WO2011118641A1 - 電気チェーンブロックの荷重判別装置、及び荷重判別方法 - Google Patents

電気チェーンブロックの荷重判別装置、及び荷重判別方法 Download PDF

Info

Publication number
WO2011118641A1
WO2011118641A1 PCT/JP2011/057002 JP2011057002W WO2011118641A1 WO 2011118641 A1 WO2011118641 A1 WO 2011118641A1 JP 2011057002 W JP2011057002 W JP 2011057002W WO 2011118641 A1 WO2011118641 A1 WO 2011118641A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
torque current
chain block
value
electric chain
Prior art date
Application number
PCT/JP2011/057002
Other languages
English (en)
French (fr)
Inventor
和弘 西川
Original Assignee
株式会社キトー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キトー filed Critical 株式会社キトー
Priority to US13/582,893 priority Critical patent/US8844378B2/en
Priority to ES11759446T priority patent/ES2702100T3/es
Priority to BR112012023208-8A priority patent/BR112012023208B1/pt
Priority to KR1020127022368A priority patent/KR101368162B1/ko
Priority to CA2791679A priority patent/CA2791679C/en
Priority to CN201180015583.XA priority patent/CN102811939B/zh
Priority to EP11759446.5A priority patent/EP2551235B1/en
Publication of WO2011118641A1 publication Critical patent/WO2011118641A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • B66D1/42Control devices non-automatic
    • B66D1/46Control devices non-automatic electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/54Safety gear
    • B66D1/58Safety gear responsive to excess of load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D3/00Portable or mobile lifting or hauling appliances
    • B66D3/18Power-operated hoists
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D3/00Portable or mobile lifting or hauling appliances
    • B66D3/18Power-operated hoists
    • B66D3/20Power-operated hoists with driving motor, e.g. electric motor, and drum or barrel contained in a common housing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/14Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing suspended loads
    • G01G19/18Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing suspended loads having electrical weight-sensitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G9/00Methods of, or apparatus for, the determination of weight, not provided for in groups G01G1/00 - G01G7/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/02Details of starting control
    • H02P1/04Means for controlling progress of starting sequence in dependence upon time or upon current, speed, or other motor parameter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/166Driving load with high inertia

Definitions

  • the present invention relates to a load discriminating apparatus and a load discriminating method capable of discriminating a lifting load of an electric chain block in which a hoisting and lowering motor is driven by an inverter in a short time after the operation is started.
  • FIG. 1 is a diagram showing a schematic configuration of an electric chain block driven by an inverter.
  • the electric chain block includes an inverter control device 11, a winding up / down motor 12, a speed reducer 13, and an operation box 14.
  • the operation box 14 includes a two-step push-up button 14a and a down-button 14b.
  • a low speed winding signal is output to the inverter control device 11 when the second button is pressed, and when the first button of the lowering button 14b is pressed, the low speed winding signal is output.
  • a high speed lowering signal is output to the inverter control device 11.
  • the inverter control device 11 receives the low speed hoisting signal, the high speed hoisting signal, the low speed hoisting signal, and the high speed hoisting signal from the operation box 14, and receives the low speed hoisting power, the high speed hoisting power, and the low speed.
  • the lowering electric power and the high speed lowering electric power are supplied to the hoisting / lowering electric motor 12, and the hoisting / lowering electric motor 12 is rotated forward or reverse at low speed or high speed.
  • the sheave 15 rotates forward or reverse at low speed or high speed via the speed reducer 13, and the chain 16 engaged with the sheave 15 is wound up or down at low speed or high speed, and is hooked to the lower end of the chain 16.
  • the load 18 suspended through 17 rises or falls at a low speed or a high speed.
  • the current (hereinafter referred to as “motor current”) supplied from the inverter control device 11 to the hoisting and lowering motor 12 is as shown in FIG. 2 based on the output frequency and the phase of each phase current with respect to the output voltage. Furthermore, it can be divided into an excitation current (current necessary for generating magnetic flux) and torque current (current proportional to load torque) by vector calculation. Therefore, by detecting the motor current and dividing the motor current into an excitation current and a torque current by vector calculation, the magnitude of the load 18 can be determined with high accuracy from this torque current value.
  • the magnitude of the load can be determined almost accurately by the torque current value, but the electric chain block has the same substantially elliptical shape as shown below. Since the chain 16 in which the links 16a and the horizontal links 16b are alternately connected is wound up and down by the polygonal sheave 15, the load torque varies even if the load is the same, and the torque current value periodically varies. There is a problem that good load discrimination cannot be performed. As shown in FIG. 3, depending on the rotation angle of the sheave 15, the positions of the center lines A and B of the chain 16, that is, the load core moves away from or approaches the rotation center of the sheep 15 within a predetermined range ⁇ L.
  • Lc represents the length of one link of the chain 16.
  • FIG. 4 is a diagram showing a change in torque current during low-speed hoisting operation of the electric chain block, and a curve A is a change in torque current (current / rated current [%]) at a rated load (load) (1.0 W).
  • curve B shows the state of change in torque current of rated load ⁇ 1.08 (1.08 W).
  • FIG. 5 is a diagram showing a change in torque current during high-speed hoisting operation of the electric chain block, and a curve A is a change in torque current (current / rated current [%]) at a rated load (1.0 W).
  • Curve B shows the state of change in torque current of rated load ⁇ 1.08 (1.08 W).
  • JP 2009-29590 A JP-A-11-246184
  • the present invention has been made in view of the above-described points.
  • An electric chain block load discriminating apparatus and a load discriminating apparatus that can accurately discriminate a load in a short time after starting a hoist operation from the torque current of the electric chain block. It aims to provide a method.
  • the present invention includes a winding up / down motor, an inverter control device that supplies driving power to the winding up / down motor, a chain that rotates the sheave by the winding up / down motor and engages the sheave
  • a load discriminating device for an electric chain block that winds up and down motor current detecting means for detecting the motor current supplied from the inverter control device to the hoisting and lowering motor, and calculating the torque current by vector calculation from the detected motor current Torque current calculation means, moving average torque current value calculation means for continuously calculating the average value of the calculated torque current for a predetermined period immediately before the electric chain block winding speed, and setting the moving average torque current value Load determining means for determining whether or not the hoisting load value exceeds a predetermined excess load value as compared with a threshold value is provided.
  • the predetermined period of the moving average torque current value calculating means is calculated by the torque current fluctuation period calculating means for calculating the fluctuation period of the torque current of the electric chain block. It is characterized by.
  • the torque current fluctuation period calculating means can calculate the torque current fluctuation period at the time of high speed winding and low speed winding, and the moving average torque current
  • the value calculation means can calculate the moving average torque current at the time of high-speed hoisting and low-speed hoisting, and the load judging means sets different threshold values for high-speed hoisting and low-speed hoisting. It is characterized in that it is determined whether or not the hoisting load value exceeds a predetermined overload value at the time of high speed hoisting and at the time of low speed hoisting.
  • a method for discriminating a load of an electric chain block including a winding up / down motor, an inverter control device for supplying driving power to the winding up / down motor, rotating the sheave by the winding up / down motor, and winding up / down a chain engaged with the sheave
  • the motor current supplied from the inverter control device to the hoisting and lowering motor is detected, the torque current is calculated from the detected motor current by vector calculation, and the torque current immediately before the electric chain block winding speed is calculated.
  • the average value for a predetermined period of time is continuously calculated to obtain a moving average torque current value, and the moving average torque current value is compared with a set threshold value to determine whether the hoisting load value exceeds a predetermined overload value. It is characterized by performing load discrimination.
  • a predetermined period for calculating the moving average torque current value by calculating the time for winding up the two links of the chain from the hoisting speed of the electric chain block is characterized.
  • the torque current is calculated at the time of high-speed winding and at the time of low-speed winding, and the predetermined period for calculating the moving average torque current value is at the time of high-speed winding and at the time of low-speed winding.
  • the moving average torque current value is calculated separately at the time of high-speed winding and low-speed winding, and the moving average torque current value at the time of high-speed winding is compared with the set threshold value, and the hoisting load value becomes the predetermined excess load value.
  • the load determination at the time of high-speed winding is performed after the start-up torque current ends, and the load determination at the time of low-speed winding is performed before the start-up current ends. To do.
  • the present invention calculates the moving average torque current value of the fluctuating torque current of the electric chain block and performs load determination.
  • the average torque current value during the period of winding up the two links of the immediately preceding chain is continuously calculated.
  • No moving average torque current value is calculated, and load determination is performed by comparing the moving average torque current value with a preset threshold value. The load can be determined.
  • the schematic configuration of the electric chain block for carrying out the load discriminating apparatus and the load discriminating method according to the present invention is the same as that shown in FIG.
  • the motor current supplied from the inverter control device 11 to the hoisting and lowering motor 12 can be divided into an excitation current and a torque current by vector calculation as shown in FIG. 2. Since this torque current is proportional to the load of the hoisting and lowering motor 12 (here, the magnitude of the lifting load 18), this torque current is compared with the set allowable value (threshold value) of the electric chain block, and the torque current exceeds the threshold value. Whether or not an overload condition is present can be determined based on whether or not there is.
  • the curve C shows a moving average of torque current at 1.0 W
  • the curve D shows a moving average of torque current at 1.08 W.
  • the curves C and D are clearly separated, and by setting a predetermined threshold value between them, the load of the hoisting and lowering motor 12, that is, the load 18 is increased. It is possible to determine with high accuracy whether or not this threshold is exceeded.
  • F output frequency (Hz) of the inverter control device 11
  • P number of poles of the winding up / down motor 12
  • e slip ratio of the winding up / down motor 12
  • N rotation speed (rpm) of the winding up / down motor 12
  • S sheave 15
  • M reduction ratio of the speed reducer 13
  • K number of angles of the sheave 15
  • T time (sec) for winding the chain by the length 2Lc of the two links as shown in FIG.
  • N 120 ⁇ F / P ⁇ (1-e) (1)
  • S N ⁇ M (2)
  • the fluctuation period T is 1.404 seconds from the equation (4).
  • FIG. 8 is a graph obtained by continuously calculating the moving average torque current value every time the torque current value is calculated (sampled) (every 10 milliseconds). Note that the moving average torque current value during a period less than the fluctuation cycle T (1.404 seconds) from the start time is also obtained by dividing the fluctuation cycle T by the sampling interval (10 milliseconds). It is calculated by dividing by the number (141).
  • FIG 9 is a graph in which the moving average torque current value is continuously calculated every time the torque current value is calculated (sampled) (every 10 milliseconds).
  • the moving average torque current value during a period less than the fluctuation period T (0.117 seconds) from the start time is also obtained by dividing the fluctuation period T by the sampling interval (10 milliseconds). It is calculated by dividing by the number (12).
  • a motor current supplied from an inverter control device 11 to a hoisting and lowering motor 12 is divided into an excitation current and a torque current as shown in FIG.
  • an electric chain block configured so that a high torque can be obtained at a low speed by correcting a voltage so that a motor current commensurate with can be supplied.
  • This electric chain block has a function of detecting a motor current supplied to the winding motor 12 to the inverter control device 11 and dividing the motor current into an excitation current and a torque current by vector calculation.
  • the inverter controller 11 has a function of calculating the torque current fluctuation period T according to the above (1) to (4), and a function of calculating a moving average torque current value based on the time corresponding to the period T. By comparing the moving average torque current value with the set threshold value, it is possible to determine the load 18 in a short time and with high accuracy by providing a load determination function for determining whether or not the load 18 is in an overload state. Become.
  • the curve C representing the moving average torque current value of 1.0 W represents the value of the flat portion of the curve D representing the moving average torque current value of 1.08 W at the time of startup.
  • the curve C representing the moving average torque current value of 1.0 W is the curve D representing the moving average torque current value of 1.08 W even at startup.
  • the threshold value is smaller by a predetermined amount than the flat portion (stable portion) of the curve D, and the maximum value of the curve C representing the moving average torque current value of 1.0 W If the load current is 1.0 W or less, the moving average torque value will not exceed the threshold value even if the start current has not been completed since the start. There is no misunderstanding. On the other hand, at high speed, if the determination is started after the predetermined time Tnh at the start-up, a load of 1.0 W is not mistaken for an excess load.
  • one cycle of the fluctuation cycle T is used as a calculation reference for the moving average torque current value.
  • the torque current value is further smoothed.
  • the detection of overload is delayed as compared with the method based on one cycle, it is best to use the moving average torque current value based on one cycle as a criterion.
  • the fluctuation period T is calculated and set based on the output frequency output from the inverter control device 11 to the hoisting / lowering motor, but the rotational speed of the output shaft of the hoisting / lowering motor 12 is set.
  • the fluctuation period is calculated by measuring the number of rotations of the sheave 15 or the number of rotations of the gear shaft of the speed reducer 13 or by sequentially measuring the time required to wind up the two links of the chain 16.
  • the method of calculating the rotation speed of the hoisting and lowering motor 12 from the output frequency supplied to the electric hoisting apparatus is simple and sufficiently accurate.
  • the fluctuation cycle corresponding to the speed set in advance in the electric chain block is stored in the memory, the fluctuation cycle corresponding to the command speed is read from the memory, and the fluctuation cycle (reference period for calculating the moving average torque current value: average value) May be set to the number of samplings to calculate.
  • FIG. 10 is a diagram showing a processing flow of the load determination.
  • step ST1 a high-speed fluctuation period (Tdh) that is a fluctuation period of torque current in high-speed operation and a low-speed fluctuation period (Tdl) that is a fluctuation period of torque current in low-speed operation.
  • Tdh high-speed fluctuation period
  • Tdl low-speed fluctuation period
  • Calculation and setting are performed by the above equations (1) to (4), and the process proceeds to step ST2.
  • step ST2 it is determined whether there is a hoisting operation signal from the operation box 14, and if Yes, the process proceeds to step ST3. In the case of No in step ST2, it is preferable to reset the torque current value sampled and stored in a predetermined number of memories.
  • step ST3 torque current sampling (measurement / calculation) is started, and the process proceeds to step ST4.
  • step ST4 it is determined whether the operation signal is high speed or low speed. If it is low speed, the process proceeds to step ST5, and if it is high speed, the process proceeds to step ST8.
  • step ST5 a moving average torque current value Dl based on the low-speed fluctuation cycle Tdl is calculated, and the process proceeds to step ST6.
  • step ST6 it is determined whether or not the low speed operation time has exceeded the low speed start-up current neglecting time Tnl (see FIG. 8) (low speed operation time> Tnl). If No, the process returns to step ST2, and if Yes, the process returns to step ST7. Transition.
  • step ST7 it is determined whether or not the moving average torque current average value D1 calculated in step ST5 is equal to or higher than the moving average threshold value Hl at low speed (Dl> Hl). If No, the process returns to step ST2, and if Yes, step ST11. Move on to stop winding.
  • step ST8 the moving average torque current value Dh is calculated based on the high-speed fluctuation cycle Tdh, and the process proceeds to step ST9.
  • step ST9 it is determined whether the high-speed operation time exceeds the high-speed start-up current ignoring time Tnh (see FIG. 9) (high-speed operation time> Tnh). If NO, the process returns to step ST2, and if YES, the process returns to step ST10. Transition.
  • step ST10 it is determined whether the moving average torque current value Dh calculated in step ST8 is equal to or higher than the moving average threshold value Hh at high speed (Dh> Hh). If No, the process returns to step ST2, and if Yes, the process returns to step ST11. Transition and stop winding.
  • the low speed starting current ignoring time Tnl and the high speed starting current ignoring time Tnh are set to the shortest time in which the starting current becomes small and the overload load can be discriminated by the average threshold, so that the high accuracy can be achieved in the shortest time after the start of the hoisting operation.
  • the load can be determined. As described above, Tnl can be set to 0 in the case as shown in FIG.
  • step ST12 it is determined whether or not there is a reset operation. If No, the reset operation is waited. If Yes, the process returns to step ST2.
  • the reset operation is performed by pressing the emergency stop button or the lowering button 14b.
  • the motor current supplied from the inverter control device 11 to the hoisting and lowering motor 12 is detected, the motor current is divided into an excitation current and a torque current by vector calculation, and the above (1) to (4) )
  • To calculate the torque current fluctuation period T calculate the moving average torque current value based on the period T, and compare the moving average torque current value with the set threshold value in the inverter control device.
  • a load determination unit 20 is provided separately from the inverter control device 11, and the motor current detected by the current detection element 21 in the load determination unit 20 and the torque current at high speed and low speed from the inverter control device 11.
  • the fluctuation periods Tdh and Tdl are input.
  • the load discriminating unit 20 calculates the high-speed and low-speed torque currents from the motor current at the high-speed and low-speed by vector calculation, and the high-speed and low-speed torque currents are based on the torque current fluctuation periods Tdh and Tdl at the high-speed and low-speed.
  • the moving average torque current value at high speed and low speed is calculated, and this is compared with a set threshold value. If the moving average torque current value at high speed and low speed exceeds the threshold value, it is determined that the load is overloaded, and the alarm unit 22 An overload signal may be output to issue an alarm, or a stop signal S may be sent to the inverter control device 11.
  • the present invention includes a motor current detection unit that detects a motor current supplied from an inverter to a hoisting and lowering motor, a torque current calculation unit that calculates a torque current from the detected motor current by vector calculation, and a fluctuation period of the torque current.
  • a torque current fluctuation period calculating means for calculating a moving average torque current value calculating means for calculating a torque current average value from sampling data between torque current fluctuation periods, and comparing the moving average torque current value with a set threshold value Since load determination means for determining whether the load value exceeds a predetermined overload value or not is provided, it is used as a load determination device for an electric chain block that can accurately determine the load in a short time when starting the hoisting operation. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

 電気チェーンブロックのトルク電流から、巻上運転開始後短時間で、且つ精度良く荷重の判別ができる電気チェーンブロックの荷重判別装置、及び荷重判別方法を提供する。 巻上下電動機12、インバータ制御装置11を備え、巻上下電動機12によりシーブ15を回動させ、該シーブ15に係合するチェーン16を巻上下する電気チェーンブロックの荷重判別装置であって、インバータ制御装置11から巻上下電動機12に供給されるモータ電流を検出する電流検出素子21と、荷重判別部20を備え、該荷重判別部20で検出したモータ電流からトルク電流、トルク電流の変動周期、変動周期間の平均トルク電流値、移動平均トルク電流値を設定閾値と比較して荷重判定を行う。

Description

電気チェーンブロックの荷重判別装置、及び荷重判別方法
 本発明は、巻上下電動機がインバータで駆動される電気チェーンブロックの吊り上げ荷重を運転開始後短時間に高精度で判別できる荷重判別装置、及び荷重判別方法に関する。
 図1はインバータ駆動の電気チェーンブロックの概略構成を示す図である。図示するように、電気チェーンブロックはインバータ制御装置11、巻上下電動機12、減速機13、及び操作ボックス14を備えている。操作ボックス14には2段押の巻上用ボタン14a及び巻下用ボタン14bを備えている。巻上用ボタン14aの1段押しでは低速巻上信号を、2段押しでは高速巻上信号をそれぞれインバータ制御装置11に出力し、巻下用ボタン14bの1段押しでは低速巻下信号を、2段押しでは高速巻下信号をそれぞれインバータ制御装置11に出力するようになっている。
 インバータ制御装置11は操作ボックス14からの低速巻上信号、高速巻上信号、低速巻下信号、及び高速巻下信号を受けて、所定周波数の低速巻上用電力、高速巻上用電力、低速巻下用電力、及び高速巻下用電力を巻上下電動機12に供給し、巻上下電動機12は低速又は高速で正転又は逆転する。これにより、減速機13を介してシーブ15が低速又は高速で正転又は逆転し、該シーブ15に係合するチェーン16が低速又は高速で巻上又は巻下し、該チェーン16の下端にフック17を介して吊り下げられた荷重18は低速又は高速で上昇又は下降する。
 上記電気チェーンブロックにおいて、インバータ制御装置11から巻上下電動機12に供給される電流(以下「モータ電流」という)は、出力周波数と、出力電圧に対する各相の電流の位相から、図2に示すように、励磁電流(磁束を発生させるのに必要な電流)とトルク電流(負荷トルクに比例する電流)とにベクトル演算により分割できる。従って、モータ電流を検出し、該モータ電流をベクトル演算により励磁電流とトルク電流に分割することにより、このトルク電流値により荷重18の大きさを高精度で判別できる。
 ところが、特許文献2に示す電動ロープホイストの場合は、トルク電流値により、略正確に荷重の大きさを判別できるが、電気チェーンブロックでは下記に示すように、同一の略楕円形状をした、縦リンク16aと横リンク16bが交互に連接するチェーン16を多角形のシーブ15で巻上下する構成であるので、荷重が同じでも負荷トルクが変動し、トルク電流値が周期的に変動するため、精度の良い荷重判別ができないという問題がある。図3に示すように、シーブ15の回転角度により、チェーン16の中心線A,Bの位置、即ち荷重芯が所定の範囲ΔL内でシープ15の回転中心から離間したり、接近したりする。この離間接近により、シーブ15に加わる負荷トルクが所定範囲で変動し、該負荷トルクの変動によりインバータ制御装置11から巻上下電動機12に供給される電流値も変動する。なお、図3において、Lcはチェーン16の1リンク分の長さを示す。
 図4は電気チェーンブロックの低速巻上運転でのトルク電流の変化を示す図で、曲線Aは定格荷重(負荷)(1.0W)のトルク電流の変化(電流/定格電流[%])であり、曲線Bは定格荷重×1.08(1.08W)のトルク電流の変化の状態をそれぞれ示す。また、図5は電気チェーンブロックの高速巻上運転でのトルク電流の変化を示す図で、曲線Aは定格荷重(1.0W)のトルク電流の変化(電流/定格電流[%])であり、曲線Bは定格荷重×1.08(1.08W)のトルク電流の変化の状態をそれぞれ示す。電動巻上機において荷重が定格荷重までは確実に巻上げ、定格荷重の1.08倍を超えると巻上下運転を自動停止しなければならないという要求がある。このように、判別すべき荷重差が小さい場合には、その負荷変動より電気チェーンブロックの多角形シーブによる負荷変動が大きくなり、負荷が1.0Wと1.08Wとの境界が判別できないという問題がある。また、低速巻上運転でも起動時は負荷が1.0Wと1.08Wとの境界が判別できないという問題がある。
特開2009-29590号公報 特開平11-246184号公報
 本発明は上述の点に鑑みてなされたもので、電気チェーンブロックのトルク電流から、巻上運転開始後短時間で、且つ精度良く荷重の判別ができる電気チェーンブロックの荷重判別装置、及び荷重判別方法を提供することを目的とする。
 上記の課題を解決するために、本発明は、巻上下電動機、該巻上下電動機に駆動電力を供給するインバータ制御装置を備え、巻上下電動機によりシーブを回動させ、該シーブに係合するチェーンを巻上下する電気チェーンブロックの荷重判別装置であって、インバータ制御装置から巻上下電動機に供給されるモータ電流を検出するモータ電流検出手段と、検出したモータ電流からベクトル演算によりトルク電流を算出するトルク電流算出手段と、算出したトルク電流の電気チェーンブロックの巻上速度に応じた直前の所定期間の平均値を連続して算出する移動平均トルク電流値算出手段と、移動平均トルク電流値を設定閾値と比較し巻上荷重値が所定超過荷重値を超えているか否かを判定する荷重判定手段を備えたことを特徴とする。
 また、本発明は、上記電気チェーンブロックの荷重判別装置において、移動平均トルク電流値算出手段の所定期間は、電気チェーンブロックのトルク電流の変動周期を算出するトルク電流変動周期算出手段によって算出することを特徴とする。
 また、本発明は、上記電気チェーンブロックの荷重判別装置において、トルク電流変動周期算出手段は高速巻上時及び低速巻上時のトルク電流変動周期を算出できるようになっており、移動平均トルク電流値算出手段は高速巻上時及び低速巻上時の移動平均トルク電流を算出できるようになっており、荷重判定手段は高速巻上時と低速巻上時では、それぞれ異なる値の閾値を設定し、高速巻上時と低速巻上時でそれぞれ巻上荷重値が所定超過荷重値を超えているか否かを判定することを特徴とする。
 また、巻上下電動機、該巻上下電動機に駆動電力を供給するインバータ制御装置を備え、巻上下電動機によりシーブを回動させ、該シーブに係合するチェーンを巻上下する電気チェーンブロックの荷重判別方法であって、インバータ制御装置から巻上下電動機に供給されるモータ電流を検出し、該検出したモータ電流からベクトル演算によりトルク電流を算出し、トルク電流の電気チェーンブロックの巻上速度に応じた直前の所定期間の平均値を連続して算出し移動平均トルク電流値となし、移動平均トルク電流値を設定閾値と比較し巻上荷重値が所定超過荷重値を超えているか否かを判断して荷重判別を行うことを特徴とする。
 また、上記電気チェーンブロックの荷重判別方法において、電気チェーンブロックの巻上速度からチェーンの2リンク分を巻き上げる時間を算出し移動平均トルク電流値を算出する所定期間とすることを特徴とする。
 また、上記電気チェーンブロックの荷重判別方法において、トルク電流の算出は高速巻上時と低速巻上時に行い、移動平均トルク電流値を算出する所定期間は、高速巻上時と低速巻上時と別々に設定し、移動平均トルク電流値の算出は高速巻上時と低速巻上時に行い、高速巻上時の移動平均トルク電流値と設定閾値を比較し巻上荷重値が所定超過荷重値を超えているか否かを判断すると共に、低速巻上時の移動平均トルク電流値と設定閾値を比較し巻上荷重値が所定超過荷重値を超えているか否かを判断して荷重判別を行うことを特徴とする。
 また、上記電気チェーンブロックの荷重判別方法において、高速巻上時の荷重判別は起動トルク電流が終了してから行い、低速巻上時の荷重判別は起動電流が終了する前から行うことを特徴とする。
 本発明は、電気チェーンブロックの変動するトルク電流の移動平均トルク電流値を算出して荷重判別を行うものであって、直前のチェーンの2リンク分を巻き上げる期間の平均トルク電流値を連続して算出して移動平均トルク電流値となし、予め設定された閾値と該移動平均値トルク電流値を比較して荷重判別を行うので、電気チェーンブロックの巻上運転開始後短時間で、且つ精度良く荷重の判別ができる。
インバータ駆動の電気チェーンブロックの概略構成を示す図である。 電気チェーンブロックのモータ電流の励磁電流とトルク電流の関係を示す図である。 電気チェーンブロックのシーブの回転によるチェーンの中心線の揺動状態を示す図である。 電気チェーンブロックの低速巻上運転でのトルク電流の変化を示す図である。 電気チェーンブロックの高速巻上運転でのトルク電流の変化を示す図である。 低速時のトルク電流と巻上げ速度変動を示す図である。 高速時のトルク電流と巻上げ速度変動を示す図である。 低速時の平均トルク電流の変化を示す図である。 高速時の平均トルク電流の変化を示す図である。 本発明に係る電気チェーンブロックの上記荷重判別の処理フローを示す図である。 本発明に係る荷重判別装置を備えたインバータ駆動の電気チェーンブロックの概略構成を示す図である。
 以下、本発明の実施の形態について、詳細に説明する。本発明に係る荷重判別装置、及び荷重判別方法を実施する電気チェーンブロックの概略構成は図1と同一であるから、その図示と説明は省略する。図1に示すような、電気チェーンブロックにおいて、インバータ制御装置11から巻上下電動機12に供給されるモータ電流はベクトル演算により、図2に示すように、励磁電流とトルク電流に分割できる。このトルク電流は巻上下電動機12の負荷(ここでは吊り上げ荷重18の大きさ)に比例するから、このトルク電流を電気チェーンブロックの設定許容値(閾値)と比較し、トルク電流が閾値を超えているか否によって、過負荷状態か否を判別できる。
 電気チェーンブロックの吊上げ荷重について、定格荷重(定格負荷)までは確実に巻上げ、定格荷重の1.08倍を超えると自動的に巻上を停止しなければならないという要求がある。ところが、図4及び図5に示すように、電気チェーンブロックの巻上運転でのトルク電流は同じ荷重でも周期的に変動し、巻上なければならない定格荷重(1.0W)と巻上を禁止する荷重(1.08W)との間に適正な閾値を設定できないという問題、特に起動時は1.0W時のトルク電流と1.08W時のトルク電流は重複する範囲にあるため、トルク電流での精度の良い荷重判定ができない。
 ところで、トルク電流の変動と巻上速度の変動を低速の場合と、高速の場合で見ると、それぞれ図6、図7のようになる。図示するように、低速巻上でも高速巻上でも所定周期T(Tdl,Tdh)で速度が変動し、この速度変動と同じ周期T(Tdl,Tdh)でトルク電流が変動していることが分かる。この周期Tは縦リンク16aと横リンク16bの1組をシーブ15で巻き上げる時間と一致している。ここで各周期Tを基準とする移動平均電流値をとると、図8及び図9の曲線C、Dに示すようになる。即ち曲線Cは1.0W時のトルク電流の移動平均を、曲線Dは1.08W時のトルク電流の移動平均をそれぞれ示す。図8及び図9に示すように、起動時から所定期間を除くと、曲線CとDは明確に区分され、この間に所定閾値を設定することにより、巻上下電動機12の負荷、即ち荷重18がこの閾値を超えたか否かを高精度で判別することが可能となる。
 ここで、図8の低速時の移動平均トルク電流値の変化を示す図の移動平均トルク電流値の算出方法を説明する。F:インバータ制御装置11の出力周波数(Hz)、P:巻上下電動機12の極数、e:巻上下電動機12のすべり率、N:巻上下電動機12の回転数(rpm)、S:シーブ15の回転数(rpm)、M:減速機13の減速比、K:シーブ15の角数、T:図3に示すようにチェーンを2リンクの長さ2Lc分巻き上げる時間(sec)とすると、
  N=120×F/P×(1-e)       (1)
  S=N×M                 (2)
  T=60/S/K              (3)
式(1),(2),(3)より
  T=P/{2×F×(1-e)×M×K}   (4)
となる。
 F=5Hz(低速時出力周波数)、P=4、e=0.05、M=0.06、K=5とすると、式(4)より変動周期Tは、1.404秒となる。インバータ制御装置11のベクトル演算によって10ミリ秒ごとに算出(サンプリング)したトルク電流値を書き換えながら最新の所定個をメモリに格納するものとすると、メモリに格納したトルク電流値のなかの直前の141個(1.404/0.010=140.4)のトルク電流値の平均値を算出して移動平均トルク電流値とする。図8はトルク電流値を算出(サンプリング)するごと(10ミリ秒ごと)にこの移動平均トルク電流値を連続して算出しグラフ化したものである。なお、起動時点から変動周期T(1.404秒)に満たない期間の移動平均トルク電流値も起動時からのトルク電流値の積算値を変動周期Tをサンプリング間隔(10ミリ秒)で割った数(141)で割り算して算出している。
 次に図9の高速時の移動平均トルク電流値の変化を示す図の移動平均トルク電流値の算出方法を説明する。低速時と同様に、インバータ制御装置11のベクトル演算によって10ミリ秒ごとに算出(サンプリング)したトルク電流値を書き換えながら、最新の所定個をメモリに格納する。F=60Hz(高速時出力周波数)、P=4、e=0.05、M=0.06、K=5とすると、式(4)より変動周期Tは0.117秒となる。メモリに格納したトルク電流値のなかの直前の12個(0.117/0.010=11.7)の平均値を算出して移動平均トルク電流値とする。図9はトルク電流値を算出(サンプリング)するごと(10ミリ秒ごと)にこの移動平均トルク電流値を連続して算出しグラフ化したものである。なお、起動時点から変動周期T(0.117秒)に満たない期間の移動平均トルク電流値も起動時からのトルク電流値の積算値を変動周期Tをサンプリング間隔(10ミリ秒)で割った数(12)で割り算して算出している。
 近年、インバータ駆動の電気チェーンブロックにおいて、インバータ制御装置11から巻上下電動機12に供給されるモータ電流をベクトル演算により、図2に示すように励磁電流とトルク電流に分割し、負荷(荷重18)に見合ったモータ電流を流せるように電圧の補正を行うことによって低速で高トルクを得られるように構成した電気チェーンブロックがある。この電気チェーンブロックではインバータ制御装置11に巻上下電動機12に供給されるモータ電流を検出し、該モータ電流をベクトル演算により、励磁電流とトルク電流に分割する機能を備えている。そこで、このインバータ制御装置11に上記(1)~(4)によりトルク電流変動の周期Tを算出する機能と、この周期Tに相当する時間を基準とする移動平均トルク電流値を算出する機能と、この移動平均トルク電流値と設定閾値を比較することにより荷重18が過負荷状態にあるか否かを判別する荷重判別機能を持たせることにより、短時間で且つ高精度に荷重判別が可能となる。
 図9の高速時の移動平均トルク値では、1.0Wの移動平均トルク電流値を表す曲線Cは、起動時において、1.08Wの移動平均トルク電流値を表す曲線Dの平坦部の値を超えているが、図8の低速時の移動平均トルク値では、1.0Wの移動平均トルク電流値を表す曲線Cは、起動時においても、1.08Wの移動平均トルク電流値を表す曲線Dの平坦部(安定部)の値を超えていないので、閾値をこの曲線Dの平坦部(安定部)より所定量小さい値と1.0Wの移動平均トルク電流値を表す曲線Cの最高値との間の値とすることで、起動時から起動電流が終了していなくとも移動平均トルク値は、荷重が1.0W以下であれば閾値を超えることはなく、1.0Wの荷重を超過荷重と誤認することはない。一方、高速時においては、起動時の所定時間Tnh終了後に判別を開始するものとすれば、1.0Wの荷重を超過荷重と誤認することはない。
 上記の例では、変動周期Tの1周期を移動平均トルク電流値の算出基準としたが、変動周期Tの整数倍を基準とする移動平均トルク電流値を用いれば、更にトルク電流値を平滑化して判別の精度が向上するが、1周期を基準とする方法と比べ過負荷の検知が遅くなるので、1周期分を基準とする移動平均トルク電流値を判別基準とするのが最良である。
 上記(1)~(4)式において、変動周期Tは、インバータ制御装置11が巻上下電動機に出力する出力周波数によって算出し設定するようにしているが、巻上下電動機12の出力軸の回転数、又はシーブ15の回転数、又は減速機13の歯車軸等の回転数を計測して、或いはチェーン16の2リンク分を巻き上げるのに要する時間を逐次計測することによって、変動周期を算出するようにしても良いが、電動巻上装置に供給する出力周波数から巻上下電動機12の回転数を算出する方法が簡便でかつ十分精度を有している。或いは、電気チェーンブロックに予め設定された速度に応じた変動周期をメモリに記憶し、指令速度に応じた変動周期をメモリから読み出し、変動周期(移動平均トルク電流値を算出する基準期間:平均値を算出するサンプリング数)に設定するようにしても良い。
 図10は上記荷重判別の処理フローを示す図である。先ず電気チェーンブロックの電源を投入し、ステップST1において、高速運転でのトルク電流の変動周期である高速変動周期(Tdh)と低速運転でのトルク電流の変動周期である低速変動周期(Tdl)を上記(1)~(4)式により算出して設定し、ステップST2に移行する。ステップST2では、操作ボックス14から巻上操作信号があるかを判断し、Yesの場合ステップST3に移行する。ステップST2においてNoの場合にはサンプリングし所定数メモリに記憶したトルク電流値をリセットすることが好ましい。ステップST3では、トルク電流のサンプリング(測定・算出)を開始し、ステップST4に移行する。ステップST4では、運転信号が高速か低速かを判断し、低速の場合はステップST5に移行し、高速の場合はステップST8に移行する。
 ステップST5では、低速変動周期Tdlを基準とする移動平均トルク電流値Dlを算出し、ステップST6に移行する。ステップST6では、低速運転時間が低速起動電流無視時間Tnl(図8参照)を越えたか(低速運転時間>Tnl)を判断し、Noの場合は前記ステップST2に戻り、Yesの場合はステップST7に移行する。ステップST7では、ステップST5で算出した移動平均トルク電流平均値Dlが低速時移動平均閾値Hl以上(Dl>Hl)かを判断し、Noの場合は前記ステップST2に戻り、Yesの場合はステップST11に移行し、巻上停止を行う。
 前記ステップST8では、高速変動周期Tdhを基準とする移動平均トルク電流値Dhを算出し、ステップST9に移行する。ステップST9では、高速運転時間が高速起動電流無視時間Tnh(図9参照)を越えたか(高速運転時間>Tnh)を判断し、Noの場合は前記ステップST2に戻り、Yesの場合はステップST10に移行する。ステップST10では、ステップST8で算出した移動平均トルク電流値Dhが高速時移動平均閾値Hh以上か(Dh>Hh)を判断し、Noの場合は前記ステップST2に戻り、Yesの場合はステップST11に移行し、巻上停止を行う。なお、上記低速起動電流無視時間Tnl、及び高速起動電流無視時間Tnhは起動電流が小さくなり平均閾値により過負荷荷重を判別できる最短時間に設定することにより、巻上運転開始後最短時間で高精度の荷重判別が可能となる。前述の通り図8に示す様な場合には、Tnlを0とすることができる。
 ステップST11で巻上停止を行ったらステップST12に移行し、該ステップST12でリセット操作があるか否かを判断し、Noであったらリセット操作を待ち、YesであったらステップST2にもどる。リセット操作は、非常停止ボタン又は巻下用ボタン14bの押下げにより行われる。
 なお、上記実施形態例では、インバータ制御装置11から巻上下電動機12に供給されるモータ電流の検出、該モータ電流をベクトル演算により励磁電流とトルク電流に分割する処理、上記(1)~(4)式によりトルク電流変動の周期Tを算出、周期Tを基準とする移動平均トルク電流値を算出、移動平均トルク電流値と設定閾値を比較等の処理をインバータ制御装置で行うようになっているがこれに限定されるものではない。例えば図11に示すようにインバータ制御装置11とは別に荷重判別部20を設け、該荷重判別部20に電流検出素子21で検出したモータ電流、インバータ制御装置11から高速,低速時のトルク電流の変動周期Tdh,Tdlを入力する。そして荷重判別部20でベクトル演算により高速,低速時のモータ電流から高速,低速時トルク電流を算出し、該高速,低速時トルク電流を高速,低速時のトルク電流変動周期Tdh,Tdlを基準とする、高速,低速時の移動平均トルク電流値を算出し、これと設定閾値を比較し、高速,低速時の移動平均トルク電流値が閾値を超えたら、過負荷と判断し、警報部22に過負荷信号を出力し、警報を発したり、インバータ制御装置11に停止信号Sを送るようにしてもよい。
 以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書、図面に記載された技術的思想の範囲内において種々の変形が可能である。
 本発明は、インバータから巻上下電動機に供給されるモータ電流を検出するモータ電流検出手段と、該検出したモータ電流からベクトル演算によりトルク電流を算出するトルク電流算出手段と、該トルク電流の変動周期を算出するトルク電流変動周期算出手段と、トルク電流平均値をトルク電流の変動周期間のサンプリングデータから算出する移動平均トルク電流値算出手段と、移動平均トルク電流値を設定閾値と比較し巻上荷重値が所定超過荷重値を超えているか否かを判定する荷重判定手段を備えたので、巻上運転始動時短時間で、且つ精度良く荷重の判別ができる電気チェーンブロックの荷重判別装置として利用することができる。
  11 インバータ制御装置
  12 巻上下電動機
  13 減速機
  14 操作ボックス
  15 シーブ
  16 チェーン
  17 フック
  18 荷重
  20 荷重判別部
  21 電流検出素子
  22 警報部

Claims (7)

  1.  巻上下電動機、該巻上下電動機に駆動電力を供給するインバータ制御装置を備え、巻上下電動機によりシーブを回動させ、該シーブに係合するチェーンを巻上下する電気チェーンブロックの荷重判別装置であって、
     前記インバータ制御装置から前記巻上下電動機に供給されるモータ電流を検出するモータ電流検出手段と、
     前記検出したモータ電流からベクトル演算によりトルク電流を算出するトルク電流算出手段と、
     前記算出したトルク電流の前記電気チェーンブロックの巻上速度に応じた直前の所定期間の平均値を連続して算出する移動平均トルク電流値算出手段と、
     前記移動平均トルク電流値を設定閾値と比較し巻上荷重値が所定超過荷重値を超えているか否かを判定する荷重判定手段を備えたことを特徴とする電気チェーンブロックの荷重判別装置。
  2.  請求項1に記載の電気チェーンブロックの荷重判別装置において、
     前記移動平均トルク電流値算出手段の所定期間は、前記電気チェーンブロックのトルク電流の変動周期を算出するトルク電流変動周期算出手段によって算出することを特徴とする電気チェーンブロックの荷重判別装置。
  3.  請求項1又は2に記載の電気チェーンブロックの荷重判別装置において、
     前記トルク電流変動周期算出手段は高速巻上時及び低速巻上時のトルク電流変動周期を算出できるようになっており、前記移動平均トルク電流値算出手段は高速巻上時及び低速巻上時の移動平均トルク電流を算出できるようになっており、前記荷重判定手段は高速巻上時と低速巻上時では、それぞれ異なる値の閾値を設定し、高速巻上時と低速巻上時でそれぞれ巻上荷重値が所定超過荷重値を超えているか否かを判定することを特徴とする電気チェーンブロックの荷重判別装置。
  4.  巻上下電動機、該巻上下電動機に駆動電力を供給するインバータ制御装置を備え、巻上下電動機によりシーブを回動させ、該シーブに係合するチェーンを巻上下する電気チェーンブロックの荷重判別方法であって、
     前記インバータ制御装置から前記巻上下電動機に供給されるモータ電流を検出し、該検出したモータ電流からベクトル演算によりトルク電流を算出し、
     前記トルク電流の前記チェーンブロックの巻上速度に応じた直前の所定期間の平均値を連続して算出し移動平均トルク電流値となし、
     前記移動平均トルク電流値を設定閾値と比較し巻上荷重値が所定超過荷重値を超えているか否かを判断して荷重判別を行うことを特徴とする電気チェーンブロックの荷重判別方法。
  5.  請求項4に記載の電気チェーンブロックの荷重判別方法において、
     前記電気チェーンブロックの巻上速度から前記チェーンの2リンク分を巻き上げる時間を算出し前記移動平均トルク電流値を算出する前記所定期間とすることを特徴とする電気チェーンブロックの荷重判別方法。
  6.  請求項4又は5に記載の電気チェーンブロックの荷重判別方法において、
     前記トルク電流の算出は高速巻上時と低速巻上時に行い、前記移動平均トルク電流値を算出する所定期間は、高速巻上時と低速巻上時で別々に設定し、
     前記移動平均トルク電流値の算出は高速巻上時と低速巻上時に行い、
     前記高速巻上時の前記移動平均トルク電流値と設定閾値を比較し巻上荷重値が所定超過荷重値を超えているか否かを判断すると共に、前記低速巻上時の移動平均トルク電流値と設定閾値を比較し巻上荷重値が所定超過荷重値を超えているか否かを判断して荷重判別を行うことを特徴とする電気チェーンブロックの荷重判別方法。
  7.  請求項6に記載の電気チェーンブロックの荷重判別方法において、
     前記高速巻上時の荷重判別は起動トルク電流が終了してから行い、低速巻上時の荷重判別は起動電流が終了する前から行うことを特徴とする電気チェーンブロックの荷重判別方法。
PCT/JP2011/057002 2010-03-24 2011-03-23 電気チェーンブロックの荷重判別装置、及び荷重判別方法 WO2011118641A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/582,893 US8844378B2 (en) 2010-03-24 2011-03-23 Load weight determining apparatus and load weight determining method for electric chain block
ES11759446T ES2702100T3 (es) 2010-03-24 2011-03-23 Dispositivo para la determinación de la carga de un polipasto eléctrico de cadena y procedimiento para la determinación de la carga
BR112012023208-8A BR112012023208B1 (pt) 2010-03-24 2011-03-23 aparelho para a determinação de peso de carga e método para a determinação de peso de carga para guincho elétrico de corrente.
KR1020127022368A KR101368162B1 (ko) 2010-03-24 2011-03-23 전기 체인 블록의 하중 판별 장치 및 하중 판별 방법
CA2791679A CA2791679C (en) 2010-03-24 2011-03-23 Load weight determining apparatus and load weight determining method for electric chain block
CN201180015583.XA CN102811939B (zh) 2010-03-24 2011-03-23 电动环链葫芦的载荷辨别装置以及载荷辨别方法
EP11759446.5A EP2551235B1 (en) 2010-03-24 2011-03-23 Load determination device for electric chain block and load determination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010069013A JP5474624B2 (ja) 2010-03-24 2010-03-24 電気チェーンブロックの荷重判別装置、及び荷重判別方法
JP2010-069013 2010-03-24

Publications (1)

Publication Number Publication Date
WO2011118641A1 true WO2011118641A1 (ja) 2011-09-29

Family

ID=44673191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057002 WO2011118641A1 (ja) 2010-03-24 2011-03-23 電気チェーンブロックの荷重判別装置、及び荷重判別方法

Country Status (9)

Country Link
US (1) US8844378B2 (ja)
EP (1) EP2551235B1 (ja)
JP (1) JP5474624B2 (ja)
KR (1) KR101368162B1 (ja)
CN (1) CN102811939B (ja)
BR (1) BR112012023208B1 (ja)
CA (1) CA2791679C (ja)
ES (1) ES2702100T3 (ja)
WO (1) WO2011118641A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9567195B2 (en) * 2013-05-13 2017-02-14 Hall David R Load distribution management for groups of motorized lifting devices
US9598269B2 (en) * 2014-04-04 2017-03-21 David R. Hall Motorized lifting device with a grooved drum for lifting a load and determining a weight of the load while lifting
FI127826B (en) 2014-08-01 2019-03-15 Konecranes Oyj Method of detecting a worn link in a chain, and lifting device
KR101693961B1 (ko) * 2015-02-05 2017-01-17 오철규 레버 블록 과부하 표시장치
JP2016176823A (ja) 2015-03-20 2016-10-06 株式会社リコー 電流計測装置、画像形成装置、搬送装置、及び電流計測方法
DK3170784T3 (da) * 2015-11-19 2019-05-06 Abb Schweiz Ag Fremgangsmåde til drift af et ankerspil og ankerspil
US9950908B2 (en) * 2016-03-10 2018-04-24 Magnetek, Inc. System and method for determining a load in a material handling system
JP6878029B2 (ja) * 2016-06-22 2021-05-26 株式会社神戸製鋼所 荷重検出装置及びそれを備えるクレーンの巻上装置
US10232940B2 (en) * 2016-09-09 2019-03-19 Wing Aviation Llc Methods and systems for raising and lowering a payload
US11754434B1 (en) * 2017-11-15 2023-09-12 Motiv Power Systems, Inc. Real-time reporting and estimating of mass of vehicles using drive characteristics
JP7114030B2 (ja) * 2018-04-06 2022-08-08 ユニパルス株式会社 荷役助力装置
CN108545613B (zh) * 2018-06-29 2023-08-01 广西玉柴机器股份有限公司 一种环链葫芦起重设备防侧倾控制方法及装置
CN111606206B (zh) * 2019-02-22 2022-04-19 三菱重工机械系统株式会社 载荷计算装置及载荷计算方法
JP2020200145A (ja) * 2019-06-10 2020-12-17 大同特殊鋼株式会社 昇降装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646595A (ja) * 1992-07-23 1994-02-18 Toyo Electric Mfg Co Ltd インバータ装置により駆動される三相誘導電動機のトルク検出方法
JPH11246184A (ja) 1998-02-27 1999-09-14 Toyo Electric Mfg Co Ltd ホイストクレーン装置
JP2005029280A (ja) * 2003-07-07 2005-02-03 Nitsuchi:Kk チェーンブロック
JP2009029590A (ja) 2007-07-27 2009-02-12 Kito Corp 巻上機の荷重落下防止方法、及び運転制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU648367B2 (en) * 1991-01-10 1994-04-21 Dresser Industries Inc. A method for measuring the weight of a suspended load
EP1389817A1 (en) * 2002-07-26 2004-02-18 STMicroelectronics S.r.l. Method and circuit for detecting a torque variation of an electric DC motor
JP2009268267A (ja) * 2008-04-25 2009-11-12 Sanyo Electric Co Ltd モータ制御装置及び発電機制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646595A (ja) * 1992-07-23 1994-02-18 Toyo Electric Mfg Co Ltd インバータ装置により駆動される三相誘導電動機のトルク検出方法
JPH11246184A (ja) 1998-02-27 1999-09-14 Toyo Electric Mfg Co Ltd ホイストクレーン装置
JP2005029280A (ja) * 2003-07-07 2005-02-03 Nitsuchi:Kk チェーンブロック
JP2009029590A (ja) 2007-07-27 2009-02-12 Kito Corp 巻上機の荷重落下防止方法、及び運転制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2551235A4

Also Published As

Publication number Publication date
KR20130001225A (ko) 2013-01-03
JP2012162327A (ja) 2012-08-30
JP5474624B2 (ja) 2014-04-16
CN102811939B (zh) 2015-04-01
BR112012023208A2 (pt) 2018-08-07
EP2551235A1 (en) 2013-01-30
CN102811939A (zh) 2012-12-05
US8844378B2 (en) 2014-09-30
BR112012023208B1 (pt) 2021-01-12
ES2702100T3 (es) 2019-02-27
US20120325021A1 (en) 2012-12-27
EP2551235A4 (en) 2014-08-27
EP2551235B1 (en) 2018-10-10
CA2791679C (en) 2016-03-29
KR101368162B1 (ko) 2014-02-27
CA2791679A1 (en) 2011-09-29

Similar Documents

Publication Publication Date Title
JP5474624B2 (ja) 電気チェーンブロックの荷重判別装置、及び荷重判別方法
JP5908217B2 (ja) 係船ウインチおよび係船ウインチのケーブルを制御する方法
JP4786942B2 (ja) インバータ装置
JP4662248B2 (ja) インバータ装置
JP5489873B2 (ja) 電気チェーンブロック及びその制御方法
JP2019011165A (ja) 巻上機及び巻上機の過負荷検出方法
JP2010143692A (ja) エレベータ装置
JP5809788B2 (ja) 地切り停止機構付き電動巻上機
JP5848975B2 (ja) 電動巻上機およびその制御方法
JP5399789B2 (ja) インバータ装置及びインバータ装置のティーチング方法
CN212863919U (zh) 塔式起重机的提升机构及塔式起重机
CN110212811B (zh) 一种电流控制装置、磁悬浮系统及其电流控制方法
CN113447718A (zh) 识别永磁电动机的参数的方法、电梯驱动单元和电梯
JP4245455B2 (ja) 風力発電におけるpwmコンバータのトルク指令優先回路
JP5893891B2 (ja) インバータ装置及びインバータ装置のティーチング方法
JP6664280B2 (ja) 電動ウインチ装置
JP2001163587A (ja) クレーンの主巻駆動制御装置および制御方法
JPH06303788A (ja) 電動機速度判定方法
JP2007070017A (ja) 可変速巻上装置
JP5165301B2 (ja) 巻上機の荷重落下防止方法、及び運転制御装置
CN115159347A (zh) 一种起重机吊钩悬吊重物高度的检测方法及系统
JP5939358B2 (ja) エレベータの制御装置
CN108934185A (zh) 逆变器装置及电动机的轻负荷判定方法
TW202308287A (zh) 單相感應馬達之控制方法、控制裝置及電動鏈吊車
JP5971483B2 (ja) 三相巻線形誘導電動機のスリップリングにおける欠相検知方法およびその検知装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015583.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127022368

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2058/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011759446

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2791679

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13582893

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201004897

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012023208

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012023208

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012023208

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120914