trifluoromethanesulfonate, diazonium salts such as p-nitrophenyldiazonium hexafluorophosphate, ammonium salts, phosphonium salts, diphenyliodonium trifluoromethanesulfonate, (triccumyl) iodonium-tetrakis (pentafluorophenyl) borate, etc. Iazonium salts, quinonediazides, diazomethanes such as bis (phenylsulfonyl) diazomethane, 1-phenyl-1- (4-methylpheny ) Sulfonic acid esters such as sulfonyloxy-1-benzoylmethane, N-hydroxynaphthalimide-trifluoromethanesulfonate, disulfones such as diphenyldisulfone, tris (2,4,6-trichloromethyl) -s-triazine, 2 Mention may be made of compounds such as triazines such as-(3.4-methylenedioxyphenyl) -4,6-bis- (trichloromethyl) -s-triazine. These photoacid generators can be used alone or in combination.
 光酸発生剤の含有量は、(A)成分100重量部に対し0.01重量部以上、0.3重量部以下であることが好ましく、0.02重量部以上、0.2重量部以下であることがより好ましい。これにより、反応性の向上という効果がある。 The content of the photoacid generator is preferably 0.01 parts by weight or more and 0.3 parts by weight or less with respect to 100 parts by weight of the component (A), and is 0.02 parts by weight or more and 0.2 parts by weight or less. It is more preferable that Thereby, there exists an effect of a reactive improvement.
 感光性樹脂組成物は、以上の(A)、(B)、(C)の成分に加えて、増感剤、酸化防止剤等の添加剤を含有していてもよい。
 増感剤は、活性放射線に対する光酸発生剤の感度を増大して、光酸発生剤の活性化(反応または分解)に要する時間やエネルギーを減少させる機能や、光酸発生剤の活性化に適する波長に活性放射線の波長を変化させる機能を有するものである。
 このような増感剤としては、光酸発生剤の感度や増感剤の吸収のピーク波長に応じて適宜選択され、特に限定されないが、たとえば、9,10-ジブトキシアントラセン(CAS番号第76275-14-4番)のようなアントラセン類、キサントン類、アントラキノン類、フェナントレン類、クリセン類、ベンツピレン類、フルオラセン類(fluoranthenes)、ルブレン類、ピレン類、インダンスリーン類、チオキサンテン-9-オン類(thioxanthen-9-ones)等が挙げられ、これらを単独または混合物として用いることができる。
The photosensitive resin composition may contain additives such as a sensitizer and an antioxidant in addition to the components (A), (B), and (C).
The sensitizer increases the sensitivity of the photoacid generator to actinic radiation, reduces the time and energy required to activate (react or decompose) the photoacid generator, and activates the photoacid generator. It has a function of changing the wavelength of actinic radiation to a suitable wavelength.
Such a sensitizer is appropriately selected according to the sensitivity of the photoacid generator and the peak wavelength of absorption of the sensitizer, and is not particularly limited. For example, 9,10-dibutoxyanthracene (CAS No. 76275) is selected. -14-4) anthracenes, xanthones, anthraquinones, phenanthrenes, chrysene, benzpyrenes, fluoranthenes, rubrenes, pyrenes, indanthrines, thioxanthen-9-one (Thioxanthen-9-ones) and the like, and these can be used alone or as a mixture.
 増感剤の具体例としては、例えば、2-イソプロピル-9H-チオキサンテン-9-オン、4-イソプロピル-9H-チオキサンテン-9-オン、1-クロロ-4-プロポキシチオキサントン、フェノチアジン(phenothiazine)またはこれらの混合物が挙げられる。
 増感剤の含有量は、感光性樹脂組成物中で、0.01重量%以上であるのが好ましく、0.5重量%以上であるのがより好ましく、1重量%以上であるのがさらに好ましい。なお、上限値は、5重量%以下であるのが好ましい。
Specific examples of the sensitizer include, for example, 2-isopropyl-9H-thioxanthen-9-one, 4-isopropyl-9H-thioxanthen-9-one, 1-chloro-4-propoxythioxanthone, phenothiazine Or a mixture thereof.
The content of the sensitizer in the photosensitive resin composition is preferably 0.01% by weight or more, more preferably 0.5% by weight or more, and further preferably 1% by weight or more. preferable. In addition, it is preferable that an upper limit is 5 weight% or less.
 さらに、コア層形成用材料900中には、酸化防止剤を添加することができる。これにより、望ましくないフリーラジカルの発生や、ポリマー915の自然酸化を防止することができる。その結果、得られたコア層93(光導波路9)の特性の向上を図ることができる。 Furthermore, an antioxidant can be added to the core layer forming material 900. Thereby, generation | occurrence | production of an undesirable free radical and the natural oxidation of the polymer 915 can be prevented. As a result, the characteristics of the obtained core layer 93 (optical waveguide 9) can be improved.
 この酸化防止剤としては、ニューヨーク州タリータウンのCiba Specialty Chemicals社から入手可能なCiba(登録商標、以下同様である。) IRGANOX(登録商標、以下同様である。) 1076およびCiba IRGAFOS(登録商標、以下同様である。) 168が好適に用いられる。 Examples of the antioxidant include Ciba (registered trademark, the same applies hereinafter) IRGANOX (registered trademark, the same applies hereinafter) 1076 and Ciba IRGAFOS (registered trademark, available) from Ciba Specialty Chemicals of Tarrytown, New York. The same applies hereinafter.) 168 is preferably used.
 また、他の酸化防止剤としては、例えば、Ciba Irganox(登録商標、以下同様である。) 129、Ciba Irganox 1330、Ciba Irganox 1010、Ciba Cyanox(登録商標、以下同様である。) 1790、Ciba Irganox(登録商標) 3114、Ciba Irganox 3125等を用いることもできる。 Other antioxidants include, for example, Ciba Irganox (registered trademark, hereinafter the same) 129, Ciba Irganox 1330, Ciba Irganox 1010, Ciba Cyanox (registered trademark, the same applies below) 1790, CibaI. (Registered trademark) 3114, Ciba Irganox 3125, etc. can also be used.
 なお、このような酸化防止剤は、例えば、フィルム910が酸化条件に曝されない場合や、される期間が極めて短い場合等には、省略することもできる。 It should be noted that such an antioxidant can be omitted, for example, when the film 910 is not exposed to oxidation conditions or when the period of time is very short.
 以上の感光性樹脂組成物のうち、成分(A)として側鎖に脱離性基を有する環状オレフィン樹脂と、成分(C)の光酸発生剤と、成分(B)として上記式(100)に記載の第1モノマーと、を含む感光性樹脂組成物が特に好ましい。 Among the above photosensitive resin compositions, the cyclic olefin resin having a leaving group in the side chain as the component (A), the photoacid generator of the component (C), and the above formula (100) as the component (B) The photosensitive resin composition containing the 1st monomer as described in above is especially preferable.
 以下、特に好ましいこの感光性樹脂組成物について説明する。 Hereinafter, this particularly preferable photosensitive resin composition will be described.
 前記側鎖に脱離性基を有する環状オレフィン樹脂を構成する環状オレフィン樹脂(A)としては、前述したようなものを使用できるが、例えばシクロヘキセン、シクロオクテン等の単環体モノマーの重合体、ノルボルネン、ノルボルナジエン、ジシクロペンタジエン、ジヒドロジシクロペンタジエン、テトラシクロドデセン、トリシクロペンタジエン、ジヒドロトリシクロペンタジエン、テトラシクロペンタジエン、ジヒドロテトラシクロペンタジエン等の多環体モノマーの重合体等が挙げられる。これらの中でも多環体モノマーの重合体の中から選ばれる1種以上の環状オレフィン樹脂が好ましく用いられる。これにより、樹脂の耐熱性を向上することができる。 As the cyclic olefin resin (A) constituting the cyclic olefin resin having a leaving group in the side chain, those described above can be used. For example, a polymer of a monocyclic monomer such as cyclohexene or cyclooctene, Examples include polymers of polycyclic monomers such as norbornene, norbornadiene, dicyclopentadiene, dihydrodicyclopentadiene, tetracyclododecene, tricyclopentadiene, dihydrotricyclopentadiene, tetracyclopentadiene, and dihydrotetracyclopentadiene. Among these, one or more cyclic olefin resins selected from polymers of polycyclic monomers are preferably used. Thereby, the heat resistance of resin can be improved.
 なお、重合形態としては、ランダム重合、ブロック重合等の公知の形態を適用することができる。例えばノルボルネン型モノマーの重合の具体例としては、ノルボルネン型モノマ-の(共)重合体、ノルボルネン型モノマ-とα-オレフィン類などの共重合可能な他のモノマ-との共重合体、およびこれらの共重合体の水素添加物などが具体例に該当する。これら環状オレフィン樹脂は、公知の重合法により製造することが可能であり、その重合方法には付加重合法と開環重合法とがあり、前述の中でも付加重合法で得られる環状オレフィン樹脂(特にノルボルネン系樹脂)が好ましい(すなわち、ノルボルネン系化合物の付加重合体)。これにより、透明性、耐熱性および可撓性に優れる。 In addition, as polymerization forms, known forms such as random polymerization and block polymerization can be applied. For example, specific examples of polymerization of norbornene type monomers include (co) polymers of norbornene type monomers, copolymers of norbornene type monomers and other copolymerizable monomers such as α-olefins, and the like. A hydrogenated product of the above copolymer corresponds to a specific example. These cyclic olefin resins can be produced by a known polymerization method. The polymerization methods include an addition polymerization method and a ring-opening polymerization method. Norbornene resin) is preferable (that is, an addition polymer of a norbornene compound). Thereby, it is excellent in transparency, heat resistance, and flexibility.
 前記脱離性基としては、光酸発生剤から発生する酸(H)の作用により分子の一部が切断されて離脱するものである。具体的には、分子構造中(側鎖)に、前述したような-O-構造、-Si-アリール構造および-O-Si-構造のうちの少なくとも1つを有するものが好ましい。上述したような離脱性基は、酸(H)の作用により比較的容易に離脱する。
 上述した脱離性基の中でも離脱により樹脂の屈折率に低下を生じさせる離脱性基としては、-Si-ジフェニル構造および-O-Si-ジフェニル構造の少なくとも一方が好ましい。
 前記脱離性基の含有量は、特に限定されないが、前記側鎖に脱離性基を有する環状オレフィン樹脂中の10~80重量%であるのが好ましく、特に20~60重量%であるのがより好ましい。含有量が前記範囲内であると、特に可撓性と屈折率変調機能(屈折率差を大きくする効果)との両立に優れる。
As the leaving group, a part of the molecule is cleaved by the action of an acid (H + ) generated from a photoacid generator, and then leaves. Specifically, those having at least one of the above-described —O— structure, —Si-aryl structure and —O—Si— structure in the molecular structure (side chain) are preferable. The leaving group as described above is released relatively easily by the action of acid (H + ).
Among the above-described leaving groups, the leaving group that causes a decrease in the refractive index of the resin by leaving is preferably at least one of a —Si-diphenyl structure and a —O—Si-diphenyl structure.
The content of the leaving group is not particularly limited, but is preferably 10 to 80% by weight, particularly 20 to 60% by weight in the cyclic olefin resin having a leaving group in the side chain. Is more preferable. When the content is within the above range, it is particularly excellent in both flexibility and refractive index modulation function (effect of increasing the refractive index difference).
 このような側鎖に脱離性基を有する環状オレフィン樹脂としては、上記式(101)および/または上記式(102)で示される繰り返し単位を有するものが好ましい。これにより、樹脂の屈折率を高くすることができる。 As such a cyclic olefin resin having a leaving group in the side chain, one having a repeating unit represented by the above formula (101) and / or the above formula (102) is preferable. Thereby, the refractive index of resin can be made high.
 前記感光性樹脂組成物は、上記式(100)に記載のモノマー(以下、第1モノマーという)を含む。これにより、さらに左右のコア/クラッド間の屈折率差を拡大することができる。 The photosensitive resin composition contains a monomer described in the above formula (100) (hereinafter referred to as a first monomer). Thereby, the refractive index difference between the left and right cores / claddings can be further expanded.
 第1モノマーの含有量は、特に限定されないが、前記側鎖に脱離性基を有する環状オレフィン樹脂100重量部に対して1重量部以上、50重量部以下であることが好ましく、特に2重量部以上、20重量部以下であることが好ましい。これにより、コア/クラッド間の屈折率変調を可能にし、可撓性と耐熱性との両立が図られる。 The content of the first monomer is not particularly limited, but is preferably 1 part by weight or more and 50 parts by weight or less, particularly 2 parts by weight, based on 100 parts by weight of the cyclic olefin resin having a leaving group in the side chain. It is preferable that it is 20 parts by weight or more. Thereby, the refractive index modulation between the core / cladding is made possible, and both flexibility and heat resistance can be achieved.
 このように、上述した第1モノマーを側鎖に脱離性基を有する環状オレフィン樹脂と併用した場合に、コア/クラッド間の屈折率変調と、可撓性とのバランスに優れることの理由は、以下の通りと考えられる。
 まず、以上のような感光性樹脂組成物を用いた場合に、コア/クラッド間の屈折率変調に優れるのは、活性放射線照射等によって発生した酸により、第1モノマーが重合反応を開始するとき、第1モノマーがその反応性に優れているからである。第1モノマーの反応性が優れていると、第1モノマーの硬化性が高くなり、第1モノマーの濃度勾配によって生じる第1モノマーの拡散性が向上する。それによって、活性放射線照射領域と、未照射領域との屈折率差を大きくすることができる。
 また、第1モノマーは一官能であるために、重合反応が進行して感光性樹脂組成物としての架橋密度はそれほど高くはならない。そのため、可撓性にも優れている。
Thus, when the first monomer described above is used in combination with a cyclic olefin resin having a leaving group in the side chain, the reason for excellent balance between the refractive index modulation between the core and the clad and flexibility is as follows. It is considered as follows.
First, when the photosensitive resin composition as described above is used, it is excellent in the refractive index modulation between the core and the clad when the first monomer starts a polymerization reaction due to an acid generated by actinic radiation irradiation or the like. This is because the first monomer is excellent in reactivity. When the reactivity of the first monomer is excellent, the curability of the first monomer is increased, and the diffusibility of the first monomer caused by the concentration gradient of the first monomer is improved. Thereby, the refractive index difference between the active radiation irradiated region and the unirradiated region can be increased.
Further, since the first monomer is monofunctional, the polymerization reaction proceeds and the crosslinking density as the photosensitive resin composition does not become so high. Therefore, it is excellent in flexibility.
 前記感光性樹脂組成物は、特に限定されないが、前記第1モノマーと異なる第2モノマーを含んでいてもよい。なお、前記第1モノマーと異なる第2モノマーとは、構造が異なるモノマーでもよく、分子量が異なるモノマーでもよい。
 なかでも、第2モノマーは、成分(B)として含まれており、例えばエポキシ化合物、式(100)で示されるものと異なる他のオキセタン化合物、ビニルエーテル化合物等が挙げられる。これらの中でもエポキシ化合物(特に脂環式エポキシ化合物)および2官能のオキセタン化合物(オキセタニル基を2つ有するモノマー)の少なくとも1種が好ましい。これにより、前記第1モノマーと前記環状オレフィン樹脂との反応性を向上させることができ、それによって透明性を保持しつつ、導波路の耐熱性を向上させることができる。
 第2モノマーとしては、具体的には、上記式(15)の化合物、上記式(12)の化合物、上記式(11)の化合物、上記式(18)の化合物、上記式(19)の化合物、上記式(34)~(39)の化合物が挙げられる。
Although the said photosensitive resin composition is not specifically limited, The 2nd monomer different from the said 1st monomer may be included. The second monomer different from the first monomer may be a monomer having a different structure or a monomer having a different molecular weight.
Especially, the 2nd monomer is contained as a component (B), for example, an oxetane compound different from what is shown by an epoxy compound, Formula (100), a vinyl ether compound, etc. are mentioned. Among these, at least one of an epoxy compound (particularly an alicyclic epoxy compound) and a bifunctional oxetane compound (a monomer having two oxetanyl groups) is preferable. Thereby, the reactivity of the first monomer and the cyclic olefin resin can be improved, whereby the heat resistance of the waveguide can be improved while maintaining transparency.
Specifically, the second monomer includes the compound of the above formula (15), the compound of the above formula (12), the compound of the above formula (11), the compound of the above formula (18), and the compound of the above formula (19). And compounds of the above formulas (34) to (39).
 前記第2モノマーの含有量は、特に限定されないが、前記環状オレフィン樹脂100重量部に対して1重量部以上、50重量部以下であることが好ましく、特に2重量部以上、20重量部以下であることがより好ましい。これにより、前記第1モノマーとの反応性を向上させることができる。 The content of the second monomer is not particularly limited, but is preferably 1 part by weight or more and 50 parts by weight or less, particularly 2 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the cyclic olefin resin. More preferably. Thereby, the reactivity with the first monomer can be improved.
 また、前記第2モノマーと前記第1モノマーとの併用割合も特に限定されないが、重量比(前記第2モノマーの重量/前記第1モノマーの重量)で、0.1~1が好ましく、特に0.1~0.6が好ましい。併用割合が前記範囲内であると、反応性の速さと導波路の耐熱性とのバランスに優れる。 Further, the combined ratio of the second monomer and the first monomer is not particularly limited, but is preferably 0.1 to 1, particularly preferably 0 by weight ratio (weight of the second monomer / weight of the first monomer). .1 to 0.6 is preferable. When the combined ratio is within the above range, the balance between the speed of reactivity and the heat resistance of the waveguide is excellent.
 光酸発生剤の含有量は、特に限定されないが、前記側鎖に脱離性基を有する環状オレフィン系樹脂100重量部に対して0.01重量部以上、0.3重量部以下であることが好ましく、特に0.02重量部以上、0.2重量部以下であることがより好ましい。含有量が下限値未満であると反応性が低下する場合があり、前記上限値を超えると光導波路に着色が生じて光損失が低下する場合がある。 Although content of a photo-acid generator is not specifically limited, It is 0.01 weight part or more and 0.3 weight part or less with respect to 100 weight part of cyclic olefin resin which has a leaving group in the said side chain. In particular, it is more preferably 0.02 parts by weight or more and 0.2 parts by weight or less. If the content is less than the lower limit, the reactivity may decrease, and if the content exceeds the upper limit, the optical waveguide may be colored and light loss may decrease.
 前記感光性樹脂組成物は、上述した環状オレフィン系樹脂、光酸発生剤、第1モノマーおよび第2モノマー以外に、硬化触媒、酸化防止剤等を含んでいてもよい。
 また、上述した感光性樹脂組成物は、コア部94の形成用の組成物として用いることができる。
The photosensitive resin composition may contain a curing catalyst, an antioxidant, and the like in addition to the above-mentioned cyclic olefin resin, photoacid generator, first monomer and second monomer.
Further, the above-described photosensitive resin composition can be used as a composition for forming the core portion 94.
(光導波路の製造方法)
 図9、10、11は、それぞれ、光導波路の製造方法の工程例を模式的に示す断面図である。
 ここでは、成分(B)が成分(A)の環状オレフィン樹脂よりも屈折率が低いものである場合の感光性樹脂組成物を用いて光導波路を製造する方法を例にして説明する。
(Optical waveguide manufacturing method)
9, 10, and 11 are cross-sectional views schematically showing process examples of the method for manufacturing an optical waveguide.
Here, a method for producing an optical waveguide using a photosensitive resin composition when the component (B) has a lower refractive index than the cyclic olefin resin of the component (A) will be described as an example.
 まず、図9(A)に示すように、感光性樹脂組成物を溶媒に溶かしてワニス900を調製し、このワニス900をクラッド層91上に塗布する。
 感光性樹脂組成物をワニス状に調製する溶媒としては、たとえば、ジエチルエーテル、ジイソプロピルエーテル、1,2-ジメトキシエタン(DME)、1,4-ジオキサン、テトラヒドロフラン(THF)、テトラヒドロピラン(THP)、アニソール、ジエチレングリコールジメチルエーテル(ジグリム)、ジエチレングリコールエチルエーテル(カルビトール)などのエーテル系溶媒、メチルセロソルブ、エチルセロソルブ、フェニルセロソルブなどのセロソルブ系溶媒、ヘキサン、ペンタン、ヘプタン、シクロヘキサンなどの脂肪族炭化水素系溶媒、トルエン、キシレン、ベンゼン、メシチレンなどの芳香族炭化水素系溶媒、ピリジン、ピラジン、フラン、ピロール、チオフェン、メチルピロリドンなどの芳香族複素環化合物系溶媒、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMA)などのアミド系溶媒、ジクロロメタン、クロロホルム、1,2-ジクロロエタンなどのハロゲン化合物系溶媒、酢酸エチル、酢酸メチル、ギ酸エチルなどのエステル系溶媒、ジメチルスルホキシド(DMSO)、スルホランなどの硫黄化合物系溶媒の各種有機溶媒、または、これらを含む混合溶媒が挙げられる。
First, as shown in FIG. 9A, a varnish 900 is prepared by dissolving a photosensitive resin composition in a solvent, and this varnish 900 is applied onto a clad layer 91.
Examples of the solvent for preparing the photosensitive resin composition in a varnish form include diethyl ether, diisopropyl ether, 1,2-dimethoxyethane (DME), 1,4-dioxane, tetrahydrofuran (THF), tetrahydropyran (THP), Ether solvents such as anisole, diethylene glycol dimethyl ether (diglyme), diethylene glycol ethyl ether (carbitol), cellosolv solvents such as methyl cellosolve, ethyl cellosolve, phenyl cellosolve, aliphatic hydrocarbon solvents such as hexane, pentane, heptane, cyclohexane , Toluene, xylene, benzene, mesitylene and other aromatic hydrocarbon solvents, pyridine, pyrazine, furan, pyrrole, thiophene, methylpyrrolidone and other aromatic heterocyclic compounds Amide solvents such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMA), halogen compound solvents such as dichloromethane, chloroform, 1,2-dichloroethane, ethyl acetate, methyl acetate, ethyl formate, etc. Ester solvents, various organic solvents such as sulfur compound solvents such as dimethyl sulfoxide (DMSO) and sulfolane, or mixed solvents containing them.
 次に、光導波路9のクラッド層91上にワニス900を塗布した後、乾燥させて、溶媒を蒸発(脱溶媒)させる。これにより、図9(B)に示すように、ワニス900は、光導波路形成用のフィルム910となる。このフィルム910は、後述する活性放射線の照射により、コア部94とクラッド部95とが形成されたコア層93となる。
 ここで、ワニス900を塗布する方法としては、たとえば、ドクターブレード法、スピンコート法、ディッピング法、テーブルコート法、スプレー法、アプリケーター法、カーテンコート法、ダイコート法の方法が挙げられるが、これらに限定されるわけではない。クラッド層91としては、たとえば、後述するコア部94よりも屈折率が低いシートが使用され、たとえば、ノルボルネン系樹脂と、エポキシ樹脂とを含むシートが使用される。
Next, the varnish 900 is applied on the cladding layer 91 of the optical waveguide 9 and then dried to evaporate (desolve) the solvent. As a result, as shown in FIG. 9B, the varnish 900 becomes a film 910 for forming an optical waveguide. The film 910 becomes a core layer 93 in which a core portion 94 and a clad portion 95 are formed by irradiation with actinic radiation described later.
Here, examples of the method of applying the varnish 900 include a doctor blade method, a spin coating method, a dipping method, a table coating method, a spray method, an applicator method, a curtain coating method, and a die coating method. It is not limited. As the clad layer 91, for example, a sheet having a refractive index lower than that of a core portion 94 described later is used, and for example, a sheet containing a norbornene-based resin and an epoxy resin is used.
 次に、フィルム910に対し、選択的に活性放射線(たとえば、紫外線)を照射する。
 この際、図10(A)に示すように、フィルム910の上方に開口が形成されたマスクMを配置する。このマスクMの開口を介して、フィルム910に対し、活性放射線を照射する。
 用いられる活性放射線としては、例えば、波長200~450nmの範囲にピーク波長を有するものが挙げられる。これにより、光酸発生剤の組成にもよるが、光酸発生剤を比較的容易に活性化させることができる。
Next, the film 910 is selectively irradiated with active radiation (for example, ultraviolet rays).
At this time, as shown in FIG. 10A, a mask M in which an opening is formed is disposed above the film 910. The film 910 is irradiated with active radiation through the opening of the mask M.
Examples of the actinic radiation used include those having a peak wavelength in the wavelength range of 200 to 450 nm. Thereby, although depending on the composition of the photoacid generator, the photoacid generator can be activated relatively easily.
 前記マスクMの構成材料としては、照射する活性放射線により適宜選定される。具体的には、マスクMの構成材料としては、前記フィルム910に照射する活性放射線を遮光し得る材料とされる。このような特性を有するものであれば、マスクMの材料自体は、公知のいずれのものも使用することができる。 The constituent material of the mask M is appropriately selected depending on the active radiation to be irradiated. Specifically, the constituent material of the mask M is a material that can block the active radiation applied to the film 910. Any known material can be used for the mask M as long as it has such characteristics.
 マスクMは、予め形成(別途形成)されたもの(例えばプレート状のもの)でも、フィルム910上に例えば気相成膜法や塗布法により形成されたものでもよい。 The mask M may be formed in advance (separately formed) (for example, plate-shaped) or may be formed on the film 910 by, for example, a vapor deposition method or a coating method.
 マスクMとして好ましいものの例としては、石英ガラスやPET基材等で作製されたフォトマスク、ステンシルマスク、気相成膜法(蒸着、スパッタリング等)により形成された金属薄膜等が挙げられるが、これらの中でもフォトマスクやステンシルマスクを用いるのが特に好ましい。微細なパターンを精度良く形成することができるとともに、ハンドリングがし易く、生産性の向上に有利であるからである。 Preferred examples of the mask M include photomasks made of quartz glass and PET base materials, stencil masks, metal thin films formed by vapor deposition methods (evaporation, sputtering, etc.), etc. Among these, it is particularly preferable to use a photomask or a stencil mask. This is because a fine pattern can be formed with high accuracy, and handling is easy, which is advantageous in improving productivity.
 また、活性放射線の照射量は、特に限定されないが、0.1~9J/cm程度であるのが好ましく、0.2~6J/cm程度であるのがより好ましく、0.2~3J/cm程度であるのがさらに好ましい。
 なお、レーザー光のように指向性の高い活性放射線を用いる場合には、マスクMの使用を省略することもできる。
The irradiation amount of the active radiation is not particularly limited, but is preferably about 0.1 to 9 J / cm 2 , more preferably about 0.2 to 6 J / cm 2 , and 0.2 to 3 J More preferably, it is about / cm 2 .
In addition, when using active radiation with high directivity like a laser beam, use of the mask M can also be abbreviate | omitted.
 フィルム910のうち、活性放射線が照射された領域では、光酸発生剤から酸が発生することとなる。発生した酸により、成分(B)が重合する。
 活性放射線が照射されていない領域では、光酸発生剤から酸が発生しないため、成分(B)は重合しない。照射部分では、成分(B)が重合しポリマーとなるため、成分(B)量が少なくなる。これに応じて、未照射部分の成分(B)が照射部分に拡散し、これにより、照射部分と未照射部分とで屈折率差が生じる。
 ここで、成分(B)が、環状オレフィン樹脂よりも屈折率が低い場合には、未照射部分の成分(B)が照射部分に拡散することで、未照射部分の屈折率が高くなるとともに、照射部分の屈折率は低くなる。
 なお、成分(B)が重合したポリマーと、環状エーテル基を有するモノマーとの屈折率差は、0以上、0.001以下程度であり、屈折率は略同じであると考えられる。
In the region of the film 910 that has been irradiated with actinic radiation, an acid is generated from the photoacid generator. The component (B) is polymerized by the generated acid.
In the region not irradiated with actinic radiation, no acid is generated from the photoacid generator, so that component (B) is not polymerized. In the irradiated part, since the component (B) is polymerized to become a polymer, the amount of the component (B) is reduced. In response to this, the component (B) of the unirradiated part diffuses into the irradiated part, thereby causing a difference in refractive index between the irradiated part and the unirradiated part.
Here, when the component (B) has a lower refractive index than the cyclic olefin resin, the component (B) of the unirradiated part diffuses into the irradiated part, and the refractive index of the unirradiated part increases. The refractive index of the irradiated part is lowered.
In addition, the refractive index difference between the polymer obtained by polymerizing the component (B) and the monomer having a cyclic ether group is about 0 or more and 0.001 or less, and the refractive indexes are considered to be substantially the same.
 このように上述した感光性樹脂組成物を使用した場合には、光酸発生剤から発生する酸により、成分(B)の重合を開始させることが可能である。 Thus, when the above-described photosensitive resin composition is used, the polymerization of the component (B) can be initiated by the acid generated from the photoacid generator.
 さらに、本発明に用いられる環状オレフィン樹脂は必ずしも脱離性基を有していなくてもよいが、成分(A)として、脱離性基を有する環状オレフィン樹脂を使用している場合には、以下の作用が生じる。
 活性放射線を照射した部分では、光酸発生剤から発生した酸により、環状オレフィン樹脂の脱離性基が脱離することとなる。-Si-アリール構造、-Si-ジフェニル構造および-O-Si-ジフェニル構造等の脱離性基の場合、離脱により樹脂の屈折率が低下することとなる。そのため、照射部分の屈折率は脱離性基の脱離前に比べてさらに低下することとなる。
Furthermore, the cyclic olefin resin used in the present invention does not necessarily have a leaving group, but when a cyclic olefin resin having a leaving group is used as the component (A), The following effects occur.
In the portion irradiated with actinic radiation, the leaving group of the cyclic olefin resin is eliminated by the acid generated from the photoacid generator. In the case of a leaving group such as a —Si-aryl structure, —Si-diphenyl structure, and —O—Si-diphenyl structure, the refractive index of the resin decreases due to the leaving. Therefore, the refractive index of the irradiated portion is further lowered as compared with that before the leaving group is removed.
 次に、フィルム910を加熱する。この加熱工程において、活性放射線を照射した照射部分の成分(B)がさらに重合する。一方で、この加熱工程において、未照射部分の成分(B)は揮発することとなる。これにより、未照射部分では、成分(B)が少なくなり、環状オレフィン樹脂に近い屈折率となる。
 このフィルム910においては、図10(B)に示すように、活性放射線が照射された領域がクラッド部95となり、未照射領域がコア部94となる。コア部94における前記成分(B)由来の構造体濃度と、クラッド部95における前記成分(B)由来の構造体濃度とが異なる。具体的には、コア部94における成分(B)由来の構造体濃度は、クラッド部95における成分(B)由来の構造体濃度より低い。
 また、クラッド部95は、コア部94よりも屈折率が低くなり、クラッド部95とコア部94との屈折率差は、0.01以上となる。以上のようにして、フィルム910には、コア部94とクラッド部95とが形成され、コア層93が得られる。
Next, the film 910 is heated. In this heating step, the component (B) of the irradiated portion irradiated with actinic radiation is further polymerized. On the other hand, in this heating step, the component (B) in the unirradiated part is volatilized. Thereby, in an unirradiated part, a component (B) decreases and it becomes a refractive index close | similar to cyclic olefin resin.
In this film 910, as shown in FIG. 10B, the region irradiated with actinic radiation becomes the clad portion 95 and the unirradiated region becomes the core portion 94. The structure concentration derived from the component (B) in the core portion 94 and the structure concentration derived from the component (B) in the cladding portion 95 are different. Specifically, the structure concentration derived from the component (B) in the core portion 94 is lower than the structure concentration derived from the component (B) in the cladding portion 95.
The clad part 95 has a lower refractive index than the core part 94, and the refractive index difference between the clad part 95 and the core part 94 is 0.01 or more. As described above, the core portion 94 and the clad portion 95 are formed on the film 910, and the core layer 93 is obtained.
 この加熱工程における加熱温度は、特に限定されないが、30~180℃程度であるのが好ましく、40~160℃程度であるのがより好ましい。
 また、加熱時間は、活性放射線を照射した照射部分の成分(B)の重合反応がほぼ完了するように設定するのが好ましく、具体的には、0.1~2時間程度であるのが好ましく、0.1~1時間程度であるのがより好ましい。
The heating temperature in this heating step is not particularly limited, but is preferably about 30 to 180 ° C., more preferably about 40 to 160 ° C.
The heating time is preferably set so that the polymerization reaction of the component (B) in the irradiated part irradiated with actinic radiation is almost completed, and specifically, it is preferably about 0.1 to 2 hours. More preferably, it is about 0.1 to 1 hour.
 その後、このコア層93上に、クラッド層91と同様のフィルムを貼り付ける。このフィルムがクラッド層96となる。一対のクラッド層91、96は、クラッド部95とは異なる方向から、コア部94を挟むように配置されることとなる。
 なお、クラッド層94は、フィルム状のものを貼り付けるのではなく、コア層93上に液状材料を塗布し硬化(固化)させる方法によっても形成することができる。
 また、図7に示すようなコア層積層部を有する光導波路構造体を作製する際には、クラッド層96に代わり、コア層93をさらに積層する。コア層93の積層方法は、上述したようなコア層93の形成方法を繰り返して積層しても良いし、別の基材上に作製したフィルム状のコア層を所望の枚数積層しても良い。また、これらの方法を組み合わせても良い。
Thereafter, a film similar to the clad layer 91 is attached on the core layer 93. This film becomes the clad layer 96. The pair of clad layers 91 and 96 are arranged so as to sandwich the core portion 94 from a direction different from the clad portion 95.
The clad layer 94 can also be formed by a method of applying a liquid material on the core layer 93 and curing (solidifying) instead of attaching a film-like one.
Further, when an optical waveguide structure having a core layer laminated portion as shown in FIG. 7 is manufactured, a core layer 93 is further laminated instead of the cladding layer 96. The core layer 93 may be laminated by repeating the method for forming the core layer 93 as described above, or a desired number of film-like core layers produced on another base material may be laminated. . Moreover, you may combine these methods.
 クラッド層91(96)の形成方法としては、クラッド材を含むワニス(クラッド層形成用材料)を塗布し硬化(固化)させる方法、硬化性を有するモノマー組成物を塗布し硬化(固化)させる方法等、いかなる方法でもよい。 As a method for forming the clad layer 91 (96), a varnish containing a clad material (clad layer forming material) is applied and cured (solidified), or a curable monomer composition is applied and cured (solidified). Any method may be used.
 クラッド層91(96)を塗布法で形成する場合、例えば、スピンコート法、ディッピング法、テーブルコート法、スプレー法、アプリケーター法、カーテンコート法、ダイコート法等の方法が挙げられる。 When the clad layer 91 (96) is formed by a coating method, examples thereof include a spin coating method, a dipping method, a table coating method, a spray method, an applicator method, a curtain coating method, and a die coating method.
 クラッド層91(96)の構成材料としては、例えば、アクリル系樹脂、メタクリル系樹脂、ポリカーボネート、ポリスチレン、エポキシ樹脂、ポリアミド、ポリイミド、ポリベンゾオキサゾール、ベンゾシクロブテン系樹脂やノルボルネン系樹脂等の環状オレフィン系樹脂等が挙げられ、これらのうちの1種または2種以上を組み合わせて(ポリマーアロイ、ポリマーブレンド(混合物)、共重合体、複合体(積層体)など)用いることができる。 Examples of the constituent material of the cladding layer 91 (96) include cyclic olefins such as acrylic resin, methacrylic resin, polycarbonate, polystyrene, epoxy resin, polyamide, polyimide, polybenzoxazole, benzocyclobutene resin, and norbornene resin. These resins can be used, and one or more of these can be used in combination (polymer alloy, polymer blend (mixture), copolymer, composite (laminate), etc.).
 これらのうち、特に耐熱性に優れるという点で、エポキシ樹脂、ポリイミド、ポリベンゾオキサゾール、ベンゾシクロブテン系樹脂やノルボルネン系樹脂等の環状オレフィン系樹脂、またはそれらを含むもの(主とするもの)を用いるのが好ましく、特に、ノルボルネン系樹脂(ノルボルネン系ポリマー)を主とするものが好ましい。 Of these, epoxy resins, polyimides, polybenzoxazoles, cyclic olefin resins such as benzocyclobutene resins and norbornene resins, and those containing them (mainly) in terms of particularly excellent heat resistance It is preferable to use, and particularly, those mainly composed of norbornene-based resins (norbornene-based polymers) are preferable.
 ノルボルネン系ポリマーは、耐熱性に優れるため、これをクラッド層91(96)の構成材料として使用する光導波路9では、光導波路9に導体層を形成する際、導体層を加工して配線を形成する際、光学素子を実装する等に加熱されたとしても、クラッド層91(96)が軟化して、変形するのを防止することができる。 Since the norbornene-based polymer is excellent in heat resistance, in the optical waveguide 9 using this as a constituent material of the cladding layer 91 (96), when the conductor layer is formed on the optical waveguide 9, the conductor layer is processed to form a wiring. In this case, even when the optical element is heated to mount it, the clad layer 91 (96) can be softened and prevented from being deformed.
 また、高い疎水性を有するため、吸水による寸法変化等を生じ難いクラッド層91(96)を得ることができる。 Further, since it has high hydrophobicity, it is possible to obtain the clad layer 91 (96) which is less likely to cause dimensional change due to water absorption.
 また、ノルボルネン系ポリマーまたはその原料であるノルボルネン系モノマーは、比較的安価であり、入手が容易であることからも好ましい。 Further, norbornene-based polymers or norbornene-based monomers that are raw materials thereof are preferable because they are relatively inexpensive and easily available.
 さらに、クラッド層91(96)の材料として、ノルボルネン系ポリマーを主とするものを用いると、曲げ等の変形に対する耐性に優れ、繰り返し湾曲変形した場合でも、クラッド層91、96とコア層93との層間剥離が生じ難く、クラッド層91、96の内部にマイクロクラックが発生することも防止される。しかも、コア層93の構成材料として好適に用いられる材料と同種となるため、コア層93との密着性がさらに高いものとなり、クラッド層91(96)とコア層93との間での層間剥離を防止することができる。このようなことから、光導波路9の光伝送性能が維持され、耐久性に優れた光導波路9が得られる。 Further, when a material mainly composed of a norbornene-based polymer is used as the material of the clad layer 91 (96), the clad layers 91 and 96 and the core layer 93 are excellent in resistance to deformation such as bending, even when repeatedly bent and deformed. The delamination is difficult to occur, and the occurrence of microcracks in the clad layers 91 and 96 is also prevented. In addition, since it is the same type of material that is suitably used as the constituent material of the core layer 93, the adhesion to the core layer 93 is further increased, and delamination between the cladding layer 91 (96) and the core layer 93 is achieved. Can be prevented. For this reason, the optical transmission performance of the optical waveguide 9 is maintained, and the optical waveguide 9 having excellent durability can be obtained.
 クラッド層91、96の平均厚さは、コア層93の平均厚さの0.1~1.5倍程度であるのが好ましく、0.3~1.25倍程度であるのがより好ましく、具体的には、クラッド層91、96の平均厚さは、特に限定されないが、それぞれ、通常、1~200μm程度であるのが好ましく、5~100μm程度であるのがより好ましく、10~60μm程度であるのがさらに好ましい。これにより、光導波路9が不要に大型化(圧膜化)するのを防止しつつ、クラッド層としての機能が好適に発揮される。 The average thickness of the cladding layers 91 and 96 is preferably about 0.1 to 1.5 times the average thickness of the core layer 93, more preferably about 0.3 to 1.25 times. Specifically, the average thickness of the clad layers 91 and 96 is not particularly limited, but each of them is usually preferably about 1 to 200 μm, more preferably about 5 to 100 μm, and about 10 to 60 μm. More preferably. Thereby, the function as a clad layer is suitably exhibited while preventing the optical waveguide 9 from becoming unnecessarily large (pressure film).
 以上の工程により、図11に示す光導波路9が得られる。
 また、本発明において用いる感光性樹脂組成物により光導波路9を得た場合には、特に半田耐リフロー性に優れる。さらに、光導波路9を曲げた場合であっても光損失を少なくすることができる。
Through the above steps, the optical waveguide 9 shown in FIG. 11 is obtained.
Further, when the optical waveguide 9 is obtained from the photosensitive resin composition used in the present invention, the solder reflow resistance is particularly excellent. Furthermore, even when the optical waveguide 9 is bent, the optical loss can be reduced.
 なお、上記の説明では、クラッド層91上に直接、感光性樹脂組成物を供給し、フィルム910(コア層93)を形成する場合について説明したが、別の基材上にフィルム910(コア層93)を形成した後、得られたコア層93をクラッド層91またはクラッド層96上に転写し、その後、コア層93を介してクラッド層91とクラッド層96とを重ね合わせるようにしてもよい。
 前記基板には、例えば、シリコン基板、二酸化ケイ素基板、ガラス基板、石英基板、ポリエチレンテレフタレート(PET)フィルム等が用いられる。
In the above description, the case where the photosensitive resin composition is directly supplied onto the clad layer 91 to form the film 910 (core layer 93) has been described, but the film 910 (core layer) is formed on another substrate. 93), the obtained core layer 93 may be transferred onto the clad layer 91 or the clad layer 96, and then the clad layer 91 and the clad layer 96 may be overlapped via the core layer 93. .
Examples of the substrate include a silicon substrate, a silicon dioxide substrate, a glass substrate, a quartz substrate, and a polyethylene terephthalate (PET) film.
 次に、本実施形態の作用効果について説明する。
 本実施形態において用いる感光性樹脂組成物に光を当てると、光酸発生剤から酸が発生し、照射部分のみにおいて、成分(B)が重合されることとなる。そうすると、照射部分における成分(B)の量が少なくなるため、未照射部分の成分(B)が照射部分に拡散し、これにより、照射部分と未照射部分とで屈折率差が生じる。具体的には、本実施形態では、ベースポリマーとして、成分(B)よりも屈折率が高い置換または無置換の環状オレフィン樹脂を使用しているため、未照射部分の成分(B)が照射部分に拡散することで、未照射部分の屈折率が、照射部分の屈折率よりも高くなる。
Next, the effect of this embodiment is demonstrated.
When light is applied to the photosensitive resin composition used in the present embodiment, an acid is generated from the photoacid generator, and the component (B) is polymerized only in the irradiated portion. Then, since the amount of the component (B) in the irradiated part is reduced, the component (B) in the non-irradiated part diffuses into the irradiated part, thereby causing a difference in refractive index between the irradiated part and the unirradiated part. Specifically, in this embodiment, since a substituted or unsubstituted cyclic olefin resin having a higher refractive index than that of the component (B) is used as the base polymer, the component (B) in the unirradiated portion is irradiated with the irradiated portion. The refractive index of the unirradiated part becomes higher than the refractive index of the irradiated part.
 これに加え、活性放射線照射後、感光性樹脂組成物の加熱を行うと、未照射部分から成分(B)が揮発する。これにより、照射部分と未照射部分とでさらに屈折率差が生じる。
 このように感光性樹脂組成物を使用することで、照射部分と未照射部分とで確実に屈折率差を形成することができる。また、本発明によれば、単に活性放射線を照射するという簡単な方法でコア部をパターニングすることができる。例えば、フォトマスク等の露光パターンを適宜選択することにより、どのような形状や配置の光路(コア部)でも形成することができ、また、細い光路でもシャープに形成することができるので、回路の集積化に寄与し、デバイスの小型化が図られる。すなわち、本発明によれば、コア部のパターン形状の設計の自由度が広く、しかも寸法精度の高いコア部が得られる。
In addition to this, when the photosensitive resin composition is heated after irradiation with actinic radiation, the component (B) is volatilized from the unirradiated portion. Thereby, a refractive index difference further occurs between the irradiated portion and the unirradiated portion.
Thus, by using the photosensitive resin composition, a refractive index difference can be reliably formed between the irradiated portion and the unirradiated portion. Further, according to the present invention, the core portion can be patterned by a simple method of simply irradiating active radiation. For example, by appropriately selecting an exposure pattern such as a photomask, an optical path (core part) of any shape and arrangement can be formed, and a thin optical path can be formed sharply. This contributes to integration, and the device can be miniaturized. That is, according to the present invention, a core portion having a wide degree of freedom in designing the pattern shape of the core portion and high dimensional accuracy can be obtained.
 なお、従来、オキセタニル基等を有するノルボルネン系樹脂を、熱酸発生剤により架橋させる技術が知られている。しかしながら、このような技術に用いられる組成物は、ベースポリマーとして、オキセタニル基等を有するノルボルネン系樹脂を含有する。そして、組成物全体を加熱させ、組成物全体において架橋構造を生じさせるものである。そのため、従来用いられていたこの組成物には、選択的に活性放射線を照射し、酸を発生させることで、選択的に重合を生じさせ、モノマー濃度が少なくなった領域にモノマーが拡散して、濃度差ができるという技術的思想は全くない。
 これに対し、本実施形態において用いる感光性樹脂組成物は、選択的に活性放射線を照射すると、酸の発生により照射部分における成分(B)の量が少なくなるため、未照射部分の成分(B)が照射部分に拡散し、これにより、照射部分と未照射部分とで屈折率差が生じることを見出したものである。
Conventionally, a technique for crosslinking a norbornene-based resin having an oxetanyl group or the like with a thermal acid generator is known. However, the composition used in such a technique contains a norbornene-based resin having an oxetanyl group or the like as a base polymer. And the whole composition is heated and a crosslinked structure is produced in the whole composition. Therefore, this composition, which has been conventionally used, is selectively irradiated with actinic radiation to generate an acid, thereby selectively causing polymerization, and the monomer diffuses into the region where the monomer concentration is reduced. There is no technical idea that density difference can be made.
On the other hand, when the photosensitive resin composition used in this embodiment is selectively irradiated with actinic radiation, the amount of the component (B) in the irradiated portion is reduced due to the generation of acid, so the component (B ) Diffuses to the irradiated part, and as a result, a difference in refractive index occurs between the irradiated part and the unirradiated part.
 また、環状オレフィン樹脂を、光酸発生剤から発生する酸により脱離し、脱離により、成分(A)の環状オレフィン樹脂の屈折率を低下させる脱離性基を有するものとした場合には、活性放射線を照射した領域の屈折率を、未照射領域に比べ確実に低下させることができる。
 一方で、環状オレフィン樹脂を脱離性基を有しないものとした場合には、側鎖が化学的に安定となるため、活性放射線照射や、加熱等の条件により、コア部、クラッド部の屈折率が変動してしまうことを抑制できる。
Further, when the cyclic olefin resin has a leaving group that is desorbed by an acid generated from the photoacid generator and reduces the refractive index of the cyclic olefin resin of the component (A) by desorption, The refractive index of the region irradiated with actinic radiation can be reliably reduced as compared with the unirradiated region.
On the other hand, when the cyclic olefin resin has no leaving group, the side chain is chemically stable, so that the core portion and the cladding portion are refracted depending on conditions such as irradiation with actinic radiation and heating. It can suppress that a rate fluctuates.
 さらに、本実施形態では、成分(A)としてノルボルネン系樹脂を使用している。これにより、特定波長における光透過性を確実に高めることができ、伝搬損失の低減を確実に図ることができる。
 また、クラッド部95は、コア部94よりも屈折率が低く、クラッド部95とコア部94との屈折率差を0.01以上とすることで、確実に光をコア部94に閉じ込めることができ、光の伝搬損失の発生を抑制できる。
Furthermore, in this embodiment, norbornene-type resin is used as a component (A). Thereby, the light transmittance in a specific wavelength can be improved reliably, and reduction of propagation loss can be aimed at reliably.
Further, the clad part 95 has a lower refractive index than the core part 94, and the difference in refractive index between the clad part 95 and the core part 94 is 0.01 or more, so that light can be reliably confined in the core part 94. And the generation of light propagation loss can be suppressed.
 一方、従来、光導波路形成用の組成物として、ポリマー、モノマー、助触媒および触媒前駆体を含むものが知られている。
 このうち、モノマーは、活性放射線の照射により反応物を形成し、活性放射線を照射した領域の屈折率を、未照射領域の屈折率と異ならせ得るものである。
 また、触媒前駆体は、モノマーの反応(重合反応、架橋反応等)を開始させ得る物質であり、活性放射線の照射により活性化した助触媒の作用により、活性化温度が変化する物質である。この活性化温度の変化により、活性放射線の照射領域と未照射領域との間で、モノマーの反応を開始させる温度が異なり、その結果、照射領域のみにおいて反応物を形成させることができる。
On the other hand, conventionally, as a composition for forming an optical waveguide, a composition containing a polymer, a monomer, a promoter and a catalyst precursor is known.
Among these monomers, the monomer can form a reactant upon irradiation with actinic radiation, and the refractive index of a region irradiated with actinic radiation can be made different from that of an unirradiated region.
The catalyst precursor is a substance capable of initiating a monomer reaction (polymerization reaction, crosslinking reaction, etc.), and is a substance whose activation temperature is changed by the action of a promoter activated by irradiation with actinic radiation. Due to the change in the activation temperature, the temperature at which the monomer reaction is started is different between the irradiated region and the non-irradiated region, and as a result, a reactant can be formed only in the irradiated region.
 これに対し、本実施形態において用いる感光性樹脂組成物は、このような多量の金属元素を含む物質を必要としない。このため、上述したような伝搬損失の増加が防止され、伝搬効率に優れかつ耐熱性に優れた光導波路9が得られる。
 このような従来の組成物を用いた場合でも活性放射線照射によりコア部とクラッド部とを作り分けることができるが、本実施形態に用いられる感光性樹脂組成物によれば、コア部94とクラッド部95との屈折率差をより拡大するとともに、耐熱性が向上するため、より信頼性の高い光導波路9が得られる。これは主に、成分(A)および成分(B)の組成を最適化したことによるものである。
On the other hand, the photosensitive resin composition used in this embodiment does not require a substance containing such a large amount of metal elements. For this reason, the increase of the propagation loss as described above is prevented, and the optical waveguide 9 excellent in propagation efficiency and heat resistance can be obtained.
Even when such a conventional composition is used, the core part and the clad part can be separately formed by irradiation with actinic radiation. However, according to the photosensitive resin composition used in the present embodiment, the core part 94 and the clad part are formed. Since the difference in refractive index with the portion 95 is further expanded and the heat resistance is improved, the optical waveguide 9 with higher reliability can be obtained. This is mainly due to the optimization of the composition of component (A) and component (B).
 このような感光性樹脂組成物を使用することで、本発明は、光の伝搬損失の発生が抑制された光導波路フィルム等を提供することができる。なかでも、湾曲した光導波路を形成した場合において、光の伝搬損失の発生を顕著に抑制することができる。 By using such a photosensitive resin composition, the present invention can provide an optical waveguide film or the like in which generation of light propagation loss is suppressed. In particular, when a curved optical waveguide is formed, generation of light propagation loss can be remarkably suppressed.
 図7に示す構成を製造する場合、上述した方法により複数のコア層93を作製しておき、これらを重ねて接合(圧着)することによりコア層積層部92を得る。この場合、各コア層93におけるコア部94のパターンは、各コア層93を所望の順序で積層したとき、予め設計された3次元方向の光路パターを形成し得るものとされる。 When the structure shown in FIG. 7 is manufactured, a plurality of core layers 93 are produced by the above-described method, and the core layer laminated portion 92 is obtained by overlapping (bonding) these layers. In this case, the pattern of the core portion 94 in each core layer 93 can form a predesigned three-dimensional optical path pattern when the core layers 93 are laminated in a desired order.
 また、コア層積層部92の上面および下面にそれぞれ前述したクラッド層91を接合し(圧着)することにより、図7に示す構成が完成する。他の方法として、図6中下部のクラッド層91に複数のコア層93を順次積層(接合)し、最後に図6中上部のクラッド層91を接合(圧着)してもよい。 Further, the configuration shown in FIG. 7 is completed by bonding (crimping) the above-described cladding layer 91 to the upper surface and the lower surface of the core layer laminated portion 92, respectively. As another method, a plurality of core layers 93 may be sequentially laminated (bonded) to the lower clad layer 91 in FIG. 6, and finally the upper clad layer 91 in FIG. 6 may be bonded (crimped).
 図6に示す構成を製造する場合、上述した方法により複数の光導波路(積層体90)を作製しておき、これらを重ねて接合(圧着)する。この場合、各積層体90のコア層93におけるコア部94のパターンは、各積層体90を所望の順序で積層したとき、予め設計された3次元方向の光路パターンを形成し得るものとされる。 6 is manufactured, a plurality of optical waveguides (laminated body 90) are prepared by the above-described method, and these are overlapped and bonded (crimped). In this case, the pattern of the core portion 94 in the core layer 93 of each stacked body 90 can form a pre-designed three-dimensional optical path pattern when the stacked bodies 90 are stacked in a desired order. .
 また、図5に示す構成を製造する場合、例えば次の3つの方法が可能である。まず第1の方法としては、1つの光導波路(積層体90)を作製し、その上にコア層93、クラッド層91をこの順に繰り返し積層し、これらを圧着する方法が挙げられる。第2の方法としては、2つの光導波路(積層体90)を作製し、該光導波路(積層体90)間にコア層93を介挿して、これらを圧着し一体化する方法が挙げられる。第3の方法としては、クラッド層91とコア層93とを積層した2層積層体を複数組作製し、各々の2層積層体を所望の順序で積層し、圧着する方法が挙げられる。第4の方法としては、各クラッド層91およびコア層93のそれぞれを1層ずつ作製し、これらを所望の順序で積層し、圧着する方法が挙げられる。 Further, when manufacturing the configuration shown in FIG. 5, for example, the following three methods are possible. First, as a first method, there is a method in which one optical waveguide (laminated body 90) is produced, a core layer 93 and a clad layer 91 are repeatedly laminated in this order, and these are pressure-bonded. As a second method, there is a method in which two optical waveguides (laminated body 90) are produced, a core layer 93 is interposed between the optical waveguides (laminated body 90), and these are crimped and integrated. As a third method, there is a method in which a plurality of two-layer laminates in which the clad layer 91 and the core layer 93 are laminated are produced, and the respective two-layer laminates are laminated in a desired order, followed by pressure bonding. As a fourth method, there is a method in which each of the clad layer 91 and the core layer 93 is produced one by one, these are laminated in a desired order, and pressure-bonded.
 以上のような光導波路本体(光導波路)2の製造方法において、各コア層93におけるコア部94のパターンは、各クラッド層91およびコア層91を所望の順序で積層したとき、予め設計された3次元方向の光路パターンを形成し得るものとされる。 In the manufacturing method of the optical waveguide body (optical waveguide) 2 as described above, the pattern of the core portion 94 in each core layer 93 is designed in advance when the clad layers 91 and the core layers 91 are laminated in a desired order. An optical path pattern in a three-dimensional direction can be formed.
 また、以上のような製造方法によれば、簡単な処理で、しかも短時間に、所望の形状を有し、かつ、寸法精度の高いコア部94を有する光導波路を得ることができる。 Further, according to the manufacturing method as described above, an optical waveguide having a core portion 94 having a desired shape and high dimensional accuracy can be obtained with a simple process and in a short time.
 なお、本発明において、光導波路構造体の基本構造、層構成、各部の形状、数、配置等は、図示のものに限定されないことは言うまでもない。 In the present invention, it goes without saying that the basic structure, layer structure, shape, number, arrangement, etc. of the optical waveguide structure are not limited to those shown in the drawings.
 また、前記各実施形態において、素子として、発光素子61ないし65を備える構成について説明したが、1つ以上の受光素子を備える構成であってもよく、あるいは1つ以上の発光素子と1つ以上の受光素子とを備える構成であってもよい。もちろん、発光素子と受光素子の組を2組以上有する構成であってもよい。 In each of the above embodiments, the configuration including the light emitting elements 61 to 65 as the element has been described. However, the configuration may include one or more light receiving elements, or one or more light emitting elements and one or more. The light receiving element may be provided. Of course, the structure which has two or more sets of a light emitting element and a light receiving element may be sufficient.
 以上、本発明を図示の各実施形態に基づいて説明したが、本発明はこれらに限定されるものではなく、各部の構成は、同様の機能を発揮し得る任意の構成と置換することができ、また、任意の構成が付加されていてもよい。 The present invention has been described based on the illustrated embodiments. However, the present invention is not limited to these embodiments, and the configuration of each part can be replaced with any configuration that can exhibit the same function. In addition, an arbitrary configuration may be added.
 次に、本発明の実施例について説明する。 Next, examples of the present invention will be described.
A.光導波路の製造
(実施例1)
(1)脱離性基を有するノルボルネン系樹脂の合成
 水分および酸素濃度がいずれも1ppm以下に制御され、乾燥窒素で充満されたグローブボックス中において、ヘキシルノルボルネン(HxNB)7.2g(40.1mmol)、ジフェニルメチルノルボルネンメトキシシラン12.9g(40.1mmol)を500mLバイアル瓶に計量し、脱水トルエン60gと酢酸エチル11gを加え、シリコン製のシーラーを被せて上部を密栓した。
 次に、100mLバイアルビン中に下記化学式(B)で表わされるNi触媒1.56g(3.2mmol)と脱水トルエン10mLを計量し、スターラーチップを入れて密栓し、触媒を十分に撹拌して完全に溶解させた。
 この下記化学式(B)で表わされるNi触媒溶液1mLをシリンジで正確に計量し、上記2種のノルボルネンを溶解させたバイアル瓶中に定量的に注入し室温で1時間撹拌したところ、著しい粘度上昇が確認された。この時点で栓を抜き、テトラヒドロフラン(THF)60gを加えて撹拌を行い、反応溶液を得た。
 100mLビーカーに無水酢酸9.5g、過酸化水素水18g(濃度30%)、イオン交換水30gを加えて撹拌し、その場で過酢酸水溶液を調製した。次にこの水溶液全量を上記反応溶液に加えて12時間撹拌してNiの還元処理を行った。
 次に、処理の完了した反応溶液を分液ロートに移し替え、下部の水層を除去した後、イソプロピルアルコールの30%水溶液を100mL加えて激しく撹拌を行った。静置して完全に二層分離が行われた後で水層を除去した。この水洗プロセスを合計で3回繰り返した後、油層を大過剰のアセトン中に滴下して生成したポリマーを再沈殿させ、ろ過によりろ液と分別した後、60℃に設定した真空乾燥機中で12時間加熱乾燥を行うことにより、ポリマー#1を得た。ポリマー#1の分子量分布は、GPC測定によると、Mw=10万、Mn=4万であった。また、ポリマー#1中の各構造単位のモル比は、NMRによる同定によると、ヘキシルルボルネン構造単位が50mol%、ジフェニルメチルノルボルネンメトキシシラン構造単位が50mol%であった。またメトリコンによる屈折率は1.55(測定波長;633nm)であった。
A. Production of optical waveguide (Example 1)
(1) Synthesis of norbornene-based resin having a leaving group In a glove box filled with dry nitrogen in which the water and oxygen concentrations are both controlled to 1 ppm or less, 7.2 g (40.1 mmol) of hexylnorbornene (HxNB) ), 12.9 g (40.1 mmol) of diphenylmethylnorbornenemethoxysilane was weighed into a 500 mL vial, 60 g of dehydrated toluene and 11 g of ethyl acetate were added, and the top was sealed with a silicon sealer.
Next, 1.56 g (3.2 mmol) of Ni catalyst represented by the following chemical formula (B) and 10 mL of dehydrated toluene are weighed in a 100 mL vial, put a stirrer chip and sealed, and the catalyst is thoroughly stirred to completely Dissolved in.
When 1 mL of the Ni catalyst solution represented by the following chemical formula (B) is accurately weighed with a syringe, and quantitatively injected into the vial bottle in which the above two types of norbornene are dissolved, and stirred at room temperature for 1 hour, a marked increase in viscosity occurs. Was confirmed. At this point, the stopper was removed, 60 g of tetrahydrofuran (THF) was added, and the mixture was stirred to obtain a reaction solution.
In a 100 mL beaker, 9.5 g of acetic anhydride, 18 g of hydrogen peroxide (concentration 30%) and 30 g of ion-exchanged water were added and stirred to prepare an aqueous solution of peracetic acid on the spot. Next, the total amount of this aqueous solution was added to the above reaction solution and stirred for 12 hours to reduce Ni.
Next, the treated reaction solution was transferred to a separatory funnel, the lower aqueous layer was removed, and then 100 mL of a 30% aqueous solution of isopropyl alcohol was added and vigorously stirred. The aqueous layer was removed after standing and completely separating the two layers. After repeating this water washing process three times in total, the oil layer was dropped into a large excess of acetone to reprecipitate the polymer produced, separated from the filtrate by filtration, and then in a vacuum dryer set at 60 ° C. Polymer # 1 was obtained by heating and drying for 12 hours. The molecular weight distribution of the polymer # 1 was Mw = 100,000 and Mn = 40,000 according to GPC measurement. Moreover, the molar ratio of each structural unit in the polymer # 1 was 50 mol% for the hexylbornene structural unit and 50 mol% for the diphenylmethylnorbornenemethoxysilane structural unit according to identification by NMR. The refractive index by Metricon was 1.55 (measurement wavelength: 633 nm).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
(2)感光性樹脂組成物の製造
 精製した上記ポリマー#1 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、シクロヘキシルオキセタンモノマー(式20(式100)で示した第1モノマー、東亜合成製 CHOX、CAS#483303-25-9、分子量186、沸点125℃/1.33kPa)2g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄な感光性樹脂組成物ワニスV1を得た。
(2) Production of photosensitive resin composition 10 g of the purified polymer # 1 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of antioxidant Irganox 1076 (manufactured by Ciba Geigy), cyclohexyl oxetane monomer (formula 20) 1st monomer represented by (Formula 100), Toa Gosei CHOX, CAS # 483303-25-9, molecular weight 186, boiling point 125 ° C./1.33 kPa) 2 g, photoacid generator Rhodorsil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-72-2) (1.36E-2 g in 0.1 mL of ethyl acetate) and uniformly dissolved, and then filtered through a 0.2 μm PTFE filter to obtain a clean photosensitive resin composition varnish V1. It was.
(3)光導波路フィルムの製造
(下側クラッド層の作製)
 シリコンウエハ上に感光性ノルボルネン樹脂組成物(プロメラス社製 Avatrel2000Pワニス)をドクターブレードにより均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、塗布された全面に紫外線を100mJ照射し、乾燥機中120℃で1時間加熱して、塗膜を硬化させて、下側クラッド層を形成させた。形成された下側クラッド層は、厚みが20μmであり、無色透明であり、屈折率は1.52(測定波長;633nm)であった。
(3) Production of optical waveguide film (production of lower clad layer)
A photosensitive norbornene resin composition (Avatrel 2000P varnish manufactured by Promeras Co., Ltd.) was uniformly applied on a silicon wafer with a doctor blade, and then placed in a dryer at 45 ° C. for 15 minutes. After completely removing the solvent, the entire coated surface was irradiated with 100 mJ of ultraviolet light and heated in a dryer at 120 ° C. for 1 hour to cure the coating film to form a lower clad layer. The formed lower cladding layer had a thickness of 20 μm, was colorless and transparent, and had a refractive index of 1.52 (measurement wavelength: 633 nm).
(コア層の形成)
 上記下側クラッド層上に感光性樹脂組成物ワニスV1をドクターブレードによって均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、フォトマスクを圧着して紫外線を500mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中45℃で30分、85℃で30分、150℃で1時間と三段階で加熱を行った。加熱後、非常に鮮明な導波路パターンが現れているのが確認された。また、コア部およびクラッド部の形成が確認された。
(Formation of core layer)
After the photosensitive resin composition varnish V1 was uniformly applied on the lower clad layer with a doctor blade, it was put into a dryer at 45 ° C. for 15 minutes. After completely removing the solvent, a photomask was pressed and selectively irradiated with ultraviolet rays at 500 mJ / cm 2 . The mask was removed, and heating was performed in three stages in a dryer at 45 ° C. for 30 minutes, 85 ° C. for 30 minutes, and 150 ° C. for 1 hour. It was confirmed that a very clear waveguide pattern appeared after heating. Moreover, formation of the core part and the clad part was confirmed.
(上側クラッド層の形成)
 ポリエーテルスルホン(PES)フィルム上に、予め乾燥厚み20μmになるようにAvatrel2000Pを積層させたドライフィルムを、上記コア層に貼り合わせ、140℃に設定された真空ラミネーターに投入して熱圧着を行った。その後、紫外線を100mJ全面照射し乾燥機中120℃で1時間加熱して、Avatrel2000Pを硬化させて、上側クラッド層を形成させ、光導波路を得た。このとき、上側クラッド層は、無色透明であり、その屈折率は1.52であった。
(Formation of upper cladding layer)
A dry film in which Avatrel 2000P is laminated in advance on a polyethersulfone (PES) film so as to have a dry thickness of 20 μm is bonded to the above core layer, and put into a vacuum laminator set at 140 ° C. for thermocompression bonding. It was. Thereafter, 100 mJ was irradiated on the entire surface and heated in a dryer at 120 ° C. for 1 hour to cure Avatrel 2000P to form an upper clad layer to obtain an optical waveguide. At this time, the upper cladding layer was colorless and transparent, and its refractive index was 1.52.
(4)評価
(光導波路の損失評価)
 850nmVCSEL(面発光レーザー)より発せられた光を50μmφの光ファイバーを経由して上記光導波路に導入し、200μmφの光ファイバーで受光を行って光の強度を測定した。なお、測定にはカットバック法を採用した。光導波路の長手方向を横軸にとり、挿入損失を縦軸にプロットしていったところ、測定値はきれいに直線上に並び、その傾きから伝搬損失は0.03dB/cmと算出することができた。
(4) Evaluation (Evaluation of optical waveguide loss)
Light emitted from an 850 nm VCSEL (surface emitting laser) was introduced into the optical waveguide via a 50 μmφ optical fiber, received by a 200 μmφ optical fiber, and the light intensity was measured. The cutback method was used for the measurement. When the longitudinal direction of the optical waveguide is taken on the horizontal axis and the insertion loss is plotted on the vertical axis, the measured values are neatly arranged on a straight line, and the propagation loss can be calculated as 0.03 dB / cm from the inclination. .
(コア部とクラッド部との屈折率差)
 上記(コア層の形成)で形成した、水平方向に隣接する左右のコア部-クラッド部間の屈折率差は、次のように求めた。
 カナダ国 EXFO社製 Optical waveguide analyzer OWA-9500により波長656nmのレーザー光を光導波路に照射し、コア領域およびクラッド領域の屈折率をそれぞれ実測して、それらの差を算出した。その結果、屈折率差は0.02であった。
(Refractive index difference between core and clad)
The difference in refractive index between the left and right core portions and the clad portion formed in the above (formation of the core layer) in the horizontal direction was determined as follows.
Optical waveguide analyzer OWA-9500 manufactured by EXFO of Canada was used to irradiate the optical waveguide with laser light having a wavelength of 656 nm, and the refractive indexes of the core region and the cladding region were measured, and the difference between them was calculated. As a result, the refractive index difference was 0.02.
(実施例2)
(1)脱離性基を有しないノルボルネン系樹脂の合成
 水分および酸素濃度がいずれも1ppm以下に制御され、乾燥窒素で充満されたグローブボックス中において、ヘキシルノルボルネン(HxNB)9.4g(53.1mmol)、フェニルエチルノルボルネン10.5g(53.1mmol)を500mLバイアル瓶に計量し、脱水トルエン60gと酢酸エチル11gを加え、シリコン製のシーラーを被せて上部を密栓した。
 次に、100mLバイアルビン中に上記化学式(B)で表わされるNi触媒2.06g(3.2mmol)と脱水トルエン10mLを計量し、スターラーチップを入れて密栓し、触媒を十分に撹拌して完全に溶解させた。
 上記化学式(B)で表わされるNi触媒溶液1mLをシリンジで正確に計量し、上記2種のノルボルネンを溶解させたバイアル瓶中に定量的に注入し室温で1時間撹拌したところ、著しい粘度上昇が確認された。この時点で栓を抜き、テトラヒドロフラン(THF)60gを加えて撹拌を行い、反応溶液を得た。
 100mLビーカーに無水酢酸9.5g、過酸化水素水18g(濃度30%)、イオン交換水30gを加えて撹拌し、その場で過酢酸水溶液を調製した。次にこの水溶液全量を上記反応溶液に加えて12時間撹拌してNiの還元処理を行った。
 次に、処理の完了した反応溶液を分液ロートに移し替え、下部の水層を除去した後、イソプロピルアルコールの30%水溶液を100mL加えて激しく撹拌を行った。静置して完全に二層分離が行われた後で水層を除去した。この水洗プロセスを合計で3回繰り返した後、油層を大過剰のアセトン中に滴下して生成したポリマーを再沈殿させ、ろ過によりろ液と分別した後、60℃に設定した真空乾燥機中で12時間加熱乾燥を行うことにより、ポリマー#2を得た。ポリマー#2の分子量分布は、GPC測定によると、Mw=9万、Mn=4万であった。また、ポリマー#2中の各構造単位のモル比は、NMRによる同定によると、ヘキシルルボルネン構造単位が50mol%、フェニルエチルノルボルネン構造単位が50mol%であった。またメトリコンによる屈折率は1.54(測定波長;633nm)であった。
(Example 2)
(1) Synthesis of norbornene-based resin having no leaving group In a glove box filled with dry nitrogen in which the water and oxygen concentrations are both controlled to 1 ppm or less, 9.4 g of hexylnorbornene (HxNB) (53. 1 mmol) and 10.5 g (53.1 mmol) of phenylethylnorbornene were weighed into a 500 mL vial, 60 g of dehydrated toluene and 11 g of ethyl acetate were added, and the top was sealed with a silicon sealer.
Next, weigh 2.06 g (3.2 mmol) of Ni catalyst represented by the above chemical formula (B) and 10 mL of dehydrated toluene in a 100 mL vial, put a stirrer chip and seal tightly, and thoroughly stir the catalyst. Dissolved in.
When 1 mL of the Ni catalyst solution represented by the chemical formula (B) is accurately weighed with a syringe, and quantitatively injected into the vial bottle in which the two types of norbornene are dissolved and stirred at room temperature for 1 hour, a marked increase in viscosity is observed. confirmed. At this point, the stopper was removed, 60 g of tetrahydrofuran (THF) was added, and the mixture was stirred to obtain a reaction solution.
In a 100 mL beaker, 9.5 g of acetic anhydride, 18 g of hydrogen peroxide (concentration 30%) and 30 g of ion-exchanged water were added and stirred to prepare an aqueous solution of peracetic acid on the spot. Next, the total amount of this aqueous solution was added to the above reaction solution and stirred for 12 hours to reduce Ni.
Next, the treated reaction solution was transferred to a separatory funnel, the lower aqueous layer was removed, and then 100 mL of a 30% aqueous solution of isopropyl alcohol was added and vigorously stirred. The aqueous layer was removed after standing and completely separating the two layers. After repeating this washing process three times in total, the oil layer was dropped into a large excess of acetone to reprecipitate the polymer produced, and the polymer was separated from the filtrate by filtration, and then in a vacuum dryer set at 60 ° C. Polymer # 2 was obtained by heat drying for 12 hours. The molecular weight distribution of the polymer # 2 was Mw = 90,000 and Mn = 40,000 according to GPC measurement. The molar ratio of each structural unit in polymer # 2 was 50 mol% for the hexylbornene structural unit and 50 mol% for the phenylethylnorbornene structural unit according to identification by NMR. The refractive index by Metricon was 1.54 (measurement wavelength: 633 nm).
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
(2)感光性樹脂組成物の製造
 精製した上記ポリマー#2 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、シクロヘキシルオキセタンモノマー(式20で示したもの、東亜合成製 CHOX、CAS#483303-25-9、分子量186、沸点125℃/1.33kPa)2g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄な感光性樹脂組成物ワニスV2を得た。
(2) Production of photosensitive resin composition 10 g of the purified polymer # 2 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of an antioxidant Irganox 1076 (manufactured by Ciba Geigy), cyclohexyloxetane monomer (formula 20) 2 g, photoacid generator Rhodorsil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-72-2), manufactured by Toagosei Co., Ltd. CHOX, CAS # 483303-25-9, molecular weight 186, boiling point 125 ° C./1.33 kPa) (1.36E-2 g, in 0.1 mL of ethyl acetate) was added and dissolved uniformly, and then filtered through a 0.2 μm PTFE filter to obtain a clean photosensitive resin composition varnish V2.
(3)光導波路フィルムの製造
(下側クラッド層の作製)
 実施例1と同様の下側クラッド層を作製した。
(3) Production of optical waveguide film (production of lower clad layer)
A lower clad layer similar to that in Example 1 was produced.
(コア層の形成)
 上記下側クラッド層上に感光性樹脂組成物ワニスV2をドクターブレードによって均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、フォトマスクを圧着して紫外線を500mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中45℃で30分、85℃で30分、150℃で1時間と三段階で加熱を行った。加熱後、非常に鮮明な導波路パターンが現れているのが確認された。また、コア部およびクラッド部の形成が確認された。
(Formation of core layer)
After the photosensitive resin composition varnish V2 was uniformly applied on the lower clad layer with a doctor blade, it was put into a dryer at 45 ° C. for 15 minutes. After completely removing the solvent, a photomask was pressed and selectively irradiated with ultraviolet rays at 500 mJ / cm 2 . The mask was removed, and heating was performed in three stages in a dryer at 45 ° C. for 30 minutes, 85 ° C. for 30 minutes, and 150 ° C. for 1 hour. It was confirmed that a very clear waveguide pattern appeared after heating. Moreover, formation of the core part and the clad part was confirmed.
(上側クラッド層の形成)
 実施例1と同様の上側クラッド層を作製した
(Formation of upper cladding layer)
An upper clad layer similar to that in Example 1 was produced.
(4)評価
 実施例1と同じ方法により、評価を行った。伝搬損失は0.04dB/cmと算出することができた。コア部とクラッド部の屈折率差は0.01であった。
(4) Evaluation Evaluation was performed in the same manner as in Example 1. The propagation loss could be calculated as 0.04 dB / cm. The difference in refractive index between the core portion and the cladding portion was 0.01.
(実施例3)
(1)脱離性基を有するノルボルネン系樹脂の合成
 実施例1と同様の方法でノルボルネン系樹脂を作製した。
(Example 3)
(1) Synthesis of norbornene-based resin having a leaving group A norbornene-based resin was produced in the same manner as in Example 1.
(2)感光性樹脂組成物の製造
 精製した上記ポリマー#1 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、2官能オキセタンモノマー(式(15)で示したもの、東亜合成製、DOX、CAS#18934-00-4、分子量214、沸点119℃/0.67kPa)2g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄な感光性樹脂組成物ワニスV3を得た。
(2) Production of photosensitive resin composition 10 g of the purified polymer # 1 was weighed into a 100 mL glass container, and 40 g of mesitylene, an antioxidant Irganox 1076 (manufactured by Ciba Geigy) 0.01 g, a bifunctional oxetane monomer (formula (15), Toa Gosei, DOX, CAS # 18934-00-4, molecular weight 214, boiling point 119 ° C./0.67 kPa) 2 g, photoacid generator Rhodosil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-) 72-2) (1.36E-2 g in 0.1 mL of ethyl acetate) was added and dissolved uniformly, and then filtered through a 0.2 μm PTFE filter to obtain a clean photosensitive resin composition varnish V3.
(3)光導波路フィルムの製造
(下側クラッド層の作製)
 実施例1と同様の下側クラッド層を作製した。
(3) Production of optical waveguide film (production of lower clad layer)
A lower clad layer similar to that in Example 1 was produced.
(コア層の形成)
 上記下側クラッド層上に感光性樹脂組成物ワニスV3をドクターブレードによって均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、フォトマスクを圧着して紫外線を500mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中45℃で30分、85℃で30分、150℃で1時間と三段階で加熱を行った。加熱後、非常に鮮明な導波路パターンが現れているのが確認された。また、コア部およびクラッド部の形成が確認された。
(Formation of core layer)
After the photosensitive resin composition varnish V3 was uniformly applied on the lower clad layer with a doctor blade, it was put into a dryer at 45 ° C. for 15 minutes. After completely removing the solvent, a photomask was pressed and selectively irradiated with ultraviolet rays at 500 mJ / cm 2 . The mask was removed, and heating was performed in three stages in a dryer at 45 ° C. for 30 minutes, 85 ° C. for 30 minutes, and 150 ° C. for 1 hour. It was confirmed that a very clear waveguide pattern appeared after heating. Moreover, formation of the core part and the clad part was confirmed.
(上側クラッド層の形成)
 実施例1と同様の上側クラッド層を作製した。
(Formation of upper cladding layer)
An upper clad layer similar to that in Example 1 was produced.
(4)評価
 実施例1と同じ方法により、評価を行った。伝搬損失は0.04dB/cmと算出することができた。コア部とクラッド部の屈折率差は0.01であった。
(4) Evaluation Evaluation was performed in the same manner as in Example 1. The propagation loss could be calculated as 0.04 dB / cm. The difference in refractive index between the core portion and the cladding portion was 0.01.
(実施例4)
(1)脱離性基を有するノルボルネン系樹脂の合成
 実施例1と同様の方法でノルボルネン系樹脂を作製した。
Example 4
(1) Synthesis of norbornene-based resin having a leaving group A norbornene-based resin was produced in the same manner as in Example 1.
(2)感光性樹脂組成物の製造
 精製した上記ポリマー#1 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、脂環式エポキシモノマー(式(37)で示したもの、ダイセル化学製、セロキサイド2021P、CAS#2386-87-0、分子量252、沸点188℃/4hPa)2g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄な感光性樹脂組成物ワニスV4を得た。
(2) Production of photosensitive resin composition 10 g of the purified polymer # 1 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of an antioxidant Irganox 1076 (manufactured by Ciba Geigy), an alicyclic epoxy monomer ( Formula (37), manufactured by Daicel Chemical Industries, Celoxide 2021P, CAS # 2386-87-0, molecular weight 252 and boiling point 188 ° C./4 hPa) 2 g, photoacid generator Rhodorsil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233- 72-2) (1.36E-2 g in 0.1 mL of ethyl acetate) was added and dissolved uniformly, and then filtered through a 0.2 μm PTFE filter to obtain a clean photosensitive resin composition varnish V4.
(3)光導波路フィルムの製造
(下側クラッド層の作製)
 実施例1と同様の下側クラッド層を作製した。
(3) Production of optical waveguide film (production of lower clad layer)
A lower clad layer similar to that in Example 1 was produced.
(コア層の形成)
 上記下側クラッド層上に感光性樹脂組成物ワニスV4をドクターブレードによって均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、フォトマスクを圧着して紫外線を500mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中45℃で30分、85℃で30分、150℃で1時間と三段階で加熱を行った。加熱後、非常に鮮明な導波路パターンが現れているのが確認された。また、コア部およびクラッド部の形成が確認された。
(Formation of core layer)
After the photosensitive resin composition varnish V4 was uniformly applied on the lower clad layer with a doctor blade, it was put into a dryer at 45 ° C. for 15 minutes. After completely removing the solvent, a photomask was pressed and selectively irradiated with ultraviolet rays at 500 mJ / cm 2 . The mask was removed, and heating was performed in three stages in a dryer at 45 ° C. for 30 minutes, 85 ° C. for 30 minutes, and 150 ° C. for 1 hour. It was confirmed that a very clear waveguide pattern appeared after heating. Moreover, formation of the core part and the clad part was confirmed.
(上側クラッド層の形成)
 実施例1と同様の上側クラッド層を作製した。
(Formation of upper cladding layer)
An upper clad layer similar to that in Example 1 was produced.
(4)評価
 実施例1と同じ方法により、評価を行った。伝搬損失は0.04dB/cmと算出することができた。コア部とクラッド部の屈折率差は0.01であった。
(4) Evaluation Evaluation was performed in the same manner as in Example 1. The propagation loss could be calculated as 0.04 dB / cm. The difference in refractive index between the core portion and the cladding portion was 0.01.
(実施例5)
(1)脱離性基を有するノルボルネン系樹脂の合成
 実施例1と同様の方法でノルボルネン系樹脂を作製した。
(Example 5)
(1) Synthesis of norbornene-based resin having a leaving group A norbornene-based resin was produced in the same manner as in Example 1.
(2)感光性樹脂組成物の製造
 精製した上記ポリマー#1 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、シクロヘキシルオキセタンモノマー(式20で示したもの、東亜合成製 CHOX)1g、脂環式エポキシモノマー(ダイセル化学製、セロキサイド2021P) 1g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄な感光性樹脂組成物ワニスV5を得た。
(2) Production of photosensitive resin composition 10 g of the purified polymer # 1 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of antioxidant Irganox 1076 (manufactured by Ciba Geigy), cyclohexyl oxetane monomer (formula 20) 1 g of CHOX manufactured by Toa Gosei Co., Ltd. 1 g of alicyclic epoxy monomer (manufactured by Daicel Chemical Industries, Celoxide 2021P), photoacid generator Rhodorsil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-72-2) (1.36E-) 2 g in 0.1 mL of ethyl acetate) and uniformly dissolved, and then filtered through a 0.2 μm PTFE filter to obtain a clean photosensitive resin composition varnish V5.
(3)光導波路フィルムの製造
(下側クラッド層の作製)
 実施例1と同様の下側クラッド層を作製した。
(3) Production of optical waveguide film (production of lower clad layer)
A lower clad layer similar to that in Example 1 was produced.
(コア層の形成)
 上記下側クラッド層上に感光性樹脂組成物ワニスV5をドクターブレードによって均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、フォトマスクを圧着して紫外線を500mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中45℃で30分、85℃で30分、150℃で1時間と三段階で加熱を行った。加熱後、非常に鮮明な導波路パターンが現れているのが確認された。また、コア部およびクラッド部の形成が確認された。
(Formation of core layer)
After the photosensitive resin composition varnish V5 was uniformly applied on the lower clad layer with a doctor blade, it was put into a dryer at 45 ° C. for 15 minutes. After completely removing the solvent, a photomask was pressed and selectively irradiated with ultraviolet rays at 500 mJ / cm 2 . The mask was removed, and heating was performed in three stages in a dryer at 45 ° C. for 30 minutes, 85 ° C. for 30 minutes, and 150 ° C. for 1 hour. It was confirmed that a very clear waveguide pattern appeared after heating. Moreover, formation of the core part and the clad part was confirmed.
(上側クラッド層の形成)
 実施例1と同様の上側クラッド層を作製した。
(Formation of upper cladding layer)
An upper clad layer similar to that in Example 1 was produced.
(4)評価
 実施例1と同じ方法により、評価を行った。伝搬損失は0.03dB/cmと算出することができた。コア部とクラッド部の屈折率差は0.01であった。
(4) Evaluation Evaluation was performed in the same manner as in Example 1. The propagation loss could be calculated as 0.03 dB / cm. The difference in refractive index between the core portion and the cladding portion was 0.01.
(実施例6)
(1)脱離性基を有するノルボルネン系樹脂の合成
 実施例1と同様の方法でノルボルネン系樹脂を作製した。
(Example 6)
(1) Synthesis of norbornene-based resin having a leaving group A norbornene-based resin was produced in the same manner as in Example 1.
(2)感光性樹脂組成物の製造
 精製した上記ポリマー#1 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、シクロヘキシルオキセタンモノマー(式20で示したもの、東亜合成製 CHOX)1.5g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄な感光性樹脂組成物ワニスV6を得た。
(2) Production of photosensitive resin composition 10 g of the purified polymer # 1 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of antioxidant Irganox 1076 (manufactured by Ciba Geigy), cyclohexyl oxetane monomer (formula 20) And 1.5 g of photoacid generator Rhodosil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-72-2) (1.36E-2 g in 0.1 mL of ethyl acetate) and uniformly added. After dissolution, filtration was performed with a 0.2 μm PTFE filter to obtain a clean photosensitive resin composition varnish V6.
(3)光導波路フィルムの製造
(下側クラッド層の作製)
 実施例1と同様の下側クラッド層を作製した。
(3) Production of optical waveguide film (production of lower clad layer)
A lower clad layer similar to that in Example 1 was produced.
(コア層の形成)
 上記下側クラッド層上に感光性樹脂組成物ワニスV6をドクターブレードによって均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、フォトマスクを圧着して紫外線を500mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中45℃で30分、85℃で30分、150℃で1時間と三段階で加熱を行った。加熱後、非常に鮮明な導波路パターンが現れているのが確認された。また、コア部およびクラッド部の形成が確認された。
(Formation of core layer)
After the photosensitive resin composition varnish V6 was uniformly applied on the lower clad layer with a doctor blade, it was put into a dryer at 45 ° C. for 15 minutes. After completely removing the solvent, a photomask was pressed and selectively irradiated with ultraviolet rays at 500 mJ / cm 2 . The mask was removed, and heating was performed in three stages in a dryer at 45 ° C. for 30 minutes, 85 ° C. for 30 minutes, and 150 ° C. for 1 hour. It was confirmed that a very clear waveguide pattern appeared after heating. Moreover, formation of the core part and the clad part was confirmed.
(上側クラッド層の形成)
 実施例1と同様の上側クラッド層を作製した。
(Formation of upper cladding layer)
An upper clad layer similar to that in Example 1 was produced.
(4)評価
 実施例1と同じ方法により、評価を行った。伝搬損失は0.03dB/cmと算出することができた。コア部とクラッド部の屈折率差は0.01であった。
(4) Evaluation Evaluation was performed in the same manner as in Example 1. The propagation loss could be calculated as 0.03 dB / cm. The difference in refractive index between the core portion and the cladding portion was 0.01.
(実施例7)
(1)脱離性基を有するノルボルネン系樹脂の合成
 水分および酸素濃度がいずれも1ppm以下に制御され、乾燥窒素で充満されたグローブボックス中において、ヘキシルノルボルネン(HxNB)6.4g(36.1mmol)、ジフェニルメチルノルボルネンメトキシシラン(diPhNB)8.7g(27.1mmol)、エポキシノルボルネン(EpNB)4.9g(27.1mmol)を500mLバイアル瓶に計量し、脱水トルエン60gと酢酸エチル11gを加え、シリコン製のシーラーを被せて上部を密栓した。
 次に、100mLバイアルビン中に上記化学式(B)で表わされるNi触媒1.75g(3.2mmol)と脱水トルエン10mLを計量し、スターラーチップを入れて密栓し、触媒を十分に撹拌して完全に溶解させた。
 この上記化学式(B)で表わされるNi触媒溶液1mLをシリンジで正確に計量し、上記3種のノルボルネンを溶解させたバイアル瓶中に定量的に注入し室温で1時間撹拌したところ、著しい粘度上昇が確認された。この時点で栓を抜き、テトラヒドロフラン(THF)60gを加えて撹拌を行い、反応溶液を得た。
 100mLビーカーに無水酢酸9.5g、過酸化水素水18g(濃度30%)、イオン交換水30gを加えて撹拌し、その場で過酢酸水溶液を調製した。次にこの水溶液全量を上記反応溶液に加えて12時間撹拌してNiの還元処理を行った。
 次に、処理の完了した反応溶液を分液ロートに移し替え、下部の水層を除去した後、イソプロピルアルコールイソプロピルアルコールの30%水溶液を100mL加えて激しく撹拌を行った。静置して完全に二層分離が行われた後で水層を除去した。この水洗プロセスを合計で3回繰り返した後、油層を大過剰のアセトン中に滴下して生成したポリマーを再沈殿させ、ろ過によりろ液と分別した後、60℃に設定した真空乾燥機中で12時間加熱乾燥を行うことにより、ポリマー#3を得た。ポリマー#3の分子量分布は、GPC測定によると、Mw=8万、Mn=4万であった。また、ポリマー#3中の各構造単位のモル比は、NMRによる同定によると、ヘキシルルボルネン構造単位が40mol%、ジフェニルメチルノルボルネンメトキシシラン構造単位が30mol%、エポキシノルボルネン構造単位が30mol%であった。またメトリコンによる屈折率は1.53(測定波長;633nm)であった。
(Example 7)
(1) Synthesis of norbornene-based resin having a leaving group In a glove box whose water and oxygen concentrations are both controlled to 1 ppm or less and filled with dry nitrogen, 6.4 g (36.1 mmol) of hexylnorbornene (HxNB) ), Diphenylmethylnorbornene methoxysilane (diPhNB) 8.7 g (27.1 mmol), epoxy norbornene (EpNB) 4.9 g (27.1 mmol) were weighed into a 500 mL vial, 60 g of dehydrated toluene and 11 g of ethyl acetate were added, The top was sealed with a silicon sealer.
Next, 1.75 g (3.2 mmol) of the Ni catalyst represented by the above chemical formula (B) and 10 mL of dehydrated toluene are weighed in a 100 mL vial, and a stirrer chip is put in, tightly plugged, and the catalyst is thoroughly stirred to completely Dissolved in.
When 1 mL of the Ni catalyst solution represented by the above chemical formula (B) is accurately weighed with a syringe, and quantitatively injected into the vial bottle in which the three types of norbornene are dissolved, and stirred at room temperature for 1 hour, a marked increase in viscosity occurs. Was confirmed. At this point, the stopper was removed, 60 g of tetrahydrofuran (THF) was added, and the mixture was stirred to obtain a reaction solution.
In a 100 mL beaker, 9.5 g of acetic anhydride, 18 g of hydrogen peroxide (concentration 30%) and 30 g of ion-exchanged water were added and stirred to prepare an aqueous solution of peracetic acid on the spot. Next, the total amount of this aqueous solution was added to the above reaction solution and stirred for 12 hours to reduce Ni.
Next, the treated reaction solution was transferred to a separatory funnel, the lower aqueous layer was removed, and then 100 mL of a 30% aqueous solution of isopropyl alcohol isopropyl alcohol was added and vigorously stirred. The aqueous layer was removed after standing and completely separating the two layers. After repeating this washing process three times in total, the oil layer was dropped into a large excess of acetone to reprecipitate the polymer produced, and the polymer was separated from the filtrate by filtration, and then in a vacuum dryer set at 60 ° C. Polymer # 3 was obtained by heat drying for 12 hours. The molecular weight distribution of the polymer # 3 was Mw = 80,000 and Mn = 40,000 according to GPC measurement. According to the identification by NMR, the molar ratio of each structural unit in polymer # 3 is 40 mol% for hexylbornene structural unit, 30 mol% for diphenylmethylnorbornenemethoxysilane structural unit, and 30 mol% for epoxynorbornene structural unit. there were. The refractive index by Metricon was 1.53 (measurement wavelength: 633 nm).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
(2)感光性樹脂組成物の製造
 精製した上記ポリマー#3 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、シクロヘキシルオキセタンモノマー(式20で示したもの、東亜合成製 CHOX)1.0g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄な感光性樹脂組成物ワニスV7を得た。
(2) Production of photosensitive resin composition 10 g of the purified polymer # 3 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of antioxidant Irganox 1076 (manufactured by Ciba Geigy), cyclohexyloxetane monomer (formula 20) And 1.0 g of CHO manufactured by Toa Gosei Co., Ltd. and a photoacid generator Rhodosil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-72-2) (1.36E-2 g in 0.1 mL of ethyl acetate) were uniformly added. After dissolution, filtration was performed with a 0.2 μm PTFE filter to obtain a clean photosensitive resin composition varnish V7.
(3)光導波路フィルムの製造
(下側クラッド層の作製)
 実施例1と同様の下側クラッド層を作製した。
(3) Production of optical waveguide film (production of lower clad layer)
A lower clad layer similar to that in Example 1 was produced.
(コア層の形成)
 上記下側クラッド層上に感光性樹脂組成物ワニスV7をドクターブレードによって均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、フォトマスクを圧着して紫外線を500mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中45℃で30分、85℃で30分、150℃で1時間と三段階で加熱を行った。加熱後、非常に鮮明な導波路パターンが現れているのが確認された。また、コア部およびクラッド部の形成が確認された。
(Formation of core layer)
After the photosensitive resin composition varnish V7 was uniformly applied on the lower clad layer with a doctor blade, it was put into a dryer at 45 ° C. for 15 minutes. After completely removing the solvent, a photomask was pressed and selectively irradiated with ultraviolet rays at 500 mJ / cm 2 . The mask was removed, and heating was performed in three stages in a dryer at 45 ° C. for 30 minutes, 85 ° C. for 30 minutes, and 150 ° C. for 1 hour. It was confirmed that a very clear waveguide pattern appeared after heating. Moreover, formation of the core part and the clad part was confirmed.
(上側クラッド層の形成)
 実施例1と同様の上層クラッドを作製した。
(Formation of upper cladding layer)
An upper clad similar to that of Example 1 was produced.
(4)評価
 実施例1と同じ方法により、評価を行った。伝搬損失は0.04dB/cmと算出することができた。コア部とクラッド部の屈折率差は0.02であった。
(4) Evaluation Evaluation was performed in the same manner as in Example 1. The propagation loss could be calculated as 0.04 dB / cm. The refractive index difference between the core portion and the clad portion was 0.02.
 以上、実施例1~7で得られた光導波路フィルムの評価結果を表1に示す。 The evaluation results of the optical waveguide films obtained in Examples 1 to 7 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 実施例1~7では、感光性樹脂組成物に光を当てると、光酸発生剤から、酸が発生し、照射部分のみにおいて、環状エーテル基を有するモノマーが重合する。そして、照射部分における未反応モノマー量が少なくなるため、照射部分/未照射部分間で生じた濃度勾配を解消するために未照射部分のモノマーが照射部分に拡散する。
 また、光照射後、加熱を行うと、未照射部分からモノマーが揮発する。
 以上より、コア部とクラッド部との間でモノマー由来の構造体濃度が異なり、クラッド部では、環状エーテル基を有するモノマー由来の構造体が多くなり、コア部では、環状エーテル基を有するモノマー由来の構造体が少なくなる。このことは、コア部とクラッド部との間で0.01以上の比較的大きな屈折率差が生じることから認められる。
 なお、実施例1~7では、直線状の光導波路を形成したが、曲線状(曲率半径10mm程度)の光導波路を形成した場合には、光損失が少ないことが顕著になる。
 さらには、実施例1~7で得られた光導波路フィルムは、耐熱性が高く、260℃の耐リフロー性を有している。
In Examples 1 to 7, when light is applied to the photosensitive resin composition, an acid is generated from the photoacid generator, and the monomer having a cyclic ether group is polymerized only in the irradiated portion. Then, since the amount of unreacted monomer in the irradiated part decreases, the monomer in the unirradiated part diffuses into the irradiated part in order to eliminate the concentration gradient generated between the irradiated part / unirradiated part.
Further, when heating is performed after light irradiation, the monomer volatilizes from the unirradiated portion.
As described above, the structure concentration derived from the monomer is different between the core portion and the cladding portion, the structure derived from the monomer having a cyclic ether group increases in the cladding portion, and the monomer derived from the monomer having a cyclic ether group is present in the core portion. There are fewer structures. This is recognized from the fact that a relatively large refractive index difference of 0.01 or more occurs between the core portion and the cladding portion.
In Examples 1 to 7, a linear optical waveguide is formed. However, when a curved optical waveguide (with a radius of curvature of about 10 mm) is formed, it is remarkable that optical loss is small.
Furthermore, the optical waveguide films obtained in Examples 1 to 7 have high heat resistance and reflow resistance of 260 ° C.
(実施例8)
(1)脱離性基を有するノルボルネン樹脂の合成
 脱離性基を有するノルボルネン系樹脂の合成において、ジフェニルメチルノルボルネンメトキシシラン12.9g(40.1mmol)に代えて、フェニルジメチルノルボルネンメトキシシラン10.4g(40.1mmol)を用いた以外は実施例1と同様にした。得られた側鎖に脱離性基を有するノルボルネン系樹脂B(式103)の分子量は、GPC測定によると、Mw=11万、Mn=5万であった。また、各構造単位のモル比は、NMRによる同定によると、ヘキシルノルボルネン構造単位が50mol%、フェニルジメチルノルボルネンメトキシシラン構造単位が50mol%であった。またメトリコンによる屈折率は1.53(測定波長;633nm)であった。
(Example 8)
(1) Synthesis of norbornene resin having a leaving group In the synthesis of a norbornene resin having a leaving group, phenyldimethylnorbornenemethoxysilane was used instead of 12.9 g (40.1 mmol) of diphenylmethylnorbornenemethoxysilane. Example 1 was repeated except that 4 g (40.1 mmol) was used. The molecular weight of the obtained norbornene resin B (Formula 103) having a leaving group in the side chain was Mw = 110,000 and Mn = 50,000 according to GPC measurement. Further, according to the identification by NMR, the molar ratio of each structural unit was 50 mol% for the hexylnorbornene structural unit and 50 mol% for the phenyldimethylnorbornenemethoxysilane structural unit. The refractive index by Metricon was 1.53 (measurement wavelength: 633 nm).
(2)感光性樹脂組成物の製造
 ポリマー#1に代えて、ノルボルネン系樹脂Bを使用した点以外は、実施例1と同様に感光性樹脂組成物を得た。
(2) Production of photosensitive resin composition A photosensitive resin composition was obtained in the same manner as in Example 1 except that norbornene resin B was used instead of polymer # 1.
(3)光導波路フィルムの製造
 ノルボルネン系樹脂Bを含む上記感光性樹脂組成物を使用した点以外は、実施例1と同様にして、光導波路フィルムを得た。
 実施例1と同様に、光導波路の損失評価を行ったところ、得られた光導波路フィルムの伝搬損失は0.03dB/cmであった。
(3) Production of optical waveguide film An optical waveguide film was obtained in the same manner as in Example 1 except that the photosensitive resin composition containing the norbornene-based resin B was used.
When the loss evaluation of the optical waveguide was performed in the same manner as in Example 1, the propagation loss of the obtained optical waveguide film was 0.03 dB / cm.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
(実施例9)
(1)感光性樹脂組成物として以下のものを用いた以外は、実施例1と同様にした。
 実施例1で得られたノルボルネン系樹脂10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、シクロヘキシルオキセタンモノマー(式(100)で示した第1モノマー、東亜合成製 CHOX、CAS#483303-25-9、分子量186、沸点125℃/1.33kPa)1g、2官能オキセタンモノマー(式(104)で示した第2モノマー、東亜合成製、DOX、CAS#18934-00-4、分子量214、沸点119℃/0.67kPa)1g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄なコア層用の感光性樹脂組成物ワニスを調製した。
Example 9
(1) The procedure was the same as Example 1 except that the following photosensitive resin composition was used.
10 g of norbornene-based resin obtained in Example 1 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of an antioxidant Irganox 1076 (manufactured by Ciba Geigy), and a cyclohexyloxetane monomer (formula (100) represented by formula (100)). 1 monomer, manufactured by Toa Gosei CHOX, CAS # 483303-25-9, molecular weight 186, boiling point 125 ° C./1.33 kPa) 1 g, bifunctional oxetane monomer (second monomer represented by formula (104), manufactured by Toa Gosei, DOX CAS # 18934-00-4, molecular weight 214, boiling point 119 ° C./0.67 kPa) 1 g, photoacid generator Rhodosil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-72-2) (1.36E-2 g, ethyl acetate 0.1mL) and add Then, it was filtered with a 0.2 μm PTFE filter to prepare a clean photosensitive resin composition varnish for the core layer.
(2)光導波路フィルムの製造
 上記(1)の感光性樹脂組成物を使用した点以外は、実施例1と同様にして、光導波路フィルムを得た。
 実施例1と同様に、光導波路の損失評価を行ったところ、得られた光導波路フィルムの伝搬損失は0.04dB/cmであった。
(2) Production of optical waveguide film An optical waveguide film was obtained in the same manner as in Example 1 except that the photosensitive resin composition of (1) above was used.
When the loss evaluation of the optical waveguide was performed in the same manner as in Example 1, the propagation loss of the obtained optical waveguide film was 0.04 dB / cm.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
(実施例10)
 環状オレフィンとして以下のものを用いた以外は、実施例1と同様にした。
(1)ノルボルネン系樹脂Cの合成
 公知の手法(例えば特開2003-252963号公報)を用いてフェニルエチルノルボルネン(PENB)モノマーの開環メタセシス重合を行い、下記式(105)で表されるノルボルネン系樹脂Cを得た。
(Example 10)
Example 1 was repeated except that the following were used as the cyclic olefin.
(1) Synthesis of norbornene-based resin C Norbornene represented by the following formula (105) is obtained by ring-opening metathesis polymerization of phenylethylnorbornene (PENB) monomer using a known method (for example, JP-A-2003-252963). System resin C was obtained.
(2)感光性樹脂組成物製造
 ポリマー#1に変えて、ノルボルネン系樹脂Cを使用した点以外は、実施例1と同様に感光性樹脂組成物を得た。
(2) Production of photosensitive resin composition A photosensitive resin composition was obtained in the same manner as in Example 1 except that the norbornene resin C was used instead of the polymer # 1.
(3)光導波路フィルムの製造
 ノルボルネン系樹脂Cを含む上記感光性樹脂組成物を使用した点以外は、実施例1と同様にして、光導波路フィルムを得た。
 実施例1と同様に、光導波路の損失評価を行ったところ、得られた光導波路フィルムの伝搬損失は0.05dB/cmであった。
(3) Production of optical waveguide film An optical waveguide film was obtained in the same manner as in Example 1 except that the photosensitive resin composition containing the norbornene-based resin C was used.
When the loss evaluation of the optical waveguide was performed in the same manner as in Example 1, the propagation loss of the obtained optical waveguide film was 0.05 dB / cm.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
(実施例11)
 第1モノマーの配合量を0.5gにした以外は、実施例1と同様にして、光導波路フィルムを作製した。
 なお、得られた光導波路フィルムの伝搬損失は、0.1dB/cmであった。
(Example 11)
An optical waveguide film was produced in the same manner as in Example 1 except that the amount of the first monomer was changed to 0.5 g.
The propagation loss of the obtained optical waveguide film was 0.1 dB / cm.
(実施例12)
 第1モノマーの配合量を4.0gに以外は、実施例1と同様にして、光導波路フィルムを作製した。
 なお、得られた光導波路フィルムの伝搬損失は、0.1dB/cmであった。
(Example 12)
An optical waveguide film was produced in the same manner as in Example 1 except that the blending amount of the first monomer was 4.0 g.
The propagation loss of the obtained optical waveguide film was 0.1 dB / cm.
(比較例1)
 第1モノマーを用いなかった以外は、実施例1と同様にして、光導波路フィルムを作製した。
 なお、得られた光導波路フィルムの伝搬損失は、0.90dB/cmであった。
(Comparative Example 1)
An optical waveguide film was produced in the same manner as in Example 1 except that the first monomer was not used.
The propagation loss of the obtained optical waveguide film was 0.90 dB / cm.
(比較例2)
(1)各成分の合成
<触媒前駆体:Pd(OAc)(P(Cy)の合成>
 漏斗を装備した2口丸底フラスコで、Pd(OAc)(5.00g、22.3mmol)とCHCl(30mL)からなる赤茶色懸濁液を-78℃で攪拌した。
 漏斗に、P(Cy)(13.12mL(44.6mmol))のCHCl溶液(30mL)を入れ、そして、15分かけて上記攪拌懸濁液に滴下した。その結果、徐々に赤褐色から黄色に変化した。
 -78℃で1時間攪拌した後、懸濁液を室温に温め、さらに2時間攪拌して、ヘキサン(20mL)で希釈した。
 次に、この黄色の固体を空気中でろ過し、ペンタンで洗浄し(5×10mL)、真空乾燥させた。
 2次収集物は、ろ液を0℃に冷却して分離し、上記と同様に洗浄して乾燥させた。これにより、触媒前駆体を得た。
(Comparative Example 2)
(1) Synthesis of each component <Catalyst precursor: Synthesis of Pd (OAc) 2 (P (Cy) 3 ) 2 >
In a 2-neck round bottom flask equipped with a funnel, a reddish brown suspension consisting of Pd (OAc) 2 (5.00 g, 22.3 mmol) and CH 2 Cl 2 (30 mL) was stirred at −78 ° C.
A funnel was charged with a CH 2 Cl 2 solution (30 mL) of P (Cy) 3 (13.12 mL (44.6 mmol)) and added dropwise to the stirred suspension over 15 minutes. As a result, the color gradually changed from reddish brown to yellow.
After stirring at −78 ° C. for 1 hour, the suspension was warmed to room temperature, stirred for an additional 2 hours, and diluted with hexane (20 mL).
The yellow solid was then filtered in air, washed with pentane (5 × 10 mL) and dried in vacuo.
The secondary collection was separated by cooling the filtrate to 0 ° C., washed and dried as above. As a result, a catalyst precursor was obtained.
(2)感光性樹脂組成物の製造
 精製した上記ポリマー#1 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、ジメチルビス(ノルボルネンメトキシ)シラン(SiX)2.4g、上記触媒前駆体(2.6E-2g)、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄な感光性樹脂組成物ワニスを得た。
(2) Production of photosensitive resin composition 10 g of the purified polymer # 1 was weighed into a 100 mL glass container, 40 g of mesitylene, 0.01 g of an antioxidant Irganox 1076 (manufactured by Ciba Geigy), and dimethylbis (norbornenemethoxy). Silane (SiX) 2.4 g, the above catalyst precursor (2.6E-2 g), photoacid generator Rhodorsil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-72-2) (1.36E-2 g, in ethyl acetate 0.1 mL) ) And uniformly dissolved, followed by filtration with a 0.2 μm PTFE filter to obtain a clean photosensitive resin composition varnish.
(3)光導波路フィルムの製造
(下側クラッド層の作製)
 実施例1と同様の下側クラッド層を作製した。
(3) Production of optical waveguide film (production of lower clad layer)
A lower clad layer similar to that in Example 1 was produced.
(コア層の形成)
 上記下側クラッド層上に調製したワニスをドクターブレードによって均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、フォトマスクを圧着して紫外線を500mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中45℃で30分、85℃で30分、150℃で1時間と三段階で加熱を行った。加熱後、導波路パターンが現れているのが確認された。また、コア部およびクラッド部の形成が確認された。
(Formation of core layer)
The varnish prepared on the lower clad layer was uniformly applied by a doctor blade, and then placed in a dryer at 45 ° C. for 15 minutes. After completely removing the solvent, a photomask was pressed and selectively irradiated with ultraviolet rays at 500 mJ / cm 2 . The mask was removed, and heating was performed in three stages in a dryer at 45 ° C. for 30 minutes, 85 ° C. for 30 minutes, and 150 ° C. for 1 hour. It was confirmed that a waveguide pattern appeared after heating. Moreover, formation of the core part and the clad part was confirmed.
(上側クラッド層の形成)
 実施例1と同様の上側クラッド層を作製した
(Formation of upper cladding layer)
An upper clad layer similar to that in Example 1 was produced.
(4)評価
 実施例1と同じ方法により、評価を行った。伝搬損失は0.05dB/cmと算出することができた。コア部とクラッド部の屈折率差は0.005であった。
(4) Evaluation Evaluation was performed in the same manner as in Example 1. The propagation loss could be calculated as 0.05 dB / cm. The difference in refractive index between the core portion and the cladding portion was 0.005.
B.光導波路の評価
 各実施例および比較例で得られた光導波路について、以下の評価を行った。評価項目を内容とともに示す。得られた結果を表2に示す。
B. Evaluation of Optical Waveguide The following evaluations were performed on the optical waveguides obtained in the examples and comparative examples. The evaluation items are shown together with the contents. The obtained results are shown in Table 2.
1.光損失
 850nmVCSEL(面発光レーザー)より発せられた光を50μmφの光ファイバーを経由して上記光導波路に導入し、200μmφの光ファイバーで受光を行って光の強度を測定した。なお、測定にはカットバック法を採用し、導波路長を横軸、挿入損失を縦軸にプロットしていったところ、測定値はきれいに直線上に並び、その傾きから伝搬損失を算出した。
1. Light loss Light emitted from an 850 nm VCSEL (surface emitting laser) was introduced into the optical waveguide via a 50 μmφ optical fiber, and received by a 200 μmφ optical fiber to measure the light intensity. The cutback method was used for the measurement, and the waveguide length was plotted on the horizontal axis and the insertion loss was plotted on the vertical axis. The measured values were neatly arranged on a straight line, and the propagation loss was calculated from the slope.
2.耐熱性
 上記光導波路を高温高湿槽(85℃、85%RH)に投入し、湿熱処理500時間後の伝搬損失を評価した。また、リフロー処理(N雰囲気下、最大温度260℃/60秒)による伝搬損失の劣化の有無も並行して確認した。
 なお、ここでの伝搬損失の測定は、1の光損失の測定方法と同じである。
2. Heat resistance The optical waveguide was placed in a high-temperature and high-humidity tank (85 ° C., 85% RH), and propagation loss after 500 hours of wet heat treatment was evaluated. It was also confirmed in parallel presence or absence of degradation of the propagation loss due to reflow process (N 2 atmosphere, a maximum temperature of 260 ° C. / 60 seconds).
Note that the measurement of the propagation loss here is the same as the one optical loss measurement method.
3.光導波路の曲げ損失
 10mmの曲率半径を有する光導波路フィルムの光強度の曲げ損失を評価した。850nmVCSEL(面発光レーザー)より発せられた光を50μmφの光ファイバーを経由して上記光導波路フィルムの端面に導入し、200μmφの光ファイバーで他端から受光を行って光の強度を測定した(下記式参照)。長さの等しい光導波路フィルムを曲げたときに生じる損失の増分を「曲げ損失」と定義し、図12に示すように、光導波路フィルムを曲線状にした場合の挿入損失と光導波路フィルムを直線状にした場合の挿入損失との差で「曲げ損失」を表した。
 挿入損失[dB]= -10log(出射光強度/入射光強度)
 曲げ損失=(曲線での挿入損失)-(直線での挿入損失)
3. Bending loss of optical waveguide The bending loss of the light intensity of the optical waveguide film having a radius of curvature of 10 mm was evaluated. Light emitted from an 850 nm VCSEL (surface emitting laser) was introduced into the end face of the optical waveguide film via a 50 μmφ optical fiber, and the light intensity was measured from the other end with a 200 μmφ optical fiber (see the following formula) ). The increment of the loss that occurs when the optical waveguide films having the same length are bent is defined as “bending loss”. As shown in FIG. 12, the insertion loss and the optical waveguide film when the optical waveguide film is curved are linear. The “bending loss” is expressed by the difference from the insertion loss when the shape is made.
Insertion loss [dB] =-10 log (outgoing light intensity / incident light intensity)
Bending loss = (insertion loss on a curve)-(insertion loss on a straight line)
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 表2から明らかなように実施例1,8-12は、光損失が低く、光導波路の性能が優れていることが示された。
 また、実施例1,8-12は、高温高湿処理後およびリフロー処理後の光損失も小さく、耐熱性にも優れていることが示された。
 また、特に実施例1,8,9,10は、曲げ損失も小さく、光導波路を屈曲させて用いても十分な性能を発揮することが示唆された。
As apparent from Table 2, Examples 1 and 8-12 showed low optical loss and excellent optical waveguide performance.
In addition, Examples 1 and 8-12 showed small light loss after high-temperature and high-humidity treatment and after reflow treatment, and excellent heat resistance.
In particular, Examples 1, 8, 9, and 10 have a small bending loss, and it was suggested that sufficient performance was exhibited even when the optical waveguide was bent.
 さらに、各実施例および比較例で得られた光導波路フィルムを用いて、前記第1実施形態にかかる光導波路構造体を作製したところ、各実施例で得られた光導波路フィルムを用いた光導波路構造体は、それぞれ、各比較例で得られた光導波路フィルムを用いた光導波路構造体に比べて、伝送損失の低いものが得られた。 Furthermore, when the optical waveguide structure according to the first embodiment was produced using the optical waveguide film obtained in each example and comparative example, the optical waveguide using the optical waveguide film obtained in each example was produced. A structure having a low transmission loss was obtained as compared with the optical waveguide structure using the optical waveguide film obtained in each comparative example.
 本発明の光導波路構造体は、光回路(光導波路のパターン)や電気回路の設計の幅が広く、歩留まりが良く、光伝送性能を高く維持し、信頼性、耐久性に優れ、汎用性に富む。そのため、本発明は、種々の電子部品、電子機器等に対し用いることができるので、本発明は産業上極めて有用である。 The optical waveguide structure of the present invention has a wide range of optical circuit (optical waveguide pattern) and electrical circuit design, good yield, high optical transmission performance, excellent reliability and durability, and versatility. Rich. Therefore, the present invention can be used for various electronic parts, electronic devices, and the like, and therefore the present invention is extremely useful in industry.
 1     光導波路構造体
 2     光導波路本体
 3     傾斜面
 4a、4b、4c、4d、4e、4f、4g 光路変換部
 5a、5b、5c、5d、5e、5f、5g 反射面
61、62、63、64、65 発光素子
 610、620、630、640、650 発光部
 71、711、712 伝送光
 72    伝送光
 73    伝送光
 74、741、742 伝送光
 75    伝送光
 76    伝送光
 9          光導波路
90    積層体(光導波路)
 91    クラッド層
 92    コア層積層部
 93    コア層
 94    コア部
 941   分岐部
 942、943、944、945、946、947、948 出射端
 95    クラッド部
 96    クラッド層
 961、962、963、964、965 露出面(露出端面)
 900   ワニス(コア層形成用材料)
 910   フィルム
 M     マスク
DESCRIPTION OF SYMBOLS 1 Optical waveguide structure 2 Optical waveguide main body 3 Inclined surface 4a, 4b, 4c, 4d, 4e, 4f, 4g Optical path conversion part 5a, 5b, 5c, 5d, 5e, 5f, 5g Reflecting surface 61, 62, 63, 64 , 65 Light emitting element 610, 620, 630, 640, 650 Light emitting part 71, 711, 712 Transmitted light 72 Transmitted light 73 Transmitted light 74, 741, 742 Transmitted light 75 Transmitted light 76 Transmitted light 9 Optical waveguide 90 Laminate (optical waveguide) )
91 Cladding layer 92 Core layer laminated part 93 Core layer 94 Core part 941 Branch part 942, 943, 944, 945, 946, 947, 948 Outgoing end 95 Cladding part 96 Cladding layer 961, 962, 963, 964, 965 Exposed surface ( Exposed end face)
900 Varnish (core layer forming material)
910 Film M Mask

Claims (21)

  1.  光路を形成するコア部と、前記コア部の外周に形成され、前記コア部と屈折率が異なるクラッド部とを有する光導波路本体を有し、
     前記光導波路本体内に前記コア部が3次元的に配置されており、
     前記コア部は、
    (A)環状オレフィン樹脂と、
    (B)前記(A)とは屈折率が異なり、かつ、環状エーテル基を有するモノマーおよび環状エーテル基を有するオリゴマーのうちの少なくとも一方と、
    (C)光酸発生剤と、
    を含む組成物で構成されたコア層に対し活性放射線を選択的に照射することにより所望の形状に形成されたものであることを特徴とする光導波路構造体。
    An optical waveguide body having a core part forming an optical path and a clad part formed on an outer periphery of the core part and having a refractive index different from the core part;
    The core portion is three-dimensionally arranged in the optical waveguide body,
    The core part is
    (A) a cyclic olefin resin;
    (B) The refractive index is different from that of (A), and at least one of a monomer having a cyclic ether group and an oligomer having a cyclic ether group;
    (C) a photoacid generator;
    An optical waveguide structure characterized by being formed into a desired shape by selectively irradiating active radiation to a core layer composed of a composition comprising:
  2.  前記(B)の環状エーテル基は、オキセタニル基またはエポキシ基である請求項1に記載の光導波路構造体。 The optical waveguide structure according to claim 1, wherein the cyclic ether group (B) is an oxetanyl group or an epoxy group.
  3.  前記(A)の環状オレフィン樹脂は、側鎖に前記(C)の光酸発生剤から発生する酸により脱離する脱離性基を有し、
     前記(B)は、下記式(100)に記載の第1モノマーを含むものである請求項2に記載の光導波路構造体。
    [化1]
    Figure JPOXMLDOC01-appb-I000001
    The cyclic olefin resin (A) has a leaving group that is eliminated by an acid generated from the photoacid generator (C) in the side chain,
    The optical waveguide structure according to claim 2, wherein (B) includes the first monomer represented by the following formula (100).
    [Chemical 1]
    Figure JPOXMLDOC01-appb-I000001
  4.  前記コア部は、互いに直交するX、YおよびZ方向のうちの少なくとも1つの方向に延在する部分を有している請求項1ないし3のいずれかに記載の光導波路構造体。 4. The optical waveguide structure according to claim 1, wherein the core portion has a portion extending in at least one of X, Y, and Z directions orthogonal to each other.
  5.  前記コア部は、互いに直交するX、YおよびZ方向のうちの少なくとも2つの方向に延在する部分を有している請求項1ないし4のいずれかに記載の光導波路構造体。 The optical waveguide structure according to any one of claims 1 to 4, wherein the core portion has a portion extending in at least two of the X, Y, and Z directions orthogonal to each other.
  6.  前記光導波路本体は、前記クラッド部を構成するクラッド層と前記コア層とが交互に積層された部分を有する請求項1ないし5のいずれかに記載の光導波路構造体。 The optical waveguide structure according to any one of claims 1 to 5, wherein the optical waveguide body has a portion in which a clad layer and a core layer constituting the clad portion are alternately laminated.
  7.  前記光導波路本体は、前記コア層の両面に前記クラッド部を構成するクラッド層をそれぞれ接合してなる積層体を2つ以上重ねた部分を有する請求項1ないし6のいずれかに記載の光導波路構造体。 The optical waveguide according to any one of claims 1 to 6, wherein the optical waveguide body has a portion in which two or more laminated bodies each formed by joining the clad layers constituting the clad portion are overlapped on both surfaces of the core layer. Structure.
  8.  前記光導波路本体は、前記コア層を複数積層したコア層積層部を有する請求項1ないし7のいずれかに記載の光導波路構造体。 The optical waveguide structure according to any one of claims 1 to 7, wherein the optical waveguide body has a core layer laminated portion in which a plurality of the core layers are laminated.
  9.  異なる前記コア層間に形成された前記コア部同士の間で伝送光の授受が行われるよう構成された部分を有する請求項6ないし8のいずれかに記載の光導波路構造体。 The optical waveguide structure according to claim 6, further comprising a portion configured to transmit and receive transmission light between the core portions formed between the different core layers.
  10.  前記コア部を伝送される伝送光の光路を屈曲させる光路変換部を有する請求項1ないし9のいずれかに記載の光導波路構造体。 The optical waveguide structure according to any one of claims 1 to 9, further comprising an optical path conversion unit that bends an optical path of transmission light transmitted through the core unit.
  11.  前記光路変換部は、前記伝送光の少なくとも一部を反射する反射面を有するものである請求項10に記載の光導波路構造体。 The optical waveguide structure according to claim 10, wherein the optical path conversion unit has a reflection surface that reflects at least a part of the transmission light.
  12.  前記光路変換部は、前記伝送光の光路を複数の方向に分割する機能を有するものである請求項10または11に記載の光導波路構造体。 The optical waveguide structure according to claim 10 or 11, wherein the optical path conversion unit has a function of dividing an optical path of the transmission light in a plurality of directions.
  13.  前記コア部は、前記光導波路本体の外部より前記コア部の所定部位へ入射される伝送光が、コア部の他の部位と交差しないように配置されている請求項1ないし12のいずれかに記載の光導波路構造体。 The core part is arranged so that transmission light incident on a predetermined part of the core part from the outside of the optical waveguide body does not intersect with other parts of the core part. The optical waveguide structure described.
  14.  前記コア部は、光路が分岐および/または合流する部分を有する請求項1ないし13のいずれかに記載の光導波路構造体。 The optical waveguide structure according to any one of claims 1 to 13, wherein the core portion has a portion where an optical path branches and / or merges.
  15.  互いに直交するX、YおよびZ方向のうちの1つの入射方向から前記コア部の所定部位へ伝送光が入射したとき、前記伝送光が前記コア部の他の部位から前記入射方向と直交する方向へ出射するよう構成されている請求項1ないし14のいずれかに記載の光導波路構造体。 When transmission light is incident on a predetermined part of the core part from one incident direction of X, Y, and Z directions orthogonal to each other, the transmission light is orthogonal to the incident direction from the other part of the core part The optical waveguide structure according to any one of claims 1 to 14, wherein the optical waveguide structure is configured to emit light to a light source.
  16.  前記光導波路本体は、その少なくとも1つの表面が前記コア部の横断面に対し傾斜した傾斜面で構成されている請求項1ないし15のいずれかに記載の光導波路構造体。 The optical waveguide structure according to any one of claims 1 to 15, wherein at least one surface of the optical waveguide body is configured by an inclined surface inclined with respect to a transverse section of the core portion.
  17.  発光部または受光部と、端子とを有する素子を少なくとも1つ備える請求項1ないし16のいずれかに記載の光導波路構造体。 The optical waveguide structure according to claim 1, comprising at least one element having a light emitting part or a light receiving part and a terminal.
  18.  互いに独立して作動するか、連動して作動するか、または同期的に作動する2以上の素子を有する請求項17に記載の光導波路構造体。 The optical waveguide structure according to claim 17, comprising two or more elements that operate independently of each other, operate in conjunction with each other, or operate synchronously.
  19.  導体層を有する請求項1ないし18のいずれかに記載の光導波路構造体。 The optical waveguide structure according to claim 1, comprising a conductor layer.
  20.  導体層を有し、前記端子が前記導体層に電気的に接続されている請求項17ないし19のいずれかに記載の光導波路構造体。 The optical waveguide structure according to claim 17, further comprising a conductor layer, wherein the terminal is electrically connected to the conductor layer.
  21.  請求項1ないし20のいずれかに記載の光導波路構造体を備えたことを特徴とする電子機器。 An electronic apparatus comprising the optical waveguide structure according to any one of claims 1 to 20.
PCT/JP2011/058137 2010-04-08 2011-03-30 Optical waveguide structure and electronic apparatus WO2011125799A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010089402A JP2013137333A (en) 2010-04-08 2010-04-08 Optical waveguide structure and electronic apparatus
JP2010-089402 2010-04-08

Publications (1)

Publication Number Publication Date
WO2011125799A1 true WO2011125799A1 (en) 2011-10-13

Family

ID=44762738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058137 WO2011125799A1 (en) 2010-04-08 2011-03-30 Optical waveguide structure and electronic apparatus

Country Status (3)

Country Link
JP (1) JP2013137333A (en)
TW (1) TW201213361A (en)
WO (1) WO2011125799A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090423A (en) * 2013-11-06 2015-05-11 セイコーエプソン株式会社 Light divider and magnetism measurement apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336349A (en) * 2004-05-27 2005-12-08 Toagosei Co Ltd Cationically polymerizable composition
JP2005336333A (en) * 2004-05-27 2005-12-08 Toagosei Co Ltd Actinic radiation curing composition
JP2006323319A (en) * 2005-05-20 2006-11-30 Sumitomo Bakelite Co Ltd Optical waveguide structure
WO2008126499A1 (en) * 2007-03-30 2008-10-23 Nec Corporation Material for forming polymer optical waveguide, polymer optical waveguide and method of producing polymer optical waveguide
JP2008286919A (en) * 2007-05-16 2008-11-27 Sumitomo Bakelite Co Ltd Optical waveguide manufacturing method, and optical waveguide
JP2009067828A (en) * 2007-09-10 2009-04-02 Sumitomo Bakelite Co Ltd Complex composition and molded cured article obtained by crosslinking the same
WO2009151045A1 (en) * 2008-06-10 2009-12-17 住友ベークライト株式会社 Electronic apparatus, cellular phone, flexible cable and method for manufacturing optical waveguide forming body
WO2009154206A1 (en) * 2008-06-20 2009-12-23 住友ベークライト株式会社 Film for optical waveguide, film for laminated optical waveguide, optical waveguide, optical waveguide assembly, optical wiring, optical/electrical hybrid board, and electronic device
WO2010023976A1 (en) * 2008-08-26 2010-03-04 住友ベークライト株式会社 Optical waveguide, optical waveguide module, and optical element mounting substrate
WO2010026931A1 (en) * 2008-09-05 2010-03-11 住友ベークライト株式会社 Optical waveguide, optical interconnection, opto-electric hybrid board, and electronic device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336349A (en) * 2004-05-27 2005-12-08 Toagosei Co Ltd Cationically polymerizable composition
JP2005336333A (en) * 2004-05-27 2005-12-08 Toagosei Co Ltd Actinic radiation curing composition
JP2006323319A (en) * 2005-05-20 2006-11-30 Sumitomo Bakelite Co Ltd Optical waveguide structure
WO2008126499A1 (en) * 2007-03-30 2008-10-23 Nec Corporation Material for forming polymer optical waveguide, polymer optical waveguide and method of producing polymer optical waveguide
JP2008286919A (en) * 2007-05-16 2008-11-27 Sumitomo Bakelite Co Ltd Optical waveguide manufacturing method, and optical waveguide
JP2009067828A (en) * 2007-09-10 2009-04-02 Sumitomo Bakelite Co Ltd Complex composition and molded cured article obtained by crosslinking the same
WO2009151045A1 (en) * 2008-06-10 2009-12-17 住友ベークライト株式会社 Electronic apparatus, cellular phone, flexible cable and method for manufacturing optical waveguide forming body
WO2009154206A1 (en) * 2008-06-20 2009-12-23 住友ベークライト株式会社 Film for optical waveguide, film for laminated optical waveguide, optical waveguide, optical waveguide assembly, optical wiring, optical/electrical hybrid board, and electronic device
WO2010023976A1 (en) * 2008-08-26 2010-03-04 住友ベークライト株式会社 Optical waveguide, optical waveguide module, and optical element mounting substrate
WO2010026931A1 (en) * 2008-09-05 2010-03-11 住友ベークライト株式会社 Optical waveguide, optical interconnection, opto-electric hybrid board, and electronic device

Also Published As

Publication number Publication date
JP2013137333A (en) 2013-07-11
TW201213361A (en) 2012-04-01

Similar Documents

Publication Publication Date Title
JP5278366B2 (en) Optical waveguide structure and electronic device
US9151888B2 (en) Optical waveguide and electronic device
JP5423551B2 (en) Optical waveguide structure and electronic device
JP4748229B2 (en) Photosensitive resin composition, photosensitive resin composition for forming optical waveguide, film for forming optical waveguide, optical waveguide, optical wiring, opto-electric hybrid board and electronic device
JP4877305B2 (en) Photosensitive resin composition and optical waveguide film
JP6020169B2 (en) Optical waveguide and electronic equipment
WO2011125658A1 (en) Optical waveguide structure and electronic apparatus
JP2011221195A (en) Optical waveguide structure and electronic device
JP2011221143A (en) Optical waveguide structure and electronic equipment
JP5310633B2 (en) Optical waveguide structure and electronic device
WO2011125799A1 (en) Optical waveguide structure and electronic apparatus
JP2010281878A (en) Substrate for transmitting optical signal, and electronic equipment
JP2011221201A (en) Optical waveguide structure and electronic device
TWI514019B (en) Optical waveguide and electronic device
WO2011125939A1 (en) Optical waveguide structure and electronic apparatus
TWI502232B (en) Optical waveguide and electronic machine
JP2012181428A (en) Optical waveguide and electronic apparatus
JP2011221193A (en) Optical wave guide structure and electronic device
JP5724555B2 (en) Optical waveguide film and method for manufacturing optical waveguide film
JP6017115B2 (en) Photosensitive resin composition for forming optical waveguide, film for forming optical waveguide, and method for producing optical waveguide
JP2012128072A (en) Optical waveguide and method for manufacturing the same
JP2012181427A (en) Optical waveguide and electronic apparatus
JP2013174837A (en) Optical waveguide structure, optical waveguide module and electronic apparatus
JP5321077B2 (en) Optical waveguide and optical waveguide module
JP6020170B2 (en) Optical waveguide and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765699

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP