WO2011118490A1 - 感放射線性樹脂組成物 - Google Patents

感放射線性樹脂組成物 Download PDF

Info

Publication number
WO2011118490A1
WO2011118490A1 PCT/JP2011/056356 JP2011056356W WO2011118490A1 WO 2011118490 A1 WO2011118490 A1 WO 2011118490A1 JP 2011056356 W JP2011056356 W JP 2011056356W WO 2011118490 A1 WO2011118490 A1 WO 2011118490A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
acid
resin composition
Prior art date
Application number
PCT/JP2011/056356
Other languages
English (en)
French (fr)
Inventor
征矢野 晃雅
芳史 大泉
龍一 芹澤
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2012506970A priority Critical patent/JPWO2011118490A1/ja
Publication of WO2011118490A1 publication Critical patent/WO2011118490A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means

Definitions

  • the present invention relates to a radiation sensitive resin composition.
  • a photolithography technique using a chemically amplified radiation-sensitive resin composition has been used in the manufacture of semiconductors such as ICs and circuit boards such as liquid crystals and thermal heads.
  • This chemically amplified radiation-sensitive resin composition is formed by irradiating an irradiated portion (exposed portion) with an acid by irradiating with radiation such as far ultraviolet light represented by KrF excimer laser or ArF excimer laser.
  • a resist pattern is formed on the substrate by utilizing the difference in dissolution rate with respect to the developing solution generated between the exposed portion and the unexposed portion by the reaction using this acid as a catalyst.
  • a radiation sensitive resin composition one containing a specific polymer having an acid dissociable group and an acid generator is known (see Japanese Patent Publication No. 2-27660).
  • the properties required of the acid generator include excellent transparency to radiation, high quantum yield in acid generation, sufficiently strong acid generated by exposure, and diffusion distance of the generated acid in the resist film. The reason is that it is reasonably short, and the compatibility between the generated acid and the resin (polymer) having an acid dissociable group is high.
  • an ionic radiation-sensitive acid is required.
  • the structure of the anion moiety in the generator is important.
  • the structure of the sulfonyl moiety is important.
  • a resist film formed from a radiation-sensitive resin composition containing an acid generator having a trifluoromethanesulfonyl structure or a nonafluorobutanesulfonyl structure is a sufficiently strong acid generated by exposure.
  • an acid generator having a trifluoromethanesulfonyl structure or a nonafluorobutanesulfonyl structure is a sufficiently strong acid generated by exposure.
  • a resist film formed from a radiation-sensitive resin composition containing an acid generator having a sulfonyl structure bonded to a large organic group such as a 10-camphorsulfonyl structure has a carbon content of acid generated by exposure. It is sufficiently high and has relatively good compatibility with a resin having an acid-dissociable group, and has an advantage that the acid diffusion distance is reasonably short. However, since the acid strength is not sufficient, In addition to inadequate resolution performance, the sensitivity is inadequate, resulting in a lack of practicality.
  • the radiation-sensitive resin composition still has room for improvement, and in particular, development of a material capable of forming a resist film having a small LWR and a wide DOF is required.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a radiation-sensitive resin composition capable of forming a resist film having a small LWR and a wide DOF. .
  • the invention made to solve the above problems is [A] a polymer containing a structural unit (a1) represented by the following formula (a1) (hereinafter also referred to as “[A] polymer”), and [B] an alicyclic skeleton having 10 or more carbon atoms.
  • Two or more acid generators that generate sulfonic acid hereinafter also referred to as “[B] acid generator”
  • R 1 is a hydrogen atom or a methyl group.
  • R 2 is an alkyl group having 1 to 10 carbon atoms or a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms.
  • R 3 each independently represents an alkyl group having 1 to 10 carbon atoms or a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, provided that any two R 3 are bonded to each other.
  • a divalent alicyclic hydrocarbon group having 4 to 20 carbon atoms may be formed together with the carbon atom to which is bonded.
  • the acid generator is preferably a compound represented by the following formula (B1).
  • R 4 is a monovalent hydrocarbon group having an alicyclic skeleton having 10 or more carbon atoms.
  • A is an oxygen atom, a carbonyloxy group, or an oxycarbonyl group.
  • X is (This is an optionally substituted divalent linear or branched hydrocarbon group having 1 to 20 carbon atoms.
  • K is 0 or 1.
  • M + is a monovalent onium cation.
  • R 4 is preferably a monovalent hydrocarbon group having an adamantane skeleton.
  • the compound represented by the formula (B1) preferably includes a compound represented by the following formula (B1-1).
  • R 5 is an optionally substituted monovalent hydrocarbon group having 1 to 8 carbon atoms.
  • Each R 6 is independently a hydrogen atom or a substituted one.
  • a monovalent hydrocarbon group having 1 to 8 carbon atoms each R 7 is independently a fluorine atom or a perfluoroalkyl group having 1 to 4 carbon atoms
  • A is an oxygen atom, carbonyloxy A group or an oxycarbonyl group
  • k is 0 or 1.
  • l is an integer of 0 to 4.
  • m is an integer of 0 to 10.
  • n is an integer of 1 to 4.
  • M + is a monovalent onium cation.
  • R 5 ⁇ R 7 are each a plurality of R 5 ⁇ R 7 may each be the same or different.
  • the M + is preferably a sulfonium cation represented by the following formula (b1) or an iodonium cation represented by the formula (b2).
  • each R 8 independently represents an optionally substituted linear or branched alkyl group having 1 to 10 carbon atoms or an optionally substituted 6 to 18 carbon atoms.
  • each R 9 is independently a linear or branched alkyl group having 1 to 10 carbon atoms which may be substituted, or an alkyl group having 6 to 18 carbon atoms which may be substituted.
  • It is an aryl group, provided that any two of R 9 may be bonded together to form a cyclic structure together with the iodine atom to which they are bonded.
  • the structural unit (a1) preferably includes a structural unit represented by the following formula (a1-1).
  • R 1 has the same meaning as in Formula (a1).
  • R 10 is an alkyl group having 1 to 10 carbon atoms.
  • A is an integer of 0 to 4.
  • the content of the structural unit represented by the formula (a1-1) in the polymer is preferably 50 mol% or more.
  • the radiation-sensitive resin composition of the present invention can form a resist film having a small LWR and a wide DOF.
  • the radiation sensitive resin composition of the present invention contains [A] a polymer and [B] an acid generator. Moreover, the said radiation sensitive resin composition may contain the [C] acid diffusion inhibitor and the [E] solvent which are mentioned later as a suitable component. Furthermore, the radiation sensitive resin composition may contain other optional components. Hereinafter, each component will be described in detail.
  • the [A] polymer is a polymer containing the structural unit (a1) represented by the above formula (a1) and containing 50 mol% or more of all the structural units in the [A] polymer. Since such a polymer has a high content of structural units having an acid dissociable group (50 mol% or more), the LWR of the resist film can be reduced. That is, when acid is generated from the [B] acid generator by irradiation (exposure), the number of acid dissociable groups to be eliminated is large, and there are many acid groups to be deprotected. Since the solubility in the liquid can be improved, the LWR of the resist film can be reduced. In addition, the said radiation sensitive resin composition may contain 2 or more types of [A] polymers.
  • the structural unit (a1) is a structural unit represented by the above formula (a1), and is a structural unit having an acid dissociable group represented by —CR 2 (R 3 ) 2 .
  • Such an acid-dissociable group-containing structural unit is exposed to radiation (exposure), and when an acid is generated from the radiation-sensitive acid generator, the acid-dissociable group is eliminated and the acidic group is deprotected. It exhibits acidity. Therefore, the [A] polymer containing many acid-dissociable groups has improved solubility in a developing solution exhibiting alkalinity, and in particular, can reduce the LWR of the resist film.
  • examples of the alkyl group having 1 to 10 carbon atoms represented by R 2 and R 3 include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, 1- Examples include methylpropyl group, 2-methylpropyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decanyl group and the like. Of these, a methyl group, an ethyl group, an n-propyl group, and an i-propyl group are preferable from the viewpoint that the acid dissociable group has an appropriate leaving ability.
  • a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms represented by R 2 and any two R 3 are bonded together to form a carbon atom to which they are bonded.
  • the divalent alicyclic hydrocarbon group having 4 to 20 carbon atoms that may be used include cycloalkanes such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, and cyclooctane; adamantane, bicyclo [2.2 .1] groups having a skeleton derived from a bridged alicyclic hydrocarbon such as heptane and tricyclo [4.3.12,5] decane.
  • a group having a skeleton derived from adamantane, cyclopentane, cyclohexane, cyclooctane or the like is preferable because it has appropriate elimination ability and resolution, and a skeleton derived from cyclopentane, cyclohexane, or cyclooctane. More preferred is a group having
  • the polymer may contain two or more structural units (a1).
  • the structural unit (a1) preferably includes the structural unit (a1-1) represented by the above formula (a1-1). When two or more types of structural units are combined as the structural unit (a1), it is preferable that at least one type is the structural unit (a1-1).
  • a is preferably 1 to 4, more preferably 1 to 2.
  • the content ratio of the structural unit (a1) in the polymer is 50 mol% or more of the total structural units in the [A] polymer, preferably 50 mol% to 80 mol%, preferably 50 mol% to 70 mol% is more preferable.
  • the content ratio of the structural unit (a1) is 50 mol% or more, the content ratio of the structural unit having an acid-dissociable group contained in the [A] polymer is increased, so that the LWR of the resist film is reduced. can do.
  • the content ratio of the structural unit (a1) is less than 50 mol%, the above-described effect may not be sufficiently obtained because the resolution of the resist film is insufficient.
  • the content of the structural unit (a1-1) in the polymer is preferably 50 mol% or more, more preferably 50 mol% to 80 mol%, more preferably 50 mol% of all structural units in the [A] polymer. % To 70 mol% is particularly preferred. When the content ratio of the structural unit (a1-1) is 50 mol% or more, the LWR of the resist film can be further reduced.
  • the polymer may contain, in addition to the structural unit (a1), a structural unit having a lactone structure or a cyclic carbonate structure (hereinafter also referred to as “structural unit (a2)”).
  • structural unit (a2) a structural unit having a lactone structure or a cyclic carbonate structure
  • structural unit (a2-a) examples include structural units represented by the following formulas (a2-a1) to (a2-a16).
  • each R 1 is independently a hydrogen atom or a methyl group.
  • a structural unit having a lactone ring bonded to a polycyclic alicyclic hydrocarbon group is preferable. That is, a structural unit having a lactone ring bonded to a norbornane ring, such as structural unit (a2-a1), (a2-a3), (a2-a7) to (a2-a13), or structural unit (a2- A structural unit having a lactone ring bonded to a bicyclo [2.2.2] octane ring, such as a4), is more preferable.
  • Examples of the monomer that gives the structural unit (a2-a) include (meth) acrylic acid-5-oxo-4-oxa-tricyclo [4.2.1.0 3,7 ] non-2-yl ester, (Meth) acrylic acid-9-methoxycarbonyl-5-oxo-4-oxa-tricyclo [4.2.1.0 3,7 ] non-2-yl ester, (meth) acrylic acid-5-oxo-4 -Oxa-tricyclo [5.2.1.0 3,8 ] dec-2-yl ester, (meth) acrylic acid-10-methoxycarbonyl-5-oxo-4-oxa-tricyclo [5.2.1.
  • structural unit (a2-b) examples include a structural unit represented by the following formula (a2-b).
  • R 1 represents a hydrogen atom or a methyl group.
  • Y is a single bond, a divalent chain hydrocarbon group having 1 to 30 carbon atoms, a divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms, or a divalent aromatic carbon group having 6 to 30 carbon atoms. It is a hydrogen group.
  • Z is a monovalent group having a cyclic carbonate structure represented by the following formula (a2-b ′).
  • R 11 is a hydrogen atom or a monovalent chain hydrocarbon group having 1 to 5 carbon atoms.
  • p is 1 or 2.
  • q is 1 or 2.
  • the plurality of R11s may be the same or different.
  • examples of the divalent chain hydrocarbon group having 1 to 30 carbon atoms represented by Y include a methylene group, an ethylene group, a 1,2-propylene group, and a 1,3-propylene group.
  • Tetramethylene group pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, undecamethylene group, dodecamethylene group, tridecamethylene group, tetradecamethylene group, pentadecamethylene group
  • a linear alkylene group such as a hexadecamethylene group, a heptacamethylene group, an octadecamethylene group, a nonadecamethylene group, an icosalen group; 1-methyl-1,3-propylene group, 2-methyl-1,3- Propylene group, 2-methyl-1,2-propylene group, 1-methyl-1,4-butylene group, 2-methyl-1,4-butylene group Methylid
  • examples of the divalent alicyclic hydrocarbon group having 3 to 30 carbon atoms represented by Y include 1,3-cyclobutylene group, 1,3-cyclopentylene group, and the like.
  • Monocyclic cycloalkylene groups having 3 to 10 carbon atoms such as 1,4-cyclohexylene group and 1,5-cyclooctylene group; 1,4-norbornylene group, 2,5-norbornylene group, 1,5-adaman And polycyclic cycloalkylene groups such as a tylene group and a 2,6-adamantylene group.
  • examples of the divalent aromatic hydrocarbon group having 6 to 30 carbon atoms represented by Y include arylene groups such as a phenylene group, a tolylene group, a naphthylene group, a phenanthrylene group, and an anthrylene group. Is mentioned.
  • the above formula (a2-b) as the monovalent group having a cyclic carbonate structure represented by the formula (a2-b ′) represented by Z (hereinafter, also simply referred to as “Z group”), the above formula ( a group in which the cyclic carbonate structure represented by the above formula (a2-b ′) is directly bonded to Y in a2-b) (see the structural units (a2-b1) to (a2-b6) below), the above formula A group having a divalent group with Y in (a2-b) (see the structural unit (a2-b7) below), a polycyclic ring containing a cyclic carbonate structure represented by the above formula (a2-b ′) And a group having a structure (see structural units (a2-b8) to (a2-b21) below) and the like.
  • Z group the above formula (a group in which the cyclic carbonate structure represented by the above formula (a2-b ′) is directly bonded to Y in a2-b) (see the structural units (a2-
  • cyclic carbonate structure represented by the above formula (a2-b ′) in the Z group and the polycyclic structure containing the structure may have a substituent (for example, the structural unit (a2-b2) shown below, (See (a2-b5), (a2-b6), (a2-b14), (a2-b18), (a2-b20)).
  • a substituent for example, the structural unit (a2-b2) shown below, (See (a2-b5), (a2-b6), (a2-b14), (a2-b18), (a2-b20)).
  • the number of carbon atoms in the Z group is preferably 3 to 30, more preferably 3 to 15, and particularly preferably 3 to 10. If the number of carbon atoms in the Z group exceeds 30, the adhesion of the formed resist film to the substrate is lowered, and thus there is a possibility that the resist pattern “falls” or “peels”.
  • the [A] polymer containing the structural unit (a2-b) having a Z group having more than 30 carbon atoms is reduced in solubility in the developer, causing development defects. There is a risk.
  • Examples of the structural unit (a2-b) include structural units represented by the following formulas (a2-b1) to (a2-b21).
  • R 1 is a hydrogen atom or a methyl group.
  • the structural unit (a2-b1) is preferable.
  • the polymer may contain two or more kinds of structural units (a2).
  • the content ratio of the structural unit (a2) is preferably 20 mol% to 50 mol% of the total structural units in the [A] polymer.
  • the content ratio of the structural unit (a2) is within the above range, there are advantages that the resist film to be formed has excellent adhesion to the substrate and that the resolution as a resist is improved.
  • the polymer may contain other structural units in addition to the above-described structural unit (a1) and structural unit (a2).
  • the other structural unit is not particularly limited, and examples thereof include a structural unit derived from a (meth) acrylic acid ester of a chain hydrocarbon group or alicyclic hydrocarbon group which may have a substituent.
  • the polymer can be synthesized according to a conventionally known method such as radical polymerization.
  • a reaction solution containing each monomer and a radical initiator is reacted with a reaction solvent or a monomer-containing reaction.
  • a method of performing a polymerization reaction by dropping into a solution, a reaction solution containing each monomer and a reaction solution containing a radical initiator are separately dropped into a reaction solution containing a reaction solvent or a monomer, and polymerization is performed.
  • Method of reacting, a reaction solution in which each monomer is prepared separately and a reaction solution containing a radical initiator are dropped separately into a reaction solution containing a reaction solvent or a monomer, respectively, and a polymerization reaction And the like.
  • the reaction temperature in each polymerization reaction can be appropriately set depending on the type of the initiator, but is preferably 30 ° C. to 180 ° C., more preferably 40 ° C. to 160 ° C., and particularly preferably 50 ° C. to 140 ° C.
  • the time required for dropping the various reaction solutions can be appropriately set depending on the reaction temperature, the type of initiator, the monomer to be reacted, etc., but is preferably 30 minutes to 8 hours, preferably 45 minutes to 6 Time is more preferable, and 1 hour to 5 hours is particularly preferable.
  • the total reaction time including the dropping time can be appropriately set, but is preferably 30 minutes to 8 hours, more preferably 45 minutes to 7 hours, and particularly preferably 1 hour to 6 hours.
  • the content ratio of the monomer in the reaction solution to be dropped is preferably 30 mol% or more, more preferably 50 mol% or more of the total amount of monomers used for the polymerization. More preferably, 70 mol% or more is particularly preferable.
  • radical initiator used for polymerization examples include 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2-cyclopropylpropionitrile), 2,2 '-Azobis (2,4-dimethylvaleronitrile), 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), 1,1'-azobis (cyclohexane-1 -Carbonitrile), 2,2′-azobis (2-methyl-N-phenylpropionamidine) dihydrochloride, 2,2′-azobis (2-methyl-N-2-propenylpropionamidine) dihydrochloride, 2,2 '-Azobis (2- (5-methyl-2-imidazolin-2-yl) propane) dihydrochloride, 2,2'-azobis (2-methyl) N- (1,1-bis (hydroxymethyl) 2-hydroxyethyl) propionamide), dimethyl-2,2′-azobis
  • the reaction solvent (polymerization solvent) used for the polymerization can be used without particular limitation as long as it is not a solvent (for example, nitrobenzenes or mercapto compounds) that dissolves the monomers used and inhibits the polymerization.
  • a solvent for example, nitrobenzenes or mercapto compounds
  • examples of such a polymerization solvent include alcohols, ethers, ketones, amides, esters, lactones, nitriles, or a mixed solvent thereof.
  • alcohols used as a polymerization solvent include methanol, ethanol, propanol, isopropanol, butanol, ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 1-methoxy-2-propanol, and the like.
  • ethers include propyl ether, isopropyl ether, butyl methyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, 1,3-dioxane and the like.
  • ketones include acetone, methyl ethyl ketone, diethyl ketone, methyl isopropyl ketone, and methyl isobutyl ketone.
  • amides include N, N-dimethylformamide and N, N-dimethylacetamide.
  • esters include ethyl acetate, methyl acetate, and isobutyl acetate.
  • lactones include ⁇ -butyrolactone.
  • nitriles include acetonitrile, propionitrile, butyronitrile, and the like. In addition, these solvents can be used individually or in combination of 2 or more types.
  • the polymerization reaction solution is preferably poured into a reprecipitation solvent and the target polymer is recovered as a powder.
  • the reprecipitation solvent include water, alcohols, ethers, ketones, amides, esters, lactones, nitriles, or a mixed solution thereof.
  • alcohols used as the reprecipitation solvent include methanol, ethanol, propanol, isopropanol, butanol, ethylene glycol, propylene glycol, 1-methoxy-2-propanol and the like.
  • ethers include propyl ether, isopropyl ether, butyl methyl ether, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, 1,3-dioxane and the like.
  • ketones include acetone, methyl ethyl ketone, diethyl ketone, methyl isopropyl ketone, and methyl isobutyl ketone.
  • amides include N, N-dimethylformamide and N, N-dimethylacetamide.
  • the esters include ethyl acetate, methyl acetate, and isobutyl acetate.
  • lactones include ⁇ -butyrolactone.
  • nitriles include acetonitrile, propionitrile, butyronitrile, and the like.
  • the mass average molecular weight (Mw) of the polymer measured by gel permeation chromatography is preferably 1,000 to 100,000, more preferably 1,500 to 80,000, and 2,000 to 50,000. Is particularly preferred. [A] If the Mw of the polymer is less than 1,000, the heat resistance of the resist film may be lowered. On the other hand, if the Mw of the [A] polymer exceeds 100,000, the developability of the resist film may be lowered. [A] The ratio (Mw / Mn) between the Mw and the number average molecular weight (Mn) of the polymer is preferably 1 to 5, and more preferably 1 to 3.
  • the polymerization reaction liquid obtained by polymerization has fewer impurities such as halogen and metal. This is because when the content of impurities is smaller, the sensitivity, resolution, process stability, pattern shape, and the like when a resist film is formed can be further improved.
  • the purification method of the polymerization reaction solution include chemical purification methods such as washing with water and liquid-liquid extraction, and methods combining these chemical purification methods with physical purification methods such as ultrafiltration and centrifugation. It is done.
  • the [B] acid generator contained in the radiation-sensitive resin composition is an acid generator having two or more types of acid generators having an alicyclic skeleton having 10 or more carbon atoms and generating sulfonic acid.
  • the acid generator generates sulfonic acid having an alicyclic skeleton having 10 or more carbon atoms when irradiated with radiation.
  • this sulfonic acid By the action of this sulfonic acid, the acid dissociable group of the [A] polymer is eliminated and the acidic group is deprotected, so that the [A] polymer becomes soluble in an alkaline developer.
  • the acid generated from the [B] acid generator is sulfonic acid and has high acidity, the acid-dissociable group of the [A] polymer can be efficiently eliminated.
  • the [B] acid generator and the sulfonic acid generated therefrom have an alicyclic skeleton having 10 or more carbon atoms, the boiling point of the [B] acid generator and sulfonic acid generated therefrom is increased. It is difficult to volatilize during pre-bake before exposure, post-bake after exposure, and the like, and diffusion is suppressed, that is, the diffusion distance in the resist film is moderately short. Furthermore, the [B] acid generator and the sulfonic acid generated therefrom have an alicyclic skeleton having 10 or more carbon atoms and a high carbon content, so that the compatibility with the [A] polymer is good. Has characteristics.
  • the radiation-sensitive resin composition usually generates two or more sulfonic acids having different acidities and distributions in the resist film by using at least two acid generators. Differences in the distribution of sulfonic acids in the film thickness direction in the resist film occur due to differences in acidity and polarity. Therefore, by generating two or more sulfonic acids with different acidity and distribution in the resist film and controlling the acid concentration distribution in the resist film, a pattern with good rectangularity can be resolved. , LWR can be reduced. Further, the DOF can be widened by adjusting the blending ratio of two or more sulfonic acids having different acidities and distributions in the resist film. The acidity and the distribution in the resist film can be adjusted, for example, by changing the fluorine content of the generated sulfonic acid.
  • the acid generator is not particularly limited as long as it is an acid generator that generates a sulfonic acid having an alicyclic skeleton having 10 or more carbon atoms, but the compound represented by the above formula (B1) (hereinafter, referred to as “acid generator”). “(B1) Acid generator” is also preferably included. Since the sulfonic acid generated by such an acid generator has a moderately short diffusion distance in the resist film, the solubility of the [A] polymer in an alkaline developer can be improved efficiently. The sensitivity and the resolution performance can be further improved, the LWR can be further reduced, and the DOF can be further increased. [B] As the acid generator, it is more preferable to use two or more acid generators having different structures (B1).
  • examples of the monovalent hydrocarbon group having an alicyclic skeleton having 10 or more carbon atoms represented by R 4 include adamantane, bicyclo [2.2.1] heptane, and tricyclo [4.3. .0.1 2,5 ] decane, tetracyclo [4.4.0.1 2,5 .
  • monovalent hydrocarbon groups having an alicyclic skeleton such as 17, 10 ] dodecane are preferable from the viewpoint of improving compatibility with the [A] polymer.
  • the monovalent hydrocarbon group having an alicyclic skeleton having 10 or more carbon atoms represented by R 4 is a group consisting of only an alicyclic skeleton having 10 or more carbon atoms among the above alicyclic skeletons. May be. That is, when the alicyclic skeleton is adamantane, the monovalent hydrocarbon group having an alicyclic skeleton having 10 or more carbon atoms represented by R 4 includes an adamantane-1-yl group or an adamantane-2-yl group. It may be.
  • the acid generator preferably contains a compound represented by the above formula (B1-1) (hereinafter also referred to as “(B1-1) acid generator”).
  • (B1-1) acid generator a compound represented by the above formula (B1-1) (hereinafter also referred to as “(B1-1) acid generator”).
  • a preferred combination of acid generators is a combination of two or more acid generators having different values of n in the above formula (B1-1).
  • the monovalent hydrocarbon group having 1 to 8 carbon atoms which may be substituted represented by R 5 is, for example, a methyl group, an ethyl group, 1,2-propyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, or a group in which their hydrogen atoms are substituted. .
  • a methyl group and an ethyl group are preferable.
  • the group represented by R 5 when l is 1 or more, is not particularly limited and may be bonded to any carbon atom in the adamantane skeleton. That is, a group represented by R 5 may be bonded to a plurality of carbon atoms in the same ring among a plurality of rings of the adamantane skeleton, and each (plural) carbons of the plurality of rings of the adamantane skeleton. A group represented by R 5 may be bonded to the atom. In addition, two groups represented by R 5 may be bonded to the secondary carbon atom of the adamantane skeleton.
  • l is preferably 0 to 3, more preferably 0 to 2, and particularly preferably 0 or 1.
  • the monovalent hydrocarbon group having 1 to 8 carbon atoms which may be substituted represented by R 6 is, for example, a methyl group, an ethyl group, a 1,2-propyl group, n -Propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and the like.
  • R 6 is preferably a hydrogen atom, a methyl group, or an ethyl group.
  • R 7 is preferably a fluorine atom or a perfluoromethyl group.
  • m is preferably 0 to 8, more preferably 0 to 6, and particularly preferably 1 to 4.
  • n is preferably 1 to 3, and more preferably 1 or 2.
  • the sulfonic acid generated from the acid generator (B1-1) has a strong fluorine-containing electron-withdrawing group at least at the ⁇ -position of the sulfone group.
  • the acidity of the sulfonic acid generated from the acid generator can be increased. By changing the value of n, the acidity of the (B1-1) acid generator and the distribution in the resist film can be adjusted.
  • A is preferably a carbonyloxy group.
  • examples of the monovalent onium cation represented by M + include onium cations such as oxygen, sulfur, selenium, nitrogen, phosphorus, arsenic, antimony, chlorine, boron, and iodine. Etc. Of these, the sulfonium cation represented by the above formula (b1) or the iodonium cation represented by the above formula (b2) is preferable.
  • the optionally substituted linear or branched alkyl group having 1 to 10 carbon atoms represented by R 8 or R 9 is, for example, a methyl group, n-butyl Groups and the like.
  • examples of the optionally substituted aryl group having 6 to 18 carbon atoms represented by R 8 or R 9 include a phenyl group and a 4-cyclohexylphenyl group.
  • the group represented by R 8 or R 9 is preferably an aryl group because of its high radiation absorption efficiency.
  • the sulfonium cation represented by the above formula (b1) is preferably a sulfonium cation represented by the following formula (b1-a) or (b1-b) because of its high radiation absorption efficiency.
  • each R 12 independently represents a hydroxyl group, an optionally substituted linear or branched alkyl group having 1 to 12 carbon atoms, or an optionally substituted carbon. It is an aryl group of formula 6-12. Each r is independently an integer of 0 to 5. However, when R 12 is plural, plural R 12 may each be the same or different.
  • R 13 represents a hydroxyl group, an optionally substituted linear or branched alkyl group having 1 to 8 carbon atoms, or an optionally substituted carbon group having 6 to 8 carbon atoms.
  • R 14 is a hydrogen atom, an optionally substituted linear or branched alkyl group having 1 to 7 carbon atoms, or an optionally substituted aryl group having 6 or 7 carbon atoms.
  • t is 2 to 6, any two of 2 to 6 R 14 may be bonded to each other to form a cyclic structure.
  • s is an integer of 0 to 7.
  • t It is an integer from 0 to 6.
  • u is an integer of 0 to 3.
  • each plurality of R 13 and R 14 be different from be the same.
  • Examples of the sulfonium cation represented by the above formula (b1) include sulfonium cations represented by the following formulas (b1-1) to (b1-63).
  • the iodonium cation represented by the above formula (b2) is preferably an iodonium cation represented by the following formula (b2-a) because of its high radiation absorption efficiency.
  • each R 15 is independently a hydroxyl group, an optionally substituted linear or branched alkyl group having 1 to 12 carbon atoms, or an optionally substituted carbon. It is an aryl group of formula 6-12. However, two aryl groups bonded to the iodine atom may be bonded to each other to form a cyclic structure together with the iodine atom.
  • v is each independently an integer of 0 to 5. However, when R 15 is plural, plural R 15 may be different even in the same.
  • Examples of the iodonium cation represented by the above formula (b2) include iodonium cations represented by the following formulas (b2-1) to (b2-39).
  • iodonium cations represented by the above formulas (b2-1) and (b2-11) are preferred.
  • an onium cation represented by M + is, for example, Advances in Polymer Science, Vol. 62, p. 1-48 (1984).
  • the content of the acid generator is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the [A] polymer.
  • the content of the acid generator is less than 0.1 parts by mass, the amount of the generated sulfonic acid is insufficient, so that the acid dissociable group of the polymer [A] can be sufficiently deprotected. Therefore, the resolution may be reduced.
  • the content of the [B] acid generator exceeds 20 parts by mass, the transparency, heat resistance and the like of the resist film with respect to radiation may decrease, and a good pattern shape may not be obtained.
  • the acid diffusion control agent suppresses the phenomenon that the acid generated from the [B] acid generator is diffused in the resist film by irradiation of the radiation, and the acid is dissociated in the non-exposed region. It suppresses side reactions that cause the group to be eliminated.
  • the radiation-sensitive resin composition contains such a [C] acid diffusion control agent, the resolution as a resist film is further improved, and the holding time from exposure to heat treatment (PED: Post-Exposure). It is possible to suppress a change in the line width of the resist pattern due to a variation in (Delay), and to obtain a radiation-sensitive resin composition excellent in process stability and storage stability.
  • Examples of the acid diffusion controller include Nt-butoxycarbonyldi-n-octylamine, Nt-butoxycarbonyldi-n-nonylamine, Nt-butoxycarbonyldi-n-decylamine, N- t-butoxycarbonyldicyclohexylamine, Nt-butoxycarbonyl-1-adamantylamine, Nt-butoxycarbonyl-2-adamantylamine, Nt-butoxycarbonyl-N-methyl-1-adamantylamine, (S) -(-)-1- (t-butoxycarbonyl) -2-pyrrolidinemethanol, (R)-(+)-1- (t-butoxycarbonyl) -2-pyrrolidinemethanol, Nt-butoxycarbonyl-4- Hydroxypiperidine, Nt-butoxycarbonylpyrrolidine, N, N'-di-t-butoxy Rubonyl piperazine, N, N-di-t-butoxy
  • Acid diffusion control agents include, for example, tertiary amine compounds, quaternary ammonium hydroxide compounds, nitrogen-containing heterocyclic compounds, etc., in addition to the above Nt-butoxycarbonyl group-containing amino compounds.
  • tertiary amine compounds include triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine, tri-n-heptylamine, and tri-n-octylamine.
  • Examples of the quaternary ammonium hydroxide compound include tetra-n-propylammonium hydroxide and tetra-n-butylammonium hydroxide.
  • nitrogen-containing heterocyclic compound examples include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, 2-methyl-4-phenylpyridine, Pyridines such as nicotine, nicotinic acid, nicotinamide, quinoline, 4-hydroxyquinoline, 8-oxyquinoline, acridine; piperazines such as piperazine, 1- (2-hydroxyethyl) piperazine, pyrazine, pyrazole, pyridazine Quinosaline, purine, pyrrolidine, piperidine, 3-piperidino-1,2-propanediol, morpholine, 4-methylmorpholine, 1,4-dimethylpiperazine, 1,4-diazabicyclo [2.2.2] octane, imidazole, 4-methylimidazole, 1- Njiru-2-methylimidazole, 4-methyl-2-phenyl
  • the acid diffusion controller may be used alone or in combination of two or more.
  • the content of the acid diffusion controller is preferably 10 parts by mass or less with respect to 100 parts by mass of the polymer [A] from the viewpoint of ensuring high sensitivity as a resist film. 5 parts by mass is more preferable.
  • the content of the acid diffusion controller exceeds 10 parts by mass, the sensitivity of the resist film may be significantly reduced.
  • the content of the [C] acid diffusion controller is less than 0.001 part by mass, the acid diffusion control effect may not be obtained.
  • the radiation-sensitive resin composition is an alicyclic additive having an acid-dissociable group, a surfactant, a sensitizer, an alkali-soluble resin, and an acid-dissociable as long as the effects of the present invention are not impaired.
  • Other optional components such as a low-molecular alkali solubility controller having a protecting group, an antihalation agent, a storage stabilizer, and an antifoaming agent may be included.
  • other arbitrary components may combine each component and may contain 2 or more types of each component.
  • other optional components will be described in detail.
  • the alicyclic additive having an acid dissociable group is a component having an action of further improving dry etching resistance, pattern shape, adhesion to a substrate, and the like.
  • Examples of the alicyclic additive include t-butyl 1-adamantanecarboxylate, t-butoxycarbonylmethyl 1-adamantanecarboxylate, di-t-butyl 1,3-adamantanedicarboxylate, t-butyl 1-adamantane acetate, Adamantane derivatives such as 1-adamantane acetate t-butoxycarbonylmethyl, 1,3-adamantanediacetate di-t-butyl; deoxycholic acid t-butyl, deoxycholic acid t-butoxycarbonylmethyl, deoxycholic acid 2-ethoxy Deoxycholic acid esters such as ethyl, deoxycholic acid 2-cyclohexyloxyethyl, de
  • the surfactant is a component having an effect of improving coating properties, low striation properties, developability, and the like.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol diacrylate.
  • Nonionic surfactants such as stearate are listed.
  • Commercially available surfactants include KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no.
  • the radiation-sensitive resin composition comprises a raw material composition containing a [A] polymer, a [B] acid generator, a [C] acid diffusion control agent as a suitable component, and other optional components. It can be prepared by dissolving in [E] solvent so that the partial concentration is 3 mass% to 50 mass%, preferably 5 mass% to 25 mass%, and then filtering with a filter having a pore diameter of about 200 nm.
  • solvent examples include ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, and ethylene glycol mono-n-butyl ether acetate; propylene Propylene glycol monoalkyl ethers such as glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono-n-butyl ether; propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n- Propyl ether, propylene glycol di-n-butyl ether Propylene glycol dialkyl ethers such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monoethyl ether
  • ⁇ Resist pattern formation method> A method for forming a resist pattern using the radiation sensitive resin composition will be described.
  • a resist film made of the radiation sensitive resin composition (composition solution) is formed on the substrate.
  • the resist film thus formed is exposed to radiation that has passed through the hole of the mask placed on the optical path.
  • the acid dissociable group in the [A] polymer is eliminated and the carboxyl group is deprotected.
  • the exposed portion of the resist film becomes highly soluble in an alkaline developer.
  • the resist film is developed using an alkaline developer, that is, the exposed portion of the resist film is dissolved and removed by the developer, whereby a positive resist pattern can be formed.
  • a resist film is formed by coating on a substrate such as a silicon wafer or a wafer coated with aluminum by an appropriate coating means such as spin coating, cast coating or roll coating.
  • the thickness of the resist film is preferably 10 nm to 5,000 nm, and more preferably 10 nm to 2,000 nm.
  • the prebaking heating conditions vary depending on the composition of the radiation-sensitive resin composition, but are preferably about 30 to 200 ° C, more preferably 50 to 150 ° C.
  • the radiation used for exposure can be appropriately selected from visible rays, ultraviolet rays, far ultraviolet rays, X-rays, charged particle beams, etc., but an ArF excimer laser (wavelength 193 nm) or a KrF excimer laser (wavelength 248 nm). Are preferable, and an ArF excimer laser (wavelength: 193 nm) is more preferable.
  • the post-baking heating conditions vary depending on the composition of the radiation-sensitive resin composition, but are preferably 30 ° C. to 200 ° C., more preferably 50 ° C. to 170 ° C.
  • an organic or inorganic antireflection coating is used.
  • a film can also be formed.
  • a protective film can be provided on the resist film as disclosed in, for example, JP-A-5-188598.
  • a predetermined resist pattern can be obtained by developing the exposed portion of the resist film.
  • the developer used for development include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, Triethylamine, methyldiethylamine, ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, and 1,5-diazabicyclo-
  • An alkaline aqueous solution in which at least one selected from the group consisting of alkaline compounds such as [4.3.0] -5-nonene is dissolved is preferable.
  • the concentration of the alkaline aqueous solution is preferably 10% by mass or less.
  • an organic solvent can be added to the developer.
  • the organic solvent include acetone, methyl ethyl ketone, methyl i-butyl ketone, cyclopentanone, cyclohexanone, 3-methylcyclopentanone, 2,6-dimethylcyclohexanone, and the like; methyl alcohol, ethyl alcohol, n-propyl alcohol, alcohols such as i-propyl alcohol, n-butyl alcohol, t-butyl alcohol, cyclopentanol, cyclohexanol, 1,4-hexanediol and 1,4-hexanedimethylol; ethers such as tetrahydrofuran and dioxane; acetic acid Examples include esters such as ethyl, n-butyl acetate, and i-amyl acetate; aromatic hydrocarbons such as toluene and xylene, phenol,
  • the content of the organic solvent is preferably 100 parts by volume or less with respect to 100 parts by volume of the alkaline aqueous solution.
  • the content ratio of the organic solvent exceeds 100 parts by volume, the developability is lowered, and there is a concern that the development residue in the exposed part increases.
  • an appropriate amount of the surfactants exemplified as other optional components of the radiation-sensitive resin composition of the present invention can be added to the developer.
  • Mw and Mn use Tosoh's GPC columns (2 G2000HXL, 1 G3000HXL, 1 G4000HXL), with a flow rate of 1.0 ml / min, elution solvent tetrahydrofuran, and column temperature of 40 ° C. under monodisperse polystyrene as standard. Measured by gel permeation chromatography (GPC). Further, the dispersity (Mw / Mn) was calculated from the above measurement results. For the 13 C-NMR analysis of each polymer, a nuclear magnetic resonance apparatus (JNM-EX270) manufactured by JEOL Ltd. was used.
  • JNM-EX270 nuclear magnetic resonance apparatus manufactured by JEOL Ltd.
  • Mw of the copolymer (A-1) was 6,698, Mw / Mn was 1.403, and the yield was 75.3% by mass. Further, the content ratio of the structural unit derived from each monomer in the copolymer (A-1) measured by 13 C-NMR analysis, monomer (M-1) / monomer (M-5 ) / Monomer (M-7) / monomer (M-9) was 49.0 / 9.2 / 10.1 / 31.6 (mol%).
  • Acid generator B-1 Triphenylsulfonium 2- (adamantan-1-yl) -1,1-difluoroethane-1-sulfonate
  • B-2 Triphenylsulfonium 6- (adamantan-1-ylcarbonyloxy) -1,1,2,2-tetrafluorohexane-1-sulfonate
  • B-3 1- (4-n-butoxynaphthyl) tetrahydrothiophenium nonafluoro-n-butanesulfonate
  • B-4 triphenylsulfonium perfluoro -N-butanesulfonate
  • B-5 diphenyliodonium 2- (adamantan-1-yl) -1,1-difluoroethane-1-sulfonate
  • Acid diffusion inhibitor C-1 Nt-butoxycarbonyl-4-hydroxypiperidine
  • Example 1 100 parts by weight of copolymer (A-1), 3.6 parts by weight of (B-1) as [B] acid generator, and 10.6 parts by weight of (B-2), [C] acid diffusion controller (C-1) 1.7 parts by weight as [D] surfactant (D-1) 0.02 parts by weight, and [E] as solvent (E-1) 1,700 parts by weight, 700 parts by mass of (E-2) and 30 parts by mass of (E-3) were mixed and filtered through a filter having a pore size of 200 nm to prepare a radiation sensitive resin composition.
  • Example 2 to 16 and Comparative Examples 1 to 6 Each radiation-sensitive resin composition was prepared in the same manner as in Example 1 except that the components shown in Table 2 and the blending amounts were used.
  • the line-and-space pattern in the present specification is a resist pattern in which a line portion having a constant width and a space portion having a constant width are alternately arranged in parallel.
  • the line and space pattern (1L1S) is a line and space pattern in which the ratio of the width of the line portion to the width of the space portion is “1: 1”. That is, the 90 nm line-and-space pattern (1L1S) is a resist pattern in which 90 nm wide line portions and 90 nm wide space portions are alternately arranged in parallel.
  • DOF1 When the dimension of the line-and-space pattern resolved at the optimum exposure dose 1 is within ⁇ 10% of the mask design dimension (90 nm) (ie, 80 to 100 nm), the focus fluctuation width ( The depth of focus was DOF1 (nm), the case where DOF1 was 300 nm or more was determined as “A” (determined as good), and the case where DOF1 was less than 300 nm was determined as “B” (determined as defective).
  • each radiation sensitive resin composition was post-baked at 95 ° C. for 60 seconds. Thereafter, the resist was developed, washed with water and dried with a 2.38% by mass aqueous tetramethylammonium hydroxide solution to form a positive resist pattern. At this time, the exposure amount at which the Line exposed through the mask pattern for pattern formation of 45 nm Line 90 nm Pitch formed 45 nm was the optimum exposure amount 2, and the optimum exposure amount 2 (mJ / cm 2 ) was the sensitivity 2. In addition, about the post-baking of Example 13, it was 60 seconds at 105 degreeC. A scanning electron microscope (CG-4000, manufactured by Hitachi High-Technologies) was used for measurement.
  • CG-4000 manufactured by Hitachi High-Technologies
  • DOF2 Focus when the dimension of the line-and-space pattern resolved at the optimum exposure dose 2 is within ⁇ 10% of the mask design dimension (45 nm) (ie, 40.5 to 49.5 nm)
  • the deflection width (depth of focus) is DOF2 (nm)
  • the case where DOF2 is 240 nm or more is "A" (determined as good)
  • the case where DOF2 is less than 240 nm is "B" (determined as defective) .
  • the content ratio of the structural unit (a1) having an acid dissociable group is 50 mol% or more in the [A] polymer and two types having a specific skeleton and the [A] polymer. It was found that the radiation-sensitive resin composition containing the above [B] acid generator can form a resist film having a low LWR and a wide DOF, compared to the radiation-sensitive resin composition of the comparative example.
  • the radiation-sensitive resin composition of the present invention can be suitably used as a photoresist material that is required to have a finer resist pattern line width in the future.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 本発明は、[A]下記式(a1)で表される構造単位(a1)を含有する重合体、及び[B]炭素数10以上の脂環式骨格を有するスルホン酸を発生する2種以上の酸発生剤、を含有し、[A]重合体中の構造単位(a1)の含有割合が50モル%以上である感放射線性樹脂組成物である。式(a1)中、Rは、水素原子又はメチル基である。Rは、炭素数1~10のアルキル基又は炭素数4~20の1価の脂環式炭化水素基である。Rは、それぞれ独立して、炭素数1~10のアルキル基又は炭素数4~20の1価の脂環式炭化水素基である。但し、いずれか2つのRが結合して、それらが結合している炭素原子と共に炭素数4~20の2価の脂環式炭化水素基を形成してもよい。

Description

感放射線性樹脂組成物
 本発明は、感放射線性樹脂組成物に関する。
 従来、IC等の半導体製造、液晶、サーマルヘッド等の回路基板の製造等において、化学増幅型の感放射線性樹脂組成物を使用したフォトリソグラフィ技術が用いられている。この化学増幅型の感放射線性樹脂組成物は、KrFエキシマレーザーやArFエキシマレーザーに代表される遠紫外光等の放射線が照射されることによって、放射線が照射された部分(露光部)に酸を生成させ、この酸を触媒とする反応により、露光部と未露光部との間に生じる現像液に対する溶解速度の差を利用して、基板上にレジストパターンを形成する。このような感放射線性樹脂組成物としては、酸解離性基を有する特定の重合体と、酸発生剤とを含むものが知られている(特公平2-27660号公報参照)。
 酸発生剤に求められる性質としては、放射線に対する透明性に優れ、かつ酸発生における量子収率が高いこと、露光によって発生する酸が十分強いこと、発生する酸のレジスト膜中での拡散距離が適度に短いこと、発生する酸と酸解離性基を有する樹脂(重合体)との相容性が高いこと等が挙げられる。
 これらの性質のうち、発生する酸が十分強いこと、拡散距離が適度に短いこと、及び発生する酸と樹脂との相容性が高いことを達成するためには、イオン性の感放射線性酸発生剤におけるアニオン部分の構造が重要となる。また、通常のスルホニル構造やスルホン酸エステル構造を有するノニオン性の感放射線性酸発生剤においては、スルホニル部分の構造が重要となる。
 例えばトリフルオロメタンスルホニル構造やノナフルオロブタンスルホニル構造を有する酸発生剤を含有する感放射線性樹脂組成物から形成されるレジスト膜は、露光によって発生する酸が十分に強い酸であるため、フォトレジストとして十分な感度を得られるという利点があるが、酸の拡散距離が長く、また、フッ素含有率が高いことにより酸解離性基を有する樹脂との相容性が低いため、レジストパターンの線幅の揺らぎ(ばらつき)(LWR:Line Width Roughness)や焦点深度(DOF:Depth Of Focus)等の特性が悪化するという不都合がある。
 また、10-カンファースルホニル構造のような大きな有機基に結合したスルホニル構造を有する酸発生剤を含有する感放射線性樹脂組成物から形成されるレジスト膜は、露光によって発生する酸の炭素含有率が十分に高く、酸解離性基を有する樹脂との相容性が比較的良好であり、酸の拡散距離も適度に短いという利点があるが、酸の強度が十分ではないため、フォトレジストとしての解像性能が十分でないことに加え、感度が不十分であるため、実用性に欠けるという不都合がある。
 以上のように、感放射線性樹脂組成物は未だ改良の余地があり、特にLWRが小さく、かつDOFが広いレジスト膜を形成可能な材料の開発が求められている。
特公平2-27660号公報
 本発明は、以上のような課題を解決するためになされたものであり、LWRが小さく、かつDOFが広いレジスト膜を形成することができる感放射線性樹脂組成物を提供することを目的とする。
 上記課題を解決するためになされた発明は、
 [A]下記式(a1)で表される構造単位(a1)を含有する重合体(以下、「[A]重合体」とも称する)、及び
 [B]炭素数10以上の脂環式骨格を有し、スルホン酸を発生する2種以上の酸発生剤(以下、「[B]酸発生剤」とも称する)、
を含有し、[A]重合体中の構造単位(a1)の含有割合が50モル%以上である感放射線性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000007
(式(a1)中、Rは、水素原子又はメチル基である。Rは、炭素数1~10のアルキル基又は炭素数4~20の1価の脂環式炭化水素基である。Rは、それぞれ独立して、炭素数1~10のアルキル基又は炭素数4~20の1価の脂環式炭化水素基である。但し、いずれか2つのRが結合して、それらが結合している炭素原子と共に炭素数4~20の2価の脂環式炭化水素基を形成してもよい。)
 [B]酸発生剤は、下記式(B1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
(式(B1)中、Rは、炭素数10以上の脂環式骨格を有する1価の炭化水素基である。Aは、酸素原子、カルボニルオキシ基又はオキシカルボニル基である。Xは、置換されていてもよい炭素数1~20の2価の直鎖状又は分岐状の炭化水素基である。kは、0又は1である。Mは、1価のオニウムカチオンである。)
 上記Rは、アダマンタン骨格を有する1価の炭化水素基であることが好ましい。
 上記式(B1)で表される化合物は、下記式(B1-1)で表される化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000009
(式(B1-1)中、Rは、置換されていてもよい炭素数1~8の1価の炭化水素基である。Rは、それぞれ独立して、水素原子又は置換されていてもよい炭素数1~8の1価の炭化水素基である。Rは、それぞれ独立して、フッ素原子又は炭素数1~4のパーフルオロアルキル基である。Aは、酸素原子、カルボニルオキシ基又はオキシカルボニル基である。kは、0又は1である。lは、0~4の整数である。mは、0~10の整数である。nは、1~4の整数である。Mは、1価のオニウムカチオンである。但し、R~Rがそれぞれ複数の場合、複数のR~Rはそれぞれ同一であっても異なっていてもよい。)
 上記Mは、下記式(b1)で表されるスルホニウムカチオン又は式(b2)で表されるヨードニウムカチオンであることが好ましい。
Figure JPOXMLDOC01-appb-C000010
(式(b1)中、Rは、それぞれ独立して、置換されていてもよい炭素数1~10の直鎖状若しくは分岐状のアルキル基又は置換されていてもよい炭素数6~18のアリール基である。但し、いずれか2つのRが結合して、それらが結合しているイオウ原子と共に環状構造を形成し、残余のRが、置換されていてもよい炭素数1~10の直鎖状若しくは分岐状のアルキル基又は置換されていてもよい炭素数6~18のアリール基であってもよい。)
Figure JPOXMLDOC01-appb-C000011
(式(b2)中、Rは、それぞれ独立して、置換されていてもよい炭素数1~10の直鎖状若しくは分岐状のアルキル基又は置換されていてもよい炭素数6~18のアリール基である。但し、いずれか2つの2つのRが結合して、それらが結合しているヨウ素原子と共に環状構造を形成してもよい。)
 上記構造単位(a1)は、下記式(a1-1)で表される構造単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000012
(式(a1-1)中、Rは、式(a1)と同義である。R10は、炭素数1~10のアルキル基である。aは、0~4の整数である。)
 [A]重合体中の上記式(a1-1)で表される構造単位の含有割合は50モル%以上であることが好ましい。
 本発明の感放射線性樹脂組成物は、LWRが小さく、かつDOFが広いレジスト膜を形成することができる。
<感放射線性樹脂組成物>
 本発明の感放射線性樹脂組成物は、[A]重合体及び[B]酸発生剤を含有する。また、当該感放射線性樹脂組成物は好適成分として後述する[C]酸拡散抑制剤、[E]溶媒を含有してもよい。さらに、当該感放射線性樹脂組成物はその他の任意成分を含有してもよい。以下、各成分を詳述する。
<[A]重合体>
 [A]重合体は、上記式(a1)で表される構造単位(a1)を含有し、[A]重合体中の全構造単位の50モル%以上含有する重合体である。このような重合体は、酸解離性基を有する構造単位の含有割合が高い(50モル%以上)ため、レジスト膜のLWRを小さくすることができる。即ち、放射線照射(露光)されることにより[B]酸発生剤から酸が発生した際、脱離する酸解離性基の数が多く、脱保護される酸性基が多いため、アルカリ性を呈する現像液に対する溶解性を向上させることができることにより、レジスト膜のLWRを小さくすることができる。なお、当該感放射線性樹脂組成物は、[A]重合体を2種以上含有してもよい。
[構造単位(a1)]
 構造単位(a1)は、上記式(a1)で表される構造単位であり、-CR(Rで表される酸解離性基を有する構造単位である。このような酸解離性基を有する構造単位は、放射線照射(露光)されることにより感放射線性酸発生剤から酸が発生した際、酸解離性基が脱離し、酸性基が脱保護されることにより、酸性を呈する。そのため、このような酸解離性基を多く含む[A]重合体は、アルカリ性を呈する現像液に対する溶解性が向上し、特に、レジスト膜のLWRを小さくすることができる。
 上記式(a1)中、R及びRで示される炭素数1~10のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、1-メチルプロピル基、2-メチルプロピル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デカニル基等が挙げられる。これらのうち、酸解離性基が適度な脱離能を有する観点から、メチル基、エチル基、n-プロピル基、i-プロピル基が好ましい。
 上記式(a1)中、Rで示される炭素数4~20の1価の脂環式炭化水素基及び、いずれか2つのRが結合して、それらが結合している炭素原子と共に形成してもよい炭素数4~20の2価の脂環式炭化水素基としては、例えばシクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等のシクロアルカン;アダマンタン、ビシクロ[2.2.1]ヘプタン、トリシクロ[4.3.0.12,5]デカン等の有橋脂環式炭化水素に由来する骨格を有する基等が挙げられる。これらのうち、適度な脱離能と解像性とを有することから、アダマンタン、シクロペンタン、シクロヘキサン、シクロオクタン等に由来する骨格を有する基が好ましく、シクロペンタン、シクロヘキサン、シクロオクタンに由来する骨格を有する基がより好ましい。
 [A]重合体は構造単位(a1)を2種以上含んでいてもよい。
 構造単位(a1)としては、上記式(a1-1)で表される構造単位(a1-1)を含むことが好ましい。構造単位(a1)として、2種以上の構造単位が組み合わされている場合、少なくとも1種が構造単位(a1-1)であることが好ましい。
 上記式(a1-1)中、R10で示される炭素数1~10のアルキル基としては、上記式(a1)中のRで示される炭素数1~10のアルキル基として例示した基と同様の基等が挙げられる。
 上記式(a1-1)中、aとしては、1~4が好ましく、1~2がより好ましい。
 [A]重合体中、構造単位(a1)の含有割合としては、[A]重合体中の全構造単位の50モル%以上であり、50モル%~80モル%が好ましく、50モル%~70モル%がより好ましい。構造単位(a1)の含有割合が50モル%以上であることにより、[A]重合体に含有される、酸解離性基を有する構造単位の含有割合が高くなるため、レジスト膜のLWRを小さくすることができる。一方、構造単位(a1)の含有割合が50モル%未満であると、レジスト膜の解像性が足りず、上述の効果が十分に得られない場合がある。
 [A]重合体中、構造単位(a1-1)の含有割合は、[A]重合体中の全構造単位の50モル%以上が好ましく、50モル%~80モル%がより好ましく、50モル%~70モル%が特に好ましい。構造単位(a1-1)の含有割合が50モル%以上であることにより、レジスト膜のLWRをより小さくすることができる。
[構造単位(a2)]
 [A]重合体は、構造単位(a1)以外に、ラクトン構造又は環状カーボネート構造を有する構造単位(以下、「構造単位(a2)」とも称する)を含有していてもよい。[A]重合体がこのような構造単位(a2)を含有することで、レジスト膜の基板に対する密着性が向上するため、レジストパターンが倒れ難くなるという利点がある。
 ラクトン構造を有する構造単位(以下、「構造単位(a2-a)」とも称する)としては例えば下記式(a2-a1)~(a2-a16)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 上記式(a2-a1)~(a2-a16)中、Rは、それぞれ独立して、水素原子又はメチル基である。
 これらの構造単位(a2-a)の中でも、多環型の脂環式炭化水素基に結合されたラクトン環を有する構造単位が好ましい。即ち、構造単位(a2-a1)、(a2-a3)、(a2-a7)~(a2-a13)等のような、ノルボルナン環に結合されたラクトン環を有する構造単位、構造単位(a2-a4)等のような、ビシクロ[2.2.2]オクタン環に結合されたラクトン環を有する構造単位がより好ましい。
 構造単位(a2-a)を与える単量体としては、例えば(メタ)アクリル酸-5-オキソ-4-オキサ-トリシクロ[4.2.1.03,7]ノナ-2-イルエステル、(メタ)アクリル酸-9-メトキシカルボニル-5-オキソ-4-オキサ-トリシクロ[4.2.1.03,7]ノナ-2-イルエステル、(メタ)アクリル酸-5-オキソ-4-オキサ-トリシクロ[5.2.1.03,8]デカ-2-イルエステル、(メタ)アクリル酸-10-メトキシカルボニル-5-オキソ-4-オキサ-トリシクロ[5.2.1.03,8]ノナ-2-イルエステル、(メタ)アクリル酸-6-オキソ-7-オキサ-ビシクロ[3.2.1]オクタ-2-イルエステル、(メタ)アクリル酸-4-メトキシカルボニル-6-オキソ-7-オキサ-ビシクロ[3.2.1]オクタ-2-イルエステル、(メタ)アクリル酸-7-オキソ-8-オキサ-ビシクロ[3.3.1]オクタ-2-イルエステル、(メタ)アクリル酸-4-メトキシカルボニル-7-オキソ-8-オキサ-ビシクロ[3.3.1]オクタ-2-イルエステル、(メタ)アクリル酸-2-オキソテトラヒドロピラン-4-イルエステル、(メタ)アクリル酸-4-メチル-2-オキソテトラヒドロピラン-4-イルエステル、(メタ)アクリル酸-4-エチル-2-オキソテトラヒドロピラン-4-イルエステル、(メタ)アクリル酸-4-プロピル-2-オキソテトラヒドロピラン-4-イルエステル、(メタ)アクリル酸-5-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-2,2-ジメチル-5-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-4,4-ジメチル-5-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-2-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-4,4-ジメチル-2-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-5,5-ジメチル-2-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-5-オキソテトラヒドロフラン-2-イルメチルエステル、(メタ)アクリル酸-3,3-ジメチル-5-オキソテトラヒドロフラン-2-イルメチルエステル、(メタ)アクリル酸-4,4-ジメチル-5-オキソテトラヒドロフラン-2-イルメチルエステル等が挙げられる。
 環状カーボネート構造を有する構造単位(以下、「構造単位(a2-b)」とも称する)としては、例えば下記式(a2-b)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 上記式(a2-b)中、Rは、水素原子又はメチル基である。Yは、単結合、炭素数1~30の2価の鎖状炭化水素基、炭素数3~30の2価の脂環式炭化水素基、又は炭素数6~30の2価の芳香族炭化水素基である。Zは、下記式(a2-b’)で表される環状カーボネート構造を有する1価の基である。
Figure JPOXMLDOC01-appb-C000015
 上記式(a2-b’)中、R11は、水素原子、又は炭素数1~5の1価の鎖状炭化水素基である。pは、1又は2である。qは、1又は2である。但し、R11が複数の場合、複数のR11は同一であっても異なっていてもよい。
 上記式(a2-b)中、Yで示される炭素数1~30の2価の鎖状炭化水素基としては、例えばメチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、トリデカメチレン基、テトラデカメチレン基、ペンタデカメチレン基、ヘキサデカメチレン基、ヘプタデカメチレン基、オクタデカメチレン基、ノナデカメチレン基、イコサレン基等の直鎖状アルキレン基;1-メチル-1,3-プロピレン基、2-メチル-1,3-プロピレン基、2-メチル-1,2-プロピレン基、1-メチル-1,4-ブチレン基、2-メチル-1,4-ブチレン基、メチリデン基、エチリデン基、プロピリデン基、2-プロピリデン基等の分岐状アルキレン基等が挙げられる。
 上記式(a2-b)中、Yで示される炭素数3~30の2価の脂環式炭化水素基としては、例えば1,3-シクロブチレン基、1,3-シクロペンチレン基等、1,4-シクロヘキシレン基、1,5-シクロオクチレン基等の炭素数3~10の単環型シクロアルキレン基;1,4-ノルボルニレン基、2,5-ノルボルニレン基、1,5-アダマンチレン基、2,6-アダマンチレン基等の多環型シクロアルキレン基等が挙げられる。
 上記式(a2-b)中、Yで示される炭素数6~30の2価の芳香族炭化水素基としては、例えばフェニレン基、トリレン基、ナフチレン基、フェナントリレン基、アントリレン基等のアリーレン基等が挙げられる。
 上記式(a2-b)中、Zで示される式(a2-b’)で表される環状カーボネート構造を有する1価の基(以下、単に「Z基」とも称する)としては、上記式(a2-b)中のYに上記式(a2-b’)で表される環状カーボネート構造が直接結合している基(下記構造単位(a2-b1)~(a2-b6)参照)、上記式(a2-b)中のYとの間に2価の基を有する基(下記構造単位(a2-b7)参照)、上記式(a2-b’)で表される環状カーボネート構造を含む多環構造を有する基(下記構造単位(a2-b8)~(a2-b21)参照)等が挙げられる。なお、Z基中の上記式(a2-b’)で表される環状カーボネート構造及びこれを含む多環構造は、置換基を有していてもよい(例えば下記構造単位(a2-b2)、(a2-b5)、(a2-b6)、(a2-b14)、(a2-b18)、(a2-b20)参照)。
 Z基の炭素数としては、3~30が好ましく、3~15がより好ましく、3~10が特に好ましい。Z基の炭素数が30を超えると、形成されるレジスト膜の基板に対する密着性が低下してしまうため、レジストパターンの「倒れ」や「剥れ」が生じるおそれがある。また、炭素数が30超であるZ基を有する構造単位(a2-b)を含有する[A]重合体は、現像液への溶解性が低下してしまうため、現像欠陥が発生する原因となるおそれがある。
 構造単位(a2-b)としては、例えば下記式(a2-b1)~(a2-b21)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 上記式(a2-b1)~(a2-b21)中、Rは、水素原子又はメチル基である。
 これらの構造単位(a2-b)のうち、構造単位(a2-b1)が好ましい。
 [A]重合体は、構造単位(a2)を2種以上含んでいてもよい。
 [A]重合体中、構造単位(a2)の含有割合としては、[A]重合体中の全構造単位の20モル%~50モル%であることが好ましい。構造単位(a2)の含有割合が上述の範囲内であると、形成されるレジスト膜の基板に対する密着性が優れると共に、レジストとしての解像性が向上するという利点がある。
 [A]重合体は、上述の構造単位(a1)や構造単位(a2)以外に、その他の構造単位を含有していてもよい。その他の構造単位としては、特に限定されないが、置換基を有していてもよい鎖状炭化水素基又は脂環式炭化水素基の(メタ)アクリル酸エステルに由来する構造単位等が挙げられる。
<[A]重合体の合成方法>
 [A]重合体は、ラジカル重合等の従来公知の方法に従って合成することができるが、例えば各単量体とラジカル開始剤とを含有する反応溶液を、反応溶媒又は単量体を含有する反応溶液に滴下して重合反応させる方法、各単量体を含有する反応溶液とラジカル開始剤を含有する反応溶液とを、各々別々に反応溶媒又は単量体を含有する反応溶液に滴下して重合反応させる方法、各単量体が各々別々に調製された反応溶液とラジカル開始剤を含有する反応溶液とを、各々別々に、反応溶媒又は単量体を含有する反応溶液に滴下して重合反応させる方法等が挙げられる。
 各重合反応における反応温度としては、開始剤の種類によって適宜設定することができるが、30℃~180℃が好ましく、40℃~160℃がより好ましく、50℃~140℃が特に好ましい。各種反応溶液の滴下に要する時間(滴下時間)としては、反応温度、開始剤の種類、反応させる単量体等によって適宜設定することができるが、30分~8時間が好ましく、45分~6時間がより好ましく、1時間~5時間が特に好ましい。また、滴下時間を含む全反応時間は、適宜設定することができるが、30分~8時間が好ましく、45分~7時間がより好ましく、1時間~6時間でが特に好ましい。単量体を含有する反応溶液に滴下する場合、滴下する反応溶液中の単量体の含有割合としては、重合に用いられる単量体の総量の30モル%以上が好ましく、50モル%以上がより好ましく、70モル%以上が特に好ましい。
 重合に用いられるラジカル開始剤としては、例えば2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2-メチル-N-フェニルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス(2-メチル-N-2-プロペニルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス(2-(5-メチル-2-イミダゾリン-2-イル)プロパン)ジヒドロクロリド、2,2’-アゾビス(2-メチル-N-(1,1-ビス(ヒドロキシメチル)2-ヒドロキシエチル)プロピオンアミド)、ジメチル-2,2’-アゾビス(2-メチルプロピオネ-ト)、4,4’-アゾビス(4-シアノバレリックアシッド)、2,2’-アゾビス(2-(ヒドロキシメチル)プロピオニトリル)等が挙げられる。これらのラジカル開始剤は、単独、又は2種以上を組み合わせて用いることができる。
 重合に用いられる反応溶媒(重合溶媒)としては、用いられる単量体を溶解し、重合を阻害するような溶媒(例えばニトロベンゼン類、メルカプト化合物)でなければ、特に制限なく用いることができる。このような重合溶媒としては、例えばアルコール類、エーテル類、ケトン類、アミド類、エステル類、ラクトン類、ニトリル類、又はそれらの混合溶媒等が挙げられる。
 重合溶媒として用いられるアルコール類としては、例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1-メトキシ-2-プロパノール等が挙げられる。エーテル類としては、例えばプロピルエーテル、イソプロピルエーテル、ブチルメチルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、1,3-ジオキサン等が挙げられる。ケトン類としては、例えばアセトン、メチルエチルケトン、ジエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン等が挙げられる。アミド類としては、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。エステル類としては、例えば酢酸エチル、酢酸メチル、酢酸イソブチル等が挙げられる。ラクトン類としては、例えばγ-ブチロラクトン等が挙げられる。ニトリル類としては、例えばアセトニトリル、プロピオニトリル、ブチロニトリル等が挙げられる。なお、これらの溶媒は、単独、又は2種以上を組み合わせて使用することができる。
 重合反応終了後、重合反応液を再沈溶媒に投入し、目的の重合体を粉体として回収することが好ましい。再沈溶媒としては、例えば水、アルコール類、エーテル類、ケトン類、アミド類、エステル類、ラクトン類、ニトリル類、又はそれらの混合液等が挙げられる。再沈溶媒として用いられるアルコール類としては、例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール、1-メトキシ-2-プロパノール等が挙げられる。エーテル類としては、例えばプロピルエーテル、イソプロピルエーテル、ブチルメチルエーテル、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、1,3-ジオキサン等が挙げられる。ケトン類としては、例えばアセトン、メチルエチルケトン、ジエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン等が挙げられる。アミド類としては、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。エステル類としては、例えば酢酸エチル、酢酸メチル、酢酸イソブチル等が挙げられる。ラクトン類としては、例えばγ-ブチロラクトン等が挙げられる。ニトリル類としては、例えばアセトニトリル、プロピオニトリル、ブチロニトリル等が挙げられる。
 [A]重合体のゲルパーミエーションクロマトグラフィにより測定した質量平均分子量(Mw)としては、1,000~100,000が好ましく、1,500~80,000がより好ましく、2,000~50,000が特に好ましい。[A]重合体のMwが1,000未満であると、レジスト膜の耐熱性が低下するおそれがある。一方、[A]重合体のMwが100,000を超えると、レジスト膜の現像性が低下するおそれがある。また、[A]重合体のMwと数平均分子量(Mn)との比(Mw/Mn)は、1~5が好ましく、1~3がより好ましい。
 なお、重合によって得られる重合反応液は、ハロゲン、金属等の不純物が少ないほど好ましい。不純物の含有量が少ない方が、レジスト膜を形成したときの感度、解像度、プロセス安定性、パターン形状等をさらに改善することができるためである。重合反応液の精製法としては、例えば水洗、液々抽出等の化学的精製法や、これらの化学的精製法と限外ろ過、遠心分離等の物理的精製法とを組み合わせた方法等が挙げられる。
<[B]酸発生剤>
 当該感放射線性樹脂組成物に含まれる[B]酸発生剤は、炭素数10以上の脂環式骨格を有し、スルホン酸を発生する2種以上の酸発生剤である。
 [B]酸発生剤は、放射線が照射されることにより、炭素数10以上の脂環式骨格を有するスルホン酸を発生する。このスルホン酸の作用によって[A]重合体が有する酸解離性基が脱離して、酸性基が脱保護されることにより、[A]重合体はアルカリ性の現像液に可溶となる。この時、[B]酸発生剤から発生する酸はスルホン酸であり、酸性度が高いため、効率よく[A]重合体が有する酸解離性基を脱離させることができる。また、[B]酸発生剤及びそれから発生するスルホン酸は、炭素数10以上の脂環式骨格を有することにより、[B]酸発生剤及びそれから発生するスルホン酸は沸点が高くなるため、例えば露光前のプレベークや、露光後のポストベーク等の際にも揮発し難く、拡散が抑制される、即ち、レジスト膜中での拡散距離が適度に短いという特性を有する。さらに、[B]酸発生剤及びそれから発生するスルホン酸は、炭素数10以上の脂環式骨格を有し、炭素含有量が高いため、[A]重合体との相溶性が良好であるという特性を有する。
 また、当該感放射線性樹脂組成物は、少なくとも2種の酸発生剤を用いることにより、通常、酸性度及びレジスト膜中での分布が異なる2種以上のスルホン酸が発生することになる。スルホン酸は、酸性度や極性等の違いにより、レジスト膜中の膜厚方向における存在分布に違いが生じる。従って、酸性度とレジスト膜中での存在分布が異なるスルホン酸を2種以上発生させて、レジスト膜中の酸濃度分布をコントロールすることにより、矩形性が良好なパターンを解像することができ、LWRを小さくすることができる。また、酸性度及びレジスト膜中での分布が異なる2種以上のスルホン酸の配合比を調整することで、DOFを広くすることができる。なお、酸性度及びレジスト膜中での分布は、例えば発生するスルホン酸のフッ素含有量等を変えることで、調節することができる。
 [B]酸発生剤としては、炭素数10以上の脂環式骨格を有するスルホン酸を発生する酸発生剤であれば、特に制限されないが、上記式(B1)で表される化合物(以下、「(B1)酸発生剤」とも称する)を含むことが好ましい。このような酸発生剤が発生するスルホン酸はレジスト膜中での拡散距離が適度に短いため、効率よく[A]重合体のアルカリ現像液への溶解性を向上させることができ、レジスト膜の感度、及び解像性能をさらに向上させると共に、LWRをさらに小さく、かつDOFをさらに広くすることができる。なお、[B]酸発生剤としては、構造が異なる(B1)酸発生剤を2種以上用いることがより好ましい。
 上記式(B1)中、Rで示される炭素数10以上の脂環式骨格を有する1価の炭化水素基としては、例えばアダマンタン、ビシクロ[2.2.1]ヘプタン、トリシクロ[4.3.0.12,5]デカン、テトラシクロ[4.4.0.12,5.17,10]ドデカン等の脂環式骨格を有する1価の炭化水素基等が挙げられる。これらのうち、[A]重合体との相溶性が向上する観点から、アダマンタン骨格を有する1価の炭化水素基が好ましい。なお、Rで示される炭素数10以上の脂環式骨格を有する1価の炭化水素基としては、上記脂環式骨格のうち、炭素数10以上の脂環式骨格のみからなる基であってもよい。即ち、脂環式骨格がアダマンタンである場合、Rで示される炭素数10以上の脂環式骨格を有する1価の炭化水素基としては、アダマンタン-1-イル基又はアダマンタン-2-イル基であってもよい。
 (B1)酸発生剤としては、上記式(B1-1)で表される化合物(以下、「(B1-1)酸発生剤」とも称する)を含むことが好ましい。[B]酸発生剤の好ましい組み合わせとしては、上記式(B1-1)におけるnの値が異なる2種以上の酸発生剤の組み合わせである。より好ましい組み合わせとしては、n=1である酸発生剤と、n=2である酸発生剤との組み合わせである。
 上記式(B1-1)中、lが1以上である場合、Rで示される置換されていてもよい炭素数1~8の1価の炭化水素基としては、例えばメチル基、エチル基、1,2-プロピル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基又はそれらの水素原子が置換された基等が挙げられる。これらのうち、メチル基、エチル基が好ましい。
 上記式(B1-1)中、lが1以上である場合、Rで示される基としては、特に制限なく、アダマンタン骨格中のどの炭素原子に結合していてもよい。即ち、アダマンタン骨格が有する複数の環うちの同一環内の複数の炭素原子に、Rで示される基が結合していてもよく、アダマンタン骨格が有する複数の環のそれぞれの(複数の)炭素原子に、Rで示される基が結合していてもよい。また、アダマンタン骨格が有する2級炭素原子には、2つのRで示される基が結合していてもよい。
 上記式(B1-1)中、lとしては0~3が好ましく、0~2がより好ましく、0又は1が特に好ましい。
 上記式(B1-1)中、Rで示される置換されていてもよい炭素数1~8の1価の炭化水素基としては、例えばメチル基、エチル基、1,2-プロピル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等が挙げられる。Rとしては、水素原子、メチル基、エチル基が好ましい。
 上記式(B1-1)中、Rとしてはフッ素原子、パーフルオロメチル基が好ましい。
 上記式(B1-1)中、mとしては0~8が好ましく、0~6がより好ましく、1~4が特に好ましい。
 上記式(B1-1)中、nとしては1~3が好ましく、1又は2がより好ましい。nが上述範囲内であることにより、(B1-1)酸発生剤から発生するスルホン酸は、そのスルホン基の少なくともα位に、含フッ素系の強い電子吸引性基を有することになるため、(B1-1)酸発生剤から発生するスルホン酸の酸性度を上昇させることができる。なお、このnの値を変化させることにより、(B1-1)酸発生剤の酸性度及びレジスト膜中での分布を調節することができる。
 上記式(B1-1)中、kが1である場合、Aとしては、カルボニルオキシ基が好ましい。
 上記式(B1)及び(B1-1)中、Mで示される1価のオニウムカチオンとしては、例えば酸素、硫黄、セレン、窒素、リン、ヒ素、アンチモン、塩素、ホウ素、ヨウ素等のオニウムカチオン等が挙げられる。これらのうち、上記式(b1)で表されるスルホニウムカチオン又は上記式(b2)で表されるヨードニウムカチオンが好ましい。
 上記式(b1)及び(b2)中、R又はRで示される置換されていてもよい炭素数1~10の直鎖状若しくは分岐状のアルキル基としては、例えばメチル基、n-ブチル基等が挙げられる。
 上記式(b1)及び(b2)中、R又はRで示される置換されていてもよい炭素数6~18のアリール基としては、例えばフェニル基、4-シクロヘキシルフェニル基等が挙げられる。
 上記式(b1)及び(b2)中、R又はRで示される基としては、放射線の吸収効率が高いことから、アリール基が好ましい。
 上記式(b1)で表されるスルホニウムカチオンとしては、放射線の吸収効率が高いことから、下記式(b1-a)又は(b1-b)で表されるスルホニウムカチオンが好ましい。
Figure JPOXMLDOC01-appb-C000017
 上記式(b1-a)中、R12は、それぞれ独立して、水酸基、置換されていてもよい炭素数1~12の直鎖状若しくは分岐状のアルキル基、又は置換されていてもよい炭素数6~12のアリール基である。rは、それぞれ独立して、0~5の整数である。但し、R12が複数の場合、複数のR12はそれぞれ同一であっても異なっていてもよい。
 上記式(b1-b)中、R13は、水酸基、置換されていてもよい炭素数1~8の直鎖状若しくは分岐状のアルキル基、又は置換されていてもよい炭素数6~8のアリール基である。R14は、水素原子、置換されていてもよい炭素数1~7の直鎖状若しくは分岐状のアルキル基、又は置換されていてもよい炭素数6若しくは7のアリール基である。また、tが2~6である場合、2~6個のR14のうちいずれか2個が相互に結合して環状構造を形成していてもよい。sは、0~7の整数である。tは。0~6の整数である。uは、0~3の整数である。但し、R13及びR14がそれぞれ複数の場合、複数のR13及びR14はそれぞれ同一であっても異なっていてもよい。
 上記式(b1)で表されるスルホニウムカチオンとしては、例えば下記式(b1-1)~(b1-63)で表されるスルホニウムカチオン等が挙げられる。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 これらのうち、上記式(b1-1)、(b1-2)、(b1-6)、(b1-8)、(b1-13)、(b1-19)、(b1-25)、(b1-27)、(b1-29)、(b1-33)、(b1-51)、(b1-54)で表されるスルホニウムカチオンが好ましい。
 上記式(b2)で表されるヨードニウムカチオンとしては、放射線の吸収効率が高いことから、下記式(b2-a)で表されるヨードニウムカチオンが好ましい。
Figure JPOXMLDOC01-appb-C000022
 上記式(b2-a)中、R15は、それぞれ独立して、水酸基、置換されていてもよい炭素数1~12の直鎖状若しくは分岐状のアルキル基、又は置換されていてもよい炭素数6~12のアリール基である。但し、ヨウ素原子に結合している2個のアリール基が相互に結合して、ヨウ素原子と共に環状構造を形成していてもよい。vは、それぞれ独立して、0~5の整数である。但し、R15が複数の場合、複数のR15は同一であっても異なっていてもよい。
 上記式(b2)で表されるヨードニウムカチオンとしては、例えば下記式(b2-1)~(b2-39)で表されるヨードニウムカチオン等が挙げられる。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 これらのうち、上記式(b2-1)、(b2-11)で表されるヨードニウムカチオンが好ましい。
 上記式(B1)中、Mで表されるオニウムカチオンは、例えばAdvances in Polymer Science,Vol.62,p.1-48(1984)に記載されている一般的な方法に準じて製造することができる。
 [B]酸発生剤の含有量としては、[A]重合体100質量部に対して、0.1質量部~20質量部が好ましく、0.1質量部~15質量部がより好ましい。[B]酸発生剤の含有量が0.1質量部未満であると、発生するスルホン酸の量が不足するため、[A]重合体の酸解離性基を十分に脱保護することができず、解像度が低下するおそれがある。一方、[B]酸発生剤の含有量が20質量部を超えると、レジスト膜の放射線に対する透明性、耐熱性等が低下するおそれがあり、良好なパターン形状が得られなくなるおそれがある。
<[C]酸拡散制御剤>
 [C]酸拡散制御剤は、放射線の照射により[B]酸発生剤から生じる酸がレジスト膜中で拡散する現象を抑制し、非露光領域において、酸が[A]重合体の酸解離性基を脱離させてしまう副反応を抑制するものである。当該感放射線性樹脂組成物が、このような[C]酸拡散制御剤を含むことにより、レジスト膜としての解像度がさらに向上すると共に、露光から加熱処理までの引き置き時間(PED:Post-Exposure Delay)の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性及び貯蔵安定性に優れた感放射線性樹脂組成物を得ることができる。
 [C]酸拡散制御剤としては、例えばN-t-ブトキシカルボニルジ-n-オクチルアミン、N-t-ブトキシカルボニルジ-n-ノニルアミン、N-t-ブトキシカルボニルジ-n-デシルアミン、N-t-ブトキシカルボニルジシクロヘキシルアミン、N-t-ブトキシカルボニル-1-アダマンチルアミン、N-t-ブトキシカルボニル-2-アダマンチルアミン、N-t-ブトキシカルボニル-N-メチル-1-アダマンチルアミン、(S)-(-)-1-(t-ブトキシカルボニル)-2-ピロリジンメタノール、(R)-(+)-1-(t-ブトキシカルボニル)-2-ピロリジンメタノール、N-t-ブトキシカルボニル-4-ヒドロキシピペリジン、N-t-ブトキシカルボニルピロリジン、N,N’-ジ-t-ブトキシカルボニルピペラジン、N,N-ジ-t-ブトキシカルボニル-1-アダマンチルアミン、N,N-ジ-t-ブトキシカルボニル-N-メチル-1-アダマンチルアミン、N-t-ブトキシカルボニル-4,4’-ジアミノジフェニルメタン、N,N’-ジ-t-ブトキシカルボニルヘキサメチレンジアミン、N,N,N’N’-テトラ-t-ブトキシカルボニルヘキサメチレンジアミン、N,N’-ジ-t-ブトキシカルボニル-1,7-ジアミノヘプタン、N,N’-ジ-t-ブトキシカルボニル-1,8-ジアミノオクタン、N,N’-ジ-t-ブトキシカルボニル-1,9-ジアミノノナン、N,N’-ジ-t-ブトキシカルボニル-1,10-ジアミノデカン、N,N’-ジ-t-ブトキシカルボニル-1,12-ジアミノドデカン、N,N’-ジ-t-ブトキシカルボニル-4,4’-ジアミノジフェニルメタン、N-t-ブトキシカルボニルベンズイミダゾール、N-t-ブトキシカルボニル-2-メチルベンズイミダゾール、N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール等のN-t-ブトキシカルボニル基含有アミノ化合物等が挙げられる。
 [C]酸拡散制御剤としては、上記N-t-ブトキシカルボニル基含有アミノ化合物以外にも、例えば3級アミン化合物、4級アンモニウムヒドロキシド化合物、含窒素複素環化合物等が挙げられる。
 3級アミン化合物としては、例えばトリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリ-n-ペンチルアミン、トリ-n-ヘキシルアミン、トリ-n-ヘプチルアミン、トリ-n-オクチルアミン、シクロヘキシルジメチルアミン、ジシクロヘキシルメチルアミン、トリシクロヘキシルアミン等のトリ(シクロ)アルキルアミン類;アニリン、N-メチルアニリン、N,N-ジメチルアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、4-ニトロアニリン、2,6-ジメチルアニリン、2,6-ジイソプロピルアニリン等の芳香族アミン類;トリエタノールアミン、N,N-ジ(ヒドロキシエチル)アニリン等のアルカノールアミン類;N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、1,3-ビス(1-(4-アミノフェニル)-1-メチルエチル)ベンゼンテトラメチレンジアミン、ビス(2-ジメチルアミノエチル)エーテル、ビス(2-ジエチルアミノエチル)エーテル等が挙げられる。
 4級アンモニウムヒドロキシド化合物としては、例えばテトラ-n-プロピルアンモニウムヒドロキシド、テトラ-n-ブチルアンモニウムヒドロキシド等が挙げられる。
 含窒素複素環化合物としては、例えばピリジン、2-メチルピリジン、4-メチルピリジン、2-エチルピリジン、4-エチルピリジン、2-フェニルピリジン、4-フェニルピリジン、2-メチル-4-フェニルピリジン、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、4-ヒドロキシキノリン、8-オキシキノリン、アクリジン等のピリジン類;ピペラジン、1-(2-ヒドロキシエチル)ピペラジン等のピペラジン類の他、ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、ピペリジン、3-ピペリジノ-1,2-プロパンジオール、モルホリン、4-メチルモルホリン、1,4-ジメチルピペラジン、1,4-ジアザビシクロ[2.2.2]オクタン、イミダゾール、4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、4-メチル-2-フェニルイミダゾール、ベンズイミダゾール、2-フェニルベンズイミダゾール等が挙げられる。
 [C]酸拡散制御剤は、単独、又は2種以上を用いることができる。[C]酸拡散制御剤の含有量としては、レジスト膜としての高い感度を確保する観点から、[A]重合体100質量部に対して、10質量部以下が好ましく、0.001質量部~5質量部がより好ましい。[C]酸拡散制御剤の含有量が10質量部を超えると、レジスト膜の感度が著しく低下するおそれがある。一方、[C]酸拡散制御剤の含有量が0.001質量部未満であると、酸拡散制御効果が得られない場合がある。
<その他の任意成分>
 当該感放射線性樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて酸解離性基を有する脂環族添加剤、界面活性剤、増感剤、アルカリ可溶性樹脂、酸解離性保護基を有する低分子のアルカリ溶解性制御剤、ハレーション防止剤、保存安定化剤、消泡剤等のその他の任意成分を含んでいてもよい。なお、その他の任意成分は、各成分を組み合わせてもよく、各成分を2種以上含有してもよい。以下、その他の任意成分を詳述する。
[酸解離性基を有する脂環族添加剤]
 酸解離性基を有する脂環族添加剤は、ドライエッチング耐性、パターン形状、基板との接着性等をさらに向上させる作用を有する成分である。脂環族添加剤としては、例えば1-アダマンタンカルボン酸t-ブチル、1-アダマンタンカルボン酸t-ブトキシカルボニルメチル、1,3-アダマンタンジカルボン酸ジ-t-ブチル、1-アダマンタン酢酸t-ブチル、1-アダマンタン酢酸t-ブトキシカルボニルメチル、1,3-アダマンタンジ酢酸ジ-t-ブチル等のアダマンタン誘導体類;デオキシコール酸t-ブチル、デオキシコール酸t-ブトキシカルボニルメチル、デオキシコール酸2-エトキシエチル、デオキシコール酸2-シクロヘキシルオキシエチル、デオキシコール酸3-オキソシクロヘキシル、デオキシコール酸テトラヒドロピラニル、デオキシコール酸メバロノラクトンエステル等のデオキシコール酸エステル類;リトコール酸t-ブチル、リトコール酸t-ブトキシカルボニルメチル、リトコール酸2-エトキシエチル、リトコール酸2-シクロヘキシルオキシエチル、リトコール酸3-オキソシクロヘキシル、リトコール酸テトラヒドロピラニル、リトコール酸メバロノラクトンエステル等のリトコール酸エステル類等が挙げられる。
[界面活性剤]
 界面活性剤は、塗布性、低ストリエーション性、及び現像性等を改良する作用を有する成分である。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤等が挙げられる。また、市販の界面活性剤としては、KP341(信越化学工業製)、ポリフローNo.75、同No.95(以上、共栄社化学製)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ製)、メガファックF171、同F173(以上、大日本インキ化学工業製)、フロラードFC430、同FC431(以上、住友スリーエム製)、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104,同SC-105、同SC-106(以上、旭硝子社製)、DAINAFLOW(ネオス製)等が挙げられる。
<感放射線性樹脂組成物の調製方法>
 当該感放射線性樹脂組成物は、[A]重合体、[B]酸発生剤、好適成分としての[C]酸拡散制御剤、並びにその他の任意成分を含有する原料組成物を、その全固形分濃度が3質量%~50質量%、好ましくは5質量%~25質量%となるように[E]溶媒に溶解した後、孔径200nm程度のフィルターでろ過することにより調製することができる。
<[E]溶媒>
 [E]溶媒としては、例えばエチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-プロピルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル等のプロピレングリコールモノアルキルエーテル類;プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ-n-プロピルエーテル、プロピレングリコールジ-n-ブチルエーテル等のプロピレングリコールジアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノ-n-ブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸i-プロピル等の乳酸エステル類;ぎ酸n-アミル、ぎ酸i-アミル等のぎ酸エステル類;酢酸エチル、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、酢酸n-アミル、酢酸i-アミル、酢酸3-メトキシブチル、酢酸3-メチル-3-メトキシブチル等の酢酸エステル類;プロピオン酸i-プロピル、プロピオン酸n-ブチル、プロピオン酸i-ブチル、プロピオン酸3-メチル-3-メトキシブチル等のプロピオン酸エステル類の他;ヒドロキシ酢酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、2-ヒドロキシ-3-メチル酪酸メチル、メトキシ酢酸エチル、エトキシ酢酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酪酸3-メチル-3-メトキシブチル、アセト酢酸メチル、アセト酢酸エチル、ピルビン酸メチル、ピルビン酸エチル等のエステル類;トルエン、キシレン等の芳香族炭化水素類;メチルエチルケトン、2-ペンタノン、2-ヘキサノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロヘキサノン等のケトン類;N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;γ-ブチロラクン等のラクトン類等が挙げられる。これらの溶媒は、単独、又は2種以上を用いることができる。
<レジストパターン形成方法>
 当該感放射線性樹脂組成物を用いたレジストパターンの形成方法について説明する。当該感放射線性樹脂組成物(組成物溶液)からなるレジスト膜を基板上に形成する。次いで、光路上に設置されたマスクの孔部分を通過した放射線を、形成したレジスト膜に照射し露光させる。この際、露光により[B]酸発生剤から発生したスルホン酸の作用により、[A]重合体中の酸解離性基が脱離し、カルボキシル基が脱保護される。このようにして、カルボキシル基が生じると、レジスト膜の露光部は、アルカリ性の現像液に対する溶解性が高くなる。その後、レジスト膜をアルカリ性の現像液を用いて、現像することによって、即ち、レジスト膜の露光部が現像液により溶解、除去されることによって、ポジ型のレジストパターンを形成することができる。
 まず回転塗布、流延塗布、ロール塗布等の適宜の塗布手段によって、例えばシリコンウェハ、アルミニウムで被覆されたウェハ等の基板上に塗布することによりレジスト膜を形成する。レジスト膜の膜厚としては、10nm~5,000nmが好ましく、10nm~2,000nmがより好ましい。
 次いで、場合により予めプレベークを行った後、所定のレジストパターンを形成するように設計されたマスクを介して、レジスト膜を露光する。なお、プレベークの加熱条件としては、感放射線性樹脂組成物の配合組成によって変わるが、30℃~200℃程度が好ましく、50℃~150℃がより好ましい。また、露光に使用される放射線としては、可視光線、紫外線、遠紫外線、X線、荷電粒子線等を適宜選択することができるが、ArFエキシマレーザー(波長193nm)又はKrFエキシマレーザー(波長248nm)に代表される遠紫外線が好ましく、ArFエキシマレーザー(波長193nm)がより好ましい。
 露光後にポストベークを行うことが好ましい。ポストベークにより、レジスト膜中の酸解離性基の脱離反応が円滑に進行する。ポストベークの加熱条件としては、感放射線性樹脂組成物の配合組成によって変わるが、30℃~200℃が好ましく、50℃~170℃がより好ましい。
 当該感放射線性樹脂組成物は、その潜在能力を最大限に引き出すため、例えば特公平6-12452号公報等に開示されているように、使用される基板上に有機系又は無機系の反射防止膜を形成しておくこともできる。また、環境雰囲気中に含まれる塩基性不純物等の影響を防止するため、例えば特開平5-188598号公報等に開示されているように、レジスト膜上に保護膜を設けることもできる。なお、これらの技術は併用することができる。
 次に、レジスト膜の露光部を現像することにより、所定のレジストパターンを得ることができる。現像に使用される現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、及び1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物からなる群より選択される少なくとも1種を溶解したアルカリ性水溶液が好ましい。上記アルカリ性水溶液の濃度は、10質量%以下であることが好ましい。アルカリ性水溶液の濃度が10質量%を超えると、非露光部も現像液に溶解してしまうおそれがある。
 また、現像液には、例えば有機溶媒を添加することもできる。有機溶媒としては、例えばアセトン、メチルエチルケトン、メチルi-ブチルケトン、シクロペンタノン、シクロヘキサノン、3-メチルシクロペンタノン、2,6-ジメチルシクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n-プロピルアルコール、i-プロピルアルコール、n-ブチルアルコール、t-ブチルアルコール、シクロペンタノール、シクロヘキサノール、1,4-ヘキサンジオール、1,4-ヘキサンジメチロール等のアルコール類;テトラヒドロフラン、ジオキサン等のエーテル類;酢酸エチル、酢酸n-ブチル、酢酸i-アミル等のエステル類;トルエン、キシレン等の芳香族炭化水素類、フェノール、アセトニルアセトン、ジメチルホルムアミド等が挙げられる。なお、これらの有機溶媒は、単独、又は2種以上を用いることができる。
 現像液中、有機溶媒の含有割合は、上記アルカリ性水溶液100体積部に対して、100体積部以下であることが好ましい。有機溶媒の含有割合が100体積部を超えると、現像性が低下して、露光部の現像残りが多くなるおそれがある。また、現像液には、本発明の感放射線性樹脂組成物のその他の任意成分として例示した界面活性剤等を適量添加することもできる。なお、現像液で現像した後、水で洗浄して乾燥することが好ましい。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に制限されない。
 Mw及びMnは、東ソー製のGPCカラム(G2000HXL2本、G3000HXL1本、G4000HXL1本)を用い、流量1.0ミリリットル/分、溶出溶媒テトラヒドロフラン、カラム温度40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィ(GPC)により測定した。また、分散度(Mw/Mn)は、上記測定結果から算出した。各重合体の13C-NMR分析は、日本電子製の核磁気共鳴装置(JNM-EX270)を使用した。
<[A]重合体の合成>
 [A]重合体の合成に用いた単量体を下記に示す。
Figure JPOXMLDOC01-appb-C000025
[合成例1]
 単量体(M-1)13.0g(50モル%)、単量体(M-7)2.9g(10モル%)、及び単量体(M-9)10.3g(30モル%)を、重合溶媒としての2-ブタノン60gに溶解し、さらに重合開始剤として2,2’-アゾビスイソブチロニトリル1.3gを投入して、単量体溶液(1)を準備した。一方、単量体(M-5)3.8g(10モル%)を、2-ブタノン30gに溶解した単量体溶液(2)を200mLの三口フラスコに投入し、30分間窒素パージした後、攪拌しながら80℃に加熱し、準備しておいた単量体溶液(1)を滴下漏斗を使用して3時間かけて滴下した。滴下開始時を重合開始時とし、6時間重合反応させた。重合反応終了後、重合溶液を水冷することにより30℃以下に冷却し、600gのメタノール中へ投入して、析出した白色粉末をろ別した。ろ別した白色粉末を150gのメタノールを用いて2度スラリー状で洗浄した後、再度ろ別し、50℃で17時間乾燥して白色粉末の共重合体(A-1)を得た。共重合体(A-1)のMwは6,698であり、Mw/Mnは1.403であり、収率は75.3質量%であった。また、13C-NMR分析により測定された共重合体(A-1)中の各単量体に由来する構造単位の含有割合、単量体(M-1)/単量体(M-5)/単量体(M-7)/単量体(M-9)は、49.0/9.2/10.1/31.6(モル%)であった。
[合成例2~11]
 表1に示す種類、配合量の単量体を使用したこと以外は、合成例1と同様に操作して、各重合体を合成した。なお、各物性値についてもあわせて表1に示す。
Figure JPOXMLDOC01-appb-T000026
<感放射線性樹脂組成物の調製>
 以下、実施例及び比較例の調製に用いた各成分の詳細を示す。
[B]酸発生剤
B-1:トリフェニルスルホニウム2-(アダマンタン-1-イル)-1,1-ジフルオロエタン-1-スルホネート
B-2:トリフェニルスルホニウム6-(アダマンタン-1-イルカルボニルオキシ)-1,1,2,2-テトラフルオロヘキサン-1-スルホネート
B-3:1-(4-n-ブトキシナフチル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート
B-4:トリフェニルスルホニウムパーフルオロ-n-ブタンスルホネート
B-5:ジフェニルヨードニウム2-(アダマンタン-1-イル)-1,1-ジフルオロエタン-1-スルホナート)
[C]酸拡散抑制剤
C-1:N-t-ブトキシカルボニル-4-ヒドロキシピペリジン
[D]界面活性剤
D-1:DAINAFLOW(ネオス製)
[E]溶媒
E-1:プロピレングリコールモノメチルエーテルアセテート
E-2:シクロヘキサノン
E-3:γ-ブチロラクトン
[実施例1]
 共重合体(A-1)100質量部、[B]酸発生剤としての(B-1)3.6質量部、及び(B-2)10.6質量部、[C]酸拡散制御剤としての(C-1)1.7質量部、[D]界面活性剤としての(D-1)0.02質量部、並びに[E]溶媒としての(E-1)1,700質量部、(E-2)700質量部及び(E-3)30質量部を混合し、孔径200nmのフィルターでろ過して感放射線性樹脂組成物を調製した。
[実施例2~16及び比較例1~6]
 表2に示す示す種類、配合量の各成分を使用したこと以外は、実施例1と同様に操作して、各感放射線性樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-T000027
<評価>
 実施例1~16及び比較例1~6の各感放射線性樹脂組成物を用いて、下記の特性を評価した。評価結果を表2にあわせて示す。
<露光方法1>
[感度1(mJ/cm)]
 シリコンウェハ表面に下層反射防止膜として膜厚77nmのARC29(日産化学工業製)の膜を形成した基板を用い、各感放射線性樹脂組成物を、クリーントラックACT8(東京エレクトロン製)を使用してスピンコートにより塗布し、ホットプレート上にて、100℃で60秒間ポストベークを行って膜厚90nmのレジスト膜を形成した。形成したレジスト膜に、ArFエキシマレーザー露光装置(ニコン製S306C、開口数0.78)を使用し、マスクを介して露光した。95℃で60秒間ポストベークを行った後、2.38%のテトラメチルアンモニウムヒドロキシド水溶液により、23℃で60秒間現像し、水洗した後、乾燥してポジ型のレジストパターンを形成した。このとき、設計寸法が90nmのライン・アンド・スペースパターン(1L1S)であるマスクを介して解像されるレジストパターンが90nmの1L1Sとなるような露光量を最適露光量1とし、この最適露光量1(mJ/cm)を感度1とした。なお、実施例13のポストベークについては105℃で60秒間とした。本明細書中のライン・アンド・スペースパターンとは、一定幅のライン部と一定幅のスペース部とが交互に平行に配列されたレジストパターンのことである。また、ライン・アンド・スペースパターン(1L1S)とは、ライン部の幅とスペース部の幅の比が「1:1」であるライン・アンド・スペースパターンのことである。即ち、90nmのライン・アンド・スペースパターン(1L1S)とは、幅90nmのライン部と幅90nmのスペース部とが交互に平行に配列されたレジストパターンのことである。
[LWR1]
 上記露光方法1にて形成された90nmライン・アンド・スペースパターン(1L1S)を、測長SEM(S9380、日立製作所製)を使用してパターン上部から撮影した。得られたSEM画像において、ライン部の幅を任意の50点で測定し、そのばらつきを3σ値で表現した場合、3σ値が9.0nm以下である場合を「A」(良好と判断)とし、3σ値が9.0nmを超える場合を「B」(不良と判断)とした。なお、ここで、「3σ値」とは、任意の50点での測定結果の標準偏差を3倍した値のことである。
[DOF1]
 上記最適露光量1で解像されるライン・アンド・スペースパターンの寸法が、マスクの設計寸法(90nm)の±10%の範囲内(即ち、80~100nm)となる場合のフォーカスの振れ幅(焦点深度)をDOF1(nm)とし、DOF1が300nm以上である場合を「A」(良好と判断)とし、DOF1が300nm未満である場合を「B」(不良と判断)とした。
<露光方法2>
[感度2(mJ/cm)]
 下層反射防止膜(ARC66、日産化学製)を形成した12インチシリコンウェハ上に、各感放射線性樹脂組成物によって、膜厚120nmの塗膜を形成し、100℃で60秒間ソフトベークを行った。次に、この塗膜を、ArFエキシマレーザー液浸露光装置(NSR S610C、NIKON製)を用い、NA=1.3、iNA=1.27、ratio=0.800、DipoleX(Blade Angle35°)、偏光の条件により、45nmLine90nmPitchのパターン形成用のマスクパターン(6%ハーフトーン)を介して露光した。露光後、各感放射線性樹脂組成物について95℃で60秒間ポストベークを行った。その後、2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液により現像、水洗、乾燥して、ポジ型のレジストパターンを形成した。このとき、45nmLine90nmPitchのパターン形成用のマスクパターンを介して露光したLineが45nmを形成する露光量を最適露光量2とし、この最適露光量2(mJ/cm)を感度2とした。なお、実施例13のポストベークについては105℃で60秒間とした。測長には走査型電子顕微鏡(CG-4000、日立ハイテクノロジーズ製)を用いた。
[LWR2]
 上記最適露光量2にて形成された45nmライン・アンド・スペースパターン(1L1S)を、上記測長SEMを使用してパターン上部から撮影した。得られたSEM画像において、ライン部の幅を任意の50点で測定し、そのばらつきを3σ値で表現した場合、3σ値が4.0nm以下である場合を「A」(良好と判断)とし、3σ値が4.0nmを超える場合を「B」(不良と判断)とした。
[DOF2]
 上記最適露光量2で解像されるライン・アンド・スペースパターンの寸法が、マスクの設計寸法(45nm)の±10%の範囲内(即ち、40.5~49.5nm)となる場合のフォーカスの振れ幅(焦点深度)をDOF2(nm)とし、DOF2が240nm以上である場合を「A」(良好と判断)とし、DOF2が240nm未満である場合を「B」(不良と判断)とした。
 表2の結果から明らかなように、酸解離性基を有する構造単位(a1)の含有割合が[A]重合体中の50モル%以上である[A]重合体及び特定骨格を有する2種類以上の[B]酸発生剤を含む当該感放射線性樹脂組成物は、比較例の感放射線性樹脂組成物と比べて、LWRが小さく、かつDOFが広いレジスト膜を形成できることがわかった。
 本発明の感放射線性樹脂組成物は、今後益々レジストパターンの線幅の微細化が要求されるフォトレジストの材料として好適に利用することができるものである。

Claims (7)

  1.  [A]下記式(a1)で表される構造単位(a1)を含有する重合体、及び
     [B]炭素数10以上の脂環式骨格を有し、スルホン酸を発生する2種以上の酸発生剤、
    を含有し、[A]重合体中の構造単位(a1)の含有割合が50モル%以上である感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(a1)中、Rは、水素原子又はメチル基である。Rは、炭素数1~10のアルキル基又は炭素数4~20の1価の脂環式炭化水素基である。Rは、それぞれ独立して、炭素数1~10のアルキル基又は炭素数4~20の1価の脂環式炭化水素基である。但し、いずれか2つのRが結合して、それらが結合している炭素原子と共に炭素数4~20の2価の脂環式炭化水素基を形成してもよい。)
  2.  [B]酸発生剤が、下記式(B1)で表される化合物である請求項1に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式(B1)中、Rは、炭素数10以上の脂環式骨格を有する1価の炭化水素基である。Aは、酸素原子、カルボニルオキシ基又はオキシカルボニル基である。Xは、置換されていてもよい炭素数1~20の2価の直鎖状又は分岐状の炭化水素基である。kは、0又は1である。Mは、1価のオニウムカチオンである。)
  3.  上記Rが、アダマンタン骨格を有する1価の炭化水素基である請求項2に記載の感放射線性樹脂組成物。
  4.  上記式(B1)で表される化合物が、下記式(B1-1)で表される化合物を含む請求項2に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(B1-1)中、Rは、置換されていてもよい炭素数1~8の1価の炭化水素基である。Rは、それぞれ独立して、水素原子又は置換されていてもよい炭素数1~8の1価の炭化水素基である。Rは、それぞれ独立して、フッ素原子又は炭素数1~4のパーフルオロアルキル基である。Aは、酸素原子、カルボニルオキシ基又はオキシカルボニル基である。kは、0又は1である。lは、0~4の整数である。mは、0~10の整数である。nは、1~4の整数である。Mは、1価のオニウムカチオンである。但し、R~Rがそれぞれ複数の場合、複数のR~Rはそれぞれ同一であっても異なっていてもよい。)
  5.  上記Mが、下記式(b1)で表されるスルホニウムカチオン又は式(b2)で表されるヨードニウムカチオンである請求項2に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(b1)中、Rは、それぞれ独立して、置換されていてもよい炭素数1~10の直鎖状若しくは分岐状のアルキル基又は置換されていてもよい炭素数6~18のアリール基である。但し、いずれか2つのRが結合して、それらが結合しているイオウ原子と共に環状構造を形成し、残余のRが、置換されていてもよい炭素数1~10の直鎖状若しくは分岐状のアルキル基又は置換されていてもよい炭素数6~18のアリール基であってもよい。)
    Figure JPOXMLDOC01-appb-C000005
    (式(b2)中、Rは、それぞれ独立して、置換されていてもよい炭素数1~10の直鎖状若しくは分岐状のアルキル基又は置換されていてもよい炭素数6~18のアリール基である。但し、いずれか2つの2つのRが結合して、それらが結合しているヨウ素原子と共に環状構造を形成してもよい。)
  6.  上記構造単位(a1)が、下記式(a1-1)で表される構造単位を含む請求項1に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006
    (式(a1-1)中、Rは、式(a1)と同義である。R10は、炭素数1~10のアルキル基である。aは、0~4の整数である。)
  7.  [A]重合体中の上記式(a1-1)で表される構造単位の含有割合が50モル%以上である請求項6に記載の感放射線性樹脂組成物。
PCT/JP2011/056356 2010-03-25 2011-03-17 感放射線性樹脂組成物 WO2011118490A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012506970A JPWO2011118490A1 (ja) 2010-03-25 2011-03-17 感放射線性樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-070941 2010-03-25
JP2010070941 2010-03-25

Publications (1)

Publication Number Publication Date
WO2011118490A1 true WO2011118490A1 (ja) 2011-09-29

Family

ID=44673047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056356 WO2011118490A1 (ja) 2010-03-25 2011-03-17 感放射線性樹脂組成物

Country Status (3)

Country Link
JP (1) JPWO2011118490A1 (ja)
TW (1) TW201211678A (ja)
WO (1) WO2011118490A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099662A1 (en) * 2011-12-27 2013-07-04 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition, and, resist film, pattern forming method, electronic device manufacturing method, and electronic device, each using the composition
JP2014028904A (ja) * 2012-07-31 2014-02-13 Tokyo Ohka Kogyo Co Ltd 共重合体の製造方法、レジスト組成物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330325A (ja) * 2005-05-26 2006-12-07 Jsr Corp 感放射線性樹脂組成物
JP2008165218A (ja) * 2006-12-06 2008-07-17 Sumitomo Chemical Co Ltd 化学増幅型レジスト組成物
JP2008209917A (ja) * 2007-01-30 2008-09-11 Sumitomo Chemical Co Ltd 化学増幅型レジスト組成物
WO2009051088A1 (ja) * 2007-10-15 2009-04-23 Jsr Corporation スルホン化合物、スルホン酸塩および感放射線性樹脂組成物
JP2009169228A (ja) * 2008-01-18 2009-07-30 Shin Etsu Chem Co Ltd ポジ型レジスト材料及びパターン形成方法
JP2010134445A (ja) * 2008-11-10 2010-06-17 Sumitomo Chemical Co Ltd 化学増幅型フォトレジスト組成物
JP2010140014A (ja) * 2008-11-14 2010-06-24 Sumitomo Chemical Co Ltd 化学増幅型フォトレジスト組成物
JP2010215608A (ja) * 2009-02-19 2010-09-30 Shin-Etsu Chemical Co Ltd 新規スルホン酸塩及びその誘導体、光酸発生剤並びにこれを用いたレジスト材料及びパターン形成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5523823B2 (ja) * 2009-12-29 2014-06-18 住友化学株式会社 レジスト組成物及びパターン形成方法
JP5664328B2 (ja) * 2010-03-03 2015-02-04 住友化学株式会社 塩及びレジスト組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006330325A (ja) * 2005-05-26 2006-12-07 Jsr Corp 感放射線性樹脂組成物
JP2008165218A (ja) * 2006-12-06 2008-07-17 Sumitomo Chemical Co Ltd 化学増幅型レジスト組成物
JP2008209917A (ja) * 2007-01-30 2008-09-11 Sumitomo Chemical Co Ltd 化学増幅型レジスト組成物
WO2009051088A1 (ja) * 2007-10-15 2009-04-23 Jsr Corporation スルホン化合物、スルホン酸塩および感放射線性樹脂組成物
JP2009169228A (ja) * 2008-01-18 2009-07-30 Shin Etsu Chem Co Ltd ポジ型レジスト材料及びパターン形成方法
JP2010134445A (ja) * 2008-11-10 2010-06-17 Sumitomo Chemical Co Ltd 化学増幅型フォトレジスト組成物
JP2010140014A (ja) * 2008-11-14 2010-06-24 Sumitomo Chemical Co Ltd 化学増幅型フォトレジスト組成物
JP2010215608A (ja) * 2009-02-19 2010-09-30 Shin-Etsu Chemical Co Ltd 新規スルホン酸塩及びその誘導体、光酸発生剤並びにこれを用いたレジスト材料及びパターン形成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099662A1 (en) * 2011-12-27 2013-07-04 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition, and, resist film, pattern forming method, electronic device manufacturing method, and electronic device, each using the composition
JP2013137339A (ja) * 2011-12-27 2013-07-11 Fujifilm Corp 感活性光線性又は感放射線性樹脂組成物、並びに、該組成物を用いたレジスト膜、パターン形成方法、電子デバイスの製造方法及び電子デバイス
JP2014028904A (ja) * 2012-07-31 2014-02-13 Tokyo Ohka Kogyo Co Ltd 共重合体の製造方法、レジスト組成物

Also Published As

Publication number Publication date
TW201211678A (en) 2012-03-16
JPWO2011118490A1 (ja) 2013-07-04

Similar Documents

Publication Publication Date Title
US8507575B2 (en) Radiation-sensitive resin composition, polymer, and compound
JP5713004B2 (ja) 感放射線性樹脂組成物
JP5660037B2 (ja) 感放射線性樹脂組成物
WO2010119910A1 (ja) 感放射線性樹脂組成物、それに用いる重合体及びそれに用いる化合物
JP5617339B2 (ja) 感放射線性樹脂組成物、重合体及び化合物
US8980529B2 (en) Radiation-sensitive resin composition, polymer, and resist pattern-forming method
JP2010134126A (ja) 感放射線性組樹脂組成物
TWI588164B (zh) Radiation sensitive resin composition and polymer
JP5434323B2 (ja) 感放射線性樹脂組成物及びスルホニウム塩
JP5617844B2 (ja) 感放射線性樹脂組成物
WO2011118490A1 (ja) 感放射線性樹脂組成物
US8916333B2 (en) Radiation-sensitive resin composition
JP4134685B2 (ja) 感放射線性樹脂組成物
JP6304186B2 (ja) 感放射線性樹脂組成物
JP2005068418A (ja) アクリル系重合体および感放射線性樹脂組成物
JP5434709B2 (ja) 感放射線性樹脂組成物及び重合体
JP2011059516A (ja) 感放射線性樹脂組成物
JP3968509B2 (ja) 感放射線性樹脂組成物
JP2011059531A (ja) 感放射線性樹脂組成物及びパターン形成方法
JP5539371B2 (ja) 感放射線性樹脂組成物
WO2011111641A1 (ja) 感放射線性樹脂組成物
JP2009211044A (ja) 評価方法および感放射線性樹脂組成物
JP4962142B2 (ja) 共重合体および感放射線性樹脂組成物
JP2011075750A (ja) 化学増幅型レジスト用感放射線性樹脂組成物および重合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759296

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012506970

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759296

Country of ref document: EP

Kind code of ref document: A1