WO2011121706A1 - 赤外線撮像素子および赤外線撮像装置 - Google Patents

赤外線撮像素子および赤外線撮像装置 Download PDF

Info

Publication number
WO2011121706A1
WO2011121706A1 PCT/JP2010/055587 JP2010055587W WO2011121706A1 WO 2011121706 A1 WO2011121706 A1 WO 2011121706A1 JP 2010055587 W JP2010055587 W JP 2010055587W WO 2011121706 A1 WO2011121706 A1 WO 2011121706A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
thermoelectric conversion
imaging device
infrared imaging
pixel
Prior art date
Application number
PCT/JP2010/055587
Other languages
English (en)
French (fr)
Inventor
浩大 本多
裕夫 竹村
飯田 義典
舟木 英之
和拓 鈴木
鎬楠 権
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2010/055587 priority Critical patent/WO2011121706A1/ja
Publication of WO2011121706A1 publication Critical patent/WO2011121706A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0225Shape of the cavity itself or of elements contained in or suspended over the cavity
    • G01J5/024Special manufacturing steps or sacrificial layers or layer structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0831Masks; Aperture plates; Spatial light modulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0846Optical arrangements having multiple detectors for performing different types of detection, e.g. using radiometry and reflectometry channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0853Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • G01J5/22Electrical features thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Definitions

  • the present invention relates to an infrared imaging device and an infrared imaging device.
  • Infrared rays have the feature of being more permeable to smoke and fog than visible light, so infrared imaging is possible day and night.
  • infrared imaging can also obtain temperature information of a subject, it has a wide range of applications such as surveillance cameras and fire detection cameras in the defense field.
  • uncooled infrared imaging devices that do not require a cooling mechanism has become active.
  • An uncooled type or thermal type infrared imaging device converts incident infrared rays having a wavelength of about 10 ⁇ m into heat by an infrared absorption film, and changes the temperature of the heat sensitive part caused by the weakly converted heat into an electrical signal by some thermoelectric conversion element. Convert.
  • the thermal infrared imaging device obtains infrared image information by reading out this electrical signal.
  • an infrared imaging device using a silicon pn junction that converts a temperature change into a voltage change by applying a constant forward current is known (for example, see Patent Document 1).
  • This infrared imaging device has a feature that it can be mass-produced using a silicon LSI manufacturing process by using an SOI (Silicon-on-Insulator) substrate as a semiconductor substrate.
  • SOI Silicon-on-Insulator
  • the row selection function is realized by utilizing the rectification characteristics of the silicon pn junction that is a thermoelectric conversion element, there is also a feature that the pixel structure can be configured extremely simply.
  • One of the indexes representing the performance of the infrared imaging device is an equivalent noise temperature difference (NETD (Noise Equivalent Temperature Difference)) representing the temperature resolution of the infrared imaging device. It is important to reduce the NETD, that is, to reduce the detected temperature difference corresponding to noise. For this purpose, it is necessary to increase the sensitivity of the signal and reduce the noise.
  • NETD Noise Equivalent Temperature Difference
  • a thermal infrared imaging device detects a change in substrate temperature as a signal in order to detect a change in temperature of itself.
  • Patent Document 1 employs a method in which infrared insensitive pixels are arranged and an output signal thereof is used as a reference signal.
  • a metal film that reflects infrared light is formed in the vicinity of the incident surface of the infrared detection pixel to form an infrared insensitive pixel.
  • the passivation film on the incident side transmits infrared light as viewed from the metal film. There is a possibility that it may be absorbed and may not function as a completely insensitive pixel, and noise cannot be reduced.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an infrared imaging device and an infrared imaging device capable of reducing noise.
  • An infrared imaging device includes a semiconductor substrate having a surface portion provided with a plurality of first recesses arranged on a matrix and at least one second recess, on the semiconductor substrate.
  • a plurality of detection pixels provided corresponding to the first recesses and detecting incident infrared rays, wherein each detection pixel absorbs the incident infrared rays and converts them into heat, and the first infrared absorption layer
  • a first thermoelectric conversion unit having a first thermoelectric conversion element that converts heat converted by the film into an electrical signal, and first and second support structures that support the first thermoelectric conversion unit above the corresponding first recesses
  • the first support structure portion has a first connection wiring connected to one end of the first thermoelectric conversion element, and the second support structure portion has one end connected to the first thermoelectric conversion element.
  • 2nd connection wiring connected to the other end of A plurality of detection pixels that are provided on the semiconductor substrate in correspondence with each row of the detection pixels, each connected to the other end of the first connection wiring of the detection pixel in the corresponding row.
  • a plurality of row selection lines for selecting detection pixels, and provided on the semiconductor substrate in correspondence with each column of the detection pixels, each connected to the other end of the second connection wiring of the detection pixel in the corresponding column A plurality of signal lines for reading out electrical signals from the detection pixels in the corresponding column and the semiconductor substrate corresponding to the second recess, and absorbing the incident infrared rays and converting them into heat.
  • thermoelectric conversion section having a second thermoelectric conversion element that converts the heat converted by the second infrared absorption film and the second infrared absorption film into an electric signal; and a second recess corresponding to the second thermoelectric conversion section. 3rd and 4th supporting upward A third infrared absorption film that is provided apart from the second thermoelectric conversion part so as to cover the holding structure part and covers the second thermoelectric conversion part and absorbs the incident infrared rays, and the third infrared absorption film provided on the semiconductor substrate And a first umbrella part having a joint part for joining the semiconductor substrate, the third support structure part has a third connection wiring having one end connected to one end of the second thermoelectric conversion element,
  • the fourth support structure section includes a reference pixel having a fourth connection wiring, one end of which is connected to the other end of the second thermoelectric conversion element.
  • An infrared imaging device includes a plurality of detection pixels arranged in a matrix on a semiconductor substrate and detecting incident infrared rays, and a reference formed on the semiconductor substrate and not sensitive to the incident infrared rays.
  • An infrared imaging device including pixels, a package on which the infrared imaging device is mounted, a window material for sealing the inside of the package, and a light shield provided so that an optical image of the incident infrared rays overlaps the reference pixel. And a section.
  • an infrared imaging device and an infrared imaging device capable of reducing noise.
  • FIG. 1 is a circuit diagram showing a configuration of an infrared imaging element according to a first embodiment of the present invention.
  • Sectional drawing which shows the manufacturing process of the insensitive pixel of a 1st specific example. Sectional drawing which shows the manufacturing process of the insensitive pixel of a 1st specific example. Sectional drawing which shows the manufacturing process of the insensitive pixel of a 1st specific example. Sectional drawing which shows the manufacturing process of the insensitive pixel of a 1st specific example. Sectional drawing which shows the manufacturing process of the insensitive pixel of a 1st specific example. Sectional drawing which shows the manufacturing process of the insensitive pixel of a 1st specific example. Sectional drawing which shows the manufacturing process of the insensitive pixel of a 3rd specific example. Sectional drawing which shows the manufacturing process of a sensitive pixel. Sectional drawing which shows the manufacturing process of a sensitive pixel.
  • Sectional drawing which shows the manufacturing process of a sensitive pixel. Sectional drawing of the infrared imaging device of 2nd Embodiment.
  • the top view of the ceramic package which concerns on the infrared imaging device of 2nd Embodiment.
  • the top view which shows the window material which concerns on the infrared imaging device of 2nd Embodiment.
  • the top view which shows the window material which concerns on the infrared imaging device by the 1st modification of 2nd Embodiment.
  • the top view which shows the window material which concerns on the infrared rays imaging device by the 2nd modification of 2nd Embodiment.
  • Sectional drawing of the infrared imaging device by the 4th modification of 2nd Embodiment The top view which shows the window material which concerns on the infrared rays imaging device by the 4th modification of 2nd Embodiment.
  • the infrared imaging device has an infrared imaging device, and the configuration of the infrared imaging device is shown in FIG.
  • the infrared imaging device 1 of the present embodiment is formed on a semiconductor substrate (not shown), and includes an imaging region 10 including pixels arranged in a matrix, a readout circuit 30, a row selection circuit 40, and a column selection circuit 42. And.
  • the imaging region 10 includes six pixels 11 1 , 11 2 , 12 11 , 12 12 , 12 21 , and 12 22 arranged in 3 rows and 2 columns. In general, the imaging region usually includes more pixels, but in the present embodiment, it is assumed to be 6 pixels for convenience.
  • the pixels 11 1 , 11 2 arranged in the first row are insensitive pixels (also referred to as reference pixels) that do not have sensitivity to infrared rays, and the pixels 12 11 , 12 12 , arranged in the second row and the third row, Reference numerals 12 21 and 12 22 denote sensitive pixels (also referred to as infrared detection pixels) capable of detecting infrared rays.
  • Each pixel 11 1 , 11 2 , 12 11 , 12 12 , 12 21 , 12 22 includes at least one thermoelectric conversion element, for example, a diode 14 formed of a pn junction.
  • each diode 14 in the second row of sensitive pixel 12 11, 12 12 are connected to the row select line 16 1, the anode of each diode 14 of the third row of sensitive pixel 12 21, 12 22 It is connected to the row select line 16 2.
  • Each of the row selection lines 16 1 and 16 2 is sequentially selected by the row selection circuit 40, and a bias voltage Vd is applied to the selected row selection line.
  • the cathodes of the diodes 14 of the first row of sensitive pixels 12 11 and 12 21 are connected to the first column of vertical signal lines (hereinafter also simply referred to as signal lines) 18 1 , and the second row of sensitive pixels. 12 12, 12 22 of the cathode of each diode 14 is connected to the vertical signal line 18 2 of the second column.
  • the readout circuit 30 includes operational amplifiers 31 1 and 31 2 , feedback resistors 32 1 and 32 2 , and column selection transistors 34 1 and 34 2 .
  • One end of the signal line 18 1 in the first column is connected to the anode of the insensitive pixel 11 first diode 14 of the first column, the cathode of the insensitive pixels 11 first diode 14 of the first row at a constant potential Vs Retained.
  • One end of the signal line 18 2 of the second column is connected to an anode of a non-sensitivity pixel 11 and second diode 14 of the second column, the cathode constant potential of the second row of non-sensitivity pixel 11 and second diode 14 Held at Vs.
  • the other end of the signal line 18 1 in the first column are connected to the negative input terminal of the operational amplifier 31 1, the other end of the signal line 18 2 in the second column are connected to the negative input terminal of the operational amplifier 31 2.
  • the positive input terminals of the operational amplifiers 31 1 and 31 2 are connected to a common node 33.
  • Feedback resistor 32 1 is provided between the negative input terminal of the operational amplifier 31 1 and the output terminal, a feedback resistor 32 2 is provided between the output terminal and the negative input terminal of the operational amplifier 31 2.
  • the output terminal of the operational amplifier 32 1 is connected to the horizontal signal line 38 through column selection transistors 34 1, the output terminal of the operational amplifier 32 2 is connected to the horizontal signal line 38 through the column selection transistor 34 2.
  • the gates of the column selection transistors 34 1 and 34 2 are connected by a column selection circuit 42, and the column selection transistors 34 1 and 34 2 are turned on by being selected by the column selection circuit 42.
  • Row select line row selection circuit 40 selects, for example, by applying a bias voltage Vd to the row select line 16 1, and the diode 14 of the sensitive pixel 12 11, 12 12 of the row select line 16 1 is selected, the insensitive
  • the diode 14 of the sensitive pixels 12 21, 12 22 which is connected to the row select line 16 2 unselected, since all are reverse biased, and the row select line 16 2 unselected, signal lines 18 1 , it is separated from the 18 2. That is, the diode 14 may have a pixel selection function.
  • the pixel temperature rises.
  • the potential Vsl of the signal lines 18 1 and 18 2 is increased.
  • the temperature of the sensitive pixel changes by about 5 mK.
  • a diode (thermoelectric conversion element) of a sensitive pixel and a diode (thermoelectric conversion element) of an insensitive pixel are connected in series, and the node 33 is grounded. Only the current increase in the sensitivity pixel is amplified by the operational amplifiers 31 1 and 31 2 .
  • the outputs of the operational amplifiers 31 1 and 31 2 in each column are sequentially read out by the column selection transistors 34 1 and 34 2 .
  • the gate voltages of the column selection transistors 34 1 and 34 2 are sequentially supplied from the horizontal selection circuit 42, and the output voltages of the operational amplifiers 31 1 and 31 2 are sequentially output through the horizontal signal line 38.
  • the row selection line is alternately selected by the row selection circuit 40, and the temperature change of the subject is extracted as an electrical signal by the sensitive pixel connected to the selected row selection line.
  • the operational amplifier are amplified by the operational amplifier, and the amplified electric signals are sequentially read out to the horizontal signal line 38 by the column selection transistors 34 1 and 34 2 .
  • the differential signal with the insensitive pixel is always compared and output for all the sensitive pixels, in principle, no noise is held and no vertical stripe noise is generated.
  • FIGS. 2 is a plan view of the sensitive pixel 12
  • FIG. 3 is a cross-sectional view taken along the cutting line AA shown in FIG.
  • the sensitive pixel 12 is formed on an SOI substrate.
  • This SOI substrate includes a support substrate 101, a buried insulating layer (BOX layer) 102, and an SOI (Silicon-On-Insulator) layer made of silicon single crystal, and a recess 110 is formed on the surface portion.
  • the sensitive pixel 12 includes a thermoelectric conversion unit 13 formed in the SOI layer, support structure units 130a and 130b that support the thermoelectric conversion unit 13 above the recess 110, and an umbrella unit 200 that absorbs infrared rays. I have.
  • thermoelectric conversion unit 13 is formed so as to cover a plurality of (two in FIG. 2 and FIG. 3) diodes 14 connected in series, a wiring 120 connecting these diodes 14, and these diodes 14 and wirings 120.
  • Infrared absorbing film 124 is provided.
  • the support structure portion 130a includes a connection wiring 132a connected to one end of a series circuit including a diode having one end connected to the corresponding row selection line 16 and the other end connected in series, and an insulating film 134a covering the connection wiring 132a. And.
  • the other support structure 130b covers a connection wiring 132b connected to the other end of a series circuit composed of a diode having one end connected to the corresponding vertical signal line 18 and the other end connected in series, and the connection wiring 132b. And an insulating film 134b.
  • the umbrella unit 200 absorbs the infrared rays irradiated on the portions that cannot be absorbed by the infrared absorption film 124 of the thermoelectric conversion unit 13, that is, the support structures 130 a and 130 b, the row selection lines 16, and the signal lines 18. It is provided on the side on which infrared rays are incident.
  • the umbrella portion 200 overlaps with a portion that cannot be absorbed by the infrared absorption film 124, and an infrared absorption film 200 a provided above the thermoelectric conversion portion 13, and the infrared absorption film 200 a of the infrared absorption film 124 of the thermoelectric conversion portion 13. And a joint portion 200b to be joined.
  • the infrared absorption film 200a and the joint portion 200b are formed of the same type of material.
  • it is silicon dioxide, silicon nitride, or a laminated structure thereof having a good infrared absorption rate, and desirably has a thickness of, for example, 1 ⁇ m or more in order to sufficiently absorb infrared rays.
  • the infrared absorbing films 124 and 200a generate heat due to incident infrared rays.
  • the heat generated in the infrared absorption film 200a due to the incidence of infrared rays is transmitted to the infrared absorption film 124 of the thermoelectric conversion unit 13 through the joint portion 200b.
  • the diode 14 converts heat generated in the infrared absorption films 124 and 200a into an electric signal.
  • the support structure portions 130 a and 130 b are formed to be elongated so as to surround the periphery of the thermoelectric conversion portion 13. Thereby, the thermoelectric conversion part 13 is supported on an SOI substrate in the state substantially insulated from the SOI substrate.
  • the sensitive pixel 12 can store heat generated according to incident infrared rays and output a voltage based on the heat to the signal line.
  • the bias voltage Vd from the row selection line is transmitted to the diode 14 via the wiring 132a.
  • the signal that has passed through the diode 14 is transmitted to the vertical signal line through the wiring 132b.
  • the sensitive pixel 12 has the umbrella part 200, but it does not have to have the umbrella part 200 as shown in FIG.
  • FIG. 5 is a cross-sectional view of the insensitive pixel 11 of the first specific example.
  • the insensitive pixel 11 is formed on the SOI substrate in the same manner as the sensitive pixel 12, and has a configuration in which the umbrella portion 200 is replaced with the umbrella portion 210 in the sensitive pixel 12 shown in FIG.
  • the umbrella part 210 has an infrared absorption part 210a and a joint part 210b.
  • the infrared absorption unit 210 a is provided so as to cover the thermoelectric conversion unit 13 and has an opening 212.
  • the opening 212 preferably has a maximum diameter of 8 ⁇ m or less so that infrared rays do not pass through.
  • the “maximum diameter” means the maximum value of the length of a straight line connecting any two points on the circumference of the opening 212.
  • the joint 210b is not joined to the thermoelectric converter 13, and is a region other than the region where the thermoelectric converter 13 and the support structures 130a and 130b are formed, that is, the row selection line 16 Are joined to the region where the signal line 18 is formed and the region where the signal line 18 is formed.
  • a cavity 152 is formed between the umbrella part 210 and the thermoelectric conversion part 13.
  • the umbrella part 210 Since the umbrella part 210 has such a configuration, the infrared light incident on the insensitive pixel 11 is converted into heat in the infrared absorption part 210a, and this heat is transmitted to the row selection line 16 via the joint part 210b. The signal is transmitted to the formed region and the region where the signal line 18 is formed.
  • the region where the row selection line 16 is formed and the region where the signal line 18 is formed are substantially insulated from the thermoelectric conversion unit 13 by the support structures 130a and 130b. For this reason, the heat generated by the infrared rays incident on the infrared absorption unit 210 a is not transmitted to the thermoelectric conversion unit 13. That is, the infrared ray is absorbed by the infrared ray absorbing portion 210a and becomes insensitive to the infrared ray.
  • the insensitive pixel of the first specific example has the opening 212 above the central region of the thermoelectric conversion unit 13
  • the insensitive pixel 11 of the second specific example shown in FIG. A plurality of openings 212 a and 212 b may be provided above a region that does not overlap 13.
  • the number of openings 212a and 212b can be arbitrary, and unlike the first specific example, the size may exceed 8 ⁇ m as long as it does not overlap with the thermoelectric converter 13.
  • the second specific example does not reach the thermoelectric converter 13 and is insensitive to the infrared light.
  • thermoelectric conversion unit 13 when the infrared absorption unit 210a cannot absorb, the thermoelectric conversion unit 13 as in the insensitive pixel 11 of the third specific example illustrated in FIG. It is preferable to provide a reflective layer 125 that reflects infrared light through the infrared absorption film 124 on the wiring 120.
  • the reflective layer 125 can be formed simultaneously with the formation of the row selection line 16 and the signal line 18 by using the same material as that of the row selection line 16 and the signal line 18.
  • a plurality of diodes 14 are formed on the SOI of an SOI substrate having a support substrate 101, a buried insulating layer 102, and an SOI layer. Subsequently, the diode 14 is covered with a first insulating film that absorbs infrared rays, and contacts and wirings 120 connected to the diode 14 are formed in the first insulating film. At this time, simultaneously with the formation of the wiring 120, the wirings 132a and 132b of the support structures 130a and 130b, the first layer wiring of the row selection line 16, and the first layer wiring of the signal line 18 are formed.
  • the wiring 120, 132a, 132b and the first layer wiring are covered with a second insulating film that absorbs infrared rays, and the second layer wiring of the row selection line 16 and the signal line 18 is formed on the second insulating film.
  • the second insulating layer is covered with a third insulating film that absorbs infrared rays, and the upper surface of the third insulating film is planarized.
  • the first to third insulating films thus formed serve as the infrared absorption film 124.
  • the openings 140a, 140b, 140c, and 140d are provided in the infrared absorption film 124 by using a lithography technique, so that the thermoelectric conversion unit 13, the support structure units 130a and 130b, the region where the row selection line 16 is formed, and Separated into regions where signal lines are formed (FIG. 9).
  • the openings 140a, 140b, 140c, and 140d have the bottom buried insulating layer 102 removed so that the surface of the support substrate 101 is exposed at the bottom.
  • a sacrificial layer 145 is formed so as to fill the openings 140a, 140b, 140c, and 140d.
  • the sacrificial layer 145 is removed later, it is desirable that the sacrificial layer 145 be made of silicon dioxide or the like, which is a material of the infrared absorption film 124, and polyimide or amorphous silicon having etching selectivity.
  • the sacrifice layer 145 is patterned, and the sacrifice layer 145 on the row selection line 16 and the signal line 18 is removed.
  • the patterning is performed using a lithography process and anisotropic etching.
  • an infrared absorption film 210 is formed so as to cover the sacrificial layer 145. Thereafter, as shown in FIG. 13, the infrared absorption film 210 is patterned to form an opening 212 in the infrared absorption film 210. Thereby, the infrared absorption film 210 becomes the umbrella part 210. Patterning for forming the opening 212 is performed using a lithography process and anisotropic etching.
  • thermoelectric conversion part 13 is formed between the umbrella part 210 and the thermoelectric conversion part 13.
  • a part of the support substrate 101 is etched by the etchant, and a recess 110 is formed in the support substrate 101 (FIG. 5).
  • the thermoelectric conversion part 13 is supported above the recessed part 110 by the support structure parts 130a and 130b.
  • the second layer wiring of the row selection line 16 and the second of the signal line 18 are formed.
  • the reflective layer 125 is formed (FIG. 15). Subsequent processes are manufactured using the same processes as those of the insensitive pixels of the first specific example.
  • the insensitive pixel manufacturing process the same process as the insensitive pixel formation is performed until the sacrifice layer 145 shown in FIG. 10 is formed. Subsequently, as shown in FIG. 16, by patterning the sacrificial layer 145, an opening 147 in which the infrared absorption film 124 is exposed on the bottom surface is formed in a region where the thermoelectric conversion unit 13 is formed in the sacrificial layer 145. Thereafter, an infrared absorption film 200 is formed on the entire surface so as to fill the opening 147 (FIG. 17). Subsequently, as shown in FIG. 18, the infrared absorption film 200 is patterned.
  • the infrared absorption film 200 becomes the umbrella part 200.
  • the sacrifice layer 145 is removed by an etchant, and a part of the support substrate 101 is etched to form a recess 110 in the support substrate 101 (FIG. 3).
  • the thermoelectric conversion part 13 is supported above the recessed part 110 by the support structure parts 130a and 130b.
  • a type infrared imaging device can be realized, and by comparing these pixels and detecting a difference, only a signal that is not influenced by the substrate temperature and that depends on the intensity of the incident infrared light can be output. Thereby, noise can be reduced.
  • the readout circuit 30 having the configuration shown in FIG. 1 is provided as the readout circuit, but it is sufficient that the difference between the sensitive pixel and the insensitive pixel can be detected.
  • a readout circuit other than the readout circuit 30 having the configuration shown in the figure may be used.
  • insensitive pixels are provided for each signal line, but it is sufficient that at least one insensitive pixel is provided in the imaging region.
  • the plurality of sensitive pixels 12 are provided in the imaging region, but one sensitive pixel and one insensitive pixel may be provided. In this case, it becomes a single pixel infrared detector.
  • the pixel uses a diode as a thermoelectric conversion element that converts heat into an electric signal, but may be a resistor.
  • a black reference signal is obtained by forming a light shielding frame that shields visible light adjacent to a photoelectric conversion film.
  • a light-shielding frame (black portion) covered with, for example, aluminum is provided at the end of the photosensitive pixel.
  • the infrared imaging device is used as an infrared image sensor, even if a black portion (insensitive pixel in the infrared imaging device) similar to that of a CCD or CMOS image sensor is formed in the infrared imaging device, it is 8 ⁇ m to 12 ⁇ m. With infrared rays having a wavelength, heat is transferred to the pixels by radiation. For this reason, there is a problem that the pixels are exposed to light and it becomes impossible to obtain a black reference signal.
  • insensitive pixels are generally provided directly in an infrared imaging device, but since infrared rays are heat rays, they may not be sufficiently shielded, and infrared rays may leak into the pixels slightly.
  • FIGS. 19 is a cross-sectional view of the infrared imaging device of the second embodiment
  • FIG. 20 is a plan view when the infrared imaging device is mounted on a ceramic package.
  • the infrared imaging element is mounted on a ceramic package. That is, as shown in FIG. 19, the infrared imaging element 300 having the insensitive pixels 302 is fixed to the die 312 of the ceramic package 310 by die bonding.
  • the ceramic package 310 is provided with a plurality of terminals 314 and pads 316 that are electrically connected to these terminals 314 for electrical connection to the outside (see FIGS. 19 and 20).
  • the infrared imaging device 300 is electrically connected to the pad 316 of the package 310 by the bonding wire 318.
  • the ceramic package on which the infrared imaging element is mounted is moved into the vacuum chamber and placed in an atmosphere of 1.0 ⁇ 10 ⁇ 1 Torr or less, and for example, a window material 320 made of Si is placed on the ceramic package. Sealed.
  • the window member 320 is provided with a sealing portion 322 for sealing.
  • the sealing portion 322 is formed by depositing a metal such as Au so that sealing is easy.
  • an AR coating portion (anti-reflection preventing film) 324 is coated on the inner side of the sealing portion 322 so that infrared rays are easily transmitted.
  • a light shielding part 326 is provided adjacent to the AR coating part 324.
  • the light shielding portion 326 is formed by depositing a metal film such as Al so that an infrared wavelength of 8 ⁇ m to 12 ⁇ m is shielded.
  • the light shielding portion 326 is formed with high accuracy so that the optical image overlaps the insensitive pixel 302 formed on the infrared imaging device 300.
  • the infrared rays are shielded by the light-shielding portion 326 provided on the window member 320 and the insensitive pixels 302 provided on the infrared imaging element 300.
  • the transmittance of each is a product of the respective transmittances. Therefore, if the transmittance of the insensitive pixel 302 is 1.0 ⁇ 10 ⁇ 3 and the transmittance of the light-shielding portion 326 is 1.0 ⁇ 10 ⁇ 4 , the total becomes 1.0 ⁇ 10 ⁇ 7 and shields infrared rays. Can do.
  • the distance between the window 310 and the infrared imaging device 300 depends on the thickness of the ceramic package to be used, but it is very close to about 0.35 mm in practical use. For this reason, the optical images of the insensitive pixel 302 and the light shielding unit 326 substantially overlap, but if necessary, a pixel that is completely overlapped is used as an insensitive pixel without using a pixel with insufficiently overlapping boundary portions. By using it, a more complete reference signal can be obtained.
  • the insensitive pixels used in the second embodiment may be the insensitive pixels 11 shown in FIGS. 5 to 7 of the first embodiment, and the umbrella portion 210 is removed from these insensitive pixels 11. It may be a conventional well-known insensitive pixel. For example, either a thermal insensitive pixel or an optical insensitive pixel can be used. The thermal insensitive pixel or the optical insensitive pixel will be described later.
  • a sensitive pixel in which the optical images of the light shielding portion 326 overlap may be used as the insensitive pixel without providing the insensitive pixel in the infrared imaging device.
  • the infrared imaging device according to the first modification will be described with reference to FIG.
  • the light shielding part 326 is provided along one side of the four sides of the AR coating part 324.
  • the infrared imaging device according to the first modification has a configuration provided so as to surround the AR coating portion 324. With such a configuration, only a thermal image of a truly necessary subject can be formed on the infrared imaging element 300, unnecessary heat rays can be shielded, and a more reliable reference signal can be obtained.
  • the infrared imaging device of the second modification example is shown in FIG.
  • the portion 328 is provided in the window member 320.
  • the getter portion 328 is a metal film mainly composed of zirconium (Zr) and is usually formed by vapor deposition.
  • the getter unit 328 has an effect of adsorbing this gas and maintaining the degree of vacuum when the gas causing the degree of vacuum is generated.
  • a light shielding unit 326 is provided between the getter unit 328 and the AR coating unit 324.
  • the material of the getter portion 328 itself does not transmit infrared rays, it is not necessary to form a metal film as the light shielding portion 326, and the light shielding portion 326 can be formed of the getter portion 328 as shown in FIG. . In this way, the manufacturing process is reduced and the area of the getter portion 328 is increased, so that the getter effect can be further enhanced.
  • the light shielding portion 326 is formed by forming a metal film that shields infrared rays on the window member 320 itself.
  • the light shielding part 327 made of a thin piece such as a metal that shields infrared rays is sandwiched between the window member 320 and the ceramic package at the time of sealing. As shown, it can also be formed by placing it on the window material 320. If constituted like this 4th modification, the process of vapor deposition can be reduced and it will become possible to form shade part 327 by a simpler method.
  • insensitive pixels are provided in advance on the infrared imaging device 300, and light shielding portions 326 and 327 are provided on the window member 320.
  • the infrared ray can be shielded by simply forming a metal film on the window member 320 or sandwiching a thin piece of metal or the like. Therefore, it is possible to form the insensitive pixel portion on the infrared imaging device 300 without particularly forming the insensitive pixel in the infrared imaging device.
  • the pixel pitch common to the infrared imaging device 300 is 22 ⁇ m, and if it is 20 times, it is 0.44 mm or less. This value is a value at which the influence of adjacent pixels is halved.
  • the insensitive pixel portion a pixel that is not more than one boundary pixel but can be used as an insensitive pixel can be used. By doing this, it is possible to omit the step of forming insensitive pixels on the infrared imaging device, and there is an advantage that the step is further simplified.
  • FIG. 27 is a cross-sectional view of the insensitive pixel 11A of this specific example.
  • the insensitive pixel 11A is formed on the SOI substrate in the same manner as the sensitive pixel 12. However, unlike the case of the sensitive pixel 12, the recess 110 is not formed in the region of the SOI substrate where the insensitive pixel 11A is formed.
  • the insensitive pixel 11A includes a plurality of (two in FIG. 27) diodes 14 formed in the SOI layer of the SOI substrate and connected in series, a wiring 120 connecting these diodes 14, and one end having a constant potential.
  • connection wiring 132a connected to one end of a series circuit composed of a diode connected to the Vs power line and the other end connected in series, and a diode connected at one end to the corresponding vertical signal line and connected at the other end in series
  • Connecting wire 132b connected to the other end of the series circuit composed of the above, and an insulating film 126 formed so as to cover these diode 14, wire 120, and connecting wires 132a and 132b.
  • the thermally insensitive pixel 11A configured in this manner, the heat generated by the diode 14 diffuses to the surrounding insulating film 126, the buried insulating layer 102, and the bulk substrate (not shown). That is, the thermal conductance between the diode 14 and the surrounding structure is higher than that of the sensitive pixel 12.
  • the insensitive pixel 11 ⁇ / b> A of this specific example does not have the concave portion 110 and therefore does not have a heat storage function. Therefore, the thermal insensitive pixel 11A of this specific example reflects the temperature of the SOI substrate.
  • Such a thermally insensitive pixel is also called a substrate temperature measuring pixel.
  • FIG. 28 is a cross-sectional view of the optical insensitive pixel 11B of this specific example.
  • the insensitive pixel 11 ⁇ / b> B of this specific example is formed on an SOI substrate in which the concave portion 110 is formed on the surface portion, like the sensitive pixel 12.
  • the insensitive pixel 11 ⁇ / b> A includes a reflective portion 13 ⁇ / b> A formed in the SOI layer, and support structure portions 140 a and 140 b that support the reflective portion 13 ⁇ / b> A above the recess 110.
  • the reflection portion 13A includes a plurality of (two in FIG.
  • the support structure 130a includes a connection wiring 132a connected to one end of a series circuit composed of a diode having one end connected to a power supply line having a constant potential Vs and the other end connected in series, and an insulating film covering the connection wiring 132a 134a.
  • the other support structure 130b includes a connection wiring 132b connected to the other end of a series circuit composed of a diode having one end connected to a corresponding vertical signal line and the other end connected in series, and an insulation covering the connection wiring 142b. And a film 134b.
  • the optically insensitive pixel 11B having such a configuration is different from the sensitive pixel 12 in that the infrared reflecting film 126 is included in the infrared absorbing film 124. Since this optical insensitive pixel 11B reflects infrared rays, it is insensitive to infrared rays. In other respects, the structure is the same as that of the sensitive pixel 12, so that the reference pixel is more suitable than the substrate temperature measurement pixel (thermal insensitive pixel) 11A.
  • the Joule heat component generated when the diode 14 is energized does not exist in the thermally insensitive pixel 11A and is different from the sensitive pixel 12 in this respect, but in the optical insensitive pixel 11B, It has the same temperature component except the temperature change by infrared rays.
  • the infrared reflection film 124 may be formed in the same layer as the wiring layer that forms the operational amplifiers 201 and 202. In this case, the manufacturing process can be shortened and the cost can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

[課題]雑音を低減することのできる赤外線撮像素子および赤外線撮像装置を提供することを可能にする。 [解決手段]半導体基板上にマトリクス上に配列され、入射赤外線を検出する複数の検出画素であって、各検出画素は前記入射赤外線を吸収して熱に変換する第1赤外線吸収膜および第1赤外線吸収膜によって変換された熱を電気信号に変換する第1熱電変換素子を有する第1熱電変換部と複数の検出画素12と、半導体基板に設けられ、入射赤外線を吸収して熱に変換する第2赤外線吸収膜および第2赤外線吸収膜によって変換された熱を電気信号に変換する第2熱電変換素子を有する第2熱電変換部と、第2熱電変換部を覆うように第2熱電変換部から離れて設けられ入射赤外線を吸収する第3赤外線吸収膜および半導体基板に設けられ前記第3赤外線吸収膜と半導体基板とを接合する接合部を有する第1傘部210と、を備えている。

Description

赤外線撮像素子および赤外線撮像装置
 本発明は、赤外線撮像素子および赤外線撮像装置に関する。
 赤外線は、可視光よりも煙、霧に対して透過性が高いという特長を有するので、赤外線撮像は、昼夜にかかわらず可能である。また、赤外線撮像は、被写体の温度情報をも得ることができるので、防衛分野をはじめ監視カメラや火災検知カメラのように広い応用範囲を有する。
 近年、冷却機構を必要としない「非冷却型赤外線撮像装置」の開発が盛んになってきている。非冷却型すなわち熱型赤外線撮像装置は、波長10μm程度の入射赤外線を赤外線吸収膜により熱に変換し、この変換された微弱な熱により生じる感熱部の温度変化をなんらかの熱電変換素子により電気信号に変換する。熱型赤外線撮像装置は、この電気信号を読み出すことで赤外線画像情報を得る。
 例えば、一定の順方向電流を与えることにより温度変化を電圧変化に変換するシリコンpn接合を用いた赤外線撮像装置が知られている(例えば、特許文献1参照)。この赤外線撮像装置は、半導体基板としてSOI(Silicon on Insulator)基板を用いることによって、シリコンLSI製造プロセスを用いて量産することができるという特長がある。また、熱電変換素子であるシリコンpn接合の整流特性を利用して、行選択の機能を実現しているので画素構造が極めてシンプルに構成できるという特長もある。
 赤外線撮像装置の性能を表す指標の一つは、赤外線撮像装置の温度分解能を表現する等価雑音温度差(NETD(Noise Equivalent Temperature Difference))である。このNETDを小さくすること、すなわち、雑音に相当する検出温度差を小さくすることが重要である。そのためには信号の感度を高くすること、および雑音を低減することが必要である。
 また、一般に、熱型の赤外線撮像装置は自身の温度変化を検出するために、基板温度の変化をも信号として検出してしまう。この問題を解決するため、特許文献1では赤外線不感画素を配置し、その出力信号を参照信号として用いる方法がとられる。
 特許文献1に記載の赤外線撮像装置においては、赤外線検出画素の入射面近傍に、赤外線を反射する金属膜を形成して赤外線不感画素としているが、金属膜からみて入射側のパシベーション膜が赤外線を吸収してしまい、完全な不感画素として機能しない可能性があり、雑音を低減できなくなるという問題がある。
特開2007-180773号公報
 本発明は、上記事情を考慮してなされたものであって、雑音を低減することのできる赤外線撮像素子および赤外線撮像装置を提供することを目的とする。
 本発明の第1の態様による赤外線撮像素子は、表面部分に、マトリクス上に配列された複数の第1凹部と、少なくとも1個の第2凹部とが設けられた半導体基板と、前記半導体基板に前記第1凹部に対応して設けられ、入射赤外線を検出する複数の検出画素であって、各検出画素は前記入射赤外線を吸収して熱に変換する第1赤外線吸収膜および前記第1赤外線吸収膜によって変換された熱を電気信号に変換する第1熱電変換素子を有する第1熱電変換部と、前記第1熱電変換部を対応する第1凹部の上方に支持する第1および第2支持構造部とを、備え、前記第1支持構造部は一端が前記第1熱電変換素子の一端に接続される第1接続配線を有し、前記第2支持構造部は一端が前記第1熱電変換素子の他端に接続される第2接続配線を有する複数の検出画素と、前記半導体基板に、前記検出画素の各行に対応して設けられ、それぞれが対応する行の検出画素の前記第1接続配線の他端に接続されて前記対応する行の検出画素を選択する、複数の行選択線と、前記半導体基板に、前記検出画素の各列に対応して設けられ、それぞれが対応する列の検出画素の前記第2接続配線の他端に接続されて前記対応する列の検出画素からの電気信号を読み出すための複数の信号線と、前記半導体基板に、前記第2凹部に対応して設けられ、前記入射赤外線を吸収して熱に変換する第2赤外線吸収膜および前記第2赤外線吸収膜によって変換された熱を電気信号に変換する第2熱電変換素子を有する第2熱電変換部と、前記第2熱電変換部を対応する第2凹部の上方に支持する第3および第4支持構造部と、前記第2熱電変換部を覆うように前記第2熱電変換部から離れて設けられ前記入射赤外線を吸収する第3赤外線吸収膜および前記半導体基板に設けられ前記第3赤外線吸収膜と前記半導体基板とを接合する接合部を有する第1傘部と、を備え、前記第3支持構造部は一端が前記第2熱電変換素子の一端に接続される第3接続配線を有し、前記第4支持構造部は一端が前記第2熱電変換素子の他端に接続される第4接続配線を有する参照画素と、を備えていることを特徴とする。
 本発明の第2の態様による赤外線撮像装置は、半導体基板上にマトリクス状に配列され入射赤外線を検出する複数の検出画素および前記半導体基板に形成され前記入射赤外線に対して感度を有さない参照画素を備えた赤外線撮像素子と、前記赤外線撮像素子が載置されるパッケージと、前記パッケージ内を封止する窓材と、前記入射赤外線の光学像が前記参照画素と重なるように設けられた遮光部と、を備えていることを特徴とする。
 本発明によれば、雑音を低減することのできる赤外線撮像素子および赤外線撮像装置を提供することができる。
本発明の第1実施形態に係る赤外線撮像素子の構成を示す回路図。 第1実施形態に用いられる有感度画素の平面図。 第1実施形態に用いられる有感度画素の断面図。 有感度画素の他の具体例を示す断面図。 第1実施形態に用いられる無感度画素の第1具体例の断面図。 第1実施形態に用いられる無感度画素の第2具体例の断面図。 第1実施形態に用いられる無感度画素の第3具体例の断面図。 第1具体例の無感度画素の製造工程を示す断面図。 第1具体例の無感度画素の製造工程を示す断面図。 第1具体例の無感度画素の製造工程を示す断面図。 第1具体例の無感度画素の製造工程を示す断面図。 第1具体例の無感度画素の製造工程を示す断面図。 第1具体例の無感度画素の製造工程を示す断面図。 第1具体例の無感度画素の製造工程を示す断面図。 第3具体例の無感度画素の製造工程を示す断面図。 有感度画素の製造工程を示す断面図。 有感度画素の製造工程を示す断面図。 有感度画素の製造工程を示す断面図。 第2実施形態の赤外線撮像装置の断面図。 第2実施形態の赤外線撮像装置に係るセラミックパッケージをの平面図。 第2実施形態の赤外線撮像装置に係る窓材を示す平面図。 第2実施形態の第1変形例による赤外線撮像装置に係る窓材を示す平面図。 第2実施形態の第2変形例による赤外線撮像装置に係る窓材を示す平面図。 第2実施形態の第3変形例による赤外線撮像装置に係る窓材を示す平面図。 第2実施形態の第4変形例による赤外線撮像装置の断面図。 第2実施形態の第4変形例による赤外線撮像装置に係る窓材を示す平面図。 熱的無感度画素を示す断面図。 光学的無感度画素を示す断面図。
 以下、図面を参照して本発明の実施形態を説明する。
(第1実施形態)
 本発明の第1実施形態による赤外線撮像装置は、赤外線撮像素子を有し、この赤外線撮像素子の構成を図1に示す。本実施形態の赤外線撮像素子1は半導体基板(図示せず)上に形成され、マトリクス状に配列された画素を含む撮像領域10と、読み出し回路30と、行選択回路40と、列選択回路42と、を備えている。
 撮像領域10は、3行2列に配列された6個の画素11、11、1211、1212、1221、1222を有している。一般に撮像領域は、通常、より多くの画素を備えているが、本実施形態では、便宜的に6画素とする。第1行に配列された画素11、11は赤外線に対する感度を有しない無感度画素(参照画素ともいう)であり、第2行および第3行に配列された画素1211、1212、1221、1222は赤外線を検出することの可能な有感度画素(赤外線検出画素ともいう)である。各画素11、11、1211、1212、1221、1222は、熱電変換素子、例えばpn接合からなるダイオード14を少なくとも1個備えている。
 第2行の有感度画素1211、1212のそれぞれのダイオード14のアノードは、行選択線16に接続され、第3行の有感度画素1221、1222のそれぞれのダイオード14のアノードは、行選択線16に接続されている。行選択線16、16のそれぞれは、行選択回路40によって順次選択され、選択された行選択線にはバイアス電圧Vdが印加される。
 第1列の有感画素1211、1221のそれぞれのダイオード14のカソードは、第1列の垂直信号線(以下、単に信号線ともいう)18に接続され、第2列の有感画素1212、1222のそれぞれのダイオード14のカソードは、第2列の垂直信号線18に接続されている。
 また、読み出し回路30は、オペアンプ31、31と、帰還抵抗32、32と、列選択トランジスタ34、34と、を備えている。
 第1列の信号線18の一端は第1列の無感度画素11のダイオード14のアノードに接続され、この第1列の無感度画素11のダイオード14のカソードは一定の電位Vsに保持される。また、第2列の信号線18の一端は第2列の無感度画素11のダイオード14のアノードに接続され、この第2列の無感度画素11のダイオード14のカソードは一定の電位Vsに保持される。第1列の信号線18の他端はオペアンプ31の負側入力端子に接続され、第2列の信号線18の他端はオペアンプ31の負側入力端子に接続される。各オペアンプ31、31の正側入力端子は、共通のノード33に接続される。帰還抵抗32はオペアンプ31の負側入力端子と出力端子との間に設けられ、帰還抵抗32はオペアンプ31の負側入力端子と出力端子との間に設けられる。また、オペアンプ32の出力端子は列選択トランジスタ34を通して水平信号線38に接続され、オペアンプ32の出力端子は列選択トランジスタ34を通して水平信号線38に接続される。列選択トランジスタ34、34のゲートは列選択回路42によって接続され、この列選択回路42によって選択されることにより、列選択トランジスタ34、34がオンする。
 行選択回路40が選択した行選択線、例えば、行選択線16にバイアス電圧Vdを印加すると、選択された行選択線16の有感度画素1211、1212のダイオード14と、無感度画素11、11のダイオード14からなるそれぞれの直列回路に、直列電圧Vd―Vsが印加されることになる。例えば、Vd=0.7V、Vs=-0.7Vとすると、0.7Vの電圧が上記直列回路のそれぞれに印加される。
 一方、非選択の行選択線16に接続されている有感画素1221、1222のダイオード14は、すべて逆バイアスされているので、非選択の行選択線16と、信号線18、18とは分離されている。即ち、ダイオード14は、画素選択機能を担っているといってもよい。
 有感度画素1211、1212、1221、1222のそれぞれは、赤外線を受光すると、画素温度が上昇する。それにより、信号線18、18の電位Vslは高くなる。例えば、被写体温度が1K(ケルビン)変化すると、有感度画素の温度は約5mK変化する。ダイオード14の電流値は、Vd=0.7Vを印加する条件の下では、1℃の温度上昇に対して、およそ1μAから20%増加する。このため、有感度画素の温度が5mK変化すると、電流は0.1%(1nA)増加する。
 図1に示す本実施形態に係る赤外線撮像素子1では、有感度画素のダイオード(熱電変換素子)と、無感度画素のダイオード(熱電変換素子)とを直列接続し、ノード33を接地すると、有感度画素での電流増加分だけがオペアンプ31、31にて増幅される。例えば、帰還抵抗32、32の抵抗値を1MΩとすれば、出力電圧は、1nA×1MΩ=1mVとなる。すなわち、被写体温度1Kの変化が1mVの応答として出力されることになり、これは熱型の赤外線撮像素子としては十分な値である。
 各列のオペアンプ31、31の出力は、列選択トランジスタ34、34によって順番に読み出される。列選択トランジスタ34、34のゲート電圧は、水平選択回路42から順番に供給され、オペアンプ31、31の出力電圧が順番に水平信号線38を通して出力される。
 以上説明したように、行選択回路40に行選択線を交互に選択し、選択された行選択線に接続されている有感度画素によって被写体の温度変化が電気信号として取り出されて、この電気信号がオペアンプによって増幅され、この増幅された電気信号は、列選択トランジスタ34、34によって順番に水平信号線38に読み出される。
 本実施形態の赤外線撮像素子においては、全ての有感度画素に対して、無感度画素との差分信号が常に比較出力されるため、原理的にノイズがホールドされず、縦スジノイズを発生しない。
 次に、本実施形態に係る赤外線撮像素子1の有感度画素12の構造を図2および図3を参照して説明する。図2は有感度画素12の平面図であり、図3は図2示す切断線A-Aで切断した場合の断面図である。有感度画素12は、SOI基板上に形成される。このSOI基板は、支持基板101と、埋め込み絶縁層(BOX層)102と、シリコン単結晶からなるSOI(Silicon-On-Insulator)層と、を有し、表面部分に凹部110が形成されている。そして有感度画素12は、上記SOI層に形成された熱電変換部13と、熱電変換部13を凹部110の上方に支持する支持構造部130a、130bと、赤外線を吸収する傘部200と、を備えている。
 熱電変換部13は、直列に接続された複数(図2および図3では2個)のダイオード14と、これらのダイオード14を接続する配線120と、これらのダイオード14および配線120を覆うように形成された赤外線吸収膜124とを備えている。
 支持構造部130aは、一端が対応する行選択線16に接続され他端が直列に接続されたダイオードからなる直列回路の一端に接続される接続配線132aと、この接続配線132aを覆う絶縁膜134aとを備えている。他方の支持構造部130bは、一端が対応する垂直信号線18に接続され他端が直列に接続されたダイオードからなる直列回路の他端に接続される接続配線132bと、この接続配線132bを覆う絶縁膜134bとを備えている。
 傘部200は、熱電変換部13の赤外線吸収膜124で吸収できない部分、すなわち支持構造130a、130b、行選択線16、信号線18上に照射した赤外線を吸収するために、熱電変換部13の赤外線が入射される側に設けられている。この傘部200は、赤外線吸収膜124で吸収できない部分と重なるように、熱電変換部13の上方に設けられた赤外線吸収膜200aと、この赤外線吸収膜200aを熱電変換部13の赤外線吸収膜124に接合する接合部200bとを有している。赤外線吸収膜200aと、接合部200bは同種類の材料から形成される。例えば、赤外線吸収率の良い二酸化シリコン、窒化シリコン、またはそれらの積層構造であり、赤外線を充分に吸収するために、例えば1μm以上の厚さを持つことが望ましい。これは赤外線吸収膜124に関しても同様である。
 赤外線吸収膜124、200aは入射された赤外線によって発熱する。赤外線が入射することによって赤外線吸収膜200aで発生された熱は接合部200bを介して熱電変換部13の赤外線吸収膜124に伝達される。ダイオード14は、赤外線吸収膜124、200aで発生した熱を電気信号に変換する。支持構造部130a、130bは、熱電変換部13の周囲を取り巻くように細長く形成されている。これにより、熱電変換部13は、SOI基板からほぼ断熱された状態でSOI基板上に支持される。
 このような構造を有することにより、有感度画素12は、入射された赤外線に応じて発生した熱を蓄熱し、この熱に基づいた電圧を信号線に出力することができる。
 行選択線からのバイアス電圧Vdは、配線132aを介してダイオード14へ伝達される。ダイオード14を通過した信号は、配線132bを介して垂直信号線に伝達される。
 なお、本実施形態においては、有感度画素12は傘部200を有していたが、図4に示すように、傘部200を有していなくともよい。
 次に、本実施形態による赤外線撮像素子の無感度画素の第1具体例の構成を、図5を参照して説明する。図5はこの第1具体例の無感度画素11の断面図である。この無感度画素11は、有感度画素12と同様にSOI基板上に形成され、図3に示す有感度画素12において、傘部200を傘部210に置き換えた構成を有している。この傘部210は、赤外線吸収部210aと、接合部210bを有している。赤外線吸収部210aは、熱電変換部13を覆うように設けられ、開口212を有している。なお、開口212は赤外線が通過しないように、最大径が8μm以下のサイズを有していることが好ましい。ここで、「最大径」とは、開口212の周の任意の2点を結ぶ直線の長さの最大値を意味する。接合部210bは、有感度画素12の場合と異なり、熱電変換部13には接合されず、熱電変換部13および支持構造部130a、130bが形成されている領域以外の領域、すなわち行選択線16が形成されている領域および信号線18が形成されている領域に接合される。なお、傘部210と、熱電変換部13との間には空洞152が形成されている。傘部210がこのような構成となっているので、無感度画素11上に入射した赤外線は、赤外線吸収部210aにおいて熱に変換され、この熱は、接合部210bを介して行選択線16が形成されている領域および信号線18が形成されている領域に伝達される。
 行選択線16が形成されている領域および信号線18が形成されている領域は、支持構造部130a、130bによって熱電変換部13とはほぼ断熱されている。このため、赤外線吸収部210aに入射した赤外線によって生じる熱は熱電変換部13に伝達されない。すなわち、赤外線吸収部210aによって赤外線が吸収され、赤外線に対して不感となる。
 なお第1具体例の無感度画素は、熱電変換部13の中央領域の上方に開口212を有していたが、図6に示す第2具体例の無感度画素11のように、熱電変換部13と重ならない領域の上方に複数の開口212a、212bを設けてもよい。この場合、開口212a、212bの個数は任意とすることが可能であり、また、第1具体例と異なり、熱電変換部13と重ならない限り、サイズも8μmを超えていてもよい。この第2具体例も第1具体例と同様に、熱電変換部13に赤外線が到達せず、赤外線に対して不感となる。
 また、第1具体例または第2具体例の無感度画素11において、赤外線吸収部210aでも吸収できない場合には、図7に示す第3具体例の無感度画素11のように、熱電変換部13の配線120上に赤外線吸収膜124を介して赤外線を反射する反射層125を設けることが好ましい。この反射層125は、行選択線16および信号線18と同じ材料を用いることにより、行選択線16および信号線18の形成と同時に形成することができる。この第3具体例においては、強い赤外線が赤外線吸収部210aに吸収されずに、熱電変換部13に入射しても、反射層125によって反射されるので、熱電変換部13に赤外線が到達せず、赤外線に対して不感となる。
 次に、図5に示す第1具体例の無感度画素11の製造方法を、図8乃至図14を参照して説明する。
 まず、図8に示すように、支持基板101、埋め込み絶縁層102、およびSOI層を有するSOI基板のSOIに、複数のダイオード14を形成する。続いて、ダイオード14を、赤外線を吸収する第1絶縁膜で覆い、この第1絶縁膜内にダイオード14と接続するコンタクトおよび配線120を形成する。このとき、配線120の形成と同時に、支持構造部130a、130bの配線132a、132bと、行選択線16の第1層配線と、信号線18の第1層配線が形成される。その後、赤外線を吸収する第2絶縁膜で上記配線120、132a、132bおよび第1層配線を覆い、この第2絶縁膜上に行選択線16および信号線18の第2層配線を形成する。続いて、赤外線を吸収する第3絶縁膜で第2層配線を覆い、第3絶縁膜の上面を平坦化する。このようにして形成された第1乃至第3絶縁膜が赤外線吸収膜124となる。
 次に、リソグラフィー技術を用いて、赤外線吸収膜124に開口140a、140b、140c、140dを設けることにより、熱電変換部13、支持構造部130a、130b、行選択線16が形成された領域、および信号線が形成された領域に分離する(図9)。なお、開口140a、140b、140c、140dは、底面に支持基板101の表面が露出するように、底部の埋め込み絶縁層102は除去されている。
 次に、図10に示すように、開口140a、140b、140c、140dを埋め込むように、犠牲層145を形成する。犠牲層145は、後に除去されるが、赤外線吸収膜124の材料である二酸化シリコン等と、エッチング選択性をもったポリイミドやアモルファスシリコンであることが望ましい。
 次に、図11に示すように、犠牲層145をパターニングし、行選択線16および信号線18上の犠牲層145を除去する。パターニングは、リソグラフィー工程と、異方性エッチングとを用いて行う。
 次に、図12に示すように、犠牲層145を覆うように、赤外線吸収膜210を成膜する。その後、図13に示すように、赤外線吸収膜210をパターニングし、赤外線吸収膜210に開口212を形成する。これにより、赤外線吸収膜210は、傘部210となる。開口212を形成するためのパターニングは、リソグラフィー工程と異方性エッチングを用いて行う。
 次に、図14に示すように、開口212からエッチャントを導入することにより、犠牲層145が除去され、傘部210と熱電変換部13との間に空洞150が形成される。この空洞150が形成されると、上記エッチャントにより、支持基板101の一部分がエッチングされ、支持基板101に凹部110が形成される(図5)。これにより、熱電変換部13が支持構造部130a、130bによって凹部110の上方に支持される構造となる。
 なお、図7に示す第3具体例の無感度画素の製造方法は、赤外線吸収膜124となる第2絶縁膜を形成した後、行選択線16の第2層配線および信号線18の第2層配線を形成する際に、反射層125を形成する(図15)。以降の工程は、第1具体例の無感度画素の製造工程と同様の工程を用いて製造する。
 次に、有感度画素12の製造方法を、図16乃至図18を参照して説明する。無感度画素の製造工程において、図10に示す犠牲層145を形成するまでは、無感度画素の形成と同じ工程を用いて行う。続いて、図16に示すように、犠牲層145をパターニングすることにより、犠牲層145に熱電変換部13が形成される領域に、底面に赤外線吸収膜124が露出する開口147を形成する。その後、この開口147を埋め込むように、赤外線吸収膜200を全面に形成する(図17)。続いて、図18に示すように、赤外線吸収膜200をパターニングする。これにより、赤外線吸収膜200が傘部200となる。その後、無感度画素の場合と同様に、エッチャントにより、犠牲層145を除去するとともに、支持基板101の一部分をエッチングし、支持基板101に凹部110を形成する(図3)。これにより、熱電変換部13が支持構造部130a、130bによって凹部110の上方に支持される構造となる。
 以上説明したように、本実施形態によれば、赤外線を有効に吸収することが可能な有感度画素12と、雑音となる余分な赤外線を低減することの可能な無感度画素11を備えた熱型赤外線撮像装置を実現することができ、これらの画素を比較し、差分を検出することによって、基板温度に影響されない、入射赤外線の強度に依存した信号のみを出力することができる。これにより、雑音を低減することができる。
 また、本実施形態においては、読み出し回路として、図1に示す構成の読み出し回路30を備えていたが、有感度画素と、無感度画素との差分を検出することができればよいので、図1に示す構成の読み出し回路30以外の読み出し回路を用いてもよい。
 なお、本実施形態においては、無感度画素は、各信号線毎に設けられていたが、撮像領域内に少なくとも1個設けられていればよい。
 また、本実施形態においては、撮像領域に複数の有感度画素12が設けられていたが、1個の有感度画素と、1個の無感度画素とが設けられていてもよい。この場合は、単画素の赤外線検出器となる。
 なお、上記実施形態においては、画素は、熱を電気信号に換える熱電変換素子としてダイオードを用いたが、抵抗体であってもよい。
 (第2実施形態)
 次に、本発明の第2実施形態による赤外線撮像装置を説明する。
 一般に、可視光イメージセンサでは、可視光線を遮蔽する遮光枠を光電変換膜に隣接して形成することにより、黒の基準信号を得ている。なお、CCD、CMOSイメージセンサでは、感光画素の端に例えば、アルミニウムなどで被覆された遮光枠(黒部分)を設けている。
 しかし、赤外線撮像装置を赤外線イメージセンサとして用いた場合には、赤外線撮像素子において、CCD、CMOSイメージセンサと同様な黒部分(赤外線撮像装置では無感度画素)を形成しても、8μm~12μmの波長を有する赤外線では輻射によって画素に熱が伝達されてしまう。このため、画素が感光してしまい、黒基準信号を得ることが不可能となるという問題がある。例えば、一般に無感度画素は赤外線撮像素子に直接設けられるが、赤外光線は熱線であるために、遮蔽が充分にできずに、画素に赤外線が若干漏れ込んでしまう場合がある。例えば、車載カメラとして用いる場合には早朝や夕方に強烈な太陽光線中の熱線が直接入り込むとわずかな漏れでも、無感度画素に熱が入り込んで基準信号が得られなくなり、カメラが不安定になり、歩行者検出が充分できず、機能しなくなる恐れがある。
 そこで、本発明者達が鋭意研究に努めた結果、この問題を改善することができた。これを本発明の第2実施形形態として説明する。第2実施形態の赤外線撮像装置を図19乃至図21に示す。図19は第2実施形態の赤外線撮像装置の断面図、図20は赤外線撮像素子がセラミックパッケージにマウントされたときの平面図である。
 本実施形態の赤外線撮像装置は、赤外線撮像素子がセラミックパッケージにマウントされる。すなわち、図19に示すように、無感度画素302を有する赤外線撮像素子300がセラミックパッケージ310のダイ312にダイボンディングされて固定されている。なお、セラミックパッケージ310には、外部と電気的接続するために複数の端子314と、これらの端子314と電気的に接続するパッド316が設けられている(図19、図20参照)。そして赤外線撮像素子300は、ボンディングワイヤ318によってパッケージ310のパッド316と電気的に接続される。
 このように、赤外線撮像素子がマウントされたセラミックパッケージを真空チャンバー内に移動させて、1.0×10-1Torr以下の雰囲気に置き、例えばSiからなる窓材320を、セラミックパッケージ上に乗せてシーリングされる。この窓材320は図21に示すように、シーリングを行うためのシーリング部322が周囲に設けられている。このシーリング部322は、シーリングが容易なようにAuなどの金属が蒸着されることによって形成される。そして、シーリング部322の内側には赤外線が透過しやすいようにARコート部(無反射防止膜)324がコーティングされる。更に、ARコート部324に隣接して遮光部326が設けられている。この遮光部326は8μm~12μmの赤外線波長が遮蔽されるように、Alなどの金属膜を蒸着することによって形成される。この遮光部326は、光学像が赤外線撮像素子300に形成された無感度画素302に重なるように精度よく形成される。
 この第2実施形態のような構成にすることにより、窓材320に設けられた遮光部326と、赤外線撮像素子300上に設けられた無感度画素302とによって赤外線が遮蔽されるために、赤外線の透過率はそれぞれの透過率の掛け算になる。したがって、無感度画素302の透過率が1.0×10-3、遮光部326の透過率が1.0×10-4とすれば全体で1.0×10-7となり赤外線を遮蔽することができる。
 窓材310と、赤外線撮像素子300との間隔は使用するセラミックパッケージの厚さによるが、実用されているものでは0.35mm程度と非常に接近している。このため、無感度画素302と、遮光部326との光学像はほぼ重なるが、必要に応じて、境界部分の重なりが不十分な画素は使わずに、完全に重なった画素を無感度画素として使うことによって、より完全な基準信号を得ることが可能になる。
 なお、第2実施形態に用いられる無感度画素は、第1実施形態の図5乃至図7に示す無感度画素11であってもよいし、これらの無感度画素11から傘部210を除去した、従来のよく知られた無感度画素であってもよい。例えば、熱的無感度画素または光学的無感度画素のいずれかを用いることができる。熱的無感度画素または光学的無感度画素については、後述する。
 また、敢えて無感度画素を赤外線撮像素子に設けることなく、遮光部326の光学像が重なる有感度画素を無感度画素としてもよい。
 (第1変形例)
 次に、第2実施形態の第1変形例による赤外線撮像装置を、図22を参照して説明する。第2実施形態では、図21に示すように、遮光部326を、ARコート部324の4辺のうちの一辺に沿って設けた。この第1変形例の赤外線撮像装置は、図22に示すように、ARコート部324の周囲を取り囲むように設けた構成を有している。このような構成とすることにより、真に必要な被写体の熱画像だけを赤外線撮像素子300に結像させ、不要な熱線を遮蔽することができ、より確実な基準信号を得ることができる。
 (第2変形例)
 次に、第2実施形態の第2変形例による赤外線撮像装置を、図23を参照して説明する。
 この第2変形例の赤外線撮像装置は、第2実施形態の赤外線撮像装置において、赤外線撮像素子300を含むパッケージ内部の真空状態を長年に渡って保持するために、図23に示すように、ゲッタ部328を窓材320の中に設けた構成となっている。ゲッタ部328はジルコニウム(Zr)を主体とする金属膜で、通常、蒸着で形成される。ゲッタ部328は、真空度を劣化させる原因のガスの発生に際して、このガスを吸着して真空度を保つ効果がある。この場合にもゲッタ部328とARコート部324との間に、遮光部326を設けられる。
 (第3変形例)
 次に、第2実施形態の第3変形例による赤外線撮像装置を、図24を参照して説明する。
 ゲッタ部328の材料は、それ自体赤外線を通さないので、遮光部326としての金属膜を形成する必要はなく、遮光部326を図24に示すようにゲッタ部328で形成することも可能である。このようにすると製造工程が削減されるとともに、ゲッタ部328の面積が増加するので、ゲッタ効果をより高めることができる。
 (第4変形例)
 次に、第2実施形態の第4変形例による赤外線撮像装置を、図25乃至図26を参照して説明する。
 第2実施形態および第1乃至第3変形例においては、遮光部326の形成は、窓材320そのものに赤外線を遮蔽する金属膜を形成していた。この第4変形例の赤外線撮像装置においては、図25に示すように、赤外線を遮蔽する金属などの薄片からなる遮光部327をシーリング時に、窓材320と、セラミックパッケージ挟み込むか、または図26に示すように、窓材320上に載せることにより形成することも可能である。この第4変形例のように構成すれば、蒸着の工程を減らすことができ、より簡易な方法で遮光部327を形成することが可能になる。
 なお、第2実施形態および第1乃至第4変形例においては、赤外線撮像素子300上に予め無感度画素を設け、更に遮光部326、327を窓材320上に設けていた。赤外線撮像素子300と窓材320との距離を画素ピッチの20倍以下に接近させてシーリングすることにより、窓材320に金属膜を形成したり、金属などの薄片を挟み込むだけで、赤外線を遮蔽できるので、特に無感度画素を赤外線撮像素子に形成することなく、赤外線撮像素子300上に無感度画素部を形成することが可能となる。現在、赤外線撮像素子300として一般的な画素ピッチは22μmであり、20倍とすると0.44mm以下ということになる。この値は隣接画素の影響が半分になるという値であり、無感度画素部としては、境界1画素分は使えないがそれ以上離れた画素を、無感度画素として使えることになる。このようにすれば、赤外線撮像素子上に無感度画素を形成する工程を省くことが可能となるので、更に工程が簡素化されるというメリットがある。
 次に、赤外線撮像素子の熱的無感度画素の一具体例を、図27を参照して説明する。図27はこの具体例の無感度画素11Aの断面図である。この無感度画素11Aは、有感度画素12と同様に、SOI基板上に形成される。しかし、無感度画素11Aが形成されるSOI基板の領域には、有感度画素12の場合と異なり、凹部110は形成されていない。そして無感度画素11Aは、上記SOI基板のSOI層に形成され直列に接続された複数(図27では2個)のダイオード14と、これらのダイオード14を接続する配線120と、一端が一定の電位Vsの電源線に接続され他端が直列に接続されたダイオードからなる直列回路の一端に接続される接続配線132aと、一端が対応する垂直信号線に接続され他端が直列に接続されたダイオードからなる直列回路の他端に接続される接続配線132bと、これらのダイオード14、配線120、接続配線132a、132bを覆うように形成された絶縁膜126と、を備えている。
 このように構成された熱的無感度画素11Aにおいては、ダイオード14で発生した熱は、その周囲の絶縁膜126、埋め込み絶縁層102およびバルク基板(図示せず)へ拡散する。即ち、ダイオード14とその周囲の構造との熱コンダクタンスは、有感度画素12のそれよりも高い。この具体例の無感度画素11Aは、凹部110を有しないため、蓄熱機能を有しない。したがって、この具体例の熱的無感度画素11Aは、SOI基板の温度を反映する。このような熱的無感度画素は基板温度測定画素とも呼ばれる。
 次に、本実施形態による赤外線撮像素子の光学的無感度画素の一具体例を、図28を参照して説明する。図28はこの具体例の光学的無感度画素11Bの断面図である。この具体例の無感度画素11Bは、有感度画素12と同様に、表面部分に凹部110が形成されたSOI基板に形成される。そして無感度画素11Aは、上記SOI層に形成された反射部13Aと、反射部13Aを凹部110の上方に支持する支持構造部140a、140bと、を備えている。反射部13Aは、直列に接続された複数(図28では2個)のダイオード14と、これらのダイオード14を接続する配線120と、これらのダイオード14および配線120を覆うように形成された赤外線反射膜150と、これらのダイオード14、配線120、および赤外線反射膜126を覆うように形成された赤外線吸収膜124とを備えている。支持構造部130aは、一端が一定の電位Vsの電源線に接続され他端が直列に接続されたダイオードからなる直列回路の一端に接続される接続配線132aと、この接続配線132aを覆う絶縁膜134aとを備えている。他方の支持構造部130bは、一端が対応する垂直信号線に接続され他端が直列に接続されたダイオードからなる直列回路の他端に接続される接続配線132bと、この接続配線142bを覆う絶縁膜134bとを備えている。
 このような構成の光学的無感度画素11Bは、赤外線吸収膜124内に赤外線反射膜126を有している点で、有感度画素12と異なっている。この光学的無感度画素11Bは、赤外線を反射するため、赤外線に対し不感である。それ以外の点は、有感度画素12と構造が同じであるため、参照画素としては基板温度測定画素(熱的無感度画素)11Aよりも適している。例えば、ダイオード14に通電を行った際に生じるジュール熱成分は、熱的無感度画素11Aには存在せず、この点で有感度画素12と差異があったが、光学的無感度画素11Bでは赤外線による温度変化以外は同じ温度成分を持つ。赤外線反射膜124は、オペアンプ201、202等を構成する配線層と同層に構成してもよい。この場合、製造プロセスを短縮することができ、コスト低減が可能である。
1 赤外線撮像素子
11 無感度画素
11A 熱的無感度画素
11B 光学的無感度画素
11、11 無感度画素
12 有感度画素
1211、1212、1221、1222 有感度画素
13 熱電変換部
13A 反射部
14 ダイオード
16、16 行選択線
18、18 垂直信号線(信号線)
30 読み出し回路
31、31 オペアンプ
32、32 帰還抵抗
33 ノード
34、34 列選択トランジスタ
38 ノード
40 行選択回路
42 列選択回路
101 支持基板
102 埋め込み絶縁層
110 凹部
120 配線
124 赤外線吸収膜
125 赤外線反射膜
130a、130b 支持構造部
132a、132b 接続配線
134a、134b 絶縁膜

Claims (10)

  1.  表面部分に、マトリクス上に配列された複数の第1凹部と、少なくとも1個の第2凹部とが設けられた半導体基板と、
     前記半導体基板に前記第1凹部に対応して設けられ、入射赤外線を検出する複数の検出画素であって、各検出画素は前記入射赤外線を吸収して熱に変換する第1赤外線吸収膜および前記第1赤外線吸収膜によって変換された熱を電気信号に変換する第1熱電変換素子を有する第1熱電変換部と、前記第1熱電変換部を対応する第1凹部の上方に支持する第1および第2支持構造部とを、備え、前記第1支持構造部は一端が前記第1熱電変換素子の一端に接続される第1接続配線を有し、前記第2支持構造部は一端が前記第1熱電変換素子の他端に接続される第2接続配線を有する複数の検出画素と、
     前記半導体基板に、前記検出画素の各行に対応して設けられ、それぞれが対応する行の検出画素の前記第1接続配線の他端に接続されて前記対応する行の検出画素を選択する、複数の行選択線と、
     前記半導体基板に、前記検出画素の各列に対応して設けられ、それぞれが対応する列の検出画素の前記第2接続配線の他端に接続されて前記対応する列の検出画素からの電気信号を読み出すための複数の信号線と、
     前記半導体基板に、前記第2凹部に対応して設けられ、前記入射赤外線を吸収して熱に変換する第2赤外線吸収膜および前記第2赤外線吸収膜によって変換された熱を電気信号に変換する第2熱電変換素子を有する第2熱電変換部と、前記第2熱電変換部を対応する第2凹部の上方に支持する第3および第4支持構造部と、前記第2熱電変換部を覆うように前記第2熱電変換部から離れて設けられ前記入射赤外線を吸収する第3赤外線吸収膜および前記半導体基板に設けられ前記第3赤外線吸収膜と前記半導体基板とを接合する接合部を有する第1傘部と、を備え、前記第3支持構造部は一端が前記第2熱電変換素子の一端に接続される第3接続配線を有し、前記第4支持構造部は一端が前記第2熱電変換素子の他端に接続される第4接続配線を有する参照画素と、
     を備えていることを特徴とする赤外線撮像素子。
  2.  前記第3赤外線吸収膜は、膜厚方向に貫通する開口を有していることを特徴とする請求項1記載の赤外線撮像素子。
  3.  前記開口は、前記第2熱電変換部の上方に設けられ、最大径が8μm以下であることを特徴とする請求項2記載の赤外線撮像素子。
  4.  前記開口は、前記第2熱電変換部と少なくとも重ならない領域に設けられていることを特徴とする請求項2記載の赤外線撮像素子。
  5.  前記参照画素は各信号線に対応して設けられ、各参照画素は対応する信号線に前記第4接続配線の他端が接続されていることを特徴とする請求項1記載の赤外線撮像素子。
  6.  前記検出画素は、少なくとも前記第1および第2支持構造部の上方に設けられて前記入射赤外線を吸収し、吸収した熱を前記第1熱電変換部に伝える第2傘部を備えていることを特徴とする請求項1記載の赤外線撮像素子。
  7.  半導体基板上にマトリクス状に配列され入射赤外線を検出する複数の検出画素および前記半導体基板に形成され前記入射赤外線に対して感度を有さない参照画素を備えた赤外線撮像素子と、
     前記赤外線撮像素子が載置されるパッケージと、
     前記パッケージ内を封止する窓材と、
     前記入射赤外線の光学像が前記参照画素と重なるように設けられた遮光部と、
     を備えていることを特徴とする赤外線撮像装置。
  8.  前記遮光部は、前記窓材に設けられていることを特徴とする請求項7記載の赤外線撮像装置。
  9.  前記遮光部は、前記パッケージと、前記窓材との間に設けられた遮光板であることを特徴とする請求項7記載の赤外線撮像装置。
  10.  前記赤外線撮像素子は、請求項1記載の赤外線撮像素子であることを特徴とする請求項7記載の赤外線撮像装置。
PCT/JP2010/055587 2010-03-29 2010-03-29 赤外線撮像素子および赤外線撮像装置 WO2011121706A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/055587 WO2011121706A1 (ja) 2010-03-29 2010-03-29 赤外線撮像素子および赤外線撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/055587 WO2011121706A1 (ja) 2010-03-29 2010-03-29 赤外線撮像素子および赤外線撮像装置

Publications (1)

Publication Number Publication Date
WO2011121706A1 true WO2011121706A1 (ja) 2011-10-06

Family

ID=44711501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055587 WO2011121706A1 (ja) 2010-03-29 2010-03-29 赤外線撮像素子および赤外線撮像装置

Country Status (1)

Country Link
WO (1) WO2011121706A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019234215A1 (en) * 2018-06-08 2019-12-12 Lynred Device and method for parasitic heat compensation in an infrared camera

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318829A (ja) * 1997-05-20 1998-12-04 Ishizuka Denshi Kk 赤外線センサ
JP2001215152A (ja) * 2000-02-03 2001-08-10 Mitsubishi Electric Corp 赤外線固体撮像素子
JP2002071452A (ja) * 2000-08-29 2002-03-08 Nec Corp 熱型赤外線検出器
JP2003294523A (ja) * 2002-04-03 2003-10-15 Mitsubishi Electric Corp 赤外線検出器およびその製造方法、並びに赤外線固体撮像装置
JP2005233671A (ja) * 2004-02-17 2005-09-02 Mitsubishi Electric Corp 熱型赤外センサ素子および熱型赤外センサアレイ
JP2006220555A (ja) * 2005-02-10 2006-08-24 Toshiba Corp 非冷却赤外線検出素子
JP2006292594A (ja) * 2005-04-12 2006-10-26 Nec Electronics Corp 赤外線検知器
JP2008241339A (ja) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp 赤外線固体撮像素子
JP2009133825A (ja) * 2007-11-09 2009-06-18 Mitsubishi Electric Corp 赤外線撮像素子およびその製造方法
JP2010032410A (ja) * 2008-07-30 2010-02-12 Toshiba Corp イメージセンサおよびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318829A (ja) * 1997-05-20 1998-12-04 Ishizuka Denshi Kk 赤外線センサ
JP2001215152A (ja) * 2000-02-03 2001-08-10 Mitsubishi Electric Corp 赤外線固体撮像素子
JP2002071452A (ja) * 2000-08-29 2002-03-08 Nec Corp 熱型赤外線検出器
JP2003294523A (ja) * 2002-04-03 2003-10-15 Mitsubishi Electric Corp 赤外線検出器およびその製造方法、並びに赤外線固体撮像装置
JP2005233671A (ja) * 2004-02-17 2005-09-02 Mitsubishi Electric Corp 熱型赤外センサ素子および熱型赤外センサアレイ
JP2006220555A (ja) * 2005-02-10 2006-08-24 Toshiba Corp 非冷却赤外線検出素子
JP2006292594A (ja) * 2005-04-12 2006-10-26 Nec Electronics Corp 赤外線検知器
JP2008241339A (ja) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp 赤外線固体撮像素子
JP2009133825A (ja) * 2007-11-09 2009-06-18 Mitsubishi Electric Corp 赤外線撮像素子およびその製造方法
JP2010032410A (ja) * 2008-07-30 2010-02-12 Toshiba Corp イメージセンサおよびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019234215A1 (en) * 2018-06-08 2019-12-12 Lynred Device and method for parasitic heat compensation in an infrared camera
FR3082385A1 (fr) * 2018-06-08 2019-12-13 Ulis Dispositif et procede de compensation de chaleur parasite dans une camera infrarouge
US11792536B2 (en) 2018-06-08 2023-10-17 Lynred Device and method for parasitic heat compensation in an infrared camera

Similar Documents

Publication Publication Date Title
KR100386484B1 (ko) 개구율이 높아지도록 실드를 구비한 열형 적외선 검출기
JP4677044B2 (ja) 非冷却lwir検出器に組み合わされた可視すなわちswir検出器を有するデュアル・バンド撮像装置
JP5636787B2 (ja) 熱型光検出器、熱型光検出装置及び電子機器
JP5443793B2 (ja) 赤外線固体撮像素子
US7385199B2 (en) Microbolometer IR focal plane array (FPA) with in-situ mirco vacuum sensor and method of fabrication
JP3944465B2 (ja) 熱型赤外線検出器及び赤外線フォーカルプレーンアレイ
US7462831B2 (en) Systems and methods for bonding
KR100376925B1 (ko) 적외선 고체 촬상소자
WO2011162346A1 (ja) 赤外線センサ
JP2018040791A (ja) 撮像装置
US20070170359A1 (en) Systems and methods for integrating focal plane arrays
US20120085990A1 (en) Superlattice quantum well infrared detector having exposed layers
JP2012013517A (ja) 温度センサ
US20100084556A1 (en) Optical-infrared composite sensor and method of fabricating the same
JP2005043381A (ja) 熱型赤外線検出器およびその製造方法
JP2012026861A (ja) 熱型検出器、熱型検出装置及び電子機器
JP2013041921A (ja) 真空封止デバイス
JP2008039570A (ja) 熱型赤外線固体撮像装置及び赤外線カメラ
WO2011121706A1 (ja) 赤外線撮像素子および赤外線撮像装置
JP2012037407A (ja) 焦電型検出器、焦電型検出装置及び電子機器
JP2022511262A (ja) ピクセルごとの暗基準ボロメータ
KR101180647B1 (ko) 마이크로 볼로미터에서 필 팩터를 높이기 위한 픽셀 디자인
US8080795B2 (en) Device for imaging and method for producing the device
JP5443800B2 (ja) 赤外線固体撮像素子
JP2012230010A (ja) 赤外線センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP