WO2011122198A1 - Polyimide precursor, resin composition containing said precursor, and method for forming a film using resin composition - Google Patents

Polyimide precursor, resin composition containing said precursor, and method for forming a film using resin composition Download PDF

Info

Publication number
WO2011122198A1
WO2011122198A1 PCT/JP2011/054488 JP2011054488W WO2011122198A1 WO 2011122198 A1 WO2011122198 A1 WO 2011122198A1 JP 2011054488 W JP2011054488 W JP 2011054488W WO 2011122198 A1 WO2011122198 A1 WO 2011122198A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
film
polyimide precursor
resin composition
structural unit
Prior art date
Application number
PCT/JP2011/054488
Other languages
French (fr)
Japanese (ja)
Inventor
敬 岡田
高明 宇野
求樹 岡庭
晋太郎 藤冨
裕也 名和手
伸行 宮木
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN2011800161864A priority Critical patent/CN102822238A/en
Priority to JP2012508152A priority patent/JPWO2011122198A1/en
Priority to KR1020127028254A priority patent/KR20130080432A/en
Publication of WO2011122198A1 publication Critical patent/WO2011122198A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/452Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences
    • C08G77/455Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences containing polyamide, polyesteramide or polyimide sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/001Phase modulating patterns, e.g. refractive index patterns
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide precursor, a resin composition containing the precursor, and a film forming method using the resin composition.
  • wholly aromatic polyimide obtained from aromatic tetracarboxylic dianhydride and aromatic diamine is due to the rigidity of the molecule, the fact that the molecule is resonance-stabilized, the strong chemical bond, etc. It has excellent heat resistance, mechanical properties, etc., and is widely used as a film, coating agent, molded part and insulating material in fields such as electricity, battery, automobile and aerospace industry.
  • Patent Document 1 discloses a polyimide precursor resin composition for a flexible device substrate including a polyimide precursor synthesized from p-phenylenediamine and s-biphenyltetracarboxylic anhydride.
  • the resin composition can be formed by coating on a carrier substrate such as a glass substrate, and becomes a polyimide film having excellent heat resistance and a low thermal expansion coefficient. It is described that when peeling off from a glass substrate without causing peeling, it can be removed cleanly.
  • a coating film obtained from a conventional polyimide precursor and a resin composition containing the precursor may have a large residual stress, and a film having a low glass transition temperature may be obtained.
  • An object of the present invention is to provide a polyimide precursor capable of easily producing a film having a high glass transition temperature and little warpage, a resin composition containing the precursor, and a film forming method using the resin composition. There is.
  • the present inventors have found that the above problems can be solved by using a polyimide precursor (polyamic acid) having a specific structural unit, and the present invention has been completed. . That is, the present invention provides the following [1] to [12].
  • each R independently represents a hydrogen atom or a monovalent organic group
  • each R 1 independently represents a group selected from the group represented by the following formula (3)
  • each R 2 represents Independently, a group selected from the group represented by the following formula (4) is shown, and n is a positive integer.
  • a plurality of R 5 each independently represents a monovalent organic group having 1 to 20 carbon atoms, and m represents an integer of 3 to 200.
  • each R 3 is independently an ether group, thioether group, ketone group, ester group, sulfonyl group, alkylene group, amide group or siloxane group-containing group, hydrogen atom, halogen atom, alkyl group, hydroxy group.
  • a nitro group, a cyano group or a sulfo group, the hydrogen atom of this alkyl group and alkylene group may be substituted with a halogen atom
  • D is an ether group, thioether group, ketone group, ester group, sulfonyl group
  • alkylene A1 is independently an integer of 1 to 3
  • a2 is independently of 1 or 2
  • a3 is independently of an integer of 1 to 4
  • e is 0 Represents an integer of ⁇ 3.
  • each R 4 independently represents a hydrogen atom or an alkyl group, the hydrogen atom of the alkyl group may be substituted with a halogen atom, and D represents an ether group, a thioether group, a ketone group, an ester group, A sulfonyl group, an alkylene group, an amide group or a siloxane group, each b independently represents 1 or 2, each c independently represents an integer of 1 to 3, and f represents an integer of 0 to 3.
  • the polyimide precursor has an ether group, a thioether group, a ketone group, an ester group, a sulfonyl group, an alkylene group, an amide in the main chain of the precursor. Any one of [1] to [3], further comprising 0 to 15% by mass of a structural unit derived from a monomer containing at least one group selected from the group consisting of a group and a siloxane group in the polyimide precursor A polyimide precursor according to any one of the above.
  • each A is independently at least one group selected from the group consisting of an ether group, a thioether group, a ketone group, an ester group, a sulfonyl group, an alkylene group, an amide group, and a siloxane group.
  • Each of R 6 independently represents a hydrogen atom, a halogen atom, an alkyl group or a nitro group, the hydrogen atom of the alkyl group may be substituted with a halogen atom, and each d independently represents 1 to 4 Indicates an integer.
  • a resin composition comprising the polyimide precursor according to any one of [1] to [6] and an organic solvent.
  • organic solvent includes at least one solvent selected from the group consisting of ether solvents, ketone solvents, nitrile solvents, ester solvents, and amide solvents. Resin composition.
  • a film forming method including a step of obtaining a film.
  • the polyimide precursor and the resin composition containing the precursor according to the present invention a film having a high glass transition temperature and less warpage can be easily produced.
  • a film excellent in adhesion and releasability with the substrate when the resin composition is applied to a substrate such as a glass substrate to form a film. can be easily formed.
  • the polyimide precursor (polyamic acid) of the present invention has a structural unit represented by the following formula (1) including a structural unit represented by the following formula (2) (hereinafter also referred to as “structural unit (2)”).
  • a structural unit (1) ”).
  • the polyimide precursor of the present invention a film having a high glass transition temperature, a small residual stress, and a small amount of warpage can be easily produced. Moreover, according to the resin composition containing the polyimide precursor of the present invention, a film excellent in adhesion and releasability with the substrate when the resin composition is applied to a substrate such as a glass substrate to form a film. It can be formed easily.
  • the polyimide precursor according to the present invention has a group selected from the group represented by the structural unit (2) and the following formulas (3) and (4)
  • the polyimide precursor is represented by the following formulas (3) and (4).
  • a microphase-separated structure having a rigid skeleton part containing a group selected from the group and a flexible skeleton part containing the structural unit (2), wherein the rigid skeleton part is a sea part and the flexible skeleton part is an island part It is thought to form. It is thought that the residual stress of a film
  • the polyimide precursor of the present invention it is considered that a film in which the residual stress is small and the occurrence of warpage is suppressed can be obtained.
  • m in the formula (2) is 3 or more, the flexibility of the flexible skeleton portion is further increased, and a microphase-separated structure is more easily formed, and the film remains. It is considered that the stress is further reduced.
  • microphase separation means that islands made of flexible skeleton parts are dispersed in a size of about 1 nanometer to 1 micron in a sea part made of a rigid structural part.
  • adheresion means, for example, when a film is formed on a substrate, or when a device for creating a wiring such as a metal is formed on the formed film.
  • peelability means, for example, when peeling the film from the substrate (when applying force to peel the film from the substrate, etc.) The property that the film can be peeled off from the substrate with few peeling marks.
  • warp is the roundness of the film judged visually
  • residual stress is the film formed by applying the resin composition containing the polyimide precursor of the present invention on a substrate such as a glass substrate. This refers to the stress remaining in the film after the process, and is a measure of “warping” that can occur in the film. Specifically, it can be measured by the method described in the following examples.
  • each R independently represents a hydrogen atom or a monovalent organic group, preferably a hydrogen atom
  • each R 1 is independently a group selected from the group represented by the following formula (3)
  • each R 2 independently represents a group selected from the group represented by the following formula (4).
  • n represents a positive integer, preferably an integer of 1 to 2500.
  • the monovalent organic group in R is preferably a monovalent organic group having 1 to 20 carbon atoms.
  • C1-20 means “1 to 20 carbon atoms”. Similar descriptions in the present invention have similar meanings.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms in R include monovalent hydrocarbon groups having 1 to 20 carbon atoms.
  • Examples of the hydrocarbon group having 1 to 20 carbon atoms include an alkyl group having 1 to 20 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms. Specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, t- A butyl group, a pentyl group, a hexyl group, etc. are mentioned.
  • each R 1 independently represents a group selected from the group represented by the following formula (3).
  • each R 3 independently represents an ether group, a thioether group, a ketone group, an ester group, a sulfonyl group, an alkylene group, an amide group or a siloxane group; a hydrogen atom; a halogen atom; an alkyl group; A group; a nitro group; a cyano group; or a sulfo group, wherein the hydrogen atom of the alkyl group and alkylene group may be substituted with a halogen atom, and D is an ether group, a thioether group, a ketone group, an ester group, a sulfonyl group
  • An alkylene group, an amide group or a siloxane group each of a1 independently represents an integer of 1 to 3, each of a2 independently represents 1 or 2, each of a3 independently represents an integer of 1 to 4, Represents an integer of 0 to 3.
  • R 3 is preferably a hydrogen atom, a halogen atom, an alkyl group, a hydroxy group, a nitro group, a cyano group or a sulfo group, preferably a hydrogen atom or an alkyl group.
  • the alkyl group in R 3 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, specifically, methyl Group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, hexyl group and the like. Any hydrogen atom in these alkyl groups may be substituted with a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • examples of the alkylene group in R 3 and D include a methylene group or an alkylene group having 2 to 20 carbon atoms, and the hydrogen atom of the methylene group and alkylene group may be substituted with a halogen atom. good.
  • the alkylene group having 2 to 20 carbon atoms is preferably an alkylene group having 2 to 10 carbon atoms, and is a dimethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, isopropylidene group, fluorene group. And a group in which any hydrogen atom in these alkylene groups is substituted with a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • D is preferably a sulfonyl group.
  • E is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • Examples of the group represented by the formula (3) include groups represented by the following (3-1) to (3-3).
  • the group selected from the group represented by the formula (3) is a group selected from the group represented by the following formula (3 ′) to obtain a film with small residual stress and suppressed warpage. This is preferable.
  • each R 3 is independently the same as R 3 in the formula (3).
  • each R 2 independently represents a group selected from the group represented by the following formula (4).
  • each R 4 independently represents a hydrogen atom or an alkyl group, the hydrogen atom of the alkyl group may be substituted with a halogen atom, and D represents an ether group, a thioether group, a ketone group, an ester group , A sulfonyl group, an alkylene group, an amide group or a siloxane group, each b independently represents 1 or 2, each c independently represents an integer of 1 to 3, and f represents an integer of 0 to 3.
  • the alkyl group in R 4 respectively, in the formula (3), such as the same groups as the alkyl group can be mentioned in R 3, preferably a hydrogen atom R 4.
  • D is preferably a sulfonyl group
  • f is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • the group selected from the group represented by the formula (4) is a group selected from the group represented by the following formula (4 ′) to obtain a film with small residual stress and suppressed warpage. Is preferable.
  • the structural unit (1) includes a structural unit (2).
  • the structural unit (2) may be contained in at least one group selected from the group consisting of a plurality of R 1 and R 2 in the structural unit (1). It may be contained in at least one group selected from the group consisting of a plurality of R 1 and R 2 .
  • “at least one group selected from the group consisting of a plurality of R 1 and R 2 includes a structural unit represented by the following formula (2)” means that when n is 2 or more, R 1 and R 2 is present in each of two or more structural units (1), which means that at least one of the plurality of R 1 and R 2 includes a structural unit represented by the following formula (2).
  • the polyimide precursor of the present invention contains the structural unit (2), according to the resin composition containing the precursor, it is possible to obtain a film in which the residual stress is small and the occurrence of warpage is suppressed.
  • a plurality of R 5 s each independently represent a monovalent organic group having 1 to 20 carbon atoms, and m represents an integer of 3 to 200.
  • examples of the monovalent organic group having 1 to 20 carbon atoms in R 5 include a monovalent hydrocarbon group having 1 to 20 carbon atoms and a monovalent alkoxy group having 1 to 20 carbon atoms. Can be mentioned.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 5 include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms. It is done.
  • the alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms, specifically, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t -Butyl group, pentyl group, hexyl group and the like.
  • the cycloalkyl group having 3 to 20 carbon atoms is preferably a cycloalkyl group having 3 to 10 carbon atoms, and specific examples include a cyclopentyl group and a cyclohexyl group.
  • the aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, a tolyl group, and a naphthyl group.
  • Examples of the monovalent alkoxy group having 1 to 20 carbon atoms in R 5 include a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, a phenoxy group, a propenyloxy group, and a cyclohexyloxy group.
  • the island part composed of the flexible skeleton part is excellent in affinity with the sea part composed of the rigid structural part, It is preferable because it is easy to disperse (uniform) (microphase separation) at a size of ⁇ 1 micron.
  • the plurality of R 5 are preferably an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 12 carbon atoms.
  • the resulting polyimide may not have a microphase separation structure. is there.
  • microphase separation nano-dispersion of the skeleton part including the structural unit (2)
  • a low linear expansion coefficient, low residual stress, etc. Can be obtained.
  • the alkyl group (i) having 1 to 10 carbon atoms is preferably a methyl group, and the aryl group (ii) having 6 to 12 carbon atoms is preferably a phenyl group.
  • the structural unit (2) is preferably contained in an amount of 5 to 40% by mass, preferably 5 to 23% by mass, and 8 to 22% by mass. More preferably, it is contained in an amount of 9.5 to 21% by mass.
  • the proportion of the structural unit (2) contained in the polyimide precursor exceeds the above range, when the resin composition of the present invention was applied to a substrate such as a glass substrate and a coating film was formed, the substrate was formed from the substrate. It tends to be difficult to peel the coating film.
  • the quantity of the structural unit (2) contained in a polyimide precursor is less than the said range, when the resin composition of this invention is apply
  • M in the formula (2) is an integer of 3 to 200, preferably 10 to 200, more preferably 20 to 150, still more preferably 30 to 100, and particularly preferably 35 to 80.
  • m is 2 or less, the polyimide obtained from the polyimide precursor may be difficult to form a microphase separation structure.
  • m exceeds 200, the island portion composed of the skeleton part containing the structural unit (2) The size may exceed 1 ⁇ m, and the coating film may become cloudy or the mechanical strength may be reduced.
  • the structural unit (1) in 100% by mass of the polyimide precursor, is preferably 60% by mass or more, more preferably 77% by mass or more, further preferably 79% by mass, and still more preferably 85%. To 100% by mass, more preferably 90 to 100% by mass, still more preferably 91 to 100% by mass, particularly preferably 92 to 100% by mass. When the proportion of the structural unit (1) is within the above range in the polyimide precursor, a film having a small residual stress and hardly warping can be obtained.
  • 60% by mass or more of the structural unit (1) means that the structural unit —NH—R 1 —NH—, the structural unit —NH—R 1 —NH 2 , the structural unit— CO—R 2 (COOR) 2 —CO—, structural unit —CO—R 2 (COOR) 2 —COOH, structural unit (2), and structural unit — (Si (R 5 ) 2 —O) m —Si It means that the total of structural units including R 1 and R 2 such as (R 5 ) 2 -R 10 -R 11 and the structural unit (2) is 60% by mass or more.
  • part of the structural unit (1) may be imidized.
  • the polyimide precursor of the present invention has an ether group, a thioether group, a ketone group in the main chain of the precursor, in addition to the structural unit contained in the formula (1), depending on the desired use and film forming conditions.
  • a structural unit derived from a monomer hereinafter also referred to as “monomer (I)”) containing at least one group selected from the group consisting of an ester group, a sulfonyl group, an alkylene group, an amide group and a siloxane group.
  • structural unit (56) examples of the alkylene group include the same groups as the alkylene group for R 3 in the formula (3).
  • the “structural unit included in the formula (1)” means the structural unit —NH—R 1 —NH—, the structural unit —NH—R 1 —NH 2 , or the structural unit —CO—R 2 (COOR) 2.
  • —CO—, structural unit —CO—R 2 (COOR) 2 —COOH, structural unit (2), and structural unit — (Si (R 5 ) 2 —O) m —Si (R 5 ) 2 —R 10 R 1 a -R 11 or the like refers to a structural unit containing R 2 and structural units (2) (Note, R 1, R 2 and R and R 1, R 2 and R in the formula (1) are synonymous, R 5 has the same meaning as R 5 in the formula (2), R 10 and R 11 has the same meaning as R 10 and R 11 of the formula (7 ') and (8') in. ).
  • the structural unit (56) does not contain the group represented by R 1 and R 2 in the structural unit (1) and the structural unit (2) contained in the main chain of the polyimide precursor. It refers to structural units derived from anhydrides and their derivatives or imino forming compounds.
  • the main chain of the polyimide precursor means a chain containing R 1 or R 2 of the structural unit (1).
  • —COOR in the structural unit (1) is not a main chain but a side chain. is there.
  • the linear expansion coefficient of the obtained film increases, and a film that can be stretched as desired is obtained.
  • the substrate containing Cu or the substrate containing Si is used.
  • the blending amount of the structural unit (56) and / or the structural unit (2) may be changed according to these substrates.
  • the coefficient of linear expansion of Cu is 16.8 ppm / K
  • the polyimide precursor has a structural unit (56).
  • the linear expansion coefficient of Si is 3 ppm / K, when the resin composition of the present invention is applied on a substrate made of Si, the polyimide precursor contains structural units (56).
  • the linear expansion coefficient of chromium is 8.2 ppm / K
  • the linear expansion coefficient of glass is 9 ppm / K
  • the linear expansion coefficient of stainless steel SUS430 is 10.4 ppm / K
  • the linear expansion coefficient of nickel is 12.8 ppm / K. Therefore, when the resin composition of the present invention is applied on a substrate composed of these, the polyimide precursor of the present invention contains 0 to 15% by mass of the structural unit (56) in 100% by mass of the polyimide precursor. Is preferred.
  • each A independently represents an ether group (—O—), a thioether group (—S—), a ketone group (—C ( ⁇ O) —), an ester group (—COO—). ), A sulfonyl group (—SO 2 —), an alkylene group (—R 7 —), an amide group (—C ( ⁇ O) —NR 8 —) and a siloxane group (—Si (R 9 ) 2 —O—Si ( R 9 ) represents a group containing at least one group selected from the group consisting of 2- ), R 6 independently represents a hydrogen atom, a halogen atom, an alkyl group or a nitro group, and the hydrogen atom of the alkyl group represents a halogen atom It may be substituted with an atom, and each d independently represents an integer of 1 to 4.
  • R 8 and R 9 each independently represent a hydrogen atom, an alkyl group or a halogen atom, and the hydrogen atom of this alkyl group may be substituted with a halogen atom.
  • Examples of the alkyl group in R 6 , R 8 and R 9 include the same groups as the alkyl group in R 3 in the formula (3).
  • the halogen atom is preferably a chlorine atom or a fluorine atom.
  • A is preferably an ether group, and R 6 is preferably a hydrogen atom.
  • examples of the alkylene group (—R 7 —) in A include the same groups as the alkylene group in R 3 in the formula (3).
  • methylene Group, isopropylidene group, hexafluoroisopropylidene group and fluorene group are preferred.
  • Examples of the compounds (5) and (6) include compounds described in the following compound groups (5-1) to (6-9).
  • the polyimide precursor of the present invention includes the structural unit (56)
  • the polyimide precursor preferably includes 0 to 15% by mass of the structural unit (56) in 100% by mass of the polyimide precursor, and more preferably 0 to 10%. Including mass%, more preferably 0 to 9 mass%, particularly preferably 0 to 8 mass%.
  • the content of the structural unit (56) exceeds 15% by mass, the elastic modulus of the rigid structural part is lowered, and it is difficult to transfer residual stress to the flexible structural part. It may be easier.
  • the polyimide precursor may include a structural unit (56), a polyimide precursor containing the structural unit (56), (I) wherein formula (1) in R 1 and R 2 in the structural unit (56) And (II) a structure in which the structural unit (56) is included in a portion other than the structural unit (1) in the polyimide precursor.
  • the polyimide precursor is represented by the following formula (5A), for example.
  • the structural unit (56) is preferably contained in an amount of 0 to 15% by mass in 100% by mass of the polyimide precursor” means between the two —NH— in the repeating unit n2 in 100% by mass of the polyimide precursor. It means 0 to 15% by mass of a structural unit represented by a structure sandwiched between (including —NH— at both ends).
  • the structural unit (56) may be contained in at least one group selected from the group consisting of a plurality of R 1 and R 2 in the structural unit (1). It may be contained at the end of the unit (1).
  • the weight average molecular weight (Mw) of the polyimide precursor of the present invention is preferably 10,000 to 1,000,000, more preferably 10,000 to 200,000, and further preferably 20,000 to 150,000.
  • the number average molecular weight (Mn) is preferably from 5,000 to 10,000,000, more preferably from 5,000 to 500,000, particularly preferably from 20,000 to 200,000.
  • the weight average molecular weight or number average molecular weight of the polyimide precursor is less than the lower limit, the strength of the coating film may be lowered. Furthermore, the linear expansion coefficient of the obtained film may be increased more than necessary.
  • the weight average molecular weight or number average molecular weight of the polyimide precursor exceeds the above upper limit, the viscosity of the resin composition increases, so when the film is formed by applying the resin composition to a substrate such as a glass substrate. Since the amount of the polyimide precursor that can be blended in the resin composition is reduced, the film thickness accuracy such as the flatness of the obtained coating film may be deteriorated.
  • the molecular weight distribution (Mw / Mn) of the polyimide precursor of the present invention is preferably 1 to 10, more preferably 2 to 5, and particularly preferably 2 to 4.
  • the said weight average molecular weight, number average molecular weight, and molecular weight distribution are the values measured similarly to the following Example.
  • the polyimide precursor of the present invention is preferably a component containing at least one acyl compound selected from the group consisting of (A) tetracarboxylic dianhydride and a reactive derivative thereof (hereinafter also referred to as “component (A)”). And (B) a component containing an imino forming compound (hereinafter also referred to as “component (B)”).
  • component (A) tetracarboxylic dianhydride and a reactive derivative thereof
  • component (B) a component containing an imino forming compound
  • a polyimide precursor corresponding to the structure of the raw material compound to be used can be obtained, and a polyimide precursor having a structural unit derived from the compound in an amount corresponding to the amount of the raw material compound to be used is obtained. be able to.
  • an acyl compound containing a structural unit represented by the above formula (2) (hereinafter also referred to as “compound (A-2)”) is used as the component (A), or the above formula (2) is used as the component (B). It is preferable to use an imino forming compound (hereinafter also referred to as “compound (B-2)”) containing a structural unit represented by In addition, both compound (A-2) and compound (B-2) can be used.
  • the component (A) is at least one acyl compound selected from the group consisting of tetracarboxylic dianhydrides and reactive derivatives thereof.
  • at least one compound selected from the group consisting of the above compound (A-2) and an acyl compound (A-1) other than the compound (A-2) is included.
  • Examples of the acyl compound (A-1) include at least one compound selected from the group consisting of aromatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and reactive derivatives thereof.
  • the sea part having a high elastic modulus is a compound having a group selected from the group represented by the above formula (4), particularly a compound having a group selected from the group represented by the above formula (4 ′). It is possible to disperse the flexible skeletal part in a very small 1 nanometer to 1 micron size (uniform) (micro phase separation structure), and efficiently absorb the stress generated in the film forming process by the flexible skeleton part.
  • Tetracarboxylic dianhydride 1,2,4,5-cyclohexanetetracarboxylic dianhydride (PMDAH), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), 2 , 2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-bicyclohexyltetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride
  • aromatic tetracarboxylic dianhydride is preferable, more preferably pyromellitic dianhydride, 3,3 ′, 4, '- biphenyltetracarboxylic acid dianhydride, 2,2', and 3,3'-biphenyltetracarboxylic dianhydride, particularly preferably pyromellitic dianhydride.
  • acyl compound (A-1) a compound having no group selected from the group represented by the above formulas (4) and (4 ′) may be used.
  • an aromatic tetracarboxylic dianhydride may be used.
  • aliphatic tetracarboxylic dianhydride or alicyclic tetracarboxylic dianhydride is preferably used from the viewpoint of excellent transparency and good solubility in an organic solvent.
  • aromatic tetracarboxylic dianhydrides are preferably used from the viewpoints of heat resistance, low linear expansion coefficient (dimensional stability), and low water absorption.
  • the compounding amount of the compound (A-1) is not particularly limited, and may be 100% by mass when the total amount of all acyl compounds (component (A)) is 100% by mass. May contain the following compound (A-2) and / or compounds (6) and (6 ′) in an amount obtained by subtracting the preferred compounding amount of each of these compounds from 100% by mass.
  • the compound (A-2) include a tetracarboxylic dianhydride having a structural unit represented by the above formula (2) and at least one acyl compound selected from reactive derivatives thereof.
  • a compound represented by the following formula (7) hereinafter also referred to as “compound (7)”
  • a compound represented by the following formula (7 ′) hereinafter also referred to as “compound (7 ′)”
  • It is selected from the group consisting of a compound represented by the formula (8) (hereinafter also referred to as “compound (8)”) and a compound represented by the following formula (8 ′) (hereinafter also referred to as “compound (8 ′)”).
  • compound (8 ′) hereinafter also referred to as “compound (8 ′)
  • Examples of the reactive derivative include a tetracarboxylic acid having a structural unit represented by the above formula (2), an acid esterified product of the tetracarboxylic acid, and an acid chloride of the tetracarboxylic acid.
  • the compounds (7) and / or (8) are synthesized.
  • the compound (7 ′) and / or (8 ′) is preferably used when it is desired to synthesize a polyimide precursor contained in the terminal “*” of the structural unit (1).
  • R 5 and m are each independently synonymous with R 5 and m in the formula (2).
  • R 10 each independently represents a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • R 11 each independently represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, In the above formula (2), the same groups as the monovalent organic group having 1 to 20 carbon atoms in R 5 can be used.
  • Examples of the divalent organic group having 1 to 20 carbon atoms in R 10 include a methylene group, an alkylene group having 2 to 20 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, and an arylene group having 6 to 20 carbon atoms. Is mentioned.
  • the alkylene group having 2 to 20 carbon atoms is preferably an alkylene group having 2 to 10 carbon atoms, and examples thereof include a dimethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group.
  • the cycloalkylene group having 3 to 20 carbon atoms is preferably a cycloalkylene group having 3 to 10 carbon atoms, and examples thereof include a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, and a cycloheptylene group.
  • the arylene group having 6 to 20 carbon atoms is preferably an arylene group having 6 to 12 carbon atoms, and examples thereof include a phenylene group and a naphthylene group.
  • the compound (A-2) preferably has a number average molecular weight of 200 to 10,000, preferably 500 to 10,000, from the viewpoint of obtaining a film excellent in heat resistance (high glass transition temperature) and water resistance. More preferably, it is 500 to 6000.
  • the amine value is preferably 100 to 5000, more preferably 250 to 5,000, and still more preferably 1000 to 3000.
  • the polymerization degree m in the compounds (7), (7 ′), (8) and (8 ′) is the same as that in the formula (2), and the preferred range is also the same.
  • R 5 is preferably a methyl group or a phenyl group, and at least one of a plurality of R 5 is preferably a phenyl group.
  • At least one R 5 in the formulas (7), (7 ′), (8) and (8 ′) is not a phenyl group, the compatibility between the sea part and the island part deteriorates and the dispersion of the island part A film having a size exceeding 1 micron and inferior heat resistance and film strength may be obtained.
  • Compound (A-2) can be used alone or in combination of two or more.
  • the compound (A-2) when the total amount of all raw material compounds (component (A) + component (B)) is 100% by mass, the compound (A ⁇
  • the blending amount of 2) is preferably 5 to 40% by mass, more preferably 5 to 23% by mass, and even more preferably, from the viewpoint of obtaining a film that is excellent in peelability from the substrate and hardly warps. It is 8 to 22% by mass, and particularly preferably 9.5 to 21% by mass.
  • a preferable blending amount of the compound (A-2) is a case where the compound (B-2) is not used when synthesizing the polyimide precursor, and as a raw material when synthesizing the polyimide precursor.
  • the total amount of the compound (A-2) and the compound (B-2) to be used is preferably a blending amount of the compound (A-2). It is preferable to make it to the same degree.
  • the component (A) includes a compound (6) and / or a compound represented by the following formula (6 ′) (hereinafter referred to as “compound (“ 6 ′) ”) may also be included.
  • compound (“ 6 ′) a compound represented by the following formula (6 ′)
  • the compound (6 ′) when it is desired to synthesize a polyimide precursor containing the structural unit (56) in the main chain (excluding the terminal) of the polyimide precursor, it is preferable to use the compound (6), and the main chain terminal of the polyimide precursor is used.
  • A has the same meaning as A in the formulas (5) and (6), and R 12 represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 12 represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms include the same groups as the monovalent organic group having 1 to 20 carbon atoms in R 5 in the above formula (2).
  • the total amount of all raw material compounds (component (A) + component (B)) is 100% by mass.
  • the compounding amount of the compound (6) and the compound (6 ′) is preferably 0 to 15% by mass, more preferably 0 to 10% by mass, from the viewpoint of obtaining a film that hardly warps.
  • the content is preferably 0 to 9% by mass, particularly preferably 0 to 8% by mass.
  • the preferable compounding amount of the compound (6) and the compound (6 ′) is a case where the compound (5) and / or the compound (5 ′) is not used when the polyimide precursor is synthesized.
  • the compound (6) and / or the compound (6 ′) and the compound (5) and / or the compound (5 ′) are used as raw materials when the body is synthesized, the compound (6) and compound to be used It is preferable that the total amount of (6 ′), compound (5) and compound (5 ′) is the same as the preferred blending amount of compound (6) and / or compound (6 ′).
  • the component (B) is an imino forming compound.
  • the “imino forming compound” refers to a compound that reacts with the component (A) to form an imino (group), and specifically includes a diamine compound, a diisocyanate compound, a bis (trialkylsilyl) amino compound, and the like. Can be mentioned.
  • the component (B) preferably contains at least one compound selected from the group consisting of the above compound (B-2) and imino forming compound (B-1) other than the compound (B-2).
  • Examples of the imino-forming compound (B-1) include at least one compound selected from the group consisting of aromatic diamines and alicyclic diamines, and the like.
  • the above formulas (3) and (3-1) to (3) ⁇ 3) A compound having a group selected from the group represented by the formula (3), particularly a compound having a group selected from the group represented by the formula (3 ′) is preferred.
  • PDA p-phenylenediamine
  • m-phenylenediamine 2,4-diaminotoluene
  • benzidine 3,3′-dimethyl-4,4′-diaminobiphenyl (o- Trizine), 2,2′-dimethyl-4,4′-diaminobiphenyl (m-tolidine, mTB), 3,3′-diethyl-4,4′-diaminobiphenyl, 2,2′-diethyl-4,4 '-Diaminobiphenyl, 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl (TFMB), 3,3-dimethoxy-4,4-diaminobiphenyl, 2,2'-dichloro-4, 4'-diamino-5,5'-dimethoxybiphenyl, 2,2 ', 5,5'-tetrachloro-4,4'-diaminobi
  • acyl compound (B-1) a compound having no group selected from the group represented by the above formulas (3), (3-1) to (3-3) and (3 ′) is further used.
  • at least one compound selected from the group consisting of aromatic diamines, aliphatic diamines and alicyclic diamines may be used.
  • aromatic diamine examples include 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether (ODA), 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, and 3,7-diamino-dimethyldibenzo.
  • aliphatic diamines examples include aliphatic diamines having 2 to 30 carbon atoms, and specific examples thereof include ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-heptanediamine, Alkylene diamines such as 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,12-dodecanediamine; oxydi (2-aminoethane) ), Oxydi (2-aminopropane), oxyalkylenediamine such as 2- (2-aminoethoxy) ethoxyaminoethane.
  • These aliphatic diamines can be used alone or in combination of two or more.
  • alicyclic diamine what has at least 1 alicyclic group in a molecule
  • numerator can be used, and any group of a monocyclic ring, a polycyclic ring, and a condensed ring may be used as an alicyclic group.
  • an alicyclic diamine having 4 to 30 carbon atoms is preferably used, and 4,4′-diaminodicyclohexylmethane (MBCHA), 4,4′-diamino-3,3′-dimethylcyclohexyl is used.
  • MBCHA 4,4′-diaminodicyclohexylmethane
  • the compounding amount of the compound (B-1) is not particularly limited, and may be 100% by mass when the total amount of all imide-forming compounds (component (B)) is 100% by mass.
  • the following compounds (B-2) and / or compounds (5) and (5 ′) are contained in the components, they may be blended in an amount obtained by subtracting the preferred blending amount of each of these compounds from 100% by mass.
  • the compound (B-2) is not particularly limited as long as it is an imino forming compound containing the structural unit (2), but is preferably a compound represented by the following formula (9) (hereinafter also referred to as “compound (9)”). And a compound represented by the following formula (9 ′) (hereinafter also referred to as “compound (9 ′)”).
  • the compound (9 ′) In the case where it is desired to synthesize a polyimide precursor in which the structural unit (2) is contained in at least one group selected from the group consisting of a plurality of R 1 and R 2 in the structural unit (1), the compound (9 In the case where it is desired to synthesize a polyimide precursor contained in the terminal “*” of the structural unit (1), it is preferable to use the compound (9 ′).
  • R 5 and m each independently have the same meaning as R 5 and m in the formula (2)
  • R 10 each independently represents the formulas (7) and ( 8) during the same meaning as R 10 in
  • R 11 is each independently the above formula (7 ') and (8') is synonymous with R 11 in.
  • the flexible skeleton part can be finely dispersed in the nano-micron size in the sea part composed of the rigid skeleton part, and has excellent heat resistance (high glass transition temperature) and water resistance.
  • the number average molecular weight is preferably 500 to 12,000, more preferably 1,000 to 8,000, and still more preferably 3,000 to 6,000.
  • the amine value is preferably 250 to 6,000, more preferably 500 to 4,000, and further preferably 1,500 to 3,000.
  • the polymerization degree m in the formulas (9) and (9 ′) is the same as that in the formula (2), and the preferred range is also the same.
  • R 5 is preferably a methyl group or a phenyl group, and at least one of a plurality of R 5 is preferably a phenyl group.
  • At least one R 5 in the formulas (9) and (9 ′) is not a phenyl group, the compatibility between the sea part and the island part deteriorates, and the dispersion size of the island part exceeds 1 micron, and the heat resistance In some cases, a film having poor film strength may be obtained.
  • the imino-forming compound (B-2) may be used alone or in combination of two or more.
  • the compound (B-2) When the compound (B-2) is contained in the component (B), the compound (B ⁇ ) is obtained when the total amount of all raw material compounds (component (A) + component (B)) is 100% by mass.
  • the blending amount of 2) is preferably 5 to 40% by mass, more preferably 5 to 23% by mass, and even more preferably, from the viewpoint of obtaining a film that is excellent in peelability from the substrate and hardly warps. It is 8 to 22% by mass, and particularly preferably 9.5 to 21% by mass.
  • the preferable compounding amount of the compound (B-2) is a case where the compound (A-2) is not used when the polyimide precursor is synthesized.
  • the component (B) includes a compound represented by the compound (5) and / or the following formula (5 ′) (hereinafter referred to as “compound (“ 5 ') ”))) may be included.
  • compound (“ 5 ') ” a compound represented by the compound (5) and / or the following formula (5 ′) (hereinafter referred to as “compound (“ 5 ') ”))) may be included.
  • A represents the formula (5) and (6) in the same meaning as A
  • R 12 is the formula (6 Formula (5)' is synonymous with R 12 in).
  • the total amount of all raw material compounds (component (A) + component (B)) is 100% by mass.
  • the compounding amount of the compound (5) and the compound (5 ′) is preferably 0 to 15% by mass, more preferably 0 to 10% by mass, from the viewpoint of obtaining a film that hardly warps.
  • the content is preferably 0 to 9% by mass, particularly preferably 0 to 8% by mass.
  • the preferable compounding quantity of the said compound (5) and compound (5 ') is a case where the said compound (6) and / or compound (6') are not used when a polyimide precursor is synthesize
  • the component (A) and the component (B) are used as a ratio (charge ratio), and the molar ratio of the component (A) to the component (B) (component (A) / (B ) Component) is preferably reacted in the range of 0.8 to 1.2, more preferably in the range of 0.90 to 1.0.
  • the molar ratio of the (A) acyl compound and the (B) imino-formation product is less than 0.8 equivalent or more than 1.2 equivalent, the molecular weight may be lowered and it may be difficult to form a film.
  • the reaction between the component (A) and the component (B) is usually performed in an organic solvent.
  • the organic solvent is preferably dehydrated.
  • organic solvent it is preferable to use the following mixed solvent from the viewpoint of the ease of production of the resin composition of the present invention and the properties of the resulting film (haze, warpage, etc.).
  • At least one (B) imino-forming compound is dissolved in an organic solvent, and then the resulting solution contains at least one ( A)
  • a method of adding an acyl compound and stirring at a temperature of 0 to 100 ° C. for 1 to 60 hours may be mentioned.
  • the total amount of the components (A) and (B) in the reaction solution is 3 to 60% by mass, preferably 5 to 40% by mass, more preferably 10 to 40% by mass, based on the total amount of the reaction solution. More preferably, it is 10 to 30% by mass.
  • organic solvent examples include at least one solvent selected from the group consisting of ether solvents, ketone solvents, nitrile solvents, ester solvents, and amide solvents.
  • the ether solvent is preferably an ether having 3 to 10 carbon atoms, and more preferably an ether having 3 to 7 carbon atoms.
  • preferable ether solvents include mono- or dialkyl ethers such as ethylene glycol, diethylene glycol, and ethylene glycol monoethyl ether, cyclic ethers such as dioxane and tetrahydrofuran (THF), and aromatic ethers such as anisole. Can be mentioned. Of these, tetrahydrofuran is preferred.
  • These ether solvents can be used singly or in combination of two or more.
  • the ketone solvent is preferably a ketone having 3 to 10 carbon atoms, and more preferably a ketone having 3 to 6 carbon atoms from the viewpoint of boiling point and cost.
  • cyclohexanone can obtain a resin composition excellent in drying property, productivity, etc., a solvent that is selectively evaporated during the following vacuum drying, and is almost completely removed from the coating film formed on the substrate. It is preferable from the point of being.
  • ketone solvents can be used singly or in combination of two or more.
  • the nitrile solvent is preferably a nitrile having 2 to 10 carbon atoms, and more preferably a nitrile having 2 to 7 carbon atoms.
  • acetonitrile is preferable from the viewpoint of a low boiling point.
  • These nitrile solvents can be used singly or in combination of two or more.
  • the ester solvent is preferably an ester having 3 to 10 carbon atoms, and more preferably an ester having 3 to 6 carbon atoms.
  • the amide solvent is preferably an amide having 3 to 10 carbon atoms, and more preferably an amide having 3 to 6 carbon atoms.
  • an amide solvent having a boiling point equal to or higher than the primary drying temperature is obtained. From the viewpoint of the flatness of the film, etc., specifically, an amide solvent having a boiling point of 200 ° C. or higher is preferable.
  • Preferred amide solvents include alkylamides such as N, N-dimethylformamide and N, N-dimethylacetamide (DMAc), 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone and the like. Examples thereof include cyclic amides. Among these, N-methyl-2-pyrrolidone and N, N-dimethylacetamide remain after vacuum drying or primary drying by evaporating the non-amide solvent, and at the time of secondary drying performed at 200 ° C. to 500 ° C.
  • alkylamides such as N, N-dimethylformamide and N, N-dimethylacetamide (DMAc), 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone and the like. Examples thereof include cyclic amides. Among these, N-methyl-2-pyrrolidone and N, N-dimethylacetamide remain after vacuum drying or primary drying by evaporating the non-
  • N-methyl-2-pyrrolidone is more preferable in consideration of environmental pollution and the like.
  • These amide solvents can be used alone or in combination of two or more.
  • the organic solvent it is possible to use a mixed solvent of an amide solvent and an ether solvent, a ketone solvent, a nitrile solvent, and an ester solvent selected from the group consisting of an ester solvent. It is preferable from the viewpoints of adhesion, peelability and residual stress of the coating film (film). Moreover, when the mixed solvent is used, a drying rate at the time of film formation is increased, the film quality is not deteriorated, a resin composition having excellent film productivity and a high polyimide precursor concentration can be obtained.
  • the non-amide solvent is preferably a solvent that selectively evaporates during the following vacuum drying and is almost completely removed from the coating film formed on the substrate, and has a boiling point in the range of 40 to 200 ° C.
  • a certain solvent is preferable, and a solvent in the range of 100 to 170 ° C. is more preferable.
  • the boiling point means the boiling point in the atmosphere at 1 atm.
  • the non-amide solvent preferably contains at least one organic solvent selected from the group consisting of ketone solvents and nitrile solvents. Since these solvents have relatively high polarity, there is a tendency that a resin composition having excellent storage stability can be obtained.
  • the mixed solvent is a mixed solvent of N-methyl-2-pyrrolidone and cyclohexanone, a mixed solvent of N, N-dimethylacetamide and cyclohexanone, N-methyl-2-pyrrolidone and A mixed solvent with acetonitrile is preferable, and a mixed solvent of N-methyl-2-pyrrolidone and cyclohexanone is particularly preferable.
  • a mixed solvent of N, N-dimethylacetamide and tetrahydrofuran is preferable from the viewpoint of preventing clouding of the obtained film.
  • the mixed solvent preferably contains 5 to 95 parts by mass, more preferably 25 to 95 parts by mass of the amide-based solvent with respect to 100 parts by mass of the mixed solvent. More preferably, it contains 65 parts by mass. Further, the mixed solvent particularly preferably contains 40 to 60 parts by mass of the amide solvent with respect to 100 parts by mass of the mixed solvent.
  • the mixed solvent contains the amide solvent in this amount, the mixed solvent is dried. Not only does it become a resin composition with high speed and excellent productivity, but it also has excellent film quality characteristics such as cloudiness and tensile strength, storage stability, etc., and excellent adhesion to the substrate and peelability. Obtainable.
  • the amount of the amide solvent is less than 5 parts by mass, the polyimide precursor may not be dissolved and a resin composition may not be obtained.
  • the amount of the amide solvent exceeds 95 parts by mass, The drying speed at the time of forming becomes slow, and productivity may be inferior.
  • the resin composition according to the present invention preferably contains the polyimide precursor of the present invention and an organic solvent.
  • the organic solvent is preferably the mixed solvent.
  • the resin composition containing the polyimide precursor of the present invention a film having a high glass transition temperature, a small residual stress, and little warpage can be easily produced in a short time with high productivity. Moreover, according to the said resin composition, when apply
  • the resin composition contains the polyimide precursor obtained by the above reaction as a solid component. Can be obtained by re-dissolving in an organic solvent.
  • a solution containing the polyimide precursor and an organic solvent is poured into a poor solvent for the polyimide precursor such as methanol or isopropanol to precipitate the polyimide precursor, and is filtered, washed and dried.
  • a poor solvent for the polyimide precursor such as methanol or isopropanol
  • blend additives such as antioxidant, a ultraviolet absorber, and surfactant, in the said resin composition in the range which does not impair the objective of this invention.
  • the viscosity of the resin composition is usually 500 to 500,000 mPa ⁇ s, preferably 1,000 to 50,000 mPa ⁇ s, although it depends on the molecular weight and concentration of the polyimide precursor. If it is less than 500 mPa ⁇ s, the retention of the resin composition during film formation is poor, and the resin composition may flow down from the substrate. On the other hand, if it exceeds 500,000 mPa ⁇ s, the viscosity is too high, and it becomes difficult to adjust the film thickness, which may make it difficult to form the film.
  • the viscosity of the resin composition is a value measured at 25 ° C. in the atmosphere using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., viscometer MODEL RE100).
  • the polyimide precursor concentration in the resin composition is preferably adjusted so that the viscosity of the resin composition is in the above range, and is usually 3 to 60% by mass, preferably 5%, depending on the molecular weight of the polyimide precursor. -40% by mass, more preferably 10-40% by mass, particularly preferably 10-30% by mass. If it is less than 3% by mass, problems such as difficulty in increasing the film thickness and poor productivity, easy formation of pinholes, and poor film thickness accuracy such as flatness may occur. On the other hand, if it exceeds 60% by mass, the viscosity of the resin composition may be too high to form a film, and a film lacking in surface smoothness may be obtained.
  • the resin composition can be applied onto a substrate using a slit coating method that is excellent in productivity and the like. A film having excellent thickness accuracy and the like can be formed in a short time with high productivity.
  • ⁇ Film formation method As a method for forming a film (polyimide film) according to the present invention, a step of coating the resin composition on a substrate to form a coating film, and a step of removing the organic solvent from the coating film by evaporation And the like methods.
  • a roll coating method As a method of forming a coating film by applying the resin composition on a substrate, a roll coating method, a gravure coating method, a spin coating method, a slit coating method, a dipping method and a doctor blade, a die, a coater, a spray, a brush, The method etc. which apply
  • the thickness of the coating film is appropriately selected depending on the desired application and is not particularly limited. For example, it is 1 to 500 ⁇ m, preferably 1 to 450 ⁇ m, more preferably 2 to 250 ⁇ m, and still more preferably. The thickness is 2 to 150 ⁇ m, particularly preferably 5 to 125 ⁇ m.
  • the substrate includes polyethylene terephthalate (PET) film, polyethylene naphthalate (PEN) film, polybutylene terephthalate (PBT) film, nylon 6 film, nylon 6,6 film, polypropylene film, polytetrafluoroethylene belt, silicon wafer , Glass wafers, glass substrates (including non-alkali glass substrates), Cu substrates and SUS plates.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • nylon 6 film nylon 6,6 film
  • polypropylene film polytetrafluoroethylene belt
  • silicon wafer Glass wafers, glass substrates (including non-alkali glass substrates), Cu substrates and SUS plates.
  • the resin composition of the present invention is excellent in adhesion and peelability to these substrates, it is possible to form a thin film on a silicon wafer, glass wafer, glass substrate, Cu substrate and SUS plate.
  • the step of removing the organic solvent by evaporating the organic solvent from the coating film can be performed by vacuum drying or heating the coating film.
  • the heating condition may be that the organic solvent evaporates and the polyimide precursor of the present invention is imidized, and may be appropriately determined according to the substrate and the polyimide precursor.
  • the heating temperature is 60 ° C. to 350 ° C. It is preferable.
  • the heating time is preferably 10 minutes to 5 hours.
  • heating may be performed in two or more stages. Specifically, for example, after drying for 10 minutes to 2 hours at a temperature of 60 to 250 ° C., heating is further performed at 160 to 350 ° C., preferably 200 to 350 ° C., more preferably 230 to 270 ° C. for further 10 minutes to 2 hours. And so on. Moreover, you may dry under reduced pressure as needed.
  • the heating atmosphere is not particularly limited, but is preferably in the air or in an inert gas atmosphere, and particularly preferably in an inert gas atmosphere.
  • the inert gas include nitrogen, argon, helium and the like from the viewpoint of colorability, and nitrogen is preferable.
  • the said coating may dry the coating film formed on the said board
  • the step of removing the mixed solvent from the coating film by evaporating it is preferable to perform vacuum drying before the heating.
  • vacuum drying since the solvent can be easily removed from the coating film without blowing hot air or the like to the coating film formed on the substrate, a film having excellent flatness can be obtained. Since it is fixed from the surface, a film having excellent flatness and uniform film quality can be formed with good reproducibility.
  • the pressure in the apparatus is decreased until the pressure (decompression degree) in the apparatus containing the coating film is 760 mmHg or less, preferably 100 mmHg or less, more preferably 50 mmHg or less, and particularly preferably 1 mmHg or less. Is desirable. If it exceeds 760 mmHg, the evaporation rate when the solvent is further removed from the coating film after vacuum drying is remarkably slowed, and the productivity may be deteriorated.
  • the vacuum drying is desirably performed for 0 to 60 minutes, preferably 0 to 30 minutes, more preferably 0 to 20 minutes, when the pressure drops to a predetermined value.
  • the obtained film can be used after being peeled off from the substrate, or can be used as it is without being peeled off.
  • the thickness of the film is appropriately selected according to the desired application, but is preferably 1 to 200 ⁇ m, more preferably 5 to 100 ⁇ m, still more preferably 10 to 50 ⁇ m, and particularly preferably 20 to 40 ⁇ m.
  • the elastic modulus of the film obtained from the resin composition of the present invention is 5 to 20 GPa, particularly preferably 5 to 10 GPa. If the elastic modulus of the film is less than 5 GPa, the film tends to be stretched, but the residual stress becomes high and warping may occur. If it exceeds 20 GPa, the film becomes brittle and may cause a problem of cracking in the film during handling. .
  • the elongation of the film is appropriately selected according to the desired application, but is 2% or more, preferably 4% or more, particularly preferably 10% or more. If the elongation of the film is less than 2%, there may be a problem that the film is cracked during handling.
  • the glass transition temperature of the film is 250 ° C. or higher, preferably 350 ° C. or higher, particularly preferably 450 ° C. or higher. If the glass transition temperature is less than 250 ° C., it is heated to 250 ° C. or more at the time of solder reflow process or device creation. Therefore, when the coating film is used for such applications, the film may be deformed. is there.
  • Suitable applications of the film include flexible substrates such as flexible printed circuit boards and flexible display substrates, semiconductor elements, thin film transistor type liquid crystal display elements, magnetic head elements, integrated circuit elements, solid-state imaging elements, mounting substrates, and other electronic components.
  • Examples thereof include an insulating film used and films for various capacitors. That is, these electronic components are generally provided with an interlayer insulating film, a planarizing insulating film, and a surface protecting insulating film (overcoat film, passivation film, etc.) in order to insulate between wirings arranged in layers. Therefore, it can be suitably used as these insulating films.
  • the film can be suitably used as a light guide plate, a polarizing plate, a display film, an optical disc film, a transparent conductive film, a waveguide plate, or the like.
  • the film is excellent in adhesion and peelability to the glass substrate, so there is no need to provide an adhesive layer or the like between the film and the substrate, and the number of steps when creating a flexible substrate can be reduced. There is sex.
  • Glass transition temperature (Tg) Using the films obtained in Examples 1 to 13 or Comparative Examples 1 and 2 below, the glass transition temperature of polyimide was set to 20 ° C./min using a Rigaku 8230 DSC measuring apparatus. It was measured.
  • Weight average molecular weight The weight average molecular weight of the polyamic acids obtained in the following Examples 1 to 13 or Comparative Examples 1 and 2 was measured using an HLC-8020 GPC apparatus manufactured by TOSOH. As the solvent, N-methyl-2-pyrrolidone (NMP) to which lithium bromide and phosphoric acid were added was used, and the molecular weight in terms of polystyrene was determined at a measurement temperature of 40 ° C.
  • NMP N-methyl-2-pyrrolidone
  • mTB 2,2′-dimethyl-4,4′-diaminobiphenyl
  • component (B) 2,2′-dimethyl-4,4′-diaminobiphenyl (hereinafter also referred to as “mTB”) 6 as a component (B) in a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube 6 0.07 g (28.6 mmol) and 2.57 g (0.6 mmol) of both terminal amino-modified methylphenyl silicone (X22-1660B-3) were added.
  • mTB 2,2′-dimethyl-4,4′-diaminobiphenyl
  • the obtained polyamic acid solution was applied on a non-alkali glass support with a spin coater (rotated at 300 rpm for 5 seconds and then rotated at 1100 rpm for 10 seconds), then at 70 ° C. for 30 minutes, and then at 120 ° C.
  • a coating film was obtained by drying for 30 minutes.
  • the coating film obtained as the imidization step was further dried at 250 ° C. for 2 hours, and then peeled from the alkali-free glass support to obtain a polyimide film having a film thickness of 30 ⁇ m (0.03 mm).
  • membrane were evaluated. The results are shown in Table 1.
  • Example 2 In a 300 mL four-necked flask equipped with a thermometer, stirrer, nitrogen inlet tube, and condenser tube, both 2,2′-dimethyl-4,4′-diaminobiphenyl (6.07 g, 28.6 mmol) as component (B) 2.57 g (0.6 mmol) of terminal amino-modified methylphenyl silicone (X22-1660B-3) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform.
  • the polyimide film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 3 In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introduction tube, and a cooling tube, both 6.68 g (31.4 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl as component (B) were added. 1.40 g (0.3 mmol) of terminal amino-modified methylphenyl silicone (X22-1660B-3) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide and 20 ml of tetrahydrofuran were added and stirred until uniform. To the resulting solution, 6.93 g (31.8 mmol) of pyromellitic dianhydride as component (A) was added at room temperature, and stirring was continued at that temperature for 24 hours to obtain a composition (polyamic acid solution). .
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 4 In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube, 6.04 g (28.4 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl was added as component (B). 2.36 g (1.8 mmol) of terminal amino-modified methylphenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd., X22-9409, number average molecular weight 1,300) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform. To the obtained solution, 6.60 g (30.3 mmol) of pyromellitic dianhydride as component (A) was added at room temperature, and stirring was continued at that temperature for 24 hours to obtain a composition (polyamic acid solution). .
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 5 In a 300 mL four-necked flask equipped with a thermometer, stirrer, nitrogen inlet tube, and condenser tube, both 6.41 g (30.2 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl as component (B) were added. 1.85 g (0.6 mmol) of terminal amino-modified methyl phenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd., X22-161B, number average molecular weight 3,000) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform. To the resulting solution, 6.73 g (30.9 mmol) of pyromellitic dianhydride as component (A) was added at room temperature, and stirring was continued at that temperature for 24 hours to obtain a composition (polyamic acid solution). .
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 6 In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube, both 6.29 g (29.6 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl as component (B) were added. 1.98 g (1.2 mmol) of terminal amino-modified methyl phenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd., X22-161A, number average molecular weight 1,600) was added.
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 7 Add 6.65 g (31.3 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl as component (B) to a 300 mL four-necked flask equipped with a thermometer, stirrer, nitrogen inlet tube, and condenser. did. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform. To the resulting solution, 6.15 g (28.2 mmol) of pyromellitic dianhydride and 2.19 g (3.1 mmol) of acid anhydride-modified methylsilicone (DMS-Z21) at room temperature were used as component (A). In addition, stirring was continued at that temperature for 24 hours to obtain a composition (polyamic acid solution).
  • DMS-Z21 acid anhydride-modified methylsilicone
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 8 In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube, both 6.59 g (31.0 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl as component (B) were added. 1.38 g (0.3 mmol) of terminal amino-modified methylphenyl silicone (X22-1660B-3) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform.
  • component (A) 1,2,4,5-cyclohexanetetracarboxylic dianhydride (hereinafter also referred to as “PMDAH”) as component (A) was added at room temperature, and the temperature was maintained. Then, stirring was continued for 24 hours to obtain a composition (polyamic acid solution).
  • PMDAH 1,2,4,5-cyclohexanetetracarboxylic dianhydride
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 9 2.87 g (25.1 mmol) of 1,4-diaminocyclohexane (hereinafter also referred to as “CHDA”) as component (B) was added to a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube. 3.42 g (0.8 mmol) of both-end amino-modified methylphenyl silicone (X22-1660B-3) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform.
  • CHDA 1,4-diaminocyclohexane
  • component (A) diphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride (hereinafter also referred to as “s-BPDA”) as component (A) was added at room temperature. In addition, stirring was continued at that temperature for 24 hours to obtain a composition (polyamic acid solution).
  • s-BPDA 4,4′-tetracarboxylic dianhydride
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 10 In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube, 2.99 g (26.2 mmol) of 1,4-diaminocyclohexane as component (B) and amino-modified methylphenyl silicone (X22) ⁇ 9409) 2.56 g (2.0 mmol) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform.
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • TFMB 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl
  • component (B) 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl
  • TFMB 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 12 In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube, both 6.34 g (29.9 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl as component (B) were added. 2.68 g (0.6 mmol) of terminal amino-modified methylphenyl silicone (X22-1660B-3) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform.
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 13 In a 300 mL four-necked flask equipped with a thermometer, stirrer, nitrogen introduction tube, and cooling tube, both 2.78 '(22.3 mmol) of 2,2'-dimethyl-4,4'-diaminobiphenyl as component (B) were added. 5.16 g (1.2 mmol) of terminal amino-modified methylphenyl silicone (X22-1660B-3) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform. To the obtained solution, 5.11 g (23.4 mmol) of pyromellitic dianhydride as component (A) was added at room temperature, and stirring was continued at that temperature for 24 hours to obtain a composition (polyamic acid solution). .
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Example 14 The polyamic acid solution (composition) prepared in Example 1 was cast and applied on a non-alkali glass support with a spin coater so that the thickness of the resulting coating film was 25 ⁇ m, and 30 minutes at 70 ° C. Then, it was dried at 120 ° C. for 30 minutes to obtain a coating film. Then, the coating film obtained as a cyclization (imidation) step was further dried at 250 ° C. for 2 hours.
  • a transparent conductive film (element) was formed on the surface of the obtained coating film under an argon atmosphere at 230 ° C. for 5 minutes.
  • ITO was used as a target material.
  • the specific resistance value of the obtained substrate was 2 ⁇ 10 ⁇ 4 ( ⁇ ⁇ cm).
  • membrane was obtained by peeling the polyimide-type film
  • substrate was peelable from the support body, and the curvature was not observed.
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • BAPP 2,2′-bis [4- (4-aminophenoxy) phenyl] propane
  • ODPA 4,4′-oxydiphthalic dianhydride
  • a polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm.
  • Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
  • Weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) were measured using an HLC-8220 GPC apparatus manufactured by TOSOH ( Guard column: TSK guard column ALPHA column: TSKgel ALPHA-M, developing solvent: NMP).
  • the residual stress of the coating film is preferably 10 MPa or less, and more preferably 5 MPa or less.
  • the first drying before the polyimide precursor peak area ratio (peak area peak area / 1520 cm -1 of 990 cm -1) and their peak area ratio after secondary drying were measured, imidization using the following equation The rate was calculated.
  • Imidization ratio (%) (peak area ratio after primary / secondary drying / peak area ratio before primary drying) ⁇ 100
  • Example 15 In a three-necked flask equipped with a thermometer, a nitrogen inlet tube and a stirring blade, under nitrogen flow at 25 ° C., 45.23099 g (0.21306 mol) of m-tolidine (mTB), both ends amino-modified side chain phenyl methyl type silicone X- 22-1660B-3 [9.4694 g (0.0021521 mol)], 307 g of dehydrated N-methyl-2-pyrrolidone (NMP) and 307 g of dehydrated cyclohexanone (CHN) so that the concentration of the polyimide precursor in the varnish was 14%. Was added and stirred for 10 minutes until mTB and X-22-1660B-3 were completely dissolved.
  • NMP dehydrated N-methyl-2-pyrrolidone
  • CHN dehydrated cyclohexanone
  • a glass substrate (horizontal: 300 mm x vertical: 350 mm x thickness: 0.7 mm) is fixed to a control coater stand installed so as to be perpendicular to gravity, and the gap interval is set so that the film thickness becomes 30 ⁇ m after secondary drying.
  • the thickness was set to 405 ⁇ m, and 12 g of varnish was cast on the center of the glass substrate so as to form a coating film of width: 200 mm ⁇ length: 220 mm.
  • Table 2 shows the results of sampling and physical properties evaluation of the coating after primary drying.
  • secondary drying was performed at 300 ° C. for 1 hour. The evaluation results are shown in Table 2.
  • Tg was 450 ° C. or higher, which was excellent in heat resistance, transparency, smoothness, and a tough film having a low coefficient of linear expansion.
  • the obtained coating film has a high drying speed and is excellent in adhesion to a glass substrate during primary drying and secondary drying, and the film obtained after secondary drying is excellent in peelability from the glass substrate. It was.
  • Example 16 The same operation as in Example 15 was carried out except that the amounts of mTB, X-22-1660B-3 and PMDA used were changed as shown in Table 2. The results are shown in Table 2.
  • a tough film with excellent heat resistance, transparency, and smoothness without warping could be obtained.
  • the obtained coating film has a high drying speed and is excellent in adhesion to a glass substrate during primary drying and secondary drying, and the film obtained after secondary drying is excellent in peelability from the glass substrate. It was.
  • Example 17 The same operation as in Example 15 was carried out except that the amounts of mTB, X-22-1660B-3 and PMDA used were changed as shown in Table 2. The results are shown in Table 2.
  • a tough film with excellent heat resistance, transparency, and smoothness without warping could be obtained.
  • the obtained coating film has a high drying speed and is excellent in adhesion to a glass substrate during primary drying and secondary drying, and the film obtained after secondary drying is excellent in peelability from the glass substrate. It was.
  • Example 18 In Example 15, instead of mTB45.23099 g, 32.578 g of mTB and 7.8760 g of 4,4′-diaminodiphenyl ether (ODA) were used, and the amounts of X-22-1660B-3 and PMDA used were as shown in Table 2. The same operation as in Example 15 was performed except for the change. The results are shown in Table 2.
  • the film was improved in elongation, and it was excellent in heat resistance, transparency and smoothness, and a warp-free film could be obtained.
  • the obtained coating film has a high drying speed and is excellent in adhesion to a glass substrate during primary drying and secondary drying, and the film obtained after secondary drying is excellent in peelability from the glass substrate. It was.
  • a polyimide precursor having the structural unit (1) was confirmed in the obtained varnish.
  • a tough film having excellent heat resistance, transparency and smoothness, having no warpage and having a low coefficient of linear expansion could be obtained.
  • the obtained coating film has a high drying speed and is excellent in adhesion with a glass substrate during primary drying and secondary drying, and the film obtained after secondary drying is excellent in peelability from the glass substrate. It was.
  • Example 20 The same operation as in Example 18 was carried out except that the amounts of mTB, X-22-1660B-3, ODA and PMDA used were changed as shown in Table 2. The results are shown in Table 2.
  • the obtained coating film has a high drying speed and is excellent in adhesion to a glass substrate during primary drying and secondary drying, and the film obtained after secondary drying is excellent in peelability from the glass substrate. It was.
  • Example 15 was carried out in the same manner as Example 15 except that X-22-1660B-3 was not used and the amounts of mTB and PMDA used were changed as shown in Table 2. The results are shown in Table 2.
  • the varnish obtained in Comparative Example 3 had a slow drying rate. Moreover, the residual stress increased after secondary drying, and a large warp occurred after the film was peeled from the glass substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Disclosed is a polyimide precursor having a structural unit that is represented by the belowmentioned formula 1 and that contains a structural unit represented by the belowmentioned formula 2. (In formula 1: each R independently represents a hydrogen atom or a monovalent organic group; each R1 independently represents a group selected from those represented in the belowmentioned formula 3; each R2 independently represents a group selected from those represented in the belowmentioned formula 4; and n represents a positive integer.)

Description

ポリイミド前駆体、該前駆体を含む樹脂組成物および樹脂組成物を用いた膜形成方法Polyimide precursor, resin composition containing the precursor, and film forming method using the resin composition
 本発明は、ポリイミド前駆体、該前駆体を含む樹脂組成物および樹脂組成物を用いた膜形成方法に関する。 The present invention relates to a polyimide precursor, a resin composition containing the precursor, and a film forming method using the resin composition.
 一般に、芳香族テトラカルボン酸二無水物と芳香族ジアミンから得られる全芳香族ポリイミドは、分子の剛直性や、分子が共鳴安定化していること、強い化学結合を有すること等に起因して、優れた耐熱性、機械的特性等を有しており、電気、電池、自動車および航空宇宙産業などの分野において、フィルム、コーティング剤、成型部品、絶縁材料として幅広く使用されている。 In general, wholly aromatic polyimide obtained from aromatic tetracarboxylic dianhydride and aromatic diamine is due to the rigidity of the molecule, the fact that the molecule is resonance-stabilized, the strong chemical bond, etc. It has excellent heat resistance, mechanical properties, etc., and is widely used as a film, coating agent, molded part and insulating material in fields such as electricity, battery, automobile and aerospace industry.
 しかしながら、上記従来のポリイミド(形成組成物)を用いて、ガラス基板のような支持体上で成膜を行うと、成膜時の収縮変形に伴い、基板もしくはフィルム自身に反りを生じる問題が指摘されている。 However, when the conventional polyimide (formation composition) is used to form a film on a support such as a glass substrate, there is a problem that the substrate or the film itself is warped due to shrinkage deformation at the time of film formation. Has been.
 ここで、特許文献1には、p-フェニレンジアミンおよびs-ビフェニルテトラカルボン酸無水物等から合成されたポリイミド前駆体を含むフレキシブルデバイス基板用ポリイミド前駆体樹脂組成物が開示されている。 Here, Patent Document 1 discloses a polyimide precursor resin composition for a flexible device substrate including a polyimide precursor synthesized from p-phenylenediamine and s-biphenyltetracarboxylic anhydride.
 また、該樹脂組成物は、ガラス基板等のキャリア基板上に塗布することで成膜でき、耐熱性に優れ、熱膨張係数の低いポリイミド膜となって、回路等の形成過程でキャリア基板層からのはがれを生じさせず、ガラス基板から剥がす際には、きれいに剥がせるものであることが記載されている。 In addition, the resin composition can be formed by coating on a carrier substrate such as a glass substrate, and becomes a polyimide film having excellent heat resistance and a low thermal expansion coefficient. It is described that when peeling off from a glass substrate without causing peeling, it can be removed cleanly.
特開2010-202729号公報JP 2010-202729 A
 しかしながら、従来のポリイミド前駆体および該前駆体を含む樹脂組成物から得られる塗膜は、残留応力の大きいものとなる場合があり、また、ガラス転移温度の低い膜が得られる場合があった。 However, a coating film obtained from a conventional polyimide precursor and a resin composition containing the precursor may have a large residual stress, and a film having a low glass transition temperature may be obtained.
 本発明の目的は、高いガラス転移温度を有し、反りの発生が少ない膜を容易に製造できるポリイミド前駆体、該前駆体を含む樹脂組成物および樹脂組成物を用いた膜形成方法を提供することにある。 An object of the present invention is to provide a polyimide precursor capable of easily producing a film having a high glass transition temperature and little warpage, a resin composition containing the precursor, and a film forming method using the resin composition. There is.
 本発明者は、上記課題を解決するために鋭意検討した結果、特定の構造単位を有するポリイミド前駆体(ポリアミック酸)によれば、前記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の[1]~[12]を提供するものである。
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by using a polyimide precursor (polyamic acid) having a specific structural unit, and the present invention has been completed. .
That is, the present invention provides the following [1] to [12].
 [1] 下記式(2)で表わされる構造単位を含む下記式(1)で表わされる構造単位を有するポリイミド前駆体。 [1] A polyimide precursor having a structural unit represented by the following formula (1) including a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(式(1)中、Rは各々独立に水素原子または一価の有機基を示し、R1は各々独立に、下記式(3)で表わされる群より選ばれる基を示し、R2は各々独立に、下記式(4)で表わされる群より選ばれる基を示し、nは正の整数を示す。) (In the formula (1), each R independently represents a hydrogen atom or a monovalent organic group, each R 1 independently represents a group selected from the group represented by the following formula (3), and each R 2 represents Independently, a group selected from the group represented by the following formula (4) is shown, and n is a positive integer.)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式(2)中、複数あるR5は各々独立に炭素数1~20の一価の有機基を示し、mは3~200の整数を示す。) (In the formula (2), a plurality of R 5 each independently represents a monovalent organic group having 1 to 20 carbon atoms, and m represents an integer of 3 to 200.)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
((3)中、R3は各々独立にエーテル基、チオエーテル基、ケトン基、エステル基、スルフォニル基、アルキレン基、アミド基もしくはシロキサン基を含む基、水素原子、ハロゲン原子、アルキル基、ヒドロキシ基、ニトロ基、シアノ基またはスルホ基を示し、このアルキル基およびアルキレン基の水素原子はハロゲン原子で置換されても良く、Dは、エーテル基、チオエーテル基、ケトン基、エステル基、スルフォニル基、アルキレン基、アミド基またはシロキサン基を示し、a1は各々独立に1~3の整数を示し、a2は各々独立に1または2を示し、a3は各々独立に1~4の整数を示し、eは0~3の整数を示す。) (In (3), each R 3 is independently an ether group, thioether group, ketone group, ester group, sulfonyl group, alkylene group, amide group or siloxane group-containing group, hydrogen atom, halogen atom, alkyl group, hydroxy group. , A nitro group, a cyano group or a sulfo group, the hydrogen atom of this alkyl group and alkylene group may be substituted with a halogen atom, and D is an ether group, thioether group, ketone group, ester group, sulfonyl group, alkylene A1 is independently an integer of 1 to 3, a2 is independently of 1 or 2, a3 is independently of an integer of 1 to 4, and e is 0 Represents an integer of ~ 3.)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
((4)中、R4は各々独立に水素原子またはアルキル基を示し、アルキル基の水素原子はハロゲン原子で置換されても良く、Dは、エーテル基、チオエーテル基、ケトン基、エステル基、スルフォニル基、アルキレン基、アミド基またはシロキサン基を示し、bは各々独立に1または2を示し、cは各々独立に1~3の整数を示し、fは0~3の整数を示す。) (In (4), each R 4 independently represents a hydrogen atom or an alkyl group, the hydrogen atom of the alkyl group may be substituted with a halogen atom, and D represents an ether group, a thioether group, a ketone group, an ester group, A sulfonyl group, an alkylene group, an amide group or a siloxane group, each b independently represents 1 or 2, each c independently represents an integer of 1 to 3, and f represents an integer of 0 to 3.)
 [2] 前記ポリイミド前駆体中、前記式(2)で表される構造単位が5~40質量%含まれる、[1]に記載のポリイミド前駆体。 [2] The polyimide precursor according to [1], wherein the polyimide precursor contains 5 to 40% by mass of the structural unit represented by the formula (2).
 [3] 前記式(2)において、複数あるR5の少なくとも1つがアリール基を含む、[1]または[2]に記載のポリイミド前駆体。 [3] The polyimide precursor according to [1] or [2], wherein in formula (2), at least one of a plurality of R 5 includes an aryl group.
 [4] 前記ポリイミド前駆体が、前記式(1)に含まれる構造単位の他に、該前駆体の主鎖に、エーテル基、チオエーテル基、ケトン基、エステル基、スルフォニル基、アルキレン基、アミド基およびシロキサン基からなる群より選ばれる少なくとも1種の基を含む単量体に由来する構造単位を、前記ポリイミド前駆体中、さらに0~15質量%含む、[1]~[3]のいずれかに記載のポリイミド前駆体。 [4] In addition to the structural unit contained in the formula (1), the polyimide precursor has an ether group, a thioether group, a ketone group, an ester group, a sulfonyl group, an alkylene group, an amide in the main chain of the precursor. Any one of [1] to [3], further comprising 0 to 15% by mass of a structural unit derived from a monomer containing at least one group selected from the group consisting of a group and a siloxane group in the polyimide precursor A polyimide precursor according to any one of the above.
 [5] 前記単量体が、下記式(5)または式(6)で表わされる化合物である、[4]に記載のポリイミド前駆体。 [5] The polyimide precursor according to [4], wherein the monomer is a compound represented by the following formula (5) or formula (6).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式(5)および(6)中、Aは各々独立にエーテル基、チオエーテル基、ケトン基、エステル基、スルフォニル基、アルキレン基、アミド基およびシロキサン基からなる群より選ばれる少なくとも1種の基を含む基を示し、R6は各々独立に水素原子、ハロゲン原子、アルキル基またはニトロ基を示し、アルキル基の水素原子はハロゲン原子で置換されても良く、dは各々独立に1~4の整数を示す。) (In the formulas (5) and (6), each A is independently at least one group selected from the group consisting of an ether group, a thioether group, a ketone group, an ester group, a sulfonyl group, an alkylene group, an amide group, and a siloxane group. Each of R 6 independently represents a hydrogen atom, a halogen atom, an alkyl group or a nitro group, the hydrogen atom of the alkyl group may be substituted with a halogen atom, and each d independently represents 1 to 4 Indicates an integer.)
 [6] 重量平均分子量が10000~1000000である、[1]~[5]のいずれかに記載のポリイミド前駆体。 [6] The polyimide precursor according to any one of [1] to [5], which has a weight average molecular weight of 10,000 to 1,000,000.
 [7] [1]~[6]のいずれかに記載のポリイミド前駆体および有機溶媒を含む、樹脂組成物。 [7] A resin composition comprising the polyimide precursor according to any one of [1] to [6] and an organic solvent.
 [8] 前記樹脂組成物中、前記ポリイミド前駆体の濃度が3~60質量%である、[7]に記載の樹脂組成物。 [8] The resin composition according to [7], wherein the concentration of the polyimide precursor in the resin composition is 3 to 60% by mass.
 [9] 前記有機溶媒が、エーテル系溶媒、ケトン系溶媒、ニトリル系溶媒、エステル系溶媒およびアミド系溶媒からなる群より選ばれる少なくとも1種の溶媒を含む、[7]または[8]に記載の樹脂組成物。 [9] The [7] or [8], wherein the organic solvent includes at least one solvent selected from the group consisting of ether solvents, ketone solvents, nitrile solvents, ester solvents, and amide solvents. Resin composition.
 [10] E型粘度計(25℃)で測定した粘度が500~500000mPa・sの範囲である、[7]~[9]のいずれかに記載の樹脂組成物。 [10] The resin composition according to any one of [7] to [9], wherein the viscosity measured with an E-type viscometer (25 ° C.) is in the range of 500 to 500,000 mPa · s.
 [11] 膜形成用である、[7]~[10]のいずれかに記載の樹脂組成物。 [11] The resin composition according to any one of [7] to [10], which is for film formation.
 [12] [7]~[11]のいずれかに記載の樹脂組成物を、基板上に塗布して塗膜を形成する工程と、該塗膜から前記有機溶媒を蒸発させることにより除去して膜を得る工程とを含む、膜形成方法。 [12] A step of applying the resin composition according to any one of [7] to [11] onto a substrate to form a coating film, and removing the organic solvent from the coating film by evaporation. A film forming method including a step of obtaining a film.
 本発明に係るポリイミド前駆体および該前駆体を含む樹脂組成物によれば、高いガラス転移温度を有し、反りの発生が少ない膜を容易に製造することができる。 According to the polyimide precursor and the resin composition containing the precursor according to the present invention, a film having a high glass transition temperature and less warpage can be easily produced.
 また、本発明に係るポリイミド前駆体を含む樹脂組成物によれば、ガラス基板等の基板に樹脂組成物を塗布して膜を形成する際の、該基板との密着性および剥離性に優れる膜を容易に形成することができる。 Moreover, according to the resin composition containing the polyimide precursor according to the present invention, a film excellent in adhesion and releasability with the substrate when the resin composition is applied to a substrate such as a glass substrate to form a film. Can be easily formed.
 ≪ポリイミド前駆体≫
 本発明のポリイミド前駆体(ポリアミック酸)は、下記式(2)で表わされる構造単位(以下「構造単位(2)」ともいう。)を含む下記式(1)で表わされる構造単位(以下「構造単位(1)」ともいう。)を有する。
≪Polyimide precursor≫
The polyimide precursor (polyamic acid) of the present invention has a structural unit represented by the following formula (1) including a structural unit represented by the following formula (2) (hereinafter also referred to as “structural unit (2)”). A structural unit (1) ”).
 本発明のポリイミド前駆体によれば、高いガラス転移温度を有し、残留応力が小さく、反りの発生が少ない膜を容易に製造することができる。また、本発明のポリイミド前駆体を含む樹脂組成物によれば、ガラス基板等の基板に樹脂組成物を塗布して膜を形成する際の、該基板との密着性および剥離性に優れる膜を容易に形成することができる。 According to the polyimide precursor of the present invention, a film having a high glass transition temperature, a small residual stress, and a small amount of warpage can be easily produced. Moreover, according to the resin composition containing the polyimide precursor of the present invention, a film excellent in adhesion and releasability with the substrate when the resin composition is applied to a substrate such as a glass substrate to form a film. It can be formed easily.
 本発明に係るポリイミド前駆体は、構造単位(2)、ならびに、下記式(3)および(4)で表わされる群より選ばれる基を有するため、下記式(3)および(4)で表わされる群より選ばれる基を含む剛直な骨格部位と構造単位(2)を含む柔軟な骨格部位とを有し、該剛直な骨格部位が海部となり、柔軟な骨格部位が島部となるミクロ相分離構造を形成すると考えられる。得られるポリイミドがこのミクロ相分離構造を有することにより、膜の残留応力が低減されると考えられる。よって、本発明のポリイミド前駆体によれば残留応力が小さく、反りの発生が抑制された膜を得ることができると考えられる。特に、本発明のポリイミド前駆体は、前記式(2)中のmが3以上であるため、前記柔軟な骨格部位の柔軟性がより高まり、よりミクロ相分離構造を形成しやすく、膜の残留応力がより低減されると考えられる。 Since the polyimide precursor according to the present invention has a group selected from the group represented by the structural unit (2) and the following formulas (3) and (4), the polyimide precursor is represented by the following formulas (3) and (4). A microphase-separated structure having a rigid skeleton part containing a group selected from the group and a flexible skeleton part containing the structural unit (2), wherein the rigid skeleton part is a sea part and the flexible skeleton part is an island part It is thought to form. It is thought that the residual stress of a film | membrane is reduced because the polyimide obtained has this micro phase separation structure. Therefore, according to the polyimide precursor of the present invention, it is considered that a film in which the residual stress is small and the occurrence of warpage is suppressed can be obtained. Particularly, in the polyimide precursor of the present invention, since m in the formula (2) is 3 or more, the flexibility of the flexible skeleton portion is further increased, and a microphase-separated structure is more easily formed, and the film remains. It is considered that the stress is further reduced.
 なお、本発明において、ミクロ相分離とは、剛直な構造部位からなる海部に柔軟な骨格部位からなる島部が1ナノサイズから1ミクロンサイズ程度で分散していることをいう。 In the present invention, microphase separation means that islands made of flexible skeleton parts are dispersed in a size of about 1 nanometer to 1 micron in a sea part made of a rigid structural part.
 なお、本発明において、「密着性」とは、例えば、基板上で膜を形成している際、または形成した膜の上に金属などの配線等を作成するデバイス作成をしている際などには、塗膜(膜)と基板とが剥離しにくい性質をいい、「剥離性」とは、例えば、基板から膜を剥がしたい時(基板から膜を剥がすための力等をかける時)に、剥離痕が少なく基板上から膜を剥離できる性質をいう。 In the present invention, “adhesion” means, for example, when a film is formed on a substrate, or when a device for creating a wiring such as a metal is formed on the formed film. Refers to the property that the coating film (film) and the substrate are difficult to peel off, and “peelability” means, for example, when peeling the film from the substrate (when applying force to peel the film from the substrate, etc.) The property that the film can be peeled off from the substrate with few peeling marks.
 また、「反り」は、目視により判断される膜の丸まりであり、「残留応力」とは、本発明のポリイミド前駆体を含む樹脂組成物をガラス基板等の基板上に塗布して膜を形成した後の膜内部に残っている応力のことをいい、膜に生じ得る「反り」の目安となる。具体的には、下記実施例に記載の方法で測定することができる。 In addition, “warp” is the roundness of the film judged visually, and “residual stress” is the film formed by applying the resin composition containing the polyimide precursor of the present invention on a substrate such as a glass substrate. This refers to the stress remaining in the film after the process, and is a measure of “warping” that can occur in the film. Specifically, it can be measured by the method described in the following examples.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 前記式(1)中、Rは各々独立に水素原子または一価の有機基を示し、好ましくは水素原子であり、R1は各々独立に、下記式(3)で表わされる群より選ばれる基を示し、R2は各々独立に、下記式(4)で表わされる群より選ばれる基を示す。nは正の整数を示し、好ましくは1~2500の整数である。 In the formula (1), each R independently represents a hydrogen atom or a monovalent organic group, preferably a hydrogen atom, and each R 1 is independently a group selected from the group represented by the following formula (3) And each R 2 independently represents a group selected from the group represented by the following formula (4). n represents a positive integer, preferably an integer of 1 to 2500.
 前記式(1)中、Rにおける、一価の有機基としては、炭素数1~20の一価の有機基が好ましい。なお、「炭素数1~20」は、「炭素数1以上、炭素数20以下」を示す。本発明における同様の記載は同様の意味を示す。 In the formula (1), the monovalent organic group in R is preferably a monovalent organic group having 1 to 20 carbon atoms. “C1-20” means “1 to 20 carbon atoms”. Similar descriptions in the present invention have similar meanings.
 前記Rにおける炭素数1~20の一価の有機基としては、炭素数1~20の一価の炭化水素基等を挙げることができる。
 炭素数1~20の炭化水素基としては、炭素数1~20のアルキル基等が挙げられる。
Examples of the monovalent organic group having 1 to 20 carbon atoms in R include monovalent hydrocarbon groups having 1 to 20 carbon atoms.
Examples of the hydrocarbon group having 1 to 20 carbon atoms include an alkyl group having 1 to 20 carbon atoms.
 炭素数1~20のアルキル基としては、炭素数1~10のアルキル基であることが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。 The alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms. Specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, t- A butyl group, a pentyl group, a hexyl group, etc. are mentioned.
 前記式(1)中、R1は各々独立に、下記式(3)で表わされる群より選ばれる基を示す。 In the formula (1), each R 1 independently represents a group selected from the group represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 前記式(3)中、R3は各々独立にエーテル基、チオエーテル基、ケトン基、エステル基、スルフォニル基、アルキレン基、アミド基もしくはシロキサン基を含む基;水素原子;ハロゲン原子;アルキル基;ヒドロキシ基;ニトロ基;シアノ基;またはスルホ基を示し、このアルキル基およびアルキレン基の水素原子はハロゲン原子で置換されても良く、Dは、エーテル基、チオエーテル基、ケトン基、エステル基、スルフォニル基、アルキレン基、アミド基またはシロキサン基を示し、a1は各々独立に1~3の整数を示し、a2は各々独立に1または2を示し、a3は各々独立に1~4の整数を示し、eは0~3の整数を示す。 In the formula (3), each R 3 independently represents an ether group, a thioether group, a ketone group, an ester group, a sulfonyl group, an alkylene group, an amide group or a siloxane group; a hydrogen atom; a halogen atom; an alkyl group; A group; a nitro group; a cyano group; or a sulfo group, wherein the hydrogen atom of the alkyl group and alkylene group may be substituted with a halogen atom, and D is an ether group, a thioether group, a ketone group, an ester group, a sulfonyl group An alkylene group, an amide group or a siloxane group, each of a1 independently represents an integer of 1 to 3, each of a2 independently represents 1 or 2, each of a3 independently represents an integer of 1 to 4, Represents an integer of 0 to 3.
 R3としては、水素原子、ハロゲン原子、アルキル基、ヒドロキシ基、ニトロ基、シアノ基またはスルホ基が好ましく、水素原子またはアルキル基が好ましい。 R 3 is preferably a hydrogen atom, a halogen atom, an alkyl group, a hydroxy group, a nitro group, a cyano group or a sulfo group, preferably a hydrogen atom or an alkyl group.
 前記式(3)中、R3におけるアルキル基としては、好ましくは炭素数1~20のアルキル基が挙げられ、より好ましくは炭素数1~10のアルキル基が挙げられ、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。
 これらのアルキル基における任意の水素原子は、フッ素原子、塩素原子、臭素原子またはヨウ素原子で置換されてもよい。
In the above formula (3), the alkyl group in R 3 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms, specifically, methyl Group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, hexyl group and the like.
Any hydrogen atom in these alkyl groups may be substituted with a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
 前記式(3)中、R3およびDにおけるアルキレン基としては、メチレン基または炭素数2~20のアルキレン基等が挙げられ、このメチレン基およびアルキレン基の水素原子はハロゲン原子で置換されても良い。 In the formula (3), examples of the alkylene group in R 3 and D include a methylene group or an alkylene group having 2 to 20 carbon atoms, and the hydrogen atom of the methylene group and alkylene group may be substituted with a halogen atom. good.
 前記炭素数2~20のアルキレン基としては、炭素数2~10のアルキレン基であることが好ましく、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、イソプロピリデン基、フルオレン基およびこれらのアルキレン基における任意の水素原子が、フッ素原子、塩素原子、臭素原子またはヨウ素原子で置換された基等が挙げられる。 The alkylene group having 2 to 20 carbon atoms is preferably an alkylene group having 2 to 10 carbon atoms, and is a dimethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, isopropylidene group, fluorene group. And a group in which any hydrogen atom in these alkylene groups is substituted with a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
 Dとしては、スルフォニル基が好ましい。 D is preferably a sulfonyl group.
 eは、0~2の整数が好ましく、0または1がより好ましく、0がさらに好ましい。 E is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
 前記式(3)で表わされる基としては、例えば、以下(3-1)~(3-3)で表わされる基等が挙げられる。 Examples of the group represented by the formula (3) include groups represented by the following (3-1) to (3-3).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 前記式(3)で表わされる群より選ばれる基としては、下記式(3')で表わされる群より選ばれる基であることが、残留応力が小さく、反りの発生が抑制された膜を得ることができるため好ましい。 The group selected from the group represented by the formula (3) is a group selected from the group represented by the following formula (3 ′) to obtain a film with small residual stress and suppressed warpage. This is preferable.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 前記式(3')中、R3は各々独立に前記式(3)中のR3と同義である。 In the formula (3 ′), each R 3 is independently the same as R 3 in the formula (3).
 前記式(1)中、R2は各々独立に、下記式(4)で表わされる群より選ばれる基を示す。 In the formula (1), each R 2 independently represents a group selected from the group represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 前記式(4)中、R4は各々独立に水素原子またはアルキル基を示し、アルキル基の水素原子はハロゲン原子で置換されても良く、Dは、エーテル基、チオエーテル基、ケトン基、エステル基、スルフォニル基、アルキレン基、アミド基またはシロキサン基を示し、bは各々独立に1または2を示し、cは各々独立に1~3の整数を示し、fは0~3の整数を示す。 In the formula (4), each R 4 independently represents a hydrogen atom or an alkyl group, the hydrogen atom of the alkyl group may be substituted with a halogen atom, and D represents an ether group, a thioether group, a ketone group, an ester group , A sulfonyl group, an alkylene group, an amide group or a siloxane group, each b independently represents 1 or 2, each c independently represents an integer of 1 to 3, and f represents an integer of 0 to 3.
 前記式(4)中、R4におけるアルキル基としては、それぞれ、前記式(3)中、R3におけるアルキル基と同様の基等が挙げられ、R4としては水素原子が好ましい。 In the formula (4), the alkyl group in R 4, respectively, in the formula (3), such as the same groups as the alkyl group can be mentioned in R 3, preferably a hydrogen atom R 4.
 Dとしては、スルフォニル基が好ましく、fは、0~2の整数が好ましく、0または1がより好ましく、0がさらに好ましい。 D is preferably a sulfonyl group, and f is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
 前記式(4)で表わされる群より選ばれる基は、下記式(4')で表わされる群より選ばれる基であることが、残留応力が小さく、反りの発生が抑制された膜を得ることができるため好ましい。 The group selected from the group represented by the formula (4) is a group selected from the group represented by the following formula (4 ′) to obtain a film with small residual stress and suppressed warpage. Is preferable.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 前記構造単位(1)には、構造単位(2)が含まれる。該構造単位(2)は、前記構造単位(1)中の複数あるR1およびR2からなる群より選ばれる少なくとも1つの基に含まれてもよく、前記構造単位(1)の末端「*」に含まれてもよいが、複数あるR1およびR2からなる群より選ばれる少なくとも1つの基に含まれることが好ましい。なお、「複数あるR1およびR2からなる群より選ばれる少なくとも1つの基は、下記式(2)で表わされる構造単位を含む」とは、nが2以上の場合には、R1およびR2はそれぞれ2以上構造単位(1)中に存在するが、これらの複数あるR1およびR2のうち、少なくとも1つが下記式(2)で表わされる構造単位を含むことを意味する。 The structural unit (1) includes a structural unit (2). The structural unit (2) may be contained in at least one group selected from the group consisting of a plurality of R 1 and R 2 in the structural unit (1). It may be contained in at least one group selected from the group consisting of a plurality of R 1 and R 2 . Note that “at least one group selected from the group consisting of a plurality of R 1 and R 2 includes a structural unit represented by the following formula (2)” means that when n is 2 or more, R 1 and R 2 is present in each of two or more structural units (1), which means that at least one of the plurality of R 1 and R 2 includes a structural unit represented by the following formula (2).
 本発明のポリイミド前駆体は、構造単位(2)を含むため、該前駆体を含む樹脂組成物によれば、残留応力が小さく、反りの発生が抑制された膜を得ることができる。 Since the polyimide precursor of the present invention contains the structural unit (2), according to the resin composition containing the precursor, it is possible to obtain a film in which the residual stress is small and the occurrence of warpage is suppressed.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 前記式(2)中、複数あるR5は各々独立に炭素数1~20の一価の有機基を示し、mは3~200の整数を示す。 In the formula (2), a plurality of R 5 s each independently represent a monovalent organic group having 1 to 20 carbon atoms, and m represents an integer of 3 to 200.
 前記式(2)中、R5における炭素数1~20の一価の有機基としては、炭素数1~20の一価の炭化水素基および炭素数1~20の一価のアルコキシ基等を挙げることができる。 In the formula (2), examples of the monovalent organic group having 1 to 20 carbon atoms in R 5 include a monovalent hydrocarbon group having 1 to 20 carbon atoms and a monovalent alkoxy group having 1 to 20 carbon atoms. Can be mentioned.
 前記R5における炭素数1~20の一価の炭化水素基としては、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、または炭素数6~20のアリール基等が挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 5 include an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms. It is done.
 前記炭素数1~20のアルキル基としては、炭素数1~10のアルキル基であることが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。 The alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 10 carbon atoms, specifically, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t -Butyl group, pentyl group, hexyl group and the like.
 前記炭素数3~20のシクロアルキル基としては、炭素数3~10のシクロアルキル基であることが好ましく、具体的には、シクロペンチル基、シクロヘキシル基等が挙げられる。 The cycloalkyl group having 3 to 20 carbon atoms is preferably a cycloalkyl group having 3 to 10 carbon atoms, and specific examples include a cyclopentyl group and a cyclohexyl group.
 前記炭素数6~20のアリール基としては、炭素数6~12のアリール基であることが好ましく、具体的には、フェニル基、トリル基、ナフチル基等が挙げられる。 The aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 12 carbon atoms, and specific examples thereof include a phenyl group, a tolyl group, and a naphthyl group.
 前記R5における炭素数1~20の一価のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、フェノキシ基、プロペニルオキシ基およびシクロヘキシルオキシ基等が挙げられる。 Examples of the monovalent alkoxy group having 1 to 20 carbon atoms in R 5 include a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, a phenoxy group, a propenyloxy group, and a cyclohexyloxy group.
 前記式(2)における複数あるR5の少なくとも1つは、アリール基を含むことが、前記柔軟な骨格部位からなる島部が前記剛直な構造部位からなる海部との親和性に優れ、1ナノ~1ミクロンサイズで(均一)分散(ミクロ相分離)しやすくなるため好ましい。より具体的には、複数あるR5は、炭素数1~10のアルキル基および炭素数6~12のアリール基であることが好ましい。この場合、構造単位(2)中の全てのR5のうち、炭素数1~10のアルキル基のモル数(i)と炭素数6~12のアリール基のモル数(ii)との比(但し、(i)+(ii)=100)は、好ましくは(i):(ii)=90~10:10~90であり、より好ましくは(i):(ii)=85~15:15~85であり、さらに好ましくは(i):(ii)=85~65:15~35である。構造単位(2)中の全てのR5のうち、アルキル基(i)とアリール基(ii)との比が前記範囲を外れると、得られるポリイミドがミクロ相分離構造をとることができないおそれがある。アルキル基(i)とアリール基(ii)との比が前記範囲であると、ミクロ相分離(構造単位(2)を含む骨格部位がナノ分散)可能となり、低い線膨張係数および低い残留応力等を有する膜を得ることができる。 When at least one of the plurality of R 5 in the formula (2) includes an aryl group, the island part composed of the flexible skeleton part is excellent in affinity with the sea part composed of the rigid structural part, It is preferable because it is easy to disperse (uniform) (microphase separation) at a size of ~ 1 micron. More specifically, the plurality of R 5 are preferably an alkyl group having 1 to 10 carbon atoms and an aryl group having 6 to 12 carbon atoms. In this case, among all R 5 in the structural unit (2), the ratio between the number of moles of the alkyl group having 1 to 10 carbon atoms (i) and the number of moles of the aryl group having 6 to 12 carbon atoms (ii) ( However, (i) + (ii) = 100) is preferably (i) :( ii) = 90 to 10:10 to 90, more preferably (i) :( ii) = 85 to 15:15 To 85, and more preferably (i) :( ii) = 85 to 65:15 to 35. If the ratio of the alkyl group (i) to the aryl group (ii) is out of the above range among all R 5 in the structural unit (2), the resulting polyimide may not have a microphase separation structure. is there. When the ratio of the alkyl group (i) to the aryl group (ii) is in the above range, microphase separation (nano-dispersion of the skeleton part including the structural unit (2)) is possible, and a low linear expansion coefficient, low residual stress, etc. Can be obtained.
 前記炭素数1~10のアルキル基(i)は、好ましくはメチル基であり、前記炭素数6~12のアリール基(ii)は、好ましくはフェニル基である。 The alkyl group (i) having 1 to 10 carbon atoms is preferably a methyl group, and the aryl group (ii) having 6 to 12 carbon atoms is preferably a phenyl group.
 本発明のポリイミド前駆体全体を100質量%とした場合、前記構造単位(2)は、5~40質量%含まれることが好ましく、5~23質量%含まれることが好ましく、8~22質量%含まれることがより好ましく、9.5~21質量%含まれることがさらに好ましい。 When the entire polyimide precursor of the present invention is 100% by mass, the structural unit (2) is preferably contained in an amount of 5 to 40% by mass, preferably 5 to 23% by mass, and 8 to 22% by mass. More preferably, it is contained in an amount of 9.5 to 21% by mass.
 ポリイミド前駆体中に含まれる構造単位(2)の割合が前記範囲を超えると、ガラス基板等の基板に本発明の樹脂組成物を塗布し、塗膜を形成した場合、該基板から、形成した塗膜を剥離することが困難となる傾向がある。また、ポリイミド前駆体中に含まれる構造単位(2)の量が前記範囲を下回ると、ガラス基板等の基板に本発明の樹脂組成物を塗布し、塗膜を形成した場合、形成した塗膜の残留応力が高くなり、該基板から塗膜を剥離した時に、得られる膜に反りが発生するおそれがある。 When the proportion of the structural unit (2) contained in the polyimide precursor exceeds the above range, when the resin composition of the present invention was applied to a substrate such as a glass substrate and a coating film was formed, the substrate was formed from the substrate. It tends to be difficult to peel the coating film. Moreover, when the quantity of the structural unit (2) contained in a polyimide precursor is less than the said range, when the resin composition of this invention is apply | coated to substrates, such as a glass substrate, and a coating film is formed, the coating film formed When the coating film is peeled off from the substrate, the resulting film may be warped.
 前記式(2)中のmは3~200の整数であり、好ましくは10~200、より好ましくは20~150、さらに好ましくは30~100、特に好ましくは35~80の整数である。mが2以下であると、ポリイミド前駆体から得られるポリイミドがミクロ相分離構造を形成しにくくなる場合があり、mが200を超えると、構造単位(2)を含む骨格部位からなる島部の大きさが1μmを超え、塗膜が白濁したり、機械強度が低下するなどの問題が生じる場合がある。 M in the formula (2) is an integer of 3 to 200, preferably 10 to 200, more preferably 20 to 150, still more preferably 30 to 100, and particularly preferably 35 to 80. When m is 2 or less, the polyimide obtained from the polyimide precursor may be difficult to form a microphase separation structure. When m exceeds 200, the island portion composed of the skeleton part containing the structural unit (2) The size may exceed 1 μm, and the coating film may become cloudy or the mechanical strength may be reduced.
 本発明のポリイミド前駆体は、該ポリイミド前駆体100質量%中、前記構造単位(1)を好ましくは60質量%以上、より好ましくは77質量%以上、さらに好ましくは79質量%、さらに好ましくは85~100質量%、さらに好ましくは90~100質量%、さらに好ましくは91~100質量%、特に好ましくは92~100質量%含む。ポリイミド前駆体中、前記構造単位(1)の割合が前記範囲にあると、残留応力が小さく、反りが生じにくい膜を得ることができる。 In the polyimide precursor of the present invention, in 100% by mass of the polyimide precursor, the structural unit (1) is preferably 60% by mass or more, more preferably 77% by mass or more, further preferably 79% by mass, and still more preferably 85%. To 100% by mass, more preferably 90 to 100% by mass, still more preferably 91 to 100% by mass, particularly preferably 92 to 100% by mass. When the proportion of the structural unit (1) is within the above range in the polyimide precursor, a film having a small residual stress and hardly warping can be obtained.
 なお、ポリイミド前駆体100質量%中、前記構造単位(1)を60質量%以上含むとは、構造単位-NH-R1-NH-、構造単位-NH-R1-NH2、構造単位-CO-R2(COOR)2-CO-、構造単位-CO-R2(COOR)2-COOH、構造単位(2)、および、構造単位-(Si(R52-O)m-Si(R52-R10-R11等のR1、R2および構造単位(2)を含む構造単位の合計が60質量%以上であることを意味する。(なお、R1、R2およびRは前記式(1)中のR1、R2およびRと同義であり、R5は前記式(2)中のR5と同義であり、R10およびR11は下記式(7')および(8')中のR10およびR11と同義である。)
 また、本発明のポリイミド前駆体は、構造単位(1)の一部がイミド化していてもよい。
In addition, in 100% by mass of the polyimide precursor, 60% by mass or more of the structural unit (1) means that the structural unit —NH—R 1 —NH—, the structural unit —NH—R 1 —NH 2 , the structural unit— CO—R 2 (COOR) 2 —CO—, structural unit —CO—R 2 (COOR) 2 —COOH, structural unit (2), and structural unit — (Si (R 5 ) 2 —O) m —Si It means that the total of structural units including R 1 and R 2 such as (R 5 ) 2 -R 10 -R 11 and the structural unit (2) is 60% by mass or more. (Note, R 1, R 2 and R have the same meanings as R 1, R 2 and R in the formula (1), R 5 has the same meaning as R 5 in the formula (2), R 10 and R 11 has the same meaning as R 10 and R 11 in the following formulas (7 ′) and (8 ′).)
In the polyimide precursor of the present invention, part of the structural unit (1) may be imidized.
 本発明のポリイミド前駆体は、所望の用途および成膜条件等に応じて、前記式(1)に含まれる構造単位の他に、該前駆体の主鎖に、エーテル基、チオエーテル基、ケトン基、エステル基、スルフォニル基、アルキレン基、アミド基およびシロキサン基からなる群より選ばれる少なくとも1種の基を含む単量体(以下「単量体(I)」ともいう。)に由来する構造単位(以下「構造単位(56)」ともいう。)を含んでいてもよい。
 前記アルキレン基としては、前記式(3)中、R3におけるアルキレン基と同様の基等が挙げられる。
The polyimide precursor of the present invention has an ether group, a thioether group, a ketone group in the main chain of the precursor, in addition to the structural unit contained in the formula (1), depending on the desired use and film forming conditions. , A structural unit derived from a monomer (hereinafter also referred to as “monomer (I)”) containing at least one group selected from the group consisting of an ester group, a sulfonyl group, an alkylene group, an amide group and a siloxane group. (Hereinafter also referred to as “structural unit (56)”).
Examples of the alkylene group include the same groups as the alkylene group for R 3 in the formula (3).
 なお、「前記式(1)に含まれる構造単位」とは、構造単位-NH-R1-NH-、構造単位-NH-R1-NH2、構造単位-CO-R2(COOR)2-CO-、構造単位-CO-R2(COOR)2-COOH、構造単位(2)、および、構造単位-(Si(R52-O)m-Si(R52-R10-R11等のR1、R2および構造単位(2)を含む構造単位のことをいう(なお、R1、R2およびRは前記式(1)中のR1、R2およびRと同義であり、R5は前記式(2)中のR5と同義であり、R10およびR11は下記式(7')および(8')中のR10およびR11と同義である。)。 The “structural unit included in the formula (1)” means the structural unit —NH—R 1 —NH—, the structural unit —NH—R 1 —NH 2 , or the structural unit —CO—R 2 (COOR) 2. —CO—, structural unit —CO—R 2 (COOR) 2 —COOH, structural unit (2), and structural unit — (Si (R 5 ) 2 —O) m —Si (R 5 ) 2 —R 10 R 1 a -R 11 or the like, refers to a structural unit containing R 2 and structural units (2) (Note, R 1, R 2 and R and R 1, R 2 and R in the formula (1) are synonymous, R 5 has the same meaning as R 5 in the formula (2), R 10 and R 11 has the same meaning as R 10 and R 11 of the formula (7 ') and (8') in. ).
 構造単位(56)は、前記ポリイミド前駆体の主鎖に含まれる、前記構造単位(1)中のR1およびR2で表される基ならびに構造単位(2)を含まない、テトラカルボン酸二無水物およびこれらの誘導体またはイミノ形成化合物に由来する構造単位のことをいう。 The structural unit (56) does not contain the group represented by R 1 and R 2 in the structural unit (1) and the structural unit (2) contained in the main chain of the polyimide precursor. It refers to structural units derived from anhydrides and their derivatives or imino forming compounds.
 前記ポリイミド前駆体の主鎖とは、前記構造単位(1)のR1やR2が含まれる鎖を意味し、例えば、構造単位(1)における-COORは、主鎖ではなく、側鎖である。 The main chain of the polyimide precursor means a chain containing R 1 or R 2 of the structural unit (1). For example, —COOR in the structural unit (1) is not a main chain but a side chain. is there.
 本発明のポリイミド前駆体に構造単位(56)が含まれると、得られる膜の線膨張係数が上昇し、所望に応じて伸ばすことが可能な膜が得られる。 When the structural unit (56) is contained in the polyimide precursor of the present invention, the linear expansion coefficient of the obtained film increases, and a film that can be stretched as desired is obtained.
 本発明のポリイミド前駆体は、構造単位(56)の含有量および/または構造単位(2)の含有量を増加させると線膨張係数は増加するため、Cuを含む基板やSiを含む基板上などに樹脂組成物を塗布する場合には、これらの基板に応じて構造単位(56)および/または構造単位(2)の配合量を変化させればよい。具体的には、Cuの線膨張係数は16.8ppm/Kであるため、Cuからなる基板上に本発明の樹脂組成物を塗布する場合には、前記ポリイミド前駆体は、構造単位(56)を含むことが好ましく、Siの線膨張係数は3ppm/Kであるため、Siからなる基板上に本発明の樹脂組成物を塗布する場合には、前記ポリイミド前駆体は、構造単位(56)を含まないことが好ましい。その他、クロムの線膨張係数は8.2ppm/K、ガラスの線膨張係数は9ppm/K、ステンレスSUS430の線膨張係数は10.4ppm/K、ニッケルの線膨張係数は12.8ppm/Kであるため、これらからなる基板上に本発明の樹脂組成物を塗布する場合には、本発明のポリイミド前駆体は、ポリイミド前駆体100質量%中、構造単位(56)を0~15質量%含むことが好ましい。 Since the linear expansion coefficient of the polyimide precursor of the present invention increases when the content of the structural unit (56) and / or the content of the structural unit (2) is increased, the substrate containing Cu or the substrate containing Si is used. When the resin composition is applied to the substrate, the blending amount of the structural unit (56) and / or the structural unit (2) may be changed according to these substrates. Specifically, since the coefficient of linear expansion of Cu is 16.8 ppm / K, when the resin composition of the present invention is applied on a substrate made of Cu, the polyimide precursor has a structural unit (56). Since the linear expansion coefficient of Si is 3 ppm / K, when the resin composition of the present invention is applied on a substrate made of Si, the polyimide precursor contains structural units (56). It is preferably not included. In addition, the linear expansion coefficient of chromium is 8.2 ppm / K, the linear expansion coefficient of glass is 9 ppm / K, the linear expansion coefficient of stainless steel SUS430 is 10.4 ppm / K, and the linear expansion coefficient of nickel is 12.8 ppm / K. Therefore, when the resin composition of the present invention is applied on a substrate composed of these, the polyimide precursor of the present invention contains 0 to 15% by mass of the structural unit (56) in 100% by mass of the polyimide precursor. Is preferred.
 前記単量体(I)としては、下記式(5)で表わされる化合物(以下「化合物(5)」ともいう。)または式(6)で表わされる化合物(以下「化合物(6)」ともいう。)であることが好ましい。 As the monomer (I), a compound represented by the following formula (5) (hereinafter also referred to as “compound (5)”) or a compound represented by the formula (6) (hereinafter also referred to as “compound (6)”). .).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 前記式(5)および(6)中、Aは各々独立にエーテル基(-O-)、チオエーテル基(-S-)、ケトン基(-C(=O)-)、エステル基(-COO-)、スルフォニル基(-SO2-)、アルキレン基(-R7-)、アミド基(-C(=O)-NR8-)およびシロキサン基(-Si(R92-O-Si(R92-)からなる群より選ばれる少なくとも1種の基を含む基を示し、R6は各々独立に水素原子、ハロゲン原子、アルキル基またはニトロ基を示し、アルキル基の水素原子はハロゲン原子で置換されても良く、dは各々独立に1~4の整数を示す。 In the formulas (5) and (6), each A independently represents an ether group (—O—), a thioether group (—S—), a ketone group (—C (═O) —), an ester group (—COO—). ), A sulfonyl group (—SO 2 —), an alkylene group (—R 7 —), an amide group (—C (═O) —NR 8 —) and a siloxane group (—Si (R 9 ) 2 —O—Si ( R 9 ) represents a group containing at least one group selected from the group consisting of 2- ), R 6 independently represents a hydrogen atom, a halogen atom, an alkyl group or a nitro group, and the hydrogen atom of the alkyl group represents a halogen atom It may be substituted with an atom, and each d independently represents an integer of 1 to 4.
 なお、前記R8およびR9は各々独立に水素原子、アルキル基またはハロゲン原子を示し、このアルキル基の水素原子はハロゲン原子で置換されても良い。前記R6、R8およびR9におけるアルキル基としては、前記式(3)中、R3におけるアルキル基と同様の基等が挙げられる。前記ハロゲン原子としては、塩素原子またはフッ素原子が好ましい。 R 8 and R 9 each independently represent a hydrogen atom, an alkyl group or a halogen atom, and the hydrogen atom of this alkyl group may be substituted with a halogen atom. Examples of the alkyl group in R 6 , R 8 and R 9 include the same groups as the alkyl group in R 3 in the formula (3). The halogen atom is preferably a chlorine atom or a fluorine atom.
 前記Aとしては、エーテル基が好ましく、前記R6としては水素原子が好ましい。 A is preferably an ether group, and R 6 is preferably a hydrogen atom.
 前記式(5)および(6)中、Aにおけるアルキレン基(-R7-)としては、前記式(3)中、R3におけるアルキレン基と同様の基等が挙げられ、これらの中でも、メチレン基、イソプロピリデン基、ヘキサフルオロイソプロピリデン基およびフルオレン基が好ましい。 In the formulas (5) and (6), examples of the alkylene group (—R 7 —) in A include the same groups as the alkylene group in R 3 in the formula (3). Among these, methylene Group, isopropylidene group, hexafluoroisopropylidene group and fluorene group are preferred.
 前記化合物(5)および(6)としては、例えば、下記化合物群(5-1)~(6-9)に記載の化合物が挙げられる。 Examples of the compounds (5) and (6) include compounds described in the following compound groups (5-1) to (6-9).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 本発明のポリイミド前駆体が構造単位(56)を含む場合、ポリイミド前駆体は、ポリイミド前駆体100質量%中、構造単位(56)を好ましくは0~15質量%含み、より好ましくは0~10質量%含み、さらに好ましくは0~9質量%含み、特に好ましくは0~8質量%含む。 When the polyimide precursor of the present invention includes the structural unit (56), the polyimide precursor preferably includes 0 to 15% by mass of the structural unit (56) in 100% by mass of the polyimide precursor, and more preferably 0 to 10%. Including mass%, more preferably 0 to 9 mass%, particularly preferably 0 to 8 mass%.
 構造単位(56)の含有量が15質量%を超えると、前記剛直な構造部位の弾性率が低くなり、残留応力を前記柔軟な構造部位に移行させ難くなるため、得られる膜に反りが生じやすくなる場合がある。 When the content of the structural unit (56) exceeds 15% by mass, the elastic modulus of the rigid structural part is lowered, and it is difficult to transfer residual stress to the flexible structural part. It may be easier.
 また、構造単位(56)の含有量が前記範囲にあると、反りの発生が抑制されたまま、伸びやすい膜を得ることができる。 In addition, when the content of the structural unit (56) is in the above range, it is possible to obtain an easily stretchable film while suppressing the occurrence of warpage.
 なお、前記ポリイミド前駆体が、構造単位(56)を含む場合、該構造単位(56)を含むポリイミド前駆体は、(I)前記式(1)におけるR1やR2に構造単位(56)が含まれる構造で表わされる場合、および、(II)ポリイミド前駆体中の、構造単位(1)以外の部分に構造単位(56)が含まれる構造で表わされる場合がある。前記(I)の場合、前記ポリイミド前駆体が前記式(1)中のR1に化合物(5)に由来する構造単位を含むとすると、前記ポリイミド前駆体は、例えば下記式(5A)のように表わされる。この場合、「ポリイミド前駆体100質量%中、構造単位(56)を好ましくは0~15質量%含む」とは、ポリイミド前駆体100質量%中、繰り返し単位n2中の2個の-NH-間にはさまれた構造(両端の-NH-を含む)で表わされる構造単位を0~15質量%含むことを意味する。 Incidentally, the polyimide precursor, may include a structural unit (56), a polyimide precursor containing the structural unit (56), (I) wherein formula (1) in R 1 and R 2 in the structural unit (56) And (II) a structure in which the structural unit (56) is included in a portion other than the structural unit (1) in the polyimide precursor. In the case of (I), assuming that the polyimide precursor contains a structural unit derived from the compound (5) in R 1 in the formula (1), the polyimide precursor is represented by the following formula (5A), for example. It is expressed in In this case, “the structural unit (56) is preferably contained in an amount of 0 to 15% by mass in 100% by mass of the polyimide precursor” means between the two —NH— in the repeating unit n2 in 100% by mass of the polyimide precursor. It means 0 to 15% by mass of a structural unit represented by a structure sandwiched between (including —NH— at both ends).
 また、前記(I)の場合、構造単位(56)は、前記構造単位(1)中の複数あるR1およびR2からなる群より選ばれる少なくとも1つの基に含まれてもよく、前記構造単位(1)の末端に含まれてもよい。 In the case of (I), the structural unit (56) may be contained in at least one group selected from the group consisting of a plurality of R 1 and R 2 in the structural unit (1). It may be contained at the end of the unit (1).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 前記式(5A)中、R、R1およびR2は各々独立に前記式(1)中のR、R1およびR2と同義であり、A、R6およびdは各々独立に前記式(5)中のA、R6およびdと同義であり、n1+n2=nである。 In the formula (5A), R, R 1 and R 2 are each independently synonymous with R, R 1 and R 2 in the formula (1), and A, R 6 and d are each independently the above formula ( 5) Synonymous with A, R 6 and d in n), and n1 + n2 = n.
 本発明のポリイミド前駆体の重量平均分子量(Mw)は好ましくは10,000~1,000,000であり、より好ましくは10000~200000であり、さらに好ましくは20000~150000である。数平均分子量(Mn)は好ましくは5000~10000000、より好ましくは5000~500000、特に好ましくは20000~200000である。ポリイミド前駆体の重量平均分子量ないし数平均分子量が上記下限未満であると、塗膜の強度が低下することがある。さらに、得られる膜の線膨張係数が必要以上に上がる場合がある。一方、ポリイミド前駆体の重量平均分子量ないし数平均分子量が上記上限を超えると、樹脂組成物の粘度が上がるため、該樹脂組成物をガラス基板等の基板に塗布して膜を形成する場合には、樹脂組成物に配合できるポリイミド前駆体の量が少なくなるため、得られる塗膜の平坦性等の膜厚精度が悪化する場合がある。 The weight average molecular weight (Mw) of the polyimide precursor of the present invention is preferably 10,000 to 1,000,000, more preferably 10,000 to 200,000, and further preferably 20,000 to 150,000. The number average molecular weight (Mn) is preferably from 5,000 to 10,000,000, more preferably from 5,000 to 500,000, particularly preferably from 20,000 to 200,000. When the weight average molecular weight or number average molecular weight of the polyimide precursor is less than the lower limit, the strength of the coating film may be lowered. Furthermore, the linear expansion coefficient of the obtained film may be increased more than necessary. On the other hand, when the weight average molecular weight or number average molecular weight of the polyimide precursor exceeds the above upper limit, the viscosity of the resin composition increases, so when the film is formed by applying the resin composition to a substrate such as a glass substrate. Since the amount of the polyimide precursor that can be blended in the resin composition is reduced, the film thickness accuracy such as the flatness of the obtained coating film may be deteriorated.
 本発明のポリイミド前駆体の分子量分布(Mw/Mn)は好ましくは1~10、より好ましくは2~5、特に好ましくは2~4である。
 なお、前記重量平均分子量、数平均分子量および分子量分布は、下記実施例と同様に測定した値である。
The molecular weight distribution (Mw / Mn) of the polyimide precursor of the present invention is preferably 1 to 10, more preferably 2 to 5, and particularly preferably 2 to 4.
In addition, the said weight average molecular weight, number average molecular weight, and molecular weight distribution are the values measured similarly to the following Example.
 <ポリイミド前駆体の合成方法>
 本発明のポリイミド前駆体は、好ましくは、(A)テトラカルボン酸二無水物およびこの反応性誘導体からなる群より選ばれる少なくとも1種のアシル化合物を含む成分(以下「(A)成分」ともいう。)と、(B)イミノ形成化合物を含む成分(以下「(B)成分」ともいう。)とを反応させることで得られる。但し、前記ポリイミド前駆体の合成の際には、前記構造単位(2)を含む化合物を用いることが好ましい。
<Synthesis Method of Polyimide Precursor>
The polyimide precursor of the present invention is preferably a component containing at least one acyl compound selected from the group consisting of (A) tetracarboxylic dianhydride and a reactive derivative thereof (hereinafter also referred to as “component (A)”). And (B) a component containing an imino forming compound (hereinafter also referred to as “component (B)”). However, in the synthesis of the polyimide precursor, it is preferable to use a compound containing the structural unit (2).
 この反応によれば、用いる原料化合物の構造に応じたポリイミド前駆体を得ることができ、また、用いる原料化合物の使用量に応じた量で該化合物に由来する構造単位を有するポリイミド前駆体を得ることができる。 According to this reaction, a polyimide precursor corresponding to the structure of the raw material compound to be used can be obtained, and a polyimide precursor having a structural unit derived from the compound in an amount corresponding to the amount of the raw material compound to be used is obtained. be able to.
 この場合、(A)成分として上記式(2)で表わされる構造単位を含むアシル化合物(以下「化合物(A-2)」ともいう。)を用いること、あるいは(B)成分として上記式(2)で表わされる構造単位を含むイミノ形成化合物(以下「化合物(B-2)」ともいう。)を用いることが好ましい。また、化合物(A-2)と化合物(B-2)とを両方用いることもできる。 In this case, an acyl compound containing a structural unit represented by the above formula (2) (hereinafter also referred to as “compound (A-2)”) is used as the component (A), or the above formula (2) is used as the component (B). It is preferable to use an imino forming compound (hereinafter also referred to as “compound (B-2)”) containing a structural unit represented by In addition, both compound (A-2) and compound (B-2) can be used.
 [(A)成分]
 (A)成分は、テトラカルボン酸二無水物およびこれらの反応性誘導体からなる群より選ばれる少なくとも1種のアシル化合物である。好ましくは、上記化合物(A-2)、および化合物(A-2)以外のアシル化合物(A-1)からなる群より選ばれる少なくとも1種の化合物を含む。
[(A) component]
The component (A) is at least one acyl compound selected from the group consisting of tetracarboxylic dianhydrides and reactive derivatives thereof. Preferably, at least one compound selected from the group consisting of the above compound (A-2) and an acyl compound (A-1) other than the compound (A-2) is included.
 前記アシル化合物(A-1)としては、芳香族テトラカルボン酸二無水物、脂環族テトラカルボン酸二無水物、およびこれらの反応性誘導体からなる群より選ばれる少なくとも1種の化合物が挙げられ、上記式(4)で表わされる群より選ばれる基を有する化合物であること、特に上記式(4')で表わされる群より選ばれる基を有する化合物であることが、弾性率の高い前記海部中に前記柔軟な骨格部位を極めて小さな1ナノ~1ミクロンサイズで(均一)分散可能(ミクロ相分離構造)となり、成膜工程で発生する応力を前記柔軟な骨格部位で効率よく吸収することができるため、残留応力が小さく、反りの発生が抑制された膜を得る点等から好ましい。このような化合物として、具体的には、ピロメリット酸二無水物(PMDA)、1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(PMDAH)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物および下記群(4-1)で表わされる化合物等が挙げられ、これらの中でも芳香族テトラカルボン酸二無水物が好ましく、より好ましくはピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物であり、特に好ましくはピロメリット酸二無水物である。これらの化合物は1種を単独であるいは2種以上を組み合わせて用いることができる。 Examples of the acyl compound (A-1) include at least one compound selected from the group consisting of aromatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, and reactive derivatives thereof. The sea part having a high elastic modulus is a compound having a group selected from the group represented by the above formula (4), particularly a compound having a group selected from the group represented by the above formula (4 ′). It is possible to disperse the flexible skeletal part in a very small 1 nanometer to 1 micron size (uniform) (micro phase separation structure), and efficiently absorb the stress generated in the film forming process by the flexible skeleton part. Therefore, it is preferable from the viewpoint of obtaining a film having a small residual stress and suppressing the occurrence of warpage. Specific examples of such compounds include pyromellitic dianhydride (PMDA), 1,2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA), 1,2,3,4-cyclopentane. Tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride (PMDAH), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), 2 , 2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-bicyclohexyltetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride And compounds represented by the following group (4-1), among which aromatic tetracarboxylic dianhydride is preferable, more preferably pyromellitic dianhydride, 3,3 ′, 4, '- biphenyltetracarboxylic acid dianhydride, 2,2', and 3,3'-biphenyltetracarboxylic dianhydride, particularly preferably pyromellitic dianhydride. These compounds can be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 前記アシル化合物(A-1)としては、さらに、上記式(4)および(4')で表わされる群より選ばれる基を有しない化合物を用いてもよく、例えば芳香族テトラカルボン酸二無水物、脂肪族テトラカルボン酸二無水物、脂環族テトラカルボン酸二無水物、およびこれらの反応性誘導体からなる群より選ばれる少なくとも1種の化合物等が挙げられる。 As the acyl compound (A-1), a compound having no group selected from the group represented by the above formulas (4) and (4 ′) may be used. For example, an aromatic tetracarboxylic dianhydride may be used. , Aliphatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride, and at least one compound selected from the group consisting of these reactive derivatives.
 具体例としては、ブタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、3,5,6-トリカルボキシノルボルナン-2-酢酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]-フラン-1,3-ジオン、5-(2,5-ジオキソテトラヒドロフラル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、ビシクロ[2,2,2]-オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物などの脂肪族テトラカルボン酸二無水物あるいは脂環族テトラカルボン酸二無水物、およびこれらの反応性誘導体;
 4,4’-オキシジフタル酸二無水物(OPDA)、3,3’,4,4’-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’-テトラフェニルシランテトラカルボン酸二無水物、2,3,4,5-フランテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルエーテル二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルメタン二無水物などの芳香族テトラカルボン酸二無水物、およびこれらの反応性誘導体を挙げることができる。
 これらの化合物は1種を単独であるいは2種以上を組み合わせて用いることができる。
Specific examples include butanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride, 3,5,6-tricarboxynorbornane-2-acetic acid dianhydride, 2,3,4, 5-tetrahydrofurantetracarboxylic dianhydride, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] -furan -1,3-dione, 5- (2,5-dioxotetrahydrofural) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, bicyclo [2,2,2] -oct-7 -Aliphatic tetracarboxylic dianhydrides such as ene-2,3,5,6-tetracarboxylic dianhydride or alicyclic tetracarboxylic dianhydrides, and reactive derivatives thereof;
4,4′-oxydiphthalic dianhydride (OPDA), 3,3 ′, 4,4′-dimethyldiphenylsilane tetracarboxylic dianhydride, 3,3 ′, 4,4′-tetraphenylsilane tetracarboxylic acid Dianhydride, 2,3,4,5-furantetracarboxylic dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride, 4,4′-bis (3 4-dicarboxyphenoxy) diphenylsulfone dianhydride, 4,4'-bis (3,4-dicarboxyphenoxy) diphenylpropane dianhydride, 3,3 ', 4,4'-perfluoroisopropylidenediphthalic acid Dianhydride, bis (phthalic acid) phenylphosphine oxide dianhydride, p-phenylene-bis (triphenylphthalic acid) dianhydride, m-phenylene-bis (triphenylphthalic acid) ) Aromatic tetracarboxylic dianhydrides such as dianhydrides, bis (triphenylphthalic acid) -4,4'-diphenyl ether dianhydrides, bis (triphenylphthalic acid) -4,4'-diphenylmethane dianhydrides And reactive derivatives thereof.
These compounds can be used alone or in combination of two or more.
 これらのうち、優れた透明性、有機溶媒への良好な溶解性の観点からは、脂肪族テトラカルボン酸二無水物あるいは脂環族テトラカルボン酸二無水物が好適に用いられる。また、耐熱性、低線膨張係数(寸法安定性)、低吸水性の観点からは、芳香族テトラカルボン酸二無水物が好適に用いられる。 Of these, aliphatic tetracarboxylic dianhydride or alicyclic tetracarboxylic dianhydride is preferably used from the viewpoint of excellent transparency and good solubility in an organic solvent. In addition, aromatic tetracarboxylic dianhydrides are preferably used from the viewpoints of heat resistance, low linear expansion coefficient (dimensional stability), and low water absorption.
 前記化合物(A-1)の配合量は特に制限されず、全アシル化合物((A)成分)の全量を100質量%とした場合に、100質量%であってもよいが、(A)成分に下記化合物(A-2)および/または化合物(6)、(6')が含まれる場合には、100質量%からこれらの化合物それぞれの好ましい配合量を引いた量で配合すればよい。 The compounding amount of the compound (A-1) is not particularly limited, and may be 100% by mass when the total amount of all acyl compounds (component (A)) is 100% by mass. May contain the following compound (A-2) and / or compounds (6) and (6 ′) in an amount obtained by subtracting the preferred compounding amount of each of these compounds from 100% by mass.
 前記化合物(A-2)としては、具体的には上記式(2)で表わされる構造単位を有するテトラカルボン酸二無水物およびこの反応性誘導体より選ばれる少なくとも1種のアシル化合物等が挙げられ、好ましくは下記式(7)で表わされる化合物(以下「化合物(7)」ともいう。)、下記式(7')で表わされる化合物(以下「化合物(7')」ともいう。)、下記式(8)で表わされる化合物(以下「化合物(8)」ともいう。)および下記式(8')で表わされる化合物(以下「化合物(8')」ともいう。)からなる群より選ばれる少なくとも1種の化合物等を挙げることができる。 Specific examples of the compound (A-2) include a tetracarboxylic dianhydride having a structural unit represented by the above formula (2) and at least one acyl compound selected from reactive derivatives thereof. Preferably, a compound represented by the following formula (7) (hereinafter also referred to as “compound (7)”), a compound represented by the following formula (7 ′) (hereinafter also referred to as “compound (7 ′)”), the following: It is selected from the group consisting of a compound represented by the formula (8) (hereinafter also referred to as “compound (8)”) and a compound represented by the following formula (8 ′) (hereinafter also referred to as “compound (8 ′)”). There may be mentioned at least one compound.
 上記反応性誘導体としては、上記式(2)で表わされる構造単位を有するテトラカルボン酸、該テトラカルボン酸の酸エステル化物、該テトラカルボン酸の酸クロライドなどが挙げられる。 Examples of the reactive derivative include a tetracarboxylic acid having a structural unit represented by the above formula (2), an acid esterified product of the tetracarboxylic acid, and an acid chloride of the tetracarboxylic acid.
 なお、構造単位(2)が、前記構造単位(1)中の複数あるR2の少なくとも1つの基に含まれるポリイミド前駆体を合成したい場合には、化合物(7)および/または(8)を用いることが好ましく、前記構造単位(1)の末端「*」に含まれるポリイミド前駆体を合成したい場合には、化合物(7')および/または(8')を用いることが好ましい。 In the case where it is desired to synthesize a polyimide precursor in which the structural unit (2) is contained in at least one group of R 2 in the structural unit (1), the compounds (7) and / or (8) are synthesized. Preferably, the compound (7 ′) and / or (8 ′) is preferably used when it is desired to synthesize a polyimide precursor contained in the terminal “*” of the structural unit (1).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 前記式(7)、(7')、(8)および(8')中、R5およびmは各々独立に、前記式(2)中のR5およびmと同義である。R10は各々独立に単結合または炭素数1~20の二価の有機基を示す。前記式(7')および(8')中、R11は各々独立に水素原子、または炭素数1~20の一価の有機基を示し、この炭素数1~20の一価の有機基としては、前記式(2)中、R5における炭素数1~20の一価の有機基と同様の基等が挙げられる。 In the formulas (7), (7 ′), (8) and (8 ′), R 5 and m are each independently synonymous with R 5 and m in the formula (2). R 10 each independently represents a single bond or a divalent organic group having 1 to 20 carbon atoms. In the formulas (7 ′) and (8 ′), R 11 each independently represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, In the above formula (2), the same groups as the monovalent organic group having 1 to 20 carbon atoms in R 5 can be used.
 前記R10における炭素数1~20の二価の有機基としては、メチレン基、炭素数2~20のアルキレン基、炭素数3~20のシクロアルキレン基、または炭素数6~20のアリーレン基等が挙げられる。 Examples of the divalent organic group having 1 to 20 carbon atoms in R 10 include a methylene group, an alkylene group having 2 to 20 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, and an arylene group having 6 to 20 carbon atoms. Is mentioned.
 前記炭素数2~20のアルキレン基としては、炭素数2~10のアルキレン基であることが好ましく、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。 The alkylene group having 2 to 20 carbon atoms is preferably an alkylene group having 2 to 10 carbon atoms, and examples thereof include a dimethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group.
 前記炭素数3~20のシクロアルキレン基としては、炭素数3~10のシクロアルキレン基であることが好ましく、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基等が挙げられる。 The cycloalkylene group having 3 to 20 carbon atoms is preferably a cycloalkylene group having 3 to 10 carbon atoms, and examples thereof include a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, and a cycloheptylene group.
 前記炭素数6~20のアリーレン基としては、炭素数6~12のアリーレン基であることが好ましく、フェニレン基、ナフチレン基等が挙げられる。 The arylene group having 6 to 20 carbon atoms is preferably an arylene group having 6 to 12 carbon atoms, and examples thereof include a phenylene group and a naphthylene group.
 前記化合物(A-2)としては、耐熱性(高ガラス転移温度)および耐水性に優れた膜を得る観点から数平均分子量が200~10,000であることが好ましく、500~10,000であることがより好ましく、特に好ましくは500~6000である。アミン価は100~5000であることが好ましく、より好ましくは250~5,000、さらに好ましくは1000~3000である。 The compound (A-2) preferably has a number average molecular weight of 200 to 10,000, preferably 500 to 10,000, from the viewpoint of obtaining a film excellent in heat resistance (high glass transition temperature) and water resistance. More preferably, it is 500 to 6000. The amine value is preferably 100 to 5000, more preferably 250 to 5,000, and still more preferably 1000 to 3000.
 前記化合物(7)、(7')、(8)および(8')における重合度mは前記式(2)と同様であり、好ましい範囲も同様である。 The polymerization degree m in the compounds (7), (7 ′), (8) and (8 ′) is the same as that in the formula (2), and the preferred range is also the same.
 前記式(7)、(7')、(8)および(8')中、R5はメチル基またはフェニル基が好ましく、複数あるR5のうち、少なくとも1つはフェニル基が好ましい。複数あるR5のすべてがメチル基またはフェニル基であり、その少なくとも1つはフェニル基である場合、メチル基のモル%とフェニル基のモル%との比(メチル基のモル%+フェニル基のモル%=100)は、好ましくはメチル基:フェニル基=5~95:95~5であり、より好ましくはメチル基:フェニル基=15~85:85~15であり、さらに好ましくはメチル基:フェニル基=85~65:15~35である。前記式(7)、(7')、(8)および(8')中の少なくとも1つのR5がフェニル基でないと、前記海部と島部との相溶性が悪化して、島部の分散サイズが1ミクロンを超え、耐熱性、フィルム強度に劣る膜が得られる場合がある。 In the formulas (7), (7 ′), (8) and (8 ′), R 5 is preferably a methyl group or a phenyl group, and at least one of a plurality of R 5 is preferably a phenyl group. When all of the plurality of R 5 are a methyl group or a phenyl group and at least one of them is a phenyl group, the ratio of the mol% of the methyl group to the mol% of the phenyl group (mol% of methyl group + phenyl group Mol% = 100) is preferably methyl group: phenyl group = 5 to 95:95 to 5, more preferably methyl group: phenyl group = 15 to 85:85 to 15, and still more preferably methyl group: Phenyl group = 85 to 65:15 to 35. If at least one R 5 in the formulas (7), (7 ′), (8) and (8 ′) is not a phenyl group, the compatibility between the sea part and the island part deteriorates and the dispersion of the island part A film having a size exceeding 1 micron and inferior heat resistance and film strength may be obtained.
 前記化合物(A-2)としては、具体的には、ゲレスト社製 DMS-Z21(数平均分子量600~800、アミン価300~400、m=4~7)などを挙げることができる。なお、化合物(A-2)は1種を単独であるいは2種以上を組み合わせて用いることができる。 Specific examples of the compound (A-2) include DMS-Z21 (number average molecular weight 600 to 800, amine value 300 to 400, m = 4 to 7) manufactured by Gerest Co., Ltd. Compound (A-2) can be used alone or in combination of two or more.
 前記(A)成分に前記化合物(A-2)が含まれる場合には、全原料化合物((A)成分+(B)成分)の全量を100質量%とした場合に、前記化合物(A-2)の配合量は、基板との剥離性に優れ、反りの発生しにくい膜を得る点から、好ましくは5~40質量%であり、より好ましくは5~23質量%であり、さらに好ましくは8~22質量%であり、特に好ましくは9.5~21質量%である。但し、上記化合物(A-2)の好ましい配合量は、ポリイミド前駆体を合成する際に、前記化合物(B-2)を用いない場合であり、ポリイミド前駆体を合成する際に、その原料として、化合物(A-2)および化合物(B-2)を用いる場合には、使用する化合物(A-2)および化合物(B-2)の合計量が前記化合物(A-2)の好ましい配合量と同程度になるようにすることが好ましい。 When the compound (A-2) is contained in the component (A), when the total amount of all raw material compounds (component (A) + component (B)) is 100% by mass, the compound (A− The blending amount of 2) is preferably 5 to 40% by mass, more preferably 5 to 23% by mass, and even more preferably, from the viewpoint of obtaining a film that is excellent in peelability from the substrate and hardly warps. It is 8 to 22% by mass, and particularly preferably 9.5 to 21% by mass. However, a preferable blending amount of the compound (A-2) is a case where the compound (B-2) is not used when synthesizing the polyimide precursor, and as a raw material when synthesizing the polyimide precursor. When the compound (A-2) and the compound (B-2) are used, the total amount of the compound (A-2) and the compound (B-2) to be used is preferably a blending amount of the compound (A-2). It is preferable to make it to the same degree.
 また、前記(A)成分には、得られる膜の伸びを改良する点から、所望の用途に応じて、化合物(6)および/または下記式(6')で表わされる化合物(以下「化合物(6')」ともいう。)が含まれてもよい。なお、ポリイミド前駆体の主鎖(末端を除く)に構造単位(56)が含まれるポリイミド前駆体を合成したい場合には、化合物(6)を用いることが好ましく、ポリイミド前駆体の主鎖末端に構造単位(56)が含まれるポリイミド前駆体を合成したい場合には、化合物(6')を用いることが好ましい。 In addition, the component (A) includes a compound (6) and / or a compound represented by the following formula (6 ′) (hereinafter referred to as “compound (“ 6 ′) ”) may also be included. In addition, when it is desired to synthesize a polyimide precursor containing the structural unit (56) in the main chain (excluding the terminal) of the polyimide precursor, it is preferable to use the compound (6), and the main chain terminal of the polyimide precursor is used. When it is desired to synthesize a polyimide precursor containing the structural unit (56), it is preferable to use the compound (6 ′).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 前記式(6')中、Aは前記式(5)および(6)中のAと同義であり、R12は、水素原子または炭素数1~20の一価の有機基を示す。この炭素数1~20の一価の有機基としては、前記式(2)中、R5における炭素数1~20の一価の有機基と同様の基が挙げられる。 In the formula (6 ′), A has the same meaning as A in the formulas (5) and (6), and R 12 represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. Examples of the monovalent organic group having 1 to 20 carbon atoms include the same groups as the monovalent organic group having 1 to 20 carbon atoms in R 5 in the above formula (2).
