WO2011115338A1 - 중합된 메조겐을 함유하는 배향 조절막을 구비하는 액정 표시 장치 및 그 제조 방법 - Google Patents

중합된 메조겐을 함유하는 배향 조절막을 구비하는 액정 표시 장치 및 그 제조 방법 Download PDF

Info

Publication number
WO2011115338A1
WO2011115338A1 PCT/KR2010/006274 KR2010006274W WO2011115338A1 WO 2011115338 A1 WO2011115338 A1 WO 2011115338A1 KR 2010006274 W KR2010006274 W KR 2010006274W WO 2011115338 A1 WO2011115338 A1 WO 2011115338A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
alignment
liquid crystal
film
reactive
Prior art date
Application number
PCT/KR2010/006274
Other languages
English (en)
French (fr)
Inventor
김재훈
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to US13/635,051 priority Critical patent/US9551902B2/en
Priority to CN201080066845.0A priority patent/CN102985872B/zh
Publication of WO2011115338A1 publication Critical patent/WO2011115338A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133726Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films made of a mesogenic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • G02F1/1395Optically compensated birefringence [OCB]- cells or PI- cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell

Definitions

  • the present invention relates to a display device, and more particularly, to a liquid crystal display device.
  • Liquid crystal displays are a type of flat panel display, and are widely used in comparison with other flat panel displays due to their thinness, lightness, and low power consumption.
  • an alignment layer is introduced to align the liquid crystal molecules in the liquid crystal layer to have a specific pretilt angle.
  • the alignment film currently in use is difficult to give sufficient anchoring force to the liquid crystal molecules, which may be an obstacle in improving the response speed and display quality.
  • the problem to be solved by the present invention is to provide a liquid crystal display device with improved response speed and display quality.
  • an aspect of the present invention provides a liquid crystal display device.
  • the liquid crystal display includes a first substrate and a second substrate facing each other.
  • the liquid crystal layer is positioned between the substrates.
  • a first alignment layer is positioned between the liquid crystal layer and the first substrate.
  • a second alignment layer is positioned between the liquid crystal layer and the second substrate.
  • At least one of the first alignment layer and the second alignment layer includes a double layer of an alignment base layer and an alignment control layer.
  • the alignment base film is a film oriented to have a pretilt, and the alignment control film has a polymerized mesogen.
  • the alignment control layer may have a phase delay value of 0.1 times or less of the phase delay value of the liquid crystal layer.
  • the alignment control layer may have a larger anchoring energy than the alignment base layer.
  • the alignment base layer may be a photo-aligned layer.
  • the liquid crystal display may further include a first electrode and a second electrode positioned between the first alignment layer and the first substrate, and the liquid crystal layer may include a liquid crystal having positive dielectric anisotropy.
  • the liquid crystal display may implement an IPS mode or an FFS mode.
  • the polar angle of the pretilt of the alignment base layer may be different from the polar angle of the pretilt of the alignment control layer.
  • the liquid crystal display may further include a first electrode positioned between the first alignment layer and the first substrate, and a second electrode positioned between the second alignment layer and the second substrate, wherein the liquid crystal layer is positive.
  • the liquid crystal which has dielectric constant anisotropy of can be provided.
  • the liquid crystal display may implement a TN mode, an OCB mode, or an ECB mode.
  • the polar angle of the pretilt of the alignment control film may be larger than the polar angle of the pretilt of the alignment base film.
  • the liquid crystal display may further include a first electrode positioned between the first alignment layer and the first substrate, and a second electrode positioned between the second alignment layer and the second substrate, wherein the liquid crystal layer is negative.
  • the liquid crystal which has dielectric constant anisotropy of can be provided.
  • the liquid crystal display may implement a VA mode.
  • the polar angle of the pretilt of the alignment control film may be smaller than the polar angle of the pretilt of the alignment base film.
  • the alignment base layer may include a first domain having a first alignment direction and a second domain having a second alignment direction.
  • the polymerized mesogen may be a polymerized reactive mesogen represented by Formula 1 below.
  • P1 and P2 are independently selected from acrylate, methacrylate, vinyl, vinyloxy, and epoxy groups
  • A1 and A2 are 1,4- Independently selected from phenylen and naphthalene-2,6-diyl groups
  • Z1 is one of COO-, OCO- and a single bond
  • n is one of 0, 1 and 2 .
  • the reactive mesogen may be any one of those represented by the following Chemical Formulas 2 to 4.
  • P1 and P2 are independently selected from acrylate, methacrylate, vinyl, vinyloxy and epoxy groups.
  • an aspect of the present invention provides a method of manufacturing a liquid crystal display device.
  • a first alignment base film oriented to have a pretilt is formed on the first substrate.
  • a first reactive mesogen film containing a reactive mesogen is formed on the first alignment base film.
  • the first substrate on which the first alignment base layer and the first reactive mesogen layer are formed is combined with a second substrate.
  • a liquid crystal layer is formed between the combined first and second substrates.
  • the reactive mesogen in the first reactive mesogen film is polymerized to form a first alignment control film including the polymerized mesogen.
  • Polymerizing the reactive mesogen in the reactive mesogen film may be performed while an electric field is applied to the reactive mesogen film.
  • the application of the electric field to the reactive mesogenic film may be performed by forming an liquid crystal layer and then applying an electric field between the first electrode and the second electrode formed on at least one of the substrates.
  • Polymerizing the reactive mesogen in the reactive mesogen film may be performed by irradiating the reactive mesogen film with light.
  • Polymerizing the reactive mesogen in the reactive mesogen film may be performed after the liquid crystal layer is formed. Alternatively, the step of polymerizing the reactive mesogen in the reactive mesogen film may be performed before bonding the first substrate and the second substrate.
  • the reactive mesogen film may be formed using a mixture containing a reactive mesogen and a solvent. Furthermore, the mixture forming the reactive mesogen film may further include a polymerization initiator. The reactive mesogen may be contained in an amount of less than 1 wt% based on the total weight of the mixture forming the reactive mesogen layer.
  • a solvent may remain in the reactive mesogen film.
  • a second alignment base layer oriented to have a pretilt may be formed on the second substrate.
  • a second reactive mesogen layer containing a reactive mesogen may be formed on the second alignment base layer.
  • the reactive mesogen in the second reactive mesogen film may be polymerized to form a second alignment control film including the polymerized mesogen.
  • the alignment control film containing the polymerized mesogen can exert an enhanced orientation control force on the liquid crystals in contact with them, thereby stabilizing or fixing the director of the liquid crystal.
  • the threshold voltage of the liquid crystal display device can be lowered, the response speed can be improved, and the black visibility and the like can be improved to improve the display quality.
  • FIG. 1 to 3 are cross-sectional views illustrating a method of manufacturing a liquid crystal display according to an exemplary embodiment of the present invention.
  • FIGS. 4 to 7 are cross-sectional views illustrating a method of manufacturing a liquid crystal display according to another exemplary embodiment of the present invention.
  • FIGS. 8 and 9 are cross-sectional views illustrating a method of manufacturing a liquid crystal display according to another exemplary embodiment of the present invention.
  • FIG. 10 is a layout diagram illustrating a liquid crystal display according to another exemplary embodiment of the present invention.
  • 11 to 14 are cross-sectional views illustrating a method of manufacturing a liquid crystal display according to another exemplary embodiment of the present invention.
  • Figure 16 is a sample for each sample prepared according to Preparation Examples 1 to 3, and It is a photograph showing the black visibility according.
  • FIG. 17 is a graph illustrating response speeds of liquid crystal display devices according to Manufacturing Example 4 and Comparative Example 2.
  • FIG. 17 is a graph illustrating response speeds of liquid crystal display devices according to Manufacturing Example 4 and Comparative Example 2.
  • FIG. 18 is a graph illustrating response speeds of liquid crystal display devices according to Manufacturing Example 5 and Comparative Example 2.
  • FIG. 18 is a graph illustrating response speeds of liquid crystal display devices according to Manufacturing Example 5 and Comparative Example 2.
  • 19 is a graph showing polar anchoring energy and azimuthal anchoring energy according to the concentration of reactive mesogen in the mixture forming the reactive mesogen film.
  • FIG. 1 to 3 are cross-sectional views illustrating a method of manufacturing a liquid crystal display according to an exemplary embodiment of the present invention.
  • the first substrate 10 may be a light transmissive substrate and may be a glass substrate.
  • the first electrode 12 and the second electrode (not shown) parallel to each other may be formed on the first substrate 10.
  • An electric field is formed between the first electrode 12 and the second electrode during the operation of the liquid crystal display.
  • thin film transistors (not shown) may be formed on the first substrate 10.
  • the electrodes 12 may be electrically connected to the thin film transistors, respectively.
  • the electrodes 12 may be a transparent conductive film such as indium tin oxide (ITO) or indium zinc oxide (IZO).
  • the first alignment base layer 14 may be formed on the electrodes 12.
  • the first alignment base layer 14 may be formed using poly-amic acid, polyimide, lecithin, nylon, or polyvinylalcohol (PVA).
  • PVA polyvinylalcohol
  • the first alignment base film 14 is a film oriented by a physical rubbing method, a photoalignment method or a groove patterning method, and is a film capable of aligning liquid crystals (or mesogens) with a pretilt.
  • the pretilt may have an angle and a direction, hereinafter, defined as a polar angle (0-180) and an azimuthal angle (0-360), respectively. That is, the pretilt may be interpreted to include both azimuthal angle (0-360) and polar angle (0-180).
  • the azimuth angle means an angle in which the liquid crystal (or mesogen) director is inclined with respect to the reference in any direction in the plane parallel to the substrate.
  • the polar angle means the angle between the substrate and the horizontal plane and the director of the liquid crystal (or mesogen).
  • the first alignment base layer 14 may be a horizontal alignment base layer, a vertical alignment base layer, or a bilayer thereof.
  • the horizontally oriented base film may impart a polar angle of about 4 to about 5 degrees to the liquid crystal (or mesogen)
  • the vertically oriented base film may be a film that can impart a polar angle of about 89 to about 90 degrees to the liquid crystal (or mesogen). Can be.
  • the stacking order and the thickness of the two alignment base layers are adjusted so that the first alignment base layer 14 is a liquid crystal (or mesogen). You can adjust the polar angle given to).
  • the first alignment base layer 14 may be a layer in which the horizontal alignment base layer and the vertical alignment base layer are sequentially stacked, and the first alignment base layer 14 is largely adjusted compared to the thickness of the horizontal alignment base layer. It is possible to increase the polar angle that the alignment base film 14 imparts to the liquid crystal (or mesogen), and by adjusting the thickness of the vertical alignment base film to be smaller than the thickness of the horizontal alignment base film, the first alignment base film 14 is a liquid crystal. (Or mesogen) can reduce the polar angle.
  • the azimuth angle of the pretilt given to the liquid crystal (or mesogen) can be changed for each domain, and the combination of the vertically aligned base film and the horizontally aligned base film in each of the plurality of domains is different.
  • the polar angle of the pretilt given to the liquid crystal (or mesogen) can be changed for each domain. In this case, a multi-domain structure can be realized.
  • the first alignment base layer 14 is formed so that the polar angle of the pretilt applied to the liquid crystal (or mesogen) is less than 2 degrees.
  • the direction of the electric field generated between the first electrode 12 and the second electrode may be different from each other by disposing the first electrode 12 and the second electrode for each domain.
  • the multi-domain structure can be realized as the angle formed between the direction of the electric field generated between the first electrode 12 and the second electrode and the azimuth angle of the pretilt applied to the first alignment base layer 14 is different for each domain. .
  • the first reactive mesogenic layer 16 may be formed on the first alignment base layer 14.
  • the first alignment base layer 14 and the first reactive mesogenic layer 16 may form a first alignment layer BA.
  • the first reactive mesogenic layer 16 may be formed by coating a mixture of reactive mesogens in a solvent on the first alignment base layer 14.
  • the reactive mesogen may contain mesogen, which is a monomer or oligomer exhibiting liquid crystallinity, and polymerizable end groups each bonded to both sides thereof.
  • the mesogen may be a "calamitic” mesogen with a rod or plate shape, or alternatively a "discotic" mesogen with a disc shape.
  • the end groups may be acrylate, methacrylate, vinyl, vinyloxy or epoxy regardless of each other.
  • Examples of the reactive mesogens include compounds represented by the following formula:
  • P1 and P2 are independently selected from acrylate, methacrylate, vinyl, vinyloxy, and epoxy groups
  • A1 and A2 are 1,4- Independently selected from phenylen and naphthalene-2,6-diyl groups
  • Z1 is one of COO-, OCO- and a single bond
  • n is one of 0, 1 and 2 .
  • P1 and P2 are independently selected from acrylate, methacrylate, vinyl, vinyloxy and epoxy groups.
  • the solvent for forming the first reactive mesogenic layer 16 may be, for example, an aromatic solvent such as propylene glycol methyl ether acetate (PGMEA), toluene, or xylene.
  • PMEA propylene glycol methyl ether acetate
  • a polymerization initiator may be further contained in the mixture of the reactive mesogen and the solvent for forming the first reactive mesogen layer 16.
  • the polymerization initiator is, for example, benzoyl peroxide, cumene hydroperoxide, t-butyl peroctoate, dicumyl peroxide, benzoyl alkyl ether, acetophenone, benzophenone, or xanthone It may be a benzoin ether type or a benzyl ketal type polymerization initiator.
  • Reactive mesogen may be contained in an amount of less than 1 wt% based on the total weight of the mixture for forming the first reactive mesogen layer 16.
  • the thickness of the first reactive mesogenic layer 16 may be several nm to several tens of nm.
  • the thickness of the first alignment base layer 14 may be several hundred nm.
  • the mesogens in the first reactive mesogenic film 16 may be aligned according to pretilts applied to the first alignment base film 14.
  • the mesogen in the first reactive mesogen film 16 is aligned with the azimuth angle of the mesogenic director according to the azimuth angle of the pretilt applied to the first alignment base film 14, and the first alignment base film 14
  • the first polar angle of the mesogen director can be determined according to the polar angle of the pretilt given to As described above, when the first alignment base film 14 is formed such that the polar angle of the pretilt applied to the liquid crystal (or mesogen) is less than two degrees, the primary polar angle of the mesogen in the reactive mesogenic film 16 is reduced. May be less than two degrees.
  • the solvent in the first reactive mesogenic film 16 can be removed by heat-treating the first substrate 10.
  • the heat treatment may be performed, for example, at 60 degrees for 90 seconds.
  • the step of removing the solvent may be omitted.
  • a second alignment base layer 24 and a second reactive mesogen layer 26 containing a reactive mesogen are sequentially formed on the second substrate 20.
  • the second alignment base layer 24 and the second reactive mesogenic layer 26 may form a second alignment layer UA.
  • Materials and methods of forming the second alignment base layer 24 and the second reactive mesogenic layer 26 may include the first alignment base layer 14 and the first reactive mesogenic layer 16 described with reference to FIG. 1. It may be the same as the material for forming and the method for forming. However, the present invention is not limited thereto, and any one of the first reactive mesogenic layer 16 and the second reactive mesogenic layer 26 may be omitted.
  • the liquid crystal filling region may be defined by applying a sealant to either the first substrate 10 or the second substrate 20, and the liquid crystal injection hole may be formed at this time. Then, the first substrate 10 and the second substrate 20 are aligned and bonded so that the second alignment base layer 24 faces the first substrate 10. Subsequently, the liquid crystal injection hole may be immersed in a liquid crystal storage tank in a vacuum state and the vacuum may be released to form a liquid crystal layer 30 by injecting liquid crystal into the liquid crystal charging region, and then seal the liquid crystal injection hole. In this case, the reactive mesogen may be injected together with the liquid crystal in the liquid crystal charging region.
  • the liquid crystals forming the liquid crystal layer 30 may be liquid crystals having positive dielectric anisotropy, and in this case, the liquid crystal display may be a device in an IPS (In Plain Switching) mode or a FFS (Fringe Field Switching) mode.
  • the first substrate 10 and the second substrate 20 may be coupled such that the azimuth angles of the pretilt of the first alignment base layer 14 and the second alignment base layer 24 are parallel to each other.
  • the liquid crystals adjacent to the alignment layers BA and UA are pretilt applied to the alignment layers BA and UA, specifically, the alignment base layers 14 and 24.
  • the pretilt applied to the reactive mesogens in the alignment base layers 14 and 24 and / or the reactive mesogen layers 16 and 26 is less than 2 degrees
  • the liquid crystal layer ( The polar angles of the directors of the liquid crystals adjacent to the alignment layers BA and UA among the liquid crystals 30 may be approximately horizontal to the substrates 10 and 20.
  • first reactive mesogenic film 16 and / or the second reactive mesogenic film 26 react reactive mesogens in the reactive mesogenic films 16 and 26.
  • first and second alignment control films 16 'and 26' containing polymerized mesogens 16a and 26a are formed.
  • the light irradiation may be performed for about 30 minutes.
  • the polymerized mesogens 16a and 26a formed in the alignment control layers 16 'and 26' have an arrangement corresponding to the pretilt imparted by the alignment base layers 14 and 24. Can be.
  • the reactive mesogenic films 16 when photopolymerizing the reactive mesogens in the reactive mesogenic films 16 and 26 are omitted. , 26) may remain solvent.
  • the polymerized mesogens 16a and 26a can be aligned to better match the pretilt imparted by the alignment base films 14 and 24.
  • the photopolymerization may be performed in a state in which liquid crystals in the liquid crystal layer 30 are arranged by applying an electric field between the first electrode 12 and the second electrode (not shown).
  • the alignment control layers 16 ′ and 26 ′ may have an enhanced orientation control force as compared to the anchoring energy of the alignment base layers 14 and 24.
  • the alignment control layers 16 'and 26' may supplement or enhance the alignment control force.
  • the polymerized mesogens 16a and 26a in the alignment control layers 16 ′ and 26 ′ may exert an enhanced alignment control force on the liquid crystals in contact with them, thereby stabilizing or fixing the director of the liquid crystals.
  • the threshold voltage of the liquid crystal display device can be lowered, the response speed can be improved, and black visibility can be improved to improve display quality.
  • phase delay value of any one of the alignment control layers 16 ′ and 26 ′ is small enough to hardly affect the phase delay value of the liquid crystal layer 30.
  • the phase delay value of any one of the alignment control layers 16 ′ and 26 ′ may represent 0.1 times or less of the phase delay value of the liquid crystal layer 30. This is expressed as the following equation.
  • the thicknesses of the alignment control layers 16 ′ and 26 ′ may be several nm to several tens of nm.
  • n and d are the refractive index and thickness of the alignment control film, respectively, and n 'and d' are the refractive index and thickness of the liquid crystal layer, respectively.
  • FIGS. 4 to 7 are cross-sectional views illustrating a method of manufacturing a liquid crystal display according to another exemplary embodiment of the present invention.
  • the liquid crystal display according to the present embodiment includes a liquid crystal having positive dielectric anisotropy, and is similar to the manufacturing method described with reference to FIGS. 1 to 3 except for the following description.
  • the first electrode 12 may be formed on the first substrate 10. Before forming the first electrode 12, a thin film transistor (not shown) may be formed on the first substrate 10. In this case, the first electrode 12 may be electrically connected to the thin film transistor.
  • the first alignment base layer 14 may be formed on the first electrode 12.
  • the first alignment base layer 14 may be formed using poly-amic acid, polyimide, lecithin, nylon, or polyvinylalcohol (PVA).
  • PVA polyvinylalcohol
  • the first alignment base film 14 is a film oriented by a physical rubbing method, a photoalignment method or a groove patterning method, and is a film capable of aligning liquid crystals (or mesogens) with a pretilt.
  • the first alignment base layer 14 may be a horizontal alignment base layer, a vertical alignment base layer, or a bilayer thereof.
  • the stacking order and the thickness of the two alignment base layers are adjusted so that the first alignment base layer 14 is a liquid crystal (or mesogen).
  • the azimuth angle of the pretilt given to the liquid crystal (or mesogen) can be changed for each domain, and the combination of the vertically aligned base film and the horizontally aligned base film in each of the plurality of domains is different.
  • the polar angle of the pretilt given to the liquid crystal (or mesogen) can be changed for each domain.
  • a multi-domain structure can be realized.
  • the polar angle of the pretilt applied to the liquid crystal (or mesogen) by the first alignment base layer 14 is formed to be 2 to 10 degrees.
  • the first reactive mesogenic layer 16 may be formed on the first alignment base layer 14.
  • the first alignment base layer 14 and the first reactive mesogenic layer 16 may form a first alignment layer BA.
  • the first reactive mesogenic layer 16 may be formed by coating a mixture of reactive mesogens in a solvent on the first alignment base layer 14.
  • a polymerization initiator may be further contained in the mixture of the reactive mesogen and the solvent for forming the first reactive mesogen layer 16.
  • Reactive mesogen may be contained in an amount of less than 1 wt% based on the total weight of the mixture for forming the first reactive mesogen layer 16.
  • the thickness of the first reactive mesogenic layer 16 may be several nm to several tens of nm.
  • the mesogens in the first reactive mesogenic film 16 may be aligned according to pretilts applied to the first alignment base film 14.
  • the mesogen in the first reactive mesogen film 16 is aligned with the azimuth angle of the mesogenic director according to the azimuth angle of the pretilt applied to the first alignment base film 14, and the first alignment base film 14
  • the first polar angle of the mesogen director can be determined according to the polar angle of the pretilt given to As described above, when the first alignment base film 14 is formed such that the polar angle of the pretilt applied to the liquid crystal (or mesogen) is 2 to 10 degrees, one of the mesogens in the first reactive mesogen film 16 is formed.
  • the differential angle can be between 2 and 10 degrees.
  • the solvent in the first reactive mesogenic film 16 can be removed by heat-treating the first substrate 10.
  • the step of removing the solvent may be omitted.
  • the second electrode 22, the second alignment base layer 24, and the second reactive mesogen layer 26 containing the reactive mesogen are sequentially formed on the second substrate 20.
  • the second alignment base layer 24 and the second reactive mesogenic layer 26 may form a second alignment layer UA.
  • Materials and methods of forming the second electrode 22, the second alignment base layer 24, and the second reactive mesogenic layer 26 may be described with reference to FIG. 4.
  • the material for forming the alignment base layer 14 and the first reactive mesogenic layer 16 may be the same as the forming method. However, the present invention is not limited thereto, and any one of the first reactive mesogenic layer 16 and the second reactive mesogenic layer 26 may be omitted.
  • the first substrate 10 and the second substrate 20 are aligned so that the second electrode 22 faces the first substrate 10 and then combines them.
  • a liquid crystal is injected between the first substrate 10 and the second substrate 20 to form the liquid crystal layer 30.
  • a reactive mesogen may be injected together with the liquid crystal between the first substrate 10 and the second substrate 20.
  • the liquid crystals in the liquid crystal layer 30 may be liquid crystals having positive dielectric anisotropy.
  • the liquid crystals may be liquid crystals having a twisted nematic (TN) mode, an optically compensated bend (OCB) mode, or an electrically controlled birefringence (ECB) mode. have.
  • the first substrate 10 and the second substrate 20 cross each other with the azimuth angles of the pretilt of the first alignment base layer 14 and the second alignment base layer 24. As an example they may be combined to be orthogonal.
  • the liquid crystals adjacent to the alignment layers BA and UA are pretilt applied to the alignment layers BA and UA, specifically, the alignment base layers 14 and 24.
  • the first polar angle of the pretilt applied to the reactive mesogens in the alignment base layers 14 and 24 and / or the reactive mesogen layers 16 and 26 is 2 to 10 degrees as described above.
  • the polar angles of the liquid crystals adjacent to the alignment layers BA and UA among the liquid crystals forming the liquid crystal layer 30 may be about 2 to about 10 degrees.
  • liquid crystals in the liquid crystal layer 30 may be arranged by applying an electric field between the first electrode 12 and the second electrode 22.
  • the director of the liquid crystal having positive dielectric anisotropy rotates in a direction parallel to the electric field direction.
  • polar angles of the liquid crystals adjacent to the alignment layers BA and UA among the liquid crystals forming the liquid crystal layer 30 may also increase, and correspondingly, the reactivity in the reactive mesogenic layers 16 and 26 may be increased.
  • the polar angle of mesogens may also increase.
  • the degree of rotation of the liquid crystal director may vary according to the magnitude of the electric field applied between the first electrode 12 and the second electrode 22, and thus the inside of the reactive mesogenic layers 16 and 26 may be changed.
  • the degree of increase in the polar angle of reactive mesogens may vary.
  • the first and second alignment control films 16 'and 26' containing the polymerized mesogens 16a and 26a are formed.
  • the light irradiation may be performed for about 30 minutes.
  • the alignment control layers 16 ′ and 26 ′ may be pre-tilts that correspond to the arrangement state of the liquid crystals in the liquid crystal layer 30, specifically, the polymerized mesogens 16a and 26a having the second polar angle. It may contain.
  • the second polar angles of the polymerized mesogens 16a and 26a may be adjusted by varying the magnitude and / or light irradiation amount of the electric field applied between the first electrode 12 and the second electrode 22.
  • the second polar angle of the polymerized mesogen 16a in the first alignment control layer 16 ′ may be greater than the polar angle of the first alignment base layer 14 adjacent thereto
  • the second alignment control layer ( The secondary polar angle of the polymerized mesogen 26a in 26 ') may be greater than the polar angle of the second oriented base film 24 adjacent thereto.
  • First and second alignment control films 16 'and 26' containing (16a, 26a) may be formed.
  • the polymerized mesogens 16a and 26a in the alignment control films 16 ′ and 26 ′ exhibit a second polar angle that is almost equal to the primary polar angle imparted by the alignment base films 14 and 24.
  • the secondary polar angle of the polymerized mesogens may be somewhat different from the primary polar angle due to the change in the amount of light irradiation in the photopolymerization step.
  • the reactive mesogenic films 16 when photopolymerizing the reactive mesogens in the reactive mesogenic films 16 and 26 are omitted. , 26) may remain solvent.
  • the polymerized mesogens 16a and 26a are aligned (when applied with an electric field) to better match the arrangement of liquid crystals in the liquid crystal layer 30 or imparted by the alignment base films 14 and 24. It can be aligned to better match the pretilt fitted (unless field is applied).
  • an electric field applied between the first electrode 12 and the second electrode 22 is removed.
  • the polymerized mesogens 16a and 26a in the alignment control layers 16 'and 26' may maintain the second polar angle even after the electric field is removed, and the alignment control layers 16 'and 26' may be It may have an enhanced orientation control force as compared to the anchoring energy of the alignment base layer (14, 24).
  • the alignment control layers 16 'and 26' may supplement or enhance the alignment control force.
  • the polymerized mesogens 16a and 26a in the alignment control layers 16 ′ and 26 ′ may exert an enhanced alignment control force on the liquid crystals in contact with them, thereby stabilizing or fixing the director of the liquid crystals.
  • the threshold voltage of the liquid crystal display device can be lowered, the response speed can be improved, and black visibility can be improved to improve display quality.
  • phase delay value of any one of the alignment control layers 16 ′ and 26 ′ is small enough to hardly affect the phase delay value of the liquid crystal layer 30.
  • the phase delay value of any one of the alignment control layers 16 ′ and 26 ′ may represent 0.1 times or less of the phase delay value of the liquid crystal layer 30. This is expressed as the following equation.
  • the thicknesses of the alignment control layers 16 ′ and 26 ′ may be several nm to several tens of nm.
  • n and d are the refractive index and thickness of the alignment control film, respectively, and n 'and d' are the refractive index and thickness of the liquid crystal layer, respectively.
  • FIGS. 8 and 9 are cross-sectional views illustrating a method of manufacturing a liquid crystal display according to another exemplary embodiment of the present invention.
  • the manufacturing method according to the present embodiment is characterized by polymerizing reactive mesogens in a state in which substrates are not bonded to each other, except for the following description. It is substantially the same as the manufacturing method described with reference to 7.
  • the first alignment base film 14 is oriented to give a pretilt.
  • the polar angle of the pretilt applied to the liquid crystal (or mesogen) by the first alignment base layer 14 is formed to be 2 to 10 degrees.
  • a first reactive mesogenic film is formed on the first alignment base film 14.
  • the first alignment base layer 14 and the first reactive mesogenic layer 16 may form a first alignment layer.
  • the mesogens in the first reactive mesogen film may be aligned according to the pretilt applied to the first alignment base film 14.
  • the mesogen in the first reactive mesogenic film is aligned with the azimuth angle of the mesogenic director according to the azimuth angle of the pretilt applied to the first alignment base film 14, and is also imparted to the first alignment base film 14.
  • the primary polar angle of the mesogen director can be determined.
  • the first alignment base film 14 is formed such that the polar angle of the pretilt applied to the liquid crystal (or mesogen) is 2 to 10 degrees
  • one of the mesogens in the first reactive mesogen film 16 is formed.
  • the differential angle can be between 2 and 10 degrees.
  • the solvent in the first reactive mesogenic film can be removed by heat-treating the first substrate 10.
  • the step of removing the solvent may be omitted.
  • the first alignment control layer 16 ′ may exhibit a second polar angle that is substantially equal to the primary polar angle imparted by the alignment base layer 14.
  • the secondary polar angle of the polymerized mesogen 16a may be somewhat different from the primary polar angle due to the change in the irradiation amount in the photopolymerization step. In this way, polymerized mesogens having different secondary polar angles can be formed in a plurality of domains.
  • the light irradiation may be performed for about 30 minutes.
  • an electric field may be applied to the first reactive mesogenic film. This may be performed using an external electrode (not shown) different from the first electrode 12.
  • the director of the reactive mesogen in the first reactive mesogen film may rotate in accordance with the electric field direction.
  • the second polar angle of the polymerized mesogen 16a in the first alignment control layer 16 ' is more precisely controlled.
  • the secondary polar angle of the polymerized mesogen 16a in the first alignment control layer 16 ′ may be greater than the polar angle of the pretilt of the first alignment base layer 14 adjacent thereto.
  • the solvent may remain in the first reactive mesogenic film when photopolymerizing the reactive mesogen in the first reactive mesogen film.
  • the polymerized mesogen 16a may be aligned to better match the pretilt imparted by the first alignment base film 14 (if no electric field is applied) or to better match the direction of the electric field. Can be applied (when electric field is applied).
  • a second electrode 22, a second alignment base layer 24, and a second alignment control layer 26 ′ are formed on the second substrate 20.
  • the second alignment control layer 26 ' contains a polymerized mesogen 26a, and the second alignment base layer 24 and the second alignment control layer 26' form a second alignment layer UA. can do.
  • a material and a method of forming the second electrode 22, the second alignment base layer 24, and the second alignment control layer 26 ′ may be formed by the first electrode (described with reference to FIGS. 4 and 8). 12), the material for forming the first alignment base layer 14 and the first alignment control layer 16 ′ and the method of forming the same.
  • the present invention is not limited thereto, and any one of the first alignment control layer 16 ′ and the second alignment control layer 26 ′ may be omitted.
  • the first substrate 10 and the second substrate 20 are aligned so that the second electrode 22 faces the first substrate 10 and then combines them.
  • a liquid crystal is injected between the first substrate 10 and the second substrate 20 to form the liquid crystal layer 30.
  • a reactive mesogen may be injected together with the liquid crystal between the first substrate 10 and the second substrate 20.
  • the liquid crystals forming the liquid crystal layer 30 may be vertically rotated mode liquid crystals having positive dielectric anisotropy, and as an example, twisted nematic (TN) mode, optically compensated bend (OCB) mode, or electrically controlled birefringence (ECB). Mode liquid crystals.
  • the first substrate 10 and the second substrate 20 have an azimuth angle of the pretilt of the first alignment base layer 14 and the second alignment base layer 24 to cross each other.
  • it may be combined to be orthogonal.
  • the polymerized mesogens 16a and 26a in the alignment control layers 16 ′ and 26 ′ may exert an enhanced alignment control force on the liquid crystal adjacent thereto, thereby stabilizing or fixing the director of the liquid crystal.
  • the threshold voltage of the liquid crystal display device can be lowered, the response speed can be improved, and the black visibility can be improved to improve the display quality.
  • phase delay value of any one of the alignment control layers 16 ′ and 26 ′ is small enough to hardly affect the phase delay value of the liquid crystal layer 30.
  • the phase delay value of any one of the alignment control layers 16 ′ and 26 ′ may represent 0.1 times or less of the phase delay value of the liquid crystal layer 30. This is expressed as the following equation.
  • the thicknesses of the alignment control layers 16 ′ and 26 ′ may be several nm to several tens of nm.
  • n and d are the refractive index and thickness of the alignment control film, respectively, and n 'and d' are the refractive index and thickness of the liquid crystal layer, respectively.
  • FIG. 10 is a layout diagram illustrating a liquid crystal display according to another exemplary embodiment of the present invention and is limited to the first substrate.
  • 11 to 14 are cross-sectional views illustrating a method of manufacturing a liquid crystal display according to another exemplary embodiment of the present invention.
  • 11 to 14 are cross-sections taken along cut line II ′ of FIG. 10.
  • the liquid crystal display according to the present exemplary embodiment includes a liquid crystal having negative dielectric anisotropy and is substantially the same as the manufacturing method described with reference to FIGS. 1 to 3 except for the following description.
  • the first electrode 12 may be formed on the first substrate 10.
  • a thin film transistor TFT, a gate line GL, and a data line DL may be formed on the first substrate 10.
  • a gate line GL and a gate electrode G protruding from the gate line GL may be formed on the first substrate 10.
  • a gate insulating layer (not shown) may be formed on the gate electrode G, and a semiconductor layer AL may be formed on the gate insulating layer to cross the upper portion of the gate electrode G.
  • the data line DL crossing the upper portion of the gate line GL and the source / drain electrodes SD1 and SD2 connected to both ends of the semiconductor layer AL may be formed.
  • One of the source / drain electrodes SD1 and SD2 protrudes from the data line DL.
  • the gate electrode G, the semiconductor layer AL, and the source / drain electrodes SD1 and SD2 constitute the thin film transistor TFT.
  • the first electrode 12 is formed on the interlayer insulating layer on which the via hole VH is formed.
  • the other one of the source / drain electrodes SD1 and SD2 that is, the thin film transistor TFT and the first electrode 12 are electrically connected.
  • the unit pixel UP is defined by the intersection of the gate line GL and the data line DL, and the thin film transistor TFT and the first electrode 12 are disposed in the unit pixel UP. Can be.
  • the first electrode 12 may not include an opening.
  • the first alignment base layer 14 may be formed on the first electrode 12.
  • the first alignment base layer 14 may be formed using poly-amic acid, polyimide, lecithin, nylon, or polyvinylalcohol (PVA). .
  • PVA polyvinylalcohol
  • the first inclination base film 14 is aligned to give a pretilt which can align the liquid crystal (or mesogen).
  • a second portion of the first alignment base layer 14, that is, the first domain DM1, is oriented in the first direction R1, and another portion, that is, the second domain DM2, is different from the first direction R1. In the direction R2.
  • the first orientation direction R1 and the second orientation direction R2 shown are exemplary and not limited thereto.
  • This orientation may be performed using a physical rubbing method, photo-alignment method or groove patterning method, and the first domain DM1 in the first direction R1 while the second domain DM2 is covered with a mask.
  • the second domain DM2 may be oriented in the second direction R2 while the second domain DM2 is oriented and the first domain DM1 is masked using a mask.
  • the first alignment base layer 14 may be a horizontal alignment layer, a vertical alignment layer, or a double layer thereof.
  • the stacking order and thickness of the two alignment layers are adjusted to impart the first alignment base layer 14 to the liquid crystal (or mesogen).
  • the polar angle of the pretilt can be adjusted.
  • the azimuth angle of the pretilt applied to the liquid crystal (or mesogen) can be changed for each domain, and the combination of the vertical alignment layer and the horizontal alignment layer is different in the plurality of domains.
  • the polar angle of the pretilt applied to the liquid crystal (or mesogen) can be changed for each domain.
  • the polar angle of the pretilt applied to the liquid crystal (or mesogen) by the first alignment base layer 14 is formed to be 80 to 90 degrees.
  • the reactive mesogenic layer 16 may be formed on the first alignment base layer 14.
  • the first alignment base layer 14 and the reactive mesogenic layer 16 may form a first alignment layer BA.
  • the mesogen in the reactive mesogenic film 16 may be aligned according to the pretilt applied to the first alignment base film 14.
  • the mesogen in the reactive mesogenic film 16 is aligned with the azimuth angle of the mesogenic director in accordance with the azimuth angle of the pretilt applied to the first alignment base film 14, and is further added to the first alignment base film 14.
  • the primary polar angle of the mesogen director can be determined according to the polar angle given to the pretilt.
  • the azimuth angle of the mesogen in the reactive mesogenic film 16 in the first domain DM1 may be in the first direction R1, and the reactive mesogenic film 16 in the second domain DM2.
  • the azimuth angle of the mesogen in) may be the second direction R1.
  • the polar angle of the pretilt which gives the 1st orientation base film 14 to a liquid crystal (or mesogen) is formed so that 80-90 degrees
  • the primary polar angle of mesogen in the said reactive mesogenic film 16 may be 80-90. It can be around 90 degrees.
  • the second electrode 22, the second alignment base layer 24, and the second reactive mesogenic layer 26 are sequentially formed on the second substrate 20.
  • the second alignment base layer 24 and the second reactive mesogenic layer 26 may form a second alignment layer UA.
  • Materials and methods of forming the second electrode 22, the second alignment base layer 24, and the second reactive mesogenic layer 26 may be described with reference to FIG. 11. It may be the same as the material for forming the first alignment base layer 14 and the first reactive mesogenic layer 16 and the method for forming the same. However, the present invention is not limited thereto, and any one of the first reactive mesogenic layer 16 and the second reactive mesogenic layer 26 may be omitted.
  • the first substrate 10 and the second substrate 20 are aligned so that the second electrode 22 faces the first substrate 10 and then combines them.
  • a liquid crystal is injected between the first substrate 10 and the second substrate 20 to form the liquid crystal layer 30.
  • a reactive mesogen may be injected together with the liquid crystal between the first substrate 10 and the second substrate 20.
  • the liquid crystals forming the liquid crystal layer 30 have negative dielectric anisotropy, and accordingly, the liquid crystal display according to the present exemplary embodiment may implement a vertical alignment (VA) mode.
  • VA vertical alignment
  • the liquid crystals adjacent to the alignment layers BA and UA are pretilt applied to the alignment layers BA and UA, specifically, the alignment base layers 14 and 24.
  • the pretilt applied to the reactive mesogens in the reactive mesogen films 16 and 26 may be the first direction R1.
  • the azimuth angle of the liquid crystals adjacent to the first alignment layer BA among the liquid crystals forming the liquid crystal layer 30 may be in the second direction R2 in the second domain DM2.
  • the liquid crystal layer 30 may be The polar angles of the liquid crystals adjacent to the alignment layers BA and UA among the liquid crystals may be about 80 to 90 degrees.
  • liquid crystals in the liquid crystal layer 30 may be arranged by applying an electric field between the first electrode 12 and the second electrode 22.
  • the director of the liquid crystal rotates in a direction perpendicular to the electric field direction.
  • the polar angles of the liquid crystals adjacent to the alignment layers BA and UA among the liquid crystals forming the liquid crystal layer 30 are reduced, thereby reducing the amount of reactive mesogens in the reactive mesogenic layers 16 and 26.
  • the polar angle can also be reduced.
  • the degree of rotation of the liquid crystal director may vary according to the magnitude of the electric field applied between the first electrode 12 and the second electrode 22, and thus the inside of the reactive mesogenic layers 16 and 26 may be changed.
  • the degree of reduction of the polar angle of reactive mesogens may vary.
  • the alignment control layers 16 ′ and 26 ′ are polymerized mesogen having a pretilt corresponding to an arrangement state of the liquid crystal in the liquid crystal layer 30 in a state where an electric field is applied, specifically, a secondary polar angle. (16a1, 16a2, 26a1, 26a2).
  • the second polar angle of the polymerized reactive mesogens may be adjusted by varying the size and / or light irradiation amount of the electric field applied between the first electrode 12 and the second electrode 22.
  • the secondary polar angles of the polymerized mesogens 16a1 and 16a2 in the first alignment control layer 16 ′ may be smaller than the polar angles of the first alignment base layer 14 adjacent thereto
  • the second alignment Secondary polar angles of the polymerized mesogens 26a1 and 26a2 in the control layer 26 ′ may be smaller than the polar angles of the second alignment base layer 24 adjacent thereto.
  • First and second alignment control films 16 'and 26' containing (16a1, 16a2, 26a1, 26a2) may be formed.
  • the polymerized mesogens 16a1, 16a2, 26a1, 26a2 in the alignment control layers 16 ′ and 26 ′ are approximately equal to the primary polar angles imparted by the alignment base layers 14 and 24. Can represent the second polar angle.
  • the secondary polar angles of the polymerized mesogens 16a1, 16a2, 26a1, and 26a2 may be somewhat different from the primary polar angles due to the change in the irradiation amount in the photopolymerization step.
  • the reactive mesogenic films 16 when photopolymerizing the reactive mesogens in the reactive mesogenic films 16 and 26 are omitted. , 26) may remain solvent.
  • the polymerized mesogens 16a1, 16a2, 26a1, 26a2 may be aligned (when applied with an electric field) or better aligned with the alignment state of the liquid crystal in the liquid crystal layer 30 or the alignment base films 14, 24. Can be aligned to better match the pretilt given by) (unless field is applied).
  • the electric field applied between the first electrode 12 and the second electrode 22 is removed.
  • the polymerized mesogens 16a1, 16a2, 26a1, and 26a2 in the first and second alignment control layers 16 ′ and 26 ′ may maintain the second polar angle even after the electric field is removed.
  • the polymerized mesogens 16a1, 16a2, 26a1, and 26a2 maintain the azimuth angles applied to mesogens in the reactive mesogen films 16 and 26, and thus, in the first direction DM1.
  • the azimuth angle of R1 may represent the azimuth angle of the second direction R2 in the second domain DM2.
  • the alignment control layers 16 ′ and 26 ′ may have an enhanced orientation control force as compared to the anchoring energy of the alignment base layers 14 and 24.
  • the alignment control layers 16 'and 26' may supplement or enhance the alignment control force.
  • the polymerized mesogens 16a1, 16a2, 26a1, and 26a2 in the alignment control layers 16 ′ and 26 ′ exert an enhanced orientation control force on the liquid crystals in contact with them, thereby stabilizing or fixing the directors of the liquid crystals. You can.
  • the threshold voltage of the liquid crystal display device can be lowered, the response speed can be improved, and black visibility can be improved to improve display quality.
  • electrodes are patterned or protrusions are formed at the lower part of the electrode, and the azimuth angle of the liquid crystal is different for each domain by adjusting the direction of the electric field on the liquid crystal, thereby realizing a multi-domain.
  • the azimuth angle of the liquid crystal may be formed differently for each domain without performing the electrode patterning or the protrusion formation on the lower portion of the electrode. Thereby, it is not necessary to form cutouts, such as a slit, in a 1st electrode, and it is not necessary to form a projection part under an electrode.
  • the present invention is not limited thereto, and further, in order to further stabilize the director of the liquid crystal, electrode patterning or protrusion formation may be further performed on the lower portion of the electrode.
  • An ITO layer was formed on the glass substrate to form an electrode, and a horizontal alignment film (AL-22620, JSR) was formed on the electrode to a thickness of 100 nm.
  • a rubbing process was performed on the horizontal alignment layer.
  • a mixture of a PGMEA solvent, a polymerization initiator (IRGACURE 651, Ciba Chemical Co., Ltd.), and a reactive mesogen (BASF Co.) was coated to a thickness of several nm to form a reactive mesogen film. At this time, the reactive mesogen was contