WO2011118292A1 - ポリ乳酸系エアスルー不織布の製造方法、及びポリ乳酸系エアスルー不織布 - Google Patents

ポリ乳酸系エアスルー不織布の製造方法、及びポリ乳酸系エアスルー不織布 Download PDF

Info

Publication number
WO2011118292A1
WO2011118292A1 PCT/JP2011/053307 JP2011053307W WO2011118292A1 WO 2011118292 A1 WO2011118292 A1 WO 2011118292A1 JP 2011053307 W JP2011053307 W JP 2011053307W WO 2011118292 A1 WO2011118292 A1 WO 2011118292A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
air
melting point
nonwoven fabric
web
Prior art date
Application number
PCT/JP2011/053307
Other languages
English (en)
French (fr)
Inventor
吉田 正樹
水谷 聡
孝義 小西
宏子 野積
Original Assignee
ユニ・チャーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニ・チャーム株式会社 filed Critical ユニ・チャーム株式会社
Priority to US13/582,533 priority Critical patent/US20120329352A1/en
Priority to KR1020127027817A priority patent/KR101587907B1/ko
Priority to BR112012024088A priority patent/BR112012024088A2/pt
Priority to CN2011800137174A priority patent/CN102791916A/zh
Priority to EP11759100.8A priority patent/EP2551394A4/en
Publication of WO2011118292A1 publication Critical patent/WO2011118292A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/04Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
    • B29C35/06Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam for articles of indefinite length
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5414Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres side-by-side
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/638Side-by-side multicomponent strand or fiber material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • Y10T442/641Sheath-core multicomponent strand or fiber material

Definitions

  • the present invention relates to a method for producing a polylactic acid-based air-through nonwoven fabric having a low melting point, which has less heat shrinkage during production and excellent tactile sensation, and a polylactic acid-based air-through nonwoven fabric having a low melting point.
  • thermoplastic polymers such as polyolefins, polyesters and polyamides have been used as materials for medical, hygiene materials, general living materials, industrial materials and the like. Since the thermoplastic polymer is chemically stable under normal circumstances and is not biodegradable, the nonwoven fabric is disposed of by incineration or landfill. Incineration involves a large amount of carbon dioxide, which is problematic from the viewpoint of environmental protection. Also, landfill disposal has a problem that it is difficult to be decomposed in the soil.
  • polylactic acid fibers have attracted attention because of their high melting points.
  • Polylactic acid is a biodegradable polymer that can be produced from plant resources such as corn, and the amount of carbon dioxide generated from production to incineration is about 4.0 kg / kg for polyethylene derived from crude oil.
  • -Polymer and polyester derived from crude oil is said to be about 6.1 kg / kg-polymer, but polylactic acid has an amount of carbon dioxide generated from production to incineration of about 0.3 kg / kg- It is known to be very little with polymers.
  • Patent Document 1 can be cited as a document disclosing non-woven fabric manufactured from polylactic acid fiber.
  • Patent Document 1 discloses a nonwoven fabric manufactured by the needle punch method or the hydroentanglement method.
  • the nonwoven fabric manufactured by the needle punch method has a high basis weight structure, so that the cost is increased and the hydroentanglement method is used.
  • the manufactured nonwoven fabric has problems with liquid brushing and fogging, and is difficult to apply to disposable diapers and sanitary products.
  • An air-through nonwoven fabric is suitable from the viewpoint of softness as a nonwoven fabric used for a portion that comes into direct contact with skin such as disposable diapers and sanitary products.
  • an air-through nonwoven fabric suitable for disposable diapers, sanitary products and the like is manufactured from fibers containing polylactic acid.
  • the air-through nonwoven fabric is a nonwoven fabric produced by heat-sealing each fiber by heating, a low-melting-point component serving as a binder is necessary.
  • a composite fiber having a core component made of polylactic acid and a sheath component made of polylactic acid having a melting point lower than that of the core component is subjected to air-through treatment at a temperature equal to or higher than the melting point of the sheath component, the fiber is subjected to the air-through treatment.
  • the non-woven fabric that is thermally contracted by heat is remarkably inferior in touch.
  • an object of the present invention is to provide a method for producing a polylactic acid-based air-through nonwoven fabric having a low melting point, which has less heat shrinkage at the time of production and is excellent in touch, and a polylactic acid-based air-through nonwoven fabric having a low melting point.
  • first polylactic acid and second polylactic acid having a melting point lower than the melting point of the first polylactic acid.
  • the present invention relates to the following aspects.
  • Next steps Forming a web comprising a composite fiber comprising a first polylactic acid and a second polylactic acid having a melting point lower than that of the first polylactic acid;
  • the web is then subjected to the following temperature T 1 : Subjecting to a first air-through treatment within the range of glass transition temperature of the second polylactic acid ⁇ T 1 ⁇ melting point of the second polylactic acid; and exposing to the first air-through treatment to produce an air-through nonwoven fabric.
  • the web thus obtained has the following temperature T 2 : Melting point of second polylactic acid ⁇ 5 ° C. ⁇ T 2 ⁇ Melting point of second polylactic acid + 15 ° C.
  • a method for producing an air-through nonwoven fabric comprising: The crystallinity of the air-through nonwoven fabric is in the range of 44 to 68%, The above method.
  • Aspect 12 An air-through nonwoven fabric produced from a composite fiber containing a first polylactic acid and a second polylactic acid having a melting point lower than the melting point of the first polylactic acid via a web containing the composite fiber. , The crystallinity of the air-through nonwoven fabric is in the range of 44 to 68%, The air-through nonwoven fabric.
  • Aspect 13 The air-through nonwoven fabric according to aspect 12, wherein the melting point of the second polylactic acid is 20 to 60 ° C. lower than the melting point of the first polylactic acid.
  • Aspect 16 The air-through nonwoven fabric according to any one of embodiments 12 to 15, wherein the degree of biomass is in the range of 90 to 100%.
  • Aspect 17 The air-through nonwoven fabric according to any one of aspects 12 to 16, wherein the conjugate fiber is a core-sheath conjugate fiber or a side-by-side conjugate fiber.
  • the web further comprises fibers of polylactic acid having a melting point higher than the temperature T 2, air-through nonwoven fabric according to any of aspects 12-17.
  • the air-through nonwoven fabric having a low melting point produced by the method of the present invention has less heat shrinkage during production and is excellent in tactile sensation. Moreover, the air-through nonwoven fabric having a low melting point produced by the method of the present invention has a high degree of biomass and biodegradability, and therefore has high environmental compatibility.
  • the manufacturing method of the air through nonwoven fabric of the present invention and the air through nonwoven fabric will be described in detail below.
  • the first polylactic acid and the second polylactic acid have different melting points.
  • the melting point of polylactic acid can be adjusted by adjusting the ratio of D-form and L-form, which are optical isomers of lactic acid as a raw material.
  • polylactic acid having a melting point of about 190 to 220 ° C. can be produced by mixing and copolymerizing the D-form: L-form molar ratio at 50:50.
  • polylactic acid having a melting point of about 170 ° C. is prepared from copolymerization of a mixture of L-form: D-form with a molar ratio of 99: 1, and copolymerization of mixture of L-form: D-form with a molar ratio of 97: 3.
  • a polylactic acid having a melting point of about 150 ° C. is produced, a polylactic acid having a melting point of about 130 ° C.
  • polylactic acid does not show a clear melting point and becomes an amorphous polymer having a softening temperature of less than about 90 ° C.
  • the softening temperature visually is handled as the melting point for convenience.
  • the melting point can be measured with a differential scanning calorimeter.
  • the melting point can be measured, for example, using a DSC-60 type DSC measuring apparatus manufactured by Shimadzu Corporation at a temperature rising rate of 10 ° C./min.
  • the melting point of the second polylactic acid is preferably about 20 to about 60 ° C. lower than the melting point of the first polylactic acid, and more preferably about 30 to about 50 ° C. If the melting point of the second polylactic acid is made to be about 60 ° C. lower than the melting point of the first polylactic acid, the proportion of the D-form increases, so that the volume tends to decrease during heating. Yes, and if the difference between the melting point of the first polylactic acid and the melting point of the second polylactic acid is less than about 20 ° C., the melting points of both are too close, so strict temperature control of the air-through treatment is required and practical use Not right.
  • the first polylactic acid preferably has a melting point of about 150 to about 190 ° C., and more preferably has a melting point of about 160 to about 180 ° C. When the melting point is below about 150 ° C., it is difficult to ensure a difference in melting point from the second polylactic acid, and it is technically difficult to produce polylactic acid having a melting point exceeding about 190 ° C.
  • the first polylactic acid preferably has a weight average molecular weight of about 60,000 or more, and more preferably has a weight average molecular weight of about 100,000 to about 300,000. If the weight average molecular weight is less than about 60,000, the strength of the fiber may decrease, and if the weight average molecular weight is more than about 300,000, the biodegradability of the air-through nonwoven fabric produced by the present invention is impaired. There is a case.
  • the second polylactic acid preferably has a melting point of about 110 to about 150 ° C., and more preferably has a melting point of 120 to 140 ° C. If the melting point is below about 110 ° C., the nonwoven fabric may not be easily bulky when air-through treatment is performed, and if the melting point exceeds about 150 ° C., it is difficult to secure a melting point difference from the melting point of the first polylactic acid. Become.
  • the second polylactic acid preferably has a weight average molecular weight of about 50,000 or more, and more preferably has a weight average molecular weight of about 60,000 to about 90,000.
  • weight average molecular weight is less than about 50,000, the strength of the fiber tends to decrease, and when the weight average molecular weight is more than about 90,000, the weight average molecular weight of the first polylactic acid from the viewpoint of the final fiber strength. Needs to be increased, and the spinning performance may be reduced.
  • the ratio of the first polylactic acid to the second polylactic acid is, by mass ratio, about 70:30 to about 30: first polylactic acid: second polylactic acid. 70 is preferred, and more preferred is about 60:40 to about 40:60. If the ratio of the first polylactic acid is less than about 30%, it may be excessively heat-sealed or excessively shrunk during the second air-through process, and the ratio of the first polylactic acid may be If it exceeds about 70%, the thermal fusion during the second air-through process may be insufficient.
  • the shape of the composite fiber is not particularly limited as long as it is a fiber containing the first polylactic acid and the second polylactic acid in a single fiber, but for example, the first polylactic acid is Examples thereof include a core-sheath type and a side-by-side type in which the core is a core and the second polylactic acid is a sheath.
  • the fiber length of the composite fiber is preferably 30 mm to 70 mm.
  • the fiber diameter of the composite fiber is preferably 2 dtex to 6 dtex.
  • the Terramac series for example, PL80 marketed from Unitika, for example, can be mentioned.
  • the crystallinity of the air-through nonwoven fabric is in the range of about 44% to about 68%.
  • the degree of crystallinity is less than about 44%, the degree of crystallinity during the first air-through treatment is insufficient, the heat shrinkage during the second air-through treatment increases, and the tactile sensation of the generated air-through nonwoven fabric decreases.
  • the degree of crystallinity exceeds about 68%, the degree of crystallinity is too high, and the tactile sensation of the air-through nonwoven fabric may be lowered.
  • the air through nonwoven fabric preferably has an area remaining ratio of about 40% or more, preferably about 50% or more, and most preferably about 55% or more with respect to the web containing the composite fibers.
  • the “area residual ratio” is obtained by cutting the sheet of a certain size from the web, and subjecting the sheet to the first air-through treatment and the second air-through treatment.
  • Area remaining rate (%) 100 ⁇ (Area of sheet after second air-through treatment) ⁇ (Area of sheet of untreated web) Means the value calculated by.
  • the air-through nonwoven fabric further includes fibers of polylactic acid (hereinafter referred to as “third polylactic acid”) having a melting point higher than the temperature T 2 of the second air-through treatment in order to reduce thermal shrinkage during production. Can be included.
  • the third polylactic acid can be adjusted by adjusting the ratio of D-form and L-form of the lactic acid monomer having optical activity.
  • the third polylactic acid has a melting point higher than the temperature T 2 of the second air-through treatment, mainly in order to reduce thermal shrinkage during the second air-through treatment, and preferably it has at least about 10 ° C. higher melting point than the temperature T 2, more preferably at least about 30 ° C. higher melting point, and even more preferably has at least about 40 ° C. higher melting point.
  • temperature T 2 is 130 ° C.
  • the third polylactic acid preferably has a melting point above about 140 ° C., more preferably having a melting point of at least about 0.99 ° C., and above about 160 ° C. More preferably, it has a melting point.
  • the third polylactic acid fiber may have the same fiber length and fiber diameter as the composite fiber.
  • the third polylactic acid fiber is preferably about 40% by mass or less, preferably about 30% by mass or less, based on the total amount of the fiber so that heat fusion during the air-through treatment is not insufficient. More preferably, it is more preferably about 20% by mass or less.
  • the air-through nonwoven fabric has a biomass degree in the range of about 90 to about 100%, preferably about 100%.
  • biomass degree means the ratio of the organic resources to the total mass of the fossil resources generated from petroleum and the organic resources derived from renewable organisms in the nonwoven fabric. means.
  • the step of forming the web containing the composite fiber includes a raw material of a composite fiber containing a first polylactic acid and a second polylactic acid, which is known in the art. Using a device such as a card machine, it can be formed into a sheet-like web having a desired basis weight.
  • the air-through nonwoven fabric further includes a third polylactic acid fiber in addition to the composite fiber containing the first polylactic acid and the second polylactic acid, the composite fiber and the third polylactic acid
  • the lactic acid fibers can be blended and then the web can be formed.
  • the basis weight of the web varies depending on the use of the air-through nonwoven fabric produced from the web. However, in consideration of production efficiency and the like, the basis weight is preferably about 10 to about 60 g / m 2 , more preferably about 15 to It can have a basis weight of about 40 g / m 2 .
  • the first air-through treatment is a treatment for increasing the crystallinity while suppressing the thermal shrinkage of the composite fiber.
  • the first air-through process has the following temperature T 1 : The glass transition temperature of the second polylactic acid ⁇ T 1 ⁇ the melting point of the second polylactic acid.
  • the temperature T 1 is within the range of the glass transition temperature of the second polylactic acid ⁇ T 1 ⁇ the melting point of the second polylactic acid, and the melting point of the second polylactic acid ⁇ about 50 ° C. ⁇ T 1 ⁇ the second polylactic acid.
  • the melting point of lactic acid is preferably in the range of about 10 ° C., and the melting point of the second polylactic acid—about 35 ° C. ⁇ T 1 ⁇ the melting point of the second polylactic acid—about 15 ° C. More preferred.
  • the glass transition temperature of polylactic acid is generally known to be in the range of about 50 to about 60 ° C.
  • the temperature T 1 is preferably in the range of about 80 ° C. to about 120 ° C. and in the range of about 95 ° C. to about 115 ° C. Is more preferable.
  • the first air-through process can be performed using a conventionally known air-through apparatus.
  • the time of the first air-through treatment is preferably between about 20 seconds and about 120 seconds, more preferably between about 30 seconds and about 100 seconds, and between about 45 seconds and about 75 seconds. More preferably. If the time is less than about 20 seconds, the first air-through treatment may be insufficient, there may be a portion where the crystallinity does not increase, and if the time exceeds about 120 seconds, Undesirable from the point of view.
  • the second air-through treatment is a treatment for producing an air-through nonwoven fabric by thermally fusing each fiber.
  • the second air-through process has the following temperature T 2 : Melting point of second polylactic acid ⁇ about 5 ° C. ⁇ temperature T 2 ⁇ melting point of second polylactic acid + about 15 ° C.
  • the temperature T 2 is within the range of the melting point of the second polylactic acid ⁇ about 5 ° C. ⁇ temperature T 2 ⁇ the melting point of the second polylactic acid + about 15 ° C., and the melting point of the second polylactic acid ⁇ about 5 ° C. ⁇
  • Temperature T 2 is the second polylactic acid - Below about 5 ° C., but soft, heat sealing is weak, may become a fuzz easy nonwoven, and temperature T 2 is the melting point + about 15 of the second polylactic acid If the temperature is higher than ° C., each fiber is excessively heat-sealed, and the air-through nonwoven fabric produced may be inferior in touch.
  • the temperature T 2 is in the range of about 125 ° C. to about 145 ° C., more preferably in the range of about 125 ° C. to about 140 ° C. And more preferably in the range of about 125 ° C to about 135 ° C.
  • the second air-through process can be performed using a conventionally known air-through apparatus.
  • the time of the second air-through treatment is preferably between about 20 seconds and about 120 seconds, more preferably between about 30 seconds and about 100 seconds, and between about 45 seconds and about 75 seconds. More preferably. If the time is less than about 20 seconds, the second air-through process may be insufficient, and there may be a portion where each fiber is not fused, and if the time exceeds about 120 seconds, It is not desirable from the viewpoint of efficiency.
  • a web containing a composite fiber containing the first polylactic acid and the second polylactic acid is divided into a first air-through treatment and a second air-through treatment.
  • the reason why it is possible to produce an air-through nonwoven fabric with less heat shrinkage and excellent tactile sensation is considered as follows.
  • the web is subjected to shrinkage of the second polylactic acid by exposing the web to a temperature T 1 that is higher than the glass transition temperature of the second polylactic acid and lower than the melting point of the second polylactic acid. While suppressing, the crystallinity can be increased.
  • the fibers are not fused together, so that it is difficult to achieve a hard tactile sensation.
  • the higher the crystallinity of a polymer the more stable the physical properties, in particular, the dimensional stability.
  • the web that has been exposed to the first air-through treatment and has a high degree of crystallinity is treated with the second polylactic acid having a melting point of about 5 ° C. or higher and the second polylactic acid. by exposure to melting point + about 15 °C temperature T 2 below, while suppressing shrinkage of the fibers, each fibers can be fused.
  • the second polylactic acid is not sufficiently crystallized before the second polylactic acid is sufficiently crystallized.
  • the above phenomenon is considered to be a phenomenon caused by the fact that polylactic acid is a polymer having a high heat shrinkage rate and the crystallization rate is low due to the rigidity of the main chain.
  • the method for producing the air-through nonwoven fabric before the step of producing the web containing the composite fiber, the following temperature T 3 : Glass transition temperature of second polylactic acid ⁇ T 3 ⁇ T 1
  • the method may further include the step of annealing the fiber.
  • the annealing treatment By performing the annealing treatment, the crystallinity of the second polylactic acid can be further increased before the second air-through treatment, and an air-through nonwoven fabric with less heat shrinkage can be produced. Since the annealing treatment is performed before the web is formed, the effect of heat shrinkage that occurs during the annealing treatment hardly remains on the air-through nonwoven fabric.
  • the temperature T 3 is in the range of the glass transition temperature of the second polylactic acid ⁇ T 3 ⁇ T 1 , and the melting point of the second polylactic acid ⁇ about 60 ° C. ⁇ T 3 ⁇ the melting point of the second polylactic acid ⁇ about.
  • the temperature is preferably 20 ° C., and more preferably in the range of the melting point of the second polylactic acid ⁇ about 50 ° C. ⁇ T 3 ⁇ the melting point of the second polylactic acid ⁇ about 30 ° C.
  • the temperature T 3 is preferably in the range of about 70 ° C. to about 110 ° C. and in the range of about 80 ° C. to about 100 ° C. Is more preferable.
  • the annealing time is between about 20 seconds and about 180 seconds, more preferably between about 30 seconds and about 120 seconds, and between about 45 seconds and about 90 seconds. Most preferred. When the time is less than about 20 seconds, there may be a portion where the annealing treatment is insufficient, and when the time exceeds about 180 seconds, it is not preferable from the viewpoint of production efficiency.
  • the annealing treatment is preferably performed within the range of temperature T 3 : glass transition temperature of second polylactic acid ⁇ T 3 ⁇ melting point of second polylactic acid. Is within the range of the melting point of the second polylactic acid—about 50 ° C. ⁇ T 1 ⁇ the melting point of the second polylactic acid—about 10 ° C., and more preferably the melting point of the second polylactic acid—about 35 ° C. ⁇ T 1 ⁇ The melting point of the second polylactic acid can be within the range of about 15 ° C. In this embodiment, either the temperature T 3 or the temperature T 1 may be higher.
  • the annealing treatment for example, a first polylactic acid, the raw cotton of the composite fiber and a second polylactic acid, hot air temperature T 3, at wind velocity of about 1 to about 5 m / sec, about 20 to It can be performed by applying for about 180 seconds.
  • the air-through nonwoven fabric has a high degree of biomass and is biodegradable, so it is single-use and is discarded after use, such as sanitary napkins and panty liners, sanitary products such as disposable diapers, urine leak It can be suitably used for prevention sheets, urine collection pads for incontinence patients, medical supplies for body fluid / blood absorption, wound supplies, cosmetic pack materials, and animal excretion treatment agents.
  • Example 1 A raw cotton of Terramac PL80 (fineness: 2.2 dtex, cut length: 51 mm, number of crimps: 17 pieces / 25 mm, and hydrophilic oil agent: 0.4% by mass) manufactured by Unitika Ltd. was prepared.
  • PL80 is a core-sheath type composite fiber having a biomass degree of 100%, including a core made of polylactic acid having a melting point of 170 ° C. and a sheath made of modified polylactic acid having a melting point of 130 ° C.
  • the raw cotton was opened with a card machine to produce a web having a basis weight of 20 g / m 2 .
  • the web was cut into a card web having a length (MD) of 200 mm and a width (CD) of 200 mm.
  • the above card web is placed on the support mesh DOP-18S, and the first through the use of an air-through processing machine (conveyor furnace length of the heat treatment part: 3 m) at 80 ° C. for 1 minute and at a wind speed of 1 m / second.
  • the area was measured by exposing to air-through treatment.
  • the card web exposed to the first air-through treatment is again placed on the support mesh DOP-18S, and the second air is passed through the air-through treatment machine at 135 ° C. for 1 minute under a wind speed of 1 m / second.
  • the air-through nonwoven fabric 1 was manufactured by subjecting it to the air-through treatment, and the area, crystallinity, and touch were evaluated.
  • the area remaining rate of the air-through nonwoven fabric 1 was 50%, and the crystallinity was 44%.
  • Example 2 An air-through nonwoven fabric 2 was produced according to Example 1 except that the temperature of the first air-through treatment was changed to 95 ° C. The area remaining rate of the air-through nonwoven fabric 2 was 52%.
  • Example 3 An air-through nonwoven fabric 3 was produced according to Example 1 except that the temperature of the first air-through treatment was changed to 105 ° C. The area remaining rate of the air-through nonwoven fabric 3 was 54%, and the crystallinity was 68%.
  • Example 4 An air-through nonwoven fabric 4 was produced according to Example 1 except that the temperature of the first air-through treatment was changed to 115 ° C. The area remaining rate of the air-through nonwoven fabric 4 was 50%, and the crystallinity was 56%.
  • Example 5 An air-through nonwoven fabric 5 was produced according to Example 1 except that the temperature of the first air-through treatment was changed to 105 ° C. and the temperature of the second air-through treatment was changed to 125 ° C. The area remaining rate of the air-through nonwoven fabric 5 was 61%, and the crystallinity was 53%.
  • Table 1 The test conditions and results of Examples 1 to 5 are summarized in Table 1.
  • Comparative Example 1 An air-through nonwoven fabric 6 was produced according to Example 1 except that the first air-through treatment was not performed. The area remaining rate of the air-through nonwoven fabric 6 was 28%, and the crystallinity was 38%. The test conditions and results of Comparative Example 1 are summarized in Table 1.
  • Example 6 A raw cotton of Terramac PL80 manufactured by Unitika Ltd. was prepared. The raw cotton was annealed with an air-through treatment machine at 90 ° C. for 1 minute under conditions of a wind speed of 3 m / second. Next, the annealed raw cotton was opened with a card machine to produce a web having a basis weight of 20 g / m 2 . A card web having a length (MD) of 200 mm and a width (CD) of 200 mm was collected from the web.
  • MD length
  • CD width
  • the card web was exposed to the first air-through treatment and the second air-through treatment under the same conditions as in Example 4 to produce an air-through nonwoven fabric 7.
  • the area remaining rate of the air-through nonwoven fabric 7 was 83.8%, and it was found that the area remaining rate was improved by 30% or more compared to the air-through nonwoven fabric 4 produced in Example 4. It can be seen from Example 6 that the area remaining rate of the air-through nonwoven fabric is greatly improved by annealing the raw cotton.
  • PL01 is a fiber of 100% biomass composed of polylactic acid having a melting point of 170 ° C., fineness: 1.7 dtex, cut length: 51 mm, crimp number: 17 pieces / 25 mm, and hydrophilic oil agent: 0.4% by mass Had.
  • PL80 and PL01 are put into a plastic bag at a mass ratio of 80:20, temporarily mixed with a high-pressure air jetted while gently opening the mouth, and opened using a card machine, Wraps were collected.
  • the wrap was divided into three equal parts, the direction was changed, the card was put into the card machine again to open the fiber, and this was repeated again to produce a web having a basis weight of 20 g / m 2 .
  • the card web was exposed to the first air-through treatment and the second air-through treatment under the same conditions as in Example 4 to produce an air-through nonwoven fabric 8.
  • the area remaining rate of the air-through nonwoven fabric 7 was 82.0%, and it was found that the area remaining rate was improved by 30% or more compared to the air-through nonwoven fabric 4 manufactured in Example 4.
  • Example 7 shows that heat shrinkage at the time of air-through treatment can be suppressed by blending fibers made of polylactic acid having a high melting point and hardly heat shrinking.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)

Abstract

本発明は、第1のポリ乳酸と、第1のポリ乳酸の融点よりも低い融点を有する第2のポリ乳酸とを含む複合繊維を含むウェブを形成するステップ;上記ウェブを、次の温度T1:第2のポリ乳酸のガラス転移温度<T1<第2のポリ乳酸の融点の範囲内で、第1のエアスルー処理にさらすステップ;そしてエアスルー不織布を製造するために、第1のエアスルー処理にさらされたウェブを、次の温度T2:第2のポリ乳酸の融点-5℃≦T2≦第2のポリ乳酸の融点+15℃の範囲内で、第2のエアスルー処理にさらすステップ:を含むエアスルー不織布を製造する方法であって、上記エアスルー不織布の結晶化度が、44~68%の範囲内にあることを特徴とする。

Description

ポリ乳酸系エアスルー不織布の製造方法、及びポリ乳酸系エアスルー不織布
 本発明は、製造時の熱収縮が少なく、触感に優れる、低融点を有するポリ乳酸系エアスルー不織布の製造方法、及び低融点を有するポリ乳酸系エアスルー不織布に関する。
 従来、医療、衛生材料、一般生活材料、産業資材等向けの素材として、ポリオレフィン、ポリエステル、ポリアミド等の熱可塑性ポリマーから製造された不織布が用いられている。上記熱可塑性ポリマーは、通常の環境下では化学的に安定であり、生分解性を有しないので、上記不織布は、焼却又は埋め立てにより処分されている。焼却処分は、大量の二酸化炭素の発生を伴うので、環境保護の観点から問題がある。また、埋め立て処分は、土中で分解されにくい問題がある。
 上記問題を解決するために、生分解性を有し且つバイオマス度の高い繊維から製造された不織布の検討がなされ、特に、その融点の高さから、ポリ乳酸系繊維が着目されている。ポリ乳酸は、トウモロコシ等の植物資源から製造することができる、生分解性を有するポリマーであり、そして製造から焼却までに発生する二酸化炭素の量は、原油由来のポリエチレンが約4.0kg/kg−ポリマーであり、そして原油由来のポリエステルが約6.1kg/kg−ポリマーであるといわれているが、ポリ乳酸は、製造から焼却までに発生する二酸化炭素の量が約0.3kg/kg−ポリマーと非常に少ないことが知られている。なお、ポリ乳酸に関する数値は、NatureWorks社発表のデータ(PLA6(2006/2007))に基づき、ポリエチレンに関する数値は、産業技術総合研究所発表のデータに基づき、そしてポリエステルに関する数値は、Plastic Europe発表のデータに基づく。
 ポリ乳酸系繊維から製造された不織布が開示される文献として、例えば、特許文献1を挙げることができる。特許文献1では、ニードルパンチ法又は水流交絡法により製造された不織布が開示されているが、ニードルパンチ法により製造された不織布は、高目付構造を有するので、高コストとなり、また水流交絡法により製造された不織布は、液ハケ性、カブレ等に問題があり、使い捨てオムツ、生理用品等に適用しにくい。
 使い捨てオムツ、生理用品等の肌に直接接する部分に用いられる不織布としては、肌触りの柔らかさの観点から、エアスルー不織布が適している。しかし、ポリ乳酸を含む繊維から、使い捨てオムツ、生理用品等に好適なエアスルー不織布を製造しようとすると、以下のような問題が生じることが知られている。
 エアスルー不織布は、加熱により各繊維を熱融着することにより製造される不織布であるので、バインダーとなる低融点成分が必要である。例えば、ポリ乳酸から成る芯成分と、芯成分よりも融点が低いポリ乳酸から成る鞘成分とを有する複合繊維を、鞘成分の融点以上の温度でエアスルー処理をすると、繊維がエアスルー処理の際の熱により熱収縮し、生成した不織布の触感が顕著に劣る問題点がある。
特開平7−126970号公報
 以上のように、低融点を有するポリ乳酸を含む繊維から、エアスルー不織布を製造する場合には、熱収縮、及びそれに伴う触感の低下の問題点があった。
 従って、本発明は、製造時の熱収縮が少なく、触感に優れる、低融点を有するポリ乳酸系エアスルー不織布の製造方法、及び低融点を有するポリ乳酸系エアスルー不織布を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討した結果、次の各ステップ;第1のポリ乳酸と、第1のポリ乳酸の融点よりも低い融点を有する第2のポリ乳酸とを含む複合繊維を含むウェブを形成するステップ;上記ウェブを、次の温度T:第2のポリ乳酸のガラス転移温度<T<第2のポリ乳酸の融点の範囲内で、第1のエアスルー処理にさらすステップ;そしてエアスルー不織布を製造するために、第1のエアスルー処理にさらされたウェブを、次の温度T:第2のポリ乳酸の融点−5℃≦T≦第2のポリ乳酸の融点+15℃の範囲内で、第2のエアスルー処理にさらすステップ:を含むエアスルー不織布を製造する方法であって、上記エアスルー不織布の結晶化度が、44~68%の範囲内にあることを特徴とする方法により、上記課題を解決できることを見出し、本発明を完成するに至った。
 具体的には、本発明は以下の態様に関する。
[態様1]
 次の各ステップ;
 第1のポリ乳酸と、第1のポリ乳酸の融点よりも低い融点を有する第2のポリ乳酸とを含む複合繊維を含むウェブを形成するステップ;
 上記ウェブを、次の温度T
 第2のポリ乳酸のガラス転移温度<T<第2のポリ乳酸の融点
 の範囲内で、第1のエアスルー処理にさらすステップ;そして
 エアスルー不織布を製造するために、第1のエアスルー処理にさらされたウェブを、次の温度T
 第2のポリ乳酸の融点−5℃≦T≦第2のポリ乳酸の融点+15℃
 の範囲内で、第2のエアスルー処理にさらすステップ:
 を含むエアスルー不織布を製造する方法であって、
 上記エアスルー不織布の結晶化度が、44~68%の範囲内にあることを特徴とする、
 上記方法。
[態様2]
 温度Tが、第2のポリ乳酸の融点−50℃≦T≦第2のポリ乳酸の融点−10℃の範囲内にある、態様1に記載の方法。
[態様3]
 温度Tが、第2のポリ乳酸の融点−5℃≦T≦第2のポリ乳酸の融点+10℃の範囲内にある、態様1又は2に記載の方法。
[態様4]
 第1のエアスルー処理にさらすステップ及び/又は第2のエアスルー処理にさらすステップが、20~120秒の間実施される、態様1~3のいずれか一つに記載の方法。
[態様5]
 第2のポリ乳酸の融点が、第1のポリ乳酸の融点よりも20~60℃低い、態様1~4のいずれか一つに記載の方法。
[態様6]
 第1のポリ乳酸の融点が150~190℃の範囲内にあり、そして第2のポリ乳酸の融点が110~150℃の範囲内にある、態様1~5のいずれか一つに記載の方法。
[態様7]
 上記エアスルー不織布の、上記ウェブに対する面積残存率が、40%以上である、態様1~6のいずれか一つに記載の方法。
[態様8]
 上記エアスルー不織布のバイオマス度が90~100%の範囲内にある、態様1~7のいずれか一つに記載の方法。
[態様9]
 上記複合繊維が、芯鞘型複合繊維又はサイドバイサイド型複合繊維である、態様1~8のいずれか一つに記載の方法。
[態様10]
 上記ウェブを形成するステップにおいて、上記複合繊維と、温度Tよりも高い融点を有するポリ乳酸の繊維とを含むウェブが形成される、態様1~9のいずれか一つに記載の方法。
[態様11]
 上記ウェブを形成するステップの前に、次の温度T
 第2のポリ乳酸のガラス転移温度<T<T
 の範囲内で、繊維をアニール処理するステップをさらに含む、態様1~10のいずれか一つに記載の方法。
[態様12]
 第1のポリ乳酸と、第1のポリ乳酸の融点よりも低い融点を有する第2のポリ乳酸とを含む複合繊維から、当該複合繊維を含むウェブを経由して製造されたエアスルー不織布であって、
 上記エアスルー不織布の結晶化度が、44~68%の範囲内にあることを特徴とする、
 上記エアスルー不織布。
[態様13]
 第2のポリ乳酸の融点が、第1のポリ乳酸の融点よりも20~60℃低い、態様12に記載のエアスルー不織布。
[態様14]
 第1のポリ乳酸の融点が150~190℃の範囲内にあり、そして第2のポリ乳酸の融点が110~150℃の範囲内にある、態様12又は13に記載のエアスルー不織布。
[態様15]
 上記エアスルー不織布の、上記ウェブに対する面積残存率が、40%以上である、態様12~14のいずれか一つに記載のエアスルー不織布。
[態様16]
 バイオマス度が90~100%の範囲内にある、態様12~15のいずれか一つに記載のエアスルー不織布。
[態様17]
 上記複合繊維が、芯鞘型複合繊維又はサイドバイサイド型複合繊維である、態様12~16のいずれか一つに記載のエアスルー不織布。
[態様18]
 上記ウェブが、温度Tよりも高い融点を有するポリ乳酸の繊維をさらに含む、態様12~17のいずれか一つに記載のエアスルー不織布。
 本発明の方法により製造された、低融点を有するエアスルー不織布は、製造時の熱収縮が少なく、触感に優れる。
 また、本発明の方法により製造された、低融点を有するエアスルー不織布は、バイオマス度が高く且つ生分解性を有するので、環境適合性が高い。
 本発明のエアスルー不織布の製造方法、及びエアスルー不織布について、以下、詳細に説明する。
 本発明に用いられる、第1のポリ乳酸と、第2のポリ乳酸とを含む複合繊維において、第1のポリ乳酸及び第2のポリ乳酸は、その融点が異なる。ポリ乳酸の融点は、原料である乳酸の光学異性体であるD体及びL体の比を調整することにより調節されることができる。
 例えば、D体:L体のモル比を50:50で混合して共重合することにより、約190~220℃の融点を有するポリ乳酸を製造することができる。同様に、L体:D体のモル比99:1の混合物の共重合から約170℃の融点を有するポリ乳酸が製造され、L体:D体のモル比97:3の混合物の共重合から約150℃の融点を有するポリ乳酸が製造され、L体:D体のモル比92:8の混合物の共重合から約130℃の融点を有するポリ乳酸が製造され、そしてL体:D体のモル比88:12の混合物の共重合から約110℃の融点を有するポリ乳酸が製造される。
 D体のモル比が約18モル%以上になると、ポリ乳酸は、明確な融点を示さず、軟化温度約90℃未満の非晶性ポリマーとなる。このような非晶性ポリ乳酸の場合は、便宜上、目視での軟化温度を融点として取り扱う。
 なお、上記融点は、示差走査熱量計により測定することができる。上記融点は、例えば、島津製作所社製のDSC−60型DSC測定装置を用い、昇温速度10℃/分で測定することができる。
 第2のポリ乳酸の融点は、第1のポリ乳酸の融点よりも約20~約60℃低いことが好ましく、そして約30~約50℃低いことがより好ましい。第2のポリ乳酸の融点が、第1のポリ乳酸の融点よりも約60℃以上低くなるようにしようとすると、D体の割合が増えることになるので、加熱の際に嵩が減る傾向があり、そして第1のポリ乳酸の融点と、第2のポリ乳酸の融点との差が約20℃未満であると、両者の融点が近すぎるので、エアスルー処理の厳格な温度制御が必要となり実用的ではない。
 第1のポリ乳酸は、約150~約190℃の融点を有することが好ましく、そして約160~約180℃の融点を有することがより好ましい。融点が約150℃を下回ると、第2のポリ乳酸との融点の差を確保することが難しくなり、そして融点が約190℃を超えるポリ乳酸を製造することは技術上難しい。
 第1のポリ乳酸は、約60,000以上の重量平均分子量を有することが好ましく、そして、約100,000~約300,000の重量平均分子量を有することがより好ましい。重量平均分子量が約60,000を下回ると、繊維の強度が低下する場合があり、そして重量平均分子量が約300,000を上回ると、本発明により製造されるエアスルー不織布の生分解性が損なわれる場合がある。
 第2のポリ乳酸は、約110~約150℃の融点を有することが好ましく、そして120~140℃の融点を有することがより好ましい。融点が約110℃を下回ると、エアスルー処理する際、不織布の嵩が出にくくなる場合があり、そして融点が約150℃を上回ると、第1のポリ乳酸の融点との融点差を確保しにくくなる。
 第2のポリ乳酸は、約50,000以上の重量平均分子量を有することが好ましく、そして、約60,000~約90,000の重量平均分子量を有することがより好ましい。重量平均分子量が約50,000を下回ると、繊維の強度が低下する傾向があり、そして重量平均分子量が約90,000を上回ると、最終繊維強度の観点から第1のポリ乳酸の重量平均分子量を大きくする必要があり、製糸性が低下する場合がある。
 本発明に用いられる複合繊維において、第1のポリ乳酸と、第2のポリ乳酸との比率は、質量比で、第1のポリ乳酸:第2のポリ乳酸が約70:30~約30:70であることが好ましく、そして約60:40~約40:60であることがより好ましい。第1のポリ乳酸の比率が約30%を下回ると、第2のエアスルー処理の際に過度に熱融着する、過度に熱収縮する等の場合があり、そして第1のポリ乳酸の比率が約70%を上回ると、第2のエアスルー処理の際の熱融着が不十分である場合がある。
 上記複合繊維の形状としては、単一の繊維中に、第1のポリ乳酸と、第2のポリ乳酸を含む繊維であれば、その形状は特に限定されないが、例えば、第1のポリ乳酸が芯であり且つ第2のポリ乳酸が鞘である芯鞘型、サイドバイサイド型等を挙げることができる。
 上記複合繊維の繊維長としては、30mm~70mmが好ましい。
 上記複合繊維の繊維径としては、2dtex~6dtexが好ましい。
 上記複合繊維としては、例えば、ユニチカ(株)から市販される、テラマックシリーズ、例えば、PL80を挙げることができる。
 上記エアスルー不織布の結晶化度は、約44%~約68%の範囲内にある。結晶化度が約44%を下回ると、第1のエアスルー処理の際の結晶化度が不十分であり、第2のエアスルー処理の際に熱収縮が大きくなり、生成するエアスルー不織布の触感が低下する場合があり、結晶化度が約68%を上回ると、結晶化度が高すぎ、上記エアスルー不織布の触感が低下する場合がある。
 上記「結晶化度」は、下記の粉末X線回折分析法による全角度定性分析法を用いて測定した値である。
[装置](株)リガク製 X線回折分析装置 RAD−RB RU−200
[試料]不織布を切断し、アルミ板(20mm長さ×15mm幅)に貼り付けたものを使用
[測定条件]
・ターゲット:Cu
・スリット:発散スリット 1°
     :受光スリット 0.3mm
     :散乱スリット 1°
・フィルター:Monochro
・スキャン速度:4°/分
・サンプリング角度:0.02°
[結晶化度の算出]
 結晶性ピーク(2θ=約16°)と、非結晶ピークとを、解析ソフトを用いて分離する。次いで、各ピークの積分強度である、結晶性散乱強度(Ic)及び非晶性散乱強度(Ia)から、結晶化度(Xc)を、次の式:
 Xc(%)=100×Ic/(Ic+Ia)
 から算出する。
 上記エアスルー不織布は、複合繊維を含むウェブに対する面積残存率が、約40%以上であることが好ましく、約50%以上であることが好ましく、そして約55%以上であることが最も好ましい。
 上記「面積残存率」は、ウェブから一定の大きさのシートを切り抜き、当該シートを第1のエアスルー処理及び第2のエアスルー処理をさらした後のシートから、次の式:
 面積残存率(%)=100×(第2のエアスルー処理後のシートの面積)÷(未処理のウェブのシートの面積)
 により算出される値を意味する。
 上記エアスルー不織布は、製造時の熱収縮を少なくするために、第2のエアスルー処理の温度Tよりも高い融点を有するポリ乳酸(以下、「第3のポリ乳酸」と称する)の繊維をさらに含むことができる。
 第3のポリ乳酸は、上述のように、光学活性を有する乳酸モノマーのD体及びL体の比を調整することにより調節されることができる。
 第3のポリ乳酸としては、主に第2のエアスルー処理の際の熱収縮を少なくするために、第2のエアスルー処理の温度Tよりも高い融点を有し、そして第2のエアスルー処理の温度Tよりも少なくとも約10℃高い融点を有することが好ましく、少なくとも約30℃高い融点を有することがより好ましく、そして少なくとも約40℃高い融点を有することがさらに好ましい。
 温度Tが130℃である場合には、第3のポリ乳酸は、約140℃以上の融点を有することが好ましく、約150℃以上の融点を有することがより好ましく、そして約160℃以上の融点を有することがさらに好ましい。
 第3のポリ乳酸の繊維は、上記複合繊維と同一の繊維長及び繊維径を有してもよい。
 第3のポリ乳酸の繊維は、エアスルー処理の際の熱融着が不十分とならないように、繊維の総量に基づいて、約40質量%以下であることが好ましく、約30質量%以下であることがより好ましく、そして約20質量%以下であることがさらに好ましい。
 上記エアスルー不織布は、バイオマス度が約90~約100%の範囲内にあり、約100%であることが好ましい。
 なお、本明細書において、「バイオマス度」は、不織布の中で、石油から生成された化石資源と、再生可能な生物由来の有機性資源との総質量に対する、前記有機性資源の占める割合を意味する。
 本発明のエアスルー不織布を製造する方法において、上記複合繊維を含むウェブを形成するステップは、第1のポリ乳酸と、第2のポリ乳酸とを含む複合繊維の原綿を、当技術分野に公知の機器、例えば、カード機を用いて、所望の坪量を有する、シート状のウェブに形成することができる。
 また、上記エアスルー不織布が、第1のポリ乳酸と、第2のポリ乳酸とを含む複合繊維に加え、第3のポリ乳酸の繊維をさらに含む場合には、上記複合繊維と、第3のポリ乳酸の繊維とを混綿し、次いでウェブを形成することができる。
 上記ウェブは、当該ウェブから製造されるエアスルー不織布の用途によってその坪量は変化するが、製造効率等を考慮すると、好ましくは約10~約60g/mの坪量、より好ましくは約15~約40g/mの坪量を有することができる。
 本発明のエアスルー不織布を製造する方法において、第1のエアスルー処理は、上記複合繊維の熱収縮を抑制しつつ、結晶化度を高めるための処理である。複合繊維の結晶化度を高くすることにより、次の第2のエアスルー処理において、上記複合繊維の熱収縮が小さくなる。
 第1のエアスルー処理は、次の温度T
 第2のポリ乳酸のガラス転移温度<T<第2のポリ乳酸の融点
 の範囲内で行われる。
 温度Tは、第2のポリ乳酸のガラス転移温度<T<第2のポリ乳酸の融点の範囲内であり、第2のポリ乳酸の融点−約50℃≦T≦第2のポリ乳酸の融点−約10℃の範囲内にあることが好ましく、そして第2のポリ乳酸の融点−約35℃≦T≦第2のポリ乳酸の融点−約15℃の範囲内にあることがより好ましい。温度Tが第2のポリ乳酸のガラス転移温度以下であると、第2のポリ乳酸の結晶化が進行せず、そして温度Tが第2のポリ乳酸の融点以上であると、複合繊維の熱収縮が顕著になる傾向がある。
 なお、ポリ乳酸のガラス転移温度は、一般的に、約50~約60℃の範囲内にあることが知られている。
 第2のポリ乳酸の融点が約130℃の場合には、温度Tは、約80℃~約120℃の範囲内にあることが好ましく、そして約95℃~約115℃の範囲にあることがより好ましい。
 第1のエアスルー処理は、従来公知のエアスルー処理用機器を用いて行われうる。
 第1のエアスルー処理の時間は、約20秒~約120秒の間にあることが好ましく、約30秒~約100秒の間にあることがより好ましく、そして約45秒~約75秒の間にあることがさらに好ましい。上記時間が約20秒未満であると、第1のエアスルー処理が不十分であり、結晶化度が上がらない箇所が生ずる場合があり、そして上記時間が約120秒を過ぎることは、生産効率の観点から望ましくない。
 本発明のエアスルー不織布を製造する方法において、第2のエアスルー処理は、各繊維を熱融着させ、エアスルー不織布を製造する処理である。
 第2のエアスルー処理は、次の温度T
 第2のポリ乳酸の融点−約5℃≦温度T<第2のポリ乳酸の融点+約15℃
 の範囲内で行われる。
 温度Tは、第2のポリ乳酸の融点−約5℃≦温度T≦第2のポリ乳酸の融点+約15℃の範囲内であり、第2のポリ乳酸の融点−約5℃≦T≦第2のポリ乳酸の融点+約10℃の範囲内にあることが好ましく、そして第2のポリ乳酸の融点−約5℃≦T≦第2のポリ乳酸の融点+約5℃の範囲内にあることがより好ましい。温度Tが第2のポリ乳酸−約5℃を下回ると、柔らかいが、熱融着が弱く、毛羽立ちやすい不織布となる場合があり、そして温度Tが第2のポリ乳酸の融点+約15℃を上回ると、各繊維が過度に熱融着し、生成するエアスルー不織布の触感が劣る場合がある。
 第2のポリ乳酸の融点が約130℃の場合には、温度Tは、約125℃~約145℃の範囲内にあり、約125℃~約140℃の範囲内にあることがより好ましく、そして約125℃~約135℃の範囲にあることがさらに好ましい。
 第2のエアスルー処理は、従来公知のエアスルー処理用機器を用いて行われうる。
 第2のエアスルー処理の時間は、約20秒~約120秒の間にあることが好ましく、約30秒~約100秒の間にあることがより好ましく、そして約45秒~約75秒の間にあることがさらに好ましい。上記時間が約20秒未満であると、第2のエアスルー処理が不十分であり、各繊維が融着していない箇所が生ずる場合があり、そして上記時間が約120秒を過ぎることは、生産効率の観点から望ましくない。
 本発明のエアスルー不織布の製造方法において、第1のポリ乳酸と、第2のポリ乳酸とを含む複合繊維を含むウェブを、第1のエアスルー処理と、第2のエアスルー処理に分けて処理することにより、熱収縮が少なく、触感に優れるエアスルー不織布を生成することができる理由は、以下のように考えられる。
 (1)第1のエアスルー処理において、上記ウェブを、第2のポリ乳酸のガラス転移温度超且つ第2のポリ乳酸の融点未満の温度Tにさらすことにより、第2のポリ乳酸の収縮を抑制しつつ、結晶化度を高めることができる。また、第2のポリ乳酸が収縮した場合であっても、各繊維同士は融着していないので、硬い触感となりにくい。一般的には、ポリマーは、結晶化度が高いほど、物性が安定する、特に寸法安定性が増すことが知られている。
 (2)次いで、第2のエアスルー処理において、第1のエアスルー処理にさらされ、結晶化度が高くなったウェブを、第2のポリ乳酸の融点−約5℃以上且つ第2のポリ乳酸の融点+約15℃以下の温度Tにさらすことにより、繊維の収縮を抑制しつつ、各繊維同士を融着させることができる。
 一方、通常のエアスルー処理のように、ウェブを、前処理せずに、第2のポリ乳酸の融点付近の温度にさらすと、第2のポリ乳酸の結晶化が十分進行する前に第2のポリ乳酸の融点付近の温度にさらされるため、各繊維の融着と同時又はその後に繊維が収縮し、エアスルー不織布の熱収縮が大きくなり、そして硬い触感となる。
 上記現象は、ポリ乳酸が熱収縮率の高いポリマーであること且つ主鎖の剛直性に由来して結晶化速度が遅いことに起因して生ずる現象であると考えられる。
 本発明のエアスルー不織布の製造方法の別の態様では、上記エアスルー不織布を製造する方法において、上記複合繊維を含むウェブを製造するステップの前に、次の温度T
 第2のポリ乳酸のガラス転移温度<T<T
 の範囲内で、繊維をアニール処理するステップをさらに含むことができる。
 上記アニール処理を行うことにより、第2のエアスルー処理の前に、第2のポリ乳酸の結晶化度をさらに高めることができ、熱収縮のより少ないエアスルー不織布を製造することができる。上記アニール処理はウェブを形成する前に行われるので、上記アニール処理の際に生じた熱収縮の影響が、エアスルー不織布に残りにくい。
 温度Tは、第2のポリ乳酸のガラス転移温度<T<Tの範囲内であり、第2のポリ乳酸の融点−約60℃≦T≦第2のポリ乳酸の融点−約20℃であることが好ましく、そして第2のポリ乳酸の融点−約50℃≦T≦第2のポリ乳酸の融点−約30℃の範囲内にあることがより好ましい。温度Tが第2のポリ乳酸のガラス転移温度以下であると、アニール処理の効果がなく、そして温度TがTを超えると、第1のエアスルー処理の効果が小さくなる。
 第2のポリ乳酸の融点が約130℃の場合には、温度Tは、約70℃~約110℃の範囲内にあることが好ましく、そして約80℃~約100℃の範囲にあることがより好ましい。
 上記アニール処理の時間は、約20秒~約180秒の間にあり、そして約30秒~約120秒の間にあることがより好ましく、そして約45秒~約90秒の間にあることが最も好ましい。上記時間が約20秒未満であると、アニール処理が不十分である箇所が生ずる場合があり、そして上記時間が約180秒を過ぎると、生産効率の観点から好ましくない。
 なお、本発明のエアスルー不織布の製造方法の別の態様では、上記アニール処理を、温度T:第2のポリ乳酸のガラス転移温度<T<第2のポリ乳酸の融点の範囲内、好ましくは第2のポリ乳酸の融点−約50℃≦T≦第2のポリ乳酸の融点−約10℃の範囲内、そしてより好ましくは第2のポリ乳酸の融点−約35℃≦T≦第2のポリ乳酸の融点−約15℃の範囲内で行うことができる。この態様においては、温度Tと、温度Tとは、どちらが高くともよい。
 上記アニール処理は、例えば、第1のポリ乳酸と、第2のポリ乳酸とを含む複合繊維の原綿に、温度Tの熱風を、約1~約5m/秒の風速にて、約20~約180秒間当てることにより実施することができる。
 上記エアスルー不織布は、バイオマス度が高く且つ生分解性を有することから、シングルユースであり使用後に廃棄される、生理用品、例えば、生理用ナプキン及びパンティライナー、衛生用品、例えば、使い捨ておむつ、尿漏れ防止用シート、失禁患者用の尿取りパッド、体液・血液吸収用医療用品、創傷用品、化粧用パック材、動物用排泄用処理剤に好適に用いることができる。
 以下、実施例および比較例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例及び比較例で用いられた機器及び評価は、以下の通りである。
[結晶化度]
 (株)リガク製X線回折分析装置 RAD−RB RU−200を用いて測定した。
[触感]
 製造されたエアスルー不織布の触感を、以下の基準に従って官能評価した。
 ○:柔らかい
 ×:硬い
[不織布厚]
 (株)大栄科学精密製作所製 Thickness Gaugeを用い、荷重:0.3kPa(3gf/cm)、荷重面積:20cmの条件で測定した。
[実施例1]
 ユニチカ(株)製、テラマック PL80(繊度:2.2dtex,カット長:51mm,捲縮数:17個/25mm,及び親水油剤:0.4質量%)の原綿を準備した。PL80は、融点170℃のポリ乳酸から成る芯と、融点130℃の変性ポリ乳酸から成る鞘とを含む芯鞘型の、バイオマス度100%の複合繊維である。
 上記原綿を、カード機にて開繊し、坪量20g/mのウェブを製造した。上記ウェブを、長さ(MD)200mm×幅(CD)200mmのカードウェブにカットした。
 上記カードウェブを、支持体メッシュDOP−18Sの上に載せ、エアスルー処理機(熱処理部分のコンベア炉長:3m)を用いて、80℃で1分間、風速1m/秒の条件下で、第1のエアスルー処理にさらし、面積を測定した。
 次いで、第1のエアスルー処理にさらされたカードウェブを、再度、支持体メッシュDOP−18Sの上に載せ、エアスルー処理機により、135℃で1分間、風速1m/秒の条件下で、第2のエアスルー処理にさらし、エアスルー不織布1を製造し、面積、結晶化度及び触感を評価した。
 エアスルー不織布1の面積残存率は50%であり、そして結晶化度は44%であった。
[実施例2]
 第1のエアスルー処理の温度を95℃に変更した以外は実施例1に従って、エアスルー不織布2を製造した。
 エアスルー不織布2の面積残存率は52%であった。
[実施例3]
 第1のエアスルー処理の温度を105℃に変更した以外は実施例1に従って、エアスルー不織布3を製造した。
 エアスルー不織布3の面積残存率は54%であり、そして結晶化度は68%であった。
[実施例4]
 第1のエアスルー処理の温度を115℃に変更した以外は実施例1に従って、エアスルー不織布4を製造した。
 エアスルー不織布4の面積残存率は50%であり、そして結晶化度は56%であった。
[実施例5]
 第1のエアスルー処理の温度を105℃に変更し且つ第2のエアスルー処理の温度を125℃に変更した以外は実施例1に従って、エアスルー不織布5を製造した。
 エアスルー不織布5の面積残存率は61%であり、そして結晶化度は53%であった。
 実施例1~5の試験条件及び結果を、表1にまとめる。
[比較例1]
 第1のエアスルー処理を行わなかった以外は実施例1に従って、エアスルー不織布6を製造した。
 エアスルー不織布6の面積残存率は28%であり、そして結晶化度は38%であった。
 比較例1の試験条件及び結果を、表1にまとめる。
Figure JPOXMLDOC01-appb-T000001
 実施例1~5から、エアスルー処理を2段階に分けて行うことにより、面積残存率が50%以上に向上し、触感が柔らかくなることが分かる。一方、比較例1から、通常のエアスルー処理では、面積残存率が28.0%と低く、触感も硬いことが分かる。
 また、実施例1~5及び比較例1から、結晶化度と面積残存率との間に一定の相関があり、結晶化度が高いほど、面積残存率が高くなる傾向がある。
[実施例6]
 ユニチカ(株)製、テラマック PL80の原綿を準備した。当該原綿を、エアスルー処理機により、90℃で1分間、風速3m/秒の条件下で、アニール処理した。
 次いで、アニール処理された原綿を、カード機にて開繊し、坪量20g/mのウェブを製造した。上記ウェブから、長さ(MD)200mm×幅(CD)200mmのカードウェブを採取した。
 上記カードウェブを、実施例4と同一の条件で第1のエアスルー処理及び第2のエアスルー処理にさらし、エアスルー不織布7を製造した。
 エアスルー不織布7の面積残存率は83.8%であり、実施例4で製造されたエアスルー不織布4と比較して、面積残存率が30%以上向上することが分かった。
 実施例6より、原綿にアニール処理することにより、エアスルー不織布の面積残存率が大きく向上することが分かる。
[実施例7]
 ユニチカ(株)製、テラマック PL80の原綿と、同テラマック PL01の原綿とを準備した。PL01は、融点170℃のポリ乳酸から成る、バイオマス度100%の繊維であり、繊度:1.7dtex,カット長:51mm,捲縮数:17個/25mm,及び親水油剤:0.4質量%を有していた。
 PL80及びPL01を、質量比80:20の割合でビニール袋の中に投入し、口を軽くとじつつ、高圧エアーをその中に噴射することにより仮混綿し、カード機を用いて開繊し、ラップを採取した。当該ラップを3等分して向きを変え、再度カード機に投入して開繊し、これを再度繰り返すことにより、坪量20g/mのウェブを製造した。上記ウェブから、長さ(MD)200mm×幅(CD)200mmのカードウェブを採取した。
 上記カードウェブを、実施例4と同一の条件で、第1のエアスルー処理及び第2のエアスルー処理にさらし、エアスルー不織布8を製造した。
 エアスルー不織布7の面積残存率は、82.0%であり、実施例4で製造されたエアスルー不織布4と比較して、面積残存率が30%以上向上することが分かった。
 実施例7から、融点が高く、熱収縮しにくいポリ乳酸から成る繊維を混綿することにより、エアスルー処理の際の熱収縮を抑制できることが分かる。

Claims (18)

  1. 次の各ステップ;
     第1のポリ乳酸と、第1のポリ乳酸の融点よりも低い融点を有する第2のポリ乳酸とを含む複合繊維を含むウェブを形成するステップ;
     前記ウェブを、次の温度T
     第2のポリ乳酸のガラス転移温度<T<第2のポリ乳酸の融点
     の範囲内で、第1のエアスルー処理にさらすステップ;そして
     エアスルー不織布を製造するために、第1のエアスルー処理にさらされたウェブを、次の温度T
     第2のポリ乳酸の融点−5℃≦T≦第2のポリ乳酸の融点+15℃
     の範囲内で、第2のエアスルー処理にさらすステップ:
     を含むエアスルー不織布を製造する方法であって、
     前記エアスルー不織布の結晶化度が、44~68%の範囲内にあることを特徴とする、
     前記方法。
  2. 温度Tが、第2のポリ乳酸の融点−50℃≦T≦第2のポリ乳酸の融点−10℃の範囲内にある、請求項1に記載の方法。
  3. 温度Tが、第2のポリ乳酸の融点−5℃≦T≦第2のポリ乳酸の融点+10℃の範囲内にある、請求項1又は2に記載の方法。
  4. 第1のエアスルー処理にさらすステップ及び/又は第2のエアスルー処理にさらすステップが、20~120秒の間実施される、請求項1~3のいずれか一項に記載の方法。
  5. 第2のポリ乳酸の融点が、第1のポリ乳酸の融点よりも20~60℃低い、請求項1~4のいずれか一項に記載の方法。
  6. 第1のポリ乳酸の融点が150~190℃の範囲内にあり、そして第2のポリ乳酸の融点が110~150℃の範囲内にある、請求項1~5のいずれか一項に記載の方法。
  7. 前記エアスルー不織布の、前記ウェブに対する面積残存率が、40%以上である、請求項1~6のいずれか一項に記載の方法。
  8. 前記エアスルー不織布のバイオマス度が90~100%の範囲内にある、請求項1~7のいずれか一項に記載の方法。
  9. 前記複合繊維が、芯鞘型複合繊維又はサイドバイサイド型複合繊維である、請求項1~8のいずれか一項に記載の方法。
  10. 前記ウェブを形成するステップにおいて、前記複合繊維と、温度Tよりも高い融点を有するポリ乳酸の繊維とを含むウェブが形成される、請求項1~9のいずれか一項に記載の方法。
  11. 前記ウェブを形成するステップの前に、次の温度T
     第2のポリ乳酸のガラス転移温度<T<T
     の範囲内で、繊維をアニール処理するステップをさらに含む、請求項1~10のいずれか一項に記載の方法。
  12. 第1のポリ乳酸と、第1のポリ乳酸の融点よりも低い融点を有する第2のポリ乳酸とを含む複合繊維から、当該複合繊維を含むウェブを経由して製造されたエアスルー不織布であって、
     前記エアスルー不織布の結晶化度が、44~68%の範囲内にあることを特徴とする、
     前記エアスルー不織布。
  13. 第2のポリ乳酸の融点が、第1のポリ乳酸の融点よりも20~60℃低い、請求項12に記載のエアスルー不織布。
  14. 第1のポリ乳酸の融点が150~190℃の範囲内にあり、そして第2のポリ乳酸の融点が110~150℃の範囲内にある、請求項12又は13に記載のエアスルー不織布。
  15. 前記エアスルー不織布の、前記ウェブに対する面積残存率が、40%以上である、請求項12~14のいずれか一項に記載のエアスルー不織布。
  16. バイオマス度が90~100%の範囲内にある、請求項12~15のいずれか一項に記載のエアスルー不織布。
  17. 前記複合繊維が、芯鞘型複合繊維又はサイドバイサイド型複合繊維である、請求項12~16のいずれか一項に記載のエアスルー不織布。
  18. 前記ウェブが、温度Tよりも高い融点を有するポリ乳酸の繊維をさらに含む、請求項12~17のいずれか一項に記載のエアスルー不織布。
PCT/JP2011/053307 2010-03-25 2011-02-09 ポリ乳酸系エアスルー不織布の製造方法、及びポリ乳酸系エアスルー不織布 WO2011118292A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/582,533 US20120329352A1 (en) 2010-03-25 2011-02-09 Method for producing polylactic acid-based air-through nonwoven fabric, and polylactic acid-based air-through nonwoven fa
KR1020127027817A KR101587907B1 (ko) 2010-03-25 2011-02-09 폴리젖산계 에어스루 부직포의 제조 방법, 및 폴리젖산계 에어스루 부직포
BR112012024088A BR112012024088A2 (pt) 2010-03-25 2011-02-09 método para a produção de material não tecido de ligação térmica baseado em ácido polilático e material não tecido de ligação térmica baseado em ácido polilático
CN2011800137174A CN102791916A (zh) 2010-03-25 2011-02-09 聚乳酸系热风无纺布的制造方法及聚乳酸系热风无纺布
EP11759100.8A EP2551394A4 (en) 2010-03-25 2011-02-09 PROCESS FOR PRODUCING POLY (LACTIC ACID) NONWOVEN FABRIC, AND POLY (LACTIC ACID) NONWOVEN WOVEN FABRIC

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010070330A JP5704829B2 (ja) 2010-03-25 2010-03-25 ポリ乳酸系エアスルー不織布の製造方法、及びポリ乳酸系エアスルー不織布
JP2010-070330 2010-03-25

Publications (1)

Publication Number Publication Date
WO2011118292A1 true WO2011118292A1 (ja) 2011-09-29

Family

ID=44672865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053307 WO2011118292A1 (ja) 2010-03-25 2011-02-09 ポリ乳酸系エアスルー不織布の製造方法、及びポリ乳酸系エアスルー不織布

Country Status (7)

Country Link
US (1) US20120329352A1 (ja)
EP (1) EP2551394A4 (ja)
JP (1) JP5704829B2 (ja)
KR (1) KR101587907B1 (ja)
CN (1) CN102791916A (ja)
BR (1) BR112012024088A2 (ja)
WO (1) WO2011118292A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11941172B2 (en) 2019-03-29 2024-03-26 Tobii Ab Training an eye tracking model

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11566349B2 (en) * 2015-03-27 2023-01-31 The United States Of America As Represented By The Secretary Of The Army High strength 3D-printed polymer structures and methods of formation
CN105086394B (zh) * 2015-08-28 2017-03-29 清华大学深圳研究生院 熔喷非织造布用的含SiO2可生物降解复合材料及制法
DK3325703T3 (da) 2016-08-02 2019-10-28 Fitesa Germany Gmbh System og fremgangsmåde til fremstilling af ikke-vævede polymælkesyrestoffer
US11441251B2 (en) 2016-08-16 2022-09-13 Fitesa Germany Gmbh Nonwoven fabrics comprising polylactic acid having improved strength and toughness
US11821121B2 (en) * 2019-10-04 2023-11-21 Berry Global, Inc. Biopolymer-containing nonwoven fabric
JP2024077976A (ja) * 2022-11-29 2024-06-10 ユニ・チャーム株式会社 エアスルー不織布,及びエアスルー不織布を製造する方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126970A (ja) 1993-11-05 1995-05-16 Toyobo Co Ltd 生分解性不織布
JP2002315819A (ja) * 2001-04-23 2002-10-29 Takiron Co Ltd 生体内分解吸収性不織布及びその製造方法
JP2003519297A (ja) * 1999-12-29 2003-06-17 キンバリー クラーク ワールドワイド インコーポレイテッド 流体処理用生分解性熱可塑性不織ウェブ
JP2004100047A (ja) * 2002-09-04 2004-04-02 Miki Tokushu Paper Mfg Co Ltd ポリエステル熱圧着不織布の製造法
JP2004143633A (ja) * 2002-10-25 2004-05-20 Toray Ind Inc 生分解性不織布及びそれを用いた医療衛生材料
JP2008101285A (ja) * 2006-10-17 2008-05-01 Kao Corp 不織布の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2725731B1 (fr) * 1994-10-12 1996-12-13 Fiberweb Sodoca Sarl Procede de fabrication d'un non-tisse a base d'acide lactique et non-tisse obtenu
US5698322A (en) * 1996-12-02 1997-12-16 Kimberly-Clark Worldwide, Inc. Multicomponent fiber
EP1057915A1 (en) * 1999-06-02 2000-12-06 Unitika Ltd. Biodegradable filament nonwoven fabric and method of producing the same
EP1252376A1 (en) * 1999-11-09 2002-10-30 Kimberly-Clark Worldwide, Inc. Biodegradable polylactide nonwovens with fluid management properties and disposable absorbent products containing the same
US7604859B2 (en) * 2006-08-30 2009-10-20 Far Eastern Textile Ltd. Heat adhesive biodegradable bicomponent fibers
CN101342782A (zh) * 2007-07-09 2009-01-14 黄建铭 耐热性聚乳酸树脂挤出成型品的制造方法及其制品
CN101525812A (zh) * 2008-12-31 2009-09-09 温州市瓯海昌隆化纤制品厂 一种高强度低热收缩聚乳酸非织造布及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126970A (ja) 1993-11-05 1995-05-16 Toyobo Co Ltd 生分解性不織布
JP2003519297A (ja) * 1999-12-29 2003-06-17 キンバリー クラーク ワールドワイド インコーポレイテッド 流体処理用生分解性熱可塑性不織ウェブ
JP2002315819A (ja) * 2001-04-23 2002-10-29 Takiron Co Ltd 生体内分解吸収性不織布及びその製造方法
JP2004100047A (ja) * 2002-09-04 2004-04-02 Miki Tokushu Paper Mfg Co Ltd ポリエステル熱圧着不織布の製造法
JP2004143633A (ja) * 2002-10-25 2004-05-20 Toray Ind Inc 生分解性不織布及びそれを用いた医療衛生材料
JP2008101285A (ja) * 2006-10-17 2008-05-01 Kao Corp 不織布の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2551394A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11941172B2 (en) 2019-03-29 2024-03-26 Tobii Ab Training an eye tracking model

Also Published As

Publication number Publication date
JP2011202310A (ja) 2011-10-13
EP2551394A4 (en) 2014-03-12
KR20130065645A (ko) 2013-06-19
EP2551394A1 (en) 2013-01-30
JP5704829B2 (ja) 2015-04-22
US20120329352A1 (en) 2012-12-27
KR101587907B1 (ko) 2016-01-22
BR112012024088A2 (pt) 2017-07-18
CN102791916A (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5704829B2 (ja) ポリ乳酸系エアスルー不織布の製造方法、及びポリ乳酸系エアスルー不織布
EP1257703B1 (en) Biodegradable thermoplastic nonwoven webs for fluid management
EP1504740B1 (en) Latex bonded acquisition layer having temperature insensitive liquid handling properties
CA2237556C (en) Absorbent articles having soft, strong nonwoven component
JP4009196B2 (ja) 捲縮繊維不織布及びその積層体
AU2004264334B2 (en) Latex bonded acquisition layer having pressure insensitive liquid handling properties
EP1729709B1 (en) Web materials having both plastic and elastic properties
JP4931700B2 (ja) 捲縮繊維不織布及びその積層体
WO2011016343A1 (ja) 混繊スパンボンド不織布、その製造方法及びその用途
US20050244619A1 (en) Plastically deformable nonwoven web
JP5386341B2 (ja) 使い捨ておむつ
JP2015204983A (ja) 吸収性物品用表面シート、及びこれを含む吸収性物品
JP5948537B2 (ja) 柔軟性のある長繊維不織布
JP2011135985A (ja) 使い捨ておむつ
JP4642063B2 (ja) 柔軟性のある長繊維不織布
EP1257704A1 (en) Biodegradable nonwoven webs for fluid management
JP2010065342A (ja) 複合繊維
JP5203349B2 (ja) 不織布
CN104662217B (zh) 聚丙烯系无纺布
JP5593124B2 (ja) 使い捨ておむつ
JP5828550B2 (ja) 不織布の製造方法
JP2006283212A (ja) 芯鞘型複合繊維及び不織布
JP5548040B2 (ja) 不織布
JP2022178136A (ja) 弾性フィラメント及びこれを備えた吸収性物品用伸縮シート
JPH10168729A (ja) 長繊維不織布及びそれを用いた吸収性物品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013717.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759100

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13582533

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011759100

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127027817

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012024088

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012024088

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120924