WO2011125305A1 - Silicon epitaxial wafer, method for manufacturing silicon epitaxial wafer, and method for manufacturing semiconductor element or integrated circuit - Google Patents

Silicon epitaxial wafer, method for manufacturing silicon epitaxial wafer, and method for manufacturing semiconductor element or integrated circuit Download PDF

Info

Publication number
WO2011125305A1
WO2011125305A1 PCT/JP2011/001824 JP2011001824W WO2011125305A1 WO 2011125305 A1 WO2011125305 A1 WO 2011125305A1 JP 2011001824 W JP2011001824 W JP 2011001824W WO 2011125305 A1 WO2011125305 A1 WO 2011125305A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon substrate
silicon
atoms
concentration
layer
Prior art date
Application number
PCT/JP2011/001824
Other languages
French (fr)
Japanese (ja)
Inventor
彰一 高見澤
孝俊 名古屋
隆司 佐山
裕之 丸山
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to JP2012509302A priority Critical patent/JP5440693B2/en
Publication of WO2011125305A1 publication Critical patent/WO2011125305A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • H01L21/02661In-situ cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2205Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities from the substrate during epitaxy, e.g. autodoping; Preventing or using autodoping

Definitions

  • the present invention relates to a silicon epitaxial wafer and a method for manufacturing a silicon epitaxial wafer. Specifically, it is possible to grow a high resistance epitaxial layer with a narrow transition width on a silicon substrate having a very low resistivity with high reproducibility.
  • the present invention relates to a silicon epitaxial wafer and a method for manufacturing the same, which can realize low on-resistance while reducing variations in reverse breakdown voltage of vertical elements.
  • epitaxial wafers For switching transistors such as power MOS transistors and IGBTs (insulated gate bipolar transistors) that allow current to flow from the front to the back, and devices that require stabilization of device characteristics by minimizing substrate potential fluctuations, use epitaxial wafers. Most of them are used.
  • the resistivity of the epitaxial layer having a relatively high resistivity necessary for ensuring the breakdown voltage of the element and the resistivity of the silicon substrate that becomes a parasitic resistance in the conductive state can be controlled independently. For this reason, in particular, in a power MOS in which the resistivity of the silicon substrate strongly affects the on-resistance, the resistance of the silicon substrate has been actively reduced.
  • red phosphorus which can easily introduce a high concentration dopant during crystal growth, has been used as a dopant.
  • the resistivity of the silicon substrate of the low-voltage power MOS epitaxial wafer which previously had a lower limit of about 5 m ⁇ cm, has recently been lowered to 1 m ⁇ cm or less.
  • out diffusion occurs in the heat treatment performed during epitaxial growth or when forming a semiconductor element, and the thickness of the epitaxial layer is reduced. Since it becomes thinner, there is a problem that it is necessary to grow the epitaxial layer thicker than necessary in order to ensure a predetermined reverse breakdown voltage.
  • boron can be doped at a high concentration relatively easily, the resistance has been further reduced from about 5 m ⁇ cm as the temperature of the heat treatment in the device manufacturing process is lowered. In the range where there is no influence of auto-doping or out-diffusion, the resistance of the P-type silicon substrate has been lowered mainly in the low voltage power MOS and the like.
  • the dopant diffused from the substrate into the growth atmosphere during epitaxial growth is re-doped into the epitaxial layer, so-called auto-doping, or heat treatment during device manufacturing.
  • the problem is that the out-diffusion of solid diffusion from the substrate to the epitaxial layer becomes large.
  • it is necessary to increase the thickness of the epitaxial layer, but there is a contradiction that this causes deterioration of the on-resistance of the element.
  • the present invention has been made in view of the above problems, and includes an epitaxial layer having a desired resistivity necessary for obtaining predetermined electrical characteristics of an element and a substrate having a lower resistance than conventional ones.
  • Silicon epitaxial wafer that can improve the electrical characteristics of medium-voltage power MOSs, imaging devices, etc., and can suppress auto-doping and out-diffusion during epitaxial growth and heat treatment in the device manufacturing process more strongly than before. And its manufacturing method.
  • the present invention provides a silicon epitaxial wafer in which an epitaxial layer is formed on a silicon substrate, wherein the silicon substrate has a phosphorus or boron concentration of 2.0 ⁇ 10 19 atoms / cm 3 or more.
  • the silicon in which the carbon ion implantation layer is formed by being doped and having a CVD oxide film formed at least on the back surface side and carbon ions being implanted from the surface.
  • a CVD oxide film is formed on at least the back surface side of the silicon substrate. Since it is formed, the out-diffusion of phosphorus or boron from the back surface of the silicon substrate, that is, the atmosphere of epitaxial growth is suppressed from being contaminated by the dopant during the formation of the epitaxial layer, and the occurrence of auto-doping is suppressed. Thus, the resistivity of the epitaxial layer is suppressed from deviating from a desired value.
  • the carbon ion implanted layer since the carbon ion implanted layer is formed on the surface on which the epitaxial layer is formed, the carbon ion implanted layer of the silicon substrate takes in a high concentration of carbon into the silicon crystal lattice, thereby Increase and decrease of interstitial silicon occur.
  • the decrease in interstitial silicon reduces the chances of phosphorus and boron being pushed out between the lattices, and the diffusion of atoms with a smaller bond radius than silicon, such as boron and phosphorus (kickout type), is significantly suppressed.
  • the out diffusion from the silicon substrate to the epitaxial layer during the heat treatment during the formation of the epitaxial layer and the heat treatment during the device manufacture is suppressed.
  • a silicon epitaxial wafer which can obtain predetermined electrical characteristics such as a low breakdown voltage power MOS and an image pickup element, which are composed of an epitaxial layer having a desired resistivity and a silicon substrate having a lower resistivity than before.
  • the carbon ion implanted layer is preferably one in which carbon ions are implanted at a dose of 3.0 ⁇ 10 14 atoms / cm 2 or more in order to reduce the interstitial silicon concentration.
  • the dose amount of carbon ions is 3.0 ⁇ 10 14 atoms / cm 2 or more, the outward diffusion of phosphorus or boron on the silicon substrate surface side is more strongly suppressed.
  • a silicon epitaxial wafer having a more desirable resistivity distribution can be obtained.
  • the CVD oxide film preferably covers the side surface of the silicon substrate from the position where the carbon ion implantation layer is formed to the surface side.
  • the silicon substrate doped with boron or phosphorus at a high concentration is formed by the CVD oxide film and the carbon ion implantation by being covered with the CVD oxide film from the position where the carbon ion implantation layer is formed to the surface side.
  • a silicon epitaxial wafer having an epitaxial layer with a desired design value can be obtained. Further, boron or phosphorus out-diffusion or auto-doping is further suppressed.
  • the silicon epitaxial wafer of the present invention uses a silicon substrate doped with phosphorus or boron at a high concentration, and suppresses out-diffusion or autodoping of phosphorus or boron. Even if the resistivity of the substrate, that is, the impurity concentration differs from that of the substrate by 3 digits or more, a distribution close to a staircase type can be maintained.
  • the silicon substrate is doped with phosphorus at a concentration of 0.5 ⁇ 10 20 atoms / cm 3 or more
  • the carbon ion implantation layer is formed by implanting carbon ions at a dose amount of 4 A ⁇ 10 15 atoms / cm 2 or more when the concentration of phosphorus doped in the silicon substrate is A ⁇ 10 20 atoms / cm 3. It has been
  • the epitaxial layer is preferably one in which phosphorus is doped at a concentration of 5.0 ⁇ 10 17 atoms / cm 3 or less.
  • the movement of the phosphorus dopant at the boundary of the epitaxial layer can be controlled during the growth of the epitaxial layer and during the device fabrication process. Doping and out diffusion can be prevented. As a result, a silicon epitaxial wafer that can improve the electrical characteristics of the final device such as reduction of on-resistance and leakage current is obtained.
  • the silicon substrate is doped with boron at a concentration of 0.2 ⁇ 10 20 atoms / cm 3 or more
  • the carbon ion implantation layer is formed by implanting carbon ions at a dose amount of 4B ⁇ 10 15 atoms / cm 2 or more when the concentration of boron doped in the silicon substrate is B ⁇ 10 20 atoms / cm 3. It has been In the epitaxial layer, boron is preferably doped with a concentration of 2.0 ⁇ 10 17 atoms / cm 3 or less.
  • the movement of boron dopant at the boundary of the epitaxial layer can be controlled during the growth of the epitaxial layer and during the device fabrication process. Doping and out diffusion can be prevented. As a result, a silicon epitaxial wafer that can improve the electrical characteristics of the final device such as reduction of on-resistance and leakage current is obtained.
  • the thickness of the CVD oxide film is preferably 1500 mm or more.
  • the present invention provides a method for producing a silicon epitaxial wafer, comprising preparing a silicon substrate doped with phosphorus or boron at a concentration of 2.0 ⁇ 10 19 atoms / cm 3 or more. After the process of forming the CVD oxide film on the back side and the process of forming the carbon ion implanted layer by implanting carbon ions on the front side are performed in random order, an epitaxial layer is formed on the surface subjected to the carbon ion implantation A method for producing a silicon epitaxial wafer is provided.
  • a silicon epitaxial wafer When a silicon epitaxial wafer is manufactured using a silicon substrate doped with phosphorus or boron at a high concentration of 2.0 ⁇ 10 19 atoms / cm 3 or more, an auto process during epitaxial growth or heat treatment during device manufacturing is performed. It is important to suppress doping and out-diffusion.
  • auto-doping it is effective to prevent outward diffusion from the substrate during the epitaxial process into the epitaxial growth atmosphere, so it is very effective to seal at least the back surface of the silicon substrate with a CVD oxide film. It is. However, since the surface side cannot be sealed with a CVD oxide film for the convenience of epitaxial growth, this portion causes autodoping, and it is necessary to suppress this.
  • carbon is ion-implanted to form a carbon ion-implanted layer in order to form a thin layer having a small diffusion coefficient of phosphorus or boron immediately below the surface on which the epitaxial layer is formed.
  • This makes it possible to suppress outward diffusion on the surface side, and suppresses not only auto-doping during epitaxial growth but also outdiffusion of dopant from the silicon substrate to the epitaxial layer side in the subsequent device manufacturing stage. It is possible to provide a method for manufacturing a silicon epitaxial wafer that can be used.
  • the dose amount of the carbon ions is preferably set to 3.0 ⁇ 10 14 atoms / cm 2 or more. As described above, by setting the dose amount of carbon ions to 3.0 ⁇ 10 14 atoms / cm 2 or more, phosphorus and boron can be more strongly suppressed from diffusing outward from the surface side of the silicon substrate. In addition, it is possible to manufacture a silicon epitaxial wafer having an epitaxial layer having a more desirable resistivity.
  • heating is performed at a temperature rising rate of 30 ° C./sec or more using an RTA apparatus, and recovery is performed at a temperature of 900 ° C. or more for 10 seconds or more.
  • Annealing (hereinafter also referred to as recovery heat treatment) can be performed, and then the epitaxial layer can be formed.
  • the recovery heat treatment with the RTA apparatus, the crystallinity of the silicon substrate disturbed by the carbon ion implantation can be recovered, the crystallinity of the epitaxial layer can be improved, and the crystal defects Therefore, it is possible to manufacture a silicon epitaxial wafer having a low resistivity and a desired resistivity.
  • the wafer is introduced into a single-wafer epitaxial apparatus, and then heated from a temperature region of 600 ° C. or higher at a temperature rising temperature of 15 ° C./sec or higher.
  • the epitaxial layer can be formed after holding for 30 seconds or more at a temperature of 1,050 ° C. or higher in a hydrogen atmosphere.
  • the single-wafer epitaxial apparatus can perform the crystallinity recovery heat treatment at a rate similar to RTA, and can recover the carbon ion implantation damage without separately performing the recovery heat treatment. Crystal defects can be reduced without increasing. Therefore, while suppressing the diffusion amount of phosphorus and boron, it is possible to recover the crystallinity without increasing the number of processes, and even higher quality silicon crystal (having few crystal defects and having a desired resistivity). Wafers can be manufactured.
  • the CVD oxide film is formed so as to cover a side surface closer to the silicon substrate surface than the position of the carbon ion implantation layer of the silicon substrate.
  • the CVD oxide film is formed so as to cover the side surface closer to the silicon substrate surface than the position of the carbon ion implantation layer of the silicon substrate.
  • the silicon substrate is sealed with the CVD oxide film and the carbon ion implantation layer.
  • Can do As a result, out-diffusion and autodoping of boron and phosphorus can be suppressed more reliably and strongly, and a silicon epitaxial wafer having an epitaxial layer with a desired resistivity can be manufactured.
  • a silicon substrate doped with phosphorus at a concentration of 0.5 ⁇ 10 20 atoms / cm 3 or more is prepared.
  • the concentration of phosphorus doped in the silicon substrate is set to A ⁇ 10 20 atoms / cm 3
  • the dose is 4A ⁇ 10 15 atoms / cm 2 or more on the surface side.
  • injecting carbon ions to form the carbon ion implanted layer It is preferable to form the epitaxial layer doped with phosphorus at a concentration of 5.0 ⁇ 10 17 atoms / cm 3 or less on the surface of the silicon substrate on which the carbon ions have been implanted.
  • a silicon substrate is prepared with such a phosphorus concentration and a dose amount of carbon ions, a carbon ion implanted layer is formed, and an epitaxial layer is formed, the epitaxial layer is grown at the boundary of the epitaxial layer and during the device fabrication process.
  • the movement of the phosphorus dopant can be controlled, and the silicon epitaxial wafer manufacturing method can prevent autodoping and outdiffusion from the silicon substrate surface side. This makes it possible to manufacture a silicon epitaxial wafer that can improve the final device electrical characteristics such as reduction of on-resistance and leakage current.
  • a silicon substrate doped with boron at a concentration of 0.2 ⁇ 10 20 atoms / cm 3 or more is prepared as the silicon substrate,
  • the concentration of boron doped in the silicon substrate is B ⁇ 10 20 atoms / cm 3
  • the dose is 4B ⁇ 10 15 atoms / cm 2 or more on the surface side.
  • injecting carbon ions to form the carbon ion implanted layer It is also preferable to form the epitaxial layer doped with boron at a concentration of 2.0 ⁇ 10 17 atoms / cm 3 or less on the surface of the silicon substrate subjected to the carbon ion implantation.
  • a silicon substrate is prepared with such a boron concentration and a dose amount of carbon ions, a carbon ion implantation layer is formed, and an epitaxial layer is formed, the epitaxial layer is grown at the boundary of the epitaxial layer and during the device manufacturing process. It becomes a method for manufacturing a silicon epitaxial wafer that can control the movement of boron dopant and prevent autodoping and outdiffusion from the surface side of the silicon substrate. This makes it possible to manufacture a silicon epitaxial wafer that can improve the final device electrical characteristics such as reduction of on-resistance and leakage current.
  • the carbon ion implantation energy is preferably 100 keV or less.
  • a carbon ion implantation layer having a high carbon concentration can be formed in the vicinity of the silicon substrate surface, so that the silicon epitaxial wafer manufacturing method can further prevent autodoping and outdiffusion.
  • the step of forming the CVD oxide film it is preferable to form a non-doped CVD oxide film having a thickness of 1500 mm or more.
  • a CVD oxide film having such a thickness is a method for producing a silicon epitaxial wafer that can further prevent auto-doping and out-diffusion.
  • the temperature is increased from 600 ° C. to 1000 ° C. at a temperature increase rate of 20 ° C./sec or more, and 30 at a temperature of 1,050 ° C. or more in a hydrogen atmosphere. It is preferable to carry out the recovery annealing step by holding for at least 2 seconds.
  • the crystallinity of the silicon substrate disturbed by the implantation of carbon ions can be recovered, and an epitaxial layer having a good crystallinity can be formed by vapor-phase growth of the epitaxial layer thereon.
  • This is a method for producing a silicon epitaxial wafer that can be obtained. Thereby, a silicon epitaxial wafer with few crystal defects can be produced in the epitaxial layer.
  • a method of manufacturing a semiconductor element or an integrated circuit using a silicon epitaxial wafer manufactured by the method of manufacturing a silicon epitaxial wafer is characterized in that the heat treatment held for longer than 1 minute is such that the maximum temperature of the heat treatment is 950 ° C. or lower.
  • the heat treatment is performed in this way, so that the movement of the dopant at the boundary of the epitaxial layer can be controlled, and autodoping and out diffusion from the silicon substrate surface side can be prevented.
  • This is a method for manufacturing a semiconductor device or an integrated circuit.
  • an epitaxial layer having a desired resistivity necessary for obtaining predetermined electrical characteristics of an element and a silicon substrate having a lower resistivity than the conventional one, a low breakdown voltage power MOS and an imaging device are provided.
  • Silicon epitaxial wafer capable of improving the electrical characteristics of devices, etc., and capable of suppressing autodoping during epitaxial growth and dopant out-diffusion during heat treatment in the device manufacturing process, and its manufacture A method is provided.
  • the present invention can provide a method for manufacturing a semiconductor element or an integrated circuit using the silicon epitaxial wafer.
  • FIG. It is the figure which showed an example of the outline of the silicon epitaxial wafer of this invention. It is the process flow figure showing an example of the manufacturing method of the silicon epitaxial wafer of the present invention. It is the figure which showed the density
  • FIG. It is explanatory drawing which showed the outline
  • FIG. 4 shows an outline of the movement of the dopant impurity during the epitaxial growth of the epitaxial layer on the surface of the silicon substrate.
  • pre-baking is performed as shown in FIG. 4B in order to remove the natural oxide film 11 on the surface of the silicon substrate 10 before the epitaxial growth.
  • the dopant in the wafer diffuses outward in the atmospheric gas and stays in the vicinity of the susceptor 20.
  • the growth rate of the epitaxial layer 12 is faster than the diffusion rate of the dopant, so that the outward diffusion from the substrate disappears.
  • the dopant that has diffused out and stays in the atmospheric gas is taken into the epitaxial layer 12.
  • the atmospheric gas is allowed to flow also to the back side of the susceptor, or the back side of the silicon substrate is sealed with a non-doped oxide film 13 as shown in FIG. 4 (f).
  • this is not a measure for outward diffusion from the surface of the silicon substrate 10 to the epitaxial layer 12, and the resistivity shift of the epitaxial layer 12 cannot be completely suppressed.
  • the surface side auto-doping may be suppressed by a cap deposition method in which the substrate is once purged and then epitaxially grown.
  • the purging is not so effective because the dopant diffuses out into the starch layer of the atmospheric gas during the pre-bake for removing the natural oxide film on the surface of the silicon substrate and is adsorbed on the susceptor. .
  • the out diffusion of the dopant from the silicon substrate to the epitaxial layer is determined by the diffusion coefficient of the dopant species and the epitaxial growth conditions (mainly the ambient temperature and the time required for the epitaxial growth).
  • the diffusion coefficient of the dopant species and the epitaxial growth conditions mainly the ambient temperature and the time required for the epitaxial growth.
  • the back side may be sealed with a non-doped CVD oxide film, but this method cannot be applied to the front side.
  • the phenomenon of out diffusion becomes stronger for elements having a large diffusion coefficient in silicon. That is, the most effective countermeasure for this is to reduce the diffusion coefficient.
  • Non-patent document 1 Non-patent document 2
  • the diffusion of the dopant from the silicon substrate to the epitaxial layer is roughly determined by an error function.
  • the diffusion of the dopant is from a certain concentration, and the change in the carbon concentration distribution is the diffusion of a certain amount of material.
  • the steep peak of the carbon concentration distribution formed by carbon ion implantation has the property of being lowered by heat treatment.
  • the carbon ion implantation energy when the carbon ion implantation energy is increased, the peak position of the carbon concentration distribution is deepened, and the carbon concentration on the wafer surface is lowered. Since carbon is a relatively light element, when it is implanted with high acceleration energy, the concentration on the wafer surface tends to be low.
  • the carbon concentration at the surface when ion implantation of a dose amount of 10 ⁇ 10 15 atoms / cm 2 is performed at 100 keV is about 1 ⁇ 10 18 atoms / cm 3 , and when this is 50 keV, the carbon concentration is 6 ⁇ 10 6. It is known to be about 18 atoms / cm 3 (Non-patent Document 3).
  • the carbon ion implanted layer has a concentration of phosphorus doped in the silicon substrate of A ⁇ 10 20 atoms / cm 3. 4A ⁇ 10 15 atoms / cm 2 or more, and when the concentration of boron doped in the silicon substrate is B ⁇ 10 20 atoms / cm 3 , ions with a dose amount of 4B ⁇ 10 15 atoms / cm 2 or more are used.
  • the carbon concentration becomes equal to or higher than the dopant concentration before epitaxial growth, and diffusion into the epitaxial layer can be suppressed.
  • the dose amount of carbon implantation is less than 4 A ⁇ 10 15 atoms / cm 2 .
  • the dose is preferably set to a predetermined amount or more.
  • heat treatment is performed at a low temperature so that ⁇ Dt becomes equal not only in the epitaxial growth process but also in the element fabrication process. Is preferred.
  • device heat treatment is performed at a low temperature and put into practical use.
  • Dt indicates a diffusion coefficient at temperature t
  • ⁇ Dt is an index indicating a measure of the amount of diffusion by heat treatment.
  • FIG. 10 shows changes in the carbon concentration profile before and after carbon ions are implanted into the silicon substrate and subjected to heat treatment. It can be seen that the carbon concentration profile after the heat treatment shown in FIG. 10 is not a simple Gaussian diffusion profile. Thus, it is considered that carbon ions are diffused by both vacancy-type diffusion and interstitial diffusion. Therefore, by implanting carbon ions at a high concentration into the silicon substrate, it is possible to suppress the phenomenon of dopant (phosphorus, boron) floating from the silicon substrate to the epitaxial layer in the epitaxial growth process and the element manufacturing process. As a result, the on-resistance of the vertical transistor can be reduced and the leakage current can be reduced.
  • dopant phosphorus, boron
  • the carbon ion-implanted epitaxial layer-silicon substrate region also serves as a stable and powerful gettering site, and contributes to the improvement of device yield and electrical characteristics using this method. Naturally, an effect is also expected.
  • the present inventors conducted carbon ion implantation on a silicon substrate directly under the epitaxial layer to form a carbon ion implanted layer, thereby forming a silicon substrate surface side (epitaxial It is found that an epitaxial layer having a desired resistivity can be obtained by suppressing outdiffusion on the side on which the layer is formed), further suppressing autodoping by forming a CVD oxide film on the back side together, The present invention has been completed.
  • FIG. 1 is a view showing an example of the outline of the silicon epitaxial wafer of the present invention.
  • a silicon epitaxial wafer 1 according to the present invention is obtained by forming an epitaxial layer 5 on a silicon substrate 2.
  • At least the silicon substrate 2 is doped with phosphorus or boron at a concentration of 2.0 ⁇ 10 19 atoms / cm 3 or more, and the CVD oxide film 4 is formed on at least the back surface 2b side, and on the front surface 2a side.
  • the epitaxial layer 5 is formed on the surface 2a on the side where the carbon ion implantation layer 3 is formed.
  • a CVD oxide film is formed on at least the back surface side of the silicon substrate.
  • the carbon ion implanted layer is formed on the surface side on which the epitaxial layer is formed, out-diffusion on the back surface side is suppressed by the CVD oxide film on the back surface during the heat treatment when the epitaxial layer is formed, On the surface side, diffusion of boron and phosphorus is suppressed by the carbon ion implantation layer, and outward diffusion is suppressed.
  • phosphorus or boron doped in the silicon substrate is preferably doped at a concentration of 2.0 ⁇ 10 19 atoms / cm 3 or more and a solid solution limit or less. Therefore, it is suitable for obtaining predetermined electrical characteristics such as a low withstand voltage power MOS, a medium withstand voltage power MOS, an image sensor, etc. It is a silicon epitaxial wafer composed of an efficient silicon substrate.
  • the silicon epitaxial wafer 1 ′ has a CVD oxide film 4 ′ extending from the position where the carbon ion implantation layer 3 of the silicon substrate 2 is formed to the side surface closer to the silicon substrate surface. It can be covered.
  • the silicon substrate is completely sealed by the CVD oxide film and the carbon ion implantation layer.
  • boron or phosphorus doped at a high concentration in the silicon substrate suppresses the out-diffusion during the heat treatment and the auto-doping during the formation of the epitaxial layer more strongly than in the past. Accordingly, a silicon epitaxial wafer having an epitaxial layer with a desired resistivity is obtained.
  • the carbon ion implanted layer 3 can be one in which carbon ions are implanted at a dose of 3.0 ⁇ 10 14 atoms / cm 2 or more.
  • a silicon epitaxial wafer having a carbon ion implantation layer with a carbon ion dose of 3.0 ⁇ 10 14 atoms / cm 2 or more it is promised that the peak concentration of carbon in the ion implantation region is equal to or higher than the dopant concentration of the substrate.
  • the outward diffusion of phosphorus or boron on the silicon substrate surface side can be more strongly suppressed. Therefore, a silicon epitaxial wafer having an epitaxial layer with a more desirable resistivity is obtained.
  • carbon ions are preferably implanted at a dose of 3.0 ⁇ 10 14 atoms / cm 2 or more and 3.0 ⁇ 10 15 atoms / cm 2 or less.
  • the same effect can be obtained by forming a thin epitaxial layer doped with carbon at a high concentration on the epitaxial layer side in order to suppress diffusion into the epitaxial layer.
  • the solid solubility of carbon in silicon is not so high, and crystal defects are generated when it is forcibly doped, so it is not practically used.
  • a carbon-induced donor is generated in a high concentration (10 19 atoms / cm 3 or more) doping region. Since a donor having a carbon concentration of 1/100 to 1/1000 is generated, there is a problem that an n-type layer is formed.
  • an n-type inversion layer is not formed by a carbon donor, and the change in resistivity is 10% or less.
  • the impurity concentration of the epitaxial layer 5 can be set to 1/1000 or less of the impurity concentration of the silicon substrate 2. Even if a high-concentration silicon substrate is used, if the impurity concentration of the epitaxial layer is relatively high, the influence of auto-doping is relatively small. In the current epitaxial apparatus, when the concentration ratio between the epitaxial layer and the substrate is 1/1000 or less, it is greatly affected by auto-doping. When this method is applied to an epitaxial wafer whose impurity concentration in the epitaxial layer is 1/1000 or less of the impurity concentration in the substrate, the effect becomes extremely remarkable.
  • the impurity concentration of the epitaxial layer is preferably as low as possible to 1/1000 or less of the impurity concentration of the silicon substrate.
  • the silicon substrate is one in which phosphorus is doped at a concentration of 0.5 ⁇ 10 20 atoms / cm 3 or more, and the carbon ion implantation layer has a concentration of phosphorus doped in the silicon substrate of A ⁇ 10 20 atoms. / Cm 3 , carbon ions are implanted at a dose of 4 A ⁇ 10 15 atoms / cm 2 or more, and the epitaxial layer has a phosphorus content of 5.0 ⁇ 10 17 atoms / cm 3 or less.
  • a silicon epitaxial wafer that is doped at a concentration of 1 to 5 is preferred.
  • the silicon substrate is doped with boron at a concentration of 0.2 ⁇ 10 20 atoms / cm 3 or more, and the carbon ion implanted layer has a boron concentration of B ⁇ 10 20 atoms doped into the silicon substrate.
  • carbon ions are implanted at a dose amount of 4B ⁇ 10 15 atoms / cm 2 or more, and the epitaxial layer has boron of 2.0 ⁇ 10 17 atoms / cm 3 or less.
  • phosphorus or boron doped in the silicon substrate is doped at a concentration of 0.5 ⁇ 10 20 atoms / cm 3 or more and a solid solution limit or less and 0.2 ⁇ 10 20 atoms / cm 3 or more and a solution solution limit or less. It is preferred that Carbon ions are implanted at a dose of 4 A ⁇ 10 15 atoms / cm 2 or more and 6 A ⁇ 10 15 atoms / cm 2 or less, 4B ⁇ 10 15 atoms / cm 2 or more and 10 B ⁇ 10 15 atoms / cm 2 or less. It is preferable. Increasing the dose of carbon ion implantation has a greater effect of slowing down the diffusion of phosphorus and boron.
  • 4A ⁇ 10 Dose amounts close to 15 atoms / cm 2 and 4B ⁇ 10 15 atoms / cm 2 are preferred.
  • phosphorus or boron doped in the epitaxial layer is 0.5 ⁇ 10 17 atoms / cm 2 or more and 5.0 ⁇ 10 17 atoms / cm 3 or less, 0.2 ⁇ 10 17 atoms / cm 2 or more, respectively. It is preferable to dope at a concentration of 0 ⁇ 10 17 atoms / cm 3 or less.
  • the movement of phosphorus or boron dopant at the boundary of the epitaxial layer can be controlled during the growth of the epitaxial layer and during the device fabrication process, and the silicon substrate Auto-doping and out-diffusion from the surface side can be prevented.
  • a silicon epitaxial wafer that can improve the electrical characteristics of the final device such as reduction of on-resistance and leakage current is obtained.
  • the thickness of the CVD oxide film is preferably 1500 mm or more. With such a film thickness, out diffusion and autodoping of boron or phosphorus dopant can be further suppressed. As a result, a silicon epitaxial wafer that can improve the electrical characteristics of the final device such as reduction of on-resistance and leakage current is obtained.
  • FIG. 2 is a process flow diagram showing an example of a method for producing a silicon epitaxial wafer of the present invention.
  • a silicon substrate doped with phosphorus or boron at a concentration of 2.0 ⁇ 10 19 atoms / cm 3 or more is first prepared.
  • the silicon substrate prepared here is not particularly limited except that phosphorus or boron is doped with phosphorus or boron at a concentration of 2.0 ⁇ 10 19 atoms / cm 3 or more.
  • the silicon substrate is grown by the CZ method. What was manufactured by slicing from a silicon single crystal rod may be used. Further, the crystal orientation, crystal diameter, other conditions, and the like may be set as desired according to the standard, and are not particularly limited. Note that phosphorus or boron doped in the silicon substrate is preferably doped at a concentration of 2.0 ⁇ 10 19 atoms / cm 3 or more and a solid solution limit or less.
  • a step of forming a CVD oxide film on the back surface side is performed on the prepared silicon substrate, and then carbon ions are implanted on the front surface side to form a carbon ion implanted layer.
  • the process of forming is performed.
  • a step of forming a carbon ion implanted layer by implanting carbon ions using pad oxide on the surface side of the prepared silicon substrate is performed, and then the back surface is formed.
  • a step of forming a CVD oxide film on the side is performed.
  • pad oxide having a thickness of about 200 to 300 mm is formed. This is effective in preventing channeling and not making the range (Rp) during ion implantation too deep. The same effect can be obtained by performing tilting at the time of carbon ion implantation or by setting the acceleration energy low.
  • the carbon ion implantation process and the CVD oxide film forming process are not in any particular order, and either process may be performed first, and is not particularly limited.
  • the oxide film that has come to the surface side after the CVD oxide film forming process, that is, before the epitaxial layer forming process must be removed by polishing. Production efficiency is not very good.
  • the carbon ion implantation process is performed after the CVD oxide film formation process, it is not affected by auto-doping from the back surface during the carbon ion implantation process, so it is necessary to polish the back surface side after the carbon ion implantation process. Absent. Therefore, FIGS. 2B and 2C in which the CVD oxide film forming step is performed first and then the carbon ion implantation step is more convenient in terms of manufacturing efficiency.
  • the CVD oxide film formation step (b) or (c ′) may be a thermal decomposition method or a plasma growth method, and the formation method is not particularly limited.
  • the oxide film is preferably non-doped with no dopant.
  • the dose of carbon ions can be set to 3.0 ⁇ 10 14 atoms / cm 2 or more.
  • the dose amount of carbon ions as described above, diffusion of phosphorus and boron from the surface side of the silicon substrate can be more reliably suppressed, and the epitaxial layer has a resistivity with a desired value.
  • a silicon epitaxial wafer can be obtained.
  • carbon ions are preferably implanted at a dose of 3.0 ⁇ 10 14 atoms / cm 2 or more and 3.0 ⁇ 10 15 atoms / cm 2 or less.
  • the acceleration energy of carbon ions is preferably 20 keV or more.
  • the depth of the carbon ion implantation layer does not become too shallow, and it can contribute to reliably stopping the diffusion of boron and phosphorus.
  • the carbon ion implantation energy is preferably 100 keV or less.
  • a carbon ion implantation layer having a high carbon concentration can be formed in the vicinity of the surface of the silicon substrate, so that the silicon epitaxial wafer manufacturing method can further prevent autodoping and outdiffusion. This makes it possible to manufacture a silicon epitaxial wafer that can improve the final device electrical characteristics such as reduction of on-resistance and leakage current.
  • FIG. 7 shows the relationship between the implantation energy and carbon concentration distribution formed when carbon ions are implanted into the silicon substrate surface.
  • the carbon ion implantation layer can be formed near the silicon substrate surface as the implantation energy is lower.
  • the amount of carbon ions implanted can be adjusted according to the dopant concentration of the silicon substrate.
  • the dopant concentration of the silicon substrate is about 1 ⁇ 10 19 to 1 ⁇ 10 20 atoms / cm 3. It is preferably about 1 ⁇ 10 15 atoms / cm 2 .
  • a large current ion implanter can be used, and standard productivity can be secured.
  • ion implantation is performed in a range where the boron dopant or phosphorus dopant concentration of the silicon substrate does not exceed 1.0 ⁇ 10 20 atoms / cm 3. It is preferable to do.
  • the silicon substrate implanted with carbon ions as described above can be removed by etching only the surface side with a hydrofluoric acid solution if there is a pad oxide film. If there is no pad oxide film, RCA cleaning can be performed as it is, and the subsequent process can be performed. In the RCA cleaning in this case, it is preferable to properly manage the etching amount in the SC1 cleaning.
  • the CVD oxide film is formed so as to cover the side surface closer to the silicon substrate surface than the position of the carbon ion implantation layer of the silicon substrate, that is, so as to completely overlap the carbon ion implantation region.
  • a CVD oxide film can be continuously formed.
  • the step of forming the CVD oxide film it is preferable to form a non-doped CVD oxide film having a thickness of 1500 mm or more.
  • a silicon epitaxial wafer manufacturing method that can further prevent auto-doping and out-diffusion is obtained. This makes it possible to manufacture a silicon epitaxial wafer that can improve the final device electrical characteristics such as reduction of on-resistance and leakage current.
  • the thickness of the CVD oxide film is preferably 1500 mm or more and 5000 mm or less.
  • the step (e) The epitaxial layer can be formed.
  • the crystallinity of the silicon substrate disturbed in the previous carbon ion implantation process is obtained by heating at a temperature rising rate of 30 ° C./sec or more and performing recovery annealing for 10 seconds or more at a temperature of 900 ° C. or more by the RTA apparatus.
  • the rate of temperature increase during the recovery annealing is preferably 30 ° C./sec or more and below the limit of the device performance, for example, 60 ° C./sec or less.
  • the recovery annealing is performed at a temperature of 900 ° C. or more and 1100 ° C. or less. It is preferable that the reaction is performed for a time of 10 seconds to 60 seconds.
  • the crystallinity recovery heat treatment can also be performed by a single wafer epitaxial apparatus.
  • the recovery heat treatment is not performed separately using another apparatus, a silicon epitaxial wafer with good crystallinity can be obtained without increasing the heat treatment that is a diffusion factor of phosphorus and boron and without increasing the number of steps. It is done. Therefore, according to such a method, an inexpensive silicon epitaxial wafer having good crystallinity and suppressed dopant diffusion can be manufactured.
  • the recovery heat treatment is performed at a temperature rising rate of 15 ° C./sec to 30 ° C./sec from a temperature range of 600 ° C. to 750 ° C., and is performed at 1,050 ° C. to 1150 ° C. in a hydrogen atmosphere. It is preferable to maintain the temperature at 30 seconds or more and 60 seconds or less.
  • this recovery of crystallinity can stably prevent the occurrence of crystal defects by using the RTA apparatus as described above, but is not limited to this, and a diffusion furnace can also be used.
  • Such a recovery annealing step is particularly useful when epitaxial growth is not performed by a radiant heating type apparatus, and it is easy to stably avoid the occurrence of stacking faults in the subsequent epitaxial growth.
  • a radiation heating type epitaxial apparatus when a radiation heating type epitaxial apparatus is used, rapid heating close to that of the RTA apparatus becomes possible, so that the recovery annealing step after carbon ion implantation can be performed in parallel with the pre-bake before epitaxial growth.
  • pre-baking is performed for 30 seconds or more at a temperature of 1,050 ° C. or more to remove the natural oxide film and perform a recovery heat treatment, and then epitaxial growth can be started.
  • FIG. 2 (e) an epitaxial layer is formed on the surface where carbon ion implantation has been performed.
  • the epitaxial wafer is completed (FIG. 2 (f)).
  • the source gas for epitaxial growth may be monosilane, dichlorosilane, or trichlorosilane, but it is preferable to perform the growth under high-speed growth conditions to shorten the holding time at high temperatures.
  • carbon ion implantation of about 10 15 atoms / cm 2 it is important to perform the epitaxial growth process under conditions such that crystal defects generated by the ion implantation do not propagate to the epitaxial layer.
  • the diffusion coefficient of phosphorus is large. For this reason, phosphorus diffuses from the silicon substrate side to the epitaxial layer side during the heat treatment during device fabrication, the thickness of the epitaxial layer is substantially reduced, and sagging occurs in the dopant profile at the interface between the silicon substrate and the epitaxial layer. There is.
  • the present invention by introducing a carbon ion implanted layer, the floating of the dopant can be suppressed. Accordingly, since the transition width of the dopant profile of the epitaxial layer can be kept small even at the end of the device process, the thickness of the epitaxial layer can be made thinner with respect to a predetermined breakdown voltage. .
  • a silicon substrate doped with phosphorus at a concentration of 0.5 ⁇ 10 20 atoms / cm 3 or more is prepared as a silicon substrate, and the concentration of phosphorus doped into the silicon substrate in the step of forming the carbon ion implantation layer Is A ⁇ 10 20 atoms / cm 3 , carbon ions are implanted into the surface side with a dose amount of 4 A ⁇ 10 15 atoms / cm 2 or more to form a carbon ion implanted layer, and silicon subjected to carbon ion implantation
  • a method for producing a silicon epitaxial wafer is preferred in which an epitaxial layer doped with phosphorus at a concentration of 5.0 ⁇ 10 17 atoms / cm 3 or less is formed on the surface of the substrate.
  • a silicon substrate doped with boron at a concentration of 0.2 ⁇ 10 20 atoms / cm 3 or more is prepared as a silicon substrate, and the concentration of boron doped in the silicon substrate in the step of forming the carbon ion implantation layer Is B ⁇ 10 20 atoms / cm 3 , carbon ions are implanted into the surface side with a dose amount of 4B ⁇ 10 15 atoms / cm 2 or more to form a carbon ion implanted layer, and silicon subjected to carbon ion implantation
  • a silicon epitaxial wafer manufacturing method in which an epitaxial layer doped with boron at a concentration of 2.0 ⁇ 10 17 atoms / cm 3 or less is formed on the surface of the substrate is also preferable.
  • a silicon substrate is prepared with such a phosphorus or boron concentration and a carbon ion dose, a carbon ion implantation layer is formed, and an epitaxial layer is formed, the epitaxial layer is grown during the growth of the epitaxial layer and during the device fabrication process. Therefore, it is possible to control the movement of phosphorus or boron dopant at the boundary of the silicon substrate, and to produce a silicon epitaxial wafer that can prevent autodoping and outdiffusion from the silicon substrate surface side. This makes it possible to manufacture a silicon epitaxial wafer that can improve the final device electrical characteristics such as reduction of on-resistance and leakage current.
  • the dopant at the boundary of the epitaxial layer is grown during the growth of the epitaxial layer and during the device fabrication process. It is possible to provide a silicon epitaxial wafer that can control the movement and can effectively prevent autodoping and outdiffusion from the surface side of the silicon substrate, and a method for manufacturing the same.
  • a semiconductor device or an integrated circuit is manufactured using a silicon epitaxial wafer manufactured by a method for manufacturing a silicon epitaxial wafer, and the heat treatment held for longer than 1 minute is performed at a maximum temperature of the heat treatment.
  • a method for manufacturing a semiconductor element or an integrated circuit wherein the temperature is 950 ° C. or lower.
  • FIG. 6 shows a schematic flow of a manufacturing process related to epitaxial growth from a silicon substrate according to the present invention and further to a device manufacturing process.
  • the formation temperature of the double diffusion structure of field oxidation, source, and channel region is 950 ° C. or lower.
  • the subsequent steps of forming an emitter and the like are performed at 900 ° C. or lower.
  • the low-voltage power MOS is also miniaturized and the temperature of the process is decreasing, it is preferable to set the field oxidation formation temperature to 950 ° C. or lower.
  • Phosphorus and boron are used in the formation of the channel and source regions, but since there is no influence of carbon in this region, the process can proceed under the same conditions as when carbon ion implantation is not performed.
  • the heat treatment is performed in this way, so that the movement of the dopant at the boundary of the epitaxial layer can be controlled, and autodoping and out diffusion from the silicon substrate surface side can be prevented.
  • This is a method for manufacturing a semiconductor device or an integrated circuit. As a result, it is possible to manufacture a semiconductor element or an integrated circuit with excellent final device electrical characteristics such as on-resistance and reduction of leakage current.
  • Example 1 An epitaxial silicon substrate was fabricated from a CZ single crystal having a diameter of 200 mm, a red phosphorus dope, and a resistivity of 1.2 m ⁇ cm. Then, a CVD oxide film having a thickness of 300 nm was formed on the back side.
  • carbon ions were implanted into the silicon substrate using a large current ion implantation apparatus. Specifically, channeling countermeasures were taken by 5 ° tilting without forming a pad oxide film on the surface of the silicon substrate where ions were implanted. The acceleration voltage was 60 keV, and the dose was 1.0 ⁇ 10 15 atoms / cm 2 . Then, after ion implantation, recovery heat treatment was performed using an RTA apparatus. The heat treatment conditions were a temperature increase rate of 30 ° C./sec, a nitrogen atmosphere of 1200 ° C., and 30 seconds.
  • epitaxial growth was performed.
  • a single wafer reactor was used, and an epitaxial layer having a thickness of 5 ⁇ m was formed at 1150 ° C. using trichlorosilane as a silicon source.
  • trichlorosilane as a silicon source.
  • the resistivity of the epitaxial layer was measured by the CV method using a Schottky diode and found to be 10.0 ⁇ cm at the wafer center.
  • the manufactured epitaxial wafer was evaluated as shown below. Defects in the epitaxial layer of the produced epitaxial wafer were evaluated by preferential etching. Further, with respect to the wafer subjected to the pre-etching, the chip was cut out from the position of 10 to 20 mm in the outer periphery, which was relatively strongly influenced by autodoping, and each was subjected to angle polishing, and the dopant profile was measured by spraying resistance. Here, the spreading resistance is corrected data and converted from the resistance value to the impurity concentration. The results are shown in FIG. Note that the thickness of the epitaxial layer is reduced by about 1.0 ⁇ m by the amount etched by the preferential etching.
  • the thickness of the epitaxial layer at the wafer center of the epitaxial wafer of Comparative Example 1 was in the range of 5.1 to 5.3 ⁇ m.
  • the resistivity was in the range of 9.9 ⁇ cm to 9.2 ⁇ cm.
  • the thickness of the epitaxial layer at the wafer center of the epitaxial wafer of Comparative Example 2 was in the range of 5.1 to 5.3 ⁇ m.
  • the resistivity was 9.9 ⁇ cm.
  • the same evaluations as in the examples were performed on the silicon epitaxial wafers of Comparative Examples 1 and 2. The result is shown in FIG.
  • the phosphorus concentration of the epitaxial layer is the result of decreasing in the order of Example, Comparative Example 1, and Comparative Example 2. From the measurement result of the spraying resistance, there is a significant difference in autodoping. It was. Regarding the out diffusion from the substrate to the epitaxial layer at the time of epitaxial growth, the interface between the silicon substrate and the epitaxial layer is not clear, and thus the difference cannot be clearly confirmed. However, there are few in the order of Comparative Example 2, Comparative Example 1, and Example. In FIG. 3, since the accuracy of angle polishing is not necessarily good, the interface between the epitaxial layer and the substrate is shown so that the profiles match.
  • Example 2 A silicon substrate was fabricated from a CZ single crystal having a diameter of 200 mm, boron doping, and a resistivity of 3.2 m ⁇ cm (boron doping concentration: 0.25 ⁇ 10 20 atoms / cm 3 ). A CVD oxide film having a thickness of 500 nm was formed on the back side during the silicon substrate manufacturing process.
  • an epitaxial layer doped with boron at 1.5 ⁇ 10 15 atoms / cm 3 was formed to manufacture a silicon epitaxial wafer.
  • an infrared interference method it was in the range of 5.5 to 5.8 ⁇ m.
  • the resistivity of the epitaxial layer by the CV method using a Schottky diode it was 10.0 ⁇ cm at the wafer center.
  • Example 3 For comparison, a silicon epitaxial wafer was manufactured in the same manner as in Example 2 except that the carbon ions were not implanted. At this time, the thickness of the epitaxial layer at the center of the wafer was in the range of 5.2 to 5.6 ⁇ m. The resistivity was 9.9 ⁇ cm at the center.
  • Example 2 The defects in the epitaxial layer of the silicon epitaxial wafer manufactured according to Example 2 and Comparative Example 3 were investigated by preferential etching. As a result, in Example 2, it was confirmed that damage caused by carbon ion implantation did not induce stacking faults in the epitaxial layer. In Example 2 and Comparative Example 3, the defect density of the epitaxial layer was within an average level.
  • Example 2 and Comparative Example 3 were not heat-treated, and were vertically processed under a heat treatment condition in a nitrogen gas atmosphere containing 3% oxygen at 950 ° C., 20 hours and 1100 ° C. for 1 hour. What was heat-processed using the diffusion furnace was prepared. About these, each chip is cut out from a position of 10 to 20 mm in the outer periphery which is relatively strongly influenced by autodoping, and boron of about 8 ⁇ m from the surface of the epitaxial layer to the silicon substrate direction by quadrupole SIMS (Secondary Ion Mass Spectroscopy). The depth profile of was measured. The result is shown in FIG. FIG.
  • Example 3 A silicon substrate was fabricated from a CZ single crystal having a diameter of 200 mm, a red phosphorus doping, and a resistivity of 1.2 m ⁇ cm (phosphorus doping concentration: 0.6 ⁇ 10 20 atoms / cm 3 ). A CVD oxide film having a thickness of 300 nm was formed on the back side during the silicon substrate manufacturing process.
  • a silicon epitaxial wafer was manufactured by forming an epitaxial layer doped with phosphorus at 0.5 ⁇ 10 16 atoms / cm 3 .
  • the thickness of the center was in the range of 5.2 to 5.4 ⁇ m.
  • the resistivity of the epitaxial layer was measured by the CV method using a Schottky diode and found to be 1.0 ⁇ cm near the center of the wafer.
  • Example 4 For comparison, a silicon epitaxial wafer was manufactured in the same manner as in Example 3 except that the carbon ions were not implanted. At this time, the thickness of the epitaxial layer at the center of the wafer was in the range of 5.2 to 5.5 ⁇ m. The resistivity was 0.99 ⁇ cm at the center.
  • Example 3 Defects in the epitaxial layer of the silicon epitaxial wafer manufactured according to Example 3 and Comparative Example 4 were investigated by preferential etching. As a result, in Example 3, it was confirmed that damage caused by carbon ion implantation did not induce stacking faults in the epitaxial layer. In Example 3 and Comparative Example 4, the defect density of the epitaxial layer was within an average level.
  • Example 3 and Comparative Example 4 were not heat-treated, and were vertically processed under a heat treatment condition in a nitrogen gas atmosphere containing 3% oxygen at 950 ° C., 20 hours and 1100 ° C. for 1 hour. What was heat-processed using the diffusion furnace was prepared. About these, each chip was cut out from the position of the outer periphery of 10 to 20 mm which is relatively strongly influenced by autodoping, and the depth profile of about 8 ⁇ m boron from the epitaxial layer surface toward the silicon substrate was measured by quadrupole SIMS. . The result is shown in FIG. From FIG. 9, it was shown that the diffusion of phosphorus dopant was not suppressed in Comparative Example 4.
  • the fact that no slow diffusion of phosphorus was observed away from the above-mentioned silicon substrate interface corresponds to a portion having a low carbon concentration. That is, when the carbon ion implantation conditions are the same, the phosphorus dopant concentration of the silicon epitaxial wafer of Example 3 is higher than that of the boron silicon substrate (Example 2). At a distant site, the carbon concentration is low, and the diffusion suppressing effect of the phosphorus dopant is weakened.
  • the ion implantation conditions such that the carbon concentration on the surface of the silicon substrate becomes a predetermined concentration or higher at the start of epitaxial growth.
  • Acceleration energy is preferably set appropriately.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

Disclosed is a silicon epitaxial wafer having an epitaxial layer formed on a silicon substrate, wherein the silicon substrate is doped with phosphorus or boron at a concentration of 2.0×1019 atoms/cm3 or more, a CVD oxide film is formed at least on the rear surface, a carbon ion-implanted layer is formed by implanting carbon ions from the front surface, and the epitaxial layer is formed on the front surface where the carbon ion-implanted layer is formed. The silicon epitaxial wafer is composed of the epitaxial layer having a desired resistivity necessary to obtain predetermined electrical characteristics of an element, and a substrate having a lower resistivity compared with conventional substrates, and is capable of improving the electrical characteristics of a low breakdown strength power MOS, a middle breakdown strength power MOS, an image pick-up element and the like, and the silicon epitaxial wafer has auto-doping and out diffusion more strongly suppressed when performing epitaxial growing and heat treatment in an element manufacture step, compared with the conventional silicon epitaxial wafers.

Description

シリコンエピタキシャルウエーハ、シリコンエピタキシャルウエーハの製造方法、及び半導体素子又は集積回路の製造方法Silicon epitaxial wafer, silicon epitaxial wafer manufacturing method, and semiconductor device or integrated circuit manufacturing method
 本発明は、シリコンエピタキシャルウエーハ及びシリコンエピタキシャルウエーハの製造方法に関し、具体的には、極めて抵抗率の低いシリコン基板上に、狭い遷移幅で高抵抗のエピタキシャル層の成長を再現性よく行うことを可能にする技術であって、例えば、縦型素子の逆耐圧のバラツキを低減させつつ、低オン抵抗を実現させることを可能にするシリコンエピタキシャルウエーハやその製造方法に関する。
 
The present invention relates to a silicon epitaxial wafer and a method for manufacturing a silicon epitaxial wafer. Specifically, it is possible to grow a high resistance epitaxial layer with a narrow transition width on a silicon substrate having a very low resistivity with high reproducibility. For example, the present invention relates to a silicon epitaxial wafer and a method for manufacturing the same, which can realize low on-resistance while reducing variations in reverse breakdown voltage of vertical elements.
 パワーMOSトランジスタやIGBT(絶縁ゲートバイポーラトランジスタ)のようなウエーハ表面から裏面に電流を流すスイッチングトランジスタや、基板の電位変動を極力小さくして素子特性を安定化させる必要があるデバイスでは、エピタキシャルウエーハを用いる場合が殆どである。 For switching transistors such as power MOS transistors and IGBTs (insulated gate bipolar transistors) that allow current to flow from the front to the back, and devices that require stabilization of device characteristics by minimizing substrate potential fluctuations, use epitaxial wafers. Most of them are used.
 その理由は、素子の耐圧を確保するために必要となる比較的抵抗率の高いエピタキシャル層と、導通状態では寄生抵抗となるシリコン基板の抵抗率を、独立して制御できるからである。
 そのため、特に、シリコン基板の抵抗率がオン抵抗に強く影響するパワーMOSでは、シリコン基板の低抵抗化が積極的に進められてきている。
This is because the resistivity of the epitaxial layer having a relatively high resistivity necessary for ensuring the breakdown voltage of the element and the resistivity of the silicon substrate that becomes a parasitic resistance in the conductive state can be controlled independently.
For this reason, in particular, in a power MOS in which the resistivity of the silicon substrate strongly affects the on-resistance, the resistance of the silicon substrate has been actively reduced.
 ここで、N型のシリコン基板では、結晶成長時により高濃度のドープ剤を導入しやすい赤燐がドープ剤として用いられるようになってきている。
 これによって以前は5mΩcm程度が下限であった低耐圧パワーMOS用エピタキシャルウエーハのシリコン基板の抵抗率は、最近では1mΩcm以下まで下げられてきている。
Here, in an N-type silicon substrate, red phosphorus, which can easily introduce a high concentration dopant during crystal growth, has been used as a dopant.
As a result, the resistivity of the silicon substrate of the low-voltage power MOS epitaxial wafer, which previously had a lower limit of about 5 mΩcm, has recently been lowered to 1 mΩcm or less.
 しかし、リンの拡散係数はヒ素やアンチモンに比べて大きいため、エピタキシャル成長時や半導体素子を形成する際に行う熱処理において、アウトディフュージョン(以下、外方拡散ともいう)が起こり、エピタキシャル層の厚さが薄くなるため、所定の逆耐圧を確保するために必要以上に厚くエピタキシャル層を成長する必要があるという問題がある。 However, since the diffusion coefficient of phosphorus is larger than that of arsenic and antimony, out diffusion (hereinafter also referred to as outward diffusion) occurs in the heat treatment performed during epitaxial growth or when forming a semiconductor element, and the thickness of the epitaxial layer is reduced. Since it becomes thinner, there is a problem that it is necessary to grow the epitaxial layer thicker than necessary in order to ensure a predetermined reverse breakdown voltage.
 そのため、N型シリコン基板を用いる場合、オートドープ、アウトディフュージョンの少ないヒ素やアンチモンがドープ剤に用いられてきた。
 しかし、ヒ素を高濃度にドープしようとすると電気的に不活性となるドーパントが増えてしまうという問題がある。また、アンチモンでは固溶度が低く、高濃度にドープした結晶そのものの製造に限界がある。そして、結晶成長時やエピタキシャル成長時に結晶欠陥が発生しやすくなるという問題もある。
Therefore, when an N-type silicon substrate is used, arsenic and antimony with less auto-doping and out-diffusion have been used as the dopant.
However, there is a problem that the dopant which becomes electrically inactive increases when doping arsenic at a high concentration. In addition, antimony has a low solid solubility, and there is a limit to the production of crystals that are highly doped. Another problem is that crystal defects are likely to occur during crystal growth or epitaxial growth.
 そのような背景から、結晶の生産性が極めて悪くなるため、極低抵抗のエピタキシャル基板にはこれらのドーパントを用いることは現実的でなく、また、用いられてこなかった。
 すなわち、N型の極めて低い抵抗率のシリコン基板を用いようとした場合、ドーパントの一部が格子間位置に入るようになり電気的に不活性になったり、結晶に固溶できなくなって、結晶欠陥が生じやすくなるヒ素やアンチモンを用いることが出来ないので、赤燐をドープ剤として用いることが必要となる。
From such a background, since the productivity of crystals becomes extremely poor, it has not been practical or used to use these dopants in an extremely low resistance epitaxial substrate.
That is, when an N-type silicon substrate having an extremely low resistivity is used, a part of the dopant enters the interstitial position and becomes electrically inactive or cannot be dissolved in the crystal. Since it is not possible to use arsenic or antimony, which easily causes defects, it is necessary to use red phosphorus as a dopant.
 最近の中・低耐圧パワーMOSでは、素子製造プロセス温度の低温化が実現されたこともあり、リンのアウトディフュージョンの影響が少なくなってきている。そのような背景から、赤燐をドープ剤に用いた1mΩcm前後のエピタキシャル基板が用いられてきている。 In recent medium and low withstand voltage power MOSs, the element manufacturing process temperature has been lowered, and the influence of phosphorus out-diffusion is decreasing. From such a background, an epitaxial substrate of about 1 mΩcm using red phosphorus as a dopant has been used.
 しかし、前述のように、素子製作時の熱処理によりエピタキシャル層に基板側からリンが拡散しやすくなるため、抵抗率が一定の領域が減少する。その分、初期のエピタキシャル層の厚さを厚くすることが必要となる。このことは本来の目的である素子のオン抵抗の低減に対しては逆の結果をもたらす。また、より厚くエピタキシャル成長を行うことにより、生産性の低下やコストの上昇を招くという問題がある。さらに、高抵抗のエピタキシャル層の厚さを厚くして、エピタキシャル層とシリコン基板境界におけるドーパント濃度が変化する領域(遷移巾)が大きくなると、リーク電流が大きくなるといった問題も生じてくる。 However, as described above, since heat treatment during device fabrication facilitates diffusion of phosphorus from the substrate side into the epitaxial layer, the region with a constant resistivity decreases. Accordingly, it is necessary to increase the thickness of the initial epitaxial layer. This has the opposite result to the reduction of the on-resistance of the element, which is the original purpose. Further, the thicker epitaxial growth causes a problem that productivity is lowered and cost is increased. Furthermore, when the thickness of the high-resistance epitaxial layer is increased and the region (transition width) in which the dopant concentration changes at the boundary between the epitaxial layer and the silicon substrate increases, there also arises a problem that the leakage current increases.
 一方、P型のシリコン基板では、ボロン以外のドーパントの利用には色々な問題があるため、ドーピング量に関わらずボロンをドープ剤に用いるのが一般的である。
 ボロンは比較的容易に高濃度のドーピングが可能であるので、素子製造工程の熱処理の低温化に伴って5mΩcm程度から更に低抵抗化されてきている。オートドープやアウトディフュージョンの影響がない範囲で、低耐圧パワーMOS等を中心としてP型シリコン基板の低抵抗化が進められてきている。
On the other hand, in a P-type silicon substrate, since there are various problems in using dopants other than boron, it is general to use boron as a dopant regardless of the doping amount.
Since boron can be doped at a high concentration relatively easily, the resistance has been further reduced from about 5 mΩcm as the temperature of the heat treatment in the device manufacturing process is lowered. In the range where there is no influence of auto-doping or out-diffusion, the resistance of the P-type silicon substrate has been lowered mainly in the low voltage power MOS and the like.
 しかし、ボロンは、拡散係数が大きな元素であり、アウトディフュージョン、オートドープが問題になる。
 これに対し、シリコン基板の裏面を酸化膜でシールすることによって、オートドーピングの制御を行う技術は古くから利用されてきている(例えば特許文献1参照)。
 
However, boron is an element having a large diffusion coefficient, and out-diffusion and auto-doping are problems.
On the other hand, a technique for controlling autodoping by sealing the back surface of a silicon substrate with an oxide film has been used for a long time (see, for example, Patent Document 1).
特開昭58-95819号公報JP 58-95819 A
 このように、ボロン、リンを低抵抗エピタキシャル基板のドーパントとして用いる場合には、エピタキシャル成長時に基板から成長雰囲気に拡散したドーパントがエピタキシャル層に再ドープされる所謂オートドープや、素子製造中の熱処理中に基板からエピタキシャル層に固体拡散するアウトディフュージョンが大きくなることが問題になる。
 そしてエピタキシャル層の抵抗率を安定化させるために、エピタキシャル層厚を厚くする必要が生じるが、それが素子のオン抵抗の悪化等を招くという矛盾も抱えている。
Thus, when boron or phosphorus is used as a dopant for a low-resistance epitaxial substrate, the dopant diffused from the substrate into the growth atmosphere during epitaxial growth is re-doped into the epitaxial layer, so-called auto-doping, or heat treatment during device manufacturing. The problem is that the out-diffusion of solid diffusion from the substrate to the epitaxial layer becomes large.
In order to stabilize the resistivity of the epitaxial layer, it is necessary to increase the thickness of the epitaxial layer, but there is a contradiction that this causes deterioration of the on-resistance of the element.
 これら低抵抗基板を用いるエピタキシャル成長においては、基板裏面をノンドープの酸化膜等でシールする技術や、枚葉エピタキシャル装置の高速成長技術やサセプター下部へのガス流制御技術(穴開きサセプタ)などが用いられ、エピタキシャル成長中のアウトディフュージョン、オートドープの低減が図られている。
 しかし、基板表面側からのアウトディフュージョンは防止できていないため、エピタキシャル成長時、及び素子製作時の基板とエピタキシャル層の境界におけるドーパント濃度が変化する領域(遷移領域)の制御には、課題が残されている。
In epitaxial growth using these low-resistance substrates, technologies such as sealing the backside of the substrate with a non-doped oxide film, high-speed growth technology for single-wafer epitaxial devices, and gas flow control technology (holed susceptor) under the susceptor are used. Outdiffusion and autodoping during epitaxial growth are reduced.
However, since out-diffusion from the substrate surface side cannot be prevented, there remains a problem in controlling the region (transition region) in which the dopant concentration changes at the boundary between the substrate and the epitaxial layer during epitaxial growth and device fabrication. ing.
 本発明は、上記問題に鑑みなされたものであって、素子の所定の電気特性を得るために必要な所望の抵抗率のエピタキシャル層と従来より更に低抵抗な基板からなり、低耐圧パワーMOS、中耐圧パワーMOSや撮像素子等の電気的特性の向上を実現することのできる、エピタキシャル成長中や素子製造工程の熱処理中のオートドープ、アウトディフュージョンを従来に比べて強く抑制することができるシリコンエピタキシャルウエーハとその製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and includes an epitaxial layer having a desired resistivity necessary for obtaining predetermined electrical characteristics of an element and a substrate having a lower resistance than conventional ones. Silicon epitaxial wafer that can improve the electrical characteristics of medium-voltage power MOSs, imaging devices, etc., and can suppress auto-doping and out-diffusion during epitaxial growth and heat treatment in the device manufacturing process more strongly than before. And its manufacturing method.
 上記課題を解決するため、本発明では、シリコン基板にエピタキシャル層が形成されたシリコンエピタキシャルウエーハであって、前記シリコン基板は、リンまたはボロンが2.0×1019atoms/cm以上の濃度でドープされており、かつ少なくとも裏面側にCVD酸化膜が形成され、表面から炭素イオンが注入されたことによる炭素イオン注入層が形成されたものであり、該炭素イオン注入層が形成された前記シリコン基板の表面に前記エピタキシャル層が形成されたものであることを特徴とするシリコンエピタキシャルウエーハを提供する。 In order to solve the above problems, the present invention provides a silicon epitaxial wafer in which an epitaxial layer is formed on a silicon substrate, wherein the silicon substrate has a phosphorus or boron concentration of 2.0 × 10 19 atoms / cm 3 or more. The silicon in which the carbon ion implantation layer is formed by being doped and having a CVD oxide film formed at least on the back surface side and carbon ions being implanted from the surface. A silicon epitaxial wafer characterized in that the epitaxial layer is formed on a surface of a substrate.
 このように、リンまたはボロンが2.0×1019atoms/cm以上と高濃度にドープされたシリコンウエーハが基板として用いられたシリコンエピタキシャルウエーハにおいて、シリコン基板の少なくとも裏面側にCVD酸化膜が形成されたものであるため、エピタキシャル層の形成の際に、シリコン基板裏面からのリンまたはボロンの外方拡散、すなわちエピタキシャル成長の雰囲気がドーパントに汚染されることが抑制され、オートドープの発生が抑制されたものとなり、エピタキシャル層の抵抗率が所望の値からずれることが抑制されたものとなる。
 また、エピタキシャル層が形成される側の表面に炭素イオン注入層が形成されたものであるので、シリコン基板の炭素イオン注入層ではシリコン結晶格子に高濃度の炭素が取り込まれることにより、空孔の増大、格子間シリコンの減少が起こる。格子間シリコンの減少はリンやボロンが格子間に押し出される機会が減少して、ボロン、リンといったシリコンより結合半径の小さな原子の(キックアウト型)拡散は著しく抑制されたものとなる。これによって、エピタキシャル層の形成の際の熱処理や素子製造時の熱処理におけるシリコン基板からエピタキシャル層へのアウトディフュージョンが抑制されたものとなる。
 これらの効果によって、所望の抵抗率のエピタキシャル層と従来より更に低抵抗率なシリコン基板からなる、低耐圧パワーMOSや撮像素子等の所定の電気特性を得ることができるシリコンエピタキシャルウエーハとなる。
Thus, in a silicon epitaxial wafer in which a silicon wafer doped with phosphorus or boron at a high concentration of 2.0 × 10 19 atoms / cm 3 or more is used as a substrate, a CVD oxide film is formed on at least the back surface side of the silicon substrate. Since it is formed, the out-diffusion of phosphorus or boron from the back surface of the silicon substrate, that is, the atmosphere of epitaxial growth is suppressed from being contaminated by the dopant during the formation of the epitaxial layer, and the occurrence of auto-doping is suppressed. Thus, the resistivity of the epitaxial layer is suppressed from deviating from a desired value.
In addition, since the carbon ion implanted layer is formed on the surface on which the epitaxial layer is formed, the carbon ion implanted layer of the silicon substrate takes in a high concentration of carbon into the silicon crystal lattice, thereby Increase and decrease of interstitial silicon occur. The decrease in interstitial silicon reduces the chances of phosphorus and boron being pushed out between the lattices, and the diffusion of atoms with a smaller bond radius than silicon, such as boron and phosphorus (kickout type), is significantly suppressed. As a result, the out diffusion from the silicon substrate to the epitaxial layer during the heat treatment during the formation of the epitaxial layer and the heat treatment during the device manufacture is suppressed.
By these effects, a silicon epitaxial wafer can be obtained which can obtain predetermined electrical characteristics such as a low breakdown voltage power MOS and an image pickup element, which are composed of an epitaxial layer having a desired resistivity and a silicon substrate having a lower resistivity than before.
 ここで、前記炭素イオン注入層は、格子間シリコン濃度を低下させるために、炭素イオンが3.0×1014atoms/cm以上のドーズ量で注入されたものであることが好ましい。
 このように、炭素イオンのドーズ量が3.0×1014atoms/cm以上であれば、リンまたはボロンのシリコン基板表面側における外方への拡散をより強力に抑制されたものとすることができ、より所望の抵抗率分布を有するシリコンエピタキシャルウエーハとすることができる。
Here, the carbon ion implanted layer is preferably one in which carbon ions are implanted at a dose of 3.0 × 10 14 atoms / cm 2 or more in order to reduce the interstitial silicon concentration.
Thus, when the dose amount of carbon ions is 3.0 × 10 14 atoms / cm 2 or more, the outward diffusion of phosphorus or boron on the silicon substrate surface side is more strongly suppressed. Thus, a silicon epitaxial wafer having a more desirable resistivity distribution can be obtained.
 また、前記CVD酸化膜は、前記シリコン基板の側面を前記炭素イオン注入層が形成された位置より表面側まで覆うものであることが好ましい。
 このように、炭素イオン注入層が形成された位置より表面側までCVD酸化膜に覆われたものとすることによって、ボロン又はリンが高濃度にドープされたシリコン基板がCVD酸化膜と炭素イオン注入層によってシールされたものとなり、ボロン又はリンのアウトディフュージョンやオートドープが更に強力に抑制されたものとなり、更に所望の設計値のエピタキシャル層を有するシリコンエピタキシャルウエーハを得ることができる。
The CVD oxide film preferably covers the side surface of the silicon substrate from the position where the carbon ion implantation layer is formed to the surface side.
In this way, the silicon substrate doped with boron or phosphorus at a high concentration is formed by the CVD oxide film and the carbon ion implantation by being covered with the CVD oxide film from the position where the carbon ion implantation layer is formed to the surface side. Thus, a silicon epitaxial wafer having an epitaxial layer with a desired design value can be obtained. Further, boron or phosphorus out-diffusion or auto-doping is further suppressed.
 そして、前記エピタキシャル層の不純物濃度が、前記シリコン基板の不純物濃度の1/1000以下であるとき、有効性が大きくなり、炭素注入層での不純物拡散の抑制効果が顕著になり、好ましい。
 上述のように、本発明のシリコンエピタキシャルウエーハは、リンまたはボロンが高濃度にドープされたシリコン基板が用いられ、かつリンまたはボロンのアウトディフュージョンやオートドープが抑制されたものであるため、エピタキシャル層の抵抗率が、つまり、不純物濃度が基板のそれと3桁以上異なっても、階段型に近い分布を維持できるようになる。
When the impurity concentration of the epitaxial layer is 1/1000 or less of the impurity concentration of the silicon substrate, the effectiveness increases, and the effect of suppressing the impurity diffusion in the carbon implanted layer becomes remarkable, which is preferable.
As described above, the silicon epitaxial wafer of the present invention uses a silicon substrate doped with phosphorus or boron at a high concentration, and suppresses out-diffusion or autodoping of phosphorus or boron. Even if the resistivity of the substrate, that is, the impurity concentration differs from that of the substrate by 3 digits or more, a distribution close to a staircase type can be maintained.
 さらに、前記シリコン基板は、リンが0.5×1020atoms/cm以上の濃度でドープされたものであり、
 前記炭素イオン注入層は、前記シリコン基板にドープされたリンの濃度をA×1020atoms/cmとしたとき、4A×1015atoms/cm以上のドーズ量で炭素イオンを注入して形成されたものであり、
 前記エピタキシャル層は、リンが5.0×1017atoms/cm以下の濃度でドープされたものであることが好ましい。
Further, the silicon substrate is doped with phosphorus at a concentration of 0.5 × 10 20 atoms / cm 3 or more,
The carbon ion implantation layer is formed by implanting carbon ions at a dose amount of 4 A × 10 15 atoms / cm 2 or more when the concentration of phosphorus doped in the silicon substrate is A × 10 20 atoms / cm 3. It has been
The epitaxial layer is preferably one in which phosphorus is doped at a concentration of 5.0 × 10 17 atoms / cm 3 or less.
 このようなリン濃度及び炭素イオンのドーズ量であれば、エピタキシャル層の成長中及び素子作製工程中において、エピタキシャル層の境界におけるリンドーパントの動きを制御することができ、シリコン基板表面側からのオートドープ、アウトディフュージョンを防止することができる。これにより、オン抵抗、リーク電流の低減といった最終的なデバイスの電気特性を向上させることが可能となるシリコンエピタキシャルウエーハとなる。 With such a phosphorus concentration and a dose amount of carbon ions, the movement of the phosphorus dopant at the boundary of the epitaxial layer can be controlled during the growth of the epitaxial layer and during the device fabrication process. Doping and out diffusion can be prevented. As a result, a silicon epitaxial wafer that can improve the electrical characteristics of the final device such as reduction of on-resistance and leakage current is obtained.
 また、前記シリコン基板は、ボロンが0.2×1020atoms/cm以上の濃度でドープされたものであり、
 前記炭素イオン注入層は、前記シリコン基板にドープされたボロンの濃度をB×1020atoms/cmとしたとき、4B×1015atoms/cm以上のドーズ量で炭素イオンを注入して形成されたものであり、
 前記エピタキシャル層は、ボロンが2.0×1017atoms/cm以下の濃度でドープされたものであることも好ましい。
The silicon substrate is doped with boron at a concentration of 0.2 × 10 20 atoms / cm 3 or more,
The carbon ion implantation layer is formed by implanting carbon ions at a dose amount of 4B × 10 15 atoms / cm 2 or more when the concentration of boron doped in the silicon substrate is B × 10 20 atoms / cm 3. It has been
In the epitaxial layer, boron is preferably doped with a concentration of 2.0 × 10 17 atoms / cm 3 or less.
 このようなボロン濃度及び炭素イオンのドーズ量であれば、エピタキシャル層の成長中及び素子作製工程中において、エピタキシャル層の境界におけるボロンドーパントの動きを制御することができ、シリコン基板表面側からのオートドープ、アウトディフュージョンを防止することができる。これにより、オン抵抗、リーク電流の低減といった最終的なデバイスの電気特性を向上させることが可能となるシリコンエピタキシャルウエーハとなる。 With such boron concentration and carbon ion dose, the movement of boron dopant at the boundary of the epitaxial layer can be controlled during the growth of the epitaxial layer and during the device fabrication process. Doping and out diffusion can be prevented. As a result, a silicon epitaxial wafer that can improve the electrical characteristics of the final device such as reduction of on-resistance and leakage current is obtained.
 さらに、前記CVD酸化膜の膜厚は、1500Å以上であることが好ましい。 Furthermore, the thickness of the CVD oxide film is preferably 1500 mm or more.
 このような膜厚であれば、ボロン又はリンドーパントのアウトディフュージョンやオートドープを一層抑制することができる。 With such a film thickness, out diffusion and autodoping of boron or phosphorus dopant can be further suppressed.
 また、本発明では、シリコンエピタキシャルウエーハの製造方法であって、リンまたはボロンが2.0×1019atoms/cm以上の濃度でドープされたシリコン基板を準備し、該準備したシリコン基板に、裏面側にCVD酸化膜を形成する工程と、表面側に炭素イオンを注入して炭素イオン注入層を形成する工程とを順不同で行った後、前記炭素イオン注入を行った表面にエピタキシャル層を形成することを特徴とするシリコンエピタキシャルウエーハの製造方法を提供する。 Further, the present invention provides a method for producing a silicon epitaxial wafer, comprising preparing a silicon substrate doped with phosphorus or boron at a concentration of 2.0 × 10 19 atoms / cm 3 or more. After the process of forming the CVD oxide film on the back side and the process of forming the carbon ion implanted layer by implanting carbon ions on the front side are performed in random order, an epitaxial layer is formed on the surface subjected to the carbon ion implantation A method for producing a silicon epitaxial wafer is provided.
 2.0×1019atoms/cm以上と高濃度にリンまたはボロンがドープされたシリコン基板を用いてシリコンエピタキシャルウエーハを作製する際には、エピタキシャル成長中や素子を製造する際の熱処理時におけるオートドープ、アウトディフュージョンを抑制することが重要となる。
 ここで、オートドープについては、エピタキシャル工程中の基板からエピタキシャル成長雰囲気中への外方拡散を防止することが有効であるため、シリコン基板の少なくとも裏面側をCVD酸化膜でシールすることが非常に有効である。
 しかし、表面側については、エピタキシャル成長を行う都合上、CVD酸化膜でシールできないので、この部分がオートドープの原因になるため、これを抑制する必要がある。そこで、リンやボロンの拡散係数が小さい薄層をエピタキシャル層を形成する表面の直下に形成するべく、炭素をイオン注入して炭素イオン注入層を形成することとする。これによって、表面側における外方拡散を抑制することができるようになり、エピタキシャル成長中のオートドープだけでなく、その後の素子製造段階におけるシリコン基板からエピタキシャル層側へのドーパントのアウトディフュージョンを抑制することができるシリコンエピタキシャルウエーハの製造方法を提供することができる。
When a silicon epitaxial wafer is manufactured using a silicon substrate doped with phosphorus or boron at a high concentration of 2.0 × 10 19 atoms / cm 3 or more, an auto process during epitaxial growth or heat treatment during device manufacturing is performed. It is important to suppress doping and out-diffusion.
Here, for auto-doping, it is effective to prevent outward diffusion from the substrate during the epitaxial process into the epitaxial growth atmosphere, so it is very effective to seal at least the back surface of the silicon substrate with a CVD oxide film. It is.
However, since the surface side cannot be sealed with a CVD oxide film for the convenience of epitaxial growth, this portion causes autodoping, and it is necessary to suppress this. Therefore, carbon is ion-implanted to form a carbon ion-implanted layer in order to form a thin layer having a small diffusion coefficient of phosphorus or boron immediately below the surface on which the epitaxial layer is formed. This makes it possible to suppress outward diffusion on the surface side, and suppresses not only auto-doping during epitaxial growth but also outdiffusion of dopant from the silicon substrate to the epitaxial layer side in the subsequent device manufacturing stage. It is possible to provide a method for manufacturing a silicon epitaxial wafer that can be used.
 ここで、前記炭素イオンのドーズ量を、3.0×1014atoms/cm以上とすることが好ましい。
 このように、炭素イオンのドーズ量を3.0×1014atoms/cm以上とすることによって、リンやボロンがシリコン基板の表面側から外方へ拡散することをより強力に抑制することができ、より所望の値の抵抗率となったエピタキシャル層を有するシリコンエピタキシャルウエーハを製造することができる。
Here, the dose amount of the carbon ions is preferably set to 3.0 × 10 14 atoms / cm 2 or more.
As described above, by setting the dose amount of carbon ions to 3.0 × 10 14 atoms / cm 2 or more, phosphorus and boron can be more strongly suppressed from diffusing outward from the surface side of the silicon substrate. In addition, it is possible to manufacture a silicon epitaxial wafer having an epitaxial layer having a more desirable resistivity.
 また、前記CVD酸化膜形成工程と前記炭素イオン注入層形成工程を行った後、RTA装置を用いて、昇温速度30℃/sec以上で加熱し、900℃以上の温度で10秒以上の回復アニール(以下、回復熱処理ともいう)を行い、その後前記エピタキシャル層を形成することができる。
 このように、RTA装置によって回復熱処理を行うことによって、炭素イオン注入によって乱れたシリコン基板の結晶性を回復させることができ、エピタキシャル層の結晶性をより良好なものとすることができ、結晶欠陥が少なく、抵抗率が所望の値となったシリコンエピタキシャルウエーハを製造することができる。
In addition, after performing the CVD oxide film forming step and the carbon ion implantation layer forming step, heating is performed at a temperature rising rate of 30 ° C./sec or more using an RTA apparatus, and recovery is performed at a temperature of 900 ° C. or more for 10 seconds or more. Annealing (hereinafter also referred to as recovery heat treatment) can be performed, and then the epitaxial layer can be formed.
Thus, by performing the recovery heat treatment with the RTA apparatus, the crystallinity of the silicon substrate disturbed by the carbon ion implantation can be recovered, the crystallinity of the epitaxial layer can be improved, and the crystal defects Therefore, it is possible to manufacture a silicon epitaxial wafer having a low resistivity and a desired resistivity.
 そして、前記CVD酸化膜形成工程と前記炭素イオン注入層形成工程を行った後、枚葉式エピタキシャル装置に導入した後、600℃以上の温度領域から15℃/sec以上の昇温温度で昇温し、水素雰囲気下、1,050℃以上の温度で30秒以上保持した後、前記エピタキシャル層を形成することができる。
 このように、枚葉式エピタキシャル装置によって、RTAに準ずる速度での結晶性回復熱処理を行うことができ、回復熱処理を別途独立して行うことなく炭素イオン注入ダメージを回復させることができ、熱処理回数を増やすことなく結晶欠陥を低減することができる。従って、リンやボロンの拡散量を抑制するとともに、工程数を増やすことなく結晶性を回復させることができ、更に高品質(結晶欠陥が少なく、抵抗率が所望の値となった)なシリコンエピタキシャルウエーハを製造することができる。
Then, after performing the CVD oxide film forming step and the carbon ion implantation layer forming step, the wafer is introduced into a single-wafer epitaxial apparatus, and then heated from a temperature region of 600 ° C. or higher at a temperature rising temperature of 15 ° C./sec or higher. The epitaxial layer can be formed after holding for 30 seconds or more at a temperature of 1,050 ° C. or higher in a hydrogen atmosphere.
Thus, the single-wafer epitaxial apparatus can perform the crystallinity recovery heat treatment at a rate similar to RTA, and can recover the carbon ion implantation damage without separately performing the recovery heat treatment. Crystal defects can be reduced without increasing. Therefore, while suppressing the diffusion amount of phosphorus and boron, it is possible to recover the crystallinity without increasing the number of processes, and even higher quality silicon crystal (having few crystal defects and having a desired resistivity). Wafers can be manufactured.
 更に、前記CVD酸化膜を、前記シリコン基板の前記炭素イオン注入層の位置よりシリコン基板表面により近い位置の側面まで覆うように形成することが好ましい。
 このように、シリコン基板の炭素イオン注入層の位置よりシリコン基板表面により近い位置の側面まで覆うようにCVD酸化膜を形成することによって、シリコン基板をCVD酸化膜と炭素イオン注入層でシールすることができる。これによってボロンやリンのアウトディフュージョンやオートドープをより確実且つ強力に抑制することができるようになり、更に所望の抵抗率のエピタキシャル層を有するシリコンエピタキシャルウエーハを製造することができる。
Furthermore, it is preferable that the CVD oxide film is formed so as to cover a side surface closer to the silicon substrate surface than the position of the carbon ion implantation layer of the silicon substrate.
Thus, by forming the CVD oxide film so as to cover the side surface closer to the silicon substrate surface than the position of the carbon ion implantation layer of the silicon substrate, the silicon substrate is sealed with the CVD oxide film and the carbon ion implantation layer. Can do. As a result, out-diffusion and autodoping of boron and phosphorus can be suppressed more reliably and strongly, and a silicon epitaxial wafer having an epitaxial layer with a desired resistivity can be manufactured.
 また、前記シリコン基板として、リンが0.5×1020atoms/cm以上の濃度でドープされたシリコン基板を準備し、
 前記炭素イオン注入層を形成する工程において、前記シリコン基板にドープされたリンの濃度をA×1020atoms/cmとしたとき、4A×1015atoms/cm以上のドーズ量で表面側に炭素イオンを注入して前記炭素イオン注入層を形成し、
 前記炭素イオン注入を行ったシリコン基板の表面に、リンが5.0×1017atoms/cm以下の濃度でドープされた前記エピタキシャル層を形成することが好ましい。
Further, as the silicon substrate, a silicon substrate doped with phosphorus at a concentration of 0.5 × 10 20 atoms / cm 3 or more is prepared,
In the step of forming the carbon ion implantation layer, when the concentration of phosphorus doped in the silicon substrate is set to A × 10 20 atoms / cm 3 , the dose is 4A × 10 15 atoms / cm 2 or more on the surface side. Injecting carbon ions to form the carbon ion implanted layer,
It is preferable to form the epitaxial layer doped with phosphorus at a concentration of 5.0 × 10 17 atoms / cm 3 or less on the surface of the silicon substrate on which the carbon ions have been implanted.
 このようなリン濃度及び炭素イオンのドーズ量でシリコン基板を準備し、炭素イオン注入層を形成し、エピタキシャル層を形成すれば、エピタキシャル層の成長中及び素子作製工程中において、エピタキシャル層の境界におけるリンドーパントの動きを制御することができ、シリコン基板表面側からのオートドープ、アウトディフュージョンを防止することができるシリコンエピタキシャルウエーハの製造方法となる。これにより、オン抵抗、リーク電流の低減といった最終的なデバイスの電気特性を向上させることが可能となるシリコンエピタキシャルウエーハを製造することができる。 If a silicon substrate is prepared with such a phosphorus concentration and a dose amount of carbon ions, a carbon ion implanted layer is formed, and an epitaxial layer is formed, the epitaxial layer is grown at the boundary of the epitaxial layer and during the device fabrication process. The movement of the phosphorus dopant can be controlled, and the silicon epitaxial wafer manufacturing method can prevent autodoping and outdiffusion from the silicon substrate surface side. This makes it possible to manufacture a silicon epitaxial wafer that can improve the final device electrical characteristics such as reduction of on-resistance and leakage current.
 さらに、前記シリコン基板として、ボロンが0.2×1020atoms/cm以上の濃度でドープされたシリコン基板を準備し、
 前記炭素イオン注入層を形成する工程において、前記シリコン基板にドープされたボロンの濃度をB×1020atoms/cmとしたとき、4B×1015atoms/cm以上のドーズ量で表面側に炭素イオンを注入して前記炭素イオン注入層を形成し、
 前記炭素イオン注入を行ったシリコン基板の表面に、ボロンが2.0×1017atoms/cm以下の濃度でドープされた前記エピタキシャル層を形成することも好ましい。
Furthermore, a silicon substrate doped with boron at a concentration of 0.2 × 10 20 atoms / cm 3 or more is prepared as the silicon substrate,
In the step of forming the carbon ion implantation layer, when the concentration of boron doped in the silicon substrate is B × 10 20 atoms / cm 3 , the dose is 4B × 10 15 atoms / cm 2 or more on the surface side. Injecting carbon ions to form the carbon ion implanted layer,
It is also preferable to form the epitaxial layer doped with boron at a concentration of 2.0 × 10 17 atoms / cm 3 or less on the surface of the silicon substrate subjected to the carbon ion implantation.
 このようなボロン濃度及び炭素イオンのドーズ量でシリコン基板を準備し、炭素イオン注入層を形成し、エピタキシャル層を形成すれば、エピタキシャル層の成長中及び素子作製工程中において、エピタキシャル層の境界におけるボロンドーパントの動きを制御することができ、シリコン基板表面側からのオートドープ、アウトディフュージョンを防止することができるシリコンエピタキシャルウエーハの製造方法となる。これにより、オン抵抗、リーク電流の低減といった最終的なデバイスの電気特性を向上させることが可能となるシリコンエピタキシャルウエーハを製造することができる。 If a silicon substrate is prepared with such a boron concentration and a dose amount of carbon ions, a carbon ion implantation layer is formed, and an epitaxial layer is formed, the epitaxial layer is grown at the boundary of the epitaxial layer and during the device manufacturing process. It becomes a method for manufacturing a silicon epitaxial wafer that can control the movement of boron dopant and prevent autodoping and outdiffusion from the surface side of the silicon substrate. This makes it possible to manufacture a silicon epitaxial wafer that can improve the final device electrical characteristics such as reduction of on-resistance and leakage current.
 また、前記炭素イオン注入層を形成する工程において、炭素イオンの注入エネルギーは100keV以下とすることが好ましい。 In the step of forming the carbon ion implantation layer, the carbon ion implantation energy is preferably 100 keV or less.
 このような注入エネルギーであれば、シリコン基板表面近傍に高炭素濃度の炭素イオン注入層を形成できるため、一層、オートドープ、アウトディフュージョンを防止することができるシリコンエピタキシャルウエーハの製造方法となる。 With such an implantation energy, a carbon ion implantation layer having a high carbon concentration can be formed in the vicinity of the silicon substrate surface, so that the silicon epitaxial wafer manufacturing method can further prevent autodoping and outdiffusion.
 さらに、前記CVD酸化膜を形成する工程において、1500Å以上の膜厚のノンドープのCVD酸化膜を形成することが好ましい。 Further, in the step of forming the CVD oxide film, it is preferable to form a non-doped CVD oxide film having a thickness of 1500 mm or more.
 このような膜厚のCVD酸化膜であれば、一層、オートドープ、アウトディフュージョンを防止することができるシリコンエピタキシャルウエーハの製造方法となる。 A CVD oxide film having such a thickness is a method for producing a silicon epitaxial wafer that can further prevent auto-doping and out-diffusion.
 また、前記炭素イオンの注入後、前記エピタキシャル層の形成前において、20℃/sec以上の温度上昇率で600℃から1000℃まで昇温し、水素雰囲気下、1,050℃以上の温度で30秒以上保持して回復アニール工程を行うことが好ましい。 In addition, after the implantation of the carbon ions and before the formation of the epitaxial layer, the temperature is increased from 600 ° C. to 1000 ° C. at a temperature increase rate of 20 ° C./sec or more, and 30 at a temperature of 1,050 ° C. or more in a hydrogen atmosphere. It is preferable to carry out the recovery annealing step by holding for at least 2 seconds.
 このような回復アニール工程を行うことで、炭素イオンの注入により乱れたシリコン基板の結晶性を回復させることができ、その上にエピタキシャル層を気相成長させることによって結晶性の良好なエピタキシャル層を得ることができるシリコンエピタキシャルウエーハの製造方法となる。これにより、エピタキシャル層に結晶欠陥の少ないシリコンエピタキシャルウエーハを製造することができる。 By performing such a recovery annealing step, the crystallinity of the silicon substrate disturbed by the implantation of carbon ions can be recovered, and an epitaxial layer having a good crystallinity can be formed by vapor-phase growth of the epitaxial layer thereon. This is a method for producing a silicon epitaxial wafer that can be obtained. Thereby, a silicon epitaxial wafer with few crystal defects can be produced in the epitaxial layer.
 さらに、本発明では、前記シリコンエピタキシャルウエーハの製造方法により製造されたシリコンエピタキシャルウエーハを用いて半導体素子又は集積回路を製造する方法であって、
 1分より長く保持する熱処理は、該熱処理の最高温度を950℃以下となるようにすることを特徴とする半導体素子又は集積回路の製造方法を提供する。
Furthermore, in the present invention, a method of manufacturing a semiconductor element or an integrated circuit using a silicon epitaxial wafer manufactured by the method of manufacturing a silicon epitaxial wafer,
The method for manufacturing a semiconductor element or an integrated circuit is characterized in that the heat treatment held for longer than 1 minute is such that the maximum temperature of the heat treatment is 950 ° C. or lower.
 半導体素子又は集積回路を製造する際に、このように熱処理を行うことで、エピタキシャル層の境界におけるドーパントの動きを制御することができ、シリコン基板表面側からのオートドープ、アウトディフュージョンを防止することができる半導体素子又は集積回路の製造方法となる。 When manufacturing a semiconductor element or an integrated circuit, the heat treatment is performed in this way, so that the movement of the dopant at the boundary of the epitaxial layer can be controlled, and autodoping and out diffusion from the silicon substrate surface side can be prevented. This is a method for manufacturing a semiconductor device or an integrated circuit.
 以上説明したように、本発明によれば、素子の所定の電気特性を得るために必要な所望の抵抗率のエピタキシャル層と従来より更に低抵抗率なシリコン基板からなり、低耐圧パワーMOSや撮像素子等の電気的特性の向上を実現することのできる、エピタキシャル成長中のオートドープや、素子製造工程の熱処理中のドーパントのアウトディフュージョンを従来に比べて強く抑制することができるシリコンエピタキシャルウエーハとその製造方法が提供される。 As described above, according to the present invention, an epitaxial layer having a desired resistivity necessary for obtaining predetermined electrical characteristics of an element and a silicon substrate having a lower resistivity than the conventional one, a low breakdown voltage power MOS and an imaging device are provided. Silicon epitaxial wafer capable of improving the electrical characteristics of devices, etc., and capable of suppressing autodoping during epitaxial growth and dopant out-diffusion during heat treatment in the device manufacturing process, and its manufacture A method is provided.
 また、以上説明したように、所定の濃度のボロン、リンをドーパントとして用い、所定のドーズ量の炭素イオンを注入することで、エピタキシャル層の成長中及び素子作製工程中において、エピタキシャル層の境界におけるリンドーパントの動きを制御することができ、シリコン基板表面側からのオートドープ、アウトディフュージョンを効果的に防止することができるシリコンエピタキシャルウエーハ及びその製造方法を提供することができる。これにより、オン抵抗、リーク電流の低減といった最終的なデバイスの電気特性を向上させることが可能となるシリコンエピタキシャルウエーハを得ることができる。さらに、本発明では該シリコンエピタキシャルウエーハを用いた半導体素子又は集積回路の製造方法を提供することができる。
 
In addition, as described above, by using boron and phosphorus having a predetermined concentration as dopants and implanting carbon ions having a predetermined dose, at the epitaxial layer boundary during the growth of the epitaxial layer and during the device fabrication process. It is possible to provide a silicon epitaxial wafer which can control the movement of the phosphorus dopant and can effectively prevent autodoping and outdiffusion from the surface side of the silicon substrate, and a method for manufacturing the same. Thereby, it is possible to obtain a silicon epitaxial wafer capable of improving the final device electrical characteristics such as reduction of on-resistance and leakage current. Furthermore, the present invention can provide a method for manufacturing a semiconductor element or an integrated circuit using the silicon epitaxial wafer.
本発明のシリコンエピタキシャルウエーハの概略の一例を示した図である。It is the figure which showed an example of the outline of the silicon epitaxial wafer of this invention. 本発明のシリコンエピタキシャルウエーハの製造方法の一例を示した工程フロー図である。It is the process flow figure showing an example of the manufacturing method of the silicon epitaxial wafer of the present invention. 実施例と比較例1,2のエピタキシャルウエーハのウエーハ表面からのリンの深さ方向の濃度分布を示した図である。It is the figure which showed the density | concentration distribution of the depth direction of the phosphorus from the wafer surface of the epitaxial wafer of an Example and Comparative Examples 1 and 2. FIG. シリコン基板の表面にエピタキシャル層をエピタキシャル成長させる最中のドーパント不純物の動きの概要を示した説明図である。It is explanatory drawing which showed the outline | summary of the motion of the dopant impurity in the middle of epitaxially growing an epitaxial layer on the surface of a silicon substrate. 様々な元素の拡散係数と温度の関係を示した図である。It is the figure which showed the relationship between the diffusion coefficient of various elements, and temperature. 本発明の半導体素子又は集積回路の製造方法によるパワーMOS製作の概略の工程フロー図である。It is a general | schematic process flowchart of power MOS manufacture by the manufacturing method of the semiconductor element or integrated circuit of this invention. 炭素イオンの注入エネルギーと深さ方向の炭素濃度分布(ドーズ量:1×1015atoms/cm)を示す図である。It is a figure which shows the carbon ion implantation energy and the carbon concentration distribution (dose amount: 1 × 10 15 atoms / cm 2 ) in the depth direction. 本発明と従来のエピタキシャルウエーハの熱処理前後での、エピタキシャル層-シリコン基板界面付近のボロンの濃度分布(SIMS)の変化を示す図である。It is a figure which shows the change of the boron density | concentration distribution (SIMS) of the epitaxial layer-silicon substrate interface vicinity before and behind the heat processing of this invention and the conventional epitaxial wafer. 本発明と従来のエピタキシャルウエーハの熱処理前後での、エピタキシャル層-シリコン基板界面付近のリンの濃度分布(SIMS)の変化を示す図である。It is a figure which shows the change of the density | concentration distribution (SIMS) of the phosphorus of the vicinity of an epitaxial layer-silicon substrate interface before and after heat processing of this invention and the conventional epitaxial wafer. 熱処理前と1100℃で1時間熱処理した後の本発明のエピタキシャルウエーハのエピタキシャル層-シリコン基板界面付近の炭素濃度分布(SIMS)の変化を示す図である。It is a figure which shows the change of carbon concentration distribution (SIMS) near the epitaxial layer-silicon substrate interface of the epitaxial wafer of this invention before heat processing and after heat processing at 1100 degreeC for 1 hour.
 以下、本発明についてより具体的に説明する。
 図4に、シリコン基板の表面にエピタキシャル層をエピタキシャル成長させる最中のドーパント不純物の動きの概要を示す。
Hereinafter, the present invention will be described more specifically.
FIG. 4 shows an outline of the movement of the dopant impurity during the epitaxial growth of the epitaxial layer on the surface of the silicon substrate.
 図4(a)に示すように、エピタキシャル層を形成するにあたっては、エピタキシャル成長前にシリコン基板10表面の自然酸化膜11を除去するため、図4(b)に示すようにプリベークが行われる。しかし、この際にウエーハ中のドーパントが雰囲気ガス中に外方拡散し、サセプター20付近に滞留することになってしまう。 As shown in FIG. 4A, when the epitaxial layer is formed, pre-baking is performed as shown in FIG. 4B in order to remove the natural oxide film 11 on the surface of the silicon substrate 10 before the epitaxial growth. However, at this time, the dopant in the wafer diffuses outward in the atmospheric gas and stays in the vicinity of the susceptor 20.
 そして図4(c)に示すように、エピタキシャル層12が形成され始めると、エピタキシャル層12の成長速度がドーパントの拡散速度より速いため、基板からの外方拡散はなくなる。しかし、エピタキシャル層12の成長初期には、雰囲気ガス中に外方拡散し滞留したドーパントがエピタキシャル層12に取り込まれる。 Then, as shown in FIG. 4C, when the epitaxial layer 12 starts to be formed, the growth rate of the epitaxial layer 12 is faster than the diffusion rate of the dopant, so that the outward diffusion from the substrate disappears. However, in the initial growth stage of the epitaxial layer 12, the dopant that has diffused out and stays in the atmospheric gas is taken into the epitaxial layer 12.
 ここで、図4(d)に示すように、シリコン基板10にオートドープ対策を何も施さなかった場合、シリコン基板10の裏面側にはエピタキシャル層が成長しないので、裏面側からのドーパントの外方拡散は続くことになる。このため、成長が続くエピタキシャル層には滞留するドーパントが取り込まれ続け、エピタキシャル層12の抵抗率は所望の値からずれたままとなる。 Here, as shown in FIG. 4D, when no countermeasure against auto-doping is applied to the silicon substrate 10, an epitaxial layer does not grow on the back surface side of the silicon substrate 10, so that the dopant is removed from the back surface side. The diffusion will continue. For this reason, the dopant which stays in the epitaxial layer which continues to grow is continuously taken in, and the resistivity of the epitaxial layer 12 remains deviated from a desired value.
 ここで、図4(e)に示すように雰囲気ガスをサセプターの裏面側にも流れるようにしたり、図4(f)に示すようにノンドープの酸化膜13でシリコン基板の裏面側をシールすることが行われているが、シリコン基板10表面からのエピタキシャル層12への外方拡散についての対策にはならず、エピタキシャル層12の抵抗率のずれを完全には抑制することができなかった。 Here, as shown in FIG. 4 (e), the atmospheric gas is allowed to flow also to the back side of the susceptor, or the back side of the silicon substrate is sealed with a non-doped oxide film 13 as shown in FIG. 4 (f). However, this is not a measure for outward diffusion from the surface of the silicon substrate 10 to the epitaxial layer 12, and the resistivity shift of the epitaxial layer 12 cannot be completely suppressed.
 そこで、シリコン基板表面側の外方拡散を少なくするために、低温で自然酸化膜除去アニールを行って、直ぐに薄いエピタキシャル層を成長させて外方拡散を抑制し、次にドーパントが拡散した雰囲気ガスを一旦パージしてからエピタキシャル成長を行うキャップデポジション法によって表面側のオートドープを抑制するという方法が行われることもある。
 しかし、工程が複雑になる割には、それほどオートドープの抑制には有効ではないという問題がある。なぜなら、シリコン基板表面にある自然酸化膜を除去するためのプリベーク中に雰囲気ガスの澱層中にドーパントが外方拡散してサセプター等に吸着したりするため、パージがそれほど有効ではないからである。
Therefore, in order to reduce outward diffusion on the silicon substrate surface side, natural oxide film removal annealing is performed at a low temperature, and a thin epitaxial layer is immediately grown to suppress outward diffusion. In some cases, the surface side auto-doping may be suppressed by a cap deposition method in which the substrate is once purged and then epitaxially grown.
However, although the process becomes complicated, there is a problem that it is not so effective in suppressing autodoping. This is because the purging is not so effective because the dopant diffuses out into the starch layer of the atmospheric gas during the pre-bake for removing the natural oxide film on the surface of the silicon substrate and is adsorbed on the susceptor. .
 ここで、シリコン基板からエピタキシャル層へのドーパントのアウトディフュージョンは、ドーパント種の拡散係数とエピタキシャル成長の条件(主に雰囲気温度とエピタキシャル成長に要する時間)によって決まる。
 図5に示すように、リン、ボロンは比較的拡散係数の大きな元素であるので、このアウトディフュージョンは大きくなるが、枚葉型のエピタキシャル装置が広く用いられるようになり、高速昇降温、高速成長が実現されたことにより、エピタキシャル成長中のエピタキシャル層側へのアウトディフュージョンは低減されてきている。
Here, the out diffusion of the dopant from the silicon substrate to the epitaxial layer is determined by the diffusion coefficient of the dopant species and the epitaxial growth conditions (mainly the ambient temperature and the time required for the epitaxial growth).
As shown in FIG. 5, since phosphorus and boron are elements having a relatively large diffusion coefficient, this out-diffusion becomes large, but a single-wafer type epitaxial device has been widely used, and high-speed temperature rising and cooling and high-speed growth are achieved. As a result, the out diffusion toward the epitaxial layer side during epitaxial growth has been reduced.
 しかし、オートドープについては、枚葉エピタキシャル装置が必ずしも有効ということは無い。
 また、枚葉エピタキシャル装置では成長速度が高速となるため、パージが十分行われない状態でエピタキシャル成長が開始されるため、上述のようなオートドープ対策が有効でない理由の一つになっている。
However, for auto-doping, a single wafer epitaxial apparatus is not always effective.
In addition, since the growth rate is high in the single wafer epitaxial apparatus, the epitaxial growth is started in a state where the purge is not sufficiently performed. This is one of the reasons why the above-described auto-doping countermeasure is not effective.
 そこで、シリコン基板表面側の拡散自体を抑制する必要がある。
 つまり、ドーパントの拡散係数の小さな材料の被膜を形成することでアウトディフュージョンを抑制することが可能である。しかし裏面側はノンドープのCVD酸化膜でシールすればよいのは上述の通りだが、その手法は表面側には適用できない。
 また、アウトディフュージョンは、シリコン中の拡散係数の大きな元素についてはその現象が強くなる。すなわち、そのための対策として最も有効なことは、拡散係数を小さくすることである。
Therefore, it is necessary to suppress the diffusion itself on the silicon substrate surface side.
That is, it is possible to suppress out-diffusion by forming a film of a material having a small dopant diffusion coefficient. However, as described above, the back side may be sealed with a non-doped CVD oxide film, but this method cannot be applied to the front side.
In addition, the phenomenon of out diffusion becomes stronger for elements having a large diffusion coefficient in silicon. That is, the most effective countermeasure for this is to reduce the diffusion coefficient.
 そこで、シリコン中のドーパントの拡散係数を小さくする方法について鋭意検討を重ねた結果、高濃度に炭素を含有したシリコン中では、格子間のシリコン原子の数が低下し、ボロンやリンが格子間に押し出される機会が減少して、ボロンやリン等のシリコンより結合半径の小さな原子の(キックアウト現象)拡散は著しく抑制され、ヒ素やアンチモン等のシリコンより結合半径の大きい原子の(空孔型)拡散は増速される現象に着目した。すなわち、炭素が高濃度にドープされた結晶領域では、リン、ボロンの拡散が減速される現象を利用して、エピタキシャル成長中及び素子作製中のオートドープ、アウトディフュージョンを抑制することに着目した。 Therefore, as a result of intensive studies on a method for reducing the diffusion coefficient of dopant in silicon, the number of silicon atoms between lattices decreases in silicon containing carbon at a high concentration, and boron and phosphorus are interstitial. Opportunities are reduced, and diffusion of atoms with a smaller bond radius than silicon such as boron and phosphorus (kickout phenomenon) is significantly suppressed, and atoms with a larger bond radius than silicon such as arsenic and antimony (hole type) We focused on the phenomenon that diffusion is accelerated. That is, in the crystal region doped with carbon at a high concentration, attention was focused on suppressing auto-doping and out-diffusion during epitaxial growth and device fabrication by utilizing the phenomenon that the diffusion of phosphorus and boron is slowed down.
 なお、高濃度に炭素を含有したシリコン中のドーパント不純物の拡散係数の変化に関する挙動については、SiGeC型ヘテロバイポーラトランジスタにおけるボロンのプロファイル制御では実用化されており、原理に関する多くの報告もなされている(非特許文献1、非特許文献2)。 Note that the behavior related to the change in the diffusion coefficient of dopant impurities in silicon containing a high concentration of carbon has been put to practical use in boron profile control in SiGeC type heterobipolar transistors, and many reports have been made on the principle. (Non-patent document 1, Non-patent document 2).
 実際のデバイスの特性の向上を実現するためには、エピタキシャル成長工程のみならず、その後に行なわれる素子製造工程中の熱処理においても、ドーパントの拡散(オートドープ、アウトディフュージョン)が抑制されることが必要である。近年、パワーMOSが微細化されてきており、その結果として、素子製造工程での熱処理も低温化してきている。しかし一方で、シリコン基板のドープ剤も砒素から赤燐に代わり、拡散しやすくなっている。また、シリコン基板の低抵抗率化が求められているためシリコン基板のドーパント濃度も高くなってきており、エピタキシャル層への拡散が生じ易くなっている。エピタキシャル成長工程のみならず、エピタキシャル成長工程後の素子製造工程の熱処理を含め、総合的に有効なドーパントの拡散抑制を実現する必要がある。 In order to improve the actual device characteristics, it is necessary to suppress the diffusion of dopants (auto-doping and out-diffusion) not only in the epitaxial growth process but also in the subsequent heat treatment during the device manufacturing process. It is. In recent years, the power MOS has been miniaturized, and as a result, the heat treatment in the element manufacturing process has also been lowered in temperature. On the other hand, the dopant for the silicon substrate is also easily diffused instead of arsenic instead of red phosphorus. Further, since the silicon substrate is required to have a low resistivity, the dopant concentration of the silicon substrate is increasing, and diffusion to the epitaxial layer is likely to occur. It is necessary to realize effective diffusion suppression of the dopant comprehensively including not only the epitaxial growth process but also the heat treatment of the element manufacturing process after the epitaxial growth process.
 シリコン基板に炭素イオン注入した後、エピタキシャル成長をする工程において、シリコン基板表面の炭素濃度分布がどのように変化するかは、イオン注入に関する基礎データから大まかに知ることができる。すなわち、ドーズ量と加速エネルギーでイオン注入終了段階の深さ方向のプロファイルを得て、ガウス分布の式を用いることでシリコン基板を熱処理した後の炭素濃度分布の変化を大まかに求めることができる。 In the process of epitaxial growth after carbon ion implantation into a silicon substrate, how the carbon concentration distribution on the surface of the silicon substrate changes can be roughly known from basic data on ion implantation. That is, by obtaining a profile in the depth direction at the ion implantation end stage with the dose amount and the acceleration energy, and using the Gaussian distribution formula, the change in the carbon concentration distribution after the heat treatment of the silicon substrate can be roughly obtained.
 これに対して、シリコン基板からエピタキシャル層へのドーパントの拡散は、誤差関数により大まかに求められる。ドーパントの拡散は一定濃度からの拡散であり、炭素濃度分布の変化は一定量の物質の拡散である。炭素イオン注入で形成された炭素濃度分布の急峻なピークは、熱処理で低下する性質をもつ。 On the other hand, the diffusion of the dopant from the silicon substrate to the epitaxial layer is roughly determined by an error function. The diffusion of the dopant is from a certain concentration, and the change in the carbon concentration distribution is the diffusion of a certain amount of material. The steep peak of the carbon concentration distribution formed by carbon ion implantation has the property of being lowered by heat treatment.
 ここで、炭素イオン注入エネルギーを高くすると炭素濃度分布のピーク位置は深くなり、ウエーハ表面の炭素濃度は低くなる。炭素は比較的軽い元素なので、高加速エネルギーで注入すると、ウエーハ表面での濃度は低くなりやすい。例えば、10×1015atoms/cmのドーズ量のイオン注入を100keVで行なったときの表面での炭素濃度は1×1018atoms/cm程度になり、これを、50keVにすると6×1018atoms/cm程度になることが知られている(非特許文献3)。 Here, when the carbon ion implantation energy is increased, the peak position of the carbon concentration distribution is deepened, and the carbon concentration on the wafer surface is lowered. Since carbon is a relatively light element, when it is implanted with high acceleration energy, the concentration on the wafer surface tends to be low. For example, the carbon concentration at the surface when ion implantation of a dose amount of 10 × 10 15 atoms / cm 2 is performed at 100 keV is about 1 × 10 18 atoms / cm 3 , and when this is 50 keV, the carbon concentration is 6 × 10 6. It is known to be about 18 atoms / cm 3 (Non-patent Document 3).
 前述のように、高濃度な炭素イオン注入層がシリコン基板表面近傍に存在すればエピタキシャル層へのドーパントの拡散をよりよく抑制できるので、炭素イオン注入のドーズ量は大きく、かつ、炭素イオン注入エネルギーは低いことが好ましい。 As described above, if a high-concentration carbon ion implantation layer is present in the vicinity of the silicon substrate surface, dopant diffusion into the epitaxial layer can be better suppressed, so that the carbon ion implantation dose is large and the carbon ion implantation energy is high. Is preferably low.
 実際には、エピタキシャル成長前の熱処理で、表面の炭素濃度は高くなり、表面のドーパント濃度は低くなるので、炭素イオン注入層はシリコン基板にドープされたリンの濃度をA×1020atoms/cmとしたとき、4A×1015atoms/cm以上、シリコン基板にドープされたボロンの濃度をB×1020atoms/cmとしたとき、4B×1015atoms/cm以上のドーズ量のイオン注入で、エピタキシャル成長前に炭素濃度は、ドーパント濃度と同等以上になり、エピタキシャル層への拡散を抑制可能となる。 Actually, since the carbon concentration on the surface is increased and the dopant concentration on the surface is decreased by the heat treatment before epitaxial growth, the carbon ion implanted layer has a concentration of phosphorus doped in the silicon substrate of A × 10 20 atoms / cm 3. 4A × 10 15 atoms / cm 2 or more, and when the concentration of boron doped in the silicon substrate is B × 10 20 atoms / cm 3 , ions with a dose amount of 4B × 10 15 atoms / cm 2 or more are used. By implantation, the carbon concentration becomes equal to or higher than the dopant concentration before epitaxial growth, and diffusion into the epitaxial layer can be suppressed.
 シリコン基板のリン濃度が比較的高く、炭素注入のドーズ量が4A×1015atoms/cm未満になると、エピタキシャル成長段階ではリンの拡散に対する減速効果が認められるが、その後の熱処理では、効果は顕著ではなくなる。エピタキシャル成長後の熱処理下での、エピタキシャル層-シリコン基板界面近傍においては、炭素はガウス分布形の拡散をし、リン、ボロンは誤差関数型の拡散をするので、その相対濃度は複雑に変化する。この領域で、ドーパントの拡散を炭素イオン注入で安定的に抑制するためには、そのドーズ量を所定の量以上とすることが好ましい。 When the phosphorus concentration of the silicon substrate is relatively high and the dose amount of carbon implantation is less than 4 A × 10 15 atoms / cm 2 , a moderation effect on phosphorus diffusion is observed in the epitaxial growth stage, but the effect is remarkable in the subsequent heat treatment. Is not. Under the heat treatment after epitaxial growth, in the vicinity of the epitaxial layer-silicon substrate interface, carbon diffuses in a Gaussian distribution, and phosphorus and boron diffuse in an error function, so that the relative concentrations change in a complicated manner. In this region, in order to stably suppress dopant diffusion by carbon ion implantation, the dose is preferably set to a predetermined amount or more.
 前述のように、高濃度に炭素を含有したシリコン基板中では、格子間シリコンの濃度が減少し、結果として、ボロンやリンが格子間に押し出される機会が減少して、シリコンより結合半径の小さな原子の(格子間型)拡散は減速し、シリコンより結合半径の大きい原子の(空孔型)拡散は増速する。特に、高温では、格子間シリコンと空孔の濃度の両方がFrankel対生成で増大するので、シリコン基板中の炭素による格子間シリコンの減少による拡散抑制効果は減少してしまう。そのため、リンドーパント、ボロンドーパントなどの拡散を炭素イオン注入層で抑制しようとする場合には、エピタキシャル成長工程のみならず、素子作製工程の熱処理でも、√Dtが等しくなるように低温で熱処理を行なうことが好ましい。SiGeC型ヘテロバイポーラトランジスタにおけるボロンのプロファイル制御では、低温でデバイス熱処理が行なわれ、実用化されている。なお、ここでDtとは温度tにおける拡散係数を示し、√Dtとは熱処理による拡散の大きさの目安を示す指標である。 As described above, in a silicon substrate containing a high concentration of carbon, the concentration of interstitial silicon decreases, and as a result, the opportunity for boron and phosphorus to be pushed out between the lattices decreases, resulting in a smaller bond radius than silicon. Atomic (interstitial) diffusion slows down, and (vacancy) diffusion of atoms with larger bond radii than silicon increases. In particular, at high temperatures, both the interstitial silicon and the concentration of vacancies increase due to the generation of Frankel pairs, so that the diffusion suppressing effect due to the reduction of interstitial silicon due to carbon in the silicon substrate decreases. Therefore, when it is intended to suppress diffusion of phosphorus dopant, boron dopant, etc. in the carbon ion implanted layer, heat treatment is performed at a low temperature so that √Dt becomes equal not only in the epitaxial growth process but also in the element fabrication process. Is preferred. In boron profile control in a SiGeC type heterobipolar transistor, device heat treatment is performed at a low temperature and put into practical use. Here, Dt indicates a diffusion coefficient at temperature t, and √Dt is an index indicating a measure of the amount of diffusion by heat treatment.
 図10に、シリコン基板に炭素イオンを注入し熱処理をする前と後の炭素濃度プロファイルの変化を示す。図10に示した熱処理後の炭素濃度プロファイルは、単純なガウス形の拡散プロファイルになっていないことがわかる。このように、炭素イオンの拡散も空孔型拡散と格子間型拡散の両方の機構でおこると考えられる。そのため、炭素イオンを高濃度でシリコン基板に注入することにより、シリコン基板からエピタキシャル層へのドーパント(リン、ボロン)の浮き上がり現象をエピタキシャル成長工程と素子製造工程において抑制することが可能となる。結果として、縦型トランジスタのオン抵抗低減、リーク電流の低減が実現できるようになる。 FIG. 10 shows changes in the carbon concentration profile before and after carbon ions are implanted into the silicon substrate and subjected to heat treatment. It can be seen that the carbon concentration profile after the heat treatment shown in FIG. 10 is not a simple Gaussian diffusion profile. Thus, it is considered that carbon ions are diffused by both vacancy-type diffusion and interstitial diffusion. Therefore, by implanting carbon ions at a high concentration into the silicon substrate, it is possible to suppress the phenomenon of dopant (phosphorus, boron) floating from the silicon substrate to the epitaxial layer in the epitaxial growth process and the element manufacturing process. As a result, the on-resistance of the vertical transistor can be reduced and the leakage current can be reduced.
 また、一方で炭素イオンを1×1015atoms/cm前後のドーズ量でイオン注入すると、その領域が強力なゲッタリングサイトとなることが知られている。そのため、上記の炭素イオン注入されたエピタキシャル層-シリコン基板領域は、安定かつ強力なゲッタリングサイトにもなり、この手法を用いたデバイスの歩留まり、電気特性の向上にも寄与するという副次的な効果も当然期待される。 On the other hand, it is known that when a carbon ion is ion-implanted at a dose of about 1 × 10 15 atoms / cm 2 , the region becomes a strong gettering site. Therefore, the carbon ion-implanted epitaxial layer-silicon substrate region also serves as a stable and powerful gettering site, and contributes to the improvement of device yield and electrical characteristics using this method. Naturally, an effect is also expected.
 そして、本発明者らはこの知見を基に鋭意検討を重ねた結果、エピタキシャル層の直下となるシリコン基板に炭素イオン注入を行って炭素イオン注入層を形成することによって、シリコン基板表面側(エピタキシャル層が形成される側)のアウトディフュージョンを抑制し、更に裏面側のCVD酸化膜を合わせて形成することでオートドープを抑制して、所望の抵抗率のエピタキシャル層が得られることを発見し、本発明を完成させた。 Then, as a result of intensive studies based on this knowledge, the present inventors conducted carbon ion implantation on a silicon substrate directly under the epitaxial layer to form a carbon ion implanted layer, thereby forming a silicon substrate surface side (epitaxial It is found that an epitaxial layer having a desired resistivity can be obtained by suppressing outdiffusion on the side on which the layer is formed), further suppressing autodoping by forming a CVD oxide film on the back side together, The present invention has been completed.
 以下、本発明について図を参照して詳細に説明するが、本発明はこれらに限定されるものではない。図1は、本発明のシリコンエピタキシャルウエーハの概略の一例を示した図である。
 図1(a)に示すように、本発明のシリコンエピタキシャルウエーハ1は、シリコン基板2にエピタキシャル層5が形成されたものである。
 そして、少なくとも、シリコン基板2は、リンまたはボロンが2.0×1019atoms/cm以上の濃度でドープされており、かつ少なくとも裏面2b側にCVD酸化膜4が形成され、表面2a側には表面から炭素イオンが注入されたことによる炭素イオン注入層3が形成されたものである。そして、炭素イオン注入層3が形成された側の表面2aにエピタキシャル層5が形成されたものである。
Hereinafter, the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto. FIG. 1 is a view showing an example of the outline of the silicon epitaxial wafer of the present invention.
As shown in FIG. 1A, a silicon epitaxial wafer 1 according to the present invention is obtained by forming an epitaxial layer 5 on a silicon substrate 2.
At least the silicon substrate 2 is doped with phosphorus or boron at a concentration of 2.0 × 10 19 atoms / cm 3 or more, and the CVD oxide film 4 is formed on at least the back surface 2b side, and on the front surface 2a side. Is a carbon ion implanted layer 3 formed by carbon ions implanted from the surface. The epitaxial layer 5 is formed on the surface 2a on the side where the carbon ion implantation layer 3 is formed.
 このように、2.0×1019atoms/cm以上の濃度でリンまたはボロンがドープされたシリコン基板とエピタキシャル層からなるシリコンエピタキシャルウエーハにおいて、シリコン基板の少なくとも裏面側にCVD酸化膜が形成され、エピタキシャル層が形成された側の表面側に炭素イオン注入層が形成されたものでは、エピタキシャル層が形成される際の熱処理時には、裏面のCVD酸化膜によって裏面側の外方拡散が抑制され、表面側では炭素イオン注入層によってボロンやリンの拡散が抑制されて外方拡散が抑制される。これによってエピタキシャル層へのドーパントのオートドープが抑制されたものとなる。また、素子製造時においても、炭素イオン注入層の存在によってエピタキシャル層へのアウトディフュージョンが抑制されたものとなる。なお、シリコン基板にドープされるリンまたはボロンは、2.0×1019atoms/cm以上固溶限界以下の濃度でドープされることが好ましい。
 よって、低耐圧パワーMOS、中耐圧パワーMOSや撮像素子等の所定の電気特性を得るのに好適な、抵抗率が所望の値からのずれが従来に比べて小さいエピタキシャル層と、従来より低抵抗率なシリコン基板から構成されたシリコンエピタキシャルウエーハとなっている。
Thus, in a silicon epitaxial wafer comprising a silicon substrate doped with phosphorus or boron at a concentration of 2.0 × 10 19 atoms / cm 3 or more and an epitaxial layer, a CVD oxide film is formed on at least the back surface side of the silicon substrate. In the case where the carbon ion implanted layer is formed on the surface side on which the epitaxial layer is formed, out-diffusion on the back surface side is suppressed by the CVD oxide film on the back surface during the heat treatment when the epitaxial layer is formed, On the surface side, diffusion of boron and phosphorus is suppressed by the carbon ion implantation layer, and outward diffusion is suppressed. As a result, autodoping of the dopant into the epitaxial layer is suppressed. In addition, even during device manufacture, out diffusion to the epitaxial layer is suppressed by the presence of the carbon ion implantation layer. Note that phosphorus or boron doped in the silicon substrate is preferably doped at a concentration of 2.0 × 10 19 atoms / cm 3 or more and a solid solution limit or less.
Therefore, it is suitable for obtaining predetermined electrical characteristics such as a low withstand voltage power MOS, a medium withstand voltage power MOS, an image sensor, etc. It is a silicon epitaxial wafer composed of an efficient silicon substrate.
 また、図1(b)に示すように、シリコンエピタキシャルウエーハ1’は、CVD酸化膜4’が、シリコン基板2の炭素イオン注入層3が形成された位置よりシリコン基板表面により近い位置の側面まで覆うものとすることができる。
 このようなエピタキシャルウエーハでは、シリコン基板がCVD酸化膜と炭素イオン注入層によって完全にシールされたものとなる。そのため、シリコン基板に高濃度にドープされたボロンまたはリンが、熱処理時のアウトディフュージョンや、エピタキシャル層形成の際のオートドープが、従来に比べて更に強力に抑制されたものとなる。従って、更に所望の値の抵抗率となったエピタキシャル層を有するシリコンエピタキシャルウエーハとなる。
Further, as shown in FIG. 1B, the silicon epitaxial wafer 1 ′ has a CVD oxide film 4 ′ extending from the position where the carbon ion implantation layer 3 of the silicon substrate 2 is formed to the side surface closer to the silicon substrate surface. It can be covered.
In such an epitaxial wafer, the silicon substrate is completely sealed by the CVD oxide film and the carbon ion implantation layer. For this reason, boron or phosphorus doped at a high concentration in the silicon substrate suppresses the out-diffusion during the heat treatment and the auto-doping during the formation of the epitaxial layer more strongly than in the past. Accordingly, a silicon epitaxial wafer having an epitaxial layer with a desired resistivity is obtained.
 ここで、炭素イオン注入層3は、炭素イオンが3.0×1014atoms/cm以上のドーズ量で注入されたものとすることができる。
 炭素イオンのドーズ量が3.0×1014atoms/cm以上の炭素イオン注入層を有するシリコンエピタキシャルウエーハであれば、イオン注入領域の炭素のピーク濃度を基板のドーパント濃度以上とすることが約束され、その結果シリコン基板表面側におけるリンまたはボロンの外方への拡散がより強く抑制されたものとすることができる。よって、より所望の値の抵抗率のエピタキシャル層を有するシリコンエピタキシャルウエーハとなる。なお、炭素イオンは、3.0×1014atoms/cm以上3.0×1015atoms/cm以下のドーズ量で注入されることが好ましい。
Here, the carbon ion implanted layer 3 can be one in which carbon ions are implanted at a dose of 3.0 × 10 14 atoms / cm 2 or more.
In the case of a silicon epitaxial wafer having a carbon ion implantation layer with a carbon ion dose of 3.0 × 10 14 atoms / cm 2 or more, it is promised that the peak concentration of carbon in the ion implantation region is equal to or higher than the dopant concentration of the substrate. As a result, the outward diffusion of phosphorus or boron on the silicon substrate surface side can be more strongly suppressed. Therefore, a silicon epitaxial wafer having an epitaxial layer with a more desirable resistivity is obtained. Note that carbon ions are preferably implanted at a dose of 3.0 × 10 14 atoms / cm 2 or more and 3.0 × 10 15 atoms / cm 2 or less.
 この場合、SiGeCヘテロバイポーラトランジスタの場合と同様に、エピタキシャル層への拡散を抑制するために、エピタキシャル層側に高濃度に炭素をドープした薄いエピタキシャル層を形成することによっても同じ効果が得られる。しかし、SiGe中とは異なり、シリコン中の炭素の固溶度はそれほど高くなく、無理にドープしようとすると、結晶欠陥が発生してしまうため、実用的には用いられない。
 また、高濃度(1019atoms/cm以上)のドーピング領域では、炭素起因ドナーが発生する。炭素濃度の1/100から1/1000のドナーが発生するので、n型層が形成されるという問題もある。1019atoms/cm以上のボロンがドープされた基板に炭素イオンを注入した場合は、炭素ドナーによるn型反転層ができることはなく、抵抗率の変化も10%以下となる。
In this case, as in the case of the SiGeC heterobipolar transistor, the same effect can be obtained by forming a thin epitaxial layer doped with carbon at a high concentration on the epitaxial layer side in order to suppress diffusion into the epitaxial layer. However, unlike in SiGe, the solid solubility of carbon in silicon is not so high, and crystal defects are generated when it is forcibly doped, so it is not practically used.
In addition, a carbon-induced donor is generated in a high concentration (10 19 atoms / cm 3 or more) doping region. Since a donor having a carbon concentration of 1/100 to 1/1000 is generated, there is a problem that an n-type layer is formed. When carbon ions are implanted into a substrate doped with boron of 10 19 atoms / cm 3 or more, an n-type inversion layer is not formed by a carbon donor, and the change in resistivity is 10% or less.
 そして、エピタキシャル層5の不純物濃度が、シリコン基板2の不純物濃度の1/1000以下であるものとすることができる。
 高濃度のシリコン基板を用いても、エピタキシャル層の不純物濃度も比較的高ければ、オートドープの影響は相対的に小さくなる。現状のエピタキシャル装置では、エピタキシャル層と基板の濃度比が1/1000以下となると、オートドープの影響を大きく受けるようになる。エピタキシャル層の不純物濃度が基板の不純物濃度の1/1000以下のエピタキシャルウエーハに本方法を適用すると、その効果は極めて顕著なものとなる。なお、エピタキシャル層の不純物濃度は、シリコン基板の不純物濃度に対し1/1000以下できる限り少ない方が好ましい。
The impurity concentration of the epitaxial layer 5 can be set to 1/1000 or less of the impurity concentration of the silicon substrate 2.
Even if a high-concentration silicon substrate is used, if the impurity concentration of the epitaxial layer is relatively high, the influence of auto-doping is relatively small. In the current epitaxial apparatus, when the concentration ratio between the epitaxial layer and the substrate is 1/1000 or less, it is greatly affected by auto-doping. When this method is applied to an epitaxial wafer whose impurity concentration in the epitaxial layer is 1/1000 or less of the impurity concentration in the substrate, the effect becomes extremely remarkable. The impurity concentration of the epitaxial layer is preferably as low as possible to 1/1000 or less of the impurity concentration of the silicon substrate.
 特に、シリコン基板は、リンが0.5×1020atoms/cm以上の濃度でドープされたものであり、炭素イオン注入層は、シリコン基板にドープされたリンの濃度をA×1020atoms/cmとしたとき、4A×1015atoms/cm以上のドーズ量で炭素イオンを注入して形成されたものであり、エピタキシャル層は、リンが5.0×1017atoms/cm以下の濃度でドープされたものであるシリコンエピタキシャルウエーハが好ましい。また、シリコン基板は、ボロンが0.2×1020atoms/cm以上の濃度でドープされたものであり、炭素イオン注入層は、シリコン基板にドープされたボロンの濃度をB×1020atoms/cmとしたとき、4B×1015atoms/cm以上のドーズ量で炭素イオンを注入して形成されたものであり、エピタキシャル層は、ボロンが2.0×1017atoms/cm以下の濃度でドープされたものであるシリコンエピタキシャルウエーハも好ましい。 In particular, the silicon substrate is one in which phosphorus is doped at a concentration of 0.5 × 10 20 atoms / cm 3 or more, and the carbon ion implantation layer has a concentration of phosphorus doped in the silicon substrate of A × 10 20 atoms. / Cm 3 , carbon ions are implanted at a dose of 4 A × 10 15 atoms / cm 2 or more, and the epitaxial layer has a phosphorus content of 5.0 × 10 17 atoms / cm 3 or less. A silicon epitaxial wafer that is doped at a concentration of 1 to 5 is preferred. In addition, the silicon substrate is doped with boron at a concentration of 0.2 × 10 20 atoms / cm 3 or more, and the carbon ion implanted layer has a boron concentration of B × 10 20 atoms doped into the silicon substrate. / Cm 3 , carbon ions are implanted at a dose amount of 4B × 10 15 atoms / cm 2 or more, and the epitaxial layer has boron of 2.0 × 10 17 atoms / cm 3 or less. Also preferred is a silicon epitaxial wafer doped at a concentration of
 この場合、シリコン基板にドープされるリンまたはボロンはそれぞれ、0.5×1020atoms/cm以上固溶限界以下、0.2×1020atoms/cm以上固溶限界以下の濃度でドープされることが好ましい。また、炭素イオンはそれぞれ、4A×1015atoms/cm以上6A×1015atoms/cm以下、4B×1015atoms/cm以上10B×1015atoms/cm以下のドーズ量で注入されることが好ましい。炭素イオン注入のドーズ量は多くしたほうがリン、ボロンの拡散を減速する効果が大きいが、一方で、イオン注入の生産性の低下、エピタキシャル層の結晶欠陥の発生を回避するために、4A×1015atoms/cm及び4B×1015atoms/cmに近いドーズ量が好ましい。さらに、エピタキシャル層にドープされるリンまたはボロンはそれぞれ、0.5×1017atoms/cm以上5.0×1017atoms/cm以下、0.2×1017atoms/cm以上2.0×1017atoms/cm以下濃度でドープされることが好ましい。 In this case, phosphorus or boron doped in the silicon substrate is doped at a concentration of 0.5 × 10 20 atoms / cm 3 or more and a solid solution limit or less and 0.2 × 10 20 atoms / cm 3 or more and a solution solution limit or less. It is preferred that Carbon ions are implanted at a dose of 4 A × 10 15 atoms / cm 2 or more and 6 A × 10 15 atoms / cm 2 or less, 4B × 10 15 atoms / cm 2 or more and 10 B × 10 15 atoms / cm 2 or less. It is preferable. Increasing the dose of carbon ion implantation has a greater effect of slowing down the diffusion of phosphorus and boron. On the other hand, in order to avoid a decrease in ion implantation productivity and generation of crystal defects in the epitaxial layer, 4A × 10 Dose amounts close to 15 atoms / cm 2 and 4B × 10 15 atoms / cm 2 are preferred. Furthermore, phosphorus or boron doped in the epitaxial layer is 0.5 × 10 17 atoms / cm 2 or more and 5.0 × 10 17 atoms / cm 3 or less, 0.2 × 10 17 atoms / cm 2 or more, respectively. It is preferable to dope at a concentration of 0 × 10 17 atoms / cm 3 or less.
 このようなリン又はボロン濃度、及び炭素イオンのドーズ量であれば、エピタキシャル層の成長中及び素子作製工程中において、エピタキシャル層の境界におけるリン又はボロンドーパントの動きを制御することができ、シリコン基板表面側からのオートドープ、アウトディフュージョンを防止することができる。これにより、オン抵抗、リーク電流の低減といった最終的なデバイスの電気特性を向上させることが可能となるシリコンエピタキシャルウエーハとなる。 With such a phosphorus or boron concentration and a carbon ion dose, the movement of phosphorus or boron dopant at the boundary of the epitaxial layer can be controlled during the growth of the epitaxial layer and during the device fabrication process, and the silicon substrate Auto-doping and out-diffusion from the surface side can be prevented. As a result, a silicon epitaxial wafer that can improve the electrical characteristics of the final device such as reduction of on-resistance and leakage current is obtained.
 さらに、前記CVD酸化膜の膜厚は、1500Å以上であることが好ましい。このような膜厚であれば、ボロン又はリンドーパントのアウトディフュージョンやオートドープを一層抑制することができる。これにより、オン抵抗、リーク電流の低減といった最終的なデバイスの電気特性を向上させることが可能となるシリコンエピタキシャルウエーハとなる。 Furthermore, the thickness of the CVD oxide film is preferably 1500 mm or more. With such a film thickness, out diffusion and autodoping of boron or phosphorus dopant can be further suppressed. As a result, a silicon epitaxial wafer that can improve the electrical characteristics of the final device such as reduction of on-resistance and leakage current is obtained.
 次に、本発明のシリコンエピタキシャルウエーハの製造方法の一例を図を参照して以下に示すが、もちろん本発明はこれらに限定されるものではない。図2は本発明のシリコンエピタキシャルウエーハの製造方法の一例を示した工程フロー図である。 Next, an example of a method for producing a silicon epitaxial wafer according to the present invention will be described below with reference to the drawings. However, the present invention is not limited to these examples. FIG. 2 is a process flow diagram showing an example of a method for producing a silicon epitaxial wafer of the present invention.
 図2(a)に示すように、まずリンまたはボロンが2.0×1019atoms/cm以上の濃度でドープされたシリコン基板を準備する。
 ここで準備するシリコン基板は、リンまたはボロンが2.0×1019atoms/cm以上の濃度でドープされたものであること以外の他の物性は特に限定されず、例えばCZ法で育成したシリコン単結晶棒からスライスして作製したものを用いればよい。また結晶方位、結晶径、その他の条件等も規格に応じて所望のものとすれば良く、特に限定されない。なお、シリコン基板にドープされるリンまたはボロンは、2.0×1019atoms/cm以上固溶限界以下の濃度でドープされることが好ましい。
As shown in FIG. 2A, a silicon substrate doped with phosphorus or boron at a concentration of 2.0 × 10 19 atoms / cm 3 or more is first prepared.
The silicon substrate prepared here is not particularly limited except that phosphorus or boron is doped with phosphorus or boron at a concentration of 2.0 × 10 19 atoms / cm 3 or more. For example, the silicon substrate is grown by the CZ method. What was manufactured by slicing from a silicon single crystal rod may be used. Further, the crystal orientation, crystal diameter, other conditions, and the like may be set as desired according to the standard, and are not particularly limited. Note that phosphorus or boron doped in the silicon substrate is preferably doped at a concentration of 2.0 × 10 19 atoms / cm 3 or more and a solid solution limit or less.
 次に、図2(b)、(c)に示すように、準備したシリコン基板に、裏面側にCVD酸化膜を形成する工程を行い、その後表面側に炭素イオンを注入して炭素イオン注入層を形成する工程を行う。
 若しくは、図2(b’)、(c’)に示すように、準備したシリコン基板の表面側にパッドオキサイドを用いて炭素イオンを注入して炭素イオン注入層を形成する工程を行い、その後裏面側にCVD酸化膜を形成する工程を行う。
Next, as shown in FIGS. 2B and 2C, a step of forming a CVD oxide film on the back surface side is performed on the prepared silicon substrate, and then carbon ions are implanted on the front surface side to form a carbon ion implanted layer. The process of forming is performed.
Alternatively, as shown in FIGS. 2B 'and 2C', a step of forming a carbon ion implanted layer by implanting carbon ions using pad oxide on the surface side of the prepared silicon substrate is performed, and then the back surface is formed. A step of forming a CVD oxide film on the side is performed.
 この際、200~300Å程度の膜厚のパッドオキサイドを形成したものであることが望ましい。チャネリング防止とイオン注入の際の飛程(Rp)をあまり深くしないために有効である。炭素イオン注入時にチルティングを行なったり、加速エネルギーを低めに設定することで同様な効果が得られる。 At this time, it is desirable that pad oxide having a thickness of about 200 to 300 mm is formed. This is effective in preventing channeling and not making the range (Rp) during ion implantation too deep. The same effect can be obtained by performing tilting at the time of carbon ion implantation or by setting the acceleration energy low.
 この炭素イオン注入工程とCVD酸化膜形成工程は、順不同であって、どちらの工程を先にやってもかまわず、特に限定されない。
 しかし、炭素イオン注入工程の後にCVD酸化膜形成工程を行うと、CVD酸化膜形成工程後、すなわちエピタキシャル層形成工程の前に表面側に回り込んだ酸化膜を研磨で除去しなければならず、製造効率があまり良くない。一方、CVD酸化膜形成工程後に炭素イオン注入工程を行った場合は、炭素イオン注入工程中に裏面からのオートドープの影響を受けることがないので、炭素イオン注入工程後に裏面側を研磨する必要はない。そのため、CVD酸化膜形成工程を先に行い、その後炭素イオン注入工程を行う図2(b)、(c)のほうが製造効率の面から都合が良い。
The carbon ion implantation process and the CVD oxide film forming process are not in any particular order, and either process may be performed first, and is not particularly limited.
However, when the CVD oxide film forming process is performed after the carbon ion implantation process, the oxide film that has come to the surface side after the CVD oxide film forming process, that is, before the epitaxial layer forming process, must be removed by polishing. Production efficiency is not very good. On the other hand, when the carbon ion implantation process is performed after the CVD oxide film formation process, it is not affected by auto-doping from the back surface during the carbon ion implantation process, so it is necessary to polish the back surface side after the carbon ion implantation process. Absent. Therefore, FIGS. 2B and 2C in which the CVD oxide film forming step is performed first and then the carbon ion implantation step is more convenient in terms of manufacturing efficiency.
 また、この(b)または(c’)のCVD酸化膜の形成工程は、熱分解法であっても、プラズマ成長法であっても良く、その形成方法は特には限定されないが、形成するCVD酸化膜は、ドーパントがドープされないノンドープのものとすることがよい。 Further, the CVD oxide film formation step (b) or (c ′) may be a thermal decomposition method or a plasma growth method, and the formation method is not particularly limited. The oxide film is preferably non-doped with no dopant.
 そして、(b’)または(c)の炭素イオン注入工程は、炭素イオンのドーズ量を、3.0×1014atoms/cm以上とすることができる。
 炭素イオンのドーズ量を上述のものとすることによって、シリコン基板の表面側からのリンやボロンの拡散をより確実に抑制することができ、より所望の値の抵抗率となったエピタキシャル層を有するシリコンエピタキシャルウエーハが得られるようになる。なお、炭素イオンは、3.0×1014atoms/cm以上3.0×1015atoms/cm以下のドーズ量で注入されることが好ましい。
In the carbon ion implantation step (b ′) or (c), the dose of carbon ions can be set to 3.0 × 10 14 atoms / cm 2 or more.
By setting the dose amount of carbon ions as described above, diffusion of phosphorus and boron from the surface side of the silicon substrate can be more reliably suppressed, and the epitaxial layer has a resistivity with a desired value. A silicon epitaxial wafer can be obtained. Note that carbon ions are preferably implanted at a dose of 3.0 × 10 14 atoms / cm 2 or more and 3.0 × 10 15 atoms / cm 2 or less.
 なお、炭素イオンの加速エネルギーは20keV以上とすることが望ましい。これによって炭素イオン注入層の深さが浅くなり過ぎず、ボロン、リンの拡散を確実に静止させることに寄与するものとすることができる。 Note that the acceleration energy of carbon ions is preferably 20 keV or more. As a result, the depth of the carbon ion implantation layer does not become too shallow, and it can contribute to reliably stopping the diffusion of boron and phosphorus.
 また、炭素イオン注入層を形成する工程において、炭素イオンの注入エネルギーは100keV以下とすることが好ましい。このような注入エネルギーであれば、高炭素濃度の炭素イオン注入層をシリコン基板表面近傍に形成できるため、一層、オートドープ、アウトディフュージョンを防止することができるシリコンエピタキシャルウエーハの製造方法となる。これにより、オン抵抗、リーク電流の低減といった最終的なデバイスの電気特性を向上させることが可能となるシリコンエピタキシャルウエーハを製造することができる。 Further, in the step of forming the carbon ion implantation layer, the carbon ion implantation energy is preferably 100 keV or less. With such implantation energy, a carbon ion implantation layer having a high carbon concentration can be formed in the vicinity of the surface of the silicon substrate, so that the silicon epitaxial wafer manufacturing method can further prevent autodoping and outdiffusion. This makes it possible to manufacture a silicon epitaxial wafer that can improve the final device electrical characteristics such as reduction of on-resistance and leakage current.
 ここで、炭素イオンをシリコン基板表面に注入したときの注入エネルギーと形成される炭素濃度分布の関係を図7に示す。このように、注入エネルギーが低いほどシリコン基板表面近傍に炭素イオン注入層を形成することができる。 Here, FIG. 7 shows the relationship between the implantation energy and carbon concentration distribution formed when carbon ions are implanted into the silicon substrate surface. Thus, the carbon ion implantation layer can be formed near the silicon substrate surface as the implantation energy is lower.
 さらに、炭素イオンの注入量は、シリコン基板のドーパント濃度に応じて調整されることができ、例えばシリコン基板のドーパント濃度が1×1019~1×1020atoms/cm程度である場合には、1×1015atoms/cm前後となることが好ましい。このような、イオン注入には、大電流イオン注入機を用いることができ、標準的な生産性を確保できる。また、この高濃度炭素イオン注入層を形成する安価で副作用の少ない手法としては、シリコン基板のボロンドーパントやリンドーパントの濃度が1.0×1020atoms/cmを超えない範囲としてイオン注入をすることが好適である。 Further, the amount of carbon ions implanted can be adjusted according to the dopant concentration of the silicon substrate. For example, when the dopant concentration of the silicon substrate is about 1 × 10 19 to 1 × 10 20 atoms / cm 3. It is preferably about 1 × 10 15 atoms / cm 2 . For such ion implantation, a large current ion implanter can be used, and standard productivity can be secured. Further, as an inexpensive and less side-effect method for forming this high-concentration carbon ion-implanted layer, ion implantation is performed in a range where the boron dopant or phosphorus dopant concentration of the silicon substrate does not exceed 1.0 × 10 20 atoms / cm 3. It is preferable to do.
 以上のようにして炭素イオンを注入したシリコン基板は、パッド酸化膜がある場合はフッ酸溶液で表面側だけエッチングして除去することができる。また、パッド酸化膜がない場合は、そのままRCA洗浄して続く工程を行なうことができる。この場合のRCA洗浄では、SC1洗浄でのエッチング量の管理をきちんと行うことが好ましい。 The silicon substrate implanted with carbon ions as described above can be removed by etching only the surface side with a hydrofluoric acid solution if there is a pad oxide film. If there is no pad oxide film, RCA cleaning can be performed as it is, and the subsequent process can be performed. In the RCA cleaning in this case, it is preferable to properly manage the etching amount in the SC1 cleaning.
 更に、CVD酸化膜を、シリコン基板の炭素イオン注入層の位置よりシリコン基板表面に近い位置の側面まで覆うように形成する、すなわち炭素イオン注入領域と完全にオーバーラップするように、炭素イオン注入領域とCVD酸化膜を連続して形成することができる。
 シリコン基板の炭素イオン注入領域と完全にオーバーラップするように、炭素イオン注入領域とCVD酸化膜を連続して形成することによって、シリコン基板をCVD酸化膜と炭素イオン注入層でシールすることができる。これによってボロンやリンのアウトディフュージョンやオートドープが発生することをより強力に抑制することができ、従って、更に所望の値の抵抗率となったエピタキシャル層を有するシリコンエピタキシャルウエーハを得ることができる。
Further, the CVD oxide film is formed so as to cover the side surface closer to the silicon substrate surface than the position of the carbon ion implantation layer of the silicon substrate, that is, so as to completely overlap the carbon ion implantation region. And a CVD oxide film can be continuously formed.
By continuously forming the carbon ion implantation region and the CVD oxide film so as to completely overlap the carbon ion implantation region of the silicon substrate, the silicon substrate can be sealed with the CVD oxide film and the carbon ion implantation layer. . As a result, the occurrence of out-diffusion or auto-doping of boron or phosphorus can be more strongly suppressed, and therefore a silicon epitaxial wafer having an epitaxial layer with a desired resistivity can be obtained.
 さらに、CVD酸化膜を形成する工程において、1500Å以上の膜厚のノンドープのCVD酸化膜を形成することが好ましい。このような膜厚のCVD酸化膜であれば、一層、オートドープ、アウトディフュージョンを防止することができるシリコンエピタキシャルウエーハの製造方法となる。これにより、オン抵抗、リーク電流の低減といった最終的なデバイスの電気特性を向上させることが可能となるシリコンエピタキシャルウエーハを製造することができる。なお、CVD酸化膜の膜厚は1500Å以上5000Å以下が好ましい。 Furthermore, in the step of forming the CVD oxide film, it is preferable to form a non-doped CVD oxide film having a thickness of 1500 mm or more. With a CVD oxide film having such a thickness, a silicon epitaxial wafer manufacturing method that can further prevent auto-doping and out-diffusion is obtained. This makes it possible to manufacture a silicon epitaxial wafer that can improve the final device electrical characteristics such as reduction of on-resistance and leakage current. The thickness of the CVD oxide film is preferably 1500 mm or more and 5000 mm or less.
 また、図2(d)に示すように、RTA装置を用いて、昇温速度30℃/sec以上で加熱し、900℃以上の温度で10秒以上の回復アニールを行い、その後工程(e)のエピタキシャル層の形成を行うことができる。
 このように、昇温速度30℃/sec以上で加熱し、900℃以上の温度で10秒以上の回復アニールをRTA装置によって行うことで、先の炭素イオン注入工程で乱れたシリコン基板の結晶性を回復させることができ、その上に気相成長させることによって結晶性の良好なエピタキシャル層を得ることができるようになる。すなわち、エピタキシャル層に結晶欠陥の少ないシリコンエピタキシャルウエーハが得られるようになる。なお、前記回復アニールの際の昇温速度は30℃/sec以上、装置性能の限界以下、例えば60℃/sec以下であることが好ましく、前記回復アニールは900℃以上1100℃以下の温度で行われることが好ましく、また10秒以上60秒以下の時間で行われることが好ましい。
Further, as shown in FIG. 2 (d), using an RTA apparatus, heating is performed at a temperature rising rate of 30 ° C./sec or more, recovery annealing is performed at a temperature of 900 ° C. or more for 10 seconds or more, and then the step (e) The epitaxial layer can be formed.
Thus, the crystallinity of the silicon substrate disturbed in the previous carbon ion implantation process is obtained by heating at a temperature rising rate of 30 ° C./sec or more and performing recovery annealing for 10 seconds or more at a temperature of 900 ° C. or more by the RTA apparatus. Can be recovered, and an epitaxial layer with good crystallinity can be obtained by vapor phase growth thereon. That is, a silicon epitaxial wafer with few crystal defects can be obtained in the epitaxial layer. The rate of temperature increase during the recovery annealing is preferably 30 ° C./sec or more and below the limit of the device performance, for example, 60 ° C./sec or less. The recovery annealing is performed at a temperature of 900 ° C. or more and 1100 ° C. or less. It is preferable that the reaction is performed for a time of 10 seconds to 60 seconds.
 そして、図2(d)に示すように、CVD酸化膜形成工程と炭素イオン注入層形成工程を行った後、枚葉式エピタキシャル装置に導入し、600℃以上の温度領域から15℃/sec以上の昇温速度で昇温して、水素雰囲気下、1,050℃以上の温度で30秒以上保持する。
 このように、枚葉式エピタキシャル装置によっても、結晶性回復熱処理を行うことができる。この場合、回復熱処理を別途他の装置を用いて行うことがないため、リンやボロンの拡散要因である熱処理を増やすことなく、かつ工程数を増やすことなく結晶性が良好なシリコンエピタキシャルウエーハが得られる。従って、このような方法によれば、結晶性が良好でドーパントの拡散も抑制された安価なシリコンエピタキシャルウエーハを製造することができるようになる。なお、前記回復熱処理は、600℃以上750℃以下の温度領域から15℃/sec以上30℃/sec以下の昇温速度で昇温して、水素雰囲気下、1,050℃以上1150℃以下の温度で30秒以上60秒以下保持することが好ましい。
Then, as shown in FIG. 2 (d), after performing the CVD oxide film forming step and the carbon ion implantation layer forming step, it is introduced into a single wafer type epitaxial apparatus and from a temperature region of 600 ° C. or higher, 15 ° C./sec or higher. The temperature is raised at a temperature rise rate of 1 and maintained at a temperature of 1,050 ° C. or higher for 30 seconds or more in a hydrogen atmosphere.
Thus, the crystallinity recovery heat treatment can also be performed by a single wafer epitaxial apparatus. In this case, since the recovery heat treatment is not performed separately using another apparatus, a silicon epitaxial wafer with good crystallinity can be obtained without increasing the heat treatment that is a diffusion factor of phosphorus and boron and without increasing the number of steps. It is done. Therefore, according to such a method, an inexpensive silicon epitaxial wafer having good crystallinity and suppressed dopant diffusion can be manufactured. The recovery heat treatment is performed at a temperature rising rate of 15 ° C./sec to 30 ° C./sec from a temperature range of 600 ° C. to 750 ° C., and is performed at 1,050 ° C. to 1150 ° C. in a hydrogen atmosphere. It is preferable to maintain the temperature at 30 seconds or more and 60 seconds or less.
 なお、この結晶性の回復は、上述のようにRTA装置を用いることにより安定して結晶欠陥の発生を防止することが可能となるが、これに限定されず、拡散炉を用いることもできる。 Note that this recovery of crystallinity can stably prevent the occurrence of crystal defects by using the RTA apparatus as described above, but is not limited to this, and a diffusion furnace can also be used.
 このような回復アニール工程は、エピタキシャル成長を輻射加熱型の装置で行なわない場合には、特に有用であり、その後のエピタキシャル成長での積層欠陥の発生を安定して回避しやすい。 Such a recovery annealing step is particularly useful when epitaxial growth is not performed by a radiant heating type apparatus, and it is easy to stably avoid the occurrence of stacking faults in the subsequent epitaxial growth.
 また、輻射加熱方式のエピタキシャル装置を用いたときは、RTA装置に近い急速な加熱が可能となるので、炭素イオン注入後の回復アニール工程をエピタキシャル成長前のプリベークと並行して行なうこともできる。この場合には、700℃から1000℃の温度領域の加熱を15℃/sec以上、できれば20℃/sec以上の速度で行なうことが好ましい。その後、1,050℃以上の温度で30秒以上プリベークを行なって自然酸化膜の除去と回復熱処理を行なってから、エピタキシャル成長に入ることができる。 Further, when a radiation heating type epitaxial apparatus is used, rapid heating close to that of the RTA apparatus becomes possible, so that the recovery annealing step after carbon ion implantation can be performed in parallel with the pre-bake before epitaxial growth. In this case, it is preferable to perform heating in the temperature range from 700 ° C. to 1000 ° C. at a rate of 15 ° C./sec or higher, preferably 20 ° C./sec or higher. Thereafter, pre-baking is performed for 30 seconds or more at a temperature of 1,050 ° C. or more to remove the natural oxide film and perform a recovery heat treatment, and then epitaxial growth can be started.
 その後、図2(e)に示すように、炭素イオン注入を行った表面にエピタキシャル層を形成する。これによってエピタキシャルウエーハが完成する(図2(f))。 Thereafter, as shown in FIG. 2 (e), an epitaxial layer is formed on the surface where carbon ion implantation has been performed. Thus, the epitaxial wafer is completed (FIG. 2 (f)).
 エピタキシャル成長の原料ガスは、モノシラン、ジクロルシラン、トリクロルシラン何れでもよいが、高速成長条件で行い、高温での保持時間を短くすることが好ましい。特に、1015atoms/cm前後の炭素イオン注入を行ったときは、イオン注入によって生じた結晶欠陥がエピタキシャル層に伝播しないような条件でエピタキシャル成長工程を行うことが重要である。 The source gas for epitaxial growth may be monosilane, dichlorosilane, or trichlorosilane, but it is preferable to perform the growth under high-speed growth conditions to shorten the holding time at high temperatures. In particular, when carbon ion implantation of about 10 15 atoms / cm 2 is performed, it is important to perform the epitaxial growth process under conditions such that crystal defects generated by the ion implantation do not propagate to the epitaxial layer.
 このように、シリコン基板の少なくとも裏面側にCVD酸化膜を形成(図2(b)または(c’))することによって、エピタキシャル工程中のシリコン基板の裏面側からリンまたはボロンがエピタキシャル成長雰囲気中へ拡散することを防止でき、オートドープの発生を強く抑制することができる。
 また、炭素をイオン注入して炭素イオン注入層を形成(図2(b’)または(c))することによって、シリコン基板表面でのリンやボロンの拡散係数を小さくすることができ、シリコン基板表面側のドーパントの外方拡散を抑制できるようになり、エピタキシャル成長中のオートドープや、素子製造工程でのアウトディフュージョンを抑制することができるようになる。
 これらの効果によって、2.0×1019atoms/cm以上と高濃度にリンまたはボロンがドープされたシリコン基板を用いてシリコンエピタキシャルウエーハを作製する際にも、エピタキシャル成長中や素子を製造する際の熱処理時におけるオートドープ、アウトディフュージョンを、従来より強く抑制することができ、抵抗率の高いエピタキシャル層と抵抗率が低く、抵抗率の遷移幅が狭いシリコン基板からなるシリコンエピタキシャルウエーハを製造することができる。
In this way, by forming a CVD oxide film on at least the back surface side of the silicon substrate (FIG. 2B or FIG. 2C), phosphorus or boron enters the epitaxial growth atmosphere from the back surface side of the silicon substrate during the epitaxial process. Diffusion can be prevented and generation of autodope can be strongly suppressed.
Further, by forming a carbon ion implantation layer by ion implantation of carbon (FIG. 2 (b ′) or (c)), the diffusion coefficient of phosphorus or boron on the surface of the silicon substrate can be reduced. It becomes possible to suppress outward diffusion of the dopant on the surface side, and to suppress autodoping during epitaxial growth and out-diffusion in the element manufacturing process.
Due to these effects, even when a silicon epitaxial wafer is manufactured using a silicon substrate doped with phosphorus or boron at a high concentration of 2.0 × 10 19 atoms / cm 3 or more, during epitaxial growth or when a device is manufactured. Auto-dope and out-diffusion during heat treatment of silicon can be suppressed more strongly than before, and a silicon epitaxial wafer consisting of a high resistivity epitaxial layer and a silicon substrate with a low resistivity and a narrow resistivity transition width can be manufactured. Can do.
 なお、リンを高濃度にドープしたシリコン基板を用いる場合、リンの拡散係数が大きい。このため、素子作製時の熱処理中にシリコン基板側からエピタキシャル層側にリンが拡散し、エピタキシャル層の厚さが実質的に薄くなり、シリコン基板とエピタキシャル層界面のドーパントプロファイルにダレも生ずるという問題がある。
 しかし、本発明では炭素イオン注入層を導入することにより、このドーパントの浮き上がりを抑制することができる。従って、エピタキシャル層のドーパントのプロファイルがデバイス工程終了時点でも遷移幅を小さく保つことができるので、エピタキシャル層の厚さについては、所定の耐圧に対して、その分薄く形成することができるようになる。
When a silicon substrate doped with phosphorus at a high concentration is used, the diffusion coefficient of phosphorus is large. For this reason, phosphorus diffuses from the silicon substrate side to the epitaxial layer side during the heat treatment during device fabrication, the thickness of the epitaxial layer is substantially reduced, and sagging occurs in the dopant profile at the interface between the silicon substrate and the epitaxial layer. There is.
However, in the present invention, by introducing a carbon ion implanted layer, the floating of the dopant can be suppressed. Accordingly, since the transition width of the dopant profile of the epitaxial layer can be kept small even at the end of the device process, the thickness of the epitaxial layer can be made thinner with respect to a predetermined breakdown voltage. .
 特に、シリコン基板として、リンが0.5×1020atoms/cm以上の濃度でドープされたシリコン基板を準備し、炭素イオン注入層を形成する工程において、シリコン基板にドープされたリンの濃度をA×1020atoms/cmとしたとき、4A×1015atoms/cm以上のドーズ量で表面側に炭素イオンを注入して炭素イオン注入層を形成し、炭素イオン注入を行ったシリコン基板の表面に、リンが5.0×1017atoms/cm以下の濃度でドープされたエピタキシャル層を形成するシリコンエピタキシャルウエーハの製造方法が好ましい。また、シリコン基板として、ボロンが0.2×1020atoms/cm以上の濃度でドープされたシリコン基板を準備し、炭素イオン注入層を形成する工程において、シリコン基板にドープされたボロンの濃度をB×1020atoms/cmとしたとき、4B×1015atoms/cm以上のドーズ量で表面側に炭素イオンを注入して炭素イオン注入層を形成し、炭素イオン注入を行ったシリコン基板の表面に、ボロンが2.0×1017atoms/cm以下の濃度でドープされたエピタキシャル層を形成するシリコンエピタキシャルウエーハの製造方法も好ましい。 In particular, a silicon substrate doped with phosphorus at a concentration of 0.5 × 10 20 atoms / cm 3 or more is prepared as a silicon substrate, and the concentration of phosphorus doped into the silicon substrate in the step of forming the carbon ion implantation layer Is A × 10 20 atoms / cm 3 , carbon ions are implanted into the surface side with a dose amount of 4 A × 10 15 atoms / cm 2 or more to form a carbon ion implanted layer, and silicon subjected to carbon ion implantation A method for producing a silicon epitaxial wafer is preferred in which an epitaxial layer doped with phosphorus at a concentration of 5.0 × 10 17 atoms / cm 3 or less is formed on the surface of the substrate. In addition, a silicon substrate doped with boron at a concentration of 0.2 × 10 20 atoms / cm 3 or more is prepared as a silicon substrate, and the concentration of boron doped in the silicon substrate in the step of forming the carbon ion implantation layer Is B × 10 20 atoms / cm 3 , carbon ions are implanted into the surface side with a dose amount of 4B × 10 15 atoms / cm 2 or more to form a carbon ion implanted layer, and silicon subjected to carbon ion implantation A silicon epitaxial wafer manufacturing method in which an epitaxial layer doped with boron at a concentration of 2.0 × 10 17 atoms / cm 3 or less is formed on the surface of the substrate is also preferable.
 このようなリン又はボロン濃度、及び炭素イオンのドーズ量でシリコン基板を準備し、炭素イオン注入層を形成し、エピタキシャル層を形成すれば、エピタキシャル層の成長中及び素子作製工程中において、エピタキシャル層の境界におけるリン又はボロンドーパントの動きを制御することができ、シリコン基板表面側からのオートドープ、アウトディフュージョンを防止することができるシリコンエピタキシャルウエーハの製造方法となる。これにより、オン抵抗、リーク電流の低減といった最終的なデバイスの電気特性を向上させることが可能となるシリコンエピタキシャルウエーハを製造することができる。 If a silicon substrate is prepared with such a phosphorus or boron concentration and a carbon ion dose, a carbon ion implantation layer is formed, and an epitaxial layer is formed, the epitaxial layer is grown during the growth of the epitaxial layer and during the device fabrication process. Therefore, it is possible to control the movement of phosphorus or boron dopant at the boundary of the silicon substrate, and to produce a silicon epitaxial wafer that can prevent autodoping and outdiffusion from the silicon substrate surface side. This makes it possible to manufacture a silicon epitaxial wafer that can improve the final device electrical characteristics such as reduction of on-resistance and leakage current.
 以上説明したように、所定の濃度のボロン、リンをドーパントとして用い、所定のドーズ量の炭素イオンを注入することで、エピタキシャル層の成長中及び素子作製工程中において、エピタキシャル層の境界におけるドーパントの動きを制御することができ、シリコン基板表面側からのオートドープ、アウトディフュージョンを効果的に防止することができるシリコンエピタキシャルウエーハ及びその製造方法を提供することができる。 As described above, by using boron and phosphorus at a predetermined concentration as a dopant and implanting a predetermined dose of carbon ions, the dopant at the boundary of the epitaxial layer is grown during the growth of the epitaxial layer and during the device fabrication process. It is possible to provide a silicon epitaxial wafer that can control the movement and can effectively prevent autodoping and outdiffusion from the surface side of the silicon substrate, and a method for manufacturing the same.
 さらに、本発明では、シリコンエピタキシャルウエーハの製造方法により製造されたシリコンエピタキシャルウエーハを用いて半導体素子又は集積回路を製造する方法であって、1分より長く保持する熱処理は、該熱処理の最高温度を950℃以下となるようにすることを特徴とする半導体素子又は集積回路の製造方法を提供する。図6に本発明に係わるシリコン基板からエピタキシャル成長、更には、デバイス製造工程に関する製造工程の概略フローを示す。 Furthermore, in the present invention, a semiconductor device or an integrated circuit is manufactured using a silicon epitaxial wafer manufactured by a method for manufacturing a silicon epitaxial wafer, and the heat treatment held for longer than 1 minute is performed at a maximum temperature of the heat treatment. Provided is a method for manufacturing a semiconductor element or an integrated circuit, wherein the temperature is 950 ° C. or lower. FIG. 6 shows a schematic flow of a manufacturing process related to epitaxial growth from a silicon substrate according to the present invention and further to a device manufacturing process.
 本発明のシリコンエピタキシャルウエーハに、例えば、縦型のMOSトランジスタを形成する場合には、フィールド酸化やソース、チャネル領域の二重拡散構造の形成温度を950℃以下で行なうことが好ましい。SiGeCのヘテロバイポーラトランジスタの場合には、フィールド酸化以降にボロンドープのベース層が形成されるので、その後のエミッタ等の形成工程は、900℃以下で行なわれている。低耐圧パワーMOSも微細化とプロセスの低温化が進んでいるが、フィールド酸化の形成の温度は950℃以下にすることが好ましい。チャネルやソース領域の形成ではリン、ボロンを用いるが、この領域では炭素の影響はないので、炭素イオン注入を行なわない場合と同じ条件でプロセスを進めることができる。その他、撮像素子の作製などにおいても、950℃より高温で処理していた工程に対しては、そのプロセス条件を、できるだけ低温、長時間条件に変えることが好ましい。そのようなプロセス条件としては前記のように1分より長く保持する熱処理について、該熱処理の最高温度を950℃以下となるようにすることが好ましい。 For example, when a vertical MOS transistor is formed on the silicon epitaxial wafer of the present invention, it is preferable that the formation temperature of the double diffusion structure of field oxidation, source, and channel region is 950 ° C. or lower. In the case of a SiGeC heterobipolar transistor, since a boron-doped base layer is formed after field oxidation, the subsequent steps of forming an emitter and the like are performed at 900 ° C. or lower. Although the low-voltage power MOS is also miniaturized and the temperature of the process is decreasing, it is preferable to set the field oxidation formation temperature to 950 ° C. or lower. Phosphorus and boron are used in the formation of the channel and source regions, but since there is no influence of carbon in this region, the process can proceed under the same conditions as when carbon ion implantation is not performed. In addition, it is preferable to change the process conditions to a low temperature and a long time as much as possible for a process that has been processed at a temperature higher than 950 ° C. in manufacturing an imaging device. As such process conditions, it is preferable to set the maximum temperature of the heat treatment to 950 ° C. or less with respect to the heat treatment held for longer than 1 minute as described above.
 半導体素子又は集積回路を製造する際に、このように熱処理を行うことで、エピタキシャル層の境界におけるドーパントの動きを制御することができ、シリコン基板表面側からのオートドープ、アウトディフュージョンを防止することができる半導体素子又は集積回路の製造方法となる。これにより、オン抵抗、リーク電流の低減といった最終的なデバイスの電気特性の優れた半導体素子又は集積回路を製造することができる。
 
When manufacturing a semiconductor element or an integrated circuit, the heat treatment is performed in this way, so that the movement of the dopant at the boundary of the epitaxial layer can be controlled, and autodoping and out diffusion from the silicon substrate surface side can be prevented. This is a method for manufacturing a semiconductor device or an integrated circuit. As a result, it is possible to manufacture a semiconductor element or an integrated circuit with excellent final device electrical characteristics such as on-resistance and reduction of leakage current.
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
 
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these.
 (実施例1)
 直径200mm、赤燐ドープ、抵抗率が1.2mΩcmのCZ単結晶からエピタキシャル用のシリコン基板を作製した。
 そして裏面側に300nmの厚さのCVD酸化膜を形成した。
Example 1
An epitaxial silicon substrate was fabricated from a CZ single crystal having a diameter of 200 mm, a red phosphorus dope, and a resistivity of 1.2 mΩcm.
Then, a CVD oxide film having a thickness of 300 nm was formed on the back side.
 その後、このシリコン基板に大電流イオン注入装置を用いて炭素イオンの注入を行った。具体的には、シリコン基板のイオン注入を行う表面にはパッド酸化膜を形成せずに、5°のチルティングでチャネリング対策を行った。加速電圧を60keV、ドーズ量を1.0×1015atoms/cmとした。
 そしてイオン注入後に、RTA装置を用いて回復熱処理を行った。この熱処理条件は、昇温速度30℃/sec、窒素雰囲気1200℃、30秒とした。
Thereafter, carbon ions were implanted into the silicon substrate using a large current ion implantation apparatus. Specifically, channeling countermeasures were taken by 5 ° tilting without forming a pad oxide film on the surface of the silicon substrate where ions were implanted. The acceleration voltage was 60 keV, and the dose was 1.0 × 10 15 atoms / cm 2 .
Then, after ion implantation, recovery heat treatment was performed using an RTA apparatus. The heat treatment conditions were a temperature increase rate of 30 ° C./sec, a nitrogen atmosphere of 1200 ° C., and 30 seconds.
 その後、基板洗浄を実施し、エピタキシャル成長を行った。このエピタキシャル成長は、枚葉式反応機を用い、トリクロロシランをシリコンソースに用いて1150℃で厚さ5μmのエピタキシャル層を形成した。
 形成したエピタキシャル層の厚さを赤外線の干渉法で調べた結果、5.0~5.2μmの範囲であった。また、エピタキシャル層の抵抗率はショットキーダイオードによるCV法により測定した結果、ウエーハ中央で10.0Ωcmであった。
Thereafter, substrate cleaning was performed and epitaxial growth was performed. In this epitaxial growth, a single wafer reactor was used, and an epitaxial layer having a thickness of 5 μm was formed at 1150 ° C. using trichlorosilane as a silicon source.
As a result of investigating the thickness of the formed epitaxial layer by the infrared interference method, it was in the range of 5.0 to 5.2 μm. The resistivity of the epitaxial layer was measured by the CV method using a Schottky diode and found to be 10.0 Ωcm at the wafer center.
 作製したエピタキシャルウエーハについて、以下に示す様な評価を行った。
 作製したエピタキシャルウエーハのエピタキシャル層の欠陥を、プレファレンシャルエッチングで評価した。
 また、プレファレンシャルエッチングを行ったウエーハについて、オートドープの影響を比較的強く受ける外周10~20mmの位置からそれぞれチップを切り出し、それぞれ角度研摩を行い、スプレデイングレジスタンスによりドーパントプロファイルを測定した。ここでスプレデイングレジスタンスは補正データで抵抗値から不純物濃度に換算した。その結果を図3に示した。なお、エピタキシャル層の厚さはプレファレンシャルエッチングでエッチングした分、約1.0μm薄くなっている。
 
The manufactured epitaxial wafer was evaluated as shown below.
Defects in the epitaxial layer of the produced epitaxial wafer were evaluated by preferential etching.
Further, with respect to the wafer subjected to the pre-etching, the chip was cut out from the position of 10 to 20 mm in the outer periphery, which was relatively strongly influenced by autodoping, and each was subjected to angle polishing, and the dopant profile was measured by spraying resistance. Here, the spreading resistance is corrected data and converted from the resistance value to the impurity concentration. The results are shown in FIG. Note that the thickness of the epitaxial layer is reduced by about 1.0 μm by the amount etched by the preferential etching.
 (比較例1,2)
 比較のために、実施例1で用いたシリコン基板と同じ製造方法(同一ロット)のシリコン基板を1枚ずつ準備し、このうち一方には裏面側にCVD酸化膜を形成して、炭素イオン注入を行わずにエピタキシャルウエーハを製造し(比較例1)、残りの一方には裏面側にCVD酸化膜を形成せずに炭素イオン注入を行ってエピタキシャルウエーハを製造した(比較例2)。
 なお、CVD酸化膜の形成条件、炭素イオン注入条件、エピタキシャル層の形成条件は、各々実施例と同じとした。
(Comparative Examples 1 and 2)
For comparison, one silicon substrate having the same manufacturing method (same lot) as the silicon substrate used in Example 1 was prepared, one of which was formed with a CVD oxide film on the back side, and carbon ion implantation was performed. An epitaxial wafer was manufactured without performing the above process (Comparative Example 1), and the other one was subjected to carbon ion implantation without forming a CVD oxide film on the back side to produce an epitaxial wafer (Comparative Example 2).
The CVD oxide film formation conditions, carbon ion implantation conditions, and epitaxial layer formation conditions were the same as in the examples.
 比較例1のエピタキシャルウエーハのウエーハ中心のエピタキシャル層の厚さは5.1~5.3μmの範囲であった。また、抵抗率は9.9Ωcmから9.2Ωcmの範囲であった。
 また、比較例2のエピタキシャルウエーハのウエーハ中心のエピタキシャル層の厚さは5.1~5.3μmの範囲であった。そして抵抗率は9.9Ωcmであった。
 そして比較例1,2のシリコンエピタキシャルウエーハに対して、実施例と同様の評価を行った。その結果を図3に示す。
The thickness of the epitaxial layer at the wafer center of the epitaxial wafer of Comparative Example 1 was in the range of 5.1 to 5.3 μm. The resistivity was in the range of 9.9 Ωcm to 9.2 Ωcm.
The thickness of the epitaxial layer at the wafer center of the epitaxial wafer of Comparative Example 2 was in the range of 5.1 to 5.3 μm. The resistivity was 9.9 Ωcm.
The same evaluations as in the examples were performed on the silicon epitaxial wafers of Comparative Examples 1 and 2. The result is shown in FIG.
 エピタキシャル層の欠陥をプレファレンシャルエッチングで調査した結果、実施例、比較例1,2何れのエピタキシャルウエーハも、積層欠陥の密度は平均的なレベルの範囲内であった。 As a result of investigating the defects in the epitaxial layer by the preferential etching, the density of stacking faults in the epitaxial wafers of Examples and Comparative Examples 1 and 2 was within an average level.
 そして図3に示すように、エピタキシャル層のリン濃度は,実施例、比較例1、比較例2の順に少ない結果であり、スプレデイングレジスタンスの測定結果からは、オートドープについては有意な差が見られた。
 エピタキシャル成長時の基板からエピタキシャル層へのアウトディフュージョンについては、シリコン基板とエピタキシャル層との界面が明確でないので、差異を明確に確認できないが、比較例2、比較例1、実施例の順に少ない。
 なお図3では、角度研摩の精度が必ずしもよくないので、エピタキシャル層と基板の界面については、プロファイルが一致するように重ねて示している。
As shown in FIG. 3, the phosphorus concentration of the epitaxial layer is the result of decreasing in the order of Example, Comparative Example 1, and Comparative Example 2. From the measurement result of the spraying resistance, there is a significant difference in autodoping. It was.
Regarding the out diffusion from the substrate to the epitaxial layer at the time of epitaxial growth, the interface between the silicon substrate and the epitaxial layer is not clear, and thus the difference cannot be clearly confirmed. However, there are few in the order of Comparative Example 2, Comparative Example 1, and Example.
In FIG. 3, since the accuracy of angle polishing is not necessarily good, the interface between the epitaxial layer and the substrate is shown so that the profiles match.
 以上の結果から、裏面をノンドープのCVD酸化膜でシールした高濃度リンドープシリコン基板を用い、かつ表面側に炭素イオン注入を行うことにより、アウトディフュージョン、オートドープを大幅に抑制できることが分かった。
 また、低抵抗率のシリコン基板にイオン注入を行った場合には、素子製造工程中の基板側からエピタキシャル層側へのドーパントの拡散も抑制することができ、素子の耐圧を確保するため必要以上にエピタキシャル層の厚さを厚くすることが必要ないことも判った。
 
From the above results, it was found that out-diffusion and auto-doping can be significantly suppressed by using a high-concentration phosphorus-doped silicon substrate whose back surface is sealed with a non-doped CVD oxide film and performing carbon ion implantation on the front surface side.
In addition, when ion implantation is performed on a low resistivity silicon substrate, diffusion of dopant from the substrate side to the epitaxial layer side during the element manufacturing process can be suppressed, and more than necessary to ensure the breakdown voltage of the element. It has also been found that it is not necessary to increase the thickness of the epitaxial layer.
 (実施例2)
 直径200mm、ボロンドープ、抵抗率が3.2mΩcm(ボロンドープ濃度:0.25×1020atoms/cm)のCZ単結晶からシリコン基板を作製した。シリコン基板製造工程途中で裏面側に、500nmの厚さのCVD酸化膜を形成した。
(Example 2)
A silicon substrate was fabricated from a CZ single crystal having a diameter of 200 mm, boron doping, and a resistivity of 3.2 mΩcm (boron doping concentration: 0.25 × 10 20 atoms / cm 3 ). A CVD oxide film having a thickness of 500 nm was formed on the back side during the silicon substrate manufacturing process.
 その後、この基板に大電流イオン注入装置を用いて炭素イオンの注入を行なった。パッド酸化膜は形成せず5℃のチルティングでチャネリング対策を行なった。加速電圧は60keV、ドーズ量は1.0×1015atoms/cmとした。イオン注入後にRTA装置や拡散炉による回復熱処理は行なわなかった。その後、基板洗浄を実施した後に、エピタキシャル成長を行なった。エピタキシャル成長は、輻射加熱方式の枚葉式反応機を用い、トリクロロシランをシリコンソースに用いて1000℃までは20℃/secの昇温速度で加熱し、1150℃でプリベークを行なった後、同じ温度で、ボロンが1.5×1015atoms/cmでドープされたエピタキシャル層を形成してシリコンエピタキシャルウエーハを製造した。赤外線の干渉法でこのエピタキシャル層の厚さを調べた結果、5.5~5.8μmの範囲であった。エピタキシャル層の抵抗率はショットキーダイオードによるCV法により測定した結果、ウエーハ中央で10.0Ωcmであった。 Thereafter, carbon ions were implanted into the substrate using a large current ion implantation apparatus. A pad oxide film was not formed, and channeling countermeasures were taken by tilting at 5 ° C. The acceleration voltage was 60 keV, and the dose was 1.0 × 10 15 atoms / cm 2 . Recovery heat treatment using an RTA apparatus or a diffusion furnace was not performed after ion implantation. Thereafter, after substrate cleaning, epitaxial growth was performed. Epitaxial growth is performed using a single-wafer reactor of a radiation heating method, using trichlorosilane as a silicon source, heating up to 1000 ° C. at a heating rate of 20 ° C./sec, prebaking at 1150 ° C., and the same temperature. Then, an epitaxial layer doped with boron at 1.5 × 10 15 atoms / cm 3 was formed to manufacture a silicon epitaxial wafer. As a result of investigating the thickness of this epitaxial layer by an infrared interference method, it was in the range of 5.5 to 5.8 μm. As a result of measuring the resistivity of the epitaxial layer by the CV method using a Schottky diode, it was 10.0 Ωcm at the wafer center.
 (比較例3)
 比較のために、上記炭素イオンの注入を行わない以外は実施例2と同様にしてシリコンエピタキシャルウエーハを製造した。このときのウエーハ中心のエピタキシャル層の厚さは5.2~5.6μmの範囲であった。また、抵抗率は中央部で9.9Ωcmであった。
(Comparative Example 3)
For comparison, a silicon epitaxial wafer was manufactured in the same manner as in Example 2 except that the carbon ions were not implanted. At this time, the thickness of the epitaxial layer at the center of the wafer was in the range of 5.2 to 5.6 μm. The resistivity was 9.9 Ωcm at the center.
 実施例2及び比較例3により製造されたシリコンエピタキシャルウエーハのエピタキシャル層の欠陥をプレファレンシャルエッチングで調査した。結果として、実施例2においては炭素イオン注入によるダメージはエピタキシャル層に積層欠陥を誘起していないことが確認された。また、実施例2及び比較例3においてエピタキシャル層の欠陥密度は平均的なレベルの範囲内であった。 The defects in the epitaxial layer of the silicon epitaxial wafer manufactured according to Example 2 and Comparative Example 3 were investigated by preferential etching. As a result, in Example 2, it was confirmed that damage caused by carbon ion implantation did not induce stacking faults in the epitaxial layer. In Example 2 and Comparative Example 3, the defect density of the epitaxial layer was within an average level.
 実施例2及び比較例3のシリコンエピタキシャルウエーハについて、熱処理をしていないもの、950℃、20時間及び1100℃、1時間で3%の酸素を含んだ窒素ガス雰囲気下の熱処理条件で縦型の拡散炉を用いて熱処理をしたものを用意した。これらについて、オートドープの影響を比較的強く受ける外周10~20mmの位置からそれぞれチップを切り出し、四重極型のSIMS(Secondary Ion Mass Spectroscopy)により、エピタキシャル層表面からシリコン基板方向へ約8μmのボロンのデプスプロファイルを測定した。その結果を図8に示す。図8から、比較例3ではリンドーパントの拡散は抑制されていないことが示された。一方で、熱処理をしていない場合にはエピタキシャル層へのボロンドーパントの拡散は抑制されていることが分かり、これよりエピタキシャル成長工程においてのボロンドーパントの拡散抑制が推察される。また、擬似素子作製工程として950℃、20時間の熱処理をした場合も、ボロンドーパントの拡散が抑制されていることがわかる。しかし、1100℃、1時間の熱処理をした場合では、ボロンドーパント拡散の減速はわずかであった。 The silicon epitaxial wafers of Example 2 and Comparative Example 3 were not heat-treated, and were vertically processed under a heat treatment condition in a nitrogen gas atmosphere containing 3% oxygen at 950 ° C., 20 hours and 1100 ° C. for 1 hour. What was heat-processed using the diffusion furnace was prepared. About these, each chip is cut out from a position of 10 to 20 mm in the outer periphery which is relatively strongly influenced by autodoping, and boron of about 8 μm from the surface of the epitaxial layer to the silicon substrate direction by quadrupole SIMS (Secondary Ion Mass Spectroscopy). The depth profile of was measured. The result is shown in FIG. FIG. 8 shows that in Comparative Example 3, diffusion of phosphorus dopant is not suppressed. On the other hand, in the case where heat treatment is not performed, it can be seen that the diffusion of boron dopant into the epitaxial layer is suppressed, and from this, the diffusion suppression of boron dopant in the epitaxial growth process is presumed. It can also be seen that boron dopant is suppressed from being diffused even when heat treatment is performed at 950 ° C. for 20 hours as the pseudo element manufacturing step. However, when heat treatment was performed at 1100 ° C. for 1 hour, the boron dopant diffusion was only slightly slowed down.
 以上の結果から、裏面をノンドープの酸化膜でシールした高濃度にボロンがドープされたシリコン基板を用い、表面側に炭素イオン注入を行ない、エピタキシャル成長後の熱処理を950℃近傍の温度で長時間かけて行なうことにより、ボロンのシリコン基板からエピタキシャル層中への拡散(外方拡散)が抑制できることが解った。
 
From the above results, a silicon substrate doped with boron at a high concentration with the back surface sealed with a non-doped oxide film is used, carbon ion implantation is performed on the surface side, and a heat treatment after epitaxial growth is performed at a temperature near 950 ° C. for a long time. As a result, it was found that diffusion of boron from the silicon substrate into the epitaxial layer (outward diffusion) can be suppressed.
 (実施例3)
 直径200mm、赤燐ドープ、抵抗率が1.2mΩcm(リンドープ濃度:0.6×1020atoms/cm)のCZ単結晶からシリコン基板を作製した。シリコン基板製造工程途中で裏面側に、300nmの厚さのCVD酸化膜を形成した。
(Example 3)
A silicon substrate was fabricated from a CZ single crystal having a diameter of 200 mm, a red phosphorus doping, and a resistivity of 1.2 mΩcm (phosphorus doping concentration: 0.6 × 10 20 atoms / cm 3 ). A CVD oxide film having a thickness of 300 nm was formed on the back side during the silicon substrate manufacturing process.
 その後、この基板に大電流イオン注入装置を用いて炭素イオンの注入を行なった。パッド酸化膜を形成した。加速電圧は60keV、ドーズ量は2.0×1015atoms/cmとしてイオン注入を行った。イオン注入後にRTA装置や拡散炉による回復熱処理は行なわなかった。その後、基板洗浄を実施した後に、エピタキシャル成長を行なった。エピタキシャル成長は、輻射加熱方式の枚葉式反応機を用い、トリクロロシランをシリコンソースに用いて1000℃までは20℃/secの昇温速度で加熱し、1150℃でプリベークを行なった後、同じ温度で、リンが0.5×1016atoms/cmでドープされたエピタキシャル層を形成してシリコンエピタキシャルウエーハを製造した。赤外線の干渉法でこのエピタキシャル層の厚さを調べた結果、中心の厚さは5.2~5.4μmの範囲にあった。エピタキシャル層の抵抗率はショットキーダイオードによるCV法により測定した結果、ウエーハ中央付近で1.0Ωcmであった。 Thereafter, carbon ions were implanted into the substrate using a large current ion implantation apparatus. A pad oxide film was formed. Ion implantation was performed with an acceleration voltage of 60 keV and a dose of 2.0 × 10 15 atoms / cm 2 . Recovery heat treatment using an RTA apparatus or a diffusion furnace was not performed after ion implantation. Thereafter, after substrate cleaning, epitaxial growth was performed. Epitaxial growth is performed using a single-wafer reactor of a radiation heating method, using trichlorosilane as a silicon source, heating up to 1000 ° C. at a heating rate of 20 ° C./sec, prebaking at 1150 ° C., and the same temperature. A silicon epitaxial wafer was manufactured by forming an epitaxial layer doped with phosphorus at 0.5 × 10 16 atoms / cm 3 . As a result of investigating the thickness of this epitaxial layer by infrared interferometry, the thickness of the center was in the range of 5.2 to 5.4 μm. The resistivity of the epitaxial layer was measured by the CV method using a Schottky diode and found to be 1.0 Ωcm near the center of the wafer.
 (比較例4)
 比較のために、上記炭素イオンの注入を行わない以外は実施例3と同様にしてシリコンエピタキシャルウエーハを製造した。このときのウエーハ中心のエピタキシャル層の厚さは5.2~5.5μmの範囲であった。また、抵抗率は中央部で0.99Ωcmであった。
(Comparative Example 4)
For comparison, a silicon epitaxial wafer was manufactured in the same manner as in Example 3 except that the carbon ions were not implanted. At this time, the thickness of the epitaxial layer at the center of the wafer was in the range of 5.2 to 5.5 μm. The resistivity was 0.99 Ωcm at the center.
 実施例3及び比較例4により製造されたシリコンエピタキシャルウエーハのエピタキシャル層の欠陥をプレファレンシャルエッチングで調査した。結果として、実施例3においては炭素イオン注入によるダメージはエピタキシャル層に積層欠陥を誘起していないことが確認された。また、実施例3及び比較例4においてエピタキシャル層の欠陥密度は平均的なレベルの範囲内であった。 Defects in the epitaxial layer of the silicon epitaxial wafer manufactured according to Example 3 and Comparative Example 4 were investigated by preferential etching. As a result, in Example 3, it was confirmed that damage caused by carbon ion implantation did not induce stacking faults in the epitaxial layer. In Example 3 and Comparative Example 4, the defect density of the epitaxial layer was within an average level.
 実施例3及び比較例4のシリコンエピタキシャルウエーハについて、熱処理をしていないもの、950℃、20時間及び1100℃、1時間で3%の酸素を含んだ窒素ガス雰囲気下の熱処理条件で縦型の拡散炉を用いて熱処理をしたものを用意した。これらについて、オートドープの影響を比較的強く受ける外周10~20mmの位置からそれぞれチップを切り出し、四重極型のSIMSにより、エピタキシャル層表面からシリコン基板方向へ約8μmのボロンのデプスプロファイルを測定した。その結果を図9に示す。図9から、比較例4ではリンドーパントの拡散は抑制されていないことが示された。一方で、熱処理をしていない場合にはエピタキシャル層へのリンドーパントの拡散は抑制されていることが分かり、これよりエピタキシャル成長工程においてのリンドーパントの拡散抑制が推察される。また、擬似素子作製工程として950℃、20時間の熱処理をした場合も、リンドーパントの拡散が抑制されていることがわかる。しかし、1100℃、1時間の熱処理をした場合では、リンドーパント拡散の減速はわずかであった。 The silicon epitaxial wafers of Example 3 and Comparative Example 4 were not heat-treated, and were vertically processed under a heat treatment condition in a nitrogen gas atmosphere containing 3% oxygen at 950 ° C., 20 hours and 1100 ° C. for 1 hour. What was heat-processed using the diffusion furnace was prepared. About these, each chip was cut out from the position of the outer periphery of 10 to 20 mm which is relatively strongly influenced by autodoping, and the depth profile of about 8 μm boron from the epitaxial layer surface toward the silicon substrate was measured by quadrupole SIMS. . The result is shown in FIG. From FIG. 9, it was shown that the diffusion of phosphorus dopant was not suppressed in Comparative Example 4. On the other hand, when heat treatment is not performed, it can be seen that the diffusion of the phosphorus dopant into the epitaxial layer is suppressed, and it is assumed from this that the diffusion of the phosphorus dopant in the epitaxial growth process is suppressed. It can also be seen that the diffusion of the phosphorus dopant is suppressed even when heat treatment is performed at 950 ° C. for 20 hours as the pseudo element manufacturing step. However, when heat treatment was performed at 1100 ° C. for 1 hour, the phosphorus dopant diffusion was only slightly slowed down.
 この図9から、上述のシリコン基板界面から離れたところで、リンの減速拡散が観察されなかったのは、炭素濃度の低い部位に相当している。つまり、炭素イオン注入条件が同じである場合には、ボロンシリコン基板(実施例2)の場合より実施例3のシリコンエピタキシャルウエーハのリンドーパント濃度が高くなり、その結果、シリコン基板-エピタキシャル界面からある程度離れた部位では炭素濃度が低くなり、リンドーパントの拡散抑制効果が弱くなる。 From FIG. 9, the fact that no slow diffusion of phosphorus was observed away from the above-mentioned silicon substrate interface corresponds to a portion having a low carbon concentration. That is, when the carbon ion implantation conditions are the same, the phosphorus dopant concentration of the silicon epitaxial wafer of Example 3 is higher than that of the boron silicon substrate (Example 2). At a distant site, the carbon concentration is low, and the diffusion suppressing effect of the phosphorus dopant is weakened.
 以上よりシリコン基板からエピタキシャル層へのドーパントの外方拡散を炭素イオン注入により抑制するためには、エピタキシャル成長開始時点でシリコン基板表面の炭素濃度が所定の濃度以上になるようなイオン注入条件(ドーズ量、加速エネルギー)を適切に設定することが好ましい。 As described above, in order to suppress the out-diffusion of the dopant from the silicon substrate to the epitaxial layer by carbon ion implantation, the ion implantation conditions (dose amount) such that the carbon concentration on the surface of the silicon substrate becomes a predetermined concentration or higher at the start of epitaxial growth. , Acceleration energy) is preferably set appropriately.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Claims (18)

  1.  シリコン基板にエピタキシャル層が形成されたシリコンエピタキシャルウエーハであって、
     前記シリコン基板は、リンまたはボロンが2.0×1019atoms/cm以上の濃度でドープされており、かつ少なくとも裏面側にCVD酸化膜が形成され、表面から炭素イオンが注入されたことによる炭素イオン注入層が形成されたものであり、
     該炭素イオン注入層が形成された前記シリコン基板の表面に前記エピタキシャル層が形成されたものであることを特徴とするシリコンエピタキシャルウエーハ。
     
    A silicon epitaxial wafer in which an epitaxial layer is formed on a silicon substrate,
    The silicon substrate is doped with phosphorus or boron at a concentration of 2.0 × 10 19 atoms / cm 3 or more, and a CVD oxide film is formed at least on the back side, and carbon ions are implanted from the surface. A carbon ion implanted layer is formed,
    A silicon epitaxial wafer, wherein the epitaxial layer is formed on a surface of the silicon substrate on which the carbon ion implantation layer is formed.
  2.  前記炭素イオン注入層は、炭素イオンが3.0×1014atoms/cm以上のドーズ量で注入されたものであることを特徴とする請求項1に記載のシリコンエピタキシャルウエーハ。
     
    2. The silicon epitaxial wafer according to claim 1, wherein the carbon ion implanted layer is formed by implanting carbon ions at a dose amount of 3.0 × 10 14 atoms / cm 2 or more.
  3.  前記CVD酸化膜は、前記シリコン基板の側面を前記炭素イオン注入層が形成された位置より表面側まで覆うものであることを特徴とする請求項1または請求項2に記載のシリコンエピタキシャルウエーハ。
     
    3. The silicon epitaxial wafer according to claim 1, wherein the CVD oxide film covers a side surface of the silicon substrate from a position where the carbon ion implantation layer is formed to a surface side. 4.
  4.  前記エピタキシャル層の不純物濃度が、前記シリコン基板の不純物濃度の1/1000以下であることを特徴とする請求項1ないし請求項3のいずれか1項に記載のシリコンエピタキシャルウエーハ。
     
    4. The silicon epitaxial wafer according to claim 1, wherein an impurity concentration of the epitaxial layer is 1/1000 or less of an impurity concentration of the silicon substrate. 5.
  5.  前記シリコン基板は、リンが0.5×1020atoms/cm以上の濃度でドープされたものであり、
     前記炭素イオン注入層は、前記シリコン基板にドープされたリンの濃度をA×1020atoms/cmとしたとき、4A×1015atoms/cm以上のドーズ量で炭素イオンを注入して形成されたものであり、
     前記エピタキシャル層は、リンが5.0×1017atoms/cm以下の濃度でドープされたものであることを特徴とする請求項1ないし請求項4のいずれか1項に記載のシリコンエピタキシャルウエーハ。
     
    The silicon substrate is doped with phosphorus at a concentration of 0.5 × 10 20 atoms / cm 3 or more,
    The carbon ion implantation layer is formed by implanting carbon ions at a dose amount of 4 A × 10 15 atoms / cm 2 or more when the concentration of phosphorus doped in the silicon substrate is A × 10 20 atoms / cm 3. It has been
    5. The silicon epitaxial wafer according to claim 1, wherein the epitaxial layer is doped with phosphorus at a concentration of 5.0 × 10 17 atoms / cm 3 or less. .
  6.  前記シリコン基板は、ボロンが0.2×1020atoms/cm以上の濃度でドープされたものであり、
     前記炭素イオン注入層は、前記シリコン基板にドープされたボロンの濃度をB×1020atoms/cmとしたとき、4B×1015atoms/cm以上のドーズ量で炭素イオンを注入して形成されたものであり、
     前記エピタキシャル層は、ボロンが2.0×1017atoms/cm以下の濃度でドープされたものであることを特徴とする請求項1ないし請求項4のいずれか1項に記載のシリコンエピタキシャルウエーハ。
     
    The silicon substrate is doped with boron at a concentration of 0.2 × 10 20 atoms / cm 3 or more,
    The carbon ion implantation layer is formed by implanting carbon ions at a dose amount of 4B × 10 15 atoms / cm 2 or more when the concentration of boron doped in the silicon substrate is B × 10 20 atoms / cm 3. It has been
    5. The silicon epitaxial wafer according to claim 1, wherein the epitaxial layer is doped with boron at a concentration of 2.0 × 10 17 atoms / cm 3 or less. .
  7.  前記CVD酸化膜の膜厚は、1500Å以上であることを特徴とする請求項1ないし請求項6のいずれか1項に記載のシリコンエピタキシャルウエーハ。
     
    The silicon epitaxial wafer according to any one of claims 1 to 6, wherein a film thickness of the CVD oxide film is 1500 mm or more.
  8.  シリコンエピタキシャルウエーハの製造方法であって、
     リンまたはボロンが2.0×1019atoms/cm以上の濃度でドープされたシリコン基板を準備し、
     該準備したシリコン基板に、裏面側にCVD酸化膜を形成する工程と、表面側に炭素イオンを注入して炭素イオン注入層を形成する工程とを順不同で行った後、
     前記炭素イオン注入を行った表面にエピタキシャル層を形成することを特徴とするシリコンエピタキシャルウエーハの製造方法。
     
    A method for producing a silicon epitaxial wafer, comprising:
    Preparing a silicon substrate doped with phosphorus or boron at a concentration of 2.0 × 10 19 atoms / cm 3 or more;
    After the step of forming a CVD oxide film on the back side and the step of forming a carbon ion implantation layer by implanting carbon ions on the front side are performed in random order on the prepared silicon substrate,
    A method for producing a silicon epitaxial wafer, wherein an epitaxial layer is formed on a surface subjected to carbon ion implantation.
  9.  前記炭素イオンのドーズ量を、3.0×1014atoms/cm以上とすることを特徴とする請求項8に記載のシリコンエピタキシャルウエーハの製造方法。
     
    9. The method for producing a silicon epitaxial wafer according to claim 8, wherein a dose amount of the carbon ions is set to 3.0 × 10 14 atoms / cm 2 or more.
  10.  前記CVD酸化膜形成工程と前記炭素イオン注入層形成工程を行った後、RTA装置を用いて、昇温速度30℃/sec以上で加熱し、900℃以上の温度で10秒以上の回復アニールを行い、その後前記エピタキシャル層を形成することを特徴とする請求項8または請求項9に記載のシリコンエピタキシャルウエーハの製造方法。
     
    After performing the CVD oxide film forming step and the carbon ion implantation layer forming step, using an RTA apparatus, heating is performed at a temperature rising rate of 30 ° C./sec or higher, and recovery annealing is performed at a temperature of 900 ° C. or higher for 10 seconds or longer. The method for producing a silicon epitaxial wafer according to claim 8 or 9, wherein the epitaxial layer is formed after the step.
  11.  前記CVD酸化膜形成工程と前記炭素イオン注入層形成工程を行った後、枚葉式エピタキシャル装置に導入した後、600℃以上の温度領域から15℃/sec以上の昇温速度で昇温し、水素雰囲気下、1,050℃以上の温度で30秒以上保持した後、前記エピタキシャル層を形成することを特徴とする請求項8または請求項9に記載のシリコンエピタキシャルウエーハの製造方法。
     
    After performing the CVD oxide film forming step and the carbon ion implantation layer forming step, after being introduced into a single wafer epitaxial apparatus, the temperature is raised from a temperature region of 600 ° C. or more at a temperature rising rate of 15 ° C./sec or more, 10. The method for producing a silicon epitaxial wafer according to claim 8, wherein the epitaxial layer is formed after being held at a temperature of 1,050 ° C. or higher for 30 seconds or more in a hydrogen atmosphere.
  12.  前記CVD酸化膜を、前記シリコン基板の前記炭素イオン注入層の位置より前記シリコン基板表面に近い位置の側面まで覆うように形成することを特徴とする請求項8ないし請求項11のいずれか1項に記載のシリコンエピタキシャルウエーハの製造方法。
     
    12. The CVD oxide film according to claim 8, wherein the CVD oxide film is formed so as to cover a side surface of the silicon substrate closer to the surface of the silicon substrate than the position of the carbon ion implantation layer. A method for producing a silicon epitaxial wafer as described in 1).
  13.  前記シリコン基板として、リンが0.5×1020atoms/cm以上の濃度でドープされたシリコン基板を準備し、
     前記炭素イオン注入層を形成する工程において、前記シリコン基板にドープされたリンの濃度をA×1020atoms/cmとしたとき、4A×1015atoms/cm以上のドーズ量で表面側に炭素イオンを注入して前記炭素イオン注入層を形成し、
     前記炭素イオン注入を行ったシリコン基板の表面に、リンが5.0×1017atoms/cm以下の濃度でドープされた前記エピタキシャル層を形成することを特徴とする請求項8ないし請求項12のいずれか1項に記載のシリコンエピタキシャルウエーハの製造方法。
     
    Preparing a silicon substrate doped with phosphorus at a concentration of 0.5 × 10 20 atoms / cm 3 or more as the silicon substrate;
    In the step of forming the carbon ion implantation layer, when the concentration of phosphorus doped in the silicon substrate is set to A × 10 20 atoms / cm 3 , the dose is 4A × 10 15 atoms / cm 2 or more on the surface side. Injecting carbon ions to form the carbon ion implanted layer,
    13. The epitaxial layer doped with phosphorus at a concentration of 5.0 × 10 17 atoms / cm 3 or less is formed on the surface of the silicon substrate subjected to the carbon ion implantation. The method for producing a silicon epitaxial wafer according to any one of the above.
  14.  前記シリコン基板として、ボロンが0.2×1020atoms/cm以上の濃度でドープされたシリコン基板を準備し、
     前記炭素イオン注入層を形成する工程において、前記シリコン基板にドープされたボロンの濃度をB×1020atoms/cmとしたとき、4B×1015atoms/cm以上のドーズ量で表面側に炭素イオンを注入して前記炭素イオン注入層を形成し、
     前記炭素イオン注入を行ったシリコン基板の表面に、ボロンが2.0×1017atoms/cm以下の濃度でドープされた前記エピタキシャル層を形成することを特徴とする請求項8ないし請求項12のいずれか1項に記載のシリコンエピタキシャルウエーハの製造方法。
     
    Preparing a silicon substrate doped with boron at a concentration of 0.2 × 10 20 atoms / cm 3 or more as the silicon substrate;
    In the step of forming the carbon ion implantation layer, when the concentration of boron doped in the silicon substrate is B × 10 20 atoms / cm 3 , the dose is 4B × 10 15 atoms / cm 2 or more on the surface side. Injecting carbon ions to form the carbon ion implanted layer,
    13. The epitaxial layer doped with boron at a concentration of 2.0 × 10 17 atoms / cm 3 or less is formed on the surface of the silicon substrate subjected to the carbon ion implantation. The method for producing a silicon epitaxial wafer according to any one of the above.
  15.  前記炭素イオン注入層を形成する工程において、炭素イオンの注入エネルギーは100keV以下とすることを特徴とする請求項8ないし請求項14のいずれか1項に記載のシリコンエピタキシャルウエーハの製造方法。
     
    15. The method for producing a silicon epitaxial wafer according to claim 8, wherein in the step of forming the carbon ion implantation layer, carbon ion implantation energy is set to 100 keV or less.
  16.  前記CVD酸化膜を形成する工程において、1500Å以上の膜厚のノンドープのCVD酸化膜を形成することを特徴とする請求項8ないし請求項15のいずれか1項に記載のシリコンエピタキシャルウエーハの製造方法。
     
    16. The method for producing a silicon epitaxial wafer according to claim 8, wherein in the step of forming the CVD oxide film, a non-doped CVD oxide film having a thickness of 1500 mm or more is formed. .
  17.  前記炭素イオン注入の後、前記エピタキシャル層の形成前において、20℃/sec以上の温度上昇率で600℃から1000℃まで昇温し、水素雰囲気下、1,050℃以上の温度で30秒以上保持して回復アニール工程を行うことを特徴とする請求項8ないし請求項16のいずれか1項に記載のシリコンエピタキシャルウエーハの製造方法。
     
    After the carbon ion implantation and before the formation of the epitaxial layer, the temperature is increased from 600 ° C. to 1000 ° C. at a temperature increase rate of 20 ° C./sec or more, and at a temperature of 1,050 ° C. or more in a hydrogen atmosphere for 30 seconds or more. The method for producing a silicon epitaxial wafer according to any one of claims 8 to 16, wherein a recovery annealing step is performed while being held.
  18.  請求項8ないし請求項17のいずれか1項に記載のシリコンエピタキシャルウエーハの製造方法により製造されたシリコンエピタキシャルウエーハを用いて半導体素子又は集積回路を製造する方法であって、
     1分より長く保持する熱処理は、該熱処理の最高温度を950℃以下となるようにすることを特徴とする半導体素子又は集積回路の製造方法。
    A method of manufacturing a semiconductor element or an integrated circuit using a silicon epitaxial wafer manufactured by the method of manufacturing a silicon epitaxial wafer according to any one of claims 8 to 17,
    The method for manufacturing a semiconductor element or an integrated circuit, wherein the heat treatment for longer than 1 minute is performed such that the maximum temperature of the heat treatment is 950 ° C. or lower.
PCT/JP2011/001824 2010-04-08 2011-03-28 Silicon epitaxial wafer, method for manufacturing silicon epitaxial wafer, and method for manufacturing semiconductor element or integrated circuit WO2011125305A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509302A JP5440693B2 (en) 2010-04-08 2011-03-28 Silicon epitaxial wafer, silicon epitaxial wafer manufacturing method, and semiconductor device or integrated circuit manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-089226 2010-04-08
JP2010089226 2010-04-08

Publications (1)

Publication Number Publication Date
WO2011125305A1 true WO2011125305A1 (en) 2011-10-13

Family

ID=44762276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001824 WO2011125305A1 (en) 2010-04-08 2011-03-28 Silicon epitaxial wafer, method for manufacturing silicon epitaxial wafer, and method for manufacturing semiconductor element or integrated circuit

Country Status (3)

Country Link
JP (1) JP5440693B2 (en)
TW (1) TW201218250A (en)
WO (1) WO2011125305A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099457A (en) * 2012-11-13 2014-05-29 Sumco Corp Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid state image sensor
JP2014099456A (en) * 2012-11-13 2014-05-29 Sumco Corp Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid state image sensor
JP2014099477A (en) * 2012-11-13 2014-05-29 Sumco Corp Method for manufacturing laminated wafer and laminated wafer
JP2014099476A (en) * 2012-11-13 2014-05-29 Sumco Corp Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid state image sensor
JP2014099454A (en) * 2012-11-13 2014-05-29 Sumco Corp Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid state image sensor
JP2014099465A (en) * 2012-11-13 2014-05-29 Sumco Corp Method for manufacturing epitaxial silicon wafer, epitaxial silicon wafer, and method for manufacturing solid state image sensor
JP2015130396A (en) * 2014-01-07 2015-07-16 株式会社Sumco Epitaxial wafer manufacturing method and epitaxial wafer
JP2015130402A (en) * 2014-01-07 2015-07-16 株式会社Sumco Semiconductor epitaxial wafer manufacturing method, semiconductor epitaxial wafer and solid state imaging element manufacturing method
JP2016096338A (en) * 2014-11-14 2016-05-26 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Method for forming semiconductor device, and semiconductor device
JP2016189435A (en) * 2015-03-30 2016-11-04 信越半導体株式会社 Method for manufacturing epitaxial wafer
JP2016213399A (en) * 2015-05-13 2016-12-15 信越半導体株式会社 Method for evaluating monocrystalline silicon substrate
JP2017123477A (en) * 2017-02-28 2017-07-13 株式会社Sumco Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid-state imaging device
JP2017143292A (en) * 2017-03-28 2017-08-17 株式会社Sumco Method for manufacturing bonded wafer and bonded wafer
JP2017183736A (en) * 2017-05-11 2017-10-05 株式会社Sumco Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid state image sensor
JP2018182211A (en) * 2017-04-19 2018-11-15 株式会社Sumco Measuring method for epitaxial layer thickness of epitaxial silicon wafer, and manufacturing method of epitaxial silicon wafer
CN110350021A (en) * 2018-04-03 2019-10-18 环球晶圆股份有限公司 Epitaxial substrate and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI698912B (en) * 2018-09-03 2020-07-11 環球晶圓股份有限公司 Epitaxy substrate and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242153A (en) * 1997-02-26 1998-09-11 Hitachi Ltd Semiconductor wafer, manufacture thereof, semiconductor device and manufacture thereof
JP2002020198A (en) * 2000-06-29 2002-01-23 Shin Etsu Handotai Co Ltd Method of producing silicon epitaxial wafer
JP2003163216A (en) * 2001-09-12 2003-06-06 Wacker Nsce Corp Epitaxial silicon wafer and its manufacturing method
JP2009038124A (en) * 2007-07-31 2009-02-19 Shin Etsu Handotai Co Ltd Epitaxial wafer manufacturing method and epitaxial wafer
JP2009212352A (en) * 2008-03-05 2009-09-17 Sumco Corp Silicon substrate and manufacturing method thereof
JP2009224594A (en) * 2008-03-17 2009-10-01 Shin Etsu Handotai Co Ltd Silicon epitaxial wafer and method for manufacturing the same
JP2010056311A (en) * 2008-08-28 2010-03-11 Shin Etsu Handotai Co Ltd Method of manufacturing soi wafer and soi wafer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242153A (en) * 1997-02-26 1998-09-11 Hitachi Ltd Semiconductor wafer, manufacture thereof, semiconductor device and manufacture thereof
JP2002020198A (en) * 2000-06-29 2002-01-23 Shin Etsu Handotai Co Ltd Method of producing silicon epitaxial wafer
JP2003163216A (en) * 2001-09-12 2003-06-06 Wacker Nsce Corp Epitaxial silicon wafer and its manufacturing method
JP2009038124A (en) * 2007-07-31 2009-02-19 Shin Etsu Handotai Co Ltd Epitaxial wafer manufacturing method and epitaxial wafer
JP2009212352A (en) * 2008-03-05 2009-09-17 Sumco Corp Silicon substrate and manufacturing method thereof
JP2009224594A (en) * 2008-03-17 2009-10-01 Shin Etsu Handotai Co Ltd Silicon epitaxial wafer and method for manufacturing the same
JP2010056311A (en) * 2008-08-28 2010-03-11 Shin Etsu Handotai Co Ltd Method of manufacturing soi wafer and soi wafer

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099457A (en) * 2012-11-13 2014-05-29 Sumco Corp Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid state image sensor
JP2014099456A (en) * 2012-11-13 2014-05-29 Sumco Corp Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid state image sensor
JP2014099477A (en) * 2012-11-13 2014-05-29 Sumco Corp Method for manufacturing laminated wafer and laminated wafer
JP2014099476A (en) * 2012-11-13 2014-05-29 Sumco Corp Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid state image sensor
JP2014099454A (en) * 2012-11-13 2014-05-29 Sumco Corp Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid state image sensor
JP2014099465A (en) * 2012-11-13 2014-05-29 Sumco Corp Method for manufacturing epitaxial silicon wafer, epitaxial silicon wafer, and method for manufacturing solid state image sensor
US10062569B2 (en) 2014-01-07 2018-08-28 Sumco Corporation Epitaxial wafer manufacturing method and epitaxial wafer
JP2015130396A (en) * 2014-01-07 2015-07-16 株式会社Sumco Epitaxial wafer manufacturing method and epitaxial wafer
WO2015104755A1 (en) * 2014-01-07 2015-07-16 株式会社Sumco Epitaxial wafer manufacturing method and epitaxial wafer
JP2015130402A (en) * 2014-01-07 2015-07-16 株式会社Sumco Semiconductor epitaxial wafer manufacturing method, semiconductor epitaxial wafer and solid state imaging element manufacturing method
USRE49657E1 (en) 2014-01-07 2023-09-12 Sumco Corporation Epitaxial wafer manufacturing method and epitaxial wafer
US10453682B2 (en) 2014-01-07 2019-10-22 Sumco Corporation Epitaxial wafer manufacturing method and epitaxial wafer
KR101856012B1 (en) 2014-01-07 2018-05-09 가부시키가이샤 사무코 Epitaxial wafer manufacturing method and epitaxial wafer
JP2016096338A (en) * 2014-11-14 2016-05-26 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Method for forming semiconductor device, and semiconductor device
US10529838B2 (en) 2014-11-14 2020-01-07 Infineon Technologies Ag Semiconductor device having a variable carbon concentration
JP2017228783A (en) * 2014-11-14 2017-12-28 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Method for forming semiconductor device, and semiconductor device
US9972704B2 (en) 2014-11-14 2018-05-15 Infineon Technologies Ag Method for forming a semiconductor device and a semiconductor device
JP2016189435A (en) * 2015-03-30 2016-11-04 信越半導体株式会社 Method for manufacturing epitaxial wafer
JP2016213399A (en) * 2015-05-13 2016-12-15 信越半導体株式会社 Method for evaluating monocrystalline silicon substrate
JP2017123477A (en) * 2017-02-28 2017-07-13 株式会社Sumco Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid-state imaging device
JP2017143292A (en) * 2017-03-28 2017-08-17 株式会社Sumco Method for manufacturing bonded wafer and bonded wafer
JP2018182211A (en) * 2017-04-19 2018-11-15 株式会社Sumco Measuring method for epitaxial layer thickness of epitaxial silicon wafer, and manufacturing method of epitaxial silicon wafer
JP2017183736A (en) * 2017-05-11 2017-10-05 株式会社Sumco Method for manufacturing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method for manufacturing solid state image sensor
CN110350021A (en) * 2018-04-03 2019-10-18 环球晶圆股份有限公司 Epitaxial substrate and its manufacturing method
CN110350021B (en) * 2018-04-03 2022-11-08 环球晶圆股份有限公司 Epitaxial substrate and method for manufacturing same
US11688628B2 (en) 2018-04-03 2023-06-27 Globalwafers Co., Ltd. Method of manufacturing epitaxy substrate

Also Published As

Publication number Publication date
JPWO2011125305A1 (en) 2013-07-08
JP5440693B2 (en) 2014-03-12
TW201218250A (en) 2012-05-01

Similar Documents

Publication Publication Date Title
JP5440693B2 (en) Silicon epitaxial wafer, silicon epitaxial wafer manufacturing method, and semiconductor device or integrated circuit manufacturing method
JP4427489B2 (en) Manufacturing method of semiconductor device
US9252025B2 (en) Method for manufacturing silicon single crystal wafer and electronic device
US20090321883A1 (en) Silicon substrate for solid-state imaging device and method for manufacturing the same
JP2007036250A (en) Low defect epitaxial semiconductor substrate having gettering function, image sensor using the same, and fabrication method thereof
KR20010014908A (en) Semiconductor device and method of manufacturing the same
WO2010016457A1 (en) Epitaxial silicon wafer and method for production thereof
JP4972330B2 (en) Manufacturing method of silicon epitaxial wafer
JP2009038124A (en) Epitaxial wafer manufacturing method and epitaxial wafer
JP5103745B2 (en) High frequency diode and manufacturing method thereof
JP2003297844A (en) Semiconductor device and manufacture method therefor
JP2006216934A (en) Method of manufacturing epitaxial semiconductor substrate and method of manufacturing semiconductor device
JP5246065B2 (en) Epitaxial silicon wafer and manufacturing method thereof
WO2011001770A1 (en) Epitaxial silicon wafer and method for manufacturing same
JP5533869B2 (en) Epitaxial silicon wafer and manufacturing method thereof
JP2011009614A5 (en)
JP2010153631A (en) Epitaxial silicon wafer, and manufacturing method thereof
JP5921089B2 (en) Epitaxial wafer manufacturing method and semiconductor device manufacturing method
JP7424274B2 (en) Bonded wafer and method for manufacturing bonded wafer
JP2014078667A (en) Silicon epitaxial wafer and manufacturing method of solid state imaging element using the same
JPS6392030A (en) Manufacture of semiconductor device
JP5830215B2 (en) Epitaxial wafer and method for manufacturing the same
JP6111720B2 (en) Manufacturing method of semiconductor device
JP2011228330A (en) Silicon epitaxial wafer manufacturing method
JP2010165772A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765207

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509302

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765207

Country of ref document: EP

Kind code of ref document: A1