WO2011125711A1 - チップ用樹脂膜形成用シートおよび半導体チップの製造方法 - Google Patents

チップ用樹脂膜形成用シートおよび半導体チップの製造方法 Download PDF

Info

Publication number
WO2011125711A1
WO2011125711A1 PCT/JP2011/057969 JP2011057969W WO2011125711A1 WO 2011125711 A1 WO2011125711 A1 WO 2011125711A1 JP 2011057969 W JP2011057969 W JP 2011057969W WO 2011125711 A1 WO2011125711 A1 WO 2011125711A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
forming layer
sheet
film forming
copper ion
Prior art date
Application number
PCT/JP2011/057969
Other languages
English (en)
French (fr)
Inventor
智則 篠田
洋司 若山
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to CN201180017214.4A priority Critical patent/CN102834903B/zh
Priority to US13/638,113 priority patent/US8674349B2/en
Priority to KR1020127025765A priority patent/KR101311661B1/ko
Publication of WO2011125711A1 publication Critical patent/WO2011125711A1/ja
Priority to US14/162,944 priority patent/US8735881B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/26Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device including materials for absorbing or reacting with moisture or other undesired substances, e.g. getters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3164Partial encapsulation or coating the coating being a foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/564Details not otherwise provided for, e.g. protection against moisture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether

Definitions

  • the present invention relates to a resin film forming sheet for a chip that can efficiently form a resin film having a gettering effect on the back surface of a semiconductor chip and can improve the manufacturing efficiency of the chip.
  • the present invention relates to a resin film forming sheet for a chip used for manufacturing a semiconductor chip mounted by a so-called face-down method.
  • this invention relates to the manufacturing method of the semiconductor chip using the said resin film formation sheet for chips.
  • the crushed layer is a fine unevenness on the ground wafer surface, is in a state where silicon polycrystal or silicon is oxidized by a small amount of oxygen, and is considered to include lattice defects. Due to stress due to surface irregularities and composition changes, even a slight impact may cause cracking and damage of the wafer. For this reason, after the back surface grinding is finished, chemical etching or plasma etching is generally performed on the back surface in order to remove the crushed layer. By removing the crushed layer, the strength of the wafer is improved, and good handling is maintained even for a wafer that has been ground to an extremely thin thickness.
  • the semiconductor wafer comes into contact with various members during circuit formation, back surface grinding, and mounting. At this time, a metal such as copper is released from these other members, and the wafer may be subjected to metal contamination. Impurity metals accumulate in the wafer, and may ionize and move within the wafer under heating conditions such as reflow. And the metal ion which reached
  • the crushed layer is a fine unevenness, is in a state where silicon polycrystal or silicon is oxidized by a small amount of oxygen, and is considered to include lattice defects, these compositions, Due to the non-uniformity of the structure, it is considered that the above-described impurity metals can be easily captured and the effect of reducing metal contamination can be obtained.
  • a function of the crushed layer is also called a gettering function.
  • Patent Documents 1 and 2 propose techniques for providing a gettering function by performing various processes on the semiconductor wafer and chips after removing the crushed layer.
  • the present invention has been made in view of the above circumstances, and a gettering function is provided for a semiconductor device obtained without subjecting a semiconductor wafer or chip to a special process that increases the number of steps and complicates the process.
  • the purpose is to grant.
  • the present inventors have conceived that a gettering site can be introduced into a semiconductor device by providing a gettering function to the resin film formed on the back surface of the semiconductor chip. As a result, the present invention has been completed.
  • the present invention includes the following gist. (1) having a release sheet and a resin film forming layer formed on the release surface of the release sheet; A resin film-forming sheet for chips, wherein the resin film-forming layer contains a binder polymer component (A), a curable component (B), and a gettering agent (C).
  • a resin film-forming sheet for chips wherein the resin film-forming layer contains a binder polymer component (A), a curable component (B), and a gettering agent (C).
  • the gettering agent (C) is selected from the group consisting of a heavy metal deactivator (C1), an organic chelating agent (C2), and a copper ion-trapping metal compound (C3).
  • the resin film-forming layer of the protective film-forming sheet for chips according to any one of (1) to (6) is attached to the back surface of the semiconductor wafer having a circuit formed on the front surface, and the resin film is attached to the back surface.
  • a method for producing a semiconductor chip comprising: obtaining a semiconductor chip having the semiconductor chip.
  • Step (1) peeling the resin film forming layer and the release sheet
  • Step (2) curing the resin film forming layer
  • Step (3) Dicing the semiconductor wafer and the resin film forming layer.
  • the gettering site can be added to the obtained semiconductor device by using the resin film forming sheet for chip according to the present invention without performing any special treatment on the semiconductor wafer or chip. It becomes possible to introduce.
  • the resin film forming sheet for chips according to the present invention includes a release sheet and a resin film forming layer formed on the release surface of the release sheet.
  • the resin film forming layer includes a binder polymer component (A), a curable component (B), and a gettering agent (C).
  • Binder polymer component The binder polymer component (A) is used for imparting sufficient adhesion and film forming property (sheet processability) to the resin film-forming layer.
  • the binder polymer component (A) conventionally known acrylic polymers, polyester resins, urethane resins, acrylic urethane resins, silicone resins, rubber-based polymers, and the like can be used.
  • the weight average molecular weight (Mw) of the binder polymer component (A) is preferably 10,000 to 2,000,000, more preferably 100,000 to 1,500,000. If the weight average molecular weight of the binder polymer component (A) is too low, the adhesive force between the resin film forming layer and the release sheet increases, and transfer failure of the resin film forming layer may occur. Adhesiveness may decrease and transfer to a chip or the like may not be possible, or the resin film may peel from the chip or the like after transfer.
  • the glass transition temperature (Tg) of the acrylic polymer is preferably in the range of ⁇ 60 to 50 ° C., more preferably ⁇ 50 to 40 ° C., and particularly preferably ⁇ 40 to 30 ° C. If the glass transition temperature of the acrylic polymer is too low, the peeling force between the resin film forming layer and the release sheet may increase, resulting in poor transfer of the resin film forming layer, and if too high, the adhesion of the resin film forming layer will be reduced. However, the transfer to the chip or the like may be impossible, or the resin film may be peeled off from the chip or the like after the transfer.
  • the monomer constituting the acrylic polymer includes a (meth) acrylic acid ester monomer or a derivative thereof.
  • an alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) (Meth) acrylates having a cyclic skeleton such as cycloalkyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) Acrylate, dicyclopentenyloxyethyl (meth) acrylate, imide (meth) acrylate, etc .; hydroxymethyl (meth) acrylate having a hydroxyl group, 2-hydroxy
  • polymerizing the monomer which has a hydroxyl group has preferable compatibility with the sclerosing
  • the acrylic polymer may be copolymerized with acrylic acid, methacrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, or the like.
  • thermosetting component A thermosetting component and a thermosetting agent are used for the curable component (B).
  • thermosetting component for example, an epoxy resin is preferable.
  • epoxy resin a conventionally known epoxy resin can be used.
  • epoxy resins include polyfunctional epoxy resins, biphenyl compounds, bisphenol A diglycidyl ether and hydrogenated products thereof, orthocresol novolac epoxy resins, dicyclopentadiene type epoxy resins, biphenyl type epoxy resins, and bisphenols.
  • epoxy compounds having two or more functional groups in the molecule such as A-type epoxy resin, bisphenol F-type epoxy resin, and phenylene skeleton-type epoxy resin. These can be used individually by 1 type or in combination of 2 or more types.
  • the resin film-forming layer preferably contains 1 to 1500 parts by weight, more preferably 3 to 1200 parts by weight of the thermosetting component with respect to 100 parts by weight of the binder polymer component (A). If the content of the thermosetting component is less than 1 part by weight, sufficient adhesiveness may not be obtained, and if it exceeds 1500 parts by weight, the release force between the resin film-forming layer and the release sheet increases, and the resin film A transfer defect of the formation layer may occur.
  • thermosetting agent functions as a curing agent for thermosetting components, particularly epoxy resins.
  • a preferable thermosetting agent includes a compound having two or more functional groups capable of reacting with an epoxy group in one molecule.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxyl group, and an acid anhydride.
  • phenolic hydroxyl groups, amino groups, acid anhydrides and the like are preferable, and phenolic hydroxyl groups and amino groups are more preferable. More preferably, a phenolic hydroxyl group and an amino group are mentioned.
  • phenolic curing agent examples include polyfunctional phenolic resins, biphenols, novolac type phenolic resins, dicyclopentadiene type phenolic resins, zylock type phenolic resins, and aralkylphenolic resins.
  • amine curing agent is DICY (dicyandiamide). These can be used individually by 1 type or in mixture of 2 or more types.
  • the content of the thermosetting agent is preferably 0.1 to 500 parts by weight, and more preferably 1 to 200 parts by weight with respect to 100 parts by weight of the thermosetting component.
  • the content of the thermosetting agent is small, the adhesiveness may not be obtained due to insufficient curing, and when it is excessive, the moisture absorption rate of the resin film forming layer is increased and the reliability of the semiconductor device may be lowered.
  • the gettering agent (C) is not particularly limited as long as it has an action of capturing metal ions such as copper ions, but is preferably a heavy metal deactivator (C1) or an organic chelating agent (C2). And at least one selected from the group consisting of a copper ion-trapping metal compound (C3).
  • a heavy metal deactivator is an additive blended in a small amount with various plastics in order to prevent the plastic from being deteriorated by a metal such as a catalyst residue.
  • the heavy metal deactivator is considered to capture the metal component to reduce its action and prevent the deterioration of the plastic.
  • various inorganic or organic deactivators are known.
  • the organic heavy metal deactivator is excellent in dispersibility in the resin film forming layer.
  • a heavy metal deactivator a compound having the following structure in a part of the molecule is preferably used.
  • R is hydrogen or a hydrocarbon skeleton that may contain a hetero atom, and particularly preferably a hydrocarbon skeleton that contains a nitrogen atom and / or an oxygen atom.
  • heavy metal deactivators include the following compounds. 3- (N-salicyloyl) amino-1,2,4-triazole (made by ADEKA, CDA-1, CAS No. 36411-52-6) Decamethylenedicarboxydisalicyloylhydrazide (ADEKA, CDA-6, CAS No.63245-38-5)
  • the organic chelating agent (C2) is not particularly limited, but has a polyvalent carboxylic acid as a functional group, and preferably has an acid value of 100 to 600 mg / g, and 260 to 330 mg / g. It is more preferable that If the acid value of the organic chelating agent (C2) is smaller than 100 mg / g, the target gettering function is insufficient, and if it is larger than 600 mg / g, it may cause an interaction with the base thermosetting agent. .
  • the mass decrease start temperature of the organic chelating agent (C2) by differential scanning calorimetry (TG / DTA) is preferably 190 ° C. or higher, more preferably 196 ° C. or higher.
  • the mass reduction start temperature by differential scanning calorimetry (TG / DTA) of the organic chelating agent (C2) is lower than 190 ° C., the IR reflow resistance of the semiconductor device may be lowered.
  • the copper ion capturing metal compound (C3) has an effect of capturing copper ions.
  • examples thereof include oxides such as antimony, bismuth, magnesium and aluminum, hydroxides, nitrates and carbonates. These are preferable in that the effect can be obtained with a small amount.
  • examples thereof preferably include antimony oxide, bismuth oxide, and a mixture thereof, and hydrotalcite that is a magnesium-aluminum oxide and a fired product thereof. Al in the hydrotalcite may be substituted with Cr or Fe.
  • the gettering agent (C) can be used singly or in combination of two or more.
  • the blending amount of the gettering agent (C) is preferably 1 to 35 parts by weight, more preferably 10 to 35 parts by weight, particularly preferably 100 parts by weight of the total solid content constituting the resin film forming layer. 20 to 30 parts by weight.
  • the amount of the gettering agent (C) is too small, the target gettering function is insufficient, and when the amount is too large, the adhesion performance may be impaired.
  • Such a gettering agent (C) can be introduced into the semiconductor device by blending it into the resin film of the semiconductor chip. For this reason, the impurity metal accumulated in the wafer is captured by the gettering agent (C) in the resin film even if it moves under heating conditions such as reflow, so that migration occurs on the circuit surface. None happen.
  • the gettering function of the gettering agent (C) can be evaluated by, for example, the following copper ion adsorption ability.
  • Copper ion adsorption capacity (%) (3 ppm-residual copper ion concentration (ppm)) x 100/3 ppm
  • the copper ion adsorption capacity indicates the ratio of the amount of copper ions trapped (adsorbed or absorbed) by the gettering agent, and the higher the copper ion adsorption capacity, the higher the gettering function.
  • the copper ion adsorption ability of the gettering agent (C) used in the present invention is preferably 30% or more, more preferably 50% or more, and particularly preferably 95% or more.
  • the gettering function can also be evaluated by the amount of copper ions adsorbed per unit weight of the gettering agent (hereinafter referred to as “copper ion adsorption rate”). Specifically, a gettering agent is added to a copper ion aqueous solution in the same manner as described above, and the copper ion adsorption rate is obtained by the following formula.
  • Copper ion adsorption rate (%) (3 ppm ⁇ residual copper ion concentration (ppm)) ⁇ solution amount (g) ⁇ 10 ⁇ 6 ⁇ 100 / sample weight (g)
  • the copper ion adsorption rate of the gettering agent (C) used in the present invention is preferably 0.003% or more, more preferably 0.01% or more, and particularly preferably 0.013% or more.
  • the gettering agent (C) generally has a larger surface area per weight as the particle size is smaller, so that it becomes easier to capture impurity metals and the gettering function is enhanced.
  • the smaller the particle size the easier the thin adhesive processing. Therefore, the average particle diameter of the gettering agent (C) used in the present invention is preferably in the range of 1 nm to 30 ⁇ m, more preferably 5 nm to 10 ⁇ m, and particularly preferably 10 nm to 1 ⁇ m.
  • the particle size is large in the raw material state, it is pulverized by an appropriate method (ball mill, three rolls, etc.) in advance or when mixed with other components.
  • the average particle diameter of the gettering agent (C) was obtained as an arithmetic average from 100 particles by observation with a scanning electron microscope (SEM). When the particle shape was not spherical, the longest diameter was taken as the particle size.
  • Colorant Colorant (D) can be mix
  • organic or inorganic pigments and dyes are used. Among these, black pigments are preferable from the viewpoint of electromagnetic wave and infrared shielding properties. Examples of the black pigment include carbon black, iron oxide, manganese dioxide, aniline black, activated carbon, and the like, but are not limited thereto. Carbon black is particularly preferable from the viewpoint of increasing the reliability of the semiconductor device.
  • the blending amount of the colorant (D) is preferably 0.1 to 35 parts by weight, more preferably 0.5 to 25 parts by weight, particularly preferably 100 parts by weight of the total solid content constituting the resin film forming layer. Is 1 to 15 parts by weight.
  • the resin film forming layer can contain the following components in addition to the binder polymer component (A), the curable component (B), the gettering agent (C), and the colorant (D).
  • the curing accelerator (E) is used to adjust the curing speed of the resin film forming layer.
  • the curing accelerator (E) is particularly preferably used when the epoxy resin and the thermosetting agent are used in combination in the curable component (B).
  • Preferred curing accelerators include tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole, 2-phenyl- Imidazoles such as 4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole; Organic phosphines such as tributylphosphine, diphenylphosphine and triphenylphosphine; And tetraphenylboron salts such as tetraphenylphosphonium tetraphenylborate and triphenylphosphinetetraphenylborate. These can be used individually by 1 type or in mixture of 2 or more types.
  • the curing accelerator (E) is contained in an amount of preferably 0.01 to 10 parts by weight, more preferably 0.1 to 1 part by weight with respect to 100 parts by weight of the curable component (B). By containing the curing accelerator (E) in an amount within the above range, it has excellent adhesive properties even when exposed to high temperatures and high humidity, and high reliability even when exposed to severe reflow conditions. Can be achieved. If the content of the curing accelerator (E) is low, sufficient adhesive properties cannot be obtained due to insufficient curing, and if it is excessive, the curing accelerator having a high polarity will adhere to the resin film forming layer at high temperature and high humidity. The reliability of the semiconductor device is lowered by moving to the side and segregating.
  • the coupling agent (F) may be used to improve the adhesion and adhesion of the resin film forming layer to the chip. Moreover, the water resistance can be improved by using a coupling agent (F), without impairing the heat resistance of the resin film obtained by hardening
  • the coupling agent (F) a compound having a group that reacts with a functional group of the binder polymer component (A), the curable component (B), or the like is preferably used.
  • a silane coupling agent is desirable.
  • Such coupling agents include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (methacryloxypropyl).
  • the coupling agent (F) is usually 0.1 to 20 parts by weight, preferably 0.2 to 10 parts by weight, based on 100 parts by weight of the total of the binder polymer component (A) and the curable component (B). Preferably, it is contained at a ratio of 0.3 to 5 parts by weight. If the content of the coupling agent (F) is less than 0.1 parts by weight, the above effect may not be obtained, and if it exceeds 20 parts by weight, it may cause outgassing.
  • Preferred inorganic fillers include powders such as silica, talc, calcium carbonate, titanium white, bengara, silicon carbide, boron nitride, beads formed by spheroidizing them, single crystal fibers, and glass fibers.
  • silica filler is preferable.
  • the said inorganic filler (G) can be used individually or in mixture of 2 or more types.
  • the content of the inorganic filler (G) can be adjusted in the range of usually 1 to 80 parts by weight with respect to 100 parts by weight of the total solid content constituting the resin film forming layer.
  • an energy ray polymerizable compound may be blended.
  • the energy ray polymerizable compound (H) contains an energy ray polymerizable group and is polymerized and cured when irradiated with energy rays such as ultraviolet rays and electron beams.
  • energy beam polymerizable compounds (H) include trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate, or 1,4.
  • acrylate compounds such as butylene glycol diacrylate, 1,6-hexanediol diacrylate, polyethylene glycol diacrylate, oligoester acrylate, urethane acrylate oligomer, epoxy-modified acrylate, polyether acrylate and itaconic acid oligomer.
  • a compound has at least one polymerizable double bond in the molecule, and usually has a weight average molecular weight of about 100 to 30,000, preferably about 300 to 10,000.
  • the amount of the energy beam polymerizable compound (H) is not particularly limited, but it is preferably used at a ratio of about 1 to 50 parts by weight with respect to 100 parts by weight of the total solid content constituting the resin film forming layer.
  • the resin film-forming layer contains the above-mentioned energy beam polymerizable compound (H)
  • the energy beam polymerizable compound is irradiated by irradiating energy rays such as ultraviolet rays when used. Harden.
  • the photopolymerization initiator (I) in the composition by including the photopolymerization initiator (I) in the composition, the polymerization curing time and the light irradiation amount can be reduced.
  • photopolymerization initiator (I) examples include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, benzoin methyl benzoate, and benzoin dimethyl ketal.
  • a photoinitiator (I) can be used individually by 1 type or in combination of 2 or more types.
  • the blending ratio of the photopolymerization initiator (I) is preferably 0.1 to 10 parts by weight and more preferably 1 to 5 parts by weight with respect to 100 parts by weight of the energy beam polymerizable compound (H). . If it is less than 0.1 part by weight, satisfactory transferability may not be obtained due to insufficient photopolymerization. If it exceeds 10 parts by weight, a residue that does not contribute to photopolymerization is generated, and the curability of the resin film forming layer May be insufficient.
  • thermoplastic resin You may mix
  • a thermoplastic resin (J) is mix
  • the thermoplastic resin (J) preferably has a weight average molecular weight of 1,000 to 100,000, more preferably 3,000 to 80,000.
  • the glass transition temperature of the thermoplastic resin (J) is preferably in the range of ⁇ 30 to 150 ° C., more preferably in the range of ⁇ 20 to 120 ° C. If the glass transition temperature of the thermoplastic resin (J) is too low, the peeling force between the resin film-forming layer and the release sheet may increase and transfer failure of the resin film-forming layer may occur. There is a possibility that the adhesive force with the chip is insufficient.
  • thermoplastic resin (J) examples include polyester resin, urethane resin, phenoxy resin, polybutene, polybutadiene, and polystyrene. These can be used individually by 1 type or in mixture of 2 or more types.
  • thermoplastic resin (J) is usually contained in an amount of 1 to 300 parts by weight, preferably 1 to 100 parts by weight, based on 100 parts by weight of the total of the binder polymer component (A) and the curable component (B). When the content of the thermoplastic resin (J) is within this range, the above effect can be obtained.
  • crosslinking agent A crosslinking agent may be added to adjust the initial adhesive force and cohesive strength of the resin film-forming layer.
  • examples of the crosslinking agent (K) include organic polyvalent isocyanate compounds and organic polyvalent imine compounds.
  • organic polyvalent isocyanate compound examples include aromatic polyvalent isocyanate compounds, aliphatic polyvalent isocyanate compounds, alicyclic polyvalent isocyanate compounds, trimers of these organic polyvalent isocyanate compounds, and these organic polyvalent isocyanate compounds. And a terminal isocyanate urethane prepolymer obtained by reacting a polyol compound with a polyol compound.
  • organic polyvalent isocyanate compounds include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylene diisocyanate, diphenylmethane-4,4′-diisocyanate, and diphenylmethane.
  • organic polyvalent imine compound examples include N, N′-diphenylmethane-4,4′-bis (1-aziridinecarboxamide), trimethylolpropane-tri- ⁇ -aziridinylpropionate, tetramethylolmethane-tri - ⁇ -aziridinylpropionate and N, N′-toluene-2,4-bis (1-aziridinecarboxamide) triethylenemelamine can be mentioned.
  • the crosslinking agent (K) is usually 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the binder polymer component (A). Used.
  • additives may be blended in the resin film forming layer as necessary.
  • additives include plasticizers, antistatic agents, and antioxidants.
  • the resin film forming layer composed of each component as described above has adhesiveness and heat-curing property, and can be easily bonded by pressing to a semiconductor wafer, a chip or the like in an uncured state. Finally, a resin film having high impact resistance can be provided through thermosetting, excellent in adhesive strength, and can maintain a sufficient protective function even under severe high temperature and high humidity conditions.
  • the resin film forming layer may have a single layer structure, or may have a multilayer structure as long as one or more layers containing the above components are included. Furthermore, the resin film forming layer may have a concentration gradient of the gettering agent (C) in the thickness direction.
  • the resin film-forming layer is obtained by applying and drying a composition for a resin film-forming layer obtained by mixing each of the above components in an appropriate solvent on a release sheet.
  • the composition for resin film formation layers may be apply
  • the resin film-forming sheet for chips according to the present invention is formed by releasably forming the resin film-forming layer on a release sheet.
  • the shape of the resin film forming sheet for chips according to the present invention can take any shape such as a tape shape and a label shape.
  • the release sheet for example, polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polyethylene naphthalate film, polybutylene terephthalate film, Polyurethane film, ethylene vinyl acetate copolymer film, ionomer resin film, ethylene / (meth) acrylic acid copolymer film, ethylene / (meth) acrylic acid ester copolymer film, polystyrene film, polycarbonate film, polyimide film, fluorine A transparent film such as a resin film is used. These crosslinked films are also used. Furthermore, these laminated films may be sufficient. Moreover, the film which colored these, an opaque film, etc. can be used.
  • the release sheet is peeled off when used, and the resin film forming layer is transferred to a semiconductor wafer or chip.
  • the release sheet needs to withstand the heat during the heat-curing of the resin film-forming layer. Therefore, the polyethylene terephthalate film and the polyethylene naphthalate having excellent heat resistance A film, a polymethylpentene film, and a polyimide film are preferably used.
  • the surface tension of the release sheet is preferably 40 mN / m or less, more preferably 37 mN / m or less, and particularly preferably 35 mN / m or less. .
  • the lower limit is usually about 25 mN / m.
  • alkyd, silicone, fluorine, unsaturated polyester, polyolefin, wax, and the like are used as the release agent used for the release treatment.
  • alkyd, silicone, and fluorine release agents are heat resistant. This is preferable.
  • the release agent is applied as it is without a solvent, or diluted or emulsified with a solvent, and applied with a gravure coater, Mayer bar coater, air knife coater, roll coater, etc.
  • the laminate may be formed by normal temperature or heating or electron beam curing, wet lamination, dry lamination, hot melt lamination, melt extrusion lamination, coextrusion processing, or the like.
  • the thickness of the release sheet is usually 10 to 500 ⁇ m, preferably 15 to 300 ⁇ m, particularly preferably about 20 to 250 ⁇ m.
  • the thickness of the resin film forming layer is usually 1 to 500 ⁇ m, preferably 5 to 300 ⁇ m, and particularly preferably about 10 to 150 ⁇ m.
  • a light peelable release film is laminated on the upper surface of the resin film forming layer separately from the release sheet before using the chip resin film forming sheet. May be.
  • a method for manufacturing a semiconductor chip according to the present invention comprises attaching a resin film forming layer of the above-mentioned resin film forming sheet for a chip to a back surface of a semiconductor wafer having a circuit formed on the surface, and having a resin film on the back surface. It is characterized by obtaining.
  • the resin film is preferably a protective film for a semiconductor chip.
  • the semiconductor chip manufacturing method according to the present invention preferably further includes the following steps (1) to (3), wherein the steps (1) to (3) are performed in an arbitrary order. Step (1): peeling the resin film forming layer and the release sheet, Step (2): curing the resin film forming layer, Step (3): Dicing the semiconductor wafer and the resin film forming layer.
  • the semiconductor wafer may be a silicon wafer or a compound semiconductor wafer such as gallium / arsenic. Formation of a circuit on the wafer surface can be performed by various methods including conventionally used methods such as an etching method and a lift-off method. Next, the opposite surface (back surface) of the circuit surface of the semiconductor wafer is ground.
  • the grinding method is not particularly limited, and grinding may be performed by a known means using a grinder or the like. At the time of back surface grinding, an adhesive sheet called a surface protection sheet is attached to the circuit surface in order to protect the circuit on the surface.
  • the circuit surface side (that is, the surface protection sheet side) of the wafer is fixed by a chuck table or the like, and the back surface side on which no circuit is formed is ground by a grinder.
  • the thickness of the wafer after grinding is not particularly limited, but is usually about 20 to 500 ⁇ m.
  • the method for manufacturing a semiconductor chip of the present invention can be suitably applied particularly to a semiconductor wafer from which a crushed layer has been removed. That is, the semiconductor chip manufacturing method of the present invention can be suitably applied to a semiconductor wafer in which the thickness of the crush layer is 50 nm or less, further 30 nm or less, and particularly 10 nm or less.
  • steps (1) to (3) are performed in an arbitrary order. Details of this process are described in detail in JP-A-2002-280329. As an example, the case where it performs in order of process (1), (2), (3) is demonstrated.
  • the resin film forming layer of the above-mentioned resin film forming sheet for chips is attached to the back surface of a semiconductor wafer having a circuit formed on the front surface.
  • the release sheet is peeled from the resin film forming layer to obtain a laminate of the semiconductor wafer and the resin film forming layer.
  • the resin film forming layer is cured to form a resin film on the entire surface of the wafer. Since the resin film forming layer contains the curable component (B), the resin film forming layer is generally cured by thermosetting.
  • the energy ray polymerizable compound (H) is blended in the resin film forming layer, the resin film forming layer can be cured by both heating and energy ray irradiation.
  • the curing by may be performed simultaneously or sequentially.
  • a resin film made of a cured resin is formed on the backside of the wafer, and the strength is improved compared to the case of a single wafer. Therefore, damage to the thinned wafer during handling can be reduced, and gettering contained in the resin film A gettering function is imparted by the agent (C). Further, compared with a coating method in which a coating solution for a resin film is directly applied to the back surface of a wafer or chip, the thickness of the resin film is excellent.
  • the laminated body of the semiconductor wafer and the resin film is diced for each circuit formed on the wafer surface. Dicing is performed so as to cut both the wafer and the resin film.
  • the wafer is diced by a conventional method using a dicing sheet. As a result, a semiconductor chip having a resin film on the back surface is obtained.
  • the semiconductor chip by picking up the diced chip by a general means such as a collet, a semiconductor chip having a resin film on the back surface can be obtained.
  • a highly uniform resin film can be easily formed on the back surface of the chip, and cracks after the dicing process and packaging are less likely to occur.
  • the semiconductor device can be manufactured by mounting the semiconductor chip on a predetermined base by the face-down method.
  • a semiconductor device can be manufactured by bonding a semiconductor chip having a resin film on the back surface to another member (on a chip mounting portion) such as a die pad portion or another semiconductor chip.
  • Copper ion prepared by dissolving 0.805 g of copper (II) chloride dihydrate manufactured by Kanto Chemical Co., Ltd. in 1 liter of ultrapure water and further diluting 100 times with 1 g of gettering agent prepared in Examples and Comparative Examples The solution was added to 50 g of an aqueous copper chloride solution having a concentration of 3 ppm and maintained at 121 ° C., 2 atm and 24 hours. Then, it filtered using the 0.10 micrometer pore diameter membrane filter.
  • the residual copper ion concentration of the aqueous copper ion solution in the filtrate was measured by atomic absorption spectrometry (measuring device: manufactured by Hitachi, Ltd., atomic absorption photometer Z5310, flame method), and the initial copper ion concentration (3 ppm) and residual From the copper ion concentration (ppm), the copper ion adsorption capacity and the copper ion adsorption rate are evaluated by the following formula.
  • Copper ion adsorption capacity (%) (3 ppm-residual copper ion concentration (ppm)) x 100/3 ppm
  • Copper ion adsorption rate (%) (3 ppm ⁇ residual copper ion concentration (ppm)) ⁇ solution amount (g) ⁇ 10 ⁇ 6 ⁇ 100 / sample weight (g)
  • the back surface of the silicon wafer was dry-polished using a DGP 8760 manufactured by Disco Corporation (200 mm diameter, 75 ⁇ m thick, 10 nm thick crush layer).
  • 1 g of copper chloride powder (manufactured by Kanto Chemical Co., Ltd., product name: copper chloride (II) dihydrate) is uniformly sprayed on the dry-polished surface of the silicon wafer (wafer back surface), and simulated reflow conditions (300 C., 30 minutes), and copper ions were diffused into the silicon wafer.
  • a weak adhesive tape Adwill D-675 manufactured by Lintec after UV curing
  • the resin film forming sheets for chips prepared in Examples and Comparative Examples were pasted at 40 ° C. on the back surface of the silicon wafer contaminated with copper ions.
  • ultraviolet rays were irradiated (230 mW / cm 2 , 120 mJ / cm 2 ) from the release sheet surface using an ultraviolet ray irradiation device (Adwill RAD-2000 m / 12, manufactured by Lintec Corporation), and the release sheet was peeled off.
  • thermosetting 140 degreeC, 1 hour
  • it was put into pseudo reflow conditions 300 degreeC, 30 minutes).
  • the wafer surface (mirror surface, non-sticking surface for chip resin film forming sheet) was pre-cleaned with hydrofluoric acid to remove contamination and natural oxide film (about 10 nm) adhering to the surface. Thereafter, the wafer outer periphery 10 mm was masked by being sandwiched by a Teflon (registered trademark) jig, and 5 ⁇ m from the wafer surface was etched with a nitric acid / hydrofluoric acid mixture (ratio 3: 1). The entire amount of the obtained etching solution was collected in an evaporating dish.
  • Sample preparation was performed in a clean draft (class 10) installed in a clean room (class 100).
  • the concentration of copper ions in the silicon wafer was quantitatively measured by ICP-MS measurement.
  • the lower limit of copper ion quantification is 3.0 ⁇ 10 12 atoms / cm 3 (number of atoms per unit volume).
  • the gettering performance of the chip resin film forming sheet was evaluated by measuring the concentration of copper ions eluted in the etching solution. The smaller the amount of copper ions eluted in the etching solution, the greater the amount of copper ions captured by the resin film, indicating higher gettering performance. A copper ion detection amount of 50 ⁇ 10 12 atoms / cm 3 or less was regarded as good, and a copper ion detection amount exceeding 50 ⁇ 10 12 atoms / cm 3 was regarded as defective.
  • the quantitative analysis method for the copper ion concentration may be performed by a method such as atomic absorption analysis, ICP-OES, or TOF-SIMS.
  • the mass reduction start temperature was measured using a differential thermal analyzer (manufactured by Shimadzu Corporation, TG / DTA analyzer DTG-60). Using the organic chelating agent prepared in Examples and Comparative Examples as a measurement sample, about 10 mg of the measurement sample was precisely weighed. The measurement sample was heated to 40 to 500 ° C. at a temperature rising temperature of 10 ° C./min, and the mass decrease start temperature was measured.
  • Binder polymer component acrylic polymer comprising 55 parts by weight of n-butyl acrylate, 15 parts by weight of methyl acrylate, 20 parts by weight of glycidyl methacrylate, and 15 parts by weight of 2-hydroxyethyl acrylate (weight average molecular weight: 900,000, glass transition (Temperature: -28 ° C)
  • Curing component (B1) Bisphenol A type epoxy resin (epoxy equivalent 180-200 g / eq)
  • B2) Dicyclopentadiene type epoxy resin manufactured by DIC, Epicron HP-7200HH)
  • Thermosetting agent Dicyandiamide (Asahi Denka Co., Adeka Hardener 3636AS)
  • C Gettering agent: (C1-1) 3- (N-salicyloyl) amino-1,2,4-triazole
  • Organic chelating agent organic chelating agent having a polyvalent carboxylic acid as a functional group (manufactured by Nagase ChemteX Corporation: Teclan DO, acid value 260 to 330 mg / g, mass reduction starting temperature 200 ° C.) (copper ion adsorption capacity 95 0.7%, copper ion adsorption rate 0.014%, particle size 1 ⁇ m) (C3) KW-2200 manufactured by Kyowa Chemical Industry Co., Ltd.
  • Examples and Comparative Examples The above components were blended in the amounts shown in Table 1 to obtain a resin film forming layer composition.
  • a release sheet (SP-PET3811, manufactured by Lintec Corporation, thickness 38 ⁇ m, surface tension 33 mN / m, melting point 200 ° C. or higher) made by removing a methyl ethyl ketone solution (solid concentration 61% by weight) of the obtained composition from silicone. After being dried on the surface to be peeled and coated to a thickness of 40 ⁇ m and dried (drying conditions: 100 ° C. in an oven for 3 minutes), a resin film forming layer is formed on the release sheet, and the resin film for chips A forming sheet was obtained.
  • the gettering performance of the wafer (Reference Example 1) in which the copper ion-contaminated wafer and the wafer in which the copper ion-contaminated wafer was not attached was measured.
  • the sheet for forming a resin film for a chip of the example exhibited excellent copper ion adsorption capacity, copper ion adsorption rate, and gettering performance. From this result, it was confirmed that a highly reliable semiconductor chip can be obtained by using the gettering agent (C) for the resin film forming layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

【課題】 半導体ウエハ、チップに特別な処理を施すことなく、得られる半導体装置にゲッタリング機能を付与すること。 【解決手段】 本発明に係るチップ用樹脂膜形成用シートは、剥離シートと、該剥離シートの剥離面上に形成された樹脂膜形成層とを有し、該樹脂膜形成層が、バインダーポリマー成分(A)、硬化性成分(B)およびゲッタリング剤(C)を含むことを特徴とする。

Description

チップ用樹脂膜形成用シートおよび半導体チップの製造方法
 本発明は、半導体チップ裏面に効率良くゲッタリング効果を有する樹脂膜を形成でき、かつチップの製造効率の向上が可能なチップ用樹脂膜形成用シートに関する。特にいわゆるフェースダウン(face down)方式で実装される半導体チップの製造に用いられるチップ用樹脂膜形成用シートに関する。また、本発明は、上記チップ用樹脂膜形成用シートを用いた半導体チップの製造方法に関する。
 近年、素子の小型化の要請から、半導体チップの厚さを薄くすることが要望されている。半導体ウエハは表面に回路が形成された後、裏面研削により所定の厚さまで研削される。したがって、素子の小型化のためには、裏面研削によりウエハをさらに薄く研削することになる。しかし、ウエハの厚さが薄くなるにしたがい、ウエハ強度は低下し、僅かな衝撃によってもウエハが破損することがある。ウエハ破損の要因としては、裏面研削時に使用したグラインダーの切削痕や酸化被膜などが複合した「破砕層」が主因であると考えられている。
 破砕層は、研削されたウエハ表面の微細な凹凸であり、シリコンの多結晶またはシリコンが少量の酸素により酸化された状態にあり、格子欠陥も包含されていると考えられている。表面の凹凸や組成変化等によるストレスのため、僅かな衝撃によってもひび割れを起こし、ウエハの破損を招くことがある。このため、裏面研削終了後には、破砕層を除去するため、裏面にケミカルエッチングやプラズマエッチングなどを施すことが一般化している。破砕層を除去することで、ウエハの強度は向上し、極薄にまで研削されたウエハであっても、良好なハンドリング性が維持される。
 しかし、破砕層を除去することで、得られるウエハ、チップの金属に対する耐汚染性が低下することが懸念されている。
 半導体ウエハは、回路の形成時、裏面研削時および実装時には、種々の部材と接触する。この際に、これら他の部材から銅などの金属が放出され、ウエハが金属汚染を受けることがある。不純物金属はウエハ内に蓄積され、リフローなどの加熱条件下ではイオン化し、ウエハ内を移動することがある。そして、回路表面に到達した金属イオンは、製品の電気的動作を阻害し誤作動の原因となる。また、回路表面に到達した金属イオンは、回路面で金属を生成することがある(これらはマイグレーションと呼ばれることがある)。特に配線が微細化されている半導体ウエハ表面で金属が生成すると、回路を短絡し、製品の歩留まりが低下する。
 一方、破砕層は、上記のように、微細な凹凸であり、シリコンの多結晶またはシリコンが少量の酸素により酸化された状態にあり、格子欠陥も包含されていると考えられ、これらの組成、構造の不均一性に起因して、前述の不純物金属を捕捉しやすく、金属汚染の影響を低減する作用があると考えられている。このような破砕層の機能はゲッタリング機能とも呼ばれている。
 このように、ウエハの裏面研削終了後、破砕層を除去することで、ウエハの強度は向上するものの、ゲッタリング機能が損なわれ、製品歩留まりが低下する。このため、破砕層を除去後の半導体ウエハ、チップに種々の処理を行うことで、ゲッタリング機能を付与する技術が提案されている(特許文献1,2)。
特開2005-277116号公報 特開2007-242713号公報
 しかし、特許文献1,2のように、半導体ウエハ、チップにゲッタリング機能を付与するための処理を施すことは、工程数が増加し、プロセスの煩雑化、コストの上昇を招く。
 本発明は上記の事情に鑑みてなされたものであって、半導体ウエハ、チップに工程数が増加し、プロセスが煩雑化するような特別な処理を施すことなく、得られる半導体装置にゲッタリング機能を付与することを目的としている。
 本発明者らは、上記課題の解決を目的として鋭意研究した結果、半導体チップの裏面に形成される樹脂膜にゲッタリング機能を付与することで、半導体装置内にゲッタリングサイトを導入できることを着想し、本発明を完成させるに至った。
 本発明は、以下の要旨を含む。
(1)剥離シートと、該剥離シートの剥離面上に形成された樹脂膜形成層とを有し、
 該樹脂膜形成層が、バインダーポリマー成分(A)、硬化性成分(B)およびゲッタリング剤(C)を含む、チップ用樹脂膜形成用シート。
(2)ゲッタリング剤(C)が、重金属不活性化剤(C1)、有機キレート剤(C2)および銅イオン捕捉金属化合物(C3)からなる群から選ばれる(1)に記載のチップ用樹脂膜形成用シート。
(3)下記により定義されるゲッタリング剤(C)の銅イオン吸着能が30%以上である(1)または(2)に記載のチップ用樹脂膜形成用シート:
 ゲッタリング剤1gを、銅イオン濃度が3ppmの塩化銅水溶液50gに投入し、121℃、2気圧下、24時間放置した後の該銅イオン水溶液の銅イオン濃度を測定し、
 銅イオン吸着能=(3ppm-残留銅イオン濃度(ppm))×100/3ppmより銅イオン吸着能を求める。
(4)該樹脂膜形成層が、さらに着色剤(D)を含有する(1)~(3)の何れかに記載のチップ用樹脂膜形成用シート。
(5)該樹脂膜形成層を構成する全固形分100重量部あたりゲッタリング剤(C)を1~35重量部含有する(1)~(4)の何れかに記載のチップ用樹脂膜形成用シート。
(6)該樹脂膜形成層が、半導体ウエハまたはチップの保護膜である(1)~(5)の何れかに記載のチップ用樹脂膜形成用シート。
(7)表面に回路が形成された半導体ウエハの裏面に、(1)~(6)の何れかに記載のチップ用保護膜形成用シートの樹脂膜形成層を貼付し、裏面に樹脂膜を有する半導体チップを得ることを特徴とする半導体チップの製造方法。
(8)以下の工程(1)~(3)をさらに含み、工程(1)~(3)を任意の順で行うことを特徴とする(7)に記載の半導体チップの製造方法:
 工程(1):樹脂膜形成層と剥離シートとを剥離、
 工程(2):樹脂膜形成層を硬化、
 工程(3):半導体ウエハおよび樹脂膜形成層をダイシング。
(9)該半導体ウエハが、裏面研削後、裏面研削により生じた破砕層を厚み50nm以下にまで低減されたものである(7)または(8)に記載の半導体チップの製造方法。
(10)該樹脂膜が、半導体チップの保護膜である(7)~(9)の何れかに記載の半導体チップの製造方法。
 半導体チップ裏面に樹脂膜を形成する際に、本発明に係るチップ用樹脂膜形成用シートを用いることで、半導体ウエハ、チップに特別な処理を施すことなく、得られる半導体装置にゲッタリングサイトを導入することが可能になる。
 以下、本発明について、その最良の形態も含めてさらに具体的に説明する。本発明に係るチップ用樹脂膜形成用シートは、剥離シートと、該剥離シートの剥離面上に形成された樹脂膜形成層とを有する。
(樹脂膜形成層)
 樹脂膜形成層は、バインダーポリマー成分(A)、硬化性成分(B)およびゲッタリング剤(C)を含む。
 (A)バインダーポリマー成分
 樹脂膜形成層に十分な接着性および造膜性(シート加工性)を付与するためにバインダーポリマー成分(A)が用いられる。バインダーポリマー成分(A)としては、従来公知のアクリルポリマー、ポリエステル樹脂、ウレタン樹脂、アクリルウレタン樹脂、シリコーン樹脂、ゴム系ポリマー等を用いることができる。
 バインダーポリマー成分(A)の重量平均分子量(Mw)は、1万~200万であることが好ましく、10万~150万であることがより好ましい。バインダーポリマー成分(A)の重量平均分子量が低過ぎると樹脂膜形成層と剥離シートとの粘着力が高くなり、樹脂膜形成層の転写不良が起こることがあり、高過ぎると樹脂膜形成層の接着性が低下し、チップ等に転写できなくなったり、あるいは転写後にチップ等から樹脂膜が剥離することがある。
 バインダーポリマー成分(A)として、アクリルポリマーが好ましく用いられる。アクリルポリマーのガラス転移温度(Tg)は、好ましくは-60~50℃、さらに好ましくは-50~40℃、特に好ましくは-40~30℃の範囲にある。アクリルポリマーのガラス転移温度が低過ぎると樹脂膜形成層と剥離シートとの剥離力が大きくなって樹脂膜形成層の転写不良が起こることがあり、高過ぎると樹脂膜形成層の接着性が低下し、チップ等に転写できなくなったり、あるいは転写後にチップ等から樹脂膜が剥離することがある。
 上記アクリルポリマーを構成するモノマーとしては、(メタ)アクリル酸エステルモノマーまたはその誘導体が挙げられる。例えば、アルキル基の炭素数が1~18であるアルキル(メタ)アクリレート、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートなどが挙げられ;環状骨格を有する(メタ)アクリレート、例えばシクロアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イミド(メタ)アクリレートなどが挙げられ;水酸基を有するヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートなどが挙げられ;その他、エポキシ基を有するグリシジル(メタ)アクリレートなどが挙げられる。これらの中では、水酸基を有しているモノマーを重合して得られるアクリルポリマーが、後述する硬化性成分(B)との相溶性が良いため好ましい。また、上記アクリルポリマーは、アクリル酸、メタクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレンなどが共重合されていてもよい。
 (B)硬化性成分
 硬化性成分(B)は、熱硬化性成分および熱硬化剤が用いられる。熱硬化性成分としては、たとえば、エポキシ樹脂が好ましい。
 エポキシ樹脂としては、従来公知のエポキシ樹脂を用いることができる。エポキシ樹脂としては、具体的には、多官能系エポキシ樹脂や、ビフェニル化合物、ビスフェノールAジグリシジルエーテルやその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂など、分子中に2官能以上有するエポキシ化合物が挙げられる。これらは1種単独で、または2種以上を組み合わせて用いることができる。
 樹脂膜形成層には、バインダーポリマー成分(A)100重量部に対して、熱硬化性成分が、好ましくは1~1500重量部含まれ、より好ましくは3~1200重量部含まれる。熱硬化性成分の含有量が1重量部未満であると十分な接着性が得られないことがあり、1500重量部を超えると樹脂膜形成層と剥離シートとの剥離力が高くなり、樹脂膜形成層の転写不良が起こることがある。
 熱硬化剤は、熱硬化性成分、特にエポキシ樹脂に対する硬化剤として機能する。好ましい熱硬化剤としては、1分子中にエポキシ基と反応しうる官能基を2個以上有する化合物が挙げられる。その官能基としてはフェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシル基および酸無水物などが挙げられる。これらのうち好ましくはフェノール性水酸基、アミノ基、酸無水物などが挙げられ、さらに好ましくはフェノール性水酸基、アミノ基が挙げられる。さらに好ましくはフェノール性水酸基、アミノ基が挙げられる。
 フェノール系硬化剤の具体的な例としては、多官能系フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン系フェノール樹脂、ザイロック型フェノール樹脂、アラルキルフェノール樹脂が挙げられる。アミン系硬化剤の具体的な例としては、DICY(ジシアンジアミド)が挙げられる。これらは、1種単独で、または2種以上混合して使用することができる。
 熱硬化剤の含有量は、熱硬化性成分100重量部に対して、0.1~500重量部であることが好ましく、1~200重量部であることがより好ましい。熱硬化剤の含有量が少ないと硬化不足で接着性が得られないことがあり、過剰であると樹脂膜形成層の吸湿率が高まり半導体装置の信頼性を低下させることがある。
 (C)ゲッタリング剤
 ゲッタリング剤(C)は、銅イオンなどの金属イオンを捕捉する作用を有する限り特に限定はされないが、好ましくは重金属不活性化剤(C1)、有機キレート剤(C2)および銅イオン捕捉金属化合物(C3)からなる群から選ばれる少なくとも1種が用いられる。樹脂膜形成層にゲッタリング剤(C)を配合することで、樹脂膜形成層にはゲッタリング機能が付与され、半導体装置内にゲッタリングサイトが導入される。
 (C1)重金属不活性化剤
 重金属不活性化剤は、触媒残渣などの金属によって、プラスチックが劣化することを防止するために、各種のプラスチックに少量配合される添加剤である。重金属不活性化剤は、金属成分を捕捉することで、その作用を軽減しプラスチックの劣化を防止していると考えられている。このような重金属不活性化剤としては、無機系あるいは有機系の各種不活性化剤が知られているが、本発明では、有機系重金属不活性化剤を使用することが好ましい。有機系重金属不活性化剤は、樹脂膜形成層中における分散性に優れる。
 このような重金属不活性化剤としては、特に分子の一部に下記の構造を有する化合物が好ましく使用される。
Figure JPOXMLDOC01-appb-C000001
 上記式において、Rは、水素、またはヘテロ原子を含有していてもよい炭化水素骨格であり、特に窒素原子および/または酸素原子を含有する炭化水素骨格であることが好ましい。
 このような重金属不活性化剤の特に好ましい例としては、下記化合物があげられる。
 3-(N-サリチロイル)アミノ-1,2,4-トリアゾール(ADEKA社製、CDA-1、CAS No. 36411-52-6)
Figure JPOXMLDOC01-appb-C000002
 デカメチレンジカルボキシジサリチロイルヒドラジド(ADEKA社製、CDA-6、CAS No.63245-38-5)
Figure JPOXMLDOC01-appb-C000003
 (C2)有機キレート剤
 有機キレート剤(C2)は、特に限定されないが、多価カルボン酸を官能基として有し、その酸価が100~600mg/gであることが好ましく、260~330mg/gであることがより好ましい。有機キレート剤(C2)の酸価が100mg/gよりも小さいと、目的とするゲッタリング機能が不十分であり、600mg/gよりも大きいと塩基系熱硬化剤と相互作用を起こす場合がある。
 また、有機キレート剤(C2)の示差走査熱分析(TG/DTA)による質量減少開始温度は、190℃以上であることが好ましく、196℃以上がより好ましい。有機キレート剤(C2)の示差走査熱分析(TG/DTA)による質量減少開始温度が190℃より低いと、半導体装置の耐IRリフロー性が低下することがある。
 (C3)銅イオン捕捉金属化合物
 銅イオン捕捉金属化合物(C3)は、銅イオンを捕捉する効果がある。たとえばアンチモン、ビスマス、マグネシウム、アルミニウム等の酸化物、水酸化物、硝酸塩および炭酸塩が挙げられる。これらは少量で効果が得られる点で好ましい。その例として、好ましくは、アンチモン酸化物、ビスマス酸化物、およびこれらの混合物、ならびにマグネシウム・アルミニウム系酸化物であるハイドロタルサイトおよびその焼成物が挙げられる。なお、ハイドロタルサイト中のAlは、Cr またはFeに置換されていてもよい。
 ゲッタリング剤(C)は、上記の1種単独でまたは2種以上混合して使用することができる。また、ゲッタリング剤(C)の配合量は、樹脂膜形成層を構成する全固形分100重量部に対して、好ましくは1~35重量部、さらに好ましくは10~35重量部、特に好ましくは20~30重量部である。ゲッタリング剤(C)の配合量が少なすぎる場合には、目的とするゲッタリング機能が不十分になり、配合量が多すぎる場合には、接着性能が損なわれることがある。
 このようなゲッタリング剤(C)を、半導体チップの樹脂膜に配合することで、半導体装置内にゲッタリングサイトを導入できる。このため、ウエハ内に蓄積された不純物金属が、リフローなどの加熱条件下では、移動した場合であっても、樹脂膜中のゲッタリング剤(C)により捕捉されるため、回路表面でマイグレーションが起こることはない。
 ゲッタリング剤(C)のゲッタリング機能は、たとえば下記の銅イオン吸着能により評価することができる。
 すなわち、ゲッタリング剤1gを、超純水1lに関東化学社製塩化銅(II)二水和物0.805gを溶解し、さらに100倍に希釈して作成した銅イオン濃度が3ppmの塩化銅水溶液50gに投入し、この水溶液を、121℃、2気圧下で、24時間放置した後に該銅イオン水溶液の銅イオン濃度(残留銅イオン濃度)を測定し、初期銅イオン濃度(3ppm)と、残留銅イオン濃度(ppm)とから、下記式により銅イオン吸着能を評価する。
 銅イオン吸着能(%)=(3ppm-残留銅イオン濃度(ppm))×100/3ppm 
 銅イオン吸着能は、ゲッタリング剤に捕捉(吸着または吸収)された銅イオン量の比率を示し、銅イオン吸着能が高いほど、ゲッタリング機能が高いと考えられる。本発明で使用するゲッタリング剤(C)の銅イオン吸着能は、好ましくは30%以上であり、さらに好ましくは50%以上、特に好ましくは95%以上である。
 また、ゲッタリング機能は、ゲッタリング剤単位重量当たりに吸着される銅イオンの吸着量(以下、「銅イオン吸着率」と呼ぶ)によっても評価することができる。具体的には、上記と同様にゲッタリング剤を銅イオン水溶液に投入し、下記式にて銅イオン吸着率を求める。
 銅イオン吸着率(%)=(3ppm-残留銅イオン濃度(ppm))×溶液量(g)×10-6×100/試料重量(g)
 本発明で使用するゲッタリング剤(C)の銅イオン吸着率は、好ましくは0.003%以上であり、さらに好ましくは0.01%以上、特に好ましくは0.013%以上である。
 ゲッタリング剤(C)は、一般に粒径が小さいほど、重量当たりの表面積がひろくなるため、不純物金属を捕捉しやすくなり、ゲッタリング機能が高くなる。また、一般に粒径が小さいほど、薄厚の粘着加工は容易となる。したがって、本発明で使用するゲッタリング剤(C)の平均粒径は、好ましくは1nm~30μm、さらに好ましくは5nm~10μm、特に好ましくは10nm~1μmの範囲にある。
 原材料の状態で粒子径が大きい場合は適当な方法(ボールミル、3本ロール等)によって、事前または他の成分との混合時に粉砕する。
 なお、ゲッタリング剤(C)の平均粒径は、走査型電子顕微鏡(SEM)観察により、100個の粒子から算術平均を求めた。粒形が球状でない場合には、最長径を粒径とした。
 (D)着色剤
 樹脂膜形成層には、着色剤(D)を配合することができる。着色剤を配合することで、半導体装置を機器に組み込んだ際に、周囲の装置から発生する赤外線等による半導体装置の誤作動を防止することができる。着色剤としては、有機または無機の顔料および染料が用いられる。これらの中でも電磁波や赤外線遮蔽性の点から黒色顔料が好ましい。黒色顔料としては、カーボンブラック、酸化鉄、二酸化マンガン、アニリンブラック、活性炭等が用いられるが、これらに限定されることはない。半導体装置の信頼性を高める観点からは、カーボンブラックが特に好ましい。着色剤(D)の配合量は、樹脂膜形成層を構成する全固形分100重量部に対して、好ましくは0.1~35重量部、さらに好ましくは0.5~25重量部、特に好ましくは1~15重量部である。
 その他の成分
 樹脂膜形成層は、上記バインダーポリマー成分(A)、硬化性成分(B)、ゲッタリング剤(C)、着色剤(D)に加えて下記成分を含むことができる。
 (E)硬化促進剤
 硬化促進剤(E)は、樹脂膜形成層の硬化速度を調整するために用いられる。硬化促進剤(E)は、特に、硬化性成分(B)において、エポキシ樹脂と熱硬化剤とを併用する場合に好ましく用いられる。
 好ましい硬化促進剤としては、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの3級アミン類;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどのイミダゾール類;トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィンなどの有機ホスフィン類;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレートなどのテトラフェニルボロン塩などが挙げられる。これらは1種単独で、または2種以上混合して使用することができる。
 硬化促進剤(E)は、硬化性成分(B)100重量部に対して、好ましくは0.01~10重量部、さらに好ましくは0.1~1重量部の量で含まれる。硬化促進剤(E)を上記範囲の量で含有することにより、高温度高湿度下に曝されても優れた接着特性を有し、厳しいリフロー条件に曝された場合であっても高い信頼性を達成することができる。硬化促進剤(E)の含有量が少ないと硬化不足で十分な接着特性が得られず、過剰であると高い極性をもつ硬化促進剤は高温度高湿度下で樹脂膜形成層中を接着界面側に移動し、偏析することにより半導体装置の信頼性を低下させる。
 (F)カップリング剤
 カップリング剤(F)は、樹脂膜形成層のチップに対する接着性、密着性を向上させるために用いてもよい。また、カップリング剤(F)を使用することで、樹脂膜形成層を硬化して得られる樹脂膜の耐熱性を損なうことなく、その耐水性を向上することができる。
 カップリング剤(F)としては、バインダーポリマー成分(A)、硬化性成分(B)などが有する官能基と反応する基を有する化合物が好ましく使用される。カップリング剤(F)としては、シランカップリング剤が望ましい。このようなカップリング剤としてはγ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-(メタクリロキシプロピル)トリメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-6-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-6-(アミノエチル)-γ-アミノプロピルメチルジエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシランなどが挙げられる。これらは1種単独で、または2種以上混合して使用することができる。
 カップリング剤(F)は、バインダーポリマー成分(A)および硬化性成分(B)の合計100重量部に対して、通常0.1~20重量部、好ましくは0.2~10重量部、より好ましくは0.3~5重量部の割合で含まれる。カップリング剤(F)の含有量が0.1重量部未満だと上記の効果が得られない可能性があり、20重量部を超えるとアウトガスの原因となる可能性がある。
 (G)無機充填材
 無機充填材(G)を樹脂膜形成層に配合することにより、硬化後の樹脂膜における熱膨張係数を調整することが可能となり、半導体チップに対して硬化後の樹脂膜の熱膨張係数を最適化することで半導体装置の信頼性を向上させることができる。また、硬化後の樹脂膜の吸湿率を低減させることも可能となる。
 好ましい無機充填材としては、シリカ、タルク、炭酸カルシウム、チタンホワイト、ベンガラ、炭化珪素、窒化ホウ素等の粉末、これらを球形化したビーズ、単結晶繊維およびガラス繊維等が挙げられる。これらのなかでも、シリカフィラーが好ましい。上記無機充填材(G)は単独でまたは2種以上を混合して使用することができる。無機充填材(G)の含有量は、樹脂膜形成層を構成する全固形分100重量部に対して、通常1~80重量部の範囲で調整が可能である。
 (H)エネルギー線重合性化合物
 樹脂膜形成層において、エネルギー線重合性化合物が配合されていてもよい。エネルギー線重合性化合物(H)は、エネルギー線重合性基を含み、紫外線、電子線等のエネルギー線の照射を受けると重合硬化する。このようなエネルギー線重合性化合物(H)として具体的には、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレートあるいは1,4-ブチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ポリエチレングリコールジアクリレート、オリゴエステルアクリレート、ウレタンアクリレート系オリゴマー、エポキシ変性アクリレート、ポリエーテルアクリレートおよびイタコン酸オリゴマーなどのアクリレート系化合物が挙げられる。このような化合物は、分子内に少なくとも1つの重合性二重結合を有し、通常は、重量平均分子量が100~30000、好ましくは300~10000程度である。エネルギー線重合性化合物(H)の配合量は、特に限定はされないが、樹脂膜形成層を構成する全固形分100重量部に対して、1~50重量部程度の割合で用いることが好ましい。
 (I)光重合開始剤
 樹脂膜形成層が、前述したエネルギー線重合性化合物(H)を含有する場合には、その使用に際して、紫外線等のエネルギー線を照射して、エネルギー線重合性化合物を硬化させる。この際、該組成物中に光重合開始剤(I)を含有させることで、重合硬化時間ならびに光線照射量を少なくすることができる。
 このような光重合開始剤(I)として具体的には、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサンソン、α-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、1,2-ジフェニルメタン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイドおよびβ-クロールアンスラキノンなどが挙げられる。光重合開始剤(I)は1種類単独で、または2種類以上を組み合わせて用いることができる。
 光重合開始剤(I)の配合割合は、エネルギー線重合性化合物(H)100重量部に対して0.1~10重量部含まれることが好ましく、1~5重量部含まれることがより好ましい。0.1重量部未満であると光重合の不足で満足な転写性が得られないことがあり、10重量部を超えると光重合に寄与しない残留物が生成し、樹脂膜形成層の硬化性が不十分となることがある。
(J)熱可塑性樹脂
 樹脂膜形成層には、熱可塑性樹脂(J)を配合してもよい。熱可塑性樹脂(J)は、硬化後の樹脂膜の可とう性を保持するために配合される。熱可塑性樹脂(J)としては、重量平均分子量が1000~10万のものが好ましく、3000~8万のものがさらに好ましい。上記範囲の熱可塑性樹脂(J)を含有することにより、半導体ウエハまたはチップへの樹脂膜形成層の転写時における剥離シートと樹脂膜形成層との層間剥離を容易に行うことができ、さらに転写面に樹脂膜形成層が追従しボイドなどの発生を抑えることができる。
 熱可塑性樹脂(J)のガラス転移温度は、好ましくは-30~150℃、さらに好ましくは-20~120℃の範囲にある。熱可塑性樹脂(J)のガラス転移温度が低過ぎると樹脂膜形成層と剥離シートとの剥離力が大きくなって樹脂膜形成層の転写不良が起こることがあり、高過ぎると樹脂膜形成層とチップとの接着力が不十分となるおそれがある。
 熱可塑性樹脂(J)としては、ポリエステル樹脂、ウレタン樹脂、フェノキシ樹脂、ポリブテン、ポリブタジエン、ポリスチレンなどが挙げられる。これらは1種単独で、または2種以上混合して使用することができる。
 熱可塑性樹脂(J)は、バインダーポリマー成分(A)および硬化性成分(B)の合計100重量部に対して、通常1~300重量部、好ましくは1~100重量部の割合で含まれる。熱可塑性樹脂(J)の含有量がこの範囲にあることにより、上記の効果を得ることができる。
 (K)架橋剤
 樹脂膜形成層の初期接着力および凝集力を調節するために、架橋剤を添加することもできる。架橋剤(K)としては有機多価イソシアネート化合物、有機多価イミン化合物などが挙げられる。
 上記有機多価イソシアネート化合物としては、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物、脂環族多価イソシアネート化合物およびこれらの有機多価イソシアネート化合物の三量体、ならびにこれら有機多価イソシアネート化合物とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等を挙げることができる。
 有機多価イソシアネート化合物としては、たとえば2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシレンジイソシアネート、ジフェニルメタン-4,4'-ジイソシアネート、ジフェニルメタン-2,4'-ジイソシアネート、3-メチルジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4'-ジイソシアネート、ジシクロヘキシルメタン-2,4'-ジイソシアネート、トリメチロールプロパンアダクトトリレンジイソシアネートおよびリジンイソシアネートが挙げられる。
 上記有機多価イミン化合物としては、N,N'-ジフェニルメタン-4,4'-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネートおよびN,N'-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等を挙げることができる。
 架橋剤(K)はバインダーポリマー成分(A)100重量部に対して通常0.01~20重量部、好ましくは0.1~10重量部、より好ましくは0.5~5重量部の比率で用いられる。
(L)汎用添加剤
 樹脂膜形成層には、上記の他に、必要に応じて各種添加剤が配合されてもよい。各種添加剤としては、可塑剤、帯電防止剤、酸化防止剤などが挙げられる。
 上記のような各成分からなる樹脂膜形成層は、接着性と加熱硬化性とを有し、未硬化状態では半導体ウエハ、チップ等に押圧することで容易に接着する。そして熱硬化を経て最終的には耐衝撃性の高い樹脂膜を与えることができ、接着強度にも優れ、厳しい高温度高湿度条件下においても十分な保護機能を保持し得る。
 なお、樹脂膜形成層は単層構造であってもよく、また上記成分を含む層を1層以上含む限りにおいて多層構造であってもよい。さらに、樹脂膜形成層が、厚み方向に対してゲッタリング剤(C)の濃度勾配を有してもよい。
 (チップ用樹脂膜形成用シート)
 樹脂膜形成層は、上記各成分を適宜の割合で、適当な溶媒中で混合してなる樹脂膜形成層用組成物を、剥離シート上に塗布乾燥して得られる。また、剥離シートとは別の工程フィルム上に樹脂膜形成層用組成物を塗布、乾燥して成膜し、これを剥離シート上に転写してもよい。
 本発明に係るチップ用樹脂膜形成用シートは、上記樹脂膜形成層を剥離シート上に剥離可能に形成してなる。本発明に係るチップ用樹脂膜形成用シートの形状は、テープ状、ラベル状などあらゆる形状をとり得る。
 剥離シートとしては、たとえば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン酢酸ビニル共重合体フィルム、アイオノマー樹脂フィルム、エチレン・(メタ)アクリル酸共重合体フィルム、エチレン・(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリイミドフィルム、フッ素樹脂フィルムなどの透明フィルムが用いられる。またこれらの架橋フィルムも用いられる。さらにこれらの積層フィルムであってもよい。また、これらを着色したフィルム、不透明フィルムなどを用いることができる。
 本発明のチップ用樹脂膜形成用シートにおいては、その使用に際して剥離シートを剥離し、樹脂膜形成層を半導体ウエハまたはチップに転写する。特に樹脂膜形成層の熱硬化後に剥離シートを剥離する場合には、剥離シートは樹脂膜形成層の熱硬化時の加熱に耐える必要があるため、耐熱性に優れたポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリメチルペンテンフィルム、ポリイミドフィルムが好ましく用いられる。樹脂膜形成層と剥離シートとの間での剥離を容易にするため、剥離シートの表面張力は、好ましくは40mN/m以下、さらに好ましくは37mN/m以下、特に好ましくは35mN/m以下である。下限値は通常25mN/m程度である。このような表面張力が低い基材は、材質を適宜に選択して得ることが可能であるし、また基材の表面に剥離剤を塗布して剥離処理を施すことで得ることもできる。
 剥離処理に用いられる剥離剤としては、アルキッド系、シリコーン系、フッ素系、不飽和ポリエステル系、ポリオレフィン系、ワックス系などが用いられるが、特にアルキッド系、シリコーン系、フッ素系の剥離剤が耐熱性を有するので好ましい。
 上記の剥離剤を用いてシートの表面を剥離処理するためには、剥離剤をそのまま無溶剤で、または溶剤希釈やエマルション化して、グラビアコーター、メイヤーバーコーター、エアナイフコーター、ロールコーターなどにより塗布して、常温もしくは加熱または電子線硬化させたり、ウェットラミネーションやドライラミネーション、熱溶融ラミネーション、溶融押出ラミネーション、共押出加工などで積層体を形成すればよい。
 剥離シートの厚さは、通常は10~500μm、好ましくは15~300μm、特に好ましくは20~250μm程度である。また、樹脂膜形成層の厚みは、通常は1~500μm、好ましくは5~300μm、特に好ましくは10~150μm程度である。
 なお、チップ用樹脂膜形成用シートの使用前に、樹脂膜形成層を保護するために、樹脂膜形成層の上面に、前記剥離シートとは別に、軽剥離性の剥離フィルムを積層しておいてもよい。
 (半導体チップの製造方法)
 次に本発明に係るチップ用樹脂膜形成用シートの利用方法について、該シートを半導体チップの製造に適用した場合を例にとって説明する。
 本発明に係る半導体チップの製造方法は、表面に回路が形成された半導体ウエハの裏面に、上記チップ用樹脂膜形成用シートの樹脂膜形成層を貼付し、裏面に樹脂膜を有する半導体チップを得ることを特徴とする。該樹脂膜は、半導体チップの保護膜であることが好ましい。また、本発明に係る半導体チップの製造方法は、好ましくは、以下の工程(1)~(3)をさらに含み、工程(1)~(3)を任意の順で行うことを特徴としている。
 工程(1):樹脂膜形成層と剥離シートとを剥離、
 工程(2):樹脂膜形成層を硬化、
 工程(3):半導体ウエハおよび樹脂膜形成層をダイシング。
 半導体ウエハはシリコンウエハであってもよく、またガリウム・砒素などの化合物半導体ウエハであってもよい。ウエハ表面への回路の形成はエッチング法、リフトオフ法などの従来より汎用されている方法を含む様々な方法により行うことができる。次いで、半導体ウエハの回路面の反対面(裏面)を研削する。研削法は特に限定はされず、グラインダーなどを用いた公知の手段で研削してもよい。裏面研削時には、表面の回路を保護するために回路面に、表面保護シートと呼ばれる粘着シートを貼付する。裏面研削は、ウエハの回路面側(すなわち表面保護シート側)をチャックテーブル等により固定し、回路が形成されていない裏面側をグラインダーにより研削する。ウエハの研削後の厚みは特に限定はされないが、通常は20~500μm程度である。
 その後、必要に応じ、裏面研削時に生じた破砕層を除去する。破砕層の除去は、ケミカルエッチングや、プラズマエッチングなどにより行われる。破砕層の除去によりウエハが有していたゲッタリング機能は低下するが、本発明の樹脂膜形成層を使用することで、得られる半導体装置にはゲッタリング機能が付与される。したがって、本発明の半導体チップの製造方法は、特に破砕層を除去した半導体ウエハに対して好適に適用することができる。すなわち、本発明の半導体チップの製造方法は、破砕層の厚みを50nm以下、さらには30nm以下、特に10nm以下にまで低下した半導体ウエハに対して好適に適用することができる。
 次いで、半導体ウエハの裏面に、上記チップ用樹脂膜形成用シートの樹脂膜形成層を貼付する。その後、工程(1)~(3)を任意の順で行う。このプロセスの詳細については、特開2002-280329号公報に詳述されている。一例として、工程(1)、(2)、(3)の順で行う場合について説明する。
 まず、表面に回路が形成された半導体ウエハの裏面に、上記チップ用樹脂膜形成用シートの樹脂膜形成層を貼付する。次いで樹脂膜形成層から剥離シートを剥離し、半導体ウエハと樹脂膜形成層との積層体を得る。次いで樹脂膜形成層を硬化し、ウエハの全面に樹脂膜を形成する。樹脂膜形成層には、硬化性成分(B)が含まれているため、一般的には熱硬化により樹脂膜形成層を硬化する。なお、樹脂膜形成層にエネルギー線重合性化合物(H)が配合されている場合には、樹脂膜形成層の硬化を、加熱とエネルギー線照射の両者で行うことができ、加熱およびエネルギー線照射による硬化を同時に行ってもよく、逐次的に行ってもよい。この結果、ウエハ裏面に硬化樹脂からなる樹脂膜が形成され、ウエハ単独の場合と比べて強度が向上するので、取扱い時の薄くなったウエハの破損を低減でき、さらに樹脂膜に含まれるゲッタリング剤(C)によりゲッタリング機能が付与される。また、ウエハやチップの裏面に直接樹脂膜用の塗布液を塗布・被膜化するコーティング法と比較して、樹脂膜の厚さの均一性に優れる。
 次いで、半導体ウエハと樹脂膜との積層体を、ウエハ表面に形成された回路毎にダイシングする。ダイシングは、ウエハと樹脂膜をともに切断するように行われる。ウエハのダイシングは、ダイシングシートを用いた常法により行われる。この結果、裏面に樹脂膜を有する半導体チップが得られる。
 最後に、ダイシングされたチップをコレット等の汎用手段によりピックアップすることで、裏面に樹脂膜を有する半導体チップが得られる。このような本発明によれば、均一性の高い樹脂膜を、チップ裏面に簡便に形成でき、ダイシング工程やパッケージングの後のクラックが発生しにくくなる。さらに得られる半導体装置にはゲッタリング機能が付与されるため、リフロー環境のおいてもマイグレーションの発生が低減される。そして、半導体チップをフェースダウン方式で所定の基台上に実装することで半導体装置を製造することができる。また、裏面に樹脂膜を有する半導体チップを、ダイパッド部または別の半導体チップなどの他の部材上(チップ搭載部上)に接着することで、半導体装置を製造することもできる。
 以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の実施例および比較例において、<銅イオン吸着能および銅イオン吸着率>、<ゲッタリング性能評価>および<質量減少開始温度測定>は次のように行った。
<銅イオン吸着能および銅イオン吸着率>
 実施例および比較例で準備したゲッタリング剤1gを、超純水1lに関東化学社製塩化銅(II)二水和物0.805gを溶解し、さらに100倍に希釈して作成した銅イオン濃度が3ppmの塩化銅水溶液50gに投入し、121℃、2気圧、24時間の条件に保った。その後、孔径0.10μmメンブレンフィルターを用いてろ過した。ろ液中の該銅イオン水溶液の残留銅イオン濃度を原子吸光分析法(測定装置:日立製作所社製、原子吸光光度計Z5310、フレーム法)により測定し、初期銅イオン濃度(3ppm)と、残留銅イオン濃度(ppm)とから、下記式により銅イオン吸着能および銅イオン吸着率を評価する。
 銅イオン吸着能(%)=(3ppm-残留銅イオン濃度(ppm))×100/3ppm
 銅イオン吸着率(%)=(3ppm-残留銅イオン濃度(ppm))×溶液量(g)×10-6×100/試料重量(g)
<ゲッタリング性能評価>
 ディスコ社製DGP8760を用いて、シリコンウエハの裏面をドライポリッシュ処理した(200mm径、厚さ75μm、破砕層の厚み10nm)。シリコンウエハのドライポリッシュ処理した面(ウエハ裏面)に、塩化銅(II)粉末(関東化学社製、品名:塩化銅(II)二水和物)1gを均一に散布し、擬似リフロー条件(300℃、30分)に投入し、シリコンウエハ内に銅イオンを拡散させた。その後、ウエハ裏面に弱粘着テープ(紫外線硬化後のリンテック社製Adwill D-675)を貼付・剥離を繰り返し、ウエハ裏面から塩化銅(II)粉末を除去した。
 この銅イオンで汚染したシリコンウエハの裏面に実施例および比較例で準備したチップ用樹脂膜形成用シートを40℃で貼付した。30分後、紫外線照射装置(リンテック社製、Adwill RAD-2000 m/12)を用いて剥離シート面から紫外線照射(230mW/cm、120mJ/cm)を行い、剥離シートを剥離した。その後、熱硬化(140℃、1時間)し、次いで、疑似リフロー条件(300℃、30分)に投入した。
 ウエハ表面(ミラー面、チップ用樹脂膜形成用シート非貼付面)をふっ酸にて事前洗浄し、表面に付着したコンタミと自然酸化膜(約10nm)を除去した。その後、ウエハ外周10mmをテフロン(登録商標)製治具により挟み込む形でマスキングし、ウエハ表面から5μmを硝酸/ふっ酸混合液(比率3:1)でエッチングした。得られたエッチング液の全量を蒸発皿に採取した。採取したエッチング液を加熱・蒸発乾固した後、残渣物を一定量の硝酸/ふっ酸混合液で溶解し、銅イオン濃度測定用試料とした。なお試料調製は、クリーンルーム(クラス100)内に設置したクリーンドラフト(クラス10)内で実施した。
 ICP-MS測定によりシリコンウエハ中の銅イオンの濃度を定量測定した。
 装置:パーキンエルマー社製 ELAN6100DRC Plus
 条件等    :プラズマパワー1500W。銅イオン定量下限は、3.0×1012atoms/cm(単位体積あたりの原子数)。
 エッチング液中に溶出した銅イオン濃度を測定することで、チップ用樹脂膜形成用シートのゲッタリング性能を評価した。エッチング液中に溶出した銅イオン量が少ないほど、樹脂膜により捕捉された銅イオン量が多く、ゲッタリング性能が高いことを示す。銅イオン検出量が50×1012atoms/cm以下を良好とし、銅イオン検出量が50×1012atoms/cmを超えるものを不良とした。
 なお、銅イオン濃度の定量分析方法は、原子吸光分析法、ICP-OES、TOF-SIMSなどの方法で行ってもよい。
<質量減少開始温度測定>
 質量減少開始温度の測定は、示差熱分析装置(島津製作所社製、TG/DTA分析器DTG-60)を用いて行った。実施例および比較例で準備した有機キレート剤を測定試料とし、約10mgの測定試料を精密に秤量した。測定試料を昇温温度10℃/分にて40~500℃まで昇温し、質量減少開始温度を測定した。
<樹脂膜形成層用組成物>
 樹脂膜形成層を構成する各成分を下記に示す。
(A)バインダーポリマー成分:n-ブチルアクリレート55重量部、メチルアクリレート15重量部、グリシジルメタクリレート20重量部、及び2-ヒドロキシエチルアクリレート15重量部からなるアクリルポリマー(重量平均分子量:90万、ガラス転移温度:-28℃)
(B)硬化性成分:
(B1)ビスフェノールA型エポキシ樹脂(エポキシ当量180-200g/eq)
(B2)ジシクロペンタジエン型エポキシ樹脂(DIC社製、エピクロンHP-7200HH)
(B3)熱硬化剤:ジシアンジアミド(旭電化社製、アデカハードナー3636AS)
(C)ゲッタリング剤:
(C1-1)3-(N-サリチロイル)アミノ-1,2,4-トリアゾール(ADEKA社製、CDA-1、CAS No. 36411-52-6)   (銅イオン吸着能99.7%、銅イオン吸着率0.015%、粒径1μm)
Figure JPOXMLDOC01-appb-C000004
(C1-2)デカメチレンジカルボキシジサリチロイルヒドラジド(ADEKA社製、CDA-6、CAS No.63245-38-5)   (銅イオン吸着能95%、銅イオン吸着率0.014%、粒径0.5μm)
Figure JPOXMLDOC01-appb-C000005
(C2)有機キレート剤:多価カルボン酸を官能基として有する有機キレート剤(ナガセケムテックス社製:テークランDO、酸価260~330mg/g、質量減少開始温度200℃)     (銅イオン吸着能95.7%、銅イオン吸着率0.014%、粒径1μm)
(C3)協和化学工業社製KW-2200(マグネシウムとアルミニウムの酸化物からなるハイドロタルサイト)   (銅イオン吸着能99.8%、銅イオン吸着率0.015%、粒径1μm)
(D)着色剤:黒色顔料(カーボンブラック、三菱化学社製、#MA650、平均粒径28nm)
(E)硬化促進剤:イミダゾール(四国化成工業社製、キュアゾール2PHZ)
(F)カップリング剤:A-1110(日本ユニカー社製)
(G)無機充填剤:シリカフィラー(熔融石英フィラー、平均粒径8μm)
(実施例および比較例)
 上記各成分を表1に記載の量で配合し、樹脂膜形成層用組成物を得た。得られた組成物のメチルエチルケトン溶液(固形濃度61重量%)を、シリコーンで剥離処理された剥離シート(リンテック株式会社製、SP-PET3811、厚さ38μm、表面張力33mN/m、融点200℃以上)の剥離処理面上に乾燥後40μmの厚みになるように塗布、乾燥(乾燥条件:オーブンにて100℃、3分間)して、剥離シート上に樹脂膜形成層を形成し、チップ用樹脂膜形成用シートを得た。
Figure JPOXMLDOC01-appb-T000006
 得られたチップ用樹脂膜形成用シートを用いて<銅イオン吸着能および銅イオン吸着率>および<ゲッタリング性能評価>を行った。上記の接着剤組成物100重量部に対するゲッタリング剤の含有量及び結果を表2に示す。
Figure JPOXMLDOC01-appb-T000007
 なお、銅イオン汚染を行わなかったウエハ(参考例1)と銅イオン汚染を行ったウエハの接着シートを貼付しなかったもの(参考例2)のゲッタリング性能を測定した。
 実施例のチップ用樹脂膜形成用シートは、優れた銅イオン吸着能、銅イオン吸着率、ゲッタリング性能を示した。この結果から、ゲッタリング剤(C)を樹脂膜形成層に用いることで、高信頼性の半導体チップが得られることが確認された。

Claims (10)

  1.  剥離シートと、該剥離シートの剥離面上に形成された樹脂膜形成層とを有し、
     該樹脂膜形成層が、バインダーポリマー成分(A)、硬化性成分(B)およびゲッタリング剤(C)を含む、チップ用樹脂膜形成用シート。
  2.  ゲッタリング剤(C)が、重金属不活性化剤(C1)、有機キレート剤(C2)および銅イオン捕捉金属化合物(C3)からなる群から選ばれる請求項1に記載のチップ用樹脂膜形成用シート。
  3.  下記により定義されるゲッタリング剤(C)の銅イオン吸着能が30%以上である請求項1または2に記載のチップ用樹脂膜形成用シート:
     ゲッタリング剤1gを、銅イオン濃度が3ppmの塩化銅水溶液50gに投入し、121℃、2気圧下、24時間放置した後の該銅イオン水溶液の銅イオン濃度を測定し、
     銅イオン吸着能=(3ppm-残留銅イオン濃度(ppm))×100/3ppmより銅イオン吸着能を求める。
  4.  該樹脂膜形成層が、さらに着色剤(D)を含有する請求項1~3の何れかに記載のチップ用樹脂膜形成用シート。
  5.  該樹脂膜形成層を構成する全固形分100重量部あたりゲッタリング剤(C)を1~35重量部含有する請求項1~4の何れかに記載のチップ用樹脂膜形成用シート。
  6.  該樹脂膜形成層が、半導体ウエハまたはチップの保護膜である請求項1~5の何れかに記載のチップ用樹脂膜形成用シート。
  7.  表面に回路が形成された半導体ウエハの裏面に、請求項1~6の何れかに記載のチップ用保護膜形成用シートの樹脂膜形成層を貼付し、裏面に樹脂膜を有する半導体チップを得ることを特徴とする半導体チップの製造方法。
  8.  以下の工程(1)~(3)をさらに含み、工程(1)~(3)を任意の順で行うことを特徴とする請求項7に記載の半導体チップの製造方法:
     工程(1):樹脂膜形成層と剥離シートとを剥離、
     工程(2):樹脂膜形成層を硬化、
     工程(3):半導体ウエハおよび樹脂膜形成層をダイシング。
  9.  該半導体ウエハが、裏面研削後、裏面研削により生じた破砕層を厚み50nm以下にまで低減されたものである請求項7または8に記載の半導体チップの製造方法。
  10.  該樹脂膜が、半導体チップの保護膜である請求項7~9の何れかに記載の半導体チップの製造方法。
PCT/JP2011/057969 2010-03-31 2011-03-30 チップ用樹脂膜形成用シートおよび半導体チップの製造方法 WO2011125711A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180017214.4A CN102834903B (zh) 2010-03-31 2011-03-30 芯片用树脂膜形成用片材及半导体芯片的制造方法
US13/638,113 US8674349B2 (en) 2010-03-31 2011-03-30 Resin film forming sheet for chip, and method for manufacturing semiconductor chip
KR1020127025765A KR101311661B1 (ko) 2010-03-31 2011-03-30 칩용 수지막 형성용 시트 및 반도체칩의 제조 방법
US14/162,944 US8735881B1 (en) 2010-03-31 2014-01-24 Resin film forming sheet for chip, and method for manufacturing semiconductor chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010083690A JP5023179B2 (ja) 2010-03-31 2010-03-31 チップ用樹脂膜形成用シートおよび半導体チップの製造方法
JP2010-083690 2010-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/638,113 A-371-Of-International US8674349B2 (en) 2010-03-31 2011-03-30 Resin film forming sheet for chip, and method for manufacturing semiconductor chip
US14/162,944 Continuation US8735881B1 (en) 2010-03-31 2014-01-24 Resin film forming sheet for chip, and method for manufacturing semiconductor chip

Publications (1)

Publication Number Publication Date
WO2011125711A1 true WO2011125711A1 (ja) 2011-10-13

Family

ID=44762654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057969 WO2011125711A1 (ja) 2010-03-31 2011-03-30 チップ用樹脂膜形成用シートおよび半導体チップの製造方法

Country Status (6)

Country Link
US (2) US8674349B2 (ja)
JP (1) JP5023179B2 (ja)
KR (1) KR101311661B1 (ja)
CN (2) CN102834903B (ja)
TW (1) TWI413588B (ja)
WO (1) WO2011125711A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104871310A (zh) * 2012-11-30 2015-08-26 琳得科株式会社 芯片用树脂膜形成用片及半导体装置的制造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023179B2 (ja) * 2010-03-31 2012-09-12 リンテック株式会社 チップ用樹脂膜形成用シートおよび半導体チップの製造方法
JP2012241063A (ja) * 2011-05-17 2012-12-10 Nitto Denko Corp 半導体装置製造用の接着シート
JP2012241157A (ja) * 2011-05-23 2012-12-10 Nitto Denko Corp 半導体装置製造用の接着剤組成物、及び、半導体装置製造用の接着シート
JP5804820B2 (ja) * 2011-07-25 2015-11-04 日東電工株式会社 半導体装置製造用の接着シート、半導体装置製造用の接着シートを有する半導体装置、及び、半導体装置の製造方法
JP5975621B2 (ja) 2011-11-02 2016-08-23 リンテック株式会社 ダイシングシートおよび半導体チップの製造方法
JP6239498B2 (ja) * 2012-03-07 2017-11-29 リンテック株式会社 チップ用樹脂膜形成用シート
JP6042251B2 (ja) * 2013-03-28 2016-12-14 リンテック株式会社 粘着シート
CN106030763B (zh) 2014-03-28 2019-06-28 琳得科株式会社 保护膜形成用膜及带保护膜的半导体芯片的制造方法
WO2015150848A1 (fr) * 2014-03-31 2015-10-08 Arcelormittal Investigación Y Desarrollo Sl Procede de fabrication a haute productivite de pieces d'acier revêtues et durcies a la presse
CN107076657B (zh) 2015-01-29 2020-03-31 株式会社Lg化学 用于测量聚合物膜的金属离子渗透率的方法和装置
CN107076701B (zh) 2015-01-29 2019-05-14 株式会社Lg化学 用于测量聚合物膜的金属离子渗透率的方法和用于测量聚合物膜的金属离子渗透率的装置
EP3422399A1 (en) * 2017-06-29 2019-01-02 Infineon Technologies AG Device for protecting a semiconductor module, a method for producing the same and a semiconductor module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3544362B2 (ja) * 2001-03-21 2004-07-21 リンテック株式会社 半導体チップの製造方法
JP2005322738A (ja) * 2004-05-07 2005-11-17 Toshiba Corp 半導体装置の製造方法
JP2006249415A (ja) * 2005-02-09 2006-09-21 Toray Ind Inc 半導体装置用接着剤組成物およびそれを用いた半導体装置用接着剤シート、半導体接続用基板ならびに半導体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4943636B2 (ja) 2004-03-25 2012-05-30 エルピーダメモリ株式会社 半導体装置及びその製造方法
JP2005322728A (ja) * 2004-05-07 2005-11-17 Canon Inc 露光装置
JP4954569B2 (ja) * 2006-02-16 2012-06-20 日東電工株式会社 半導体装置の製造方法
JP5670005B2 (ja) 2006-03-06 2015-02-18 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体装置及びその製造方法
JP5089560B2 (ja) * 2008-11-28 2012-12-05 リンテック株式会社 半導体チップ積層体および半導体チップ積層用接着剤組成物
JP5023179B2 (ja) * 2010-03-31 2012-09-12 リンテック株式会社 チップ用樹脂膜形成用シートおよび半導体チップの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3544362B2 (ja) * 2001-03-21 2004-07-21 リンテック株式会社 半導体チップの製造方法
JP2005322738A (ja) * 2004-05-07 2005-11-17 Toshiba Corp 半導体装置の製造方法
JP2006249415A (ja) * 2005-02-09 2006-09-21 Toray Ind Inc 半導体装置用接着剤組成物およびそれを用いた半導体装置用接着剤シート、半導体接続用基板ならびに半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104871310A (zh) * 2012-11-30 2015-08-26 琳得科株式会社 芯片用树脂膜形成用片及半导体装置的制造方法
EP2927952A4 (en) * 2012-11-30 2016-08-03 Lintec Corp RESIN FILM FORMATION FORM FOR CHIP, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

Also Published As

Publication number Publication date
US8735881B1 (en) 2014-05-27
CN102834903A (zh) 2012-12-19
KR20130009802A (ko) 2013-01-23
TW201144063A (en) 2011-12-16
US20140141570A1 (en) 2014-05-22
KR101311661B1 (ko) 2013-09-25
TWI413588B (zh) 2013-11-01
US8674349B2 (en) 2014-03-18
CN103903980B (zh) 2017-01-18
JP5023179B2 (ja) 2012-09-12
US20130011998A1 (en) 2013-01-10
JP2011216677A (ja) 2011-10-27
CN102834903B (zh) 2014-10-22
CN103903980A (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5023179B2 (ja) チップ用樹脂膜形成用シートおよび半導体チップの製造方法
JP5893250B2 (ja) チップ用保護膜形成用シート、半導体チップの製造方法および半導体装置
WO2013133268A1 (ja) チップ用樹脂膜形成用シート
JP2011213879A (ja) 接着剤組成物、接着シートおよび半導体装置の製造方法
JP5743638B2 (ja) 保護膜形成用フィルム、およびチップ用保護膜形成用シート
WO2014142151A1 (ja) 保護膜形成用複合シート、保護膜形成用複合シートの製造方法および保護膜付チップの製造方法
JP5551490B2 (ja) 接着シートおよび半導体装置の製造方法
JP5738456B2 (ja) 接着シートおよび半導体装置の製造方法
JP5751651B2 (ja) 接着シートおよび半導体装置の製造方法
WO2011125712A1 (ja) 接着剤組成物、接着シートおよび半導体装置の製造方法
JP5973027B2 (ja) 保護膜形成用フィルム、およびチップ用保護膜形成用シート
JP2011213878A (ja) 接着剤組成物、接着シートおよび半導体装置の製造方法
WO2020218516A1 (ja) 第三積層体の製造方法
JP6085288B2 (ja) 保護膜形成用フィルムおよび半導体チップの製造方法
JP5972551B2 (ja) チップ用樹脂膜形成用シートおよび半導体チップの製造方法
JP5918926B2 (ja) 保護膜形成用フィルムおよび半導体チップの製造方法
JP5550966B2 (ja) 接着シートおよび半導体装置の製造方法
JP5551491B2 (ja) 接着シートおよび半導体装置の製造方法
JP5972550B2 (ja) チップ用樹脂膜形成用組成物、チップ用樹脂膜形成用シートおよび半導体装置の製造方法
WO2022210087A1 (ja) フィルム状接着剤、ダイシングダイボンディングシート、半導体装置の製造方法、フィルム状接着剤の使用、ダイシングダイボンディングシートの使用、及び、半導体ウエハのリワーク方法
JP2013075951A (ja) チップ用樹脂膜形成用シートおよび半導体装置の製造方法
WO2021166991A1 (ja) 裏面保護膜形成用複合体、第一積層体の製造方法、第三積層体の製造方法、及び裏面保護膜付き半導体装置の製造方法
KR20220136089A (ko) 지지 시트, 수지막 형성용 복합 시트, 키트, 및 수지막이 형성된 칩의 제조 방법
JP2013131694A (ja) チップ用樹脂膜形成用シートおよび半導体チップの製造方法
JP2021082767A (ja) キット、及び、そのキットを用いる第三積層体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017214.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127025765

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13638113

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765611

Country of ref document: EP

Kind code of ref document: A1