WO2011125140A1 - 接続材料半導体装置及びその製造方法 - Google Patents

接続材料半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2011125140A1
WO2011125140A1 PCT/JP2010/006335 JP2010006335W WO2011125140A1 WO 2011125140 A1 WO2011125140 A1 WO 2011125140A1 JP 2010006335 W JP2010006335 W JP 2010006335W WO 2011125140 A1 WO2011125140 A1 WO 2011125140A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
connection
mass
content
connection material
Prior art date
Application number
PCT/JP2010/006335
Other languages
English (en)
French (fr)
Inventor
靖 池田
知丈 東平
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2011125140A1 publication Critical patent/WO2011125140A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the present invention relates to lead-free solder.
  • FIG. 1 shows a schematic diagram of a power module.
  • the power semiconductor element 6 is solder-connected to the substrate 3, and the substrate 3 on which the element 6 is mounted is connected to the support member 5 with the solder 4.
  • the element connecting portion becomes a high temperature of 125 to 175 ° C. Therefore, high lead solder having a melting point of 300 ° C. or higher is used for the power semiconductor element connecting portion. It has been.
  • high lead solder has a high lead content of 85% or more, and has a large environmental load.
  • the heat resistance of the Sn-based solder is determined by the reactivity between the main solder component Sn and the connected member. Therefore, it is important not to form an X-Sn intermetallic compound at the connection interface when connected.
  • As the method there is a method in which an element having a higher reactivity with the member than Sn is added to the solder. The inventor has confirmed that by adding Zn or Al as a main component of solder in addition to Sn, an X—Zn-based or X—Al-based intermetallic compound can be formed at the connection interface. However, as shown in FIG.
  • an X—Zn-based intermetallic compound such as Cu—Zn is easier to grow than a X—Sn-based intermetallic compound such as Cu—Sn and has low heat resistance.
  • an X—Al intermetallic compound such as Cu—Al is slower in growth than the Cu—Sn compound and can provide high heat resistance.
  • Al is the main component of solder
  • an Al oxide film is formed on the solder surface, which greatly impairs wettability during connection.
  • the Al oxide film is extremely stable in the temperature range of 250 to 400 ° C. at which solder connection is performed, and does not get wet to the connected material unless a very strong flux that mechanically breaks the film is used.
  • FIG. 4 is a Zn—Al binary phase diagram. Since the Zn—Al system is an alloy system having a wide solid solution region, Zn is very easily dissolved in Al. Therefore, when the clad material is melted, Zn and Al are blended and alloyed without separation, and a good connection state is obtained. On the other hand, Sn and Al are alloy systems having almost no solid solution region, as can be seen from the Sn—Al binary phase diagram of FIG. For this reason, even if connection is attempted, Sn11 in which Al12 is melted is repelled as shown in FIG.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a connection material that can secure wettability, has high heat resistance, and is light even if Al is contained. .
  • the present invention includes a Sn—Al-based alloy layer having an Al content of 40 mass% or less and a Sn layer provided on the outermost surface of the alloy layer. Provide material.
  • the Sn layer is clad on the outermost layer of an alloy containing Sn and Al as main components, so that wettability can be ensured, heat resistance is high, and a semiconductor device using a lightweight connection material and connection material Can be obtained.
  • FIG. 3 is a cross-sectional view of an Sn—Ag solder connection interface after being held at a high temperature. It is a figure which shows the growth thickness of various intermetallic compounds in 150 degreeC.
  • FIG. 4 is a Zn—Al binary phase diagram. It is a Sn-Al binary system phase diagram. It is a figure which shows typically the condition when the material which clad Sn on the outermost layer of Al is heated. It is sectional drawing which shows the connection material of this invention typically. It is sectional drawing which shows the connection mechanism of this invention typically. It is sectional drawing of the interface connected with the connection material of this invention. It is sectional drawing of the interface connected with the connection material of this invention. It is sectional drawing of the interface connected with the connection material of this invention. It is sectional drawing of the interface connected with the connection material of this invention. It is sectional drawing of the interface connected with the connection material of this invention.
  • the bonding material of the present invention comprises an Sn—Al based alloy layer 13 having an Al content of 40 mass% or less and an Sn based layer 11a provided on the outermost surface of the alloy layer.
  • the Sn—Al alloy layer 13 is shown as being divided into an Sn component 11b and an Al component 12 in the drawing, but in reality, it is a substantially uniform Sn—Al alloy.
  • the Sn-Al layers 13 are provided on the upper and lower surfaces of the Sn-Al-based alloy 13 having an Al content of 40 mass% or less by cold or hot clad rolling or pressure forming.
  • the Al oxide film (not shown) existing on the surface of the alloy layer 13 can be broken.
  • the nascent surface exposed by breaking the Al oxide film is metallically joined to the nascent surface of the Sn-based layer 11a whose surface oxide film is also torn. Since the center of the connecting material is the Sn—Al based alloy, the Sn component 11b of the Sn—Al based alloy layer 13 and the Sn component of the Sn based layer 11a are integrated when melted at the time of connection. A good connection can be made without such separation.
  • the Sn-based layer 11 has been deposited on the surface of the Al layer 12.
  • FIG. 8 is a cross section of a connection portion when the semiconductor element 1 is connected to the substrate 3 with the connection material of the present invention.
  • the Sn-Al alloy layer 13 and the Sn-based layer 11a were separated, but after the connection, the whole was a substantially uniform Sn-Al alloy.
  • the amount of Al component present on the surface of the Sn—Al based alloy is too large, so that it separates from the Sn based alloy layer on the surface. .
  • the Al content of the Sn—Al based alloy layer is 10 mass% or more, that is, 10 to 40 mass%.
  • an Al—X compound necessary for obtaining heat resistance can be formed at the connection interface under a wide range of connection conditions.
  • the Sn—Al-based layer alloy layer 13 melts with the Sn-based layer 11a, the proportion of Al decreases, but the thickness of the Sn-based layer 11a is equal to or less than the thickness of the Sn—Al-based alloy layer 13 even when both sides are combined.
  • the variation of the Al content at the time of connection is so small that it does not have to be taken into consideration.
  • the Sn-based layer 11a may be thin because it reduces the influence of the oxide film of the Sn—Al alloy layer 13, and it is preferable that the Sn-based layer 11a be not excessively thick in order to reduce composition fluctuations during connection.
  • FIG. 9 is a schematic view of a connection interface when the connection material of the present invention is connected to a Cu strip member.
  • a Cu—Al compound 21 is formed on the Cu 14.
  • FIG. 10 is a schematic diagram of the interface when the Ni-plated Cu member is connected with the connecting material of the present invention.
  • a Ni—Al compound 22 is formed on the Ni plating 15.
  • FIG. 11 shows a case where Cu strip members are connected with a connection material having an Al content of less than 10 mass% under the same connection conditions.
  • the Cu—Al compound 21 is liberated from the connection interface, and the Cu—Sn compound 23 is generated at the connection interface. This is because the Cu—Al compound 21 is formed at the early stage of connection because there is a large amount of Al that can be supplied to the connection interface. However, as the connection progresses, the Al that forms the compound is insufficient, so convection during solder connection, etc. This is because the Cu—Al compound 21 is released from the interface.
  • connection material having an Al content of less than 10 mass% when a connection material having an Al content of less than 10 mass% is used, adjustments are made such as shortening the connection conditions and lowering the connection temperature in order to obtain a connection interface having an Al—X compound with high heat resistance. Indicates that it is necessary. Therefore, by setting the Al content to 10 mass% or more, it is possible to obtain a connection material corresponding to a wide range of connection conditions. Further, by setting the Al content to 10 to 40% by mass, the connection material can be reduced in weight by 15% to 40% with respect to the general Sn-Ag solder used so far.
  • the Sn—Al based alloy layer 13 is Sn-10 to 40 Al mass%.
  • connection material is softer.
  • the connection material be softer.
  • the Sn—Al-based alloy layer 13 contains 0.01 to 9 mass% of Zn.
  • the solidus temperature of the solder can lower it to about 200 ° C. at the maximum.
  • the solidus temperature is about 30 ° C. lower than the solidus temperature of about 230 ° C., so that residual stress caused by cooling after connection can be reduced.
  • the Sn—Al—Zn ternary system is an alloy system that does not form a fragile intermetallic compound, the reliability of the connecting portion can be ensured. Even when Zn is contained as a main component, an Al—X intermetallic compound can be formed at the connection interface. When Zn content rate becomes higher than 9 mass%, there exists a possibility that Zn may impair the wettability and moisture resistance of a connection material.
  • the Sn—Al-based alloy layer 13 contains 0.01 to 7 mass% of In.
  • the Sn content of the Sn-based layer 11a is 95-100 mass%.
  • clad rolling or pressure forming can be performed without causing cracks or the like on the surface, and a Sn—Al based alloy layer and good metal bonding can be obtained. Since the Sn layer 11a on the surface needs to be formed thinner than the central Sn—Al alloy layer 13, higher workability is desired.
  • the second element having a content of more than 5 mass% is present in Sn, precipitates may be precipitated in Sn or may be dissolved in Sn, thereby reducing workability.
  • the Sn-Al-based alloy layer 13 When a large amount of the third element such as Zn or In described above is present in the central Sn—Al-based alloy layer 13, even if the workability is reduced and fractured during rolling, the Sn-Al-based alloy layer 13 is sealed with the outermost Sn-based layer 11 a. Therefore, the connectivity is not particularly affected.
  • the outermost Sn-based layer 11a is torn, the portion where the Al oxide film on the surface of the Sn—Al-based alloy layer 13 is destroyed by processing is oxidized again to form Al oxide, There is a possibility of impairing wettability.
  • the ratio of the Al oxide remaining interface existing at the entire interface between the Sn—Al-based alloy layer 13 and the Sn-based layer 11a is 25% or less.
  • the ratio of the Al oxide remaining interface existing at the entire interface between the Sn—Al-based alloy layer 13 and the Sn-based layer 11a is 25% or less, so that the connection can be made without impairing the wettability.
  • the amount of processing at the time of fabricating the connection material is small, even if the Al oxide film on the surface of the Sn—Al alloy 13 in the center is torn, the torn film remains at the interface. This prevents metal bonding of the Sn-based layer 11a on the surface.
  • the ratio of the Al oxide remaining interface is more than 25%, approximately 20% of the connected portion is not connected due to non-wetting and voids.
  • the Sn-based alloy foil be stacked on top and bottom of the Sn-Al-based alloy foil and clad rolled or pressure-formed at a final processing degree of 80% or more.
  • the final degree of processing is an index indicating how much the material thickness before rolling and pressure forming is processed as a connecting material.
  • the final processing degree is expressed as 0%, and when the thickness becomes 1/10, the final processing degree is expressed as 90%.
  • the lower the final processing degree the higher the unconnected ratio in the connecting material.
  • This unconnected portion causes unwetting and voids when a member is connected as a connection material.
  • the Sn content of the solder connection portion between the semiconductor element and the substrate is 60 to 90 mass% and the Al content is 10 to 40 mass%.
  • a lightweight semiconductor device having high heat resistance can be obtained.
  • Sn and Al as main components, a connection without a brittle intermetallic compound can be made in the solder connection portion.
  • Sn is less than 60%, the softness of the connection portion is lowered, and sufficient stress buffering cannot be performed when thermal stress is generated.
  • the Sn content is higher than 90%, the Al content is less than 10 mass%, so that it is difficult to form an Al—X compound that suppresses the interface reaction at a high temperature of 150 ° C. or higher.
  • Al content rate is higher than 40 mass%, it cannot form with the connection material of this invention.
  • Example 1-20 An example in which the present invention is applied to a power semiconductor module will be described below.
  • a clad material 2 having a thickness of 140 ⁇ m and a Sn-Al alloy layer of 20 ⁇ m as the outermost layer and a Sn—Al-based alloy layer of 100 ⁇ m as the center layer as shown in Table 1 was prepared. First, Al and Sn are heated and melted at the ratios shown in Table 1 to create a Sn—Al based alloy layer, Sn layers are provided on both sides of the Sn—Al based alloy layer, and cladding is performed to perform cladding. Material 2 was created.
  • the prepared clad material 2 is placed on the substrate 3, and 10 mm ⁇ 10 mm.
  • Power semiconductor element 6 is laminated, and a weight is placed on the element.
  • the element-attached substrate on which wire bonding 1 has been performed is connected to the support member 5 with a 200 ⁇ m-thick Sn—Ag solder, the case is attached, gel is injected around the connection portion, and cured, as shown in FIG. A semiconductor device was manufactured. Except for the clad material 2, it is the same as the conventional semiconductor device.
  • Table 1 shows the results of investigating the specific gravity of the element connection material used in this semiconductor device connection step with respect to Sn, the connection area of the element connection portion, and the state of void formation in the connection portion when the semiconductor device is held at 175 ° C. for 1000 hours.
  • the element connection area the case where the connection area was 90% or more with respect to the element area was marked with ⁇ , and the case where the connection area was less than 90% was marked with x.
  • the holding at 175 ° C. for 1000 h the cross section of the connection interface was observed after holding for 1000 h.
  • connection area in any of the examples, a connection area of 90% or more with respect to the element area was obtained.
  • the void formation state of the connection portion after 175 ° C. for 1000 hours was confirmed, no void was formed in the connection portion in any of the examples. From the above, it has been clarified that wetting can be secured, heat resistance is high, and weight can be reduced by using the present invention.
  • a 150 ⁇ m thick Sn-3.5Ag or Sn-0.7Cu solder foil was placed on the substrate, and 10 mm ⁇ 10 mm.
  • the power semiconductor element was placed on the element, and a weight was placed on the element, in an H 2 reducing atmosphere at 300 ° C. for 5 min. Connected.
  • the element-attached substrate on which wire bonding 1 was performed was connected to the support member 5 with a 200 ⁇ m-thick Sn—Ag-based solder, a case was attached, a gel was injected around the connection portion, and cured to produce a semiconductor device.
  • connection area was less than 90% as shown in Table 2.
  • Comparative Example 4 there was almost no wet location. Since a good connection could not be obtained, heat resistance by holding at 175 ° C. for 1000 hours could not be carried out.
  • connection material for connecting the semiconductor element and the substrate has been described.
  • connection target is not limited to this, and other members such as connection terminals and leads may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Die Bonding (AREA)

Abstract

 パワーモジュールの大容量化に伴う素子接続部の温度上昇に伴い、濡れ性がよく、高耐熱な鉛フリーの接続材料が必要となっていた。 そこで、Sn11bとAl12を主成分とする合金箔13でありAl含有率が40mass%以下の合金箔13の最表層にSn系層11aをクラッドまたは加圧成形して、合金表層の酸化膜を除去する。このときに、合金箔のAl含有率を40mass%以下とする。これにより、SnとAlの分離を抑えて、濡れ性が確保でき、耐熱性が高く、軽量な接続材料および接続ができる。

Description

接続材料半導体装置及びその製造方法
 本発明は、鉛フリーはんだに関するものである。
 パワーモジュールは、家電、ハイブリッド自動車等の電力制御に用いられている。インバータ駆動による省エネルギー化が可能であるため、近年、需要が増大している。図1にパワーモジュールの模式図を示す。パワー半導体素子6が基板3にはんだ接続され、素子6を搭載した基板3が支持部材5にはんだ4で接続される。ワイヤボンディング1を通じて数十から数百アンペアの電流を通電することで、素子接続部が125から175℃の高温となるため、パワー半導体素子接続部には融点が300℃以上の高鉛はんだが使用されてきた。ただし、高鉛はんだは、鉛含有率が85%以上と高く、環境負荷が大きい。そのため、使用時の素子接続部温度が低い製品から、高鉛はんだからSn-Ag系はんだ等に置き換えられ、鉛フリー化が進んでいる。しかしながら、一般的に使用されるSn-Ag系はんだの場合、150℃以上の高温下ではんだ主成分のSnと接続部材との間で反応が進み、図2のような空隙101が接続界面に生じて劣化する。そのため、接続部温度が150℃より高温となるパワーモジュールに対応できる鉛フリーはんだが必要になっていた。
 Sn系はんだの耐熱性は、はんだ主成分のSnと被接続部材間の反応性によって決まる。そのため、接続した際に接続界面にX-Sn系の金属間化合物を形成させないことが重要となる。その方法として、Sn以上に部材との反応性の高い元素をはんだ中に添加する方法が挙げられる。本発明者は、Sn以外にはんだの主成分としてにZnもしくはAlを添加することで、接続界面にX-Zn系、X-Al系の金属間化合物を形成できることを確認した。ただし、図3のようにCu-ZnといったX-Zn系金属間化合物はCu-SnといったX-Sn系金属間化合物に比べて成長しやすく、耐熱性が低い。一方、Cu-AlといったX-Al系金属間化合物は、Cu-Sn化合物に比べて成長が遅く高い耐熱性が得られることを確認している。ただし、Alをはんだ主成分とした場合、はんだ表面にAl酸化物の膜が形成され、これが接続時の濡れ性を大きく阻害する。Al酸化物の膜は、はんだ接続を行う250から400℃の温度域で極めて安定であり、機械的に膜を破る、非常に強いフラックスを用いなければ被接続材に濡らすことがない。パワーモジュールの組立では、減圧してボイド低減するためにバッチ式の炉を用いることが多いため、スクラブ等の機械的な方法で酸化膜を破ることが難しい。また、フラックスを使用した場合、揮発成分がボイド生成原因となる可能性があるため、フラックスの使用も困難である。そのため、Alを主成分とした場合にも材料自身で濡れを確保することが要求されている。Alを主成分とする接続材料のAl酸化膜による濡れ性阻害を回避する手段として特許文献1の方法がある。Zn-Al合金の濡れ性を改善するために、Al箔表面にZnをクラッドしている。クラッドの際に、圧延等の加工でAlが大変形するため、表面のAl酸化膜が破れる。破れたAl酸化膜はそのままの状態を維持するため、接続時に良好な濡れを確保することができる。
特開2008-126272号公報
 しかしながら、上記特許文献1の方法を用いて、Alの表面にSnをクラッドした場合、良好な接続を得ることはできなかった。図4は、Zn-Alの2元系状態図である。Zn-Al系は広い固溶域を持つ合金系であるため、ZnがAl中に極めて固溶しやすい。そのため、クラッド材が溶融した際にZnとAlは分離することなく馴染んで合金化し良好な接続状態が得られる。一方、SnとAlの場合、図5のSn-Al2元系状態図から分かるように、ほとんど固溶域を持たない合金系である。そのため、接続しようとしても図6のようにAl12が溶融したSn11をはじいてしまい、良好な接続ができない。
 本発明は、上記のような問題を解決するためになされたものであり、Alを含んでいても、濡れ性が確保でき、耐熱性が高く、軽量な接続材料を提供することを目的としている。
 本願発明は、上記課題を解決するために、Al含有率が40mass%以下のSn-Al系合金層と、前記合金層の最表面に設けられたSn層とを備えたことを特徴とする接続材料を提供する。
 本発明によれば、SnとAlを主成分とする合金の最表層にSn層をクラッドすることにより、濡れ性が確保でき、耐熱性が高く、軽量な接続材料および接続材料を用いた半導体装置を得ることができる。
パワーモジュールの断面を模式的に示した図である。 高温保持した後のSn-Ag系はんだ接続界面の断面図である。 150℃における各種金属間化合物の成長厚さを示す図である。 Zn-Al2元系状態図である。 Sn-Al2元系状態図である。 Alの最表層にSnをクラッドした材料を加熱したときの状況を模式的に示す図である。 本発明の接続材料を模式的に示す断面図である。 本発明の接続機構を模式的に示す断面図である。 本発明の接続材料で接続した界面の断面図である。 本発明の接続材料で接続した界面の断面図である。 本発明の接続材料で接続した界面の断面図である。
 本願発明の接合材料は、図7に示すように、Al含有率が40mass%以下のSn-Al系合金層13と、合金層の最表面に設けられたSn系層11aとからなる。便宜上、図面ではSn-Al合金層13をSn成分11bとAl成分12に分けて記載しているが、実際にはほぼ均一なSn-Al合金となっている。
 これによって、Al含有率が40mass%以下のSn-Al系合金13の上下面にSn系層11を、冷間もしくは熱間のクラッド圧延や加圧成形によって設けることで、加工前にSn-Al系合金層13の表面に存在していたAl酸化物の膜(図示せず)を破ることができる。Al酸化物の膜が破れることで露出した新生面は、同じく表面の酸化膜が破れたSn系層11aの新生面と金属的に接合される。この接続材料の中心がSn-Al系合金であるため、接続時に溶融した際にSn-Al系合金層13のSn成分11bとSn系層11aのSn成分が一体化することで、図6のような分離を起こすことなく、良好な接続ができる。図6では、Al層12の表面にSn系層11が析出してしまっている。
 図8は、本発明の接続材料で半導体素子1を基板3に接続したときの接続部断面である。接続前はSn-Al系合金層13とSn系層11aとに分かれていたが、接続後は全体がほぼ均一なSn-Al合金となっている。Al含有率が40mass%より高いSn-Al系合金を用いた接続材料の場合、Sn-Al系合金表面に存在するAl成分の量が多すぎるため、表面のSn系合金層と分離してしまう。
 Sn-Al系合金層のAl含有率が10mass%以上、すなわち10~40mass%であることが望ましい。Al含有率10mass%以上にすることで、幅広い接続条件において、耐熱性を得るために必要なAl-X系化合物を接続界面に形成することができる。ここで、Sn-Al系層合金層13がSn系層11aと溶融するとAlの割合が減少するが、Sn系層11aの厚さは両面あわせてもSn-Al系合金層13の厚さ以下とし、接続時のAl含有率の変動は考慮しなくてよいほど小さいものとする。Sn系層11aは、Sn-Al合金層13の酸化膜の影響を小さくするためにあるので薄くてよく、また、接続時の組成変動を少なくするために余分に厚くしないほうがよい。
 図9はCuむく部材に本発明の接続材料を接続したときの接続界面の模式図である。Cu14の上にCu-Al化合物21が形成している。図10は、NiめっきをしたCu部材を本発明の接続材料で接続したときの界面の模式図である。Niめっき15上にNi-Al化合物22が形成している。
 一方、図11は、同じ接続条件において、Al含有率10mass%未満の接続材料でCuむく部材を接続した場合である。接続界面から、Cu-Al化合物21が遊離して、接続界面にはCu-Sn化合物23が生成している。これは、接続の早い段階では接続界面に供給できるAlが多く存在するためCu-Al化合物21が形成するが、接続が進むにつれて、化合物を形成するAlが不足するためにはんだ接続時の対流等で界面からCu-Al化合物21が遊離してしまうためである。すなわち、Al含有率10mass%未満の接続材料を用いる場合、耐熱性の高いAl-X系化合物を有する接続界面を得るために、接続条件を短時間にする、接続温度を低温化するといった調整が必要になることを示している。したがってAl含有率を10mass%以上とすることにより、幅広い接続条件に対応した接続材料とすることができる。また、Al含有率を10~40mass%とすることにより、これまで用いられてきた一般的なSn-Ag系はんだに対して、15%~40%接続材料を軽量化することができる。
 Sn-Al系合金層13がSn-10~40Al mass%であることが望ましい。
 これによって、より軟質な接続材料にすることができる。一般的に、合金を構成する元素が多くなると、析出硬化、固溶強化などによって、合金が硬くなる。パワー半導体素子等の脆性材料を接続する場合、接続材料がより軟質である方が望ましい。
 Sn-Al系合金層13がZnを0.01~9mass%含んでいることが望ましい。
 Sこれにより、はんだの固相線温度を低下させ、最大で約200℃まで低くすることができる。Sn-Al2元系合金の場合、固相線温度が約230℃に比べて、約30℃固相線温度が低いため、接続後の冷却によって生じる残留応力を低減することができる。更に、Sn-Al-Zn3元系は、脆弱な金属間化合物を形成しない合金系であるので、接続部の信頼性を確保できる。また、Znを主成分として含む場合においても、接続界面にはAl-X系金属間化合物を形成することができる。Zn含有率が9mass%より高くなった場合、Znが接続材料の濡れ性、耐湿性を損なう恐れがある。
 Sn-Al系合金層13がInを0.01~7mass%含んでいることが望ましい。
 これにより、固相線温度を低下させ、最大で約200℃まで低下させることができる。また、Inを成分とした場合、Inが母相であるSn中に固溶するため、母相を固溶強化することができる。更に、Sn-Al-In3元系は、脆弱な金属間化合物を形成しない合金系であるので、接続部の信頼性を確保できる。また、Inを主成分として含む場合においても、接続界面にはAl-X系金属間化合物がを形成することができる。Inの含有率が7mass%以上となった場合、固相線温度が200℃未満となりはんだの界面反応性が高まるため、175℃以上の耐熱性を得るのが難しくなる。
 Sn系層11aのSn含有率が95~100 mass%であることが望ましい。
 これにより、表面に亀裂等発生させること無くクラッド圧延もしくは加圧成形ができ、Sn-Al系合金層と良好な金属接合が得られる。表面のSn層11aは中央のSn-Al合金層13に対して薄く形成する必要があるため、より高い加工性が望まれる。Sn中に含有率5mass%より多くの第2元素が存在する場合、Sn中に析出物が析出する、あるいはSn中に固溶することによって加工性が低下する恐れがある。中央のSn-Al系合金層13に前述のZn,Inなどの第3元素が多く存在した場合、加工性が低下して圧延時に破断したとしても、最表層のSn系層11aで封止されているため、特に接続性に影響は与えない。一方、最表層のSn系層11aが破れた場合、加工によりSn-Al系合金層13表面のAl酸化物の膜を破壊した箇所が、再度酸化してAl酸化物を形成することになり、濡れ性を損なう可能性がある。
 Sn-Al系合金層13とSn系層11aの全界面に存在するAl酸化物残存界面の割合が25%以下であることが望ましい。
 これによって、Sn-Al系合金層13とSn系層11aの全界面に存在するAl酸化物残存界面の割合が25%以下にすることで、濡れ性を阻害することなく、接続ができる。接続材料作製時の加工量が小さい場合、中央部のSn-Al系合金13表面のAl酸化物の膜が破れても、破れた膜が界面に残ることで、Sn-Al系合金層13と表面のSn系層11aの金属接合を妨げる。Al酸化物残存界面の割合が25%より多い場合、未濡れおよびボイドにより、接続部の約20%が未接続となる。
 Sn-Al系合金箔の上下にSn系合金箔を重ねて最終加工度80%以上でクラッド圧延または加圧成形することが望ましい。
 これによって、最終加工度80%以上の接続材料にすることで、未濡れ、ボイドが少ない接続ができる。最終加工度とは、圧延および加圧成形前の材料厚さが接続材料として成形された際にどの程度の厚さまで加工されたかを示す指標である。成形前後で厚さが変わらない場合に最終加工度は0%、10分の1の厚さになった場合、最終加工度を90%と表す。接続材料の最終加工度と材料内の未接続割合の関係では、最終加工度が低いほど、接続材料内の未接続割合が増加する。この未接続部は、接続材料として部材を接続した場合に未濡れおよびボイドの原因となる。最終加工度を80%以上にすることで、接続部の未接続割合を20%以内にすることができる。
 半導体素子と基板とのはんだ接続部のSn含有率が60~90mass%、Al含有率が10~40mass%であることが望ましい。
 これによって、耐熱性が高く、軽量な半導体装置が得られる。SnとAlを主成分とすることで、はんだ接続部に脆弱な金属間化合物のない接続ができる。Snが60%未満の場合、接続部の軟質さが低下し、熱応力発生時に十分な応力緩衝ができない。また、Sn含有率が90%より高い場合、Al含有率が10mass%未満となるため、150℃以上の高温下において界面反応を抑制するAl-X系化合物を形成することが難しくなる。Al含有率が40mass%より高い場合は、本発明の接続材料では形成することができない。
 (実施例1-20)以下、本発明をパワー半導体モジュールに適用した実施例について説明する。
 表1の仕様である最表層のSn系合金層20μm、中央層のSn-Al系合金層が100μmの厚さ140μmのクラッド材2を作成した。まず、AlとSnとを表1の仕様の割合で加熱溶融させ、Sn-Al系合金層を作成し、Sn-Al系合金層の両面にSn系層を設け、クラッド加工を行なうことでクラッド材2を作成した。
 そして作成したクラッド材2を基板3上に置き、その上に10mm×10mm.のパワー半導体素子6を積層し、素子上におもしを置き、H2還元雰囲気中、300℃5min.で接続を行った。ワイヤボンディング1を行った素子付基板を厚さ200μmのSn-Ag系はんだで支持部材5に接続し、ケースを取り付けて、接続部周辺にゲルを注入して硬化させ、図1に示すような半導体装置を作製した。クラッド材2以外は、従来の半導体装置と同一である。
 この半導体装置接続工程に用いた素子接続材料のSnに対する比重、素子接続部の接続面積、半導体装置を175℃で1000h保持したときの接続部の空隙生成状況を調査した結果を表1に示す。素子接続面積については、接続面積が素子面積に対して90%以上の場合を○、90%未満の場合を×とした。また、175℃1000h保持に関しては、1000h保持後に接続界面の断面観察を行い、素子接続界面において空隙が生成しなかったものを○、空隙が生成したものを×とした。
 表1のように、実施例1から20において、Al含有率が高いほど、Snに対する重量比が軽くなった。接続面積においては、何れの実施例の場合も素子面積に対して90%以上の接続面積が得られた。175℃1000h後の接続部の空隙生成状態について確認したところ、何れの実施例においても接続部に空隙は形成されていなかった。以上のことから、本発明を用いることで、濡れが確保でき、耐熱性が高く、軽量化が可能なことが明らかとなった。なお、上記では全体構造を編み線状導体と半導体素子、半導体素子と基板の接続を別々に接続するプロセスについて述べたが、半導体素子、クラッド材、基板、はんだ、支持部材を積層した後、一度のプロセスで接続しても良い。
Figure JPOXMLDOC01-appb-T000001

(比較例1、2)
 基板上に、厚さ150μmのSn-3.5AgあるいはSn-0.7Cuはんだ箔を置き、その上に10mm×10mm.のパワー半導体素子をおき、更に素子上におもしを置き、H2還元雰囲気中、300℃5min.で接続を行った。ワイヤボンディング1を行った素子付基板を厚さ200μmのSn-Ag系はんだで支持部材5に接続し、ケースを取り付けて、接続部周辺にゲルを注入して硬化させ、半導体装置を作製した。
 上記の実施例1から20と同様に、Snに対する重量比および接続面積、175℃1000h後の接続界面への空隙生成状況を調査した。その結果、表2のように、重量比はSnと同等、接続性は何れの場合も素子面積に対して90%以上の濡れを確保することができた。一方、175℃1000h保持後の素子接続部の接続界面を観察したところ、図2のような空隙が接続界面に生成していた。
(比較例3-6)
 厚さ150μmの表2に示すはんだ箔を用いて、素子を接続し、比較例1、2と同様の工程で半導体装置の組立を行った。しかしながら、何れの比較例においても、表2のように90%未満の接続面積となった。特に比較例4については、ほとんど濡れている箇所が無かった。良好な接続が得られなかったため、175℃1000h保持による耐熱性は実施できなかった。
Figure JPOXMLDOC01-appb-T000002
 実施例では半導体素子と基板とを接続する接続材料を用いて説明したが、接続する対象はこれに限られず、接続端子やリードなど他の部材でもよい。
1 Alワイヤ、2導電性接合材(はんだ)、3 基板、4 はんだ、5 支持部材、6 パワー半導体素子、7 はんだ、8 金属間化合物、9 導電性接合材、11 Sn系はんだ、11a Sn系層、11b Sn成分、12 Al成分、13 Sn-Al系合金層、14 Cu部材、 15 Niめっき、16 クラッド材、21 Cu-Al化合物、22 Ni-Al化合物、23 Cu-Sn化合物、101 空隙。

Claims (14)

  1.  Al含有率が40mass%以下のSn-Al系合金層と、
     前記合金層の最表面に設けられたSn系層とを備えたことを特徴とする接続材料。
  2.  請求項1記載の接続材料において、
     前記Sn層は、
     前記Sn-Al系合金層の主面に設けられた第一のSn層と、
     前記第一のSn系層とは反対側の前記Sn-Al系合金層の主面に設けられた第二のSn層とを備えたことを特徴とする接続材料。
  3.  請求項1または請求項2において、
     前記Sn-Al系合金層と前記Sn系層とはクラッドまたは加圧成形により接続されていることを特徴とする接続材料。
  4.  請求項1記載の接続材料において、
     前記Sn-Al系合金層のAl含有率が10~40mass%であることを特徴とする接続材料。
  5.  請求項1記載の接続材料において、
     前記Sn-Al系合金層がSn-10~40Al mass%であることを特徴とする接続材料。
  6.  請求項4記載の接続材料において、
     前記Sn-Al系合金層がZn含有率が0.01~9mass%であることを特徴とする接続材料。
  7.  請求項4記載の接続材料において、
     前記Sn-Al系合金層がIn含有率が0.01~7mass%であることを特徴とする接続材料。
  8.  請求項1から7のいずれかに記載の接続材料において、
     前記Sn系層のSn含有率が95~100 mass%であることを特徴とする接続材料。
  9.  請求項1から8のいずれかに記載の接続材料において、
     Sn-Al系合金層とSn系層の全界面に存在するAl酸化物界面の割合が25%以下であることを特徴とする接続材料。
  10.  請求項1から6記載の接続材料において、
     Sn-Al系合金箔の上下にSn箔を重ねて最終加工度80%以上でクラッド圧延したことを特徴とする接続材料。
  11.  第1の部材と、第2の部材と、前記第1の部材と前記第2の部算とを接続するはんだ接続部とを備えた半導体装置において、
     前記はんだ接続部のSn含有率が60~90mass%、Al含有率が10~40mass%であることを特徴とする半導体装置。
  12.  前記第1の部材は半導体素子であり、前記第2の部材は、基板またはリードであることを特徴とする半導体装置の製造方法。
  13.  Sn層にAl層を加熱溶融させ、Al含有率が10~40mass%のSn-Al層を形成する工程と、
     前記形成したSn-Al層の表裏面にそれぞれSn層をクラッドするまたは加圧成形により形成する工程とを含む接続材料の製造方法。
  14.  請求項1乃至10のいずれかに記載の接続材料を、第1の部材と第2の部材との間に設ける工程と、
     前記接続材料を加熱し、前記第1の部材と前記第2の部材とを接続する工程と、
     を含む半導体装置の製造方法。
PCT/JP2010/006335 2010-04-05 2010-10-27 接続材料半導体装置及びその製造方法 WO2011125140A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-086665 2010-04-05
JP2010086665A JP5838023B2 (ja) 2010-04-05 2010-04-05 接続材料半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
WO2011125140A1 true WO2011125140A1 (ja) 2011-10-13

Family

ID=44762129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006335 WO2011125140A1 (ja) 2010-04-05 2010-10-27 接続材料半導体装置及びその製造方法

Country Status (2)

Country Link
JP (1) JP5838023B2 (ja)
WO (1) WO2011125140A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5601275B2 (ja) 2010-08-31 2014-10-08 日立金属株式会社 接合材料、その製造方法、および接合構造の製造方法
FR3034913B1 (fr) * 2015-04-09 2017-05-05 Commissariat Energie Atomique Procede de decoupe d'un electrode d'un generateur electrochimique

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125360A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 高温はんだ材料,高温はんだ材料評価方法および電気/電子機器ならびにはんだ接合構造体
JP2005296983A (ja) * 2004-04-09 2005-10-27 Hitachi Metals Ltd はんだ合金およびはんだボール
JP2006205198A (ja) * 2005-01-27 2006-08-10 Matsushita Electric Ind Co Ltd はんだ材料及びその製造方法
JP2009147111A (ja) * 2007-12-14 2009-07-02 Fuji Electric Device Technology Co Ltd 接合材、その製造方法および半導体装置
JP2009142890A (ja) * 2007-12-18 2009-07-02 Mitsubishi Electric Corp 積層はんだ材およびそれを用いたはんだ付方法ならびにはんだ接合部

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005125360A (ja) * 2003-10-23 2005-05-19 Matsushita Electric Ind Co Ltd 高温はんだ材料,高温はんだ材料評価方法および電気/電子機器ならびにはんだ接合構造体
JP2005296983A (ja) * 2004-04-09 2005-10-27 Hitachi Metals Ltd はんだ合金およびはんだボール
JP2006205198A (ja) * 2005-01-27 2006-08-10 Matsushita Electric Ind Co Ltd はんだ材料及びその製造方法
JP2009147111A (ja) * 2007-12-14 2009-07-02 Fuji Electric Device Technology Co Ltd 接合材、その製造方法および半導体装置
JP2009142890A (ja) * 2007-12-18 2009-07-02 Mitsubishi Electric Corp 積層はんだ材およびそれを用いたはんだ付方法ならびにはんだ接合部

Also Published As

Publication number Publication date
JP2011218364A (ja) 2011-11-04
JP5838023B2 (ja) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5943066B2 (ja) 接合方法および接合構造体の製造方法
EP3062956B1 (en) Lead-free, silver-free solder alloys
KR101528515B1 (ko) 접합 방법, 접합 구조, 전자 장치, 전자 장치의 제조 방법 및 전자 부품
JP5943065B2 (ja) 接合方法、電子装置の製造方法、および電子部品
WO2010047139A1 (ja) はんだ合金および半導体装置
JP2010179336A (ja) 接合体、半導体モジュール、及び接合体の製造方法
JP6700568B1 (ja) 鉛フリーかつアンチモンフリーのはんだ合金、はんだボール、Ball Grid Arrayおよびはんだ継手
KR101165426B1 (ko) 무연 솔더 합금
JPWO2013132942A1 (ja) 接合方法、接合構造体およびその製造方法
JP4959539B2 (ja) 積層はんだ材およびそれを用いたはんだ付方法ならびにはんだ接合部
JP2005503926A (ja) 高温無鉛はんだに適した改良された組成物、方法およびデバイス
TW202138576A (zh) 無鉛且無銻之焊料合金、焊球,及焊料接頭
WO2011125140A1 (ja) 接続材料半導体装置及びその製造方法
TW202130828A (zh) 無鉛且無銻之焊料合金、焊球、及焊料接頭
EP2974818B1 (en) Solder joining method
JP2006140039A (ja) リード線及びそれを用いた太陽電池
KR101711411B1 (ko) 다이 본드 접합용 땜납 합금
KR100399338B1 (ko) 표면실장용 복합솔더 및 그의 제조방법
KR102579479B1 (ko) 접속핀
KR102579478B1 (ko) 전기접속용 금속핀
JP2017216308A (ja) はんだ接合体、はんだ接合体の製造方法
KR20240033889A (ko) 접속핀
KR20240033887A (ko) 접속핀의 접속방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849385

Country of ref document: EP

Kind code of ref document: A1