WO2011118085A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2011118085A1
WO2011118085A1 PCT/JP2010/070918 JP2010070918W WO2011118085A1 WO 2011118085 A1 WO2011118085 A1 WO 2011118085A1 JP 2010070918 W JP2010070918 W JP 2010070918W WO 2011118085 A1 WO2011118085 A1 WO 2011118085A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
pixel
pixel electrode
crystal molecules
electrode
Prior art date
Application number
PCT/JP2010/070918
Other languages
English (en)
French (fr)
Inventor
田坂 泰俊
吉田 圭介
由紀 川島
香織 齋藤
中島 睦
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/637,315 priority Critical patent/US20130021564A1/en
Publication of WO2011118085A1 publication Critical patent/WO2011118085A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a vertical alignment type liquid crystal display device having a plurality of alignment division regions in a pixel.
  • FPD thin flat panel display
  • Some FPDs use liquid crystal, light emitting diodes (LEDs), organic electroluminescence (organic EL), or the like as display elements.
  • LEDs light emitting diodes
  • organic EL organic electroluminescence
  • research and development of display devices using liquid crystals have been actively conducted because of the advantages of thinness, light weight, and low power consumption.
  • the AM circuit is a switch circuit that controls display / non-display for each pixel. Since the AM circuit is controlled for each pixel, each pixel can be reliably operated even when the number of wirings of the display device is increased. Therefore, in an LCD using an AM circuit, it is possible to increase the definition, clarify the contrast, and increase the reaction speed.
  • TN TransmissionistNematic
  • a TN type LCD a pair of linear polarizing plates arranged in crossed Nicols are provided outside the two substrates.
  • Linearly polarized light that has passed through one polarizing plate and entered the liquid crystal layer can pass through the other polarizing plate because its polarization axis is rotated by the optical rotation and birefringence of the liquid crystal molecules.
  • the liquid crystal molecules are aligned (rise) perpendicular to the surfaces of both substrates.
  • the linearly polarized light incident on the liquid crystal layer reaches the opposite side without rotating the polarization axis, and therefore cannot pass through the other polarizing plate.
  • the TN type LCD uses the birefringence of liquid crystal molecules, the viewing state varies depending on the alignment direction of the liquid crystal molecules and the positional relationship of the viewer. That is, the TN type LCD has a problem that the viewing angle is narrow and the visual characteristics are insufficient.
  • VA Vertical Alignment
  • MVA Multidomain Vertical Alignment
  • Patent Document 1 discloses an MVA type LCD provided with a slit.
  • the pixel electrode formed on the TFT substrate side is an LCD that is electrically floated by forming a control electrode, and an X-shaped slit is formed in the pixel electrode.
  • the four divided regions formed by the slits compensate each other for the visual characteristics for each pixel, and a good visual characteristic can be obtained symmetrically.
  • Patent Document 2 discloses an MVA type LCD in which a fishbone structure pixel electrode is employed between a pair of linear polarizing plates arranged in crossed Nicols. Details of the fishbone structure are shown in FIG.
  • FIG. 6 is a diagram illustrating a cross section of a pixel including a pixel electrode having a fishbone structure.
  • the direction from the left side to the right side in FIG. 6 is defined as an azimuth angle of 0 °, and the azimuth angle is set counterclockwise with reference to this.
  • FIG. 6 is a diagram illustrating a cross section of a pixel including a pixel electrode having a fishbone structure.
  • the direction from the left side to the right side in FIG. 6 is defined as an azimuth angle of 0 °, and the azimuth angle is set counterclockwise with reference to this.
  • FIG. 6 is a diagram illustrating a cross section of a pixel including a pixel electrode having a fishbone structure.
  • the fishbone structure includes a trunk portion 15a extending in the direction of azimuth angle 0 ° -180 °, a trunk portion 15b extending in the direction of azimuth angle 90 ° -270 °, and an azimuth angle of 45 ° -225.
  • This is a structure having a plurality of branch portions 16a extending in the ° direction and a plurality of branch portions 16b extending in the azimuth angle 135 ° -315 ° direction.
  • a pixel electrode 11 four divided regions (multi-domains) are formed in one pixel. When a voltage is applied, the liquid crystal molecules 4 in the four domains are aligned along the branches.
  • the alignment abnormality or alignment variation of the liquid crystal molecules 4 is suppressed, and the alignment direction of the liquid crystal molecules 4 can be stabilized in an accurate direction in each pixel. Therefore, variation in transmittance on the display surface can be suppressed, and high-quality display without roughness can be achieved.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2001-249350 (published on September 14, 2001)” International Publication No. 2009/084162 (released July 9, 2009)
  • FIG. 7 is a diagram illustrating the alignment direction of liquid crystal molecules in a pixel including a pixel electrode having a fishbone structure. As shown in FIG. 7, the upward orientation vector 18 a and the downward orientation vector 18 b of the liquid crystal molecules 4 increase due to the influence of the trunk of the pixel electrode formed at the center of the pixel.
  • the liquid crystal molecules 4 are blurred in the alignment direction, and the balance between the vertical alignment of the liquid crystal molecules 4 and the horizontal alignment in each pixel is lost. As a result, the balance between the ⁇ characteristic in the vertical direction and the ⁇ characteristic in the horizontal direction is deteriorated, so that the display quality of the LCD is lowered.
  • the size of the region where the alignment direction of the liquid crystal molecules 4 is blurred does not change regardless of the pixel pitch. That is, the smaller the pixel pitch, the greater the effect of blurring in the alignment direction.
  • a linear polarizing plate cannot be used as the polarizing plate, and the visual characteristics of the LCD deteriorate. In this case, it is necessary to sandwich a retardation plate. Furthermore, it is necessary to provide a control electrode under the pixel electrode, which complicates the structure of the LCD. In addition, since the pixel electrode is in a floating state, there is a concern about image sticking due to residual charge.
  • an object of the present invention is to provide an LCD having a good balance of ⁇ characteristics of the LCD and high display quality.
  • a liquid crystal display device is a vertical alignment type liquid crystal display device including a plurality of pixels and a pair of polarizing plates having transmission axes perpendicular to each other.
  • a liquid crystal display device comprising, for each pixel, a pixel electrode, a counter electrode facing the pixel electrode, and a liquid crystal layer disposed between the pixel electrode and the counter electrode, wherein the pixel electrode is A frame portion extending along the entire inner periphery of the pixel, and a plurality of fine electrode portions, one end of which is connected to the frame portion, the other end is separated, and extends inside the frame portion;
  • the electrode is divided into a plurality of regions, and for each of the regions, the plurality of fine electrode portions included in the region extend in the same direction, and the extending direction is a region different from the region Of the plurality of fine electrode portions included in Unlike the spreading direction, for each fine electrode portion, the fine electrode portion extends in a direction that forms an angle of 45 degrees with respect
  • a plurality of fine electrode portions extending in a direction forming an angle of 45 degrees with respect to the extending direction of the transmission axis of the polarizing plate is formed in the pixel electrode for each region. Furthermore, the extending directions of the plurality of fine electrode portions included in one region are the same, and the extending direction is different from the extending directions of the plurality of fine electrode portions included in the other region.
  • the liquid crystal molecules are aligned along the fine electrode portion.
  • the liquid crystal molecules are inclined from the center of the pixel electrode toward the outer periphery of the counter electrode. That is, the liquid crystal molecules are aligned in a direction that forms an angle of 45 degrees with respect to the extending direction of the transmission axis of the polarizing plate while tilting from the center of the pixel electrode to the outer peripheral portion of the counter electrode.
  • the other end of the fine electrode part is separated, that is, a slit is provided in the central part of the pixel electrode. Therefore, an increase in the orientation vector of the liquid crystal molecules in a certain direction is suppressed for each pixel, and the orientation vectors of the liquid crystal molecules are made uniform under the influence of the frame portion and the fine electrode portion of the pixel electrode. As a result, there is no blur in the alignment direction of the liquid crystal molecules in each pixel, and the balance of the alignment directions of the liquid crystal molecules is improved. Therefore, the deterioration of the balance of the ⁇ characteristics due to the blurring of the alignment direction of the liquid crystal molecules is not induced, the display gradation state can be prevented from changing depending on the viewing direction, and the display quality of the display surface is further improved.
  • the same appearance can be achieved regardless of the viewing angle on the display surface. it can.
  • the alignment vector of the liquid crystal molecules is made uniform under the influence of the frame portion and the fine electrode portion.
  • the balance of the alignment directions of the liquid crystal molecules is improved. Therefore, the deterioration of the balance of the ⁇ characteristics due to the blurring of the alignment direction of the liquid crystal molecules is not induced, the display gradation state can be prevented from changing depending on the viewing direction, and the display quality of the display surface is further improved.
  • the light that has passed through the liquid crystal layer is emitted in a plurality of different directions, so that the same appearance can be achieved regardless of the viewing angle on the display surface. .
  • (A) in a figure is a figure which shows the gamma characteristic of the up-down direction in the pixel which concerns on one Embodiment of this invention
  • (b) in the figure is the horizontal direction in the pixel which concerns on one Embodiment of this invention. It is a figure which shows (gamma) characteristic. It is a figure which shows the cross section of the pixel provided with the pixel electrode of the conventional fishbone structure. It is a figure which shows the orientation direction of the liquid crystal molecule in the pixel provided with the pixel electrode of the conventional fishbone structure.
  • the LCD according to this embodiment is a vertical alignment (VA) type LCD in which liquid crystal molecules having negative dielectric anisotropy ( ⁇ ⁇ 0) are aligned perpendicularly to a substrate.
  • the LCD according to this embodiment includes a backlight unit and a liquid crystal display element unit.
  • the backlight unit includes a surface light source device, and the liquid crystal display element unit includes a liquid crystal panel.
  • the liquid crystal panel has a TFT substrate on which a thin film transistor (TFT) and a pixel electrode corresponding to each pixel are formed, and a counter substrate on which a color filter and a counter electrode are formed. The layer is sealed.
  • TFT thin film transistor
  • Linear polarizing plates are provided on the outside of the TFT substrate (opposite side of the liquid crystal layer) and on the outside of the counter substrate (opposite side of the liquid crystal layer), and the two linear polarizing plates are arranged in crossed Nicols. ing.
  • FIG. 1 is an enlarged view of one pixel 10 of the LCD according to the present embodiment.
  • the pixel 10 is surrounded by two adjacent scanning lines 2 and two adjacent signal lines 3.
  • a pixel electrode 1 is provided for each pixel 10, and a TFT (not shown) for switching a display voltage to the pixel electrode 1 is disposed.
  • the gate electrode of the TFT is electrically connected to the scanning line 2, and the source electrode of the TFT is electrically connected to the signal line 3.
  • the drain electrode of the TFT is electrically connected to the pixel electrode 1 so that a display voltage is directly applied. In this way, by directly connecting the drain electrode of the TFT and the pixel electrode 1, it is possible to reduce the loss of voltage applied to the pixel electrode 1.
  • a pair of linearly polarizing plates provided on the outer side of the TFT substrate and the outer side of the counter substrate has a polarizing axis (transmission axis) of one linearly polarizing plate extending in the horizontal direction of FIG.
  • the polarization axis extends in the vertical direction in FIG. That is, it extends so as to be parallel or orthogonal to any one side of the pixel 10.
  • the polarization axes of the pair of linear polarizing plates may extend in a direction that forms an angle of 45 degrees with respect to any one side of the pixel 10.
  • four regions formed when the pixel electrode 1 is equally divided into four by a straight line parallel to the scanning line 2 and a straight line parallel to the signal line 3 in FIG. 1 are defined as regions 5a to 5d. .
  • the pixel electrode 1 has a frame portion 6 along the entire inner periphery of the pixel 10.
  • the term “along the entire inner circumference” as used herein means that the inner side of the pixel 10 is along a boundary line that divides the inner side and the outer side of the pixel 10. In other words, it is along the four sides of the pixel 10 inside the pixel 10.
  • the frame portion 6 has one end connected to the frame portion 6 and the other end separated, and fine electrodes 7a to 7d (fine electrode portions) extending inside the frame portion 6 are formed.
  • the pixel electrode 1 in the region 5a is provided with a plurality of fine electrodes 7a that form an angle of 45 ° with the frame portion 6 (direction from the region 5a to the region 5c).
  • the pixel electrode 1 in the region 5b is provided with a plurality of fine electrodes 7b that form an angle of 45 ° with the frame portion 6 (direction from the region 5b to the region 5d).
  • the pixel electrode 1 in the region 5c is provided with a plurality of fine electrodes 7c that form an angle of 45 ° with the frame portion 6 (direction from the region 5c to the region 5a).
  • the pixel electrode 1 in the region 5d is provided with a plurality of fine electrodes 7d that form an angle of 45 ° with the frame portion 6 (direction from the region 5d to the region 5b).
  • the plurality of fine electrodes 7a to 7d are respectively arranged so as to form an angle of 45 ° with respect to the extending direction of the polarization axis of the linearly polarizing plate.
  • the pixel electrode 1 nothing is provided in portions other than the frame portion 6 and the fine electrodes 7a to 7d. In other words, the central portion of the pixel electrode 1 is open, and one slit 8 is provided.
  • FIG. 2 is a view showing a cross section of the pixel 10.
  • liquid crystal molecules 4 having negative dielectric anisotropy ( ⁇ ⁇ 0) between the counter substrate 12 on which the counter electrode 9 is formed and the TFT substrate 13 on which the pixel electrode 1 is formed.
  • a liquid crystal layer containing is formed.
  • an oblique electric field is generated in the liquid crystal layer by the pixel electrode 1 and the counter electrode 9.
  • the liquid crystal molecules 4 move along the fine electrodes 7a to 7d (that is, 45 to the polarization axis of the linearly polarizing plate). Orientation in a direction (degrees).
  • the liquid crystal molecules 4 are formed on the pixel electrode 1 as shown in FIG. It tilts from the center toward the outer periphery of the counter electrode 9. Therefore, the liquid crystal molecules 4 are aligned in four directions that form an angle of 45 ° with respect to the polarization axis of the polarizing plate while tilting from the center of the pixel electrode 1 to the outer peripheral portion of the counter electrode 9.
  • the liquid crystal molecules 4 are aligned in a direction that forms an angle of 45 ° with respect to the polarization axis of the polarizing plate, so that the linearly polarized light incident on the liquid crystal layer through one linear polarizing plate is converted into the liquid crystal molecules 4. Since its polarization axis rotates due to the optical rotation and birefringence of the light, it can pass through the other linearly polarizing plate. Further, by dividing the pixel 10 into four regions 5a to 5d, the liquid crystal molecules 4 are aligned in different directions for each of the regions 5a to 5d, and the liquid crystal molecules 4 are aligned in a plurality of different directions within one pixel 10. It is configured as follows. As a result, the light that has passed through the liquid crystal layer is emitted in a plurality of different directions, so that the same appearance can be achieved regardless of the viewing angle on the display surface. Therefore, a favorable visual characteristic can be realized by the above configuration.
  • the liquid crystal molecules 4 in the liquid crystal layer are aligned perpendicular to the surfaces of the two substrates. Therefore, the linearly polarized light incident on the liquid crystal layer reaches the opposite side without rotating the polarization axis, and therefore cannot pass through the other linearly polarizing plate.
  • the liquid crystal molecules 4 when no voltage is applied, the liquid crystal molecules 4 are aligned perpendicular to the substrate surface, so that the liquid crystal layer does not exhibit birefringence and displays black.
  • a voltage is applied between the substrates and the liquid crystal molecules are tilted in a direction that forms an angle of 45 ° with the polarization axis of the polarizing plate, white display is obtained. If the liquid crystal molecules 4 are tilted in a direction parallel to or perpendicular to the polarization axis when a voltage is applied, the liquid crystal layer does not exhibit birefringence with respect to linearly polarized light, resulting in black display.
  • a pixel electrode constituted by a frame portion 6 along the entire inner periphery of the pixel electrode 1 and a plurality of fine electrodes 7a to 7d that form an angle of 45 ° with the polarization axis of the polarizing plate. 1 makes it possible to accurately align the liquid crystal molecules 4 in four directions that form an angle of 45 ° with the polarization axis of the polarizing plate.
  • the present embodiment it is not necessary to separately provide an electrode or the like for controlling the alignment direction of the liquid crystal molecules 4 below the pixel electrode 1 or the like. For this reason, the number of members constituting the pixel 10 can be reduced.
  • the above-described electrode or the like is provided in the pixel 10, it is difficult to align the liquid crystal molecules 4 in a desired direction.
  • the pixel electrode 1 is divided into the four regions 5a to 5d.
  • the present invention is not necessarily limited to this. Any number of divisions may be used as long as no disclination line is generated with respect to the polarization axis of the linear polarizing plate.
  • the disclination line is a region where the alignment of the liquid crystal molecules 4 is discontinuous and causes a decrease in luminance.
  • the counter electrode is connected from the outer periphery of the pixel electrode when a voltage is applied.
  • the liquid crystal molecules tilt to the center. This is because an oblique electric field is generated in the liquid crystal layer by the pixel electrode and the counter electrode from the outer periphery of the pixel electrode to the center of the counter electrode.
  • the alignment direction of the liquid crystal molecules is blurred at the end of each pixel and at the boundary between the domains. Specifically, the alignment vector of the liquid crystal molecules in the vertical direction in each pixel increases.
  • FIG. (A) in FIG. 3 is a diagram showing the ⁇ characteristic in the vertical direction in each pixel.
  • (B) in FIG. 3 is a diagram illustrating the gamma characteristic in the horizontal direction in each pixel.
  • the vertical axis in the figure represents the normalized transmittance when the gradation voltage V255 is 1.
  • the ⁇ characteristic when viewed from the front direction (0 °) of the display surface and the ⁇ property when viewed from obliquely 15 °, 30 °, 45 °, and 60 ° with respect to the display surface are shown. ing.
  • the difference between the vertical ⁇ characteristic and the horizontal ⁇ characteristic is large.
  • the fact that the ⁇ characteristics are different between the visual recognition from the vertical direction and the visual recognition from the horizontal direction means that the gradation display state differs depending on the visual recognition direction.
  • the problem of the viewing angle dependency of the ⁇ characteristic is a particularly serious problem such as when the display surface is displayed whitish when an image such as a photograph is displayed or when a television broadcast received by the receiver is displayed. Become.
  • the deviation from the ⁇ characteristic when the display surface is viewed from the front direction is larger in the left-right ⁇ characteristic than in the vertical ⁇ characteristic.
  • the characteristic indicated by the solid line is the ⁇ characteristic when the display surface is viewed from the front direction, and the most normal visibility is obtained when such a ⁇ characteristic is present. Is obtained.
  • the characteristic indicated by the rough broken line is a ⁇ characteristic when the display surface is viewed from an oblique direction of 60 °, and is normal when such a ⁇ characteristic is present. There is a deviation in ⁇ characteristics with respect to high visibility.
  • the degree of the deviation is small in the portion showing the gradations of the bright luminance and the dark luminance, and is large in the portion showing the intermediate gradation. For this reason, the display luminance of the intermediate gradation in the visual recognition from the oblique direction becomes very large, and as a result, whitening or the like occurs in the visual recognition from the oblique direction.
  • the occurrence of blurring in the alignment direction of the liquid crystal molecules deteriorates the balance between the vertical ⁇ characteristic and the horizontal ⁇ characteristic. For this reason, when the display surface of the LCD is viewed obliquely, the gradation display state differs depending on the viewing direction, and the display quality of the screen is degraded. Furthermore, the size of the region where the alignment direction of the liquid crystal molecules is blurred does not change regardless of the pixel pitch. That is, the smaller the pixel pitch, the greater the effect of blurring in the alignment direction.
  • the liquid crystal molecules 4 are configured to be inclined from the center of the pixel electrode 1 toward the outer peripheral portion of the counter electrode 9. Further, the pixel 10 is divided into four regions 5a to 5d so that the liquid crystal molecules 4 are aligned in a plurality of different directions within one pixel 10. As a result, the liquid crystal molecules 4 can be accurately aligned in four directions that form an angle of 45 ° with the polarization axis of the polarizing plate.
  • FIG. 4 is a diagram showing the alignment direction of the liquid crystal molecules 4 in the pixel including the pixel electrode 1. 4 ′ shown in the drawing represents liquid crystal molecules located in the slit 8.
  • the liquid crystal molecules 4 ′ are standing perpendicular to the pixel electrode 1 (substrate surface). Specifically, since the slit 8 is in a state where there is no retardation of the liquid crystal molecules 4 ′, there is no component of alignment orientation. That is, the liquid crystal molecules 4 ′ are not oriented in any direction other than the direction perpendicular to the pixel electrode 1.
  • the slit 8 is provided in the central portion of the pixel electrode 1 (that is, the pixel electrode 1 is not formed), the vertical alignment vector of the liquid crystal molecules 4 is suppressed. Therefore, under the influence of the frame portion 6 of the pixel electrode 1 and the fine electrodes 7a to 7d, the left orientation vector 17a and the right orientation vector 17b of the liquid crystal molecules 4 increase. As a result, there is no blurring in the alignment direction of the liquid crystal molecules 4 for each pixel, and the balance between the vertical alignment and the horizontal alignment of the liquid crystal molecules 4 is improved. Therefore, the deterioration of the balance of the ⁇ characteristics due to the blurring in the alignment direction of the liquid crystal molecules 4 is not induced.
  • FIG. 5A is a diagram illustrating the ⁇ characteristic in the vertical direction in each pixel 10.
  • FIG. 5B is a diagram illustrating the ⁇ characteristic in the left-right direction in each pixel 10.
  • the vertical axis in the figure represents the normalized transmittance when the gradation voltage V255 is 1.
  • the ⁇ characteristic when viewed from the front direction (0 °) of the display surface and the ⁇ property when viewed from obliquely 15 °, 30 °, 45 °, and 60 ° with respect to the display surface are shown. ing.
  • the difference between the ⁇ characteristic in the vertical direction and the ⁇ characteristic in the horizontal direction is small. Since there is almost no difference in the ⁇ characteristics between the visual recognition from the vertical direction and the visual recognition from the horizontal direction, it is possible to suppress the gradation display state from being different depending on the visual recognition direction. Therefore, in the LCD according to this embodiment, the display quality of the display surface can be improved.
  • the ⁇ characteristic when the display surface is viewed from the left-right direction is the same as that when the display surface is viewed from the front direction. Specifically, the ⁇ characteristic when the display surface is viewed from the front direction becomes the characteristic indicated by the solid line in the graph shown in FIG. 5B, and the most normal visibility is obtained. On the other hand, the ⁇ characteristic when viewed from an oblique angle of 60 ° with respect to the display surface becomes a characteristic indicated by a rough broken line in the graph shown in FIG. 5B, and the luminance deviation is reduced.
  • the slit 8 is provided at the center of the pixel electrode 1 and, as a result, the left orientation vector 17a and the right direction of the liquid crystal molecules 4 are affected by the frame portion 6 and the fine electrodes 7a to 7d of the pixel electrode 1. This is because the orientation vector 17b increases.
  • the balance between the ⁇ characteristic in the vertical direction and the ⁇ characteristic in the horizontal direction becomes good, and the visual characteristic from the horizontal direction can be improved. Therefore, it is possible to prevent the display gradation state from changing depending on the viewing direction, and the display quality of the display surface is further improved.
  • the slit 8 is provided at the center of the pixel 10, the boundary between the regions 5a to 5d (domains) is in a light-shielding state due to the influence of the alignment direction of the liquid crystal molecules 4.
  • the liquid crystal molecules 4 ′ of the slits 8 stand perpendicular to the pixel electrode 1 (substrate surface). That is, since it is not oriented in any direction other than the direction perpendicular to the pixel electrode 1, it is substantially light-shielded.
  • the upward orientation vector 18a and the downward orientation vector 18b of the liquid crystal molecules 4 shown in FIG. 7 increase.
  • the liquid crystal molecules 4 are blurred in the alignment direction, and the balance between the vertical alignment of the liquid crystal molecules 4 and the horizontal alignment in each pixel is lost.
  • the central portion of the pixel the portion where the liquid crystal molecules 4 of the upward orientation vector 18a and the downward orientation vector 18b are present
  • the liquid crystal molecules 4 in the central portion (slit 8) of the pixel stand vertically, it is not necessary to shield the portion. As a result, it is possible to substantially prevent the transmission aperture ratio of the LCD from decreasing.
  • the extending direction of the transmission axis is parallel to or orthogonal to the extending direction of one side of the pixel.
  • the extending direction of the transmission axis is a direction that forms an angle of 45 degrees with respect to the extending direction of one side of the pixel.
  • the polarization axis of the linearly polarized light incident on the liquid crystal layer after passing through one polarizing plate can pass through the other polarizing plate because its polarization axis rotates due to the optical rotation and birefringence of the liquid crystal molecules. As a result, good visual characteristics can be obtained.
  • the pixel electrode is divided into four regions.
  • the liquid crystal molecules are aligned in four directions that form an angle of 45 degrees with respect to the extending direction of the transmission axis of the polarizing plate.
  • the balance between the ⁇ characteristic in the vertical direction and the ⁇ characteristic in the left and right direction is good, and there is almost no difference in the ⁇ characteristic between the visual recognition from the vertical direction and the visual recognition from the horizontal direction. Therefore, it is possible to prevent the display gradation state from changing depending on the viewing direction, and the display quality of the display surface is further improved.
  • the liquid crystal display device is characterized in that the pixel electrode is electrically connected to a thin film transistor.
  • the loss of voltage applied to the pixel electrode can be reduced by directly connecting the thin film transistor and the pixel electrode.
  • the present invention is suitably used for a liquid crystal display device that requires high display quality.
  • Pixel electrode 2 Scan line 3 Signal line 4, 4 ′ Liquid crystal molecules 5a to 5d Region 6 Frame portion 7a to 7d Fine electrode 8 Slit 9 Counter electrode 10, 20 Pixel 12 Counter substrate 13 TFT substrate 15a, 15b Trunk portion 16a, 16b Branch portions 17a, 17b, 18a, 18b Orientation vector

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geometry (AREA)

Abstract

 画素電極(1)は、画素(10)の内周全体に沿ったフレーム部(6)を有している。フレーム部(6)には、複数の微細電極(7a~7d)が直線偏光板の偏光軸に対して45°の角度をなすようにそれぞれ配置されている。なお、画素電極(1)において、フレーム部(6)および微細電極(7a~7d)以外の部分、すなわち画素電極(1)の中央部には1つのスリット(8)が設けられている。画素電極(1)に電圧が印加されると、液晶分子(4)は微細電極(7a~7d)に沿って、異なる4方向に配向する。さらに、画素(10)の内周全体に沿ったフレーム部(6)の影響を受け、液晶分子(4)は画素電極(1)の中心から対向電極の外周部に向かって傾く。すなわち、液晶分子(4)は画素電極(1)の中心から対向電極の外周部へと傾きながら、異なる4方向に配向することになる。

Description

液晶表示装置
 本発明は、液晶表示装置に関し、特に、画素内に複数の配向分割領域を有する垂直配向型の液晶表示装置に関する。
 近年では、従来主流であったブラウン管を使用した表示装置から、薄型のフラットパネルディスプレイ(FPD)の表示装置が広く利用されるようになっている。FPDには、表示素子として液晶、発光ダイオード(LED)または、有機エレクトロルミネッセンス(有機EL)等を利用したものがある。中でも液晶を利用した表示装置は、薄型、軽量、および低消費電力という利点から、その研究開発が盛んに行われている。
 液晶表示装置(LCD)の駆動には、薄膜トランジスタ(TFT)のアクティブマトリックス(AM)回路を利用した方式がある。AM回路とは、画素ごとに表示/非表示を制御するスイッチ回路である。AM回路は画素ごとに制御しているので、表示装置の配線数が増えても、各画素を確実に動作することができる。そのため、AM回路を利用したLCDでは、高精細化、コントラストの明晰化、また反応速度の高速化が可能である。
 AM回路を利用したLCDには、TN(Twisted Nematic)型と呼ばれるものがよく知られている。TN型のLCDでは、2枚の基板の外側に、クロスニコルに配置された1対の直線偏光板を設けている。一方の偏光板を通過して液晶層に入射した直線偏光は、液晶分子の旋光性および複屈折性によってその偏光軸が回転するので、他方の偏光板を通過できる。ここで、画素電極と対向電極との間に電圧を印加すると、液晶分子が両基板の表面に対して垂直に配向する(立ち上がる)。その結果、液晶層に入射した直線偏光は、偏光軸が回転することなくそのまま反対側に到達するので、他方の偏光板を通過することができない。
 上記したTN型のLCDでは、液晶分子の複屈折性を利用しているため、液晶分子の配向方向と視認者の位置関係とによって視認状態が異なる。すなわち、TN型のLCDでは、視野角が狭く、視覚特性が不十分であるという問題がある。
 これに対して、液晶分子(負の誘電異方性を有する液晶分子)を基板に対して垂直に配向させたVA(Vertical Alignment)型のLCDが開発され、実用化されている。VA型のLCDでは、液晶分子の配向方向に対して斜めに電界が発生するように構成されている。そのため、画素電極と対向電極との間に電圧を印加すると、液晶分子は斜め方向に倒れ込む。ここで、液晶分子が倒れ込む方向を、1画素内で複数の異なる方向となるように領域分割を行っておくと、見る角度によらず、同じような見え方となるようにすることができる。このように、1画素内を複数の領域(ドメイン)に分割して駆動するLCDは、MVA(Multidomain Vertical Alignment)型と呼ばれ、広い視野角を有しており、良好な視覚特性を備えている。
 例えば、特許文献1には、スリットを設けたMVA型のLCDが開示されている。具体的には、TFT基板側に形成された画素電極を、制御電極を形成することによって電気的にフローティング状態にしたLCDであり、当該画素電極にはX字状のスリットが形成されている。制御電極によって液晶分子の配向方向を制御することによって、画素ごとに、スリットによって形成された4つの分割領域が互いに視覚特性を補償しあうこととなり、左右対称で良好な視覚特性を得ることができる。
 また、特許文献2には、クロスニコルに配置された1対の直線偏光板の間にフィッシュボーン構造の画素電極を採用したMVA型のLCDが開示されている。フィッシュボーン構造の詳細を図6に示す。図6は、フィッシュボーン構造の画素電極を備えた画素の断面を示す図である。以下の説明では、図6の左側から右側に向かう方向を方位角0°とし、これを基準として反時計回りに方位角を設定している。図6に示すように、具体的にフィッシュボーン構造とは、方位角0°-180°方向に延びる幹部15aと、方位角90°-270°方向に延びる幹部15bと、方位角45°-225°方向に延びる複数の枝部16aと、方位角135°-315°方向に延びる複数の枝部16bとを有した構造である。このような画素電極11によって、1つの画素の中に4つの分割領域(マルチドメイン)が形成される。電圧が印加された時には、4つのドメインの液晶分子4は、それぞれ上記枝部に沿って配向する。これによって、液晶分子4の配向異常または配向変動が抑制され、各画素において液晶分子4の配向方向を正確な方向に安定させることができる。したがって、表示面における透過率のばらつきを抑えられ、ざらつきのない高品質の表示が可能となる。
日本国公開特許公報「特開2001-249350号公報(2001年9月14日公開)」 国際公開第2009/084162号パンフレット(2009年7月9日公開)
 上述したように、特許文献2に開示されているフィッシュボーン構造の画素電極を用いたLCDでは、偏光板の偏光軸に対して液晶分子の配向方向を45°に制御することができる。しかしながら、本文献に開示されている構成では、各画素の端部ならびに各ドメインの境界部において、液晶分子の配向方向のブレが生じてしまう。その詳細を図7に示す。図7は、フィッシュボーン構造の画素電極を備えた画素における液晶分子の配向方向を示す図である。図7に示すように、画素の中央部に形成されている画素電極の幹部の影響を受け、液晶分子4の上方向の配向ベクトル18aおよび下方向の配向ベクトル18bが多くなる。その結果、液晶分子4の配向方向のブレが生じ、画素ごとにおける液晶分子4の上下方向の配向と、左右方向の配向とのバランスが崩れてしまう。これに起因して、上下方向のγ特性と、左右方向のγ特性とのバランスが悪化するため、LCDの表示品位が低下してしまう。
 さらに、液晶分子4の配向方向のブレが生じる領域の大きさは、画素ピッチによらず変わらない。すなわち、画素ピッチが小さいほど、配向方向のブレの与える影響が大きくなる。
 上記した特許文献1に開示されている技術も同様に、液晶分子の配向方向をX字状のスリットに沿って統一して配向させることが困難である。そのため、液晶分子の配向方向のブレが生じ、画素ごとにおける液晶分子の上下方向の配向と、左右方向の配向とのバランスが崩れてしまう。すなわち、本文献に開示されている技術においても、γ特性のバランスが悪化するため、LCDの表示品位を下げてしまう。
 さらに、本文献に開示されている技術では、偏光板には直線偏光板を使用することができず、LCDの視覚特性が悪化してしまう。この場合には、位相差板を挟む必要がある。さらに、画素電極の下に制御電極を設ける必要があり、LCDの構造が複雑化してしまう。また、画素電極をフローティング状態にしているため、電荷残留による焼き付きが懸念される。
 そこで、本発明は上記課題に鑑みてなされたものであり、その目的は、LCDのγ特性のバランスが良好であり、高い表示品位を有するLCDを提供することにある。
 本発明に係る液晶表示装置は、上記課題を解決するために、複数の画素を有し、互いに直交する透過軸を備えた1対の偏光板を備えた垂直配向型の液晶表示装置において、上記画素ごとに、画素電極と、上記画素電極に対向する対向電極と、上記画素電極と上記対向電極との間に配置された液晶層とを備えた液晶表示装置であって、上記画素電極は、上記画素の内周全体に沿ったフレーム部と、上記フレーム部に一端が接続され、他端は分離しており、当該フレーム部の内側に延びている複数の微細電極部とを備え、当該画素電極は複数の領域に分割されており、上記領域ごとに、当該領域に含まれる上記複数の微細電極部は、それぞれ同じ方向に伸展しており、その伸展方向は、当該領域とは別の領域に含まれる上記複数の微細電極部の伸展方向とは異なり、上記微細電極部ごとに、当該微細電極部は、上記透過軸のいずれの伸展方向に対しても45度の角度をなす方向に延び、なおかつ上記透過軸のいずれの伸展方向にも近づくようにして延びていることを特徴としている。
 上記の構成によれば、領域ごとに、偏光板の透過軸の伸展方向に対して45度の角度をなす方向に伸展している複数の微細電極部が画素電極に形成されている。さらに、1つの領域内に含まれる複数の微細電極部の伸展方向は同じであり、当該伸展方向は他の領域内に含まれる複数の微細電極部の伸展方向とは異なる。これによって、液晶層に電圧を印加すると、液晶分子は上記微細電極部に沿って配向する。さらに、画素の内周全体に沿ったフレーム部の影響を受け、液晶分子は画素電極の中心から対向電極の外周部に向かって傾く。すなわち、液晶分子は、画素電極の中心から対向電極の外周部へと傾きながら、偏光板の透過軸の伸展方向に対して45度の角度をなす方向に配向することになる。
 また、微細電極部の他端は分離している、すなわち画素電極の中央部分はスリットが設けられている。そのため、画素ごとにおいて液晶分子の一定方向の配向ベクトルが多くなるのが抑制され、画素電極のフレーム部および微細電極部の影響を受けて液晶分子の配向ベクトルが均一化される。その結果、画素ごとにおける液晶分子の配向方向のブレは生じず、液晶分子の配向方向のバランスが良くなる。したがって、液晶分子の配向方向のブレに起因するγ特性のバランスの悪化が誘発されず、視認方向によって表示階調状態が変動するのを防ぐことができ、表示面の表示品位もより向上する。
 さらに、上記の構成によれば、液晶層を通過した光は複数の異なる方向に出射されることになるので、表示面において見る角度によらず、同じような見え方となるようにすることができる。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。
 本発明によれば、画素電極の中央部にスリットが設けられている結果、フレーム部および微細電極部の影響を受けて液晶分子の配向ベクトルが均一化される。その結果、画素ごとにおける液晶分子の配向方向のブレは生じず、液晶分子の配向方向のバランスが良くなる。したがって、液晶分子の配向方向のブレに起因するγ特性のバランスの悪化が誘発されず、視認方向によって表示階調状態が変動するのを防ぐことができ、表示面の表示品位もより向上する。さらに、本発明によれば、液晶層を通過した光は複数の異なる方向に出射されることになるので、表示面において見る角度によらず、同じような見え方となるようにすることができる。
本発明の一実施形態に係る液晶表示装置の1つの画素を拡大した図である。 本発明の一実施形態に係る液晶表示装置の1つの画素の断面を示す図である。 図中の(a)は、従来の画素における上下方向のγ特性を示す図であり、図中の(b)は、従来の画素における左右方向のγ特性を示す図である。 本発明の一実施形態に係る画素電極を備えた画素における液晶分子の配向方向を示す図である。 図中の(a)は、本発明の一実施形態に係る画素における上下方向のγ特性を示す図であり、図中の(b)は、本発明の一実施形態に係る画素における左右方向のγ特性を示す図である。 従来のフィッシュボーン構造の画素電極を備えた画素の断面を示す図である。 従来のフィッシュボーン構造の画素電極を備えた画素における液晶分子の配向方向を示す図である。
 (液晶表示装置の概要)
 本発明の一実施形態について図面を参照して説明する。まず、本実施形態に係る液晶表示装置(LCD)の概要について説明する。
 本実施形態に係るLCDは、負の誘電異方性(ε<0)を有する液晶分子を基板に対して垂直に配向させた垂直配向(VA;Vertical Alignment)型のLCDである。本実施形態に係るLCDは、バックライト部と液晶表示素子部とから構成されている。バックライト部として面光源装置を有しており、液晶表示素子部として液晶パネルを有している。液晶パネルは、各画素に対応した薄膜トランジスタ(TFT)および画素電極等が形成されたTFT基板と、カラーフィルタおよび対向電極等が形成された対向基板とを有しており、両基板の間に液晶層を封止したものである。TFT基板の外側(液晶層の反対側)と、対向基板の外側(液晶層の反対側)とには、直線偏光板がそれぞれ設けられており、2つの直線偏光板は、クロスニコルに配置されている。
 TFT基板には、走査線(ゲートバスライン)および信号線(ソースバスライン)が形成されており、走査線および信号線の上には絶縁膜を介して画素電極が形成されている。隣り合う2つの走査線と、隣り合う2つの信号線によって囲まれた領域が1つの画素である。本実施形態に係るLCDの画素について、図1を参照して詳しく説明する。図1は、本実施形態に係るLCDの1つの画素10を拡大した図である。
 図1に示すように、画素10は、隣り合う2つの走査線2と、隣り合う2つの信号線3とによって囲まれている。画素10ごとに、画素電極1が設けられており、当該画素電極1への表示電圧をスイッチングするためのTFT(図示せず)が配置されている。TFTのゲート電極は走査線2に電気的に接続されており、TFTのソース電極は信号線3に電気的に接続されている。また、TFTのドレイン電極は画素電極1に電気的に接続されており、直接表示電圧が印加される構造となっている。このように、TFTのドレイン電極と画素電極1とを直接接続することによって、画素電極1に印加される電圧のロスを低減することができる。TFT基板の外側と対向基板の外側とに設けられた1対の直線偏光板は、一方の直線偏光板の偏光軸(透過軸)は図1の左右方向に延びており、他方の直線偏光板の偏光軸は図1の上下方向に延びている。すなわち、画素10のいずれかの1辺に対して平行または直交するように伸展している。なお、1対の直線偏光板の偏光軸は、画素10のいずれかの1辺に対して45度の角度をなす方向に伸展していても良い。以下の説明では、図1の走査線2に平行な直線と、信号線3に平行な直線とによって画素電極1を均等に4分割した場合に形成される4つの領域を領域5a~5dとする。
 画素電極1は、画素10の内周全体に沿ったフレーム部6を有している。ここでいう内周全体に沿うとは、画素10の内側において、画素10の内側と外側とを区切る境界線に沿っていることである。換言すれば、画素10の内側において、当該画素10の四辺に沿っていることである。フレーム部6には、フレーム部6に一端が接続され、他端が分離しており、当該フレーム部6の内側に伸展している微細電極7a~7d(微細電極部)が形成されている。具体的には、領域5aの画素電極1には、フレーム部6と45°の角度(領域5aから領域5cへの方向)をなす微細電極7aが複数設けられている。また、領域5bの画素電極1には、フレーム部6と45°の角度(領域5bから領域5dへの方向)をなす微細電極7bが複数設けられている。同様に、領域5cの画素電極1には、フレーム部6と45°の角度(領域5cから領域5aへの方向)をなす微細電極7cが複数設けられている。また、領域5dの画素電極1には、フレーム部6と45°の角度(領域5dから領域5bへの方向)をなす微細電極7dが複数設けられている。したがって、複数の微細電極7a~7dは、直線偏光板の偏光軸の伸展方向に対して45°の角度をなすようにしてそれぞれ配置されている。なお、画素電極1において、フレーム部6および微細電極7a~7d以外の部分には何も設けられていない。すなわち、画素電極1の中央部は開口しており、1つのスリット8が設けられている構成になっている。
 (液晶分子4の配向)
 上記したような画素電極1を用いることによって、LCDの視覚特性を向上させることができる。これについて、図2を参照して詳しく説明する。図2は、画素10の断面を示す図である。
 図2に示すように、対向電極9が形成された対向基板12と、画素電極1が形成されたTFT基板13との間に、負の誘電異方性(ε<0)を有する液晶分子4を含む液晶層が形成されている。両基板間に電圧を印加すると、画素電極1と対向電極9とによって、液晶層には斜めの電界が生じる。具体的には、画素電極1の微細電極7a~7dの影響によって、図1に示したように、液晶分子4は微細電極7a~7dに沿って(すなわち直線偏光板の偏光軸に対して45°の角度をなす方向)に配向する。この際、画素電極1の中央部にスリット8の影響によって、さらには画素10の内周全体に沿ったフレーム部6の影響によって、図2に示したように、液晶分子4は画素電極1の中心から対向電極9の外周部に向かって傾く。したがって、液晶分子4は、画素電極1の中心から対向電極9の外周部へと傾きながら、偏光板の偏光軸に対して45°の角度をなす4方向に配向することになる。
 このように、液晶分子4が偏光板の偏光軸に対して45°の角度をなす方向に配向することによって、一方の直線偏光板を通過して液晶層に入射した直線偏光は、液晶分子4の旋光性および複屈折性によってその偏光軸が回転するので、他方の直線偏光板を通過できる。さらに、画素10を4つの領域5a~5dに分割することによって、領域5a~5dごとに液晶分子4が異なる方向に配向し、液晶分子4が1つの画素10内で複数の異なる方向に配向するように構成されている。これによって、液晶層を通過した光は複数の異なる方向に出射されることになるので、表示面において見る角度によらず、同じような見え方となるようにすることができる。したがって、上記の構成によって、良好な視覚特性を実現することができる。
 ここで、両基板間への電圧の無印加時には、液晶層の液晶分子4は両基板の表面に対して垂直に配列する。そのため、液晶層に入射した直線偏光は、偏光軸が回転することなくそのまま反対側に到達するので、他方の直線偏光板を通過することができない。
 以上のように、本実施形態に係るLCDでは、電圧無印加時には、液晶分子4が基板面に垂直に配列するため、液晶層が複屈折性を示さず黒表示となる。基板間に電圧を印加して、偏光板の偏光軸に対して45°の角度をなす方向に液晶分子を傾けると、白表示となる。電圧印加時に、液晶分子4が偏光軸と平行もしくは直交する方向に傾くと、液晶層は直線偏光に対して複屈折性を示さなくなり、黒表示となってしまう。このため、液晶分子4の傾く方向を制御することが必要になる。本実施形態によれば、画素電極1の内周全体に沿ったフレーム部6と、偏光板の偏光軸に対して45°の角度をなす複数の微細電極7a~7dとによって構成された画素電極1によって、液晶分子4を偏光板の偏光軸に対して45°の角度をなす4方向に精度高く配向させることが可能となる。
 なお、本実施形態では、液晶分子4の配向方向を制御するための電極等を画素電極1の下等に別途設ける必要がない。そのため、画素10を構成する部材数を少なくすることが可能である。また、上記した電極等を画素10に設けると、液晶分子4を所望の方向に配向させることが難しくなる。なお、本実施形態では、液晶分子4の配向方向を制御するための電極等を画素電極1の下等に別途設ける必要がない。そのため、画素10を構成する部材数を少なくすることが可能である。
 また、本実施形態では、画素電極1を4つの領域5a~5dに分割したが、必ずしもこれに限定されるわけではない。直線偏光板の偏光軸に対して、ディスクリネーションラインが生じない限り、いかなる分割数にしても良い。ディスクリネーションラインとは、液晶分子4の配向が不連続となる領域であり、輝度の低下の原因となる。
 (画素10のγ特性)
 ここで、例えば、特許文献1に開示されている画素電極、または特許文献2に開示されているフィッシュボーン構造の画素電極を用いたLCDでは、電圧を印加時に画素電極の外周部から対向電極の中心へと液晶分子は傾く。これは、画素電極と対向電極とによって液晶層には、画素電極の外周部から対向電極の中心への斜めの電界が生じるためである。このような構成では、各画素の端部ならびに各ドメインの境界部において、液晶分子の配向方向のブレが生じてしまう。具体的には、各画素における上下方向の液晶分子の配向ベクトルが多くなる。その結果、画素ごとにおける液晶分子の上下方向の配向と、左右方向の配向とのバランスが崩れてしまう。これに起因して、上下方向のγ特性と、左右方向のγ特性とのバランスが悪化するため、LCDの表示品位が低下してしまう。
 この場合のγ特性を図3に示す。図3中の(a)は、各画素における上下方向のγ特性を示す図である。図3中の(b)は、各画素における左右方向のγ特性を示す図である。図中の縦軸は、階調電圧V255を1とした場合の規格化透過率を表す。本図では、表示面の正面方向(0°)からの視認時におけるγ特性と、表示面に対して斜め15°,30°,45°,60°からの視認時におけるγ特性とをそれぞれ示している。
 図3中の(a)および中の(b)に示すように、上下方向のγ特性と、左右方向のγ特性との齟齬が大きい。上下方向からの視認時と左右方向からの視認時とでγ特性が異なるということは、階調表示状態が視認方向によって異なるということを意味する。このγ特性の視角依存性の問題は、写真等の画像を表示する場合、または受信機が受信したテレビジョン放送を表示する場合等において、表示面全体が白っぽく表示される等、特に大きな問題となる。
 また、図3中の(b)に示されるように、表示面を正面方向から視認した際のγ特性とのずれは、上下方向のγ特性よりも左右方向のγ特性の方が大きい。図3中の(b)に示すグラフにおいて、実線により示されている特性は、表示面を正面方向から視認した場合におけるγ特性であり、こうしたγ特性を有する場合においては、最も正常な視認性が得られる。なお、図3中の(b)に示すグラフにおいて、粗い破線により示されている特性は、表示面を斜め60°から視認した場合におけるγ特性であり、こうしたγ特性を有する場合においては、正常な視認性に対するγ特性のズレが生じている。該ズレの度合いは、明輝度および暗輝度の階調を示す部分では小さくなっており、中間階調を示す部分では大きくなっている。このため、斜め方向からの視認における中間階調の表示輝度は非常に大きくなり、その結果、斜め方向からの視認では、白浮き等が生じる。
 以上のように、液晶分子の配向方向のブレが生じることによって、上下方向のγ特性と、左右方向のγ特性とのバランスが悪化してしまう。そのため、LCDの表示面を斜めから見た場合は、視認方向によって階調表示状態が異なり、画面の表示品位を低下させてしまう。さらに、液晶分子の配向方向のブレが生じる領域の大きさは、画素ピッチによらず変わらない。すなわち、画素ピッチが小さいほど、配向方向のブレの与える影響は大きくなる。
 ここで、上述したように、本実施形態に係る画素電極1では、液晶分子4は画素電極1の中心から対向電極9の外周部に向かって傾くように構成されている。さらに、画素10を4つの領域5a~5dに分割することによって、液晶分子4が1つの画素10内で複数の異なる方向に配向するように構成されている。これによって、液晶分子4を偏光板の偏光軸に対して45°の角度をなす4方向に精度高く配向させることが可能となる。その詳細を図4に示す。図4は、画素電極1を備えた画素における液晶分子4の配向方向を示す図である。本図に示す4’は、スリット8に位置する液晶分子を表す。液晶分子4’は、画素電極1(基板面)に対して垂直に立っている。具体的には、スリット8は液晶分子4’のリタデーションがない状態になっているので、配向方位の成分がない。すなわち、液晶分子4’は、画素電極1に対して垂直な方向以外いずれの方向にも配向していない。
 図4に示すように、画素電極1の中央部分はスリット8が設けられているため(すなわち、画素電極1が形成されていないため)、液晶分子4の上下方向の配向ベクトルは抑制される。それ故、画素電極1のフレーム部6および微細電極7a~7dの影響を受け、液晶分子4の左方向の配向ベクトル17aおよび右方向の配向ベクトル17bが多くなる。その結果、画素ごとにおける液晶分子4の配向方向のブレは生じず、液晶分子4の上下方向の配向と、左右方向の配向とのバランスが良くなる。したがって、液晶分子4の配向方向のブレに起因するγ特性のバランスの悪化が誘発されない。
 この場合のγ特性を図5に示す。図5中の(a)は、各画素10における上下方向のγ特性を示す図である。図5中の(b)は、各画素10における左右方向のγ特性を示す図である。図中の縦軸は、階調電圧V255を1とした場合の規格化透過率を表す。本図では、表示面の正面方向(0°)からの視認時におけるγ特性と、表示面に対して斜め15°,30°,45°,60°からの視認時におけるγ特性とをそれぞれ示している。
 図5中の(a)および(b)に示すように、上下方向のγ特性と、左右方向のγ特性との齟齬が小さい。上下方向からの視認時と左右方向からの視認時とでγ特性に差がほとんど生じないため、視認方向によって階調表示状態が異なるのを抑えることができる。したがって、本実施形態に係るLCDでは、表示面の表示品位を向上させることができる。
 また、図5中の(b)に示されるように、表示面を左右方向から視認した場合におけるγ特性が、表示面を正面方向から視認した場合と同様の特性となる。具体的には、表示面を正面方向から視認した場合におけるγ特性が、図5中の(b)に示すグラフにおいて、実線により示されている特性となり、最も正常な視認性が得られる。一方で、表示面に対して斜め60°から視認した場合におけるγ特性が、図5中の(b)に示すグラフにおいて、粗い破線により示されている特性となり、輝度のズレは低減される。これは、画素電極1の中央部にスリット8が設けられている結果、画素電極1のフレーム部6および微細電極7a~7dの影響を受け、液晶分子4の左方向の配向ベクトル17aおよび右方向の配向ベクトル17bが多くなることによる。
 以上のように、本実施形態によれば、上下方向のγ特性と、左右方向のγ特性とのバランスは良好になり、左右方向からの視覚特性を向上させることができる。そのため、視認方向によって表示階調状態が変動するのを防ぐことができ、表示面の表示品位もより向上する。
 本実施形態では、画素10の中央部にはスリット8が設けられているため、液晶分子4の配向方向の影響を受け、領域5a~5d(ドメイン)の境界部は遮光状態になっている。具体的には、上述したように、スリット8の液晶分子4’は画素電極1(基板面)に対して垂直に立っている。すなわち、画素電極1に対して垂直な方向以外いずれの方向にも配向していないため、実質上遮光状態になっている。例えば、図6に示した従来のフィッシュボーン構造の画素電極では、図7に示す液晶分子4の上方向の配向ベクトル18aおよび下方向の配向ベクトル18bが多くなる。その結果、液晶分子4の配向方向のブレが生じ、画素ごとにおける液晶分子4の上下方向の配向と、左右方向の配向とのバランスが崩れてしまう。当該バランスを改善するために、画素の中央部(上方向の配向ベクトル18aおよび下方向の配向ベクトル18bの液晶分子4が存在する部分)を遮光する方法があるが、それではLCDの透過開口率が低下してしまう。しかし、本実施形態では、画素の中央部(スリット8)の液晶分子4は垂直に立っているため、当該部を遮光する必要がない。その結果、実質的にLCDの透過開口率が低下するのを防止することが可能となる。
 本発明は、上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 〔実施形態の総括〕
 以上のように、本発明に係る液晶表示装置においては、上記透過軸の伸展方向は、上記画素のいずれかの1辺の伸展方向と平行、または直交することを特徴としている。
 また、本発明に係る液晶表示装置においては、上記透過軸の伸展方向は、上記画素のいずれかの1辺の伸展方向に対して45度の角度をなす方向であることを特徴としている。
 上記の構成によれば、一方の偏光板を通過して液晶層に入射した直線偏光は、液晶分子の旋光性および複屈折性によってその偏光軸が回転するので、他方の偏光板を通過できる。その結果、良好な視覚特性を得ることができる。
 また、本発明に係る液晶表示装置においては、上記画素電極は、4つの領域に分割されていることを特徴としている。
 上記の構成によれば、液晶分子は、偏光板の透過軸の伸展方向に対して45度の角度をなす4方向に配向する。これによって、上下方向のγ特性と、左右方向のγ特性とのバランスは良好になり、上下方向からの視認時と左右方向からの視認時とでγ特性に差がほとんど生じない。そのため、視認方向によって表示階調状態が変動するのを防ぐことができ、表示面の表示品位もより向上する。
 また、本発明に係る液晶表示装置においては、上記画素電極は、薄膜トランジスタに電気的に接続されていることを特徴としている。
 上記の構成によれば、薄膜トランジスタと画素電極とを直接接続することによって、画素電極に印加される電圧のロスを低減することができる。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。
 本発明は、高い表示品位が求められる液晶表示装置に好適に用いられる。
1,11 画素電極
2 走査線
3 信号線
4,4’ 液晶分子
5a~5d 領域
6 フレーム部
7a~7d 微細電極
8 スリット
9 対向電極
10,20 画素
12 対向基板
13 TFT基板
15a,15b 幹部
16a,16b 枝部
17a,17b,18a,18b 配向ベクトル

Claims (5)

  1.  複数の画素を有し、互いに直交する透過軸を備えた1対の偏光板を備えた垂直配向型の液晶表示装置において、
     上記画素ごとに、画素電極と、上記画素電極に対向する対向電極と、上記画素電極と上記対向電極との間に配置された液晶層とを備えた液晶表示装置であって、
     上記画素電極は、上記画素の内周全体に沿ったフレーム部と、上記フレーム部に一端が接続され、他端は分離しており、当該フレーム部の内側に延びている複数の微細電極部とを備え、当該画素電極は複数の領域に分割されており、
     上記領域ごとに、当該領域に含まれる上記複数の微細電極部は、それぞれ同じ方向に伸展しており、その伸展方向は、当該領域とは別の領域に含まれる上記複数の微細電極部の伸展方向とは異なり、
     上記微細電極部ごとに、当該微細電極部は、上記透過軸のいずれの伸展方向に対しても45度の角度をなす方向に延び、なおかつ上記透過軸のいずれの伸展方向にも近づくようにして延びていることを特徴とする液晶表示装置。
  2.  上記透過軸の伸展方向は、上記画素のいずれかの1辺の伸展方向と平行、または直交することを特徴とする請求項1に記載の液晶表示装置。
  3.  上記透過軸の伸展方向は、上記画素のいずれかの1辺の伸展方向に対して45度の角度をなす方向であることを特徴とする請求項1に記載の液晶表示装置。
  4.  上記画素電極は、4つの領域に分割されていることを特徴とする請求項1~3のいずれか1項に記載の液晶表示装置。
  5.  上記画素電極は、薄膜トランジスタに電気的に接続されていることを特徴とする請求項1~4のいずれか1項に記載の液晶表示装置。
PCT/JP2010/070918 2010-03-26 2010-11-24 液晶表示装置 WO2011118085A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/637,315 US20130021564A1 (en) 2010-03-26 2010-11-24 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010072915 2010-03-26
JP2010-072915 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118085A1 true WO2011118085A1 (ja) 2011-09-29

Family

ID=44672669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070918 WO2011118085A1 (ja) 2010-03-26 2010-11-24 液晶表示装置

Country Status (2)

Country Link
US (1) US20130021564A1 (ja)
WO (1) WO2011118085A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323993A (zh) * 2012-03-19 2013-09-25 群康科技(深圳)有限公司 液晶显示装置及导电基板的制作方法
US9207505B2 (en) 2012-03-19 2015-12-08 Innocom Technology (Shenzhen) Co., Ltd. Liquid crystal display device and fabrication method of a conductive substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111258142A (zh) * 2020-03-16 2020-06-09 Tcl华星光电技术有限公司 像素驱动电路及显示面板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287753A (ja) * 2002-01-28 2003-10-10 Fujitsu Display Technologies Corp 液晶表示装置
JP2007133280A (ja) * 2005-11-14 2007-05-31 Hitachi Displays Ltd 液晶表示装置
JP2010033054A (ja) * 2008-07-30 2010-02-12 Chi Mei Optoelectronics Corp 液晶表示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101471546B1 (ko) * 2007-09-12 2014-12-11 삼성디스플레이 주식회사 액정 표시 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287753A (ja) * 2002-01-28 2003-10-10 Fujitsu Display Technologies Corp 液晶表示装置
JP2007133280A (ja) * 2005-11-14 2007-05-31 Hitachi Displays Ltd 液晶表示装置
JP2010033054A (ja) * 2008-07-30 2010-02-12 Chi Mei Optoelectronics Corp 液晶表示装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323993A (zh) * 2012-03-19 2013-09-25 群康科技(深圳)有限公司 液晶显示装置及导电基板的制作方法
US9207505B2 (en) 2012-03-19 2015-12-08 Innocom Technology (Shenzhen) Co., Ltd. Liquid crystal display device and fabrication method of a conductive substrate
CN103323993B (zh) * 2012-03-19 2016-05-18 群康科技(深圳)有限公司 液晶显示装置及导电基板的制作方法
TWI572960B (zh) * 2012-03-19 2017-03-01 群康科技(深圳)有限公司 液晶顯示裝置及導電基板的製作方法
US9759939B2 (en) 2012-03-19 2017-09-12 Innocom Technology (Shenzhen) Co., Ltd. Liquid crystal display device and fabrication method of a conductive substrate

Also Published As

Publication number Publication date
US20130021564A1 (en) 2013-01-24

Similar Documents

Publication Publication Date Title
JP6274885B2 (ja) 液晶表示装置
US8319926B2 (en) Liquid crystal display device
US8736796B2 (en) Liquid crystal panel and liquid crystal display device
US9575364B2 (en) Liquid crystal display
JP5421988B2 (ja) 液晶表示装置
WO2017047532A1 (ja) 液晶表示パネル
US20070200990A1 (en) Liquid crystal display device
US9804449B2 (en) Liquid crystal display device
WO2011093387A1 (ja) 液晶表示装置
KR20090128927A (ko) 단일 패널을 이용한 시야각 조절 액정표시장치
US9690139B2 (en) Display panel
US11614659B2 (en) Liquid crystal display panel
WO2011118085A1 (ja) 液晶表示装置
US7843534B2 (en) Image display system
Bae et al. 51‐1: Novel Pixel Structure for 8K QUHD LCD Panel with the Enhanced Optical Performances
US7079205B2 (en) Liquid crystal display including a diffusion layer for improving gray level inversion
JP2009168924A (ja) 液晶表示装置
US8054427B2 (en) Liquid crystal display device
US11508327B2 (en) Liquid crystal display device
JP2003322867A (ja) アクティブマトリクス型液晶表示装置
JP2009031437A (ja) 液晶表示パネル
JP2011033821A (ja) 液晶表示素子
KR100773875B1 (ko) 횡전계모드 액정 표시장치
KR101108387B1 (ko) 티엔 모드 액정표시장치 및 그 제조방법
JP2006078572A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848477

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13637315

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP