WO2011125748A1 - ヤトロファ由来のnf-ybをコードするポリヌクレオチド及びその利用 - Google Patents
ヤトロファ由来のnf-ybをコードするポリヌクレオチド及びその利用 Download PDFInfo
- Publication number
- WO2011125748A1 WO2011125748A1 PCT/JP2011/058026 JP2011058026W WO2011125748A1 WO 2011125748 A1 WO2011125748 A1 WO 2011125748A1 JP 2011058026 W JP2011058026 W JP 2011058026W WO 2011125748 A1 WO2011125748 A1 WO 2011125748A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- jatropha
- polypeptide
- gene
- polynucleotide
- seq
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
Definitions
- the present invention relates to a polynucleotide encoding an NF-YB transcription factor as a novel gene of the genus Jatropha and use thereof, and particularly to use for producing drought stress resistant Jatropha.
- Jatropha is known as a plant that can be cultivated in areas where growth of other crops is inappropriate for moisture and mineral nutrition, and is considered to be very beneficial for effective use and greening of semi-arid areas.
- Jatropha genus plants grow in wasteland, but the number of fruiting is once a year and the fruit size is considerably smaller than that of palm. Therefore, the production efficiency of fats and oils by natural cultivation is not high. For this reason, development of highly productive Jatropha is required.
- acetyl-CoA carboxylase As one of the methods for improving the productivity efficiency of Jatropha oil, for example, as disclosed in JP-T-2009-536029 (Patent Document 1), acetyl-CoA carboxylase ( There is a method for transforming ACCase) so that it can be overexpressed.
- Drought stress-tolerant genetically modified plants contain excessive amounts of stress response signal transduction strength, mechanisms, and protein molecules involved in tolerance (proteins that respond to environmental stress) so that they can adapt or respond to drought stress A method of improving the production so that it can be considered.
- Signal transduction pathways in response to plant environmental stress are broadly divided into pathways involving the plant hormone abscisic acid (ABA) and pathways not involving ABA, and are further subdivided according to the type of transcription factor involved.
- proteins related to responses include regulatory proteins related to responses such as transcription regulators, proteases, and protein kinases, and functional proteins related to resistance such as chaperones, and are thought to have various physiological responses. (Kazuo Shinozaki et al., Asakura Plant Physiology Laboratory 5 Environmental Response, pp106-1145).
- Abscisic acid is a plant hormone involved in seed dormancy, stomatal opening and closing, and resistance to osmotic stress, and ABA is known to be deeply involved in the expression of stress-responsive genes.
- Non-Patent Document 1 (Wen-Xue Li et al., "The Arabidopsis NFYA5 Transcription Factor Is Regulated Transcriptionally and Posttranscriptionally to Promote Drought Resistance", The Plant Cell, Vol. 20: 2238-2251 (2008) NF-YA5 transcription factor is ABA-dependent and strongly induced by drought stress, and transgenic Arabidopsis overexpressing NF-YA5 is more drought stress than wild-type Arabidopsis thaliana It was reported that it was excellent in resistance to.
- JP 2005-253395 A JP 2005-253395 A (Patent Document 2) binds to a cis element existing upstream of a gene encoding a stress responsive protein expressed by environmental stress.
- a method has been proposed that utilizes the activation action of a gene group under the control of a transcription factor (stress responsive transcription factor) that activates transcription.
- the SRK2C gene was disclosed as a novel gene encoding a signal transduction factor that induces the expression of the stress-responsive transcription factor DREB / CBF, and the SRK2C gene was transformed to be overexpressed. It is disclosed that Arabidopsis thaliana showed a significantly higher survival rate than the control even after the water supply was stopped.
- Non-Patent Document 2 Donald E. Nelson et al., “Plant nuclear factor Y (NF-Y) B subunitsconfer drought tolerance and lead to improved corn yields on water-limited acres”, PNAS, vol. 104, No. 42 , 16450-16455 (2007)), maize NF-YB factor was identified, and it was reported that maize transformed using this factor had higher productivity under water-deficient conditions than wild type. ing.
- JP 2009-540830 (Patent Document 3) is operably linked to DNA encoding NF-YB protein of Arabidopsis thaliana, maize, and soybean as water-deficient stress resistant plants of rice, maize, soybean, and cotton. Plants into which a transcription unit containing a promoter has been introduced are disclosed. It has been reported that transformed plants that can overexpress NF-YB by devising promoters and the like have improved yields even under water-deficient conditions compared to wild-type controls.
- the problem to be solved by the present invention is to create a drought-stress resistant jatropha that can ensure high growth even under water-deficient conditions.
- a gene that can transform wild-type jatropha to drought stress tolerance, etc. is to provide.
- the present inventors examined a gene for transforming Jatropha to tolerance to drought stress. As a result, the genome sequence of Jatropha was clarified and an additional 13 NF-YB coding genes were identified. The present invention was completed by succeeding in isolation and identification. That is, the present invention is as follows.
- An isolated polynucleotide selected from the following polynucleotides: (A) a polynucleotide represented by any of SEQ ID NOs: 1 to 11; (B) a polynucleotide encoding a NF-YB polypeptide derived from Jatropha, comprising the polynucleotide fragment represented by SEQ ID NO: 12 or 13; (C) NF-YB represented by a nucleotide sequence having 90% or more homology with the nucleotide sequence of any of the polynucleotides of (a) and (b) and encoded by the polynucleotide of (a) and (b) A polynucleotide wherein the polypeptide which maintains the resistance to drought stress of the polypeptide is maintained.
- NF-YB polypeptide selected from the following polypeptides: (A) an NF-YB polypeptide consisting of the amino acid sequence represented by any one of SEQ ID NOs: 14 to 24; (B) an NF-YB polypeptide derived from Jatropha, comprising a polypeptide having the amino acid sequence represented by SEQ ID NO: 25 or 26; (C) Drought stress of the NF-YB polypeptide of (a) and (b) represented by an amino acid sequence having 90% or more homology with the amino acid sequence of any of the polypeptides of (a) and (b) A polypeptide whose resistance is maintained by the polypeptide.
- [6] A vector for transforming a Jatropha plant into which the polynucleotide according to [1], [2] or [5] is incorporated.
- the transformed Jatropha can express the NF-YB polypeptide derived from Jatropha of the present invention or a polypeptide equivalent thereto.
- These polypeptides can significantly improve the productivity of protein synthesis involving the NF-YB polypeptide, for example, drastically improve drought stress tolerance.
- FIG. 3 is a photograph showing the results of agarose electrophoresis of NF-YB1 to NF-YB5.
- pGWB11 plasmid gene map (Nakagawa et al., “Development of Series of Gateway Binary Vectors, pGWBs, for Realizing Efficient Construction of Fusion Genes for Plant Transformation”, Journal of Bioscience and Bioengineering Vol. 104 No. 104 See .38).
- Jatropha gene The isolated novel Jatropha gene according to the present invention is a polynucleotide encoding the wild-type transcription factor NF-YB of Jatropha, and is a 13 gene family that exists individually in the Jatropha genome.
- polynucleotides shown in SEQ ID NOs: 1 to 11 (named “JcNF-YB1 gene”-“JcNF-YB11 gene” in this order);
- SEQ ID NOs: 12 and 13 A polynucleotide encoding a NF-YB polypeptide derived from Jatropha, comprising a polynucleotide fragment (named “JcNF-YB12 gene” and “JcNF-YB13 gene”, respectively); and
- a polynucleotide that is maintained by the polypeptide that encodes is included in the present invention.
- the nucleotide sequence of the polynucleotide (c) preferably has a homology of 95% or more, more preferably 98% or more, with the nucleotide sequence of any of the polynucleotides (a) and (b). Particularly preferably 99% or more of homology.
- Examples of the polypeptide obtained by expressing each gene of the present invention include (a) NF-YB polypeptide of Jatropha wild-type transcription factor JcNF-YB1 to JcNF-YB11 (amino acid sequence is SEQ ID NO: 14 to 24). (B) an NF-YB polypeptide derived from Jatropha comprising the polypeptide of the amino acid sequence shown in SEQ ID NOs: 25 and 26; and (c) the amino acid sequence of any of the polypeptides of (a) and (b); Included are polypeptides that are represented by amino acid sequences that have 90% or greater homology and that maintain the drought stress tolerance of the NF-YB polypeptides of (a) and (b).
- the polypeptide of (c) preferably has a homology of 95% or more with the amino acid sequence of any of the polypeptides of (a) and (b), more preferably has a homology of 98% or more, Particularly preferably, the homology is 99% or more.
- the nucleotide sequence of the gene of the present invention includes polynucleotides encoding the polypeptides (a) to (c) above. For example, as long as it encodes the polypeptides (a) and (b), a part of the base may be substituted. In the JcNF-YB1 DNA shown in SEQ ID NO: 1, the sixth base G is replaced with the base T. By (SEQ ID NO: 39), the translation efficiency can be made higher than that of the wild type.
- JcNF-YB gene refers to the polynucleotide of the present invention.
- the method for preparing the JcNF-YB gene of the present invention is not particularly limited. For example, by using a Jatropha genome as a template, designing primers corresponding to each JcNF-YB gene and performing a PCR reaction, a PCR product of the target gene can be obtained directly, or drought stress was applied.
- a PCR product of the target polynucleotide may be obtained from mRNA obtained by grinding a part of a Jatropha plant, preferably leaves, by RT-PCR using the following primer set.
- a predetermined base can be substituted, deleted, and added.
- a PCR product of the target gene is directly obtained using the Jatropha genome extracted based on the method of Sudheer et al. (Indian Journal of Biotechnology, Vol. 8 (2009) p 187-192).
- the method of Sudheer et al. Is that the NaCl concentration of the solution used from the extraction buffer used to DNA precipitation is adjusted, the purification step is treated with Tris saturated phenol, followed by a mixture of chloroform and isoamyl alcohol, It is characterized in that 80% ethanol is used in the precipitation step.
- MRNA can be prepared by a conventional method. For example, after the frozen plant body is ground in a mortar or the like, a crude RNA fraction is obtained from the ground product by a glyoxal method, a guanidine thiocyanate-cesium chloride method, a lithium chloride-urea method, a proteinase K-deoxyribonuclease method, or the like. May be extracted and prepared. A commercially available kit may also be used.
- Determination and confirmation of the base sequence of the obtained PCR product may be performed by a conventionally known method, for example, a known method such as a chemical modification method of Maxam-Gilbert or a dideoxynucleotide chain termination method using M13 phage.
- a known method such as a chemical modification method of Maxam-Gilbert or a dideoxynucleotide chain termination method using M13 phage.
- the drought stress tolerant transformed Jatropha of the present invention is prepared by introducing an expression cassette operably linked to a promoter for expression or expression regulation of JcNF-YB gene into wild type Jatropha.
- Jatropha targeted by the present invention are not particularly limited, and Jatropha curcus, Jatropha potagurica, Jatropha multifida, Jatropha berlandieri, Jatropha -Integerima (Jatropha integerrima) can be used.
- Jatropha curcas are preferably used because of their high fat content.
- Gene transfer methods include a method of fusing protoplasts together, a method of directly introducing DNA into cells, such as electroporation and gene shotgun method; Agrobacterium tumefaciens and R. Although it may be carried out by any method of indirect introduction using rhizogenes, the method using Agrobacterium is preferred. Hereinafter, a transformation method using Agrobacterium will be described.
- Agrobacterium is a plant disease bacterium that has a Ti plasmid that can cut out the region between the LB (left border) and RB (right border) (T-DNA (Transferred DNA) region) and insert it into the host genome.
- T-DNA Transferred DNA
- Binary vector method is preferred as a transformation method using Agrobacterium.
- a target foreign gene is placed in a T-DNA region of a plasmid having a T-DNA region border (LB and RB) separately from a plasmid (eg, pAL4404) in which T-DNA of Ti plasmid is deleted.
- a plasmid eg, pAL4404
- the expression cassette used for the production of transformed Jatropha using the binary vector method includes the JcNF-YB gene according to the present invention, the promoter for expressing the nucleotide, the marker gene, and the reporter gene in the T-DNA region. Contains.
- Promoters include 35S cauliflower mosaic virus promoter, nopaline synthase (NOS) promoter, and other endosperm-specific promoters such as ⁇ phaseolin, napin, ubiquitin.
- NOS nopaline synthase
- selectable marker gene a gene that imparts resistance to a selective agent such as an antibiotic or a herbicide is used.
- a selective agent such as an antibiotic or a herbicide
- Specific examples include a kanamycin resistance gene, a paromomycin B resistance gene, or a resistance gene for herbicides such as glufosinate and glyphosate.
- Selectable markers that can visually identify transformants such as luciferase or ⁇ -glucuronidase or GUS for which chromogenic or fluorescent protein expressing genes such as green fluorescent protein (GFP) or various chromogenic substrates are known Expressed genes can also be used.
- GFP green fluorescent protein
- Such a selection marker can also be used as a reporter gene.
- Enhancers, terminators, tags, etc. may be further included as necessary.
- the enhancer is used to increase the expression efficiency of the target gene, and includes an enhancer region containing an upstream sequence in the CaMV35S promoter.
- the terminator may be any sequence that can terminate transcription of the gene transcribed by the promoter, and examples thereof include nopaline synthase (NOS) gene terminator, octobin synthase (OCS), and CaMV35S RNA gene terminator.
- the binary vector used for the transformation of Jatropha by the binary vector method includes the above-mentioned expression cassette in the T-DNA region.
- the binary vector method includes commercially available vectors such as pBI, pPZP, pSMA, and pGWB. Those incorporating an expression cassette can be used.
- binary vectors for plant transformation to which the Gateway (registered trademark) cloning system can be applied are preferable, and examples of such vectors include pGWB vectors.
- This pGWB vector comprises a cauliflower mosaic virus (CaMV) 35S promoter as a promoter; a hygromycin resistance gene and a kanamycin resistance gene as selectable marker genes; ⁇ -glucuronidase (GUS), green fluorescent protein (GFP), luciferase (reporter) LUC), yellow fluorescent protein (YFP), cyan fluorescent protein (CFP); 6xHis, FLAG, 3xHA, 4xMyc, GST, T7-epitope is used as a tag, and the target gene and reporter are operably linked. Furthermore, there are sequences encoding reporters and tags so that they can be fused to both the N-terminus and C-terminus.
- CaMV cauliflower mosaic virus
- the Gateway (registered trademark) cloning system facilitates the construction of an expression vector by using a Gateway signal (att).
- An entry vector (attL1, attL2 sequence at both ends) by reacting (BP reaction) between a donor vector having attP1, attP2 sequences and an attB1, attB2 sequence added to both ends of the target gene (BP reaction)
- BP reaction BP reaction
- the target gene is inserted by recombination reaction (LR reaction) with this entry vector and a destination vector (added with attR1 and attR2 sequences) in which a promoter necessary for expression is incorporated.
- LR reaction recombination reaction
- an entry vector in which the cloned JcNF-YB gene is incorporated into the donor vector by BP reaction with the donor vector is prepared, and then this entry vector and the destination vector (pGWB) are subjected to LR reaction.
- an expression vector incorporating the target gene (JcNF-YB) can be prepared.
- the expression vector (vector for plant transformation) prepared as described above can be amplified in E. coli.
- the amplified transformation vector may be introduced into Agrobacterium by electroporation or the like.
- Agrobacterium introduced with the expression vector in this way is used for transformation of Jatropha.
- JcNF-YB gene Jatropha by infection with Agrobacterium loaded with a plant transformation vector
- Introduction of the target gene (JcNF-YB gene) into Jatropha by infection with Agrobacterium loaded with a plant transformation vector can be performed using a known method such as the leaf disk method.
- Jatropha leaf piece a part of Jatropha serving as a host (preferably a cut piece of cotyledon, hereinafter referred to as “Jatropha leaf piece”) is used in this bacterial solution.
- Jatropha leaf piece a part of Jatropha serving as a host
- the Sandvortex method in which vibration is applied in a state where sand is added to a suspension of Agrobacterium is preferable because the infectivity of Agrobacterium increases.
- co-culture medium a medium in which a plant hormone such as 3-indolebutyric acid (IBA) or 6-benzylaminopurine (BA) is added to MS medium or the like is used.
- a plant hormone such as 3-indolebutyric acid (IBA) or 6-benzylaminopurine (BA) is added to MS medium or the like is used.
- the Jatropha leaf pieces are washed, transferred to a selective medium (containing an antibiotic corresponding to the selection marker gene used in the expression cassette of the transformation vector), incubated, and then the callus formed on the leaf pieces is removed. Cut out, transfer to selective medium, and screen for transformed Jatropha (recombinant cells).
- a selective medium containing an antibiotic corresponding to the selection marker gene used in the expression cassette of the transformation vector
- antibiotics kanamycin, hygromycin
- MS medium a medium used for the pre-culture
- plant hormones such as IBA, BA, thidiazuron (TDZ), etc. Those contained are preferably used.
- the selected callus is transferred to a medium such as RI medium or MS medium, rooted, and redifferentiated into a plant body.
- Induction of regeneration can be performed by appropriately setting the types and amounts of various components such as plant growth regulators such as auxin and cytokinin, carbon sources, and the like, light, temperature, and the like in the medium.
- plant growth regulators such as auxin and cytokinin, carbon sources, and the like, light, temperature, and the like in the medium.
- the transformed plant body of the present invention can be transformed by “T2 generation”, which is a progeny obtained from the seeds of the plant, by drug selection or Southern method analysis. Progeny plants such as the next generation (T3 generation) obtained by self-pollination of “T2 generation” plant flowers that have been found to be included are also included.
- Jatropha oil can be produced from seeds harvested from the transformed Jatropha of the present invention according to a conventional method. For example, by compressing seeds to obtain raw material oil and filtering the raw material oil with a filter, Jatropha oil that can be used as biodiesel can be produced. When it is desired to further refine the Jatropha oil, it can be purified, for example, by distillation, or the phorbol ester can be removed by the method described in Japanese Patent Application Laid-Open No. 2010-209177.
- the leaves of Jatropha were washed with distilled water, and water was absorbed with tissue paper, and then 1 g was pulverized with a mortar and powdered. This powder was sufficiently mixed with 10 ml of extraction buffer (2% CTAB, 100 mM Tris-HCl, 3.5 M NaCl, 20 mM EDTA, 1% ⁇ -mercaptoethanol) at 65 ° C. The mixture was incubated in a water bath at 65 ° C. for 90 minutes and then cooled for 5 minutes. An equal amount of a mixture of chloroform and isoamyl alcohol (24: 1) was added and mixed slowly to obtain a uniform emulsion.
- extraction buffer 2% CTAB, 100 mM Tris-HCl, 3.5 M NaCl, 20 mM EDTA, 1% ⁇ -mercaptoethanol
- the emulsion was centrifuged at 10,000 ⁇ g for 15 minutes, and the aqueous phase was separated. An equal amount of a mixture of chloroform and isoamyl alcohol (24: 1) was again added to the separated aqueous phase, and the mixture was slowly mixed to obtain a uniform emulsion. The emulsion was centrifuged at 10,000 ⁇ g for 15 minutes at 4 ° C., and the aqueous phase was separated. An equal amount of isopropyl alcohol was added to the separated aqueous phase, cooled at ⁇ 20 ° C. for 30 minutes, and then centrifuged at 10,000 ⁇ g for 30 minutes at 4 ° C. to obtain a DNA pellet.
- the DNA pellet was washed with 70% ethanol and then resuspended in TE buffer.
- the obtained DNA pellet was dissolved in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) containing 20 mg / mL RNase to obtain a genomic DNA sample.
- the obtained extracted genomic DNA was fragmented by culturing with EcoRI, HindIII, and SauIII, and sequenced by a sequencer.
- (2) Cloning and amplification of JcNF-YB-encoding gene Based on the genome information (conting map) of Jatropha obtained from (1), a gene having homology with Arabidopsis NF-YB was searched for TBLASTN.
- JcNF-YB1 to JcNF-YB5 genes are amplified by performing a PCR reaction using Jatropha (Thai strain) genomic DNA as a template and the primer sets (SEQ ID NOs: 27 to 36) shown in Table 2, respectively. did.
- the reaction solution used for PCR is as follows. 1.25 Unit Ex taq 1x Ex taq buffer (Takara Bio) 0.2 mM dNTPs (Takara Bio) 1 ⁇ M forward primer 1 ⁇ M reverse primer To the reaction solution prepared above, 1 ⁇ l of a 100-fold diluted Jatropha genomic DNA solution was added to make a total volume of 50 ⁇ l, and a PCR reaction was performed under the following conditions.
- the DNA obtained by amplification was confirmed by agarose electrophoresis.
- the results of electrophoresis of JcNF-YB1 to JcNF-YB5 are shown in FIG.
- the sequence of the obtained PCR product was sequenced with a DNA sequencer.
- the nucleotide sequences of the JcNF-YB1 to JcNF-YB5 polynucleotides were as shown in SEQ ID NOs: 1 to 5 in the sequence list.
- the JcNF-YB1 gene amplified by PCR having attB1 and attB2 at both ends
- the donor vector pDONR221 are mixed, and then a recombination reaction (BP reaction) is performed using BP clonase (Invitrogen).
- BP reaction BP clonase
- pENTRJcNF-YB1 serving as an entry vector was obtained and introduced into E. coli DH5 ⁇ strain.
- pDONR221 was introduced with the kanamycin resistance gene as a marker gene.
- the pENTRJcNF-YB1 plasmid was extracted from E. coli, mixed with the plasmid vector (destination vector) pGWB11 linearized with the restriction enzyme XhoI (Takara Bio), and then LR clonase (Invitrogen) was used. The recombination reaction was performed.
- pGWB11 has a 35S promoter as a promoter, and a FLAG tag is added to the C-terminus.
- a 35S promoter-R1-Cmr-ccdB-R2-FLAG is inserted between HindIII and SacI.
- the R1-Cmr-ccdB-R2 portion can be replaced with attB1- (JcNF-YB1) -attB2 by the LR reaction with the entry vector.
- pGWB11JcNF-YB1 serving as a plant recombination vector was obtained.
- the transformed Agrobacterium was cultured with shaking in a YEB liquid medium (50 mg / l kanamycin, 50 mg / l hygromycin added) at 30 ° C. for 2 days, and then collected by centrifugation. The collected bacteria were resuspended in YEB medium to prepare a bacterial solution for infection.
- a YEB liquid medium 50 mg / l kanamycin, 50 mg / l hygromycin added
- Jatropha leaf piece a cut piece (about 25 mm 2 ) of adult Jatropha leaves as a host (hereinafter referred to as “Jatropha leaf piece”) is sterilized with a solution diluted with household bleach and planted in an MS basic medium. Leave on a pre-conditioning agar medium supplemented with hormones (TDZ, IBA, BA) for 2 days at 25 ° C. A bacterial solution for infection in which Agrobacterium is suspended in MS medium is prepared, and the previous Jatropha leaf pieces are immersed in this bacterial solution and shaken for 10 minutes. Thereafter, the cells are co-cultured on an agar medium at 25 ° C. in a light-shielded environment for 3 days.
- TDZ hormones
- a Co-cultivation medium in which acetosyringone is added to a pre-conditioning medium is used.
- Screening for transformed Jatropha The transformant in which the expression cassette prepared above is stably inserted into the chromosome genome of Jatropha is screened.
- Jatropha leaf pieces after co-culture are washed with an aqueous solution of cefotaxime sodium (200 mg / l), and transformed Jatropha (recombinant cells) is screened.
- Kanamycin (20 mg / l) is used as a screening antibiotic.
- SR-I Shoot regeneration I agar medium
- SR-II Shoot regeneration II
- the selected callus is transferred to Shoot elongation I agar medium (SE-I), Shoot elongation II agar medium (SE-II), somatic embryos are differentiated, and rooting is induced in Rootinduction agar medium (RI).
- SE-I Shoot elongation I agar medium
- SE-II Shoot elongation II agar medium
- RI Rootinduction agar medium
- T1 A re-differentiated Jatropha plant (T1) is obtained.
- MS basic medium thidiazuron (TDZ) 0.5mg / l 6-benzylaminopurine (BA) 1 mg / l 3-indolebutyric acid (IBA) 0.075mg / l
- MS basic medium thidiazuron (TDZ) 0.5mg / l 6-benzylaminopurine (BA) 1 mg / l 3-indolebutyric acid (IBA) 0.075mg / l
- MS basic medium thidiazuron (TDZ) 0.5mg / l 6-benzylaminopurine (BA) 1 mg / l 3-indolebutyric acid (IBA) 0.075mg / l
- Acetosyringone (AS) 20mg / l ⁇ SR-I medium> MS basic medium thidiazuron (TDZ) 0.5mg / l 6-benzylaminopurine (BA) 1 mg / l 6-benzylaminopur
- Transformed cells transformed dicotyledonous cells expressing NF-YB polypeptide with a promoter
- control wild-type Jatropha dicotyledonous cells
- the amount of mRNA of the JcNF-YB1 transcription factor in the transformed cells is compared with that in the control.
- Confirmation of drought stress resistance of transformed Jatropha The photosynthetic rate when the transformed plant body obtained by redifferentiation is cultivated under sand-dwelling conditions and cultivated under water-deficient conditions after interrupting irrigation at an arbitrary time point Chlorophyll fluorescence, transpiration rate, and yellowing, rolling, and defoliation of adult leaves are compared with wild strains to evaluate drought stress tolerance.
- the novel isolated gene of the present invention can be used for the production of drought stress-resistant Jatropha, and thus can provide Jatropha that can grow even in dry land.
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Botany (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
Abstract
Description
以下のポリヌクレオチドから選択される、単離されたポリヌクレオチド。
(a)配列番号1~11のいずれかで示されるポリヌクレオチド;
(b)配列番号12または13で示されるポリヌクレオチド断片を含む、ヤトロファ由来のNF-YBポリペプチドをコードする、ポリヌクレオチド;
(c)(a)および(b)のいずれかのポリヌクレオチドの塩基配列と90%以上の相同性を有する塩基配列で示され、(a)および(b)のポリヌクレオチドがコードするNF-YBポリペプチドの乾燥ストレス耐性をそのコードするポリペプチドが維持している、ポリヌクレオチド。
(a)および(b)のポリヌクレオチドから選択される、[1]記載の単離されたポリヌクレオチド。
以下のポリペプチドから選択される、単離されたNF-YBポリペプチド。
(a)配列番号14~24のいずれか1つで示されるアミノ酸配列からなる、NF-YBポリペプチド;
(b)配列番号25または26で示されるアミノ酸配列のポリペプチドを含む、ヤトロファ由来のNF-YBポリペプチド;
(c)(a)および(b)のいずれかのポリペプチドのアミノ酸配列と90%以上の相同性を有するアミノ酸配列で示され、(a)および(b)のNF-YBポリペプチドの乾燥ストレス耐性をそのポリペプチドが維持している、ポリペプチド。
(a)および(b)のポリペプチドから選択される、[3]記載の単離されたNF-YBポリペプチド。
[3]または[4]記載のポリペプチドをコードするポリヌクレオチド。
[1]、[2]または[5]記載のポリヌクレオチドが組み入れられた、ヤトロファ植物体形質転換用ベクター。
[6]記載のベクターを含む形質転換体。
[6]記載のベクターを用いて形質転換されたヤトロファ植物体であって、野生型と比べて、NF-YBポリペプチドを過剰発現できる乾燥ストレス耐性形質転換ヤトロファ。
[8]記載の乾燥ストレス耐性形質転換ヤトロファから収穫される種子。
[9]記載の種子を圧搾して精製することによる、ヤトロファ油の製造方法。
[10]記載の製造方法で製造されうる、ヤトロファ油。
本発明に係る単離された新規なヤトロファ遺伝子は、ヤトロファの野生型転写因子NF-YBをコードするポリヌクレオチドであり、ヤトロファゲノム中に個別に存在する13個の遺伝子ファミリーである。具体的には、(a)配列番号1~11に示すポリヌクレオチド(これを各順に「JcNF-YB1遺伝子」-「JcNF-YB11遺伝子」と命名する);(b)配列番号12および13で示されるポリヌクレオチド断片(これをそれぞれ「JcNF-YB12遺伝子」および「JcNF-YB13遺伝子」と命名する)を含む、ヤトロファ由来のNF-YBポリペプチドをコードする、ポリヌクレオチド;ならびに(c)(a)および(b)のいずれかのポリヌクレオチドの塩基配列と90%以上の相同性を有する塩基配列で示され、(a)および(b)のポリヌクレオチドがコードするNF-YBポリペプチドの乾燥ストレス耐性をそのコードするポリペプチドが維持している、ポリヌクレオチドが、本発明に含まれる。(c)のポリヌクレオチドの塩基配列は、(a)および(b)のいずれかのポリヌクレオチドの塩基配列と好ましくは95%以上の相同性を有し、さらに好ましくは98%以上の相同性を有し、特に好ましくは99%以上の相同性を有する。
本発明のJcNF-YB遺伝子の調製方法は特に限定しない。例えば、ヤトロファゲノムを鋳型とし、各JcNF-YB遺伝子に応じたプライマーを設計して、PCR反応を行うことにより、直接、目的とする遺伝子のPCR産物を得ることもできるし、乾燥ストレスを与えたヤトロファ植物の一部、好ましくは葉を摩砕して得られたmRNAから、下記プライマーセットを用いて、RT-PCR法により、目的とするポリヌクレオチドのPCR産物を得てもよい。また、常法に従って、所定の塩基を置換させ、欠失させ、付加することができる。
〔乾燥ストレス耐性形質転換ヤトロファの作出〕
本発明の乾燥ストレス耐性形質転換ヤトロファは、JcNF-YB遺伝子を発現又は発現調節のためのプロモータと作動可能に連結した発現カセットを、野生型ヤトロファに遺伝子導入することにより作製される。
遺伝子導入方法は、プロトプラスト同士を融合させる方法、電気穿孔法、遺伝子ショットガン法等の細胞に直接的にDNAを導入する方法;アグロバクテリウム(Agrobacterium tumefaciens)やR.rhizogenesを利用して間接的に導入する方法のいずれの方法により行ってもよいが、好ましくはアグロバクテリウムを用いる方法である。以下、アグロバクテリウムを用いる形質転換方法について説明する。
〔形質転換ヤトロファ〕
本発明の形質転換ヤトロファでは、乾燥ストレスに対する抵抗遺伝子の転写に関与する転写因子JcNF-YBをコードする遺伝子を野生型と比べてJcNF-YB遺伝子の転写産物を過剰発現することができる。従って、乾燥ストレス抵抗遺伝子の転写、発現を活性化できる。その結果、乾燥条件であっても、野生型と比べて、高い植物成長を達成できる。
〔ヤトロファ油の製造〕
ヤトロファ油は本発明の形質転換ヤトロファから収穫される種子から、常法に従って製造することができる。例えば、種子を圧搾して原料油を得て、その原料油をフィルターでろ過することで、バイオディーゼルとして使用しうるヤトロファ油を製造することができる。ヤトロファ油をさらに精製したい場合は、例えば蒸留により精製することでき、また特開2010-209177号公報に記載された方法でホルボールエステルを除去することもできる。
〔ヤトロファにおけるJcNF-YBコードDNAの単離および形質転換用プラスミドの構築〕
(1)ヤトロファゲノムDNAの調製
鳥取大学農学部より分与されたタイ系統ヤトロファ(Jatropha curcas)を用いた。このヤトロファの成葉から、Sudheerらの方法(Indian Journal of Biotechnology, Vol. 8 (2009) p 187-192)に基づき、ゲノムDNAを調製した。
(2)JcNF-YBコード遺伝子のクローニング及び増幅
(1)より得られたヤトロファのゲノム情報(コンティング地図)に基づき、シロイヌナズナNF-YBと相同性を示す遺伝子をTBLASTN検索した。なお、シロイヌナズナのNF-YBの遺伝子情報は、NCBIの遺伝子登録情報(http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=818472&itool=HomoloGeneMainReport)を参照した。
Contig1977.1.1
Contig21632.1.1
Contig30054.1.1
Contig31310.1.2
Contig31788.1.2
Contig3182.1.1
Contig8131.1.1
F4IDXKH14IHOZQ.1
HYB_Contig17630.1.2
HYB_Contig31673.1.1
HYB_Contig46618.1.1
HYB_Contig46864.1.1
HYB_Contig61720.1.1.1
jatropha454_3Run_c74008.1
上記配列のうち、HYB_Contig46618.1.1とHYB_Contig61720.1.1.1のDNA塩基配列は末端部を除き、完全に一致することが判明したので、JcNF-YB遺伝子の予測にはHYB_Contig46618.1.1を用いることとした。従って、ヤトロファには、13種類のNF-YB遺伝子が存在すると考えられる(これらの遺伝子をNF-YB1~NF-YB13と命名した。)。相同性検索の結果、上記各ゲノム断片に含まれるヤトロファDNAとシロイヌナズナNF-YB遺伝子との関係は表1に示す通りとなった。JcNF-YB遺伝子のヌクレオチド配列を、配列リストの配列番号1~13に示す。また、これらのポリヌクレオチドを翻訳して得られるポリペプチドのアミノ酸配列を、各順に配列番号14~26に示す。さらに、JcNF-YB1~JcNF-YB13と、シロイロナズナのNF-YBファミリー(AtNF-YB1~AtNF-YB13)についてCLASTALW解析を行い、分子系樹を作成した。作成結果を図1に示す。
1.25 Unit Ex taq (タカラバイオ)
1x Ex taq buffer (タカラバイオ)
0.2 mM dNTPs(タカラバイオ)
1 μM フォワードプライマー
1 μM リバースプライマー
上記で調製した反応液に、100倍希釈したヤトロファゲノムDNA溶液1μlを加えて全量50μlとして、以下の条件でPCR反応を行った。
1.25 Unit Ex taq (タカラバイオ)
1x Ex taq buffer (タカラバイオ)
0.2 mM dNTPs(タカラバイオ)
1 μM attB1_adapter
1 μM attB2_adapter
PCR反応は、下記温度サイクルにて行った。すなわち、94℃、1分間保持した後、[94℃,15秒→45℃,30秒→68℃,1分]を5回繰り返し、さらに[94℃,15秒→55℃,30秒→68℃,1分]を20回繰り返した後、4℃まで冷却した。反応終了後、増幅DNAをアガロース電気泳動で確認した。
(3)形質転換用プラスミドの構築
JcNF-YB1遺伝子を、InvitrogenのGateway(登録商標)システムのドナーべクター(pDONR221)を用いて、クローニングした。具体的には、PCRにより上記で増幅したJcNF-YB1遺伝子(attB1、attB2を両端に有している)とドナーベクターpDONR221を混合後、BPクロナーゼ(Invitrogen)を用いて組み替え反応(BP反応)を行うことにより、エントリーベクターとなるpENTRJcNF-YB1を得、これを大腸菌DH5α株に導入した。pDONR221は、カナマイシン耐性遺伝子をマーカー遺伝子として導入されたものである。
〔形質転換体の作製〕
(1)形質転換用アグロバクテリウムの調製
上記組換え用ベクターをエレクトロポレーション法によりアグロバクテリウムに導入し、形質転換した。この形質転換アグロバクテリウムを、YEB液体培地(50mg/lカナマイシン、50mg/lハイグロマイシン添加)で、30℃、2日間振とう培養した後、遠心分離により集菌した。集菌した菌をYEB培地に再懸濁して、感染用菌液を調製した。
(2)ヤトロファの形質転換
宿主となるヤトロファ細胞には、ゲノム抽出に用いたヤトロファと同種のタイ系統ヤトロファ(Jatropha curcas)を用いた。このヤトロファの成葉を用いて、リーフディスク法により形質転換を行った。具体的には、まず、宿主となるヤトロファの成葉のカット片((約25mm2)、以下「ヤトロファ葉片」という)を、家庭用漂白剤を希釈した液で滅菌し、MS基本培地に植物ホルモン(TDZ, IBA, BA)を添加したPre-conditioning寒天培地上に2日間25℃で静置する。アグロバクテリウムをMS培地に懸濁した感染用菌液を調製し、この菌液に先のヤトロファ葉片を浸漬し、10分間振とうする。その後、3日間、25℃で遮光環境下で寒天培地上で共培養する。共培養培地としては、Pre-conditioning培地に、アセトシリンゴンを添加したCo-cultivation培地を用いる。
(3)形質転換ヤトロファのスクリーニング
上記で作製した発現カセットが、ヤトロファの染色体ゲノムに安定して挿入された形質転換体をスクリーニングする。
<MS基本培地>
MS 1x,(pH5.8)
スクロース 3%
ミオイノシトール 100mg/l
チアミン塩酸塩(pH5.8) 10mg/l
寒天 0.8%
<Pre-conditioning培地>
MS基本培地
チジアズロン(TDZ) 0.5mg/l
6-ベンジルアミノプリン(BA) 1mg/l
3-インドール酪酸(IBA) 0.075mg/l
<Co-cultivation培地>
MS基本培地
チジアズロン(TDZ) 0.5mg/l
6-ベンジルアミノプリン(BA) 1mg/l
3-インドール酪酸(IBA) 0.075mg/l
アセトシリンゴン(AS) 20mg/l
<SR-I培地>
MS基本培地
チジアズロン(TDZ) 0.5mg/l
6-ベンジルアミノプリン(BA) 1mg/l
3-インドール酪酸(IBA) 0.075mg/l
セフォタキシムナトリウム 200mg/l
カナマイシン 20mg/l
<SR-II培地>
MS基本培地
6-ベンジルアミノプリン(BA) 3mg/l
3-インドール酪酸(IBA) 0.5mg/l
セフォタキシムナトリウム 200mg/l
カナマイシン 20mg/l
<SE-I培地>
MS基本培地
6-ベンジルアミノプリン(BA) 2mg/l
セフォタキシムナトリウム 200mg/l
カナマイシン 20mg/l
<SE-II培地>
MS基本培地
6-ベンジルアミノプリン(BA) 2mg/l
カナマイシン 20mg/l
<RI培地>
MS基本培地(1/2濃度のMS)
3-インドール酪酸(IBA) 0.2mg/l
(4)JcNF-YB遺伝子発現の確認
スクリーニングにより選択された形質転換体において、JcNF-YB1転写因子が過剰発現することを確認する。
(5)形質転換ヤトロファの耐乾燥ストレス性の確認
再分化させて得られた形質転換植物体を砂耕栽培し、任意の時点における灌水を中断した後の水不足条件で栽培した際の光合成速度およびクロロフィル蛍光、蒸散速度および、成葉の黄変、巻き上がり、落葉を野生株と比較し、乾燥ストレス耐性を評価する。
Claims (11)
- 以下のポリヌクレオチドから選択される、単離されたポリヌクレオチド。
(a)配列番号1~11のいずれかで示されるポリヌクレオチド;
(b)配列番号12または13で示されるポリヌクレオチド断片を含む、ヤトロファ由来のNF-YBポリペプチドをコードする、ポリヌクレオチド;
(c)(a)および(b)のいずれかのポリヌクレオチドの塩基配列と90%以上の相同性を有する塩基配列で示され、(a)および(b)のポリヌクレオチドがコードするNF-YBポリペプチドの乾燥ストレス耐性をそのコードするポリペプチドが維持している、ポリヌクレオチド。 - (a)および(b)のポリヌクレオチドから選択される、請求項1記載の単離されたポリヌクレオチド。
- 以下のポリペプチドから選択される、単離されたNF-YBポリペプチド。
(a)配列番号14~24のいずれか1つで示されるアミノ酸配列からなる、NF-YBポリペプチド;
(b)配列番号25または26で示されるアミノ酸配列のポリペプチドを含む、ヤトロファ由来のNF-YBポリペプチド;
(c)(a)および(b)のいずれかのポリペプチドのアミノ酸配列と90%以上の相同性を有するアミノ酸配列で示され、(a)および(b)のNF-YBポリペプチドの乾燥ストレス耐性をそのポリペプチドが維持している、ポリペプチド。 - (a)および(b)のポリペプチドから選択される、請求項3記載の単離されたNF-YBポリペプチド。
- 請求項3または4記載のポリペプチドをコードするポリヌクレオチド。
- 請求項1、2または5記載のポリヌクレオチドが組み入れられた、ヤトロファ植物体形質転換用ベクター。
- 請求項6記載のベクターを含む形質転換体。
- 請求項6記載のベクターを用いて形質転換されたヤトロファ植物体であって、野生型と比べて、NF-YBポリペプチドを過剰発現できる乾燥ストレス耐性形質転換ヤトロファ。
- 請求項8記載の乾燥ストレス耐性形質転換ヤトロファから収穫される種子。
- 請求項9記載の種子を圧搾して精製することによる、ヤトロファ油の製造方法。
- 請求項10記載の製造方法で製造されうる、ヤトロファ油。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SG2012073631A SG184434A1 (en) | 2010-04-09 | 2011-03-30 | A polynucleotide encoding nf-yb derived from jatropha and use thereof |
US13/639,522 US9447426B2 (en) | 2010-04-09 | 2011-03-30 | Polynucleotide encoding NF-YB derived from jatropha and use thereof |
MX2012011645A MX2012011645A (es) | 2010-04-09 | 2011-03-30 | Polinucleotido que codifica nf-yb derivado de jatropha y uso del mismo. |
CN2011800182019A CN102834517A (zh) | 2010-04-09 | 2011-03-30 | 编码源自于麻风树属树的nf-yb的多核苷酸及其应用 |
US15/235,289 US9725733B2 (en) | 2010-04-09 | 2016-08-12 | Polynucleotide encoding NF-YB derived from jatropha and use thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-090618 | 2010-04-09 | ||
JP2010090618 | 2010-04-09 | ||
JP2010-273463 | 2010-12-08 | ||
JP2010273463A JP5876216B2 (ja) | 2010-04-09 | 2010-12-08 | ヤトロファ由来のnf−ybをコードするポリヌクレオチド及びその利用 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/639,522 A-371-Of-International US9447426B2 (en) | 2010-04-09 | 2011-03-30 | Polynucleotide encoding NF-YB derived from jatropha and use thereof |
US15/235,289 Continuation US9725733B2 (en) | 2010-04-09 | 2016-08-12 | Polynucleotide encoding NF-YB derived from jatropha and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011125748A1 true WO2011125748A1 (ja) | 2011-10-13 |
Family
ID=44762690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/058026 WO2011125748A1 (ja) | 2010-04-09 | 2011-03-30 | ヤトロファ由来のnf-ybをコードするポリヌクレオチド及びその利用 |
Country Status (6)
Country | Link |
---|---|
US (2) | US9447426B2 (ja) |
JP (1) | JP5876216B2 (ja) |
CN (1) | CN102834517A (ja) |
MX (1) | MX2012011645A (ja) |
SG (2) | SG10201505341SA (ja) |
WO (1) | WO2011125748A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012077421A1 (ja) * | 2010-12-08 | 2012-06-14 | 住友電気工業株式会社 | ヤトロファ由来のppatをコードするポリヌクレオチドおよびその利用 |
JP2013215147A (ja) * | 2012-04-10 | 2013-10-24 | Sumitomo Electric Ind Ltd | ヤトロファ属植物の細胞に由来するシュートの発根を促進させる方法 |
US9447426B2 (en) | 2010-04-09 | 2016-09-20 | Osaka University | Polynucleotide encoding NF-YB derived from jatropha and use thereof |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170058288A1 (en) * | 2014-02-19 | 2017-03-02 | Snu R&Db Foundation | Osnf-ya7 gene for increasing drought stress resistance of plant and use thereof |
CN109503703B (zh) * | 2019-01-18 | 2019-11-12 | 中国科学院华南植物园 | 抗旱耐盐基因IpNY-B1及其编码蛋白和应用 |
CN113637057B (zh) * | 2020-04-27 | 2023-05-30 | 中国农业科学院生物技术研究所 | 一种培育花青素含量降低和开花时间推迟的转基因植物的方法 |
CN111440805B (zh) * | 2020-05-26 | 2021-08-13 | 扬州大学 | Nf-yb9突变型基因及其蛋白和应用 |
US11674148B2 (en) * | 2021-08-03 | 2023-06-13 | Seoul National University R&Db Foundation | OSNF-YA5 gene from Oryza sativa for increasing nitrogen availability of plant and uses thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009540830A (ja) * | 2006-06-23 | 2009-11-26 | モンサント テクノロジー エルエルシー | 改善されたストレス耐性を有するトランスジェニック作物植物 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4580665B2 (ja) | 2004-03-12 | 2010-11-17 | 独立行政法人理化学研究所 | 環境ストレス耐性植物 |
WO2008015692A2 (en) | 2006-05-09 | 2008-02-07 | Reliance Life Sciences Pvt Ltd | MOLECULAR CLONING AND SEQUENCING OF ACETYL CoA CARBOXYLASE (ACCase) GENE FROM JATROPHA CURCAS |
ES2334539B1 (es) | 2008-05-12 | 2011-02-02 | Consejo Sup. De Invest. Cientificas | Utilizacion del enzima fosfopanteteina adeniltransferasa, implicado en la biosintesis del coenzima a, en la mejora del crecimiento vegetal,resistencia al estres salino/osmotico, incremento de lipidos de reserva y modificacion del contenido aminoacidico. |
JP5876216B2 (ja) | 2010-04-09 | 2016-03-02 | 国立大学法人大阪大学 | ヤトロファ由来のnf−ybをコードするポリヌクレオチド及びその利用 |
-
2010
- 2010-12-08 JP JP2010273463A patent/JP5876216B2/ja not_active Expired - Fee Related
-
2011
- 2011-03-30 WO PCT/JP2011/058026 patent/WO2011125748A1/ja active Application Filing
- 2011-03-30 US US13/639,522 patent/US9447426B2/en not_active Expired - Fee Related
- 2011-03-30 CN CN2011800182019A patent/CN102834517A/zh active Pending
- 2011-03-30 SG SG10201505341SA patent/SG10201505341SA/en unknown
- 2011-03-30 SG SG2012073631A patent/SG184434A1/en unknown
- 2011-03-30 MX MX2012011645A patent/MX2012011645A/es not_active Application Discontinuation
-
2016
- 2016-08-12 US US15/235,289 patent/US9725733B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009540830A (ja) * | 2006-06-23 | 2009-11-26 | モンサント テクノロジー エルエルシー | 改善されたストレス耐性を有するトランスジェニック作物植物 |
Non-Patent Citations (5)
Title |
---|
LI, W.X. ET AL.: "The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance", PLANT CELL, vol. 20, no. 8, 2008, pages 2238 - 51, XP002637527, DOI: doi:10.1105/tpc.108.059444 * |
NAKAKO SHIBAGAKI ET AL.: "Genetic engineering of Jatropha curcas L. for drought resistance", ABSTRACTS OF THE ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, JAPAN, vol. 61, 2009, pages 205, 3S2A01 * |
NELSON, D.E. ET AL.: "Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres", PROC.NATL.ACAD.SCI.USA, vol. 104, no. 42, 2007, pages 16450 - 5, XP002572606, DOI: doi:10.1073/pnas.0707193104 * |
SIEFERS, N. ET AL.: "Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity", PLANT PHYSIOL., vol. 149, no. 2, 2009, pages 625 - 41, XP055222252, DOI: doi:10.1104/pp.108.130591 * |
STEPHENSON, T.J. ET AL.: "Genome-wide identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum", PLANT MOL.BIOL., vol. 65, no. 1-2, 2007, pages 77 - 92, XP019532706, DOI: doi:10.1007/s11103-007-9200-9 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9447426B2 (en) | 2010-04-09 | 2016-09-20 | Osaka University | Polynucleotide encoding NF-YB derived from jatropha and use thereof |
US9725733B2 (en) | 2010-04-09 | 2017-08-08 | Osaka University | Polynucleotide encoding NF-YB derived from jatropha and use thereof |
WO2012077421A1 (ja) * | 2010-12-08 | 2012-06-14 | 住友電気工業株式会社 | ヤトロファ由来のppatをコードするポリヌクレオチドおよびその利用 |
US9255278B2 (en) | 2010-12-08 | 2016-02-09 | Sumitomo Electric Industries, Ltd. | Polynucleotide encoding PPAT derived from jatropha and use thereof |
JP2013215147A (ja) * | 2012-04-10 | 2013-10-24 | Sumitomo Electric Ind Ltd | ヤトロファ属植物の細胞に由来するシュートの発根を促進させる方法 |
Also Published As
Publication number | Publication date |
---|---|
US9447426B2 (en) | 2016-09-20 |
SG184434A1 (en) | 2012-11-29 |
SG10201505341SA (en) | 2015-08-28 |
JP5876216B2 (ja) | 2016-03-02 |
MX2012011645A (es) | 2012-11-29 |
US9725733B2 (en) | 2017-08-08 |
JP2011229521A (ja) | 2011-11-17 |
US20170044567A1 (en) | 2017-02-16 |
US20130072702A1 (en) | 2013-03-21 |
CN102834517A (zh) | 2012-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9725733B2 (en) | Polynucleotide encoding NF-YB derived from jatropha and use thereof | |
US10913939B2 (en) | Compositions and methods for expression of nitrogenase in plant cells | |
KR20140107334A (ko) | 합성 양방향성 식물 프로모터 ubi1을 위한 구축물 및 방법 | |
CN105037521A (zh) | 一种与植物抗逆性相关蛋白TaWrky48及其编码基因与应用 | |
CA2809643C (en) | Sugarcane bacilliform viral (scbv) enhancer and its use in plant functional genomics | |
KR20140109909A (ko) | 합성 양방향성 scbv 식물 프로모터를 위한 방법 및 구축물 | |
US20230313212A1 (en) | Plastid transformation by complementation of nuclear mutations | |
CA2927342A1 (en) | Zea mays regulatory elements and uses thereof | |
US20140223604A1 (en) | Crop plants with improved water use efficiency and grain yield and methods of making them | |
US10047368B2 (en) | Zea mays regulatory elements and uses thereof | |
US9777286B2 (en) | Zea mays metallothionein-like regulatory elements and uses thereof | |
CN114805508B (zh) | 水稻抽穗期基因dhd3功能以及应用 | |
AU2013228321B2 (en) | Environmental stress-resistant plant with high seed productivity and method for constructing same | |
CN114349833B (zh) | 钙调素结合蛋白cold12在调控植物耐冷性中的应用 | |
CN113773374B (zh) | 转录因子ZmbZIPa6及其编码基因与应用 | |
CN114149993B (zh) | 一种调控植物可溶性糖含量的lncRNA及其应用 | |
CN103571870A (zh) | 一种提高生物体中硒含量的方法 | |
JP6030281B2 (ja) | ヤトロファ由来のppatをコードするポリヌクレオチド及びその利用 | |
US20240301440A1 (en) | Maize regulatory elements and uses thereof | |
CN107513532B (zh) | 一个梨组成型表达启动子PbTMT4P及其应用 | |
JP5956225B2 (ja) | グリシンベタイン合成酵素遺伝子で形質転換された環境ストレス耐性ヤトロファ | |
CN107338249A (zh) | 种子特异表达启动子的分离及其应用 | |
KR101613367B1 (ko) | 단자엽 식물의 전신 발현 유도용 프로모터 및 이의 용도 | |
CN117106048A (zh) | 一种提高植物遗传转化效率的新方法 | |
CN117736285A (zh) | 杨树钙调素结合蛋白PdeCAMBP在调控植物器官形成和生物量中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180018201.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11765648 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12012501925 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13639522 Country of ref document: US Ref document number: MX/A/2012/011645 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 8742/DELNP/2012 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11765648 Country of ref document: EP Kind code of ref document: A1 |