 前記(A)成分に前記化合物(6)および/または化合物(6')が含まれる場合には、全原料化合物((A)成分+(B)成分)の全量を100質量%とした場合に、前記化合物(6)および化合物(6')の配合量は、反りの発生しにくい膜を得る点から、好ましくは0~15質量%であり、より好ましくは0~10質量%であり、さらに好ましくは0~9質量%であり、特に好ましくは0~8質量%である。但し、上記化合物(6)および化合物(6')の好ましい配合量は、ポリイミド前駆体を合成する際に、前記化合物(5)および/または化合物(5')を用いない場合であり、ポリイミド前駆体を合成する際に、その原料として、化合物(6)および/または化合物(6')ならびに化合物(5)および/または化合物(5')を用いる場合には、使用する化合物(6)、化合物(6')、化合物(5)および化合物(5')の合計量が前記化合物(6)および/または化合物(6')の好ましい配合量と同程度になるようにすることが好ましい。 When the compound (6) and / or the compound (6 ′) is contained in the component (A), the total amount of all raw material compounds (component (A) + component (B)) is 100% by mass. The compounding amount of the compound (6) and the compound (6 ′) is preferably 0 to 15% by mass, more preferably 0 to 10% by mass, from the viewpoint of obtaining a film that hardly warps. The content is preferably 0 to 9% by mass, particularly preferably 0 to 8% by mass. However, the preferable compounding amount of the compound (6) and the compound (6 ′) is a case where the compound (5) and / or the compound (5 ′) is not used when the polyimide precursor is synthesized. When the compound (6) and / or the compound (6 ′) and the compound (5) and / or the compound (5 ′) are used as raw materials when the body is synthesized, the compound (6) and compound to be used It is preferable that the total amount of (6 ′), compound (5) and compound (5 ′) is the same as the preferred blending amount of compound (6) and / or compound (6 ′).
 [(B)成分]
 (B)成分は、イミノ形成化合物である。ここで、「イミノ形成化合物」とは、(A)成分と反応してイミノ(基)を形成する化合物をいい、具体的には、ジアミン化合物、ジイソシアネート化合物、ビス(トリアルキルシリル)アミノ化合物等を挙げることができる。
[Component (B)]
The component (B) is an imino forming compound. Here, the “imino forming compound” refers to a compound that reacts with the component (A) to form an imino (group), and specifically includes a diamine compound, a diisocyanate compound, a bis (trialkylsilyl) amino compound, and the like. Can be mentioned.
 (B)成分としては、好ましくは、上記化合物(B-2)および化合物(B-2)以外のイミノ形成化合物(B-1)からなる群より選ばれる少なくとも1種の化合物を含む。 The component (B) preferably contains at least one compound selected from the group consisting of the above compound (B-2) and imino forming compound (B-1) other than the compound (B-2).
 前記イミノ形成化合物(B-1)としては、芳香族ジアミンおよび脂環族ジアミンからなる群より選ばれる少なくとも1種の化合物等が挙げられ、上記式(3)および(3-1)~(3-3)で表わされる群より選ばれる基を有する化合物であること、特に上記式(3')で表わされる群より選ばれる基を有する化合物であることが好ましい。このような化合物として、具体的には、p-フェニレンジアミン(PDA)、m-フェニレンジアミン、2,4-ジアミノトルエン、ベンジジン、3,3’-ジメチル-4,4’-ジアミノビフェニル(o-トリジン)、2,2’-ジメチル-4,4’-ジアミノビフェニル(m-トリジン,mTB)、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(TFMB)、3,3-ジメトキシ-4,4-ジアミノビフェニル、2,2’-ジクロロ-4,4’-ジアミノ-5,5’-ジメトキシビフェニル、2,2’,5,5’-テトラクロロ-4,4’-ジアミノビフェニル等が挙げられ、これらの中でも2,2’-ジメチル-4,4’-ジアミノビフェニルが好ましい。これらの化合物は1種を単独であるいは2種以上を組み合わせて用いることができる。 Examples of the imino-forming compound (B-1) include at least one compound selected from the group consisting of aromatic diamines and alicyclic diamines, and the like. The above formulas (3) and (3-1) to (3) −3) A compound having a group selected from the group represented by the formula (3), particularly a compound having a group selected from the group represented by the formula (3 ′) is preferred. Specific examples of such compounds include p-phenylenediamine (PDA), m-phenylenediamine, 2,4-diaminotoluene, benzidine, 3,3′-dimethyl-4,4′-diaminobiphenyl (o- Trizine), 2,2′-dimethyl-4,4′-diaminobiphenyl (m-tolidine, mTB), 3,3′-diethyl-4,4′-diaminobiphenyl, 2,2′-diethyl-4,4 '-Diaminobiphenyl, 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl (TFMB), 3,3-dimethoxy-4,4-diaminobiphenyl, 2,2'-dichloro-4, 4'-diamino-5,5'-dimethoxybiphenyl, 2,2 ', 5,5'-tetrachloro-4,4'-diaminobiphenyl, etc., among these, '- dimethyl-4,4'-diamino biphenyl are preferred. These compounds can be used alone or in combination of two or more.
 前記アシル化合物(B-1)としては、さらに、上記式(3)、(3-1)~(3-3)および(3')で表わされる群より選ばれる基を有しない化合物を用いてもよく、例えば芳香族ジアミン、脂肪族ジアミンおよび脂環族ジアミンからなる群より選ばれる少なくとも1種の化合物等が挙げられる。 As the acyl compound (B-1), a compound having no group selected from the group represented by the above formulas (3), (3-1) to (3-3) and (3 ′) is further used. For example, at least one compound selected from the group consisting of aromatic diamines, aliphatic diamines and alicyclic diamines may be used.
 前記芳香族ジアミンとしては、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル(ODA)、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,7-ジアミノ-ジメチルジベンゾチオフェン-5,5-ジオキシド、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、4,4’-ビス(4-アミノフェニル)スルフィド、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノベンズアニリド、1,n-ビス(4-アミノフェノキシ)アルカン、1,3-ビス[2-(4-アミノフェノキシエトキシ)]エタン、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノフェノキシフェニル)フルオレン、5(6)-アミノ-1-(4-アミノメチル)-1,3,3-トリメチルインダン、1,4-ビス(4-アミノフェノキシ)ベンゼン(TPE-Q)、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、2,5-ビス(4-アミノフェノキシ)ビフェニル(P-TPEQ)、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシフェニル)]プロパン(BAPP)、2,2-ビス(4-アミノフェノキシフェニル)ヘキサフルオロプロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4―(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、4,4’-メチレン-ビス(2-クロロアニリン)、9,10-ビス(4-アミノフェニル)アントラセン、o-トリジンスルホン等が挙げられる。これら芳香族ジアミンは、1種単独であるいは2種以上混合して用いることができる。 Examples of the aromatic diamine include 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether (ODA), 3,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, and 3,7-diamino-dimethyldibenzo. Thiophene-5,5-dioxide, 4,4′-diaminobenzophenone, 3,3′-diaminobenzophenone, 4,4′-bis (4-aminophenyl) sulfide, 4,4′-diaminodiphenylsulfone, 4,4 '-Diaminobenzanilide, 1, n-bis (4-aminophenoxy) alkane, 1,3-bis [2- (4-aminophenoxyethoxy)] ethane, 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4-aminophenoxyphenyl) fluorene, 5 (6) -amino -1- (4-aminomethyl) -1,3,3-trimethylindane, 1,4-bis (4-aminophenoxy) benzene (TPE-Q), 1,3-bis (4-aminophenoxy) benzene ( TPE-R), 1,3-bis (3-aminophenoxy) benzene (APB), 2,5-bis (4-aminophenoxy) biphenyl (P-TPEQ), 4,4′-bis (4-aminophenoxy) ) Biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 2,2-bis [4- (4-aminophenoxyphenyl)] propane (BAPP), 2,2-bis (4-aminophenoxyphenyl) Hexafluoropropane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 2,2-bis [ - (4-aminophenoxy) phenyl] hexafluoropropane, 4,4'-methylene - bis (2-chloroaniline), 9,10-bis (4-aminophenyl) anthracene, o- tolidine sulfone, and the like. These aromatic diamines can be used singly or in combination of two or more.
 前記脂肪族ジアミンとしては、炭素数2~30の脂肪族ジアミン等が挙げられ、その具体例としては、エチレンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ヘプタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,12-ドデカンジアミン等のアルキレンジアミン;オキシジ(2-アミノエタン)、オキシジ(2-アミノプロパン)、2-(2-アミノエトキシ)エトキシアミノエタン等のオキシアルキレンジアミンが挙げられる。これら脂肪族ジアミンは、1種単独で又は2種以上を混合して用いることができる。 Examples of the aliphatic diamine include aliphatic diamines having 2 to 30 carbon atoms, and specific examples thereof include ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-heptanediamine, Alkylene diamines such as 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,12-dodecanediamine; oxydi (2-aminoethane) ), Oxydi (2-aminopropane), oxyalkylenediamine such as 2- (2-aminoethoxy) ethoxyaminoethane. These aliphatic diamines can be used alone or in combination of two or more.
 また、前記脂環族ジアミンとしては、分子内に少なくとも1個の脂環基を有するものを用いることができ、脂環基としては単環、多環、縮合環のいずれの基であってもよい。前記脂環族ジアミンとしては、炭素数4~30の脂環族ジアミンが好適に用いられ、4,4’-ジアミノジシクロヘキシルメタン(MBCHA)、4,4’-ジアミノ-3,3’-ジメチルシクロヘキシルメタン、4,4’-ジアミノ-3,3’,5,5’-テトラメチルシクロヘキシルメタン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン(CHDA)、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、2,2-ビス(4,4’-ジアミノシクロヘキシル)プロパン、1,3-ビスアミノメチルシクロヘキサン、1,4-ビスアミノメチルシクロヘキサン、2,3-ジアミノビシクロ〔2.2.1〕ヘプタン、2,5-ジアミノビシクロ〔2.2.1〕ヘプタン、2,6-ジアミノビシクロ〔2.2.1〕ヘプタン、2,7-ジアミノビシクロ〔2.2.1〕ヘプタン、2,5-ビス(アミノメチル)-ビシクロ〔2.2.1〕ヘプタン、2,6-ビス(アミノメチル)-ビシクロ〔2.2.1〕ヘプタン、2,3-ビス(アミノメチル)-ビシクロ〔2.2.1〕ヘプタン、3(4),8(9)-ビス(アミノメチル)-トリシクロ〔5.2.1.02,6〕デカン等が挙げられる。これら脂環族ジアミンは、1種単独であるいは2種以上を組み合わせて用いることができる。 Moreover, as said alicyclic diamine, what has at least 1 alicyclic group in a molecule | numerator can be used, and any group of a monocyclic ring, a polycyclic ring, and a condensed ring may be used as an alicyclic group. Good. As the alicyclic diamine, an alicyclic diamine having 4 to 30 carbon atoms is preferably used, and 4,4′-diaminodicyclohexylmethane (MBCHA), 4,4′-diamino-3,3′-dimethylcyclohexyl is used. Methane, 4,4′-diamino-3,3 ′, 5,5′-tetramethylcyclohexylmethane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane (CHDA), 1-amino-3-aminomethyl- 3,5,5-trimethylcyclohexane, 2,2-bis (4,4′-diaminocyclohexyl) propane, 1,3-bisaminomethylcyclohexane, 1,4-bisaminomethylcyclohexane, 2,3-diaminobicyclo [ 2.2.1] heptane, 2,5-diaminobicyclo [2.2.1] heptane, 2,6-diaminobicyclo [2.2 .1] Heptane, 2,7-diaminobicyclo [2.2.1] heptane, 2,5-bis (aminomethyl) -bicyclo [2.2.1] heptane, 2,6-bis (aminomethyl)- Bicyclo [2.2.1] heptane, 2,3-bis (aminomethyl) -bicyclo [2.2.1] heptane, 3 (4), 8 (9) -bis (aminomethyl) -tricyclo [5. 2.1.0 2,6 ] and decane. These alicyclic diamines can be used singly or in combination of two or more.
 前記化合物(B-1)の配合量は特に制限されず、全イミド形成化合物((B)成分)の全量を100質量%とした場合に、100質量%であってもよいが、(B)成分に下記化合物(B-2)および/または化合物(5)、(5')が含まれる場合には、100質量%からこれらの化合物それぞれの好ましい配合量を引いた量で配合すればよい。 The compounding amount of the compound (B-1) is not particularly limited, and may be 100% by mass when the total amount of all imide-forming compounds (component (B)) is 100% by mass. When the following compounds (B-2) and / or compounds (5) and (5 ′) are contained in the components, they may be blended in an amount obtained by subtracting the preferred blending amount of each of these compounds from 100% by mass.
 上記化合物(B-2)としては、構造単位(2)を含むイミノ形成化合物であれば特に制限されないが、好ましくは下記式(9)で表わされる化合物(以下「化合物(9)」ともいう。)および下記式(9')で表わされる化合物(以下「化合物(9')」ともいう。)等を挙げることができる。 The compound (B-2) is not particularly limited as long as it is an imino forming compound containing the structural unit (2), but is preferably a compound represented by the following formula (9) (hereinafter also referred to as “compound (9)”). And a compound represented by the following formula (9 ′) (hereinafter also referred to as “compound (9 ′)”).
 なお、構造単位(2)が、前記構造単位(1)中の複数あるR1およびR2からなる群より選ばれる少なくとも1つの基に含まれるポリイミド前駆体を合成したい場合には、化合物(9)を用いることが好ましく、前記構造単位(1)の末端「*」に含まれるポリイミド前駆体を合成したい場合には、化合物(9')を用いることが好ましい。 In the case where it is desired to synthesize a polyimide precursor in which the structural unit (2) is contained in at least one group selected from the group consisting of a plurality of R 1 and R 2 in the structural unit (1), the compound (9 In the case where it is desired to synthesize a polyimide precursor contained in the terminal “*” of the structural unit (1), it is preferable to use the compound (9 ′).
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 前記式(9)および(9')中、R5およびmは各々独立に、前記式(2)中のR5およびmと同義であり、R10は各々独立に前記式(7)および(8)中のR10と同義であり、R11は各々独立に前記式(7')および(8')中のR11と同義である。 In the formulas (9) and (9 ′), R 5 and m each independently have the same meaning as R 5 and m in the formula (2), and R 10 each independently represents the formulas (7) and ( 8) during the same meaning as R 10 in, R 11 is each independently the above formula (7 ') and (8') is synonymous with R 11 in.
 上記化合物(B-2)としては、前記柔軟な骨格部位を前記剛直な骨格部位からなる海部にナノ~ミクロンサイズで微分散させることができ、耐熱性(高ガラス転移温度)および耐水性が優れた膜を得る観点から、数平均分子量が500~12,000であることが好ましく、1,000~8,000であることがより好ましく、3,000~6,000であることがさらに好ましい。アミン価は250~6,000であることが好ましく、500~4,000であることがより好ましく、1,500~3,000であることがさらに好ましい。 As the compound (B-2), the flexible skeleton part can be finely dispersed in the nano-micron size in the sea part composed of the rigid skeleton part, and has excellent heat resistance (high glass transition temperature) and water resistance. From the viewpoint of obtaining a film, the number average molecular weight is preferably 500 to 12,000, more preferably 1,000 to 8,000, and still more preferably 3,000 to 6,000. The amine value is preferably 250 to 6,000, more preferably 500 to 4,000, and further preferably 1,500 to 3,000.
 前記式(9)および(9')における重合度mは前記式(2)と同様であり、好ましい範囲も同様である。 The polymerization degree m in the formulas (9) and (9 ′) is the same as that in the formula (2), and the preferred range is also the same.
 前記式(9)および(9')中、R5はメチル基またはフェニル基が好ましく、複数あるR5のうち、少なくとも1つはフェニル基であることが好ましい。複数あるR5のすべてがメチル基またはフェニル基であり、その少なくとも1つはフェニル基である場合、メチル基のモル%とフェニル基のモル%との比(メチル基のモル%+フェニル基のモル%=100)は、好ましくはメチル基:フェニル基=5~95:95~5であり、より好ましくはメチル基:フェニル基=15~85:85~15であり、さらに好ましくはメチル基:フェニル基=85~65:15~35である。前記式(9)および(9')中の少なくとも1つのR5がフェニル基でないと、前記海部と島部との相溶性が悪化して、島部の分散サイズが1ミクロンを超え、耐熱性、フィルム強度に劣る膜が得られる場合がある。 In the formulas (9) and (9 ′), R 5 is preferably a methyl group or a phenyl group, and at least one of a plurality of R 5 is preferably a phenyl group. When all of the plurality of R 5 are a methyl group or a phenyl group and at least one of them is a phenyl group, the ratio of the mol% of the methyl group to the mol% of the phenyl group (mol% of methyl group + phenyl group Mol% = 100) is preferably methyl group: phenyl group = 5 to 95:95 to 5, more preferably methyl group: phenyl group = 15 to 85:85 to 15, and still more preferably methyl group: Phenyl group = 85 to 65:15 to 35. If at least one R 5 in the formulas (9) and (9 ′) is not a phenyl group, the compatibility between the sea part and the island part deteriorates, and the dispersion size of the island part exceeds 1 micron, and the heat resistance In some cases, a film having poor film strength may be obtained.
 上記化合物(B-2)としては、具体的には、両末端アミノ変性メチルフェニルシリコーン(信越化学社製; X22-1660B-3(数平均分子量4,400 重合度m=41、フェニル基:メチル基=25:75mol%)、X22-9409(数平均分子量1,300))、両末端アミノ変性ジメチルシリコーン((信越化学社製; X22-161A(数平均分子量1,600、重合度m=20)、X22-161B(数平均分子量3,000、重合度m=39)、KF8012(数平均分子量4400、重合度m=58)、東レダウコーニング製; BY16-835U(数平均分子量900、重合度m=11))などが挙げられる。なお、上記イミノ形成化合物(B-2)は1種を単独であるいは2種以上を組み合わせて用いることができる。なお、重合度mは例えば以下の式により算出することができる。(両末端がアミノプロピル基の場合、前記式(2)中のR5のすべてがメチル基またはフェニル基である化合物の場合)
 m=(数平均分子量-両末端基(アミノプロピル基)の分子量116.2)/(74.15×メチル基のmol%×0.01+198.29×フェニル基のmol%×0.01)
Specifically, as the compound (B-2), both terminal amino-modified methylphenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd .; X22-1660B-3 (number average molecular weight 4,400, degree of polymerization m = 41, phenyl group: methyl) Group = 25: 75 mol%), X22-9409 (number average molecular weight 1,300)), both-end amino-modified dimethyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd .; X22-161A (number average molecular weight 1,600, polymerization degree m = 20) ), X22-161B (number average molecular weight 3,000, polymerization degree m = 39), KF8012 (number average molecular weight 4400, polymerization degree m = 58), manufactured by Toray Dow Corning; BY16-835U (number average molecular weight 900, polymerization degree) m = 11)), etc. The imino-forming compound (B-2) may be used alone or in combination of two or more. The degree of polymerization m can be calculated by, for example, the following formula: (A compound in which, when both ends are aminopropyl groups, all of R 5 in the formula (2) are methyl groups or phenyl groups. in the case of)
m = (number average molecular weight−molecular weight of both terminal groups (aminopropyl group) 116.2) / (74.15 × mol% of methyl group × 0.01 + 198.29 × mol% of phenyl group × 0.01)
 前記(B)成分に前記化合物(B-2)が含まれる場合には、全原料化合物((A)成分+(B)成分)の全量を100質量%とした場合に、前記化合物(B-2)の配合量は、基板との剥離性に優れ、反りの発生しにくい膜を得る点から、好ましくは5~40質量%であり、より好ましくは5~23質量%であり、さらに好ましくは8~22質量%であり、特に好ましくは9.5~21質量%である。但し、上記化合物(B-2)の好ましい配合量は、ポリイミド前駆体を合成する際に、前記化合物(A-2)を用いない場合である。 When the compound (B-2) is contained in the component (B), the compound (B−) is obtained when the total amount of all raw material compounds (component (A) + component (B)) is 100% by mass. The blending amount of 2) is preferably 5 to 40% by mass, more preferably 5 to 23% by mass, and even more preferably, from the viewpoint of obtaining a film that is excellent in peelability from the substrate and hardly warps. It is 8 to 22% by mass, and particularly preferably 9.5 to 21% by mass. However, the preferable compounding amount of the compound (B-2) is a case where the compound (A-2) is not used when the polyimide precursor is synthesized.
 また、前記(B)成分には、得られる膜の伸びを改良する点から、所望の用途に応じて、化合物(5)および/または下記式(5')で表わされる化合物(以下「化合物(5')」ともいう。)が含まれてもよい。なお、ポリイミド前駆体の主鎖(末端を除く)に構造単位(56)が含まれるポリイミド前駆体を合成したい場合には、化合物(5)を用いることが好ましく、ポリイミド前駆体の主鎖末端に構造単位(56)が含まれるポリイミド前駆体を合成したい場合には、化合物(5')を用いることが好ましい。 The component (B) includes a compound represented by the compound (5) and / or the following formula (5 ′) (hereinafter referred to as “compound (“ 5 ') "))) may be included. In addition, when it is desired to synthesize a polyimide precursor including the structural unit (56) in the main chain (excluding the terminal) of the polyimide precursor, it is preferable to use the compound (5), and the main chain terminal of the polyimide precursor is used. When it is desired to synthesize a polyimide precursor containing the structural unit (56), it is preferable to use the compound (5 ′).
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 前記式(5')中、Aは前記式(5)および(6)中のAと同義であり、R12は、前記式(6')中のR12と同義である。 ', A represents the formula (5) and (6) in the same meaning as A, R 12 is the formula (6 Formula (5)' is synonymous with R 12 in).
 前記(B)成分に前記化合物(5)および/または化合物(5')が含まれる場合には、全原料化合物((A)成分+(B)成分)の全量を100質量%とした場合に、前記化合物(5)および化合物(5')の配合量は、反りの発生しにくい膜を得る点から、好ましくは0~15質量%であり、より好ましくは0~10質量%であり、さらに好ましくは0~9質量%であり、特に好ましくは0~8質量%である。但し、上記化合物(5)および化合物(5')の好ましい配合量は、ポリイミド前駆体を合成する際に、前記化合物(6)および/または化合物(6')を用いない場合である。 When the compound (5) and / or the compound (5 ′) is contained in the component (B), the total amount of all raw material compounds (component (A) + component (B)) is 100% by mass. The compounding amount of the compound (5) and the compound (5 ′) is preferably 0 to 15% by mass, more preferably 0 to 10% by mass, from the viewpoint of obtaining a film that hardly warps. The content is preferably 0 to 9% by mass, particularly preferably 0 to 8% by mass. However, the preferable compounding quantity of the said compound (5) and compound (5 ') is a case where the said compound (6) and / or compound (6') are not used when a polyimide precursor is synthesize | combined.
 本発明のポリイミド前駆体は、(A)成分と(B)成分とを、使用割合(仕込み量比)として、(A)成分と(B)成分とのモル比((A)成分/(B)成分)が0.8~1.2となる範囲で反応させることが好ましく、0.90~1.0となる範囲で反応させることがより好ましい。(A)アシル化合物と(B)イミノ形成物とのモル比が、0.8当量未満、若しくは1.2当量を超えると、分子量が低くなり膜を形成することが困難となることがある。 In the polyimide precursor of the present invention, the component (A) and the component (B) are used as a ratio (charge ratio), and the molar ratio of the component (A) to the component (B) (component (A) / (B ) Component) is preferably reacted in the range of 0.8 to 1.2, more preferably in the range of 0.90 to 1.0. When the molar ratio of the (A) acyl compound and the (B) imino-formation product is less than 0.8 equivalent or more than 1.2 equivalent, the molecular weight may be lowered and it may be difficult to form a film.
 前記(A)成分と(B)成分との反応は、通常、有機溶媒中で行う。該有機溶媒は脱水したものが好ましい。 The reaction between the component (A) and the component (B) is usually performed in an organic solvent. The organic solvent is preferably dehydrated.
 前記有機溶媒としては、下記混合溶媒を用いることが、本発明の樹脂組成物の製造容易性、得られる膜の性質(ヘイズ、反り等)の点から好ましい。 As the organic solvent, it is preferable to use the following mixed solvent from the viewpoint of the ease of production of the resin composition of the present invention and the properties of the resulting film (haze, warpage, etc.).
 (A)成分と(B)成分とを反応させる具体的な方法としては、少なくとも1種の(B)イミノ形成化合物を有機溶媒に溶解させた後、得られた溶液に、少なくとも1種の(A)アシル化合物を添加し、0~100℃の温度で、1~60時間撹拌する方法等が挙げられる。 As a specific method of reacting the component (A) and the component (B), at least one (B) imino-forming compound is dissolved in an organic solvent, and then the resulting solution contains at least one ( A) A method of adding an acyl compound and stirring at a temperature of 0 to 100 ° C. for 1 to 60 hours may be mentioned.
 なお、反応液中の(A)成分と(B)成分との合計量は、反応液全量の3~60質量%、好ましくは5~40質量%、より好ましくは10~40質量%であり、さらに好ましくは10~30質量%である。 The total amount of the components (A) and (B) in the reaction solution is 3 to 60% by mass, preferably 5 to 40% by mass, more preferably 10 to 40% by mass, based on the total amount of the reaction solution. More preferably, it is 10 to 30% by mass.
 反応液中の(A)成分と(B)成分との合計量が前記範囲にあると、得られる樹脂組成物中のポリイミド前駆体の濃度が下記好ましい範囲にある樹脂組成物を得ることができるため好ましい。 When the total amount of the component (A) and the component (B) in the reaction solution is in the above range, a resin composition in which the concentration of the polyimide precursor in the obtained resin composition is in the following preferable range can be obtained. Therefore, it is preferable.
 前記有機溶媒としては、エーテル系溶媒、ケトン系溶媒、ニトリル系溶媒、エステル系溶媒およびアミド系溶媒からなる群より選ばれる少なくとも1種の溶媒が挙げられる。 Examples of the organic solvent include at least one solvent selected from the group consisting of ether solvents, ketone solvents, nitrile solvents, ester solvents, and amide solvents.
 前記エーテル系溶媒としては、炭素数3以上10以下のエーテル類であることが好ましく、炭素数3以上7以下のエーテル類であることがより好ましい。好ましいエーテル系溶媒としては、具体的には、エチレングリコール、ジエチレングリコール、エチレングリコールモノエチルエーテルなどのモノもしくはジアルキルエーテル類、ジオキサン、テトラヒドロフラン(THF)などの環状エーテル類、アニソールなどの芳香族エーテル類等を挙げることができる。これらの中でもテトラヒドロフランが好ましい。
 なお、これらエーテル系溶媒は、1種単独であるいは2種以上を組み合わせて用いることができる。
The ether solvent is preferably an ether having 3 to 10 carbon atoms, and more preferably an ether having 3 to 7 carbon atoms. Specific examples of preferable ether solvents include mono- or dialkyl ethers such as ethylene glycol, diethylene glycol, and ethylene glycol monoethyl ether, cyclic ethers such as dioxane and tetrahydrofuran (THF), and aromatic ethers such as anisole. Can be mentioned. Of these, tetrahydrofuran is preferred.
These ether solvents can be used singly or in combination of two or more.
 前記ケトン系溶媒としては、炭素数3以上10以下のケトン類であることが好ましく、沸点およびコストの点等から、炭素数3以上6以下のケトン類であることがより好ましい。好ましいケトン系溶媒としては、具体的には、アセトン(bp=57℃)メチルエチルケトン(bp=80℃)、メチル-n-プロピルケトン(bp=105℃)、メチル-iso-プロピルケトン(bp=116℃)、ジエチルケトン(bp=101℃)、メチル-n-ブチルケトン(bp=127℃)、メチル-iso-ブチルケトン(bp=118℃)、メチル-sec-ブチルケトン(bp=118℃)、メチル-tert-ブチルケトン(bp=116℃)などのジアルキルケトン類、シクロペンタノン(bp=130℃)、シクロヘキサノン(CHN,bp=156℃)、シクロヘプタノン(bp=185℃)などの環状ケトン類等を挙げることができる。これらの中でもシクロヘキサノンが、乾燥性、生産性等に優れる樹脂組成物を得ることができること、下記真空乾燥中に選択的に蒸発し、基板上に形成された塗膜からほぼ完全に除去される溶媒であること等の点でから好ましい。
 なお、これらケトン系溶媒は、1種単独であるいは2種以上を組み合わせて用いることができる。
The ketone solvent is preferably a ketone having 3 to 10 carbon atoms, and more preferably a ketone having 3 to 6 carbon atoms from the viewpoint of boiling point and cost. Specific preferred ketone solvents include acetone (bp = 57 ° C.), methyl ethyl ketone (bp = 80 ° C.), methyl-n-propyl ketone (bp = 105 ° C.), methyl-iso-propyl ketone (bp = 116). ° C), diethylketone (bp = 101 ° C), methyl-n-butylketone (bp = 127 ° C), methyl-iso-butylketone (bp = 118 ° C), methyl-sec-butylketone (bp = 118 ° C), methyl- Dialkyl ketones such as tert-butyl ketone (bp = 116 ° C.), cyclic ketones such as cyclopentanone (bp = 130 ° C.), cyclohexanone (CHN, bp = 156 ° C.), cycloheptanone (bp = 185 ° C.), etc. Can be mentioned. Among these, cyclohexanone can obtain a resin composition excellent in drying property, productivity, etc., a solvent that is selectively evaporated during the following vacuum drying, and is almost completely removed from the coating film formed on the substrate. It is preferable from the point of being.
These ketone solvents can be used singly or in combination of two or more.
 前記ニトリル系溶媒としては、炭素数2以上10以下のニトリル類であることが好ましく、炭素数2以上7以下のニトリル類であることがより好ましい。好ましいニトリル系溶媒としては、アセトニトリル(bp=82℃)、プロパンニトリル(bp=97℃)、ブチロニトリル(bp=116℃)、イスブチロニトリル(bp=107℃)、バレロニトリル(bp=140℃)、イソバレロニトリル(bp=129℃)、ベンズニトリル(bp=191℃)等が挙げられる。これらの中でも、低沸点の点等から、アセトニトリルが好ましい。
 なお、これらニトリル系溶媒は、1種単独であるいは2種以上を組み合わせて用いることができる。
The nitrile solvent is preferably a nitrile having 2 to 10 carbon atoms, and more preferably a nitrile having 2 to 7 carbon atoms. Preferred nitrile solvents include acetonitrile (bp = 82 ° C.), propanenitrile (bp = 97 ° C.), butyronitrile (bp = 116 ° C.), isbutyronitrile (bp = 107 ° C.), valeronitrile (bp = 140 ° C.). ), Isovaleronitrile (bp = 129 ° C.), benzonitrile (bp = 191 ° C.) and the like. Among these, acetonitrile is preferable from the viewpoint of a low boiling point.
These nitrile solvents can be used singly or in combination of two or more.
 前記エステル系溶媒としては、炭素数3以上10以下のエステル類であることが好ましく、炭素数3以上6以下のエステル類であることがより好ましい。好ましいエステル系溶媒としては、酢酸エチル(bp=77℃)、酢酸プロピル(bp=97℃)、酢酸-i-プロピル(bp=89℃)、酢酸ブチル(bp=126℃)、などのアルキルエステル類、β-プロピオラクトン(bp=155℃)などの環状エステル類等を挙げることができる。
 なお、これらエステル系溶媒は、1種単独であるいは2種以上を組み合わせて用いることができる。
The ester solvent is preferably an ester having 3 to 10 carbon atoms, and more preferably an ester having 3 to 6 carbon atoms. Preferred ester solvents include alkyl esters such as ethyl acetate (bp = 77 ° C.), propyl acetate (bp = 97 ° C.), acetic acid-i-propyl (bp = 89 ° C.), butyl acetate (bp = 126 ° C.), etc. And cyclic esters such as β-propiolactone (bp = 155 ° C.).
These ester solvents can be used singly or in combination of two or more.
 前記アミド系溶媒としては、炭素数3以上10以下のアミド類であることが好ましく、炭素数3以上6以下のアミド類であることがより好ましい。これらの中でも、ガラス基板上等に形成された塗膜を真空乾燥、1次乾燥、次いで、2次乾燥することで膜を得る場合、1次乾燥温度以上の沸点を有するアミド系溶媒が得られる膜の平坦性等の点から好ましく、具体的には、沸点が200℃以上のアミド系溶媒が好ましい。好ましいアミド系溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド(DMAc)などのアルキルアミド類、1,3-ジメチル-2-イミダゾリジノン、N-メチル-2-ピロリドンなどの環状アミド類等を挙げることができる。これらの中でも、N-メチル-2-ピロリドンおよびN,N-ジメチルアセトアミドが非アミド系溶媒を蒸発させた真空乾燥や1次乾燥後に残存し、200℃~500℃で行う2次乾燥の際に塗膜の表面の平滑性を維持できる蒸発速度で揮発することなどからより好ましく、環境汚染等を考慮すると、N-メチル-2-ピロリドンがより好ましい。
 なお、これらアミド系溶媒は、1種単独であるいは2種以上を組み合わせて用いることができる。
The amide solvent is preferably an amide having 3 to 10 carbon atoms, and more preferably an amide having 3 to 6 carbon atoms. Among these, when a film is obtained by vacuum drying, primary drying, and then secondary drying of a coating film formed on a glass substrate or the like, an amide solvent having a boiling point equal to or higher than the primary drying temperature is obtained. From the viewpoint of the flatness of the film, etc., specifically, an amide solvent having a boiling point of 200 ° C. or higher is preferable. Preferred amide solvents include alkylamides such as N, N-dimethylformamide and N, N-dimethylacetamide (DMAc), 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone and the like. Examples thereof include cyclic amides. Among these, N-methyl-2-pyrrolidone and N, N-dimethylacetamide remain after vacuum drying or primary drying by evaporating the non-amide solvent, and at the time of secondary drying performed at 200 ° C. to 500 ° C. It is more preferable because it volatilizes at an evaporation rate that can maintain the smoothness of the surface of the coating film, and N-methyl-2-pyrrolidone is more preferable in consideration of environmental pollution and the like.
These amide solvents can be used alone or in combination of two or more.
 前記有機溶媒としては、アミド系溶媒とエーテル系溶媒、ケトン系溶媒、ニトリル系溶媒およびエステル系溶媒からなる群より選ばれる少なくとも1種の非アミド系溶媒との混合溶媒を用いることが、得られる塗膜(膜)の密着性、剥離性および残留応力等の点から好ましい。また、前記混合溶媒を用いると、膜形成時の乾燥速度が上がり、膜質が低下せず、膜の生産性に優れ、ポリイミド前駆体濃度の高い樹脂組成物を得ることができる。 As the organic solvent, it is possible to use a mixed solvent of an amide solvent and an ether solvent, a ketone solvent, a nitrile solvent, and an ester solvent selected from the group consisting of an ester solvent. It is preferable from the viewpoints of adhesion, peelability and residual stress of the coating film (film). Moreover, when the mixed solvent is used, a drying rate at the time of film formation is increased, the film quality is not deteriorated, a resin composition having excellent film productivity and a high polyimide precursor concentration can be obtained.
 前記非アミド系溶媒としては、下記真空乾燥中に選択的に蒸発し、基板上に形成された塗膜からほぼ完全に除去される溶媒であることが好ましく、沸点が40~200℃の範囲にある溶媒が好ましく、100~170℃の範囲にある溶媒がより好ましい。このような溶媒を用いると、樹脂組成物から膜を形成する際の溶媒の除去が容易となるために、生産性に優れる樹脂組成物を得ることができる。本発明において、沸点とは、大気中、1atm下における沸点のことをいう。 The non-amide solvent is preferably a solvent that selectively evaporates during the following vacuum drying and is almost completely removed from the coating film formed on the substrate, and has a boiling point in the range of 40 to 200 ° C. A certain solvent is preferable, and a solvent in the range of 100 to 170 ° C. is more preferable. When such a solvent is used, since the removal of the solvent at the time of forming a film from the resin composition becomes easy, a resin composition having excellent productivity can be obtained. In the present invention, the boiling point means the boiling point in the atmosphere at 1 atm.
 また、前記非アミド系溶媒としては、ケトン系溶媒およびニトリル系溶媒からなる群より選ばれる少なくとも1種の有機溶媒を含むことが好ましいと考えられる。これらの溶媒は、比較的極性が高いため、保存安定性に優れる樹脂組成物を得ることができる傾向がある。 Further, it is considered that the non-amide solvent preferably contains at least one organic solvent selected from the group consisting of ketone solvents and nitrile solvents. Since these solvents have relatively high polarity, there is a tendency that a resin composition having excellent storage stability can be obtained.
 前記混合溶媒は、乾燥性および生産性等の点から、N-メチル-2-ピロリドンとシクロヘキサノンとの混合溶媒、N,N-ジメチルアセトアミドとシクロヘキサノンとの混合溶媒、N-メチル-2-ピロリドンとアセトニトリルとの混合溶媒であることが好ましく、N-メチル-2-ピロリドンとシクロヘキサノンとの混合溶媒が特に好ましい。 From the viewpoints of drying property and productivity, the mixed solvent is a mixed solvent of N-methyl-2-pyrrolidone and cyclohexanone, a mixed solvent of N, N-dimethylacetamide and cyclohexanone, N-methyl-2-pyrrolidone and A mixed solvent with acetonitrile is preferable, and a mixed solvent of N-methyl-2-pyrrolidone and cyclohexanone is particularly preferable.
 また、得られる膜の白濁防止等の観点から、N,N-ジメチルアセトアミドとテトラヒドロフランとの混合溶媒が好ましい。 In addition, a mixed solvent of N, N-dimethylacetamide and tetrahydrofuran is preferable from the viewpoint of preventing clouding of the obtained film.
 前記混合溶媒は、混合溶媒100質量部に対して、前記アミド系溶媒を5~95質量部含むことが好ましく、25~95質量部含むことがより好ましく、得られる膜の物性を考慮すると35~65質量部含むことがさらに好ましい。さらに前記混合溶媒は、混合溶媒100質量部に対して、前記アミド系溶媒を40~60質量部含むことが特に好ましく、混合溶媒中に前記アミド系溶媒がこの量で含まれていると、乾燥速度が速く、生産性に優れる樹脂組成物となるのみならず、さらに、白濁および引張り強度等の膜質特性、保存安定性等に優れ、基板との密着・剥離性に優れる反りの生じにくい膜を得ることができる。 The mixed solvent preferably contains 5 to 95 parts by mass, more preferably 25 to 95 parts by mass of the amide-based solvent with respect to 100 parts by mass of the mixed solvent. More preferably, it contains 65 parts by mass. Further, the mixed solvent particularly preferably contains 40 to 60 parts by mass of the amide solvent with respect to 100 parts by mass of the mixed solvent. When the mixed solvent contains the amide solvent in this amount, the mixed solvent is dried. Not only does it become a resin composition with high speed and excellent productivity, but it also has excellent film quality characteristics such as cloudiness and tensile strength, storage stability, etc., and excellent adhesion to the substrate and peelability. Obtainable.
 アミド系溶媒の量が5質量部未満であると、前記ポリイミド前駆体が溶解せず、樹脂組成物を得ることができない場合があり、アミド系溶媒の量が95質量部を超えると、膜を形成する際の乾燥速度が遅くなり、生産性が劣る場合がある。 When the amount of the amide solvent is less than 5 parts by mass, the polyimide precursor may not be dissolved and a resin composition may not be obtained. When the amount of the amide solvent exceeds 95 parts by mass, The drying speed at the time of forming becomes slow, and productivity may be inferior.
 ≪樹脂組成物≫
 本発明に係る樹脂組成物は、前記本発明のポリイミド前駆体および有機溶媒を含むことが好ましい。この有機溶媒としては、前記混合溶媒が好ましい。
≪Resin composition≫
The resin composition according to the present invention preferably contains the polyimide precursor of the present invention and an organic solvent. The organic solvent is preferably the mixed solvent.
 本発明のポリイミド前駆体を含む樹脂組成物によれば、高いガラス転移温度を有し、残留応力が小さく、反りの発生が少ない膜を容易に短時間に、生産性よく製造することができる。また、前記樹脂組成物によれば、ガラス基板等の基板に樹脂組成物を塗布して膜を形成する際の、該基板との密着性および剥離性に優れる膜を容易に形成することができる。 According to the resin composition containing the polyimide precursor of the present invention, a film having a high glass transition temperature, a small residual stress, and little warpage can be easily produced in a short time with high productivity. Moreover, according to the said resin composition, when apply | coating a resin composition to substrates, such as a glass substrate, and forming a film | membrane, the film | membrane excellent in adhesiveness and peelability with this board | substrate can be formed easily. .
 上記反応で得られたポリイミド前駆体と有機溶媒とを含む組成物は、そのまま前記樹脂組成物として使用することが好ましいが、前記樹脂組成物は、上記反応で得られたポリイミド前駆体を固体分として単離した後、有機溶媒に再溶解することで得ることもできる。 Although the composition containing the polyimide precursor obtained by the above reaction and the organic solvent is preferably used as it is as the resin composition, the resin composition contains the polyimide precursor obtained by the above reaction as a solid component. Can be obtained by re-dissolving in an organic solvent.
 ポリイミド前駆体を単離する方法としては、ポリイミド前駆体および有機溶媒等を含む溶液を、メタノールやイソプロパノール等のポリイミド前駆体に対する貧溶媒に投じてポリイミド前駆体等を沈殿させ、濾過・洗浄・乾燥等によりポリイミド前駆体を固体分として分離する方法等が挙げられる。 As a method for isolating the polyimide precursor, a solution containing the polyimide precursor and an organic solvent is poured into a poor solvent for the polyimide precursor such as methanol or isopropanol to precipitate the polyimide precursor, and is filtered, washed and dried. The method etc. which isolate | separate a polyimide precursor as solid content by the above are mentioned.
 なお、前記樹脂組成物には、本発明の目的を損なわない範囲で、酸化防止剤、紫外線吸収剤、界面活性剤などの添加剤を配合してもよい。 In addition, you may mix | blend additives, such as antioxidant, a ultraviolet absorber, and surfactant, in the said resin composition in the range which does not impair the objective of this invention.
 前記樹脂組成物の粘度は、ポリイミド前駆体の分子量や濃度にもよるが、通常、500~500,000mPa・s、好ましくは1,000~50,000mPa・sである。500mPa・s未満では、成膜中の樹脂組成物の滞留性が悪く、基板から流れ落ちてしまうことがある。一方、500,000mPa・sを超えると、粘度が高過ぎて、膜厚の調整が困難となり、膜の形成が困難となることがある。
 なお、前記樹脂組成物の粘度は、E型粘度計(東機産業製、粘度計MODEL RE100)を用いて、大気中、25℃で測定した値である。
The viscosity of the resin composition is usually 500 to 500,000 mPa · s, preferably 1,000 to 50,000 mPa · s, although it depends on the molecular weight and concentration of the polyimide precursor. If it is less than 500 mPa · s, the retention of the resin composition during film formation is poor, and the resin composition may flow down from the substrate. On the other hand, if it exceeds 500,000 mPa · s, the viscosity is too high, and it becomes difficult to adjust the film thickness, which may make it difficult to form the film.
The viscosity of the resin composition is a value measured at 25 ° C. in the atmosphere using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., viscometer MODEL RE100).
 前記樹脂組成物中のポリイミド前駆体濃度は、樹脂組成物の粘度が上記範囲となるよう調整することが好ましく、ポリイミド前駆体の分子量にもよるが、通常、3~60質量%、好ましくは5~40質量%、より好ましくは10~40質量%、特に好ましくは10~30質量%である。3質量%未満では、厚膜化し難く生産性が悪い、ピンホールが生成しやすい、平坦性等の膜厚精度が悪い、等の問題が生じるおそれがある。一方、60質量%を超えると、樹脂組成物の粘度が高すぎて膜を形成し難くなることがあり、また、表面平滑性に欠ける膜が得られることがある。 The polyimide precursor concentration in the resin composition is preferably adjusted so that the viscosity of the resin composition is in the above range, and is usually 3 to 60% by mass, preferably 5%, depending on the molecular weight of the polyimide precursor. -40% by mass, more preferably 10-40% by mass, particularly preferably 10-30% by mass. If it is less than 3% by mass, problems such as difficulty in increasing the film thickness and poor productivity, easy formation of pinholes, and poor film thickness accuracy such as flatness may occur. On the other hand, if it exceeds 60% by mass, the viscosity of the resin composition may be too high to form a film, and a film lacking in surface smoothness may be obtained.
 前記樹脂組成物の粘度および該組成物中のポリイミド前駆体濃度が前記範囲にあると、生産性等に優れるスリットコート法を用いて、該樹脂組成物を基板上に塗布することができ、膜厚精度等に優れる膜を生産性良く短時間で形成することができる。 When the viscosity of the resin composition and the polyimide precursor concentration in the composition are in the above ranges, the resin composition can be applied onto a substrate using a slit coating method that is excellent in productivity and the like. A film having excellent thickness accuracy and the like can be formed in a short time with high productivity.
 ≪膜形成方法≫
 本発明に係る膜(ポリイミド系膜)の形成方法としては、前記樹脂組成物を基板上に塗布して塗膜を形成する工程と、該塗膜から前記有機溶媒を蒸発させることにより除去する工程とを含む方法等が挙げられる。
≪Film formation method≫
As a method for forming a film (polyimide film) according to the present invention, a step of coating the resin composition on a substrate to form a coating film, and a step of removing the organic solvent from the coating film by evaporation And the like methods.
 前記樹脂組成物を基板上に塗布して塗膜を形成する方法としては、ロールコート法、グラビアコート法、スピンコート法、スリットコート法、ディッピング法およびドクターブレード、ダイス、コーター、スプレー、ハケ、ロールなどを用いて塗布する方法等が挙げられる。なお、塗布の繰り返しによりフィルムの厚みや表面平滑性などを制御してもよい。これらの中でも、スリットコート法が好ましい。 As a method of forming a coating film by applying the resin composition on a substrate, a roll coating method, a gravure coating method, a spin coating method, a slit coating method, a dipping method and a doctor blade, a die, a coater, a spray, a brush, The method etc. which apply | coat using a roll etc. are mentioned. In addition, you may control the thickness of a film, surface smoothness, etc. by repetition of application | coating. Among these, the slit coat method is preferable.
 前記塗膜の厚さは、所望の用途に応じて適宜選択され、特に限定されないが、例えば1~500μmであり、好ましくは1~450μmであり、より好ましくは2~250μmであり、さらに好ましくは2~150μmであり、特に好ましくは5~125μmである。 The thickness of the coating film is appropriately selected depending on the desired application and is not particularly limited. For example, it is 1 to 500 μm, preferably 1 to 450 μm, more preferably 2 to 250 μm, and still more preferably. The thickness is 2 to 150 μm, particularly preferably 5 to 125 μm.
 前記基板としては、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリブチレンテレフタレート(PBT)フィルム、ナイロン6フィルム、ナイロン6,6フィルム、ポリプロピレンフィルム、ポリテトラフルオロエチレン製ベルト、シリコンウエハ、ガラスウエハ、ガラス基板(無アルカリガラス基板を含む)、Cu基板およびSUS板などが挙げられる。特に、本発明の樹脂組成物は、これらの基板との密着性および剥離性に優れるため、シリコンウエハ、ガラスウエハ、ガラス基板、Cu基板およびSUS板への薄膜形成が可能となる。 The substrate includes polyethylene terephthalate (PET) film, polyethylene naphthalate (PEN) film, polybutylene terephthalate (PBT) film, nylon 6 film, nylon 6,6 film, polypropylene film, polytetrafluoroethylene belt, silicon wafer , Glass wafers, glass substrates (including non-alkali glass substrates), Cu substrates and SUS plates. In particular, since the resin composition of the present invention is excellent in adhesion and peelability to these substrates, it is possible to form a thin film on a silicon wafer, glass wafer, glass substrate, Cu substrate and SUS plate.
 また、塗膜から前記有機溶媒を蒸発させることにより前記有機溶媒を除去する工程は、具体的には塗膜を真空乾燥や加熱することにより行うことができる。 Further, the step of removing the organic solvent by evaporating the organic solvent from the coating film can be performed by vacuum drying or heating the coating film.
 前記加熱の条件は、有機溶媒が蒸発し、本発明のポリイミド前駆体がイミド化すればよく、基板やポリイミド前駆体に応じて適宜決めればよいが、例えば加熱温度が60℃~350℃であることが好ましい。また、加熱時間としては、10分~5時間であることが好ましい。 The heating condition may be that the organic solvent evaporates and the polyimide precursor of the present invention is imidized, and may be appropriately determined according to the substrate and the polyimide precursor. For example, the heating temperature is 60 ° C. to 350 ° C. It is preferable. The heating time is preferably 10 minutes to 5 hours.
 なお、加熱は二段階以上で行ってもよい。具体的には、例えば、60~250℃の温度で10分~2時間乾燥後、160℃~350℃、好ましくは200~350℃、より好ましくは230~270℃でさらに10分~2時間加熱するなどである。また、必要に応じて、減圧下にて乾燥を行ってもよい。 Note that heating may be performed in two or more stages. Specifically, for example, after drying for 10 minutes to 2 hours at a temperature of 60 to 250 ° C., heating is further performed at 160 to 350 ° C., preferably 200 to 350 ° C., more preferably 230 to 270 ° C. for further 10 minutes to 2 hours. And so on. Moreover, you may dry under reduced pressure as needed.
 加熱雰囲気は、特に制限されないが、大気下または不活性ガス雰囲気下等であることが好ましく、不活性ガス雰囲気下であることが特に好ましい。不活性ガスとしては、着色性の観点から窒素、アルゴン、ヘリウムなどが挙げられるが、窒素であることが好ましい。 The heating atmosphere is not particularly limited, but is preferably in the air or in an inert gas atmosphere, and particularly preferably in an inert gas atmosphere. Examples of the inert gas include nitrogen, argon, helium and the like from the viewpoint of colorability, and nitrogen is preferable.
 また、前記乾燥は、前記基板上に形成された塗膜を基板ごと乾燥させてもよいが、基板の性質に影響されない点から、ある程度乾燥させた後(例えば、前記二段階以上で加熱を行う場合には、一段階の加熱後)、前記基板上に形成された塗膜を基板から剥離し、その後乾燥させてもよい。 Moreover, although the said coating may dry the coating film formed on the said board | substrate with the board | substrate, after drying to some extent from the point which is not influenced by the property of a board | substrate (for example, heating in the said 2 steps or more) In some cases, after one stage of heating), the coating formed on the substrate may be peeled from the substrate and then dried.
 なお、前記塗膜から混合溶媒を蒸発させることにより除去する工程では、前記加熱を行う前に、真空乾燥を行うことが好ましい。該真空乾燥では、基板上に形成された塗膜に熱風などを吹き付けることなく塗膜から溶媒を容易に除去することができるため、平坦性に優れる膜を得ることができ、また、塗膜の表面から固定化されるので、平坦性に優れ、均一な膜質を有する膜を再現性よく形成することができる。 In the step of removing the mixed solvent from the coating film by evaporating, it is preferable to perform vacuum drying before the heating. In the vacuum drying, since the solvent can be easily removed from the coating film without blowing hot air or the like to the coating film formed on the substrate, a film having excellent flatness can be obtained. Since it is fixed from the surface, a film having excellent flatness and uniform film quality can be formed with good reproducibility.
 前記真空乾燥では、塗膜を入れた装置内の圧力(減圧度)が760mmHg以下、好ましくは100mmHg以下、より好ましくは50mmHg以下、特に好ましくは1mmHg以下になるまで、装置内の圧力を減少させることが望ましい。760mmHgを超えると、真空乾燥後の塗膜からさらに溶媒を除去させる際の蒸発速度が著しく遅くなり、生産性が悪化する場合がある。また、真空乾燥は、圧力が所定の値まで下がった時を0分とし、0~60分、好ましくは0~30分、より好ましくは0~20分間行うことが望ましい。0分未満では乾燥が十分でなく、塗膜の表面から固定化されないことがあり、均一な膜質の膜を得難い場合がある。一方、60分を越えると、膜の生産性が悪化する場合がある。 In the vacuum drying, the pressure in the apparatus is decreased until the pressure (decompression degree) in the apparatus containing the coating film is 760 mmHg or less, preferably 100 mmHg or less, more preferably 50 mmHg or less, and particularly preferably 1 mmHg or less. Is desirable. If it exceeds 760 mmHg, the evaporation rate when the solvent is further removed from the coating film after vacuum drying is remarkably slowed, and the productivity may be deteriorated. The vacuum drying is desirably performed for 0 to 60 minutes, preferably 0 to 30 minutes, more preferably 0 to 20 minutes, when the pressure drops to a predetermined value. If it is less than 0 minutes, drying may not be sufficient and may not be fixed from the surface of the coating film, and it may be difficult to obtain a film having a uniform film quality. On the other hand, if it exceeds 60 minutes, the productivity of the film may deteriorate.
 得られた膜は、基板から剥離して用いることができるし、あるいは剥離せずにそのまま用いることもできる。 The obtained film can be used after being peeled off from the substrate, or can be used as it is without being peeled off.
 前記膜の厚みは、所望の用途に応じて適宜選択されるが、好ましくは1~200μm、より好ましくは5~100μm、さらに好ましくは、10~50μmであり、特に好ましくは20~40μmである。 The thickness of the film is appropriately selected according to the desired application, but is preferably 1 to 200 μm, more preferably 5 to 100 μm, still more preferably 10 to 50 μm, and particularly preferably 20 to 40 μm.
 本発明の樹脂組成物から得られる膜の弾性率は5~20GPa、特に好ましくは5~10GPaである。膜の弾性率が5GPa未満だとフィルムは伸びやすくなるが、残留応力が高くなり、反りが発生する場合があり、20GPaを超えると脆くなりハンドリング時に膜にクラックが発生する問題が起きることがある。 The elastic modulus of the film obtained from the resin composition of the present invention is 5 to 20 GPa, particularly preferably 5 to 10 GPa. If the elastic modulus of the film is less than 5 GPa, the film tends to be stretched, but the residual stress becomes high and warping may occur. If it exceeds 20 GPa, the film becomes brittle and may cause a problem of cracking in the film during handling. .
 前記膜の伸びは所望の用途に応じて適宜選択されるが、2%以上、好ましくは4%以上、特に好ましくは10%以上である。膜の伸びが2%未満だとハンドリング時に膜にクラックが発生する問題が起きることがある。 The elongation of the film is appropriately selected according to the desired application, but is 2% or more, preferably 4% or more, particularly preferably 10% or more. If the elongation of the film is less than 2%, there may be a problem that the film is cracked during handling.
 前記膜のガラス転移温度は250℃以上、好ましくは350℃以上、特に好ましくは450℃以上である。ガラス転移温度が250℃未満だと、半田リフロー工程や、デバイス作成時には250℃以上に加熱されるため、このような用途に前記塗膜を用いる場合には、該膜が変形してしまうことがある。 The glass transition temperature of the film is 250 ° C. or higher, preferably 350 ° C. or higher, particularly preferably 450 ° C. or higher. If the glass transition temperature is less than 250 ° C., it is heated to 250 ° C. or more at the time of solder reflow process or device creation. Therefore, when the coating film is used for such applications, the film may be deformed. is there.
 前記膜の好適な用途しては、フレキシブルプリント基板、フレキシブルディスプレイ基板等のフレキシブル基板、半導体素子、薄膜トランジスタ型液晶表示素子や磁気ヘッド素子、集積回路素子、固体撮像素子、実装基板などの電子部品に用いられる絶縁膜、および各種コンデンサー用の膜等が挙げられる。すなわち、これらの電子部品には、一般に層状に配置される配線の間を絶縁するために層間絶縁膜や平坦化絶縁膜、表面保護用絶縁膜(オーバーコート膜、パッシベーション膜等)が設けられており、これらの絶縁膜として好適に用いることができる。 Suitable applications of the film include flexible substrates such as flexible printed circuit boards and flexible display substrates, semiconductor elements, thin film transistor type liquid crystal display elements, magnetic head elements, integrated circuit elements, solid-state imaging elements, mounting substrates, and other electronic components. Examples thereof include an insulating film used and films for various capacitors. That is, these electronic components are generally provided with an interlayer insulating film, a planarizing insulating film, and a surface protecting insulating film (overcoat film, passivation film, etc.) in order to insulate between wirings arranged in layers. Therefore, it can be suitably used as these insulating films.
 また、前記膜は、導光板、偏光板、ディスプレイ用フィルム、光ディスク用フィルム、透明導電性フィルム、導波路板などのフィルムとして好適に使用できる。 The film can be suitably used as a light guide plate, a polarizing plate, a display film, an optical disc film, a transparent conductive film, a waveguide plate, or the like.
 特に、前記膜は、ガラス基板との密着性および剥離性に優れるため、該膜と基板との間に粘着層等を設ける必要がなく、フレキシブル基板を作成する際の工程数を低減化できる可能性がある。 In particular, the film is excellent in adhesion and peelability to the glass substrate, so there is no need to provide an adhesive layer or the like between the film and the substrate, and the number of steps when creating a flexible substrate can be reduced. There is sex.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
 (1)ガラス転移温度(Tg)
 下記実施例1~13、または、比較例1および2で得られたフィルムを用いてポリイミドのガラス転移温度を、Rigaku社製8230型DSC測定装置を用いて、昇温速度を20℃/minとして測定した。
(1) Glass transition temperature (Tg)
Using the films obtained in Examples 1 to 13 or Comparative Examples 1 and 2 below, the glass transition temperature of polyimide was set to 20 ° C./min using a Rigaku 8230 DSC measuring apparatus. It was measured.
 (2)シリコーン化合物濃度
 下記実施例1~13、または比較例1および2で得られたポリアミック酸のシリコーン化合物(構造単位(2)を含む化合物)濃度は、下記式により求めた。
 シリコーン化合物濃度[単位:%]=(シリコーン化合物の重量)/{((A)全アシル化合物の重量)+((B)全イミノ形成化合物の重量)}×100
 シリコーン化合物の重量=化合物(A-2)の重量+化合物(B-2)の重量
(2) Silicone Compound Concentration The concentration of the silicone compound (compound containing the structural unit (2)) of the polyamic acid obtained in the following Examples 1 to 13 or Comparative Examples 1 and 2 was determined by the following formula.
Silicone compound concentration [unit:%] = (weight of silicone compound) / {(weight of (A) total acyl compound) + ((B) weight of total imino forming compound)} × 100
Weight of silicone compound = weight of compound (A-2) + weight of compound (B-2)
 (3)イミド基濃度
 イミド化率が100モル%であると仮定すると、下記実施例1~13、または、比較例1および2で得られたポリイミド中の繰り返し単位の分子量は、(アシル化合物の分子量)+(ジアミンの分子量)-2×(水の分子量)で求められる。この繰り返し単位1つあたり、2つのイミド基を含むため、下記実施例1~13、または、比較例1および2で得られた重合体のイミド基濃度(イミド化率が100モル%であると仮定した場合の理論値)は、下記式により求めた。
[イミド基濃度](単位:mmol/g)=2/{(アシル化合物の分子量)+(ジアミンの分子量)-2×(水の分子量)}×1000
(3) Imide group concentration Assuming that the imidization rate is 100 mol%, the molecular weight of the repeating unit in the polyimides obtained in Examples 1 to 13 or Comparative Examples 1 and 2 below is (acyl compound Molecular weight) + (molecular weight of diamine) −2 × (molecular weight of water) Since this repeating unit contains two imide groups, the imide group concentration of the polymers obtained in the following Examples 1 to 13 or Comparative Examples 1 and 2 (the imidization ratio is 100 mol%) (Theoretical value when assumed) was obtained by the following equation.
[Imide group concentration] (unit: mmol / g) = 2 / {(molecular weight of acyl compound) + (molecular weight of diamine) −2 × (molecular weight of water)} × 1000
 (4)密着性
 下記実施例1~13、または、比較例1および2におけるイミド化工程(250℃乾燥)終了後に、室温まで冷却したポリイミド系膜付支持体を300℃まで30分かけて昇温し、その後、30分で室温まで冷却する工程を1サイクルとして、このサイクルを10回繰り返した後、支持体からの剥離がないものを[◎]、このサイクルを5回繰り返した後、支持体からの剥離がないものを[○]、剥離が観察されたものを[×]とした。
(4) Adhesion After completion of the imidization step (drying at 250 ° C.) in the following Examples 1 to 13 or Comparative Examples 1 and 2, the polyimide film-supported substrate cooled to room temperature was elevated to 300 ° C. over 30 minutes. The process of heating and then cooling to room temperature in 30 minutes was defined as one cycle, and after repeating this cycle 10 times, the case where there was no peeling from the support [◎], and after repeating this cycle 5 times, the support The case where there was no peeling from the body was shown as [O], and the case where peeling was observed was taken as [x].
 (5)剥離性
 下記実施例1~13、または、比較例1および2におけるイミド化工程(250℃乾燥)終了後に、支持体からポリイミド系膜を全面剥離可能なものを[◎]、全面剥離可能で一部剥離痕が残るものを[○]、一部剥離不可を[△]、全面剥離不可を[×]とした。
(5) Peelability After the imidization step (drying at 250 ° C.) in the following Examples 1 to 13 or Comparative Examples 1 and 2, a film that can peel the polyimide film from the support [◎] is peeled off. The case where possible peeling marks were left was indicated as [◯], the case where partial peeling was not possible was [Δ], and the case where whole surface peeling was not possible was indicated as [×].
 (6)フィルム反り
 下記実施例1~13、または、比較例1および2で得られた、支持体から剥離したポリイミド系膜を40×40mmに切り出し、反り(水平な基板上に得られたポリイミド系膜を置いて、該膜の四角における膜と基板との離間距離を測定し、それらの平均値)が1.0mm未満の場合を[◎]、反りが1.0mm以上2.0mm未満の場合を[○]、反りが2.0mm以上3.0mm未満の場合を[△]、反りが3.0mm以上の場合を[×]とした。
(6) Film warpage The polyimide film peeled off from the support obtained in Examples 1 to 13 or Comparative Examples 1 and 2 below was cut into 40 × 40 mm and warped (polyimide obtained on a horizontal substrate). A system film is placed, and the distance between the film and the substrate in the square of the film is measured, and the average value thereof is less than 1.0 mm [◎], the warpage is 1.0 mm or more and less than 2.0 mm. The case was [◯], the case where the warp was 2.0 mm or more and less than 3.0 mm was [Δ], and the case where the warp was 3.0 mm or more was [x].
 (7)重量平均分子量
 下記実施例1~13、または、比較例1および2で得られたポリアミック酸の重量平均分子量は、TOSOH製HLC-8020型GPC装置を使用して測定した。溶媒には、臭化リチウム及び燐酸を添加したN-メチル-2-ピロリドン(NMP)を用い、測定温度40℃にて、ポリスチレン換算の分子量を求めた。
(7) Weight average molecular weight The weight average molecular weight of the polyamic acids obtained in the following Examples 1 to 13 or Comparative Examples 1 and 2 was measured using an HLC-8020 GPC apparatus manufactured by TOSOH. As the solvent, N-methyl-2-pyrrolidone (NMP) to which lithium bromide and phosphoric acid were added was used, and the molecular weight in terms of polystyrene was determined at a measurement temperature of 40 ° C.
 [実施例1]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル(以下「mTB」ともいう。)6.07g(28.6mmol)と両末端アミノ変性メチルフェニルシリコーン(X22-1660B-3)2.57g(0.6mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド(以下「DMAc」ともいう。)58mlおよびテトラヒドロフラン(以下「THF」ともいう。)20mlを加え均一になるまで攪拌した。得られた溶液に(A)成分としてピロメリット酸二無水物(以下「PMDA」ともいう。)6.36g(29.2mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。得られた組成物の一部を用いて、該組成物からポリアミック酸を単離した。単離したポリアミック酸の重量平均分子量、シリコーン化合物濃度、イミド基濃度(イミド化率が100モル%であると仮定した場合の理論値)を評価した。
[Example 1]
2,2′-dimethyl-4,4′-diaminobiphenyl (hereinafter also referred to as “mTB”) 6 as a component (B) in a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube 6 0.07 g (28.6 mmol) and 2.57 g (0.6 mmol) of both terminal amino-modified methylphenyl silicone (X22-1660B-3) were added. Then, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide (hereinafter also referred to as “DMAc”) and 20 ml of tetrahydrofuran (hereinafter also referred to as “THF”) were added and stirred until uniform. 6.36 g (29.2 mmol) of pyromellitic dianhydride (hereinafter also referred to as “PMDA”) as component (A) was added to the resulting solution at room temperature, and stirring was continued for 24 hours at the same temperature. A product (polyamic acid solution) was obtained. A polyamic acid was isolated from the composition using a part of the obtained composition. The isolated polyamic acid was evaluated for weight average molecular weight, silicone compound concentration, and imide group concentration (theoretical value when the imidization rate was assumed to be 100 mol%).
 次いで、得られたポリアミック酸溶液を、スピンコーター(300rpmで5秒回転させた後、1100rpmで10秒間回転)にて無アルカリガラス支持体上に塗布し、70℃で30分、ついで120℃で30分乾燥することで塗膜を得た。イミド化工程として得られた塗膜をさらに250℃で2時間乾燥した後、無アルカリガラス支持体から剥離し、膜厚30μm(0.03mm)のポリイミド系膜を得た。
 また、上記ポリイミド系膜について、支持体に対する密着性、剥離性、ポリイミド系膜のソリを評価した。
 結果を表1に示す。
Next, the obtained polyamic acid solution was applied on a non-alkali glass support with a spin coater (rotated at 300 rpm for 5 seconds and then rotated at 1100 rpm for 10 seconds), then at 70 ° C. for 30 minutes, and then at 120 ° C. A coating film was obtained by drying for 30 minutes. The coating film obtained as the imidization step was further dried at 250 ° C. for 2 hours, and then peeled from the alkali-free glass support to obtain a polyimide film having a film thickness of 30 μm (0.03 mm).
Moreover, about the said polyimide-type film | membrane, the adhesiveness with respect to a support body, peelability, and the curvature of the polyimide-type film | membrane were evaluated.
The results are shown in Table 1.
 X-22-1660B-3;信越化学工業(株)製、両末端アミノ変性側鎖フェニル・メチル型シリコーン(1H-NMRによるメチル基とフェニル基のモル組成比は75:25(前記式(9)中の全てのR5のうち、メチル基とフェニル基のモル組成比が75:25)、数平均分子量4400、重合度m=41、カタログ:信越化学工業株式会社、シリコーン事業部総括部 シリコーンニュース122号 平成22年7月参照) X-22-1660B-3; manufactured by Shin-Etsu Chemical Co., Ltd., both terminal amino-modified side-chain phenyl-methyl silicone (the molar composition ratio of methyl group to phenyl group by 1 H-NMR is 75:25 (the above formula ( 9) Among all R 5 , the molar composition ratio of methyl group to phenyl group is 75:25), number average molecular weight 4400, polymerization degree m = 41, catalog: Shin-Etsu Chemical Co., Ltd., Silicone Division (See Silicone News No. 122, July 2010)
 [実施例2]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル6.07g(28.6mmol)と両末端アミノ変性メチルフェニルシリコーン(X22-1660B-3)2.57g(0.6mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A)成分としてピロメリット酸二無水物6.36g(29.2mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
[Example 2]
In a 300 mL four-necked flask equipped with a thermometer, stirrer, nitrogen inlet tube, and condenser tube, both 2,2′-dimethyl-4,4′-diaminobiphenyl (6.07 g, 28.6 mmol) as component (B) 2.57 g (0.6 mmol) of terminal amino-modified methylphenyl silicone (X22-1660B-3) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform. To the resulting solution, 6.36 g (29.2 mmol) of pyromellitic dianhydride as component (A) was added at room temperature, and stirring was continued at that temperature for 24 hours to obtain a composition (polyamic acid solution). .
 得られたポリアミック酸溶液を、膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。 The polyimide film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a thickness of 0.03 mm. Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
 [実施例3]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル6.68g(31.4mmol)と両末端アミノ変性メチルフェニルシリコーン(X22-1660B-3)1.40g(0.3mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlとテトラヒドロフラン20mlを加え均一になるまで攪拌した。得られた溶液に(A)成分としてピロメリット酸二無水物6.93g(31.8mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
[Example 3]
In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introduction tube, and a cooling tube, both 6.68 g (31.4 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl as component (B) were added. 1.40 g (0.3 mmol) of terminal amino-modified methylphenyl silicone (X22-1660B-3) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide and 20 ml of tetrahydrofuran were added and stirred until uniform. To the resulting solution, 6.93 g (31.8 mmol) of pyromellitic dianhydride as component (A) was added at room temperature, and stirring was continued at that temperature for 24 hours to obtain a composition (polyamic acid solution). .
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。 A polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm. Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
 [実施例4]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル6.04g(28.4mmol)と両末端アミノ変性メチルフェニルシリコーン(信越化学製,X22-9409,数平均分子量1,300)2.36g(1.8mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A)成分としてピロメリット酸二無水物6.60g(30.3mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
[Example 4]
In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube, 6.04 g (28.4 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl was added as component (B). 2.36 g (1.8 mmol) of terminal amino-modified methylphenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd., X22-9409, number average molecular weight 1,300) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform. To the obtained solution, 6.60 g (30.3 mmol) of pyromellitic dianhydride as component (A) was added at room temperature, and stirring was continued at that temperature for 24 hours to obtain a composition (polyamic acid solution). .
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。 A polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm. Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
 [実施例5]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル6.41g(30.2mmol)と両末端アミノ変性メチルフェニルシリコーン(信越化学製、X22-161B、数平均分子量3,000)1.85g(0.6mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A)成分としてピロメリット酸二無水物6.73g(30.9mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
[Example 5]
In a 300 mL four-necked flask equipped with a thermometer, stirrer, nitrogen inlet tube, and condenser tube, both 6.41 g (30.2 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl as component (B) were added. 1.85 g (0.6 mmol) of terminal amino-modified methyl phenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd., X22-161B, number average molecular weight 3,000) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform. To the resulting solution, 6.73 g (30.9 mmol) of pyromellitic dianhydride as component (A) was added at room temperature, and stirring was continued at that temperature for 24 hours to obtain a composition (polyamic acid solution). .
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。 A polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm. Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
 [実施例6]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル6.29g(29.6mmol)と両末端アミノ変性メチルフェニルシリコーン(信越化学製、X22-161A、数平均分子量1,600)1.98g(1.2mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A)成分としてピロメリット酸二無水物6.73g(30.9mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
[Example 6]
In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube, both 6.29 g (29.6 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl as component (B) were added. 1.98 g (1.2 mmol) of terminal amino-modified methyl phenyl silicone (manufactured by Shin-Etsu Chemical Co., Ltd., X22-161A, number average molecular weight 1,600) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform. To the resulting solution, 6.73 g (30.9 mmol) of pyromellitic dianhydride as component (A) was added at room temperature, and stirring was continued at that temperature for 24 hours to obtain a composition (polyamic acid solution). .
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。 A polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm. Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
 [実施例7]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル6.65g(31.3mmol)を添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A)成分としてピロメリット酸二無水物6.15g(28.2mmol)と両末端酸無水物変性メチルシリコーン(DMS-Z21)2.19g(3.1mmol)とを室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
[Example 7]
Add 6.65 g (31.3 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl as component (B) to a 300 mL four-necked flask equipped with a thermometer, stirrer, nitrogen inlet tube, and condenser. did. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform. To the resulting solution, 6.15 g (28.2 mmol) of pyromellitic dianhydride and 2.19 g (3.1 mmol) of acid anhydride-modified methylsilicone (DMS-Z21) at room temperature were used as component (A). In addition, stirring was continued at that temperature for 24 hours to obtain a composition (polyamic acid solution).
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。 A polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm. Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
 DMS-Z21;ゲレスト社製、両末端酸無水物変性メチルシリコーン(数平均分子量600~800、アミン価300~400、重合度m=4~7) DMS-Z21: manufactured by Gerest, both-end acid anhydride-modified methyl silicone (number average molecular weight 600 to 800, amine value 300 to 400, polymerization degree m = 4 to 7)
 [実施例8]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル6.59g(31.0mmol)と両末端アミノ変性メチルフェニルシリコーン(X22-1660B-3)1.38g(0.3mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A)成分として1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(以下「PMDAH」ともいう。)7.03g(31.4mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
[Example 8]
In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube, both 6.59 g (31.0 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl as component (B) were added. 1.38 g (0.3 mmol) of terminal amino-modified methylphenyl silicone (X22-1660B-3) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform. To the resulting solution, 7.03 g (31.4 mmol) of 1,2,4,5-cyclohexanetetracarboxylic dianhydride (hereinafter also referred to as “PMDAH”) as component (A) was added at room temperature, and the temperature was maintained. Then, stirring was continued for 24 hours to obtain a composition (polyamic acid solution).
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。 A polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm. Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
 [実施例9]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B)成分として1,4-ジアミノシクロヘキサン(以下「CHDA」ともいう。)2.87g(25.1mmol)と両末端アミノ変性メチルフェニルシリコーン(X22-1660B-3)3.42g(0.8mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A)成分としてジフェニル-3,3’,4,4’-テトラカルボン酸二無水物(以下「s-BPDA」ともいう。)8.71g(25.9mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
[Example 9]
2.87 g (25.1 mmol) of 1,4-diaminocyclohexane (hereinafter also referred to as “CHDA”) as component (B) was added to a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube. 3.42 g (0.8 mmol) of both-end amino-modified methylphenyl silicone (X22-1660B-3) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform. To the resulting solution, 8.71 g (25.9 mmol) of diphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride (hereinafter also referred to as “s-BPDA”) as component (A) was added at room temperature. In addition, stirring was continued at that temperature for 24 hours to obtain a composition (polyamic acid solution).
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。 A polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm. Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
 [実施例10]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B)成分として1,4-ジアミノシクロヘキサン2.99g(26.2mmol)と両末端アミノ変性メチルフェニルシリコーン(X22-9409)2.56g(2.0mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A)成分としてジフェニル-3,3’,4,4’-テトラカルボン酸二無水物9.46g(28.1mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
[Example 10]
In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube, 2.99 g (26.2 mmol) of 1,4-diaminocyclohexane as component (B) and amino-modified methylphenyl silicone (X22) −9409) 2.56 g (2.0 mmol) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform. To the obtained solution, 9.46 g (28.1 mmol) of diphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride as component (A) was added at room temperature, and stirring was continued at that temperature for 24 hours. Thus, a composition (polyamic acid solution) was obtained.
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。 A polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm. Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
 [実施例11]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B)成分として4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル(以下「TFMB」ともいう。)7.85g(24.5mmol)と両末端アミノ変性メチルフェニルシリコーン(X22-9409)2.03g(1.6mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A)成分として1,2,3,4-シクロブタンテトラカルボン酸二無水物(以下「CBDA」ともいう。)5.12g(26.1mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
[Example 11]
4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl (hereinafter referred to as "TFMB") as a component (B) in a 300 mL four-necked flask equipped with a thermometer, stirrer, nitrogen inlet tube, and condenser tube 7.85 g (24.5 mmol) and 2.03 g (1.6 mmol) of both-terminal amino-modified methylphenyl silicone (X22-9409) were added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform. To the resulting solution, 5.12 g (26.1 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride (hereinafter also referred to as “CBDA”) as component (A) was added at room temperature, and the temperature was maintained. Then, stirring was continued for 24 hours to obtain a composition (polyamic acid solution).
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。 A polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm. Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
 [実施例12]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル6.34g(29.9mmol)と両末端アミノ変性メチルフェニルシリコーン(X22-1660B-3)2.68g(0.6mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A)成分として1,2,3,4-シクロブタンテトラカルボン酸二無水物5.98g(30.5mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
[Example 12]
In a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen inlet tube, and a condenser tube, both 6.34 g (29.9 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl as component (B) were added. 2.68 g (0.6 mmol) of terminal amino-modified methylphenyl silicone (X22-1660B-3) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform. To the resulting solution, 5.98 g (30.5 mmol) of 1,2,3,4-cyclobutanetetracarboxylic dianhydride as component (A) was added at room temperature, and stirring was continued at that temperature for 24 hours. A product (polyamic acid solution) was obtained.
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。 A polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm. Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
 [実施例13]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル4.78g(22.3mmol)と両末端アミノ変性メチルフェニルシリコーン(X22-1660B-3)5.16g(1.2mmol)とを添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A)成分としてピロメリット酸二無水物5.11g(23.4mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、組成物(ポリアミック酸溶液)を得た。
[Example 13]
In a 300 mL four-necked flask equipped with a thermometer, stirrer, nitrogen introduction tube, and cooling tube, both 2.78 '(22.3 mmol) of 2,2'-dimethyl-4,4'-diaminobiphenyl as component (B) were added. 5.16 g (1.2 mmol) of terminal amino-modified methylphenyl silicone (X22-1660B-3) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform. To the obtained solution, 5.11 g (23.4 mmol) of pyromellitic dianhydride as component (A) was added at room temperature, and stirring was continued at that temperature for 24 hours to obtain a composition (polyamic acid solution). .
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。 A polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm. Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
[実施例14]
 上記実施例1において調製したポリアミック酸溶液(組成物)を、スピンコーターにて無アルカリガラス支持体上に、得られる塗膜の厚みが25μmになるように流延塗布し、70℃で30分、ついで120℃で30分乾燥して塗膜を得た。その後、環化(イミド化)工程として得られた塗膜をさらに250℃で2時間乾燥した。
[Example 14]
The polyamic acid solution (composition) prepared in Example 1 was cast and applied on a non-alkali glass support with a spin coater so that the thickness of the resulting coating film was 25 μm, and 30 minutes at 70 ° C. Then, it was dried at 120 ° C. for 30 minutes to obtain a coating film. Then, the coating film obtained as a cyclization (imidation) step was further dried at 250 ° C. for 2 hours.
 さらに、スパッタリング装置を用いて、得られた塗膜の表面にアルゴン雰囲気下230℃、5分間の成膜条件下で透明導電膜(素子)を形成した。なお、ターゲット材料としてはITOを用いた。得られた基板の比抵抗値は、2×10-4(Ω・cm)であった。透明導電膜が設けられたポリイミド系膜を無アルカリガラス支持体から剥離することで、フレキシブル基板を得た。なお、基板は、支持体から全面剥離可能であり、反りも観察されなかった。 Further, using a sputtering apparatus, a transparent conductive film (element) was formed on the surface of the obtained coating film under an argon atmosphere at 230 ° C. for 5 minutes. In addition, ITO was used as a target material. The specific resistance value of the obtained substrate was 2 × 10 −4 (Ω · cm). The flexible film | membrane was obtained by peeling the polyimide-type film | membrane with which the transparent conductive film was provided from the alkali free glass support body. In addition, the board | substrate was peelable from the support body, and the curvature was not observed.
 [比較例1]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B)成分として2,2’-ジメチル-4,4’-ジアミノビフェニル7.40g(34.9mmol)を添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A)成分としてピロメリット酸二無水物7.60g(34.9mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、ポリアミック酸溶液を得た。
[Comparative Example 1]
2.40 g (34.9 mmol) of 2,2′-dimethyl-4,4′-diaminobiphenyl was added as a component (B) to a 300 mL four-necked flask equipped with a thermometer, stirrer, nitrogen inlet tube, and cooling tube. did. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform. To the obtained solution, 7.60 g (34.9 mmol) of pyromellitic dianhydride as component (A) was added at room temperature, and stirring was continued at that temperature for 24 hours to obtain a polyamic acid solution.
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。 A polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm. Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
 [比較例2]
 温度計、攪拌機、窒素導入管、冷却管を取り付けた300mLの4つ口フラスコに(B)成分として2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(以下「BAPP」ともいう。)9.25g(22.5mmol)を添加した。次いで、フラスコ内を窒素置換した後、N,N-ジメチルアセトアミド58mlを加え均一になるまで攪拌した。得られた溶液に(A)成分としてピロメリット酸二無水物2.95g(13.5mmol)および4,4’-オキシジフタル酸二無水物(以下「ODPA」ともいう。)2.80g(0.9mmol)を室温で加え、そのままの温度で24時間攪拌を続けて、ポリアミック酸溶液を得た。
[Comparative Example 2]
A 2,2′-bis [4- (4-aminophenoxy) phenyl] propane (hereinafter referred to as “BAPP”) as a component (B) was added to a 300 mL four-necked flask equipped with a thermometer, a stirrer, a nitrogen introduction tube, and a cooling tube. 9.25 g (22.5 mmol) was added. Next, after the atmosphere in the flask was replaced with nitrogen, 58 ml of N, N-dimethylacetamide was added and stirred until uniform. As the component (A), 2.95 g (13.5 mmol) of pyromellitic dianhydride and 2.80 g (hereinafter also referred to as “ODPA”) of 4,4′-oxydiphthalic dianhydride (hereinafter referred to as “ODPA”) were added to the obtained solution. 9 mmol) was added at room temperature, and stirring was continued at that temperature for 24 hours to obtain a polyamic acid solution.
 得られたポリアミック酸溶液を膜厚0.03mmの膜(フィルム)を得るような任意の回転数および時間で塗布した以外は実施例1と同様に行い、ポリイミド系膜を得た。得られたポリイミド、ポリアミック酸、ポリイミド系膜の物性を表1に示す。 A polyimide-based film was obtained in the same manner as in Example 1 except that the obtained polyamic acid solution was applied at an arbitrary rotation speed and time so as to obtain a film (film) having a film thickness of 0.03 mm. Table 1 shows the physical properties of the obtained polyimide, polyamic acid, and polyimide film.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 (1)重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布(Mw/Mn)
 下記実施例15~20および比較例3で得られたポリイミド前駆体の重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布(Mw/Mn)は、TOSOH製HLC-8220型GPC装置(ガードカラム:TSK guard colomn ALPHA カラム:TSKgelALPHA―M、展開溶剤:NMP)を用いて測定した。
(1) Weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution (Mw / Mn)
The weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw / Mn) of the polyimide precursors obtained in Examples 15 to 20 and Comparative Example 3 below were measured using an HLC-8220 GPC apparatus manufactured by TOSOH ( Guard column: TSK guard column ALPHA column: TSKgel ALPHA-M, developing solvent: NMP).
 (2)-15℃での貯蔵安定性
 下記実施例15~20および比較例3で得られたワニス(樹脂組成物)を-15℃で48時間保存後、透明で沈殿物のないものを○、不透明で沈殿物が析出したものを×として目視により評価した。
(2) Storage stability at −15 ° C. After storing the varnishes (resin compositions) obtained in Examples 15 to 20 and Comparative Example 3 below at −15 ° C. for 48 hours, Evaluation was made visually by setting x to be opaque and depositing a precipitate.
 (3)ワニス粘度
 下記実施例15~20および比較例3で得られたワニス1.5gを用い、25℃でのワニス粘度を測定した。具体的には東機産業製 粘度計 MODEL RE100を用い測定した。
(3) Varnish viscosity Using 1.5 g of the varnish obtained in the following Examples 15 to 20 and Comparative Example 3, the varnish viscosity at 25 ° C was measured. Specifically, it was measured using a viscometer MODEL RE100 manufactured by Toki Sangyo.
 (4)真空乾燥後の塗膜の固定化
 下記実施例15~20および比較例3で得られた真空乾燥後のガラス基板付塗膜の中央部およびガラス基板の中央部に標線を引き、塗膜付基板を垂直に立て10分間放置した。塗膜に引かれた標線とガラス基板に引かれた標線との高さが変化しなかった場合は固定化、変化した場合は流動化と判定した。
(4) Immobilization of coating film after vacuum drying Draw a marked line at the center of the coating film with glass substrate and the center of the glass substrate after vacuum drying obtained in Examples 15 to 20 and Comparative Example 3 below. The substrate with the coating film was set up vertically and left for 10 minutes. When the height of the marked line drawn on the coating film and the marked line drawn on the glass substrate did not change, it was determined to be fixed, and when changed, it was determined to be fluidized.
 (5)真空乾燥後の塗膜中のポリマー(ポリイミド前駆体)濃度
 下記実施例15~20および比較例3で得られた真空乾燥後の塗膜中のポリマー(ポリイミド前駆体)濃度を下記の式に従い、算出した。
 塗布したワニス重量=ワニス塗布後のガラス基板の重量-ワニス塗布前のガラス基板の重量
 仕込み時ポリマー濃度(%)=仕込みモノマー全量/(仕込みモノマー量+仕込み溶媒全量)×100
 塗布したポリマー重量=塗布したワニス重量×仕込み時ポリマー濃度(%)
 真空乾燥後塗膜重量=真空乾燥後の塗膜付ガラス基板の重量-ワニス塗布前のガラス基板の重量
 真空乾燥後のポリマー濃度(%)=(塗布したポリマー重量/真空乾燥後塗膜重量)×100
(5) Polymer (polyimide precursor) concentration in the coating film after vacuum drying The polymer (polyimide precursor) concentration in the coating film after vacuum drying obtained in Examples 15 to 20 and Comparative Example 3 below is It was calculated according to the formula.
Weight of applied varnish = weight of glass substrate after varnish application-weight of glass substrate before varnish application Polymer concentration at the time of charging (%) = total amount of charged monomer / (total amount of charged monomer + total amount of charged solvent) x 100
Applied polymer weight = Applied varnish weight x Polymer concentration at the time of charging (%)
Weight of coating film after vacuum drying = Weight of glass substrate with coating after vacuum drying-Weight of glass substrate before coating of varnish Polymer concentration (%) after vacuum drying = (Weight of polymer applied / weight of coating film after vacuum drying) × 100
 (6)真空乾燥後の塗膜中の溶媒組成比
 下記実施例15~20および比較例3で得られた真空乾燥後の塗膜中の溶媒組成比を上記の式および下記の式に従い、算出した。
 塗布した溶媒重量=塗布したワニス重量-塗布したポリマー重量
 塗布した非アミド系溶媒の重量=塗布した溶媒重量×非アミド系溶媒の仕込み量(混合溶媒中の非アミド系溶媒の割合)(%)
 真空乾燥後溶媒重量=真空乾燥後塗膜重量-塗布したポリマー重量
 真空乾燥で蒸発した溶媒重量=塗布した溶媒重量-真空乾燥後溶媒重量
 真空乾燥後の非アミド系溶媒重量=塗布した非アミド系溶媒の重量-真空乾燥で蒸発した溶媒重量
 非アミド系溶媒の組成比(%)=(真空乾燥後の非アミド系溶媒重量/真空乾燥後溶媒重量×100)
 アミド系溶媒の組成比(%)=100-非アミド系溶媒の組成比
 (なお、真空乾燥で蒸発した溶媒は混合溶媒中の最も沸点な低い溶媒(非アミド系溶媒)と定義した。)
(6) Solvent composition ratio in the coating film after vacuum drying The solvent composition ratio in the coating film after vacuum drying obtained in the following Examples 15 to 20 and Comparative Example 3 was calculated according to the above formula and the following formula. did.
Coating solvent weight = Coating varnish weight-Coating polymer weight Coating non-amide solvent weight = Coating solvent weight x amount of non-amide solvent charge (ratio of non-amide solvent in mixed solvent) (%)
Solvent weight after vacuum drying = coating weight after vacuum drying-weight of polymer applied Solvent weight evaporated by vacuum drying = solvent weight applied-solvent weight after vacuum drying Non-amide solvent weight after vacuum drying = non-amide coating applied Weight of solvent−solvent weight evaporated by vacuum drying Composition ratio (%) of non-amide solvent = (weight of non-amide solvent after vacuum drying / solvent weight after vacuum drying × 100)
Composition ratio (%) of amide solvent = 100−composition ratio of non-amide solvent (The solvent evaporated by vacuum drying was defined as the solvent having the lowest boiling point in the mixed solvent (non-amide solvent).)
 (7)1次乾燥後のタック性
 下記実施例15~20および比較例3で得られた1次乾燥後の塗膜を金属製スパチュラーで強くこすり、塗膜が移動しないものをタック性無し、塗膜が移動したものをタック性有とし、評価した。
(7) Tackiness after primary drying The coating after primary drying obtained in the following Examples 15 to 20 and Comparative Example 3 was strongly rubbed with a metal spatula, and no tackiness was observed when the coating did not move. The coating film moved was evaluated as having tackiness.
 (8)光学特性
 下記実施例15~20および比較例3で得られた1次乾燥後および2次乾燥後のガラス基板上に形成された塗膜それぞれについて、Haze(ヘイズ)をJIS K7105透明度試験法に準じて測定した。具体的には、スガ試験機社製SC-3H型ヘイズメーターを用い測定した。
(8) Optical properties For each of the coating films formed on the glass substrates after the primary drying and the secondary drying obtained in Examples 15 to 20 and Comparative Example 3 below, the haze was measured according to JIS K7105 transparency test. Measured according to the law. Specifically, it was measured using an SC-3H haze meter manufactured by Suga Test Instruments Co., Ltd.
 (9)ガラス転移温度(Tg)
 下記実施例15~20および比較例3で得られたフィルムをガラス基板から剥離し、剥離後のフィルムをRigaku製 Thermo Plus DSC8230を用い、窒素下で、昇温速度を20℃/minとし、40~450℃の範囲で測定した。
(9) Glass transition temperature (Tg)
The films obtained in the following Examples 15 to 20 and Comparative Example 3 were peeled from the glass substrate, and the peeled film was subjected to Rigaku's Thermo Plus DSC 8230 under a nitrogen temperature rising rate of 20 ° C./min. It was measured in the range of ˜450 ° C.
 (10)線膨張係数
 下記実施例15~20および比較例3で得られたフィルムをガラス基板から剥離し、剥離後のフィルムをSeiko Instrument SSC/5200を用い、昇温速度を6℃/minとし、25~350℃の範囲で測定した。測定結果から100~200℃の線膨張係数を算出した。
(10) Linear expansion coefficient The films obtained in the following Examples 15 to 20 and Comparative Example 3 were peeled from the glass substrate, the peeled film was used with Seiko Instrument SSC / 5200, and the rate of temperature increase was 6 ° C / min. , Measured in the range of 25-350 ° C. A linear expansion coefficient of 100 to 200 ° C. was calculated from the measurement results.
 (11)塗膜の残留応力
 下記実施例16~21および比較例3で得られたワニスを、FLX-2320(KLA社製)を用いて、シリコンウエハ基板(残留応力測定用、秩父電子株式会社製、厚み=300μm、直径=4インチ)上に2次乾燥後の膜厚が30μmになるように成膜し、反りをレーザーで測定し、塗膜のストレスを下記式より算出した。
(11) Residual stress of coating film Using varnishes obtained in Examples 16 to 21 and Comparative Example 3 below, a silicon wafer substrate (for residual stress measurement, Chichibu Electronics Co., Ltd.) using FLX-2320 (manufactured by KLA) The film thickness after the secondary drying was 30 μm, the warpage was measured with a laser, and the stress of the coating film was calculated from the following formula.
 得られる膜の反りが抑制されることから、塗膜の残留応力は、10MPa以下であることが好ましく、5MPa以下であることがより好ましい。 Since the warp of the obtained film is suppressed, the residual stress of the coating film is preferably 10 MPa or less, and more preferably 5 MPa or less.
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000046
 (12)イミド化率
 下記実施例15~20および比較例3で得られた2次乾燥後の膜中のポリイミドのイミド化率をFT-IR(サーモフィッシャーサイエンティック製、Thermo NICOLET6700)を使って以下の方法で定量した。
(12) Imidization rate The imidation rate of the polyimide in the film after secondary drying obtained in Examples 15 to 20 and Comparative Example 3 below was measured using FT-IR (Thermo NICENT 6700, manufactured by Thermo Fisher Scientific). Quantification was performed by the following method.
 ポリイミド前駆体由来のNH変角振動のピーク(1520cm-1)面積と芳香族非対称三置換体の=C-H面外変角振動のピーク(990cm-1)面積をGaussian分布にてピーク分離を行い定量した。1次乾燥前のポリイミド前駆体のピーク面積比(990cm-1のピーク面積/1520cm-1のピーク面積)および2次乾燥後のこれらのピーク面積比を測定し、下記計算式を使ってイミド化率を算出した。
 イミド化率(%)=(1-2次乾燥後のピーク面積比/1次乾燥前のピーク面積比)×100
The peak separation (1520 cm -1 ) area of the NH bending vibration derived from the polyimide precursor and the peak (990 cm -1 ) area of the = CH out-of-plane bending vibration of the aromatic asymmetric trisubstituted product are separated by Gaussian distribution. And quantified. The first drying before the polyimide precursor peak area ratio (peak area peak area / 1520 cm -1 of 990 cm -1) and their peak area ratio after secondary drying were measured, imidization using the following equation The rate was calculated.
Imidization ratio (%) = (peak area ratio after primary / secondary drying / peak area ratio before primary drying) × 100
 (13)フィルム強度
 JISK6251の7号ダンベルを用い、下記実施例15~20および比較例3で得られた2次乾燥後のガラス基板から剥離した30μmフィルムを23℃下、50mm/minの速度で引張り試験を実施し、引張り伸び、引張り強度、弾性率を測定した。
(13) Film Strength Using a JISK6251 No. 7 dumbbell, a 30 μm film peeled off from the glass substrate after secondary drying obtained in Examples 15 to 20 and Comparative Example 3 below at 23 ° C. at a speed of 50 mm / min. A tensile test was performed to measure tensile elongation, tensile strength, and elastic modulus.
 (14)ガラス基板との剥離性
 下記実施例15~20および比較例3で得られた2次乾燥後のガラス基板付30μm塗膜を幅10mm×長さ50mmにカッターで切削を行い、長さ20mmまで引き剥がした後、180度の角度で速度50mm/minでピール強度を測定した。
(14) Peelability from glass substrate The 30 μm coating film with glass substrate after secondary drying obtained in Examples 15 to 20 and Comparative Example 3 below was cut with a cutter into a width of 10 mm and a length of 50 mm. After peeling off to 20 mm, peel strength was measured at an angle of 180 degrees and a speed of 50 mm / min.
 (15)フィルムのソリ
 下記実施例15~20および比較例3で得られた2次乾燥後のガラス基板付30μm塗膜を60mm×60mmの大きさにカッターで切削後、4つの端部の浮き上がりを測定し、平均値を算出した。
(15) Warping of the film After cutting the 30 μm coating film with glass substrate after secondary drying obtained in Examples 15 to 20 and Comparative Example 3 to a size of 60 mm × 60 mm with a cutter, the four edges lifted. Was measured and the average value was calculated.
 [実施例15]
 温度計、窒素導入管および攪拌羽根付三口フラスコに、25℃にて窒素気流下、m-トリジン(mTB)45.23099g(0.21306mol)、両末端アミノ変性側鎖フェニル・メチル型シリコーンX-22-1660B-3[9.4694g(0.0021521mol)]、ワニス中のポリイミド前駆体の濃度が14%となるように脱水N-メチル-2-ピロリドン(NMP)307gおよび脱水シクロヘキサノン(CHN)307gを加え、mTBおよびX-22-1660B-3が完全に溶解するまで10分間攪拌した。ピロメリット酸二無水物(PMDA)22.6498g(0.10384mol)を加え30分攪拌した後、さらにPMDA22.6498g(0.10384mol)を加え60分攪拌することで反応を終了させ、次いで、ポリテトラフルオロエチレン製フィルター(ポアサイズ1μm)を用いて精密濾過行うことで、ワニスを作成した(PMDA/(mTB+X-22-1660B-3)=0.965当量)。ワニス特性を表2に示す。NMRを用いて測定した結果、得られたワニス中には、前記構造単位(1)を有するポリイミド前駆体が確認された。
[Example 15]
In a three-necked flask equipped with a thermometer, a nitrogen inlet tube and a stirring blade, under nitrogen flow at 25 ° C., 45.23099 g (0.21306 mol) of m-tolidine (mTB), both ends amino-modified side chain phenyl methyl type silicone X- 22-1660B-3 [9.4694 g (0.0021521 mol)], 307 g of dehydrated N-methyl-2-pyrrolidone (NMP) and 307 g of dehydrated cyclohexanone (CHN) so that the concentration of the polyimide precursor in the varnish was 14%. Was added and stirred for 10 minutes until mTB and X-22-1660B-3 were completely dissolved. Pyromellitic dianhydride (PMDA) 22.6498 g (0.10384 mol) was added and stirred for 30 minutes, then PMDA 22.6498 g (0.10384 mol) was further added and stirred for 60 minutes, and then the reaction was terminated. By performing microfiltration using a tetrafluoroethylene filter (pore size 1 μm), a varnish was prepared (PMDA / (mTB + X-22-1660B-3) = 0.965 equivalent). The varnish properties are shown in Table 2. As a result of measurement using NMR, a polyimide precursor having the structural unit (1) was confirmed in the obtained varnish.
 重力に対し垂直となるように設置したコントロールコーター台にガラス基板(横:300mm×縦:350mm×厚:0.7mm)を固定し、2次乾燥後に膜厚が30μmとなるようにギャップ間隔を405μmに設定し、ワニス12gを、ガラス基板中央部に横:200mm×縦:220mmの塗膜となるようキャストした。 A glass substrate (horizontal: 300 mm x vertical: 350 mm x thickness: 0.7 mm) is fixed to a control coater stand installed so as to be perpendicular to gravity, and the gap interval is set so that the film thickness becomes 30 μm after secondary drying. The thickness was set to 405 μm, and 12 g of varnish was cast on the center of the glass substrate so as to form a coating film of width: 200 mm × length: 220 mm.
 その後、真空乾燥機にて25℃で10分後に0.1mmHgになるように減圧にした後、常圧(760mmHg)に戻し真空乾燥を終了した。真空乾燥後の塗膜の物性を表2に示す。真空乾燥後の塗膜は透明であり、塗膜は固定化され、液ダレなどはしなかった。真空乾燥後のポリイミド前駆体の1520cm-1と990cm-1のピーク面積はそれぞれ5.09、6.89であった。 Thereafter, the pressure was reduced to 0.1 mmHg after 10 minutes at 25 ° C. in a vacuum dryer, and then the pressure was returned to normal pressure (760 mmHg) to complete the vacuum drying. Table 2 shows the physical properties of the coating film after vacuum drying. The coating film after vacuum drying was transparent, the coating film was fixed, and no dripping occurred. Peak area of 1520 cm -1 and 990 cm -1 of the polyimide precursor after vacuum drying were respectively 5.09,6.89.
 真空乾燥後、熱風乾燥機中で130℃、10分間の1次乾燥を行った。1次乾燥後の塗膜をサンプリングして物性評価を行った結果を表2に示す。次に、300℃で1時間2次乾燥を行った。評価結果を表2に示す。フィルムの反りは無く、Tgも450℃以上であり耐熱性に優れ、透明性、平滑性に優れ、線膨張係数の低い強靭なフィルムを得ることができた。また、得られた塗膜は、乾燥速度が速く、1次乾燥、2次乾燥中ではガラス基板との密着性に優れ、2次乾燥後に得られた膜は、ガラス基板からの剥離性に優れていた。 After vacuum drying, primary drying was performed at 130 ° C. for 10 minutes in a hot air dryer. Table 2 shows the results of sampling and physical properties evaluation of the coating after primary drying. Next, secondary drying was performed at 300 ° C. for 1 hour. The evaluation results are shown in Table 2. There was no warping of the film, and Tg was 450 ° C. or higher, which was excellent in heat resistance, transparency, smoothness, and a tough film having a low coefficient of linear expansion. In addition, the obtained coating film has a high drying speed and is excellent in adhesion to a glass substrate during primary drying and secondary drying, and the film obtained after secondary drying is excellent in peelability from the glass substrate. It was.
 [実施例16]
 実施例15において、mTB、X-22-1660B-3およびPMDAの使用量を表2に示すように変更した以外は実施例15と同様に行った。結果を表2に示す。
[Example 16]
The same operation as in Example 15 was carried out except that the amounts of mTB, X-22-1660B-3 and PMDA used were changed as shown in Table 2. The results are shown in Table 2.
 NMRを用いて測定した結果、得られたワニス中には、前記構造単位(1)を有するポリイミド前駆体が確認された。 As a result of measurement using NMR, a polyimide precursor having the structural unit (1) was confirmed in the obtained varnish.
 耐熱性、透明性、平滑性に優れ、ソリのない、強靭なフィルムを得ることができた。また、得られた塗膜は、乾燥速度が速く、1次乾燥、2次乾燥中ではガラス基板との密着性に優れ、2次乾燥後に得られた膜は、ガラス基板からの剥離性に優れていた。 A tough film with excellent heat resistance, transparency, and smoothness without warping could be obtained. In addition, the obtained coating film has a high drying speed and is excellent in adhesion to a glass substrate during primary drying and secondary drying, and the film obtained after secondary drying is excellent in peelability from the glass substrate. It was.
 [実施例17]
 実施例15において、mTB、X-22-1660B-3およびPMDAの使用量を表2に示すように変更した以外は実施例15と同様に行った。結果を表2に示す。
[Example 17]
The same operation as in Example 15 was carried out except that the amounts of mTB, X-22-1660B-3 and PMDA used were changed as shown in Table 2. The results are shown in Table 2.
 NMRを用いて測定した結果、得られたワニス中には、前記構造単位(1)を有するポリイミド前駆体が確認された。 As a result of measurement using NMR, a polyimide precursor having the structural unit (1) was confirmed in the obtained varnish.
 耐熱性、透明性、平滑性に優れ、ソリのない、強靭なフィルムを得ることができた。また、得られた塗膜は、乾燥速度が速く、1次乾燥、2次乾燥中ではガラス基板との密着性に優れ、2次乾燥後に得られた膜は、ガラス基板からの剥離性に優れていた。 A tough film with excellent heat resistance, transparency, and smoothness without warping could be obtained. In addition, the obtained coating film has a high drying speed and is excellent in adhesion to a glass substrate during primary drying and secondary drying, and the film obtained after secondary drying is excellent in peelability from the glass substrate. It was.
 [実施例18]
 実施例15において、mTB45.23099gの代わりにmTB32.56478gおよび4,4'-ジアミノジフェニルエーテル(ODA)7.8760gを用い、X-22-1660B-3およびPMDAの使用量を表2に示すように変更した以外は実施例15と同様に行った。結果を表2に示す。
[Example 18]
In Example 15, instead of mTB45.23099 g, 32.578 g of mTB and 7.8760 g of 4,4′-diaminodiphenyl ether (ODA) were used, and the amounts of X-22-1660B-3 and PMDA used were as shown in Table 2. The same operation as in Example 15 was performed except for the change. The results are shown in Table 2.
 NMRを用いて測定した結果、得られたワニス中には、前記構造単位(1)を有するポリイミド前駆体が確認された。 As a result of measurement using NMR, a polyimide precursor having the structural unit (1) was confirmed in the obtained varnish.
 フィルムの伸びが向上し、また耐熱性、透明性、平滑性に優れ、ソリのないフィルムを得ることができた。また、得られた塗膜は、乾燥速度が速く、1次乾燥、2次乾燥中ではガラス基板との密着性に優れ、2次乾燥後に得られた膜は、ガラス基板からの剥離性に優れていた。 The film was improved in elongation, and it was excellent in heat resistance, transparency and smoothness, and a warp-free film could be obtained. In addition, the obtained coating film has a high drying speed and is excellent in adhesion to a glass substrate during primary drying and secondary drying, and the film obtained after secondary drying is excellent in peelability from the glass substrate. It was.
 [実施例19]
 実施例15において、X-22-1660B-3(9.4694g)の代わりに信越化学製両末端アミノ変性側鎖メチル型シリコーンKF8010(前記式(9)中の全てのR5のうち、メチル基とフェニル基のモル組成比が100:0、数平均分子量(4400、m=58))2.8408gとX22-1660B-3(6.6286g)とを併用した以外は実施例15と同様に行った。結果を表2に示す。
[Example 19]
In Example 15, instead of X-22-1660B-3 (9.4694 g), both terminal amino-modified side chain methyl silicone KF8010 manufactured by Shin-Etsu Chemical Co., Ltd. (of all R 5 in the formula (9), methyl group) And phenyl group in a molar composition ratio of 100: 0, number average molecular weight (4400, m = 58)) 2.8408 g and X22-1660B-3 (6.6286 g) were used in the same manner as in Example 15. It was. The results are shown in Table 2.
 NMRを用いて測定した結果、得られたワニス中には、前記構造単位(1)を有するポリイミド前駆体が確認された。
 耐熱性、透明性、平滑性に優れ、ソリのない、線膨張係数の低い強靭なフィルムを得ることができた。また、得られた塗膜は、乾燥速度が速く、1次乾燥、2次乾燥中ではガラス基板との密着性に優れ、2次乾燥後に得られた膜は、ガラス基板からの剥離性に優れていた。
As a result of measurement using NMR, a polyimide precursor having the structural unit (1) was confirmed in the obtained varnish.
A tough film having excellent heat resistance, transparency and smoothness, having no warpage and having a low coefficient of linear expansion could be obtained. In addition, the obtained coating film has a high drying speed and is excellent in adhesion with a glass substrate during primary drying and secondary drying, and the film obtained after secondary drying is excellent in peelability from the glass substrate. It was.
 [実施例20]
 実施例18において、mTB、X-22-1660B-3、ODAおよびPMDAの使用量を表2に示すように変更した以外は実施例18と同様に行った。結果を表2に示す。
[Example 20]
The same operation as in Example 18 was carried out except that the amounts of mTB, X-22-1660B-3, ODA and PMDA used were changed as shown in Table 2. The results are shown in Table 2.
 NMRを用いて測定した結果、得られたワニス中には、前記構造単位(1)を有するポリイミド前駆体が確認された。 As a result of measurement using NMR, a polyimide precursor having the structural unit (1) was confirmed in the obtained varnish.
 2次乾燥後に残留応力は増加し、ガラス基板からフィルムを剥離後若干ソリが発生したが、耐熱性、透明性、平滑性に優れるフィルムを得ることができた。また、得られた塗膜は、乾燥速度が速く、1次乾燥、2次乾燥中ではガラス基板との密着性に優れ、2次乾燥後に得られた膜は、ガラス基板からの剥離性に優れていた。 Residual stress increased after secondary drying, and some warping occurred after peeling the film from the glass substrate, but a film excellent in heat resistance, transparency and smoothness could be obtained. In addition, the obtained coating film has a high drying speed and is excellent in adhesion to a glass substrate during primary drying and secondary drying, and the film obtained after secondary drying is excellent in peelability from the glass substrate. It was.
 [比較例3]
 実施例15において、X-22-1660B-3を用いず、また、mTBおよびPMDAの使用量を表2に示すように変更した以外は実施例15と同様に行った。結果を表2に示す。
[Comparative Example 3]
Example 15 was carried out in the same manner as Example 15 except that X-22-1660B-3 was not used and the amounts of mTB and PMDA used were changed as shown in Table 2. The results are shown in Table 2.
 比較例3で得られたワニスは乾燥速度が遅かった。また、2次乾燥後に残留応力は増加し、ガラス基板からフィルムを剥離後大きなソリが発生した。 The varnish obtained in Comparative Example 3 had a slow drying rate. Moreover, the residual stress increased after secondary drying, and a large warp occurred after the film was peeled from the glass substrate.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047

Claims (12)

  1.  下記式(2)で表わされる構造単位を含む下記式(1)で表わされる構造単位を有するポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは各々独立に水素原子または一価の有機基を示し、R1は各々独立に、下記式(3)で表わされる群より選ばれる基を示し、R2は各々独立に、下記式(4)で表わされる群より選ばれる基を示し、nは正の整数を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、複数あるR5は各々独立に炭素数1~20の一価の有機基を示し、mは3~200の整数を示す。)
    Figure JPOXMLDOC01-appb-C000003
    ((3)中、R3は各々独立にエーテル基、チオエーテル基、ケトン基、エステル基、スルフォニル基、アルキレン基、アミド基もしくはシロキサン基を含む基、水素原子、ハロゲン原子、アルキル基、ヒドロキシ基、ニトロ基、シアノ基またはスルホ基を示し、このアルキル基およびアルキレン基の水素原子はハロゲン原子で置換されても良く、Dは、エーテル基、チオエーテル基、ケトン基、エステル基、スルフォニル基、アルキレン基、アミド基またはシロキサン基を示し、a1は各々独立に1~3の整数を示し、a2は各々独立に1または2を示し、a3は各々独立に1~4の整数を示し、eは0~3の整数を示す。)
    Figure JPOXMLDOC01-appb-C000004
    ((4)中、R4は各々独立に水素原子またはアルキル基を示し、アルキル基の水素原子はハロゲン原子で置換されても良く、Dは、エーテル基、チオエーテル基、ケトン基、エステル基、スルフォニル基、アルキレン基、アミド基またはシロキサン基を示し、bは各々独立に1または2を示し、cは各々独立に1~3の整数を示し、fは0~3の整数を示す。)
    The polyimide precursor which has a structural unit represented by following formula (1) including the structural unit represented by following formula (2).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), each R independently represents a hydrogen atom or a monovalent organic group, each R 1 independently represents a group selected from the group represented by the following formula (3), and each R 2 represents Independently, a group selected from the group represented by the following formula (4) is shown, and n is a positive integer.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), a plurality of R 5 each independently represents a monovalent organic group having 1 to 20 carbon atoms, and m represents an integer of 3 to 200.)
    Figure JPOXMLDOC01-appb-C000003
    (In (3), each R 3 is independently an ether group, thioether group, ketone group, ester group, sulfonyl group, alkylene group, amide group or siloxane group-containing group, hydrogen atom, halogen atom, alkyl group, hydroxy group. , A nitro group, a cyano group or a sulfo group, the hydrogen atom of this alkyl group and alkylene group may be substituted with a halogen atom, and D is an ether group, thioether group, ketone group, ester group, sulfonyl group, alkylene A1 is independently an integer of 1 to 3, a2 is independently of 1 or 2, a3 is independently of an integer of 1 to 4, and e is 0 Represents an integer of ~ 3.)
    Figure JPOXMLDOC01-appb-C000004
    (In (4), each R 4 independently represents a hydrogen atom or an alkyl group, the hydrogen atom of the alkyl group may be substituted with a halogen atom, and D represents an ether group, a thioether group, a ketone group, an ester group, A sulfonyl group, an alkylene group, an amide group or a siloxane group, each b independently represents 1 or 2, each c independently represents an integer of 1 to 3, and f represents an integer of 0 to 3.)
  2.  前記ポリイミド前駆体中、前記式(2)で表される構造単位が5~40質量%含まれる、請求項1に記載のポリイミド前駆体。 The polyimide precursor according to claim 1, wherein the polyimide precursor contains 5 to 40% by mass of the structural unit represented by the formula (2).
  3.  前記式(2)において、複数あるR5の少なくとも1つがアリール基を含む、請求項1または2に記載のポリイミド前駆体。 The polyimide precursor according to claim 1 or 2, wherein in the formula (2), at least one of a plurality of R 5 includes an aryl group.
  4.  前記ポリイミド前駆体が、前記式(1)に含まれる構造単位の他に、該前駆体の主鎖に、エーテル基、チオエーテル基、ケトン基、エステル基、スルフォニル基、アルキレン基、アミド基およびシロキサン基からなる群より選ばれる少なくとも1種の基を含む単量体に由来する構造単位を、前記ポリイミド前駆体中、さらに0~15質量%含む、請求項1~3のいずれか1項に記載のポリイミド前駆体。 In addition to the structural unit contained in the formula (1), the polyimide precursor has an ether group, a thioether group, a ketone group, an ester group, a sulfonyl group, an alkylene group, an amide group, and a siloxane in the main chain of the precursor. The structural unit derived from a monomer containing at least one group selected from the group consisting of groups further comprises 0 to 15% by mass in the polyimide precursor. Polyimide precursor.
  5.  前記単量体が、下記式(5)または式(6)で表わされる化合物である、請求項4に記載のポリイミド前駆体。
    Figure JPOXMLDOC01-appb-C000005
    (式(5)および(6)中、Aは各々独立にエーテル基、チオエーテル基、ケトン基、エステル基、スルフォニル基、アルキレン基、アミド基およびシロキサン基からなる群より選ばれる少なくとも1種の基を含む基を示し、R6は各々独立に水素原子、ハロゲン原子、アルキル基またはニトロ基を示し、アルキル基の水素原子はハロゲン原子で置換されても良く、dは各々独立に1~4の整数を示す。)
    The polyimide precursor according to claim 4, wherein the monomer is a compound represented by the following formula (5) or formula (6).
    Figure JPOXMLDOC01-appb-C000005
    (In the formulas (5) and (6), each A is independently at least one group selected from the group consisting of an ether group, a thioether group, a ketone group, an ester group, a sulfonyl group, an alkylene group, an amide group, and a siloxane group. Each of R 6 independently represents a hydrogen atom, a halogen atom, an alkyl group or a nitro group, the hydrogen atom of the alkyl group may be substituted with a halogen atom, and each d independently represents 1 to 4 Indicates an integer.)
  6.  重量平均分子量が10000~1000000である、請求項1~5のいずれか1項に記載のポリイミド前駆体。 6. The polyimide precursor according to claim 1, having a weight average molecular weight of 10,000 to 1,000,000.
  7.  請求項1~6のいずれか1項に記載のポリイミド前駆体および有機溶媒を含む、樹脂組成物。 A resin composition comprising the polyimide precursor according to any one of claims 1 to 6 and an organic solvent.
  8.  前記樹脂組成物中、前記ポリイミド前駆体の濃度が3~60質量%である、請求項7に記載の樹脂組成物。 The resin composition according to claim 7, wherein a concentration of the polyimide precursor is 3 to 60% by mass in the resin composition.
  9.  前記有機溶媒が、エーテル系溶媒、ケトン系溶媒、ニトリル系溶媒、エステル系溶媒およびアミド系溶媒からなる群より選ばれる少なくとも1種の溶媒を含む、請求項7または8に記載の樹脂組成物。 The resin composition according to claim 7 or 8, wherein the organic solvent contains at least one solvent selected from the group consisting of ether solvents, ketone solvents, nitrile solvents, ester solvents, and amide solvents.
  10.  E型粘度計(25℃)で測定した粘度が500~500000mPa・sの範囲である、請求項7~9のいずれか1項に記載の樹脂組成物。 10. The resin composition according to claim 7, wherein the viscosity measured with an E-type viscometer (25 ° C.) is in the range of 500 to 500,000 mPa · s.
  11.  膜形成用である、請求項7~10のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 7 to 10, which is used for film formation.
  12.  請求項7~11のいずれか1項に記載の樹脂組成物を、基板上に塗布して塗膜を形成する工程と、該塗膜から前記有機溶媒を蒸発させることにより除去して膜を得る工程とを含む、膜形成方法。 A step of coating the resin composition according to any one of claims 7 to 11 on a substrate to form a coating film, and removing the organic solvent by evaporating the coating film to obtain a film. A film forming method including a process.
PCT/JP2011/054488 2010-03-31 2011-02-28 Polyimide precursor, resin composition containing said precursor, and method for forming a film using resin composition WO2011122198A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800161864A CN102822238A (en) 2010-03-31 2011-02-28 Polyimide precursor, resin composition containing said precursor, and method for forming a film using resin composition
JP2012508152A JPWO2011122198A1 (en) 2010-03-31 2011-02-28 Polyimide precursor, resin composition containing the precursor, and film forming method using the resin composition
KR1020127028254A KR20130080432A (en) 2010-03-31 2011-02-28 Polyimide precursor, resin composition containing said precursor, and method for forming a film using resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010081521 2010-03-31
JP2010-081521 2010-03-31
JP2010-223684 2010-10-01
JP2010223684 2010-10-01

Publications (1)

Publication Number Publication Date
WO2011122198A1 true WO2011122198A1 (en) 2011-10-06

Family

ID=44711928

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/054488 WO2011122198A1 (en) 2010-03-31 2011-02-28 Polyimide precursor, resin composition containing said precursor, and method for forming a film using resin composition
PCT/JP2011/054489 WO2011122199A1 (en) 2010-03-31 2011-02-28 Process for production of element substrate and composition to be used therein

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054489 WO2011122199A1 (en) 2010-03-31 2011-02-28 Process for production of element substrate and composition to be used therein

Country Status (5)

Country Link
JP (2) JP5725017B2 (en)
KR (2) KR20130080432A (en)
CN (1) CN102822238A (en)
TW (2) TW201139519A (en)
WO (2) WO2011122198A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141239A1 (en) * 2012-03-22 2013-09-26 日産化学工業株式会社 Polyamic acid and polyimide
KR20150084958A (en) 2013-03-18 2015-07-22 아사히 가세이 이-매터리얼즈 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
JP2015229691A (en) * 2014-06-03 2015-12-21 旭化成イーマテリアルズ株式会社 Polyimide precursor composition and polyimide film
JP2017052877A (en) * 2015-09-09 2017-03-16 富士ゼロックス株式会社 Polyimide precursor composition, manufacturing method of polyimide precursor composition and manufacturing method of polyimide molded body
KR101776447B1 (en) * 2012-12-21 2017-09-07 아사히 가세이 이-매터리얼즈 가부시키가이샤 Polyimide precursor and resin composition containing same
JP2019172970A (en) * 2018-03-26 2019-10-10 東レ株式会社 Resin composition for substrate of display device or light-receiving device, substrate of display device or light-receiving device using the same, display device, light-receiving device, and method for manufacturing display device or light-receiving device
CN111918902A (en) * 2018-08-20 2020-11-10 株式会社Lg化学 Polyimide precursor composition, polyimide film produced using same, and flexible device
CN112080026A (en) * 2014-06-25 2020-12-15 旭化成株式会社 Polyimide film having voids and method for manufacturing the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9493614B2 (en) * 2013-02-26 2016-11-15 Toray Industries, Inc. Polyimide precursor, polyimide, flexible substrate prepared therewith, color filter and production method thereof, and flexible display device
JP6333560B2 (en) * 2014-01-23 2018-05-30 旭化成株式会社 Substrate applied to flexible electronic device having predetermined structure and method for manufacturing the same
JP6670238B2 (en) * 2014-07-17 2020-03-18 旭化成株式会社 Resin precursor, resin composition containing the same, polyimide resin film, resin film and method for producing the same
TWI597323B (en) * 2015-02-16 2017-09-01 達邁科技股份有限公司 Polyimide acid solution containing sioxane, polyimide film and method for producing and using
KR101993652B1 (en) * 2015-03-05 2019-09-24 주식회사 엘지화학 Polyimide film composition for flexible substrate of photoelectronic device
WO2018025953A1 (en) * 2016-08-03 2018-02-08 日産化学工業株式会社 Composition for forming release layer, and release layer
CN110199210B (en) * 2017-01-20 2022-05-17 住友化学株式会社 Optical film and method for producing optical film
KR102018455B1 (en) * 2017-05-24 2019-09-04 주식회사 엘지화학 A roll of polyimide film laminate and a method for producing same
WO2018216890A1 (en) * 2017-05-24 2018-11-29 주식회사 엘지화학 Polyimide laminated film roll body and method for manufacturing same
JP7017144B2 (en) * 2017-09-07 2022-02-08 東レ株式会社 Resin composition, resin film manufacturing method, and electronic device manufacturing method
KR101840978B1 (en) * 2017-09-14 2018-03-21 주식회사 엘지화학 Polyimide copolymer and polyimide film manufactured by using same
KR101840977B1 (en) 2017-09-14 2018-03-21 주식회사 엘지화학 Polyimide precursor composition and polyimide film manufactured by using same
WO2019065164A1 (en) * 2017-09-26 2019-04-04 東レ株式会社 Polyimide precursor resin composition, polyimide resin composition, polyimide resin film, production method for layered product, production method for color filter, production method for liquid crystal element, and production method for organic el element
JP7322699B2 (en) * 2018-01-18 2023-08-08 東レ株式会社 Resin composition for display substrate, resin film for display substrate and laminate containing the same, image display device, organic EL display, and manufacturing method thereof
KR102202484B1 (en) * 2019-04-23 2021-01-13 피아이첨단소재 주식회사 Polyimide film, flexible metal foil clad laminate comprising the same and manufacturing method of polyimide film

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291124A (en) * 1988-09-29 1990-03-30 Nippon Steel Chem Co Ltd Polyimide copolymer and preparation thereof
JPH06104542A (en) * 1992-09-17 1994-04-15 Shin Etsu Chem Co Ltd Metal base wiring board
JP2005232383A (en) * 2004-02-20 2005-09-02 Asahi Kasei Electronics Co Ltd Polyamic acid derivative
WO2005084948A1 (en) * 2004-03-04 2005-09-15 Toray Industries, Inc. Heat-resistant resin laminated film, multilayer film with metal layer including same, and semiconductor device
JP2007246920A (en) * 2007-06-01 2007-09-27 Shin Etsu Chem Co Ltd Polyimide resin having phenolic hydroxyl group and polyimide resin composition
JP2008095113A (en) * 2007-11-19 2008-04-24 Shin Etsu Chem Co Ltd Method for producing polyimide resin having phenolic hydroxy group
JP2008156425A (en) * 2006-12-21 2008-07-10 Asahi Kasei Corp Polyimide and photosensitive resin composition using the same
JP2008189694A (en) * 2007-01-31 2008-08-21 Ube Ind Ltd Copolymer having repeating unit of amic acid structure partly converted to imide structure and method for producing the same
JP2008307737A (en) * 2007-06-13 2008-12-25 Mitsui Chemicals Inc Laminate, wiring board and its manufacturing method
WO2009054487A1 (en) * 2007-10-26 2009-04-30 Asahi Kasei Kabushiki Kaisha Polyimide precursor and photosensitive resin composition containing polyimide precursor
JP2009269988A (en) * 2008-05-07 2009-11-19 Tokyo Institute Of Technology Silicon-containing polyimide and method of manufacturing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100568569B1 (en) 2004-10-26 2006-04-07 주식회사 이녹스 Composition for polyimide adhesive and adhesive tape using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291124A (en) * 1988-09-29 1990-03-30 Nippon Steel Chem Co Ltd Polyimide copolymer and preparation thereof
JPH06104542A (en) * 1992-09-17 1994-04-15 Shin Etsu Chem Co Ltd Metal base wiring board
JP2005232383A (en) * 2004-02-20 2005-09-02 Asahi Kasei Electronics Co Ltd Polyamic acid derivative
WO2005084948A1 (en) * 2004-03-04 2005-09-15 Toray Industries, Inc. Heat-resistant resin laminated film, multilayer film with metal layer including same, and semiconductor device
JP2008156425A (en) * 2006-12-21 2008-07-10 Asahi Kasei Corp Polyimide and photosensitive resin composition using the same
JP2008189694A (en) * 2007-01-31 2008-08-21 Ube Ind Ltd Copolymer having repeating unit of amic acid structure partly converted to imide structure and method for producing the same
JP2007246920A (en) * 2007-06-01 2007-09-27 Shin Etsu Chem Co Ltd Polyimide resin having phenolic hydroxyl group and polyimide resin composition
JP2008307737A (en) * 2007-06-13 2008-12-25 Mitsui Chemicals Inc Laminate, wiring board and its manufacturing method
WO2009054487A1 (en) * 2007-10-26 2009-04-30 Asahi Kasei Kabushiki Kaisha Polyimide precursor and photosensitive resin composition containing polyimide precursor
JP2008095113A (en) * 2007-11-19 2008-04-24 Shin Etsu Chem Co Ltd Method for producing polyimide resin having phenolic hydroxy group
JP2009269988A (en) * 2008-05-07 2009-11-19 Tokyo Institute Of Technology Silicon-containing polyimide and method of manufacturing the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141239A1 (en) * 2012-03-22 2013-09-26 日産化学工業株式会社 Polyamic acid and polyimide
KR20210014751A (en) 2012-12-21 2021-02-09 아사히 가세이 이-매터리얼즈 가부시키가이샤 Polyimide precursor and resin composition containing same
KR101776447B1 (en) * 2012-12-21 2017-09-07 아사히 가세이 이-매터리얼즈 가부시키가이샤 Polyimide precursor and resin composition containing same
KR20170104007A (en) 2012-12-21 2017-09-13 아사히 가세이 이-매터리얼즈 가부시키가이샤 Polyimide precursor and resin composition containing same
KR102213304B1 (en) 2012-12-21 2021-02-05 아사히 가세이 이-매터리얼즈 가부시키가이샤 Polyimide precursor and resin composition containing same
KR20200096319A (en) 2012-12-21 2020-08-11 아사히 가세이 이-매터리얼즈 가부시키가이샤 Polyimide precursor and resin composition containing same
KR102116229B1 (en) * 2012-12-21 2020-05-28 아사히 가세이 이-매터리얼즈 가부시키가이샤 Polyimide precursor and resin composition containing same
KR20170097244A (en) 2013-03-18 2017-08-25 아사히 가세이 이-매터리얼즈 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
KR20190093687A (en) 2013-03-18 2019-08-09 아사히 가세이 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
KR20210057221A (en) 2013-03-18 2021-05-20 아사히 가세이 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
KR20170097243A (en) 2013-03-18 2017-08-25 아사히 가세이 이-매터리얼즈 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
KR20150084958A (en) 2013-03-18 2015-07-22 아사히 가세이 이-매터리얼즈 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
KR20200006626A (en) 2013-03-18 2020-01-20 아사히 가세이 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
JP2020063443A (en) * 2013-03-18 2020-04-23 旭化成株式会社 Resin precursor and resin composition containing the same, resin film and method for producing the same, and laminate and method for producing the same
KR20170097245A (en) 2013-03-18 2017-08-25 아사히 가세이 이-매터리얼즈 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
KR20180100738A (en) 2013-03-18 2018-09-11 아사히 가세이 이-매터리얼즈 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
KR20170097242A (en) 2013-03-18 2017-08-25 아사히 가세이 이-매터리얼즈 가부시키가이샤 Resin precursor, resin composition containing said resin precursor, resin film, method for producing said resin film, laminate, and method for producing said laminate
JP2015229691A (en) * 2014-06-03 2015-12-21 旭化成イーマテリアルズ株式会社 Polyimide precursor composition and polyimide film
CN112080026A (en) * 2014-06-25 2020-12-15 旭化成株式会社 Polyimide film having voids and method for manufacturing the same
CN112961382A (en) * 2014-06-25 2021-06-15 旭化成株式会社 Polyimide film having voids and method for manufacturing the same
CN112080026B (en) * 2014-06-25 2024-01-23 旭化成株式会社 Polyimide film having voids and method for producing same
JP2017052877A (en) * 2015-09-09 2017-03-16 富士ゼロックス株式会社 Polyimide precursor composition, manufacturing method of polyimide precursor composition and manufacturing method of polyimide molded body
JP2019172970A (en) * 2018-03-26 2019-10-10 東レ株式会社 Resin composition for substrate of display device or light-receiving device, substrate of display device or light-receiving device using the same, display device, light-receiving device, and method for manufacturing display device or light-receiving device
CN111918902A (en) * 2018-08-20 2020-11-10 株式会社Lg化学 Polyimide precursor composition, polyimide film produced using same, and flexible device
JP2021516276A (en) * 2018-08-20 2021-07-01 エルジー・ケム・リミテッド Polyimide precursor composition, polyimide film and flexible device manufactured using it
JP7078316B2 (en) 2018-08-20 2022-05-31 エルジー・ケム・リミテッド Polyimide precursor composition, polyimide film and flexible device manufactured using it

Also Published As

Publication number Publication date
WO2011122199A1 (en) 2011-10-06
JPWO2011122198A1 (en) 2013-07-08
KR20130080433A (en) 2013-07-12
KR101848522B1 (en) 2018-04-12
TW201139523A (en) 2011-11-16
KR20130080432A (en) 2013-07-12
JPWO2011122199A1 (en) 2013-07-08
TW201139519A (en) 2011-11-16
TWI502003B (en) 2015-10-01
CN102822238A (en) 2012-12-12
JP5725017B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5862674B2 (en) Resin composition and film forming method using the same
WO2011122198A1 (en) Polyimide precursor, resin composition containing said precursor, and method for forming a film using resin composition
WO2012118020A1 (en) Resin composition and film formation method using same
CN111892708B (en) Resin precursor, resin composition containing the same, resin film and method for producing the same, and laminate and method for producing the same
JP2019090047A (en) Polyimide precursor resin composition
JP6420064B2 (en) Polyimide precursor composition and polyimide film
JP6333560B2 (en) Substrate applied to flexible electronic device having predetermined structure and method for manufacturing the same
CN113227206B (en) Imide-amic acid copolymer, process for producing the same, varnish, and polyimide film
JP5891693B2 (en) Substrate manufacturing method and substrate
JP2010106225A (en) New fluorinated tetracarboxylic dianhydride, polyimide precursor obtained therefrom, and resulting polyimide and use thereof
JP2016029126A (en) Resin composition and film formation method using the same, and substrate
JPWO2019188380A1 (en) Polyamic acid and its manufacturing method, polyamic acid solution, polyimide, polyimide film, laminate and its manufacturing method, and flexible device and its manufacturing method
JP2011148955A (en) Method for producing polyimide film, and the resultant polyimide film
JP6496993B2 (en) Polyimide precursor composition, method for producing polyimide precursor, polyimide molded body, and method for producing polyimide molded body
JP2009263654A (en) Polyimide, polyimide film, and methods for producing the same
JPWO2019131896A1 (en) Polyimide, polyimide solution composition, polyimide film, and substrate
TW202319444A (en) Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit
CN113166409B (en) Polyimide precursor, polyimide resin film, and flexible device
TW202134318A (en) Polyimide resin, varnish and polyimide film
KR20120073267A (en) Process for producing substrate and composition for use in same
TWI789796B (en) Polymer and application thereof
JP6501057B2 (en) Composition for forming resin thin film and resin thin film
JP2022172466A (en) Novel diamine compound, polyimide precursor and polyimide film that employ the same, and applications thereof
WO2023048063A1 (en) Polyimide, polyamide, resin composition, polyimide film, display device, substrate for electronic material, method for producing polyamide and method for producing polyimide
TW202348399A (en) Film, method for manufacturing same, and image display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180016186.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762438

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508152

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127028254

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11762438

Country of ref document: EP

Kind code of ref document: A1