WO2011125748A1 - ヤトロファ由来のnf-ybをコードするポリヌクレオチド及びその利用 - Google Patents

ヤトロファ由来のnf-ybをコードするポリヌクレオチド及びその利用 Download PDF

Info

Publication number
WO2011125748A1
WO2011125748A1 PCT/JP2011/058026 JP2011058026W WO2011125748A1 WO 2011125748 A1 WO2011125748 A1 WO 2011125748A1 JP 2011058026 W JP2011058026 W JP 2011058026W WO 2011125748 A1 WO2011125748 A1 WO 2011125748A1
Authority
WO
WIPO (PCT)
Prior art keywords
jatropha
polypeptide
gene
polynucleotide
seq
Prior art date
Application number
PCT/JP2011/058026
Other languages
English (en)
French (fr)
Inventor
幸大 松永
務 小日向
福井 希一
哲之 田畑
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to SG2012073631A priority Critical patent/SG184434A1/en
Priority to US13/639,522 priority patent/US9447426B2/en
Priority to MX2012011645A priority patent/MX2012011645A/es
Priority to CN2011800182019A priority patent/CN102834517A/zh
Publication of WO2011125748A1 publication Critical patent/WO2011125748A1/ja
Priority to US15/235,289 priority patent/US9725733B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Definitions

  • the present invention relates to a polynucleotide encoding an NF-YB transcription factor as a novel gene of the genus Jatropha and use thereof, and particularly to use for producing drought stress resistant Jatropha.
  • Jatropha is known as a plant that can be cultivated in areas where growth of other crops is inappropriate for moisture and mineral nutrition, and is considered to be very beneficial for effective use and greening of semi-arid areas.
  • Jatropha genus plants grow in wasteland, but the number of fruiting is once a year and the fruit size is considerably smaller than that of palm. Therefore, the production efficiency of fats and oils by natural cultivation is not high. For this reason, development of highly productive Jatropha is required.
  • acetyl-CoA carboxylase As one of the methods for improving the productivity efficiency of Jatropha oil, for example, as disclosed in JP-T-2009-536029 (Patent Document 1), acetyl-CoA carboxylase ( There is a method for transforming ACCase) so that it can be overexpressed.
  • Drought stress-tolerant genetically modified plants contain excessive amounts of stress response signal transduction strength, mechanisms, and protein molecules involved in tolerance (proteins that respond to environmental stress) so that they can adapt or respond to drought stress A method of improving the production so that it can be considered.
  • Signal transduction pathways in response to plant environmental stress are broadly divided into pathways involving the plant hormone abscisic acid (ABA) and pathways not involving ABA, and are further subdivided according to the type of transcription factor involved.
  • proteins related to responses include regulatory proteins related to responses such as transcription regulators, proteases, and protein kinases, and functional proteins related to resistance such as chaperones, and are thought to have various physiological responses. (Kazuo Shinozaki et al., Asakura Plant Physiology Laboratory 5 Environmental Response, pp106-1145).
  • Abscisic acid is a plant hormone involved in seed dormancy, stomatal opening and closing, and resistance to osmotic stress, and ABA is known to be deeply involved in the expression of stress-responsive genes.
  • Non-Patent Document 1 (Wen-Xue Li et al., "The Arabidopsis NFYA5 Transcription Factor Is Regulated Transcriptionally and Posttranscriptionally to Promote Drought Resistance", The Plant Cell, Vol. 20: 2238-2251 (2008) NF-YA5 transcription factor is ABA-dependent and strongly induced by drought stress, and transgenic Arabidopsis overexpressing NF-YA5 is more drought stress than wild-type Arabidopsis thaliana It was reported that it was excellent in resistance to.
  • JP 2005-253395 A JP 2005-253395 A (Patent Document 2) binds to a cis element existing upstream of a gene encoding a stress responsive protein expressed by environmental stress.
  • a method has been proposed that utilizes the activation action of a gene group under the control of a transcription factor (stress responsive transcription factor) that activates transcription.
  • the SRK2C gene was disclosed as a novel gene encoding a signal transduction factor that induces the expression of the stress-responsive transcription factor DREB / CBF, and the SRK2C gene was transformed to be overexpressed. It is disclosed that Arabidopsis thaliana showed a significantly higher survival rate than the control even after the water supply was stopped.
  • Non-Patent Document 2 Donald E. Nelson et al., “Plant nuclear factor Y (NF-Y) B subunitsconfer drought tolerance and lead to improved corn yields on water-limited acres”, PNAS, vol. 104, No. 42 , 16450-16455 (2007)), maize NF-YB factor was identified, and it was reported that maize transformed using this factor had higher productivity under water-deficient conditions than wild type. ing.
  • JP 2009-540830 (Patent Document 3) is operably linked to DNA encoding NF-YB protein of Arabidopsis thaliana, maize, and soybean as water-deficient stress resistant plants of rice, maize, soybean, and cotton. Plants into which a transcription unit containing a promoter has been introduced are disclosed. It has been reported that transformed plants that can overexpress NF-YB by devising promoters and the like have improved yields even under water-deficient conditions compared to wild-type controls.
  • the problem to be solved by the present invention is to create a drought-stress resistant jatropha that can ensure high growth even under water-deficient conditions.
  • a gene that can transform wild-type jatropha to drought stress tolerance, etc. is to provide.
  • the present inventors examined a gene for transforming Jatropha to tolerance to drought stress. As a result, the genome sequence of Jatropha was clarified and an additional 13 NF-YB coding genes were identified. The present invention was completed by succeeding in isolation and identification. That is, the present invention is as follows.
  • An isolated polynucleotide selected from the following polynucleotides: (A) a polynucleotide represented by any of SEQ ID NOs: 1 to 11; (B) a polynucleotide encoding a NF-YB polypeptide derived from Jatropha, comprising the polynucleotide fragment represented by SEQ ID NO: 12 or 13; (C) NF-YB represented by a nucleotide sequence having 90% or more homology with the nucleotide sequence of any of the polynucleotides of (a) and (b) and encoded by the polynucleotide of (a) and (b) A polynucleotide wherein the polypeptide which maintains the resistance to drought stress of the polypeptide is maintained.
  • NF-YB polypeptide selected from the following polypeptides: (A) an NF-YB polypeptide consisting of the amino acid sequence represented by any one of SEQ ID NOs: 14 to 24; (B) an NF-YB polypeptide derived from Jatropha, comprising a polypeptide having the amino acid sequence represented by SEQ ID NO: 25 or 26; (C) Drought stress of the NF-YB polypeptide of (a) and (b) represented by an amino acid sequence having 90% or more homology with the amino acid sequence of any of the polypeptides of (a) and (b) A polypeptide whose resistance is maintained by the polypeptide.
  • [6] A vector for transforming a Jatropha plant into which the polynucleotide according to [1], [2] or [5] is incorporated.
  • the transformed Jatropha can express the NF-YB polypeptide derived from Jatropha of the present invention or a polypeptide equivalent thereto.
  • These polypeptides can significantly improve the productivity of protein synthesis involving the NF-YB polypeptide, for example, drastically improve drought stress tolerance.
  • FIG. 3 is a photograph showing the results of agarose electrophoresis of NF-YB1 to NF-YB5.
  • pGWB11 plasmid gene map (Nakagawa et al., “Development of Series of Gateway Binary Vectors, pGWBs, for Realizing Efficient Construction of Fusion Genes for Plant Transformation”, Journal of Bioscience and Bioengineering Vol. 104 No. 104 See .38).
  • Jatropha gene The isolated novel Jatropha gene according to the present invention is a polynucleotide encoding the wild-type transcription factor NF-YB of Jatropha, and is a 13 gene family that exists individually in the Jatropha genome.
  • polynucleotides shown in SEQ ID NOs: 1 to 11 (named “JcNF-YB1 gene”-“JcNF-YB11 gene” in this order);
  • SEQ ID NOs: 12 and 13 A polynucleotide encoding a NF-YB polypeptide derived from Jatropha, comprising a polynucleotide fragment (named “JcNF-YB12 gene” and “JcNF-YB13 gene”, respectively); and
  • a polynucleotide that is maintained by the polypeptide that encodes is included in the present invention.
  • the nucleotide sequence of the polynucleotide (c) preferably has a homology of 95% or more, more preferably 98% or more, with the nucleotide sequence of any of the polynucleotides (a) and (b). Particularly preferably 99% or more of homology.
  • Examples of the polypeptide obtained by expressing each gene of the present invention include (a) NF-YB polypeptide of Jatropha wild-type transcription factor JcNF-YB1 to JcNF-YB11 (amino acid sequence is SEQ ID NO: 14 to 24). (B) an NF-YB polypeptide derived from Jatropha comprising the polypeptide of the amino acid sequence shown in SEQ ID NOs: 25 and 26; and (c) the amino acid sequence of any of the polypeptides of (a) and (b); Included are polypeptides that are represented by amino acid sequences that have 90% or greater homology and that maintain the drought stress tolerance of the NF-YB polypeptides of (a) and (b).
  • the polypeptide of (c) preferably has a homology of 95% or more with the amino acid sequence of any of the polypeptides of (a) and (b), more preferably has a homology of 98% or more, Particularly preferably, the homology is 99% or more.
  • the nucleotide sequence of the gene of the present invention includes polynucleotides encoding the polypeptides (a) to (c) above. For example, as long as it encodes the polypeptides (a) and (b), a part of the base may be substituted. In the JcNF-YB1 DNA shown in SEQ ID NO: 1, the sixth base G is replaced with the base T. By (SEQ ID NO: 39), the translation efficiency can be made higher than that of the wild type.
  • JcNF-YB gene refers to the polynucleotide of the present invention.
  • the method for preparing the JcNF-YB gene of the present invention is not particularly limited. For example, by using a Jatropha genome as a template, designing primers corresponding to each JcNF-YB gene and performing a PCR reaction, a PCR product of the target gene can be obtained directly, or drought stress was applied.
  • a PCR product of the target polynucleotide may be obtained from mRNA obtained by grinding a part of a Jatropha plant, preferably leaves, by RT-PCR using the following primer set.
  • a predetermined base can be substituted, deleted, and added.
  • a PCR product of the target gene is directly obtained using the Jatropha genome extracted based on the method of Sudheer et al. (Indian Journal of Biotechnology, Vol. 8 (2009) p 187-192).
  • the method of Sudheer et al. Is that the NaCl concentration of the solution used from the extraction buffer used to DNA precipitation is adjusted, the purification step is treated with Tris saturated phenol, followed by a mixture of chloroform and isoamyl alcohol, It is characterized in that 80% ethanol is used in the precipitation step.
  • MRNA can be prepared by a conventional method. For example, after the frozen plant body is ground in a mortar or the like, a crude RNA fraction is obtained from the ground product by a glyoxal method, a guanidine thiocyanate-cesium chloride method, a lithium chloride-urea method, a proteinase K-deoxyribonuclease method, or the like. May be extracted and prepared. A commercially available kit may also be used.
  • Determination and confirmation of the base sequence of the obtained PCR product may be performed by a conventionally known method, for example, a known method such as a chemical modification method of Maxam-Gilbert or a dideoxynucleotide chain termination method using M13 phage.
  • a known method such as a chemical modification method of Maxam-Gilbert or a dideoxynucleotide chain termination method using M13 phage.
  • the drought stress tolerant transformed Jatropha of the present invention is prepared by introducing an expression cassette operably linked to a promoter for expression or expression regulation of JcNF-YB gene into wild type Jatropha.
  • Jatropha targeted by the present invention are not particularly limited, and Jatropha curcus, Jatropha potagurica, Jatropha multifida, Jatropha berlandieri, Jatropha -Integerima (Jatropha integerrima) can be used.
  • Jatropha curcas are preferably used because of their high fat content.
  • Gene transfer methods include a method of fusing protoplasts together, a method of directly introducing DNA into cells, such as electroporation and gene shotgun method; Agrobacterium tumefaciens and R. Although it may be carried out by any method of indirect introduction using rhizogenes, the method using Agrobacterium is preferred. Hereinafter, a transformation method using Agrobacterium will be described.
  • Agrobacterium is a plant disease bacterium that has a Ti plasmid that can cut out the region between the LB (left border) and RB (right border) (T-DNA (Transferred DNA) region) and insert it into the host genome.
  • T-DNA Transferred DNA
  • Binary vector method is preferred as a transformation method using Agrobacterium.
  • a target foreign gene is placed in a T-DNA region of a plasmid having a T-DNA region border (LB and RB) separately from a plasmid (eg, pAL4404) in which T-DNA of Ti plasmid is deleted.
  • a plasmid eg, pAL4404
  • the expression cassette used for the production of transformed Jatropha using the binary vector method includes the JcNF-YB gene according to the present invention, the promoter for expressing the nucleotide, the marker gene, and the reporter gene in the T-DNA region. Contains.
  • Promoters include 35S cauliflower mosaic virus promoter, nopaline synthase (NOS) promoter, and other endosperm-specific promoters such as ⁇ phaseolin, napin, ubiquitin.
  • NOS nopaline synthase
  • selectable marker gene a gene that imparts resistance to a selective agent such as an antibiotic or a herbicide is used.
  • a selective agent such as an antibiotic or a herbicide
  • Specific examples include a kanamycin resistance gene, a paromomycin B resistance gene, or a resistance gene for herbicides such as glufosinate and glyphosate.
  • Selectable markers that can visually identify transformants such as luciferase or ⁇ -glucuronidase or GUS for which chromogenic or fluorescent protein expressing genes such as green fluorescent protein (GFP) or various chromogenic substrates are known Expressed genes can also be used.
  • GFP green fluorescent protein
  • Such a selection marker can also be used as a reporter gene.
  • Enhancers, terminators, tags, etc. may be further included as necessary.
  • the enhancer is used to increase the expression efficiency of the target gene, and includes an enhancer region containing an upstream sequence in the CaMV35S promoter.
  • the terminator may be any sequence that can terminate transcription of the gene transcribed by the promoter, and examples thereof include nopaline synthase (NOS) gene terminator, octobin synthase (OCS), and CaMV35S RNA gene terminator.
  • the binary vector used for the transformation of Jatropha by the binary vector method includes the above-mentioned expression cassette in the T-DNA region.
  • the binary vector method includes commercially available vectors such as pBI, pPZP, pSMA, and pGWB. Those incorporating an expression cassette can be used.
  • binary vectors for plant transformation to which the Gateway (registered trademark) cloning system can be applied are preferable, and examples of such vectors include pGWB vectors.
  • This pGWB vector comprises a cauliflower mosaic virus (CaMV) 35S promoter as a promoter; a hygromycin resistance gene and a kanamycin resistance gene as selectable marker genes; ⁇ -glucuronidase (GUS), green fluorescent protein (GFP), luciferase (reporter) LUC), yellow fluorescent protein (YFP), cyan fluorescent protein (CFP); 6xHis, FLAG, 3xHA, 4xMyc, GST, T7-epitope is used as a tag, and the target gene and reporter are operably linked. Furthermore, there are sequences encoding reporters and tags so that they can be fused to both the N-terminus and C-terminus.
  • CaMV cauliflower mosaic virus
  • the Gateway (registered trademark) cloning system facilitates the construction of an expression vector by using a Gateway signal (att).
  • An entry vector (attL1, attL2 sequence at both ends) by reacting (BP reaction) between a donor vector having attP1, attP2 sequences and an attB1, attB2 sequence added to both ends of the target gene (BP reaction)
  • BP reaction BP reaction
  • the target gene is inserted by recombination reaction (LR reaction) with this entry vector and a destination vector (added with attR1 and attR2 sequences) in which a promoter necessary for expression is incorporated.
  • LR reaction recombination reaction
  • an entry vector in which the cloned JcNF-YB gene is incorporated into the donor vector by BP reaction with the donor vector is prepared, and then this entry vector and the destination vector (pGWB) are subjected to LR reaction.
  • an expression vector incorporating the target gene (JcNF-YB) can be prepared.
  • the expression vector (vector for plant transformation) prepared as described above can be amplified in E. coli.
  • the amplified transformation vector may be introduced into Agrobacterium by electroporation or the like.
  • Agrobacterium introduced with the expression vector in this way is used for transformation of Jatropha.
  • JcNF-YB gene Jatropha by infection with Agrobacterium loaded with a plant transformation vector
  • Introduction of the target gene (JcNF-YB gene) into Jatropha by infection with Agrobacterium loaded with a plant transformation vector can be performed using a known method such as the leaf disk method.
  • Jatropha leaf piece a part of Jatropha serving as a host (preferably a cut piece of cotyledon, hereinafter referred to as “Jatropha leaf piece”) is used in this bacterial solution.
  • Jatropha leaf piece a part of Jatropha serving as a host
  • the Sandvortex method in which vibration is applied in a state where sand is added to a suspension of Agrobacterium is preferable because the infectivity of Agrobacterium increases.
  • co-culture medium a medium in which a plant hormone such as 3-indolebutyric acid (IBA) or 6-benzylaminopurine (BA) is added to MS medium or the like is used.
  • a plant hormone such as 3-indolebutyric acid (IBA) or 6-benzylaminopurine (BA) is added to MS medium or the like is used.
  • the Jatropha leaf pieces are washed, transferred to a selective medium (containing an antibiotic corresponding to the selection marker gene used in the expression cassette of the transformation vector), incubated, and then the callus formed on the leaf pieces is removed. Cut out, transfer to selective medium, and screen for transformed Jatropha (recombinant cells).
  • a selective medium containing an antibiotic corresponding to the selection marker gene used in the expression cassette of the transformation vector
  • antibiotics kanamycin, hygromycin
  • MS medium a medium used for the pre-culture
  • plant hormones such as IBA, BA, thidiazuron (TDZ), etc. Those contained are preferably used.
  • the selected callus is transferred to a medium such as RI medium or MS medium, rooted, and redifferentiated into a plant body.
  • Induction of regeneration can be performed by appropriately setting the types and amounts of various components such as plant growth regulators such as auxin and cytokinin, carbon sources, and the like, light, temperature, and the like in the medium.
  • plant growth regulators such as auxin and cytokinin, carbon sources, and the like, light, temperature, and the like in the medium.
  • the transformed plant body of the present invention can be transformed by “T2 generation”, which is a progeny obtained from the seeds of the plant, by drug selection or Southern method analysis. Progeny plants such as the next generation (T3 generation) obtained by self-pollination of “T2 generation” plant flowers that have been found to be included are also included.
  • Jatropha oil can be produced from seeds harvested from the transformed Jatropha of the present invention according to a conventional method. For example, by compressing seeds to obtain raw material oil and filtering the raw material oil with a filter, Jatropha oil that can be used as biodiesel can be produced. When it is desired to further refine the Jatropha oil, it can be purified, for example, by distillation, or the phorbol ester can be removed by the method described in Japanese Patent Application Laid-Open No. 2010-209177.
  • the leaves of Jatropha were washed with distilled water, and water was absorbed with tissue paper, and then 1 g was pulverized with a mortar and powdered. This powder was sufficiently mixed with 10 ml of extraction buffer (2% CTAB, 100 mM Tris-HCl, 3.5 M NaCl, 20 mM EDTA, 1% ⁇ -mercaptoethanol) at 65 ° C. The mixture was incubated in a water bath at 65 ° C. for 90 minutes and then cooled for 5 minutes. An equal amount of a mixture of chloroform and isoamyl alcohol (24: 1) was added and mixed slowly to obtain a uniform emulsion.
  • extraction buffer 2% CTAB, 100 mM Tris-HCl, 3.5 M NaCl, 20 mM EDTA, 1% ⁇ -mercaptoethanol
  • the emulsion was centrifuged at 10,000 ⁇ g for 15 minutes, and the aqueous phase was separated. An equal amount of a mixture of chloroform and isoamyl alcohol (24: 1) was again added to the separated aqueous phase, and the mixture was slowly mixed to obtain a uniform emulsion. The emulsion was centrifuged at 10,000 ⁇ g for 15 minutes at 4 ° C., and the aqueous phase was separated. An equal amount of isopropyl alcohol was added to the separated aqueous phase, cooled at ⁇ 20 ° C. for 30 minutes, and then centrifuged at 10,000 ⁇ g for 30 minutes at 4 ° C. to obtain a DNA pellet.
  • the DNA pellet was washed with 70% ethanol and then resuspended in TE buffer.
  • the obtained DNA pellet was dissolved in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) containing 20 mg / mL RNase to obtain a genomic DNA sample.
  • the obtained extracted genomic DNA was fragmented by culturing with EcoRI, HindIII, and SauIII, and sequenced by a sequencer.
  • (2) Cloning and amplification of JcNF-YB-encoding gene Based on the genome information (conting map) of Jatropha obtained from (1), a gene having homology with Arabidopsis NF-YB was searched for TBLASTN.
  • JcNF-YB1 to JcNF-YB5 genes are amplified by performing a PCR reaction using Jatropha (Thai strain) genomic DNA as a template and the primer sets (SEQ ID NOs: 27 to 36) shown in Table 2, respectively. did.
  • the reaction solution used for PCR is as follows. 1.25 Unit Ex taq 1x Ex taq buffer (Takara Bio) 0.2 mM dNTPs (Takara Bio) 1 ⁇ M forward primer 1 ⁇ M reverse primer To the reaction solution prepared above, 1 ⁇ l of a 100-fold diluted Jatropha genomic DNA solution was added to make a total volume of 50 ⁇ l, and a PCR reaction was performed under the following conditions.
  • the DNA obtained by amplification was confirmed by agarose electrophoresis.
  • the results of electrophoresis of JcNF-YB1 to JcNF-YB5 are shown in FIG.
  • the sequence of the obtained PCR product was sequenced with a DNA sequencer.
  • the nucleotide sequences of the JcNF-YB1 to JcNF-YB5 polynucleotides were as shown in SEQ ID NOs: 1 to 5 in the sequence list.
  • the JcNF-YB1 gene amplified by PCR having attB1 and attB2 at both ends
  • the donor vector pDONR221 are mixed, and then a recombination reaction (BP reaction) is performed using BP clonase (Invitrogen).
  • BP reaction BP clonase
  • pENTRJcNF-YB1 serving as an entry vector was obtained and introduced into E. coli DH5 ⁇ strain.
  • pDONR221 was introduced with the kanamycin resistance gene as a marker gene.
  • the pENTRJcNF-YB1 plasmid was extracted from E. coli, mixed with the plasmid vector (destination vector) pGWB11 linearized with the restriction enzyme XhoI (Takara Bio), and then LR clonase (Invitrogen) was used. The recombination reaction was performed.
  • pGWB11 has a 35S promoter as a promoter, and a FLAG tag is added to the C-terminus.
  • a 35S promoter-R1-Cmr-ccdB-R2-FLAG is inserted between HindIII and SacI.
  • the R1-Cmr-ccdB-R2 portion can be replaced with attB1- (JcNF-YB1) -attB2 by the LR reaction with the entry vector.
  • pGWB11JcNF-YB1 serving as a plant recombination vector was obtained.
  • the transformed Agrobacterium was cultured with shaking in a YEB liquid medium (50 mg / l kanamycin, 50 mg / l hygromycin added) at 30 ° C. for 2 days, and then collected by centrifugation. The collected bacteria were resuspended in YEB medium to prepare a bacterial solution for infection.
  • a YEB liquid medium 50 mg / l kanamycin, 50 mg / l hygromycin added
  • Jatropha leaf piece a cut piece (about 25 mm 2 ) of adult Jatropha leaves as a host (hereinafter referred to as “Jatropha leaf piece”) is sterilized with a solution diluted with household bleach and planted in an MS basic medium. Leave on a pre-conditioning agar medium supplemented with hormones (TDZ, IBA, BA) for 2 days at 25 ° C. A bacterial solution for infection in which Agrobacterium is suspended in MS medium is prepared, and the previous Jatropha leaf pieces are immersed in this bacterial solution and shaken for 10 minutes. Thereafter, the cells are co-cultured on an agar medium at 25 ° C. in a light-shielded environment for 3 days.
  • TDZ hormones
  • a Co-cultivation medium in which acetosyringone is added to a pre-conditioning medium is used.
  • Screening for transformed Jatropha The transformant in which the expression cassette prepared above is stably inserted into the chromosome genome of Jatropha is screened.
  • Jatropha leaf pieces after co-culture are washed with an aqueous solution of cefotaxime sodium (200 mg / l), and transformed Jatropha (recombinant cells) is screened.
  • Kanamycin (20 mg / l) is used as a screening antibiotic.
  • SR-I Shoot regeneration I agar medium
  • SR-II Shoot regeneration II
  • the selected callus is transferred to Shoot elongation I agar medium (SE-I), Shoot elongation II agar medium (SE-II), somatic embryos are differentiated, and rooting is induced in Rootinduction agar medium (RI).
  • SE-I Shoot elongation I agar medium
  • SE-II Shoot elongation II agar medium
  • RI Rootinduction agar medium
  • T1 A re-differentiated Jatropha plant (T1) is obtained.
  • MS basic medium thidiazuron (TDZ) 0.5mg / l 6-benzylaminopurine (BA) 1 mg / l 3-indolebutyric acid (IBA) 0.075mg / l
  • MS basic medium thidiazuron (TDZ) 0.5mg / l 6-benzylaminopurine (BA) 1 mg / l 3-indolebutyric acid (IBA) 0.075mg / l
  • MS basic medium thidiazuron (TDZ) 0.5mg / l 6-benzylaminopurine (BA) 1 mg / l 3-indolebutyric acid (IBA) 0.075mg / l
  • Acetosyringone (AS) 20mg / l ⁇ SR-I medium> MS basic medium thidiazuron (TDZ) 0.5mg / l 6-benzylaminopurine (BA) 1 mg / l 6-benzylaminopur
  • Transformed cells transformed dicotyledonous cells expressing NF-YB polypeptide with a promoter
  • control wild-type Jatropha dicotyledonous cells
  • the amount of mRNA of the JcNF-YB1 transcription factor in the transformed cells is compared with that in the control.
  • Confirmation of drought stress resistance of transformed Jatropha The photosynthetic rate when the transformed plant body obtained by redifferentiation is cultivated under sand-dwelling conditions and cultivated under water-deficient conditions after interrupting irrigation at an arbitrary time point Chlorophyll fluorescence, transpiration rate, and yellowing, rolling, and defoliation of adult leaves are compared with wild strains to evaluate drought stress tolerance.
  • the novel isolated gene of the present invention can be used for the production of drought stress-resistant Jatropha, and thus can provide Jatropha that can grow even in dry land.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

 ヤトロファのゲノム解析から、配列番号1~11のNF-YBコード遺伝子、配列番号12および13のNF-YBコード遺伝子の断片、ならびにこれらの関連遺伝子を見出した。これらのNF-YBコード遺伝子等をヤトロファに形質転換させることで、NF-YBポリペプチド等を過剰に発現させることができ、NF-YBポリペプチドが関与するタンパク合成の生産性を顕著に向上させ、例えば乾燥ストレス耐性を顕著に向上させることができる。それによって、水不足条件下でも高い成長性を確保できる、乾燥ストレス耐性ヤトロファを作出することができる。

Description

ヤトロファ由来のNF-YBをコードするポリヌクレオチド及びその利用
 本発明は、ヤトロファ(Jatropha)属の新規な遺伝子としてNF-YB転写因子をコードするポリヌクレオチド及びその利用に関し、特に乾燥ストレス耐性ヤトロファ作出のための利用に関する。
 ヤトロファ・クルカス(Jatropha curcas)から非食用ヤトロファ油を製造することができるため、バイオディーゼル燃料生産のための生物資源として注目を集めている。また、ヤトロファは、水分や無機栄養について、他の作物の生育不適地でも栽培できる植物として知られており、半乾燥地の有効利用と緑化のために非常に有益であると考えられている。一方、ヤトロファ属植物は、荒地で育つものの、結実回数も年1回、実のサイズもパームよりかなり小さいため、自然栽培による油脂の生産効率は高くない。このような理由から、生産性の高いヤトロファの開発が求められている。
 ヤトロファ油の生産性効率の改善方法の1つとしては、例えば特表2009-536029号公報(特許文献1)に開示されているように、種子の油含有量を増大させるべく、アセチルCoAカルボキシラーゼ(ACCアーゼ)を過剰発現可能に形質転換する方法がある。
 一方、ヤトロファ自体の生産性を上げる観点から、水不足条件下でも高い成長性を確保できるような乾燥耐性の付与が考えられる。
 一般に、植物は、乾燥、塩、低温などの環境要因によって、生育が大きく左右されることから、環境ストレス耐性を付与した農作物の開発が期待されている。
 乾燥ストレス耐性遺伝子組換え植物としては、乾燥ストレスに対して適応又は応答できるように、ストレス応答シグナル伝達強度、機構を改変したもの、耐性に関与するタンパク質分子(環境ストレスに応答するタンパク質)を過剰生産するように改良する方法などが考えられる。
 植物の環境ストレスに応答したシグナル伝達経路は、植物ホルモンのアブシジン酸(ABA)を介した経路とABAを介さない経路に大別され、さらに関与する転写制御因子のタイプによっても細分化される。また、応答にかかわるタンパク質についても、転写制御因子、プロテアーゼ、プロテインキナーゼ等の応答にかかわる制御タンパク質、シャペロンなどの耐性にかかる機能タンパク質などがあり、さまざまな生理応答を行っていると考えられている(篠崎一雄ら、朝倉植物生理学講座5環境応答、pp106-1145)。
 アブシジン酸(ABA)は、種子休眠、気孔の開閉、浸透圧ストレス耐性にかかわる植物ホルモンであり、ストレス応答性遺伝子群の発現にはABAが深く関与することが知られている。
 例えば、非特許文献1(Wen-Xue Li et al., "The Arabidopsis NFYA5 Transcription Factor Is Regulated Transcriptionally and Posttranscriptionally to Promote Drought Resistance", The Plant Cell, Vol.20:2238-2251(2008))は、シロイヌナズナにおける乾燥ストレス耐性の制御機構に、NF-YA5転写因子が、ABA依存性で、乾燥ストレスにより強く誘導されること、NF-YA5を過剰発現させた形質転換シロイヌナズナが、野生型シロイヌナズナよりも乾燥ストレスに対する耐性に優れていたことを報告している。
 また、環境ストレス耐性シロイヌナズナを作製する方法としては、特開2005-253395号公報(特許文献2)に、環境ストレスにより発現されるストレス応答性タンパク質をコードする遺伝子の上流に存在するシスエレメントに結合して転写を活性化する転写因子(ストレス応答性転写因子)の制御下にある遺伝子群の活性化作用を利用する方法が提案されている。具体的には、ストレス応答性転写因子であるDREB/CBFの発現を誘導するシグナル伝達因子をコードする新規な遺伝子として、SRK2C遺伝子を開示するとともに、このSRK2C遺伝子を過剰発現するように形質転換したシロイヌナズナが、給水停止後も、コントロールに対して優位に高い生存率を示したことを開示している。
 さらに、非特許文献2(Donald E. Nelson et al., "Plant nuclear factor Y (NF-Y)B subunitsconfer drought toleranceand lead to improved corn yields on water-limited acres", PNAS, vol.104, No.42, 16450-16455(2007))には、トウモロコシNF-YB因子を同定し、これを用いて形質転換したトウモロコシが、野生型と比べて、水不足条件下での生産性が高かったことが報告されている。
 またさらに、特表2009-540830(特許文献3)には、イネ、トウモロコシ、ダイズ、ワタの水不足ストレス耐性植物として、シロイヌナズナ、トウモロコシ、ダイズのNF-YBタンパク質をコードするDNAに作動可能に連結されたプロモータを含む転写ユニットを導入した植物が開示されている。プロモータ等を工夫することで、NF-YBを過剰発現できるようにした形質転換植物は、水不足条件下でも、野生型コントロールと比べて、収量が改善されると報告されている。
特表2009-536029号公報 特開2005-253395号公報 特表2009-540830号公報
 環境ストレスに対するシグナル伝達経路のメカニズムは複雑であり、乾燥ストレス耐性植物の作出についても、上記のように、種々の形質転換方法が提案されている。しかしながら、ヤトロファに関しては、乾燥ストレスにかかわる制御タンパク質、耐性にかかわる機能タンパク質などは明らかにされていないのが現状である。
 本発明が解決しようとする課題は、水不足条件下でも高い成長性を確保できる、乾燥ストレス耐性ヤトロファを作出することにあり、そのために野生型ヤトロファを乾燥ストレス耐性に形質転換させることのできる遺伝子等を提供することにある。
 その課題を解決するために、本発明者らは、ヤトロファを乾燥ストレス耐性に形質転換するための遺伝子について検討した結果、ヤトロファのゲノム配列を明らかにし、さらに13個からなるNF-YBコード遺伝子を単離、同定することに成功し、本発明を完成した。すなわち、本発明は、以下の通りである。
  [1]
 以下のポリヌクレオチドから選択される、単離されたポリヌクレオチド。
(a)配列番号1~11のいずれかで示されるポリヌクレオチド;
(b)配列番号12または13で示されるポリヌクレオチド断片を含む、ヤトロファ由来のNF-YBポリペプチドをコードする、ポリヌクレオチド;
(c)(a)および(b)のいずれかのポリヌクレオチドの塩基配列と90%以上の相同性を有する塩基配列で示され、(a)および(b)のポリヌクレオチドがコードするNF-YBポリペプチドの乾燥ストレス耐性をそのコードするポリペプチドが維持している、ポリヌクレオチド。
  [2]
 (a)および(b)のポリヌクレオチドから選択される、[1]記載の単離されたポリヌクレオチド。
  [3]
 以下のポリペプチドから選択される、単離されたNF-YBポリペプチド。
(a)配列番号14~24のいずれか1つで示されるアミノ酸配列からなる、NF-YBポリペプチド;
(b)配列番号25または26で示されるアミノ酸配列のポリペプチドを含む、ヤトロファ由来のNF-YBポリペプチド;
(c)(a)および(b)のいずれかのポリペプチドのアミノ酸配列と90%以上の相同性を有するアミノ酸配列で示され、(a)および(b)のNF-YBポリペプチドの乾燥ストレス耐性をそのポリペプチドが維持している、ポリペプチド。
  [4]
 (a)および(b)のポリペプチドから選択される、[3]記載の単離されたNF-YBポリペプチド。
  [5]
 [3]または[4]記載のポリペプチドをコードするポリヌクレオチド。
  [6]
 [1]、[2]または[5]記載のポリヌクレオチドが組み入れられた、ヤトロファ植物体形質転換用ベクター。
  [7]
 [6]記載のベクターを含む形質転換体。
  [8]
 [6]記載のベクターを用いて形質転換されたヤトロファ植物体であって、野生型と比べて、NF-YBポリペプチドを過剰発現できる乾燥ストレス耐性形質転換ヤトロファ。
  [9]
 [8]記載の乾燥ストレス耐性形質転換ヤトロファから収穫される種子。
  [10]
 [9]記載の種子を圧搾して精製することによる、ヤトロファ油の製造方法。
  [11]
 [10]記載の製造方法で製造されうる、ヤトロファ油。
 本発明に係るポリヌクレオチドは、ヤトロファに形質転換した場合、同形質転換ヤトロファは本発明のヤトロファ由来のNF-YBポリペプチドまたはそれと同等のポリペプチドを発現させることができる。これらポリペプチドによって、NF-YBポリペプチドが関与するタンパク合成の生産性を顕著に向上させ、例えば乾燥ストレス耐性を顕著に向上させることができる。
シロイロナズナとヤトロファのNF-YBの分子系統樹を示す図である。 NF-YB1~NF-YB5のアガロース電気泳動の結果を示す写真である。 pGWB11プラスミドの遺伝子マップ(Nakagawa et al., “Development of Series of Gateway Binary Vectors, pGWBs, for Realizing Efficient Construction of Fusion Genes for Plant Transformation”, Journal of Bioscience and Bioengineering Vol. 104 (2007), No. 1 p.38を参照)である。
〔JcNF-YB遺伝子〕
 本発明に係る単離された新規なヤトロファ遺伝子は、ヤトロファの野生型転写因子NF-YBをコードするポリヌクレオチドであり、ヤトロファゲノム中に個別に存在する13個の遺伝子ファミリーである。具体的には、(a)配列番号1~11に示すポリヌクレオチド(これを各順に「JcNF-YB1遺伝子」-「JcNF-YB11遺伝子」と命名する);(b)配列番号12および13で示されるポリヌクレオチド断片(これをそれぞれ「JcNF-YB12遺伝子」および「JcNF-YB13遺伝子」と命名する)を含む、ヤトロファ由来のNF-YBポリペプチドをコードする、ポリヌクレオチド;ならびに(c)(a)および(b)のいずれかのポリヌクレオチドの塩基配列と90%以上の相同性を有する塩基配列で示され、(a)および(b)のポリヌクレオチドがコードするNF-YBポリペプチドの乾燥ストレス耐性をそのコードするポリペプチドが維持している、ポリヌクレオチドが、本発明に含まれる。(c)のポリヌクレオチドの塩基配列は、(a)および(b)のいずれかのポリヌクレオチドの塩基配列と好ましくは95%以上の相同性を有し、さらに好ましくは98%以上の相同性を有し、特に好ましくは99%以上の相同性を有する。
 上記本発明の各遺伝子を発現させて得られるポリペプチドには、例えば(a)ヤトロファの野生型転写因子JcNF-YB1~JcNF-YB11(アミノ酸配列を配列番号14~24)のNF-YBポリペプチド;(b)配列番号25および26で示されるアミノ酸配列のポリペプチドを含む、ヤトロファ由来のNF-YBポリペプチド;ならびに(c)(a)および(b)のいずれかのポリペプチドのアミノ酸配列と90%以上の相同性を有するアミノ酸配列で示され、(a)および(b)のNF-YBポリペプチドの乾燥ストレス耐性をそのポリペプチドが維持している、ポリペプチドが含まれる。(c)のポリペプチドは、(a)および(b)のいずれかのポリペプチドのアミノ酸配列と好ましくは95%以上の相同性を有し、さらに好ましくは98%以上の相同性を有し、特に好ましくは99%以上の相同性を有する。
 本発明の遺伝子の塩基配列には、上記(a)~(c)のポリペプチドをコードするポリヌクレオチドも含まれる。例えば、(a)および(b)のポリペプチドをコードする限り、塩基の一部が置換されていてもよく、配列番号1に示すJcNF-YB1 DNAにおいて、6番目の塩基Gを塩基Tに置換(配列番号39)することで、翻訳効率を野生型よりも高くすることができる。
 以下、「JcNF-YB遺伝子」という場合は、本発明のポリヌクレオチドを総称する。
 本発明のJcNF-YB遺伝子の調製方法は特に限定しない。例えば、ヤトロファゲノムを鋳型とし、各JcNF-YB遺伝子に応じたプライマーを設計して、PCR反応を行うことにより、直接、目的とする遺伝子のPCR産物を得ることもできるし、乾燥ストレスを与えたヤトロファ植物の一部、好ましくは葉を摩砕して得られたmRNAから、下記プライマーセットを用いて、RT-PCR法により、目的とするポリヌクレオチドのPCR産物を得てもよい。また、常法に従って、所定の塩基を置換させ、欠失させ、付加することができる。
 好ましくは、Sudheerらの方法(Indian Journal of Biotechnology, Vol. 8 (2009) p 187-192)に基づいて抽出したヤトロファゲノムを用いて、直接、目的とする遺伝子のPCR産物を得る方法である。Sudheerらの方法とは、使用する抽出バッファーからDNA沈殿化までに用いる溶液のNaCl濃度を調節している点、精製工程をTris飽和フェノール、続いてクロロホルムとイソアミルアルコールの混合液で処理する点、沈殿化工程で80%エタノールを用いる点に特徴がある。
 mRNAの調製は、通常行われる手法により行うことができる。例えば、凍結した植物体を乳鉢などで摩砕後、得られた摩砕物から、グリオキザール法、グアニジンチオシアネート-塩化セシウム法、塩化リチウム-尿素法、プロテイナーゼK-デオキシリボヌクレアーゼ法などにより、粗RNA画分を抽出調製すればよい。また、市販のキットを用いてもよい。
 得られたPCR産物の塩基配列の決定、確認は、従来より公知の手法、例えば、マキサム-ギルバートの化学修飾法、又はM13ファージを用いるジデオキシヌクレオチド鎖終結法等の公知手法により行えばよい。
〔乾燥ストレス耐性形質転換ヤトロファの作出〕
 本発明の乾燥ストレス耐性形質転換ヤトロファは、JcNF-YB遺伝子を発現又は発現調節のためのプロモータと作動可能に連結した発現カセットを、野生型ヤトロファに遺伝子導入することにより作製される。
 本発明が対象とするヤトロファの種類は特に限定せず、ヤトロファ・クルカス(Jatropha curcus)、ヤトロファ・ポタグリカ(Jatropha potagurica)、ヤトロファ・ムルチフィダ(Jatropha multifida)、ヤトロファ・ベルランディエリ(Jatropha berlandieri)、ヤトロファ・インテゲリマ(Jatropha integerrima)などを用いることができる。これらのうち、油脂含有量が多いという点から、ヤトロファ・クルカスが好ましく用いられる。
 遺伝子導入方法は、プロトプラスト同士を融合させる方法、電気穿孔法、遺伝子ショットガン法等の細胞に直接的にDNAを導入する方法;アグロバクテリウム(Agrobacterium tumefaciens)やR.rhizogenesを利用して間接的に導入する方法のいずれの方法により行ってもよいが、好ましくはアグロバクテリウムを用いる方法である。以下、アグロバクテリウムを用いる形質転換方法について説明する。
 アグロバクテリウムは植物病細菌で、LB(レフトボーダー)とRB(ライトボーダー)に挟まれた領域(T-DNA(Transferred DNA)領域)を切り出して宿主ゲノムに挿入することができるTiプラスミドをもっている。このT-DNA領域内に、導入しようとする遺伝子、すなわちJcNF-YB遺伝子を組み込んだプラスミドを有するアグロバクテリウムを、宿主植物へ感染させると、T-DNA領域が切り出されて、vir領域にコードされているタンパク質群と複合体を形成して植物細胞内に侵入し、さらに宿主ゲノムに挿入することができる。
 アグロバクテリウムを用いる形質転換方法としては、バイナリーベクター法が好ましい。バイナリーベクター法とは、TiプラスミドのT-DNAを欠落させたプラスミド(pAL4404など)とは別に、T-DNA領域のボーダー(LB及びRB)を有するプラスミドのT-DNA領域に目的の外来遺伝子を組み込んだプラスミドをアグロバクテリウムに導入して植物に感染させることにより、目的遺伝子を植物ゲノムに挿入する方法である。
 バイナリーベクター法を利用した、形質転換ヤトロファの作出に用いられる発現カセットは、T-DNA領域に、上記本発明に係るJcNF-YB遺伝子、及び当該ヌクレオチド発現のためのプロモータ、マーカー遺伝子、レポータ遺伝子を含んでいる。
 プロモータとしては、35Sカリフラワーモザイクウィルスプロモータ、ノパリンシンターゼ(NOS)プロモータ、およびβファゼオリン、ナピン、ユビキチンなどの他の胚乳特異的プロモータが挙げられる。
 選択マーカー遺伝子としては、抗生物質または除草剤のような選択剤に対する抵抗性を付与する遺伝子が用いられる。具体的には、カナマイシン耐性遺伝子、パロモマイシンB耐性遺伝子、またはグルフォシネート及びグリフォセートのような除草剤に対する抵抗性遺伝子などが挙げられる。形質転換体を視覚的に同定できる選択マーカー、例えば、ルシフェラーゼ、または緑色蛍光タンパク質(GFP)のような発色または蛍光タンパク質を発現する遺伝子又は種々の発色体基質が知られているβグルクロニダーゼまたはGUSを発現する遺伝子も利用することができる。このような選択マーカーは、レポータ遺伝子としても利用できる。
 必要に応じて、さらにエンハンサー、ターミネータ、タグなどを含んでもよい。エンハンサーは、目的遺伝子の発現効率を高めるために用いられ、CaMV35Sプロモーター内の上流側の配列を含むエンハンサー領域などが挙げられる。ターミネータとしては、プロモータにより転写された遺伝子の転写を終結できる配列であればよく、例えば、ノパリン合成酵素(NOS)遺伝子のターミネータ、オクトビン合成酵素(OCS)、CaMV35S RNA遺伝子のターミネータが挙げられる。
 バイナリーベクター法によるヤトロファの形質転換に用いるバイナリーベクターとしては、上記発現カセットをT-DNA領域に含むもので、具体的には、pBI系、pPZP系、pSMA系、pGWB系などの市販ベクターに上記発現カセットを組み入れたものを用いることができる。特に、Gateway(登録商標)のクローニングシステムが適用可能な植物形質転換用バイナリーベクターが好ましく、このようなベクターとしては、pGWB系ベクターが挙げられる。このpGWB系ベクターは、プロモータとしてカリフラワーモザイクウィルス(CaMV)35Sプロモータ;選択マーカー遺伝子としては、ハイグロマイシン耐性遺伝子、カナマイシン耐性遺伝子;レポータとしてβ-グルクロニダーゼ(GUS)、緑色蛍光タンパク質(GFP)、ルシフェラーゼ(LUC)、黄色蛍光タンパク質(YFP)、シアン蛍光タンパク質(CFP);タグとして、6xHis、FLAG、3xHA、4xMyc、GST、T7-エピトープを用いて、目的遺伝子及びレポータが作動可能に連結されている。さらにN末端、C末端の双方に融合できるように、レポータ、タグをコードする配列がある。
 Gateway(登録商標)クローニングシステムとは、Gatewayシグナル(att)を用いることによって、発現ベクターの構築を容易にしたものである。attP1、attP2配列を有するドナーベクターと目的遺伝子の両端にattB1、attB2配列を付加したものとの間で反応(BP反応)させることにより、目的遺伝子が組み込まれたエントリーベクター(両端にattL1、attL2配列を有する)を作製し、次いで、このエントリーベクターと発現に必要なプロモータが組み込まれたデスティネーションベクター(attR1、attR2配列を付加)と組みかえ反応(LR反応)することにより、目的遺伝子が挿入されたベクター(発現ベクター)を作製する方法である。
 従って、まず、クローニングしたJcNF-YB遺伝子を、ドナーベクターとの間でBP反応させることによりドナーベクターに組み入れたエントリーベクターを調製し、次いでこのエントリーベクターとデスティネーションベクター(pGWB)とをLR反応させることにより、目的とする遺伝子(JcNF-YB)が組み入れられた発現ベクターを作製することができる。
 Gatewayバイナリーベクター(pGWB)を用いた植物形質転換用発現カセットの構築については、Nakagawa et al., “Development of Series of Gateway Binary Vectors, pGWBs, for Realizing Efficient Construction of Fusion Genes for Plant Transformation”, Journal of Bioscience and Bioengineering Vol. 104, No.1.34-41(2007)に詳述されている。
 以上のようにして作成した発現ベクター(植物形質転換用ベクター)は、大腸菌中で増幅させることができる。増幅した形質転換用ベクターは、エレクトロポレーション法等により、アグロバクテリウムに導入すればよい。このようにして発現ベクターを導入したアグロバクテリウムを、ヤトロファの形質転換に用いる。
 植物形質転換用ベクターを搭載したアグロバクテリウムの感染によるヤトロファへの目的遺伝子(JcNF-YB遺伝子)の導入は、リーフディスク法などの公知の方法を用いて行うことができる。
 具体的には、アグロバクテリウムをMS培地に懸濁した感染用菌液を調製し、この菌液に宿主となるヤトロファの一部(好ましくは子葉のカット片、以下「ヤトロファ葉片」という)とを3日間程度共培養する。共培養に先立って、ヤトロファの葉片を、MS培地に2日間程度浸漬し、さらにはソニケーションしておくことが好ましい。これにより導入効率を高くすることができる。さらにまた、アグロバクテリウム菌の懸濁液に砂を加えた状態で振動を与えるSandvortex法は、アグロバクテリウムの感染力が高まり、好ましい。
 共培養培地としては、MS培地などに、3-インドール酪酸(IBA)、6-ベンジルアミノプリン(BA)などの植物ホルモンを添加した培地が用いられる。
 共培養後、ヤトロファ葉片を洗浄し、選択培地(形質転換用ベクターの発現カセットで用いられた選択マーカー遺伝子に対応する抗生物質を含有)に移して、インキュベートした後、葉片に形成されたカルスを切り取り、選択培地に移して、さらに、形質転換されたヤトロファ(組換え細胞)のスクリーニングを行う。
 選択培地としては、選択用物質となる抗生物質(カナマイシン、ハイグロマイシン)を、前培養に用いた培地(MS培地など)に添加し、さらに植物ホルモンとして、IBA、BA、チジアズロン(TDZ)などを含有したものが好ましく用いられる。
 次に、選抜したカルスをRI培地、MS培地などの培地に移して、発根させ、植物体へ再分化させる。再分化誘導は、培地におけるオーキシンやサイトカイニン等の植物成長調節物質、炭素源等の各種成分の種類や量、光、温度等を適切に設定することにより行うことができる。
〔形質転換ヤトロファ〕
 本発明の形質転換ヤトロファでは、乾燥ストレスに対する抵抗遺伝子の転写に関与する転写因子JcNF-YBをコードする遺伝子を野生型と比べてJcNF-YB遺伝子の転写産物を過剰発現することができる。従って、乾燥ストレス抵抗遺伝子の転写、発現を活性化できる。その結果、乾燥条件であっても、野生型と比べて、高い植物成長を達成できる。
 本発明の形質転換植物体は、形質転換処理を施した「T1世代」のほか、その植物の種子から得られた後代である「T2世代」、薬剤選抜あるいはサザン法等による解析により形質転換であることが判明した「T2世代」植物の花を自家受粉して得られる次世代(T3世代)などの後代植物もふくまれる。
〔ヤトロファ油の製造〕
 ヤトロファ油は本発明の形質転換ヤトロファから収穫される種子から、常法に従って製造することができる。例えば、種子を圧搾して原料油を得て、その原料油をフィルターでろ過することで、バイオディーゼルとして使用しうるヤトロファ油を製造することができる。ヤトロファ油をさらに精製したい場合は、例えば蒸留により精製することでき、また特開2010-209177号公報に記載された方法でホルボールエステルを除去することもできる。
 本発明を実施するための形態を実施例により説明する。下記実施例は、本発明の範囲を限定するものではない。
〔ヤトロファにおけるJcNF-YBコードDNAの単離および形質転換用プラスミドの構築〕
(1)ヤトロファゲノムDNAの調製
 鳥取大学農学部より分与されたタイ系統ヤトロファ(Jatropha curcas)を用いた。このヤトロファの成葉から、Sudheerらの方法(Indian Journal of Biotechnology, Vol. 8 (2009) p 187-192)に基づき、ゲノムDNAを調製した。
 ヤトロファの葉を蒸留水で水洗し、ティッシュペーパーで水分を吸い取った後、1gを乳鉢で粉砕し、粉末化した。この粉末を、65℃の10mlの抽出バッファー(2%CTAB,100mM Tris-HCl,3.5M NaCl,20mM EDTA,1% β-メルカプトエタノール)とともに十分混合した。混合液を水浴中で、65℃、90分間インキュベートした後、5分間冷却した。クロロホルムとイソアミルアルコールの混合物(24:1)を等量加え、ゆっくり混和して、均一なエマルジョンとした。このエマルジョンを、10,000xgで15分間、遠心分離した後、水相を分取した。分取した水相に、再度、クロロホルムとイソアミルアルコールの混合物(24:1)を等量加え、ゆっくり混和して、均一なエマルジョンとした。このエマルジョンを10,000 x gで15分間、4℃で遠心分離した後、水相を分取した。分取した水相に、等量のイソプロピルアルコールを添加し、-20℃で30分間冷却した後、10,000 x gで30分間、4℃で遠心分離して、DNAペレットを得た。このDNAペレットを70%エタノールで洗浄した後、TEバッファーで再懸濁した。得られたDNAペレットを、20mg/mLのRNaseを含むTEバッファー(10mM Tris-HCl, 1mM EDTA, pH 8.0)に溶解して、ゲノムDNAサンプルとした。
 得られた抽出ゲノムDNAを、EcoRI、HindIII、SauIIIとともに培養することにより断片化し、シークエンサーにより配列決定した。
(2)JcNF-YBコード遺伝子のクローニング及び増幅
 (1)より得られたヤトロファのゲノム情報(コンティング地図)に基づき、シロイヌナズナNF-YBと相同性を示す遺伝子をTBLASTN検索した。なお、シロイヌナズナのNF-YBの遺伝子情報は、NCBIの遺伝子登録情報(http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=818472&itool=HomoloGeneMainReport)を参照した。
 検索の結果、JcNF-YBをコードするとアノテーションされるものは、下記の通りであった。
Contig1977.1.1
Contig21632.1.1
Contig30054.1.1
Contig31310.1.2
Contig31788.1.2
Contig3182.1.1
Contig8131.1.1
F4IDXKH14IHOZQ.1
HYB_Contig17630.1.2
HYB_Contig31673.1.1
HYB_Contig46618.1.1
HYB_Contig46864.1.1
HYB_Contig61720.1.1.1
jatropha454_3Run_c74008.1
 上記配列のうち、HYB_Contig46618.1.1とHYB_Contig61720.1.1.1のDNA塩基配列は末端部を除き、完全に一致することが判明したので、JcNF-YB遺伝子の予測にはHYB_Contig46618.1.1を用いることとした。従って、ヤトロファには、13種類のNF-YB遺伝子が存在すると考えられる(これらの遺伝子をNF-YB1~NF-YB13と命名した。)。相同性検索の結果、上記各ゲノム断片に含まれるヤトロファDNAとシロイヌナズナNF-YB遺伝子との関係は表1に示す通りとなった。JcNF-YB遺伝子のヌクレオチド配列を、配列リストの配列番号1~13に示す。また、これらのポリヌクレオチドを翻訳して得られるポリペプチドのアミノ酸配列を、各順に配列番号14~26に示す。さらに、JcNF-YB1~JcNF-YB13と、シロイロナズナのNF-YBファミリー(AtNF-YB1~AtNF-YB13)についてCLASTALW解析を行い、分子系樹を作成した。作成結果を図1に示す。
Figure JPOXMLDOC01-appb-T000001
 次に、ヤトロファ(タイ系統品種)ゲノムDNAを鋳型として、それぞれ表2に示すプライマーセット(配列番号27~36)を用いて、PCR反応を行うことにより、JcNF-YB1~JcNF-YB5遺伝子を増幅した。
Figure JPOXMLDOC01-appb-T000002
 PCRに用いた反応液は、下記の通りである。
1.25 Unit   Ex taq (タカラバイオ)
1x        Ex taq buffer (タカラバイオ)
0.2 mM    dNTPs(タカラバイオ)
1 μM     フォワードプライマー
1 μM     リバースプライマー
 上記で調製した反応液に、100倍希釈したヤトロファゲノムDNA溶液1μlを加えて全量50μlとして、以下の条件でPCR反応を行った。
 96℃、5分間保持した後、[96℃,30秒→60℃,30秒→72℃,1分]を30回繰り返し、次いで、72℃、5分間保持した後、4℃まで冷却した。
 反応終了後、増幅により得られたDNAをアガロース電気泳動で確認した。JcNF-YB1~JcNF-YB5の電気泳動の結果を図2に示す。また、得られたPCR産物の配列をDNAシークエンサーで配列決定した。JcNF-YB1~JcNF-YB5ポリヌクレオチドの各塩基配列は、配列リストの配列番号1~5に示すとおりであった。
 配列番号1で示すDNA(JcNF-YB1)について、Gateway(登録商標)クローニングシステムを適用するにあたり、下記に示すアダプター配列attB1(配列番号37)、attB2(配列番号38)を付加するためのPCR反応を行った。
Figure JPOXMLDOC01-appb-C000003
 尚、PCR反応は、下記に示す反応液に、各DNA溶液1μlを加えて全量50μlとした。
1.25 Unit   Ex taq (タカラバイオ)
1x       Ex taq buffer (タカラバイオ)
0.2 mM    dNTPs(タカラバイオ)
1 μM     attB1_adapter
1 μM     attB2_adapter
 PCR反応は、下記温度サイクルにて行った。すなわち、94℃、1分間保持した後、[94℃,15秒→45℃,30秒→68℃,1分]を5回繰り返し、さらに[94℃,15秒→55℃,30秒→68℃,1分]を20回繰り返した後、4℃まで冷却した。反応終了後、増幅DNAをアガロース電気泳動で確認した。
(3)形質転換用プラスミドの構築
 JcNF-YB1遺伝子を、InvitrogenのGateway(登録商標)システムのドナーべクター(pDONR221)を用いて、クローニングした。具体的には、PCRにより上記で増幅したJcNF-YB1遺伝子(attB1、attB2を両端に有している)とドナーベクターpDONR221を混合後、BPクロナーゼ(Invitrogen)を用いて組み替え反応(BP反応)を行うことにより、エントリーベクターとなるpENTRJcNF-YB1を得、これを大腸菌DH5α株に導入した。pDONR221は、カナマイシン耐性遺伝子をマーカー遺伝子として導入されたものである。
 植物形質転換用プラスミドの構築にあたり、pENTRJcNF-YB1プラスミドを大腸菌から抽出し、制限酵素XhoI(タカラバイオ)により直鎖化したプラスミドベクター(デスティネーションベクター)pGWB11と混合後、LRクロナーゼ(Invitrogen)を用いて組み替え反応を行った。
 pGWB11は、図3に示すように、プロモータとして35Sプロモータを有し、C末端にFLAGタグが付加されている。また、HindIII-SacI間に、35Sプロモータ-R1-Cmr-ccdB-R2-FLAGが入っている。R1-Cmr-ccdB-R2の部分が、エントリーベクターとのLR反応によりattB1-(JcNF-YB1)-attB2に入れ替わることができる。このようにして、植物組み換え用ベクターとなるpGWB11JcNF-YB1を得た。
〔形質転換体の作製〕
(1)形質転換用アグロバクテリウムの調製
 上記組換え用ベクターをエレクトロポレーション法によりアグロバクテリウムに導入し、形質転換した。この形質転換アグロバクテリウムを、YEB液体培地(50mg/lカナマイシン、50mg/lハイグロマイシン添加)で、30℃、2日間振とう培養した後、遠心分離により集菌した。集菌した菌をYEB培地に再懸濁して、感染用菌液を調製した。
(2)ヤトロファの形質転換
 宿主となるヤトロファ細胞には、ゲノム抽出に用いたヤトロファと同種のタイ系統ヤトロファ(Jatropha curcas)を用いた。このヤトロファの成葉を用いて、リーフディスク法により形質転換を行った。具体的には、まず、宿主となるヤトロファの成葉のカット片((約25mm)、以下「ヤトロファ葉片」という)を、家庭用漂白剤を希釈した液で滅菌し、MS基本培地に植物ホルモン(TDZ, IBA, BA)を添加したPre-conditioning寒天培地上に2日間25℃で静置する。アグロバクテリウムをMS培地に懸濁した感染用菌液を調製し、この菌液に先のヤトロファ葉片を浸漬し、10分間振とうする。その後、3日間、25℃で遮光環境下で寒天培地上で共培養する。共培養培地としては、Pre-conditioning培地に、アセトシリンゴンを添加したCo-cultivation培地を用いる。
(3)形質転換ヤトロファのスクリーニング
 上記で作製した発現カセットが、ヤトロファの染色体ゲノムに安定して挿入された形質転換体をスクリーニングする。
 具体的には、共培養後のヤトロファ葉片をセフォタキシムナトリウム水溶液(200mg/l)で洗浄し、形質転換されたヤトロファ(組換え細胞)のスクリーニングを行う。スクリーニング用抗生物質としてはカナマイシン(20mg/l)を用いる。まず、Shoot regeneration I寒天培地(SR-I)に移して、25℃で培養した際にカルスの形成が見られた葉片を、Shoot regeneration II(SR-II)寒天培地に移す。
 次に、選抜したカルスをShoot elongation I寒天培地(SE-I)、Shoot elongation II寒天培地(SE-II)に移して、不定胚を分化させ、Rootinduction寒天培地(RI)において発根を誘導し、再分化したヤトロファ植物(T1)を得る。
 使用した培地組成を以下に示す。
<MS基本培地>
MS                1x,(pH5.8)
スクロース            3%
ミオイノシトール         100mg/l
チアミン塩酸塩(pH5.8)     10mg/l
寒天                0.8%
<Pre-conditioning培地>
MS基本培地
チジアズロン(TDZ)      0.5mg/l
6-ベンジルアミノプリン(BA) 1mg/l
3-インドール酪酸(IBA)   0.075mg/l
<Co-cultivation培地>
MS基本培地
チジアズロン(TDZ)      0.5mg/l
6-ベンジルアミノプリン(BA) 1mg/l
3-インドール酪酸(IBA)   0.075mg/l
アセトシリンゴン(AS)     20mg/l
<SR-I培地>
MS基本培地
チジアズロン(TDZ)      0.5mg/l
6-ベンジルアミノプリン(BA) 1mg/l
3-インドール酪酸(IBA)   0.075mg/l
セフォタキシムナトリウム     200mg/l
カナマイシン           20mg/l
<SR-II培地>
MS基本培地
6-ベンジルアミノプリン(BA) 3mg/l
3-インドール酪酸(IBA)   0.5mg/l
セフォタキシムナトリウム     200mg/l
カナマイシン           20mg/l
<SE-I培地>
MS基本培地
6-ベンジルアミノプリン(BA) 2mg/l
セフォタキシムナトリウム     200mg/l
カナマイシン           20mg/l
<SE-II培地>
MS基本培地
6-ベンジルアミノプリン(BA) 2mg/l
カナマイシン           20mg/l
<RI培地>
MS基本培地(1/2濃度のMS)
3-インドール酪酸(IBA)   0.2mg/l
(4)JcNF-YB遺伝子発現の確認
 スクリーニングにより選択された形質転換体において、JcNF-YB1転写因子が過剰発現することを確認する。
 形質転換細胞(NF-YBポリペプチドをプロモータによって発現する形質転換双子葉細胞)及び、コントロール(野生型ヤトロファの双子葉細胞)を、それぞれ培養し、mRNAを抽出する。形質転換細胞のJcNF-YB1転写因子のmRNA量を、コントロールにおけるそれと比較する。
(5)形質転換ヤトロファの耐乾燥ストレス性の確認
 再分化させて得られた形質転換植物体を砂耕栽培し、任意の時点における灌水を中断した後の水不足条件で栽培した際の光合成速度およびクロロフィル蛍光、蒸散速度および、成葉の黄変、巻き上がり、落葉を野生株と比較し、乾燥ストレス耐性を評価する。
 本発明の新規な単離された遺伝子は、乾燥ストレス耐性ヤトロファの作出に利用でき、ひいては乾燥地でも生育できるヤトロファを提供できる。

Claims (11)

  1.  以下のポリヌクレオチドから選択される、単離されたポリヌクレオチド。
    (a)配列番号1~11のいずれかで示されるポリヌクレオチド;
    (b)配列番号12または13で示されるポリヌクレオチド断片を含む、ヤトロファ由来のNF-YBポリペプチドをコードする、ポリヌクレオチド;
    (c)(a)および(b)のいずれかのポリヌクレオチドの塩基配列と90%以上の相同性を有する塩基配列で示され、(a)および(b)のポリヌクレオチドがコードするNF-YBポリペプチドの乾燥ストレス耐性をそのコードするポリペプチドが維持している、ポリヌクレオチド。
  2.  (a)および(b)のポリヌクレオチドから選択される、請求項1記載の単離されたポリヌクレオチド。
  3.  以下のポリペプチドから選択される、単離されたNF-YBポリペプチド。
    (a)配列番号14~24のいずれか1つで示されるアミノ酸配列からなる、NF-YBポリペプチド;
    (b)配列番号25または26で示されるアミノ酸配列のポリペプチドを含む、ヤトロファ由来のNF-YBポリペプチド;
    (c)(a)および(b)のいずれかのポリペプチドのアミノ酸配列と90%以上の相同性を有するアミノ酸配列で示され、(a)および(b)のNF-YBポリペプチドの乾燥ストレス耐性をそのポリペプチドが維持している、ポリペプチド。
  4.  (a)および(b)のポリペプチドから選択される、請求項3記載の単離されたNF-YBポリペプチド。
  5.  請求項3または4記載のポリペプチドをコードするポリヌクレオチド。
  6.  請求項1、2または5記載のポリヌクレオチドが組み入れられた、ヤトロファ植物体形質転換用ベクター。
  7.  請求項6記載のベクターを含む形質転換体。
  8.  請求項6記載のベクターを用いて形質転換されたヤトロファ植物体であって、野生型と比べて、NF-YBポリペプチドを過剰発現できる乾燥ストレス耐性形質転換ヤトロファ。
  9.  請求項8記載の乾燥ストレス耐性形質転換ヤトロファから収穫される種子。
  10.  請求項9記載の種子を圧搾して精製することによる、ヤトロファ油の製造方法。
  11.  請求項10記載の製造方法で製造されうる、ヤトロファ油。
PCT/JP2011/058026 2010-04-09 2011-03-30 ヤトロファ由来のnf-ybをコードするポリヌクレオチド及びその利用 WO2011125748A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG2012073631A SG184434A1 (en) 2010-04-09 2011-03-30 A polynucleotide encoding nf-yb derived from jatropha and use thereof
US13/639,522 US9447426B2 (en) 2010-04-09 2011-03-30 Polynucleotide encoding NF-YB derived from jatropha and use thereof
MX2012011645A MX2012011645A (es) 2010-04-09 2011-03-30 Polinucleotido que codifica nf-yb derivado de jatropha y uso del mismo.
CN2011800182019A CN102834517A (zh) 2010-04-09 2011-03-30 编码源自于麻风树属树的nf-yb的多核苷酸及其应用
US15/235,289 US9725733B2 (en) 2010-04-09 2016-08-12 Polynucleotide encoding NF-YB derived from jatropha and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-090618 2010-04-09
JP2010090618 2010-04-09
JP2010-273463 2010-12-08
JP2010273463A JP5876216B2 (ja) 2010-04-09 2010-12-08 ヤトロファ由来のnf−ybをコードするポリヌクレオチド及びその利用

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/639,522 A-371-Of-International US9447426B2 (en) 2010-04-09 2011-03-30 Polynucleotide encoding NF-YB derived from jatropha and use thereof
US15/235,289 Continuation US9725733B2 (en) 2010-04-09 2016-08-12 Polynucleotide encoding NF-YB derived from jatropha and use thereof

Publications (1)

Publication Number Publication Date
WO2011125748A1 true WO2011125748A1 (ja) 2011-10-13

Family

ID=44762690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058026 WO2011125748A1 (ja) 2010-04-09 2011-03-30 ヤトロファ由来のnf-ybをコードするポリヌクレオチド及びその利用

Country Status (6)

Country Link
US (2) US9447426B2 (ja)
JP (1) JP5876216B2 (ja)
CN (1) CN102834517A (ja)
MX (1) MX2012011645A (ja)
SG (2) SG10201505341SA (ja)
WO (1) WO2011125748A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077421A1 (ja) * 2010-12-08 2012-06-14 住友電気工業株式会社 ヤトロファ由来のppatをコードするポリヌクレオチドおよびその利用
JP2013215147A (ja) * 2012-04-10 2013-10-24 Sumitomo Electric Ind Ltd ヤトロファ属植物の細胞に由来するシュートの発根を促進させる方法
US9447426B2 (en) 2010-04-09 2016-09-20 Osaka University Polynucleotide encoding NF-YB derived from jatropha and use thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170058288A1 (en) * 2014-02-19 2017-03-02 Snu R&Db Foundation Osnf-ya7 gene for increasing drought stress resistance of plant and use thereof
CN109503703B (zh) * 2019-01-18 2019-11-12 中国科学院华南植物园 抗旱耐盐基因IpNY-B1及其编码蛋白和应用
CN113637057B (zh) * 2020-04-27 2023-05-30 中国农业科学院生物技术研究所 一种培育花青素含量降低和开花时间推迟的转基因植物的方法
CN111440805B (zh) * 2020-05-26 2021-08-13 扬州大学 Nf-yb9突变型基因及其蛋白和应用
US11674148B2 (en) * 2021-08-03 2023-06-13 Seoul National University R&Db Foundation OSNF-YA5 gene from Oryza sativa for increasing nitrogen availability of plant and uses thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540830A (ja) * 2006-06-23 2009-11-26 モンサント テクノロジー エルエルシー 改善されたストレス耐性を有するトランスジェニック作物植物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580665B2 (ja) 2004-03-12 2010-11-17 独立行政法人理化学研究所 環境ストレス耐性植物
WO2008015692A2 (en) 2006-05-09 2008-02-07 Reliance Life Sciences Pvt Ltd MOLECULAR CLONING AND SEQUENCING OF ACETYL CoA CARBOXYLASE (ACCase) GENE FROM JATROPHA CURCAS
ES2334539B1 (es) 2008-05-12 2011-02-02 Consejo Sup. De Invest. Cientificas Utilizacion del enzima fosfopanteteina adeniltransferasa, implicado en la biosintesis del coenzima a, en la mejora del crecimiento vegetal,resistencia al estres salino/osmotico, incremento de lipidos de reserva y modificacion del contenido aminoacidico.
JP5876216B2 (ja) 2010-04-09 2016-03-02 国立大学法人大阪大学 ヤトロファ由来のnf−ybをコードするポリヌクレオチド及びその利用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540830A (ja) * 2006-06-23 2009-11-26 モンサント テクノロジー エルエルシー 改善されたストレス耐性を有するトランスジェニック作物植物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LI, W.X. ET AL.: "The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance", PLANT CELL, vol. 20, no. 8, 2008, pages 2238 - 51, XP002637527, DOI: doi:10.1105/tpc.108.059444 *
NAKAKO SHIBAGAKI ET AL.: "Genetic engineering of Jatropha curcas L. for drought resistance", ABSTRACTS OF THE ANNUAL MEETING OF THE SOCIETY FOR BIOTECHNOLOGY, JAPAN, vol. 61, 2009, pages 205, 3S2A01 *
NELSON, D.E. ET AL.: "Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres", PROC.NATL.ACAD.SCI.USA, vol. 104, no. 42, 2007, pages 16450 - 5, XP002572606, DOI: doi:10.1073/pnas.0707193104 *
SIEFERS, N. ET AL.: "Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity", PLANT PHYSIOL., vol. 149, no. 2, 2009, pages 625 - 41, XP055222252, DOI: doi:10.1104/pp.108.130591 *
STEPHENSON, T.J. ET AL.: "Genome-wide identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum", PLANT MOL.BIOL., vol. 65, no. 1-2, 2007, pages 77 - 92, XP019532706, DOI: doi:10.1007/s11103-007-9200-9 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9447426B2 (en) 2010-04-09 2016-09-20 Osaka University Polynucleotide encoding NF-YB derived from jatropha and use thereof
US9725733B2 (en) 2010-04-09 2017-08-08 Osaka University Polynucleotide encoding NF-YB derived from jatropha and use thereof
WO2012077421A1 (ja) * 2010-12-08 2012-06-14 住友電気工業株式会社 ヤトロファ由来のppatをコードするポリヌクレオチドおよびその利用
US9255278B2 (en) 2010-12-08 2016-02-09 Sumitomo Electric Industries, Ltd. Polynucleotide encoding PPAT derived from jatropha and use thereof
JP2013215147A (ja) * 2012-04-10 2013-10-24 Sumitomo Electric Ind Ltd ヤトロファ属植物の細胞に由来するシュートの発根を促進させる方法

Also Published As

Publication number Publication date
US9447426B2 (en) 2016-09-20
SG184434A1 (en) 2012-11-29
SG10201505341SA (en) 2015-08-28
JP5876216B2 (ja) 2016-03-02
MX2012011645A (es) 2012-11-29
US9725733B2 (en) 2017-08-08
JP2011229521A (ja) 2011-11-17
US20170044567A1 (en) 2017-02-16
US20130072702A1 (en) 2013-03-21
CN102834517A (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
US9725733B2 (en) Polynucleotide encoding NF-YB derived from jatropha and use thereof
US10913939B2 (en) Compositions and methods for expression of nitrogenase in plant cells
KR20140107334A (ko) 합성 양방향성 식물 프로모터 ubi1을 위한 구축물 및 방법
CN105037521A (zh) 一种与植物抗逆性相关蛋白TaWrky48及其编码基因与应用
CA2809643C (en) Sugarcane bacilliform viral (scbv) enhancer and its use in plant functional genomics
KR20140109909A (ko) 합성 양방향성 scbv 식물 프로모터를 위한 방법 및 구축물
US20230313212A1 (en) Plastid transformation by complementation of nuclear mutations
CA2927342A1 (en) Zea mays regulatory elements and uses thereof
US20140223604A1 (en) Crop plants with improved water use efficiency and grain yield and methods of making them
US10047368B2 (en) Zea mays regulatory elements and uses thereof
US9777286B2 (en) Zea mays metallothionein-like regulatory elements and uses thereof
CN114805508B (zh) 水稻抽穗期基因dhd3功能以及应用
AU2013228321B2 (en) Environmental stress-resistant plant with high seed productivity and method for constructing same
CN114349833B (zh) 钙调素结合蛋白cold12在调控植物耐冷性中的应用
CN113773374B (zh) 转录因子ZmbZIPa6及其编码基因与应用
CN114149993B (zh) 一种调控植物可溶性糖含量的lncRNA及其应用
CN103571870A (zh) 一种提高生物体中硒含量的方法
JP6030281B2 (ja) ヤトロファ由来のppatをコードするポリヌクレオチド及びその利用
US20240301440A1 (en) Maize regulatory elements and uses thereof
CN107513532B (zh) 一个梨组成型表达启动子PbTMT4P及其应用
JP5956225B2 (ja) グリシンベタイン合成酵素遺伝子で形質転換された環境ストレス耐性ヤトロファ
CN107338249A (zh) 种子特异表达启动子的分离及其应用
KR101613367B1 (ko) 단자엽 식물의 전신 발현 유도용 프로모터 및 이의 용도
CN117106048A (zh) 一种提高植物遗传转化效率的新方法
CN117736285A (zh) 杨树钙调素结合蛋白PdeCAMBP在调控植物器官形成和生物量中的应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018201.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765648

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12012501925

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 13639522

Country of ref document: US

Ref document number: MX/A/2012/011645

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 8742/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765648

Country of ref document: EP

Kind code of ref document: A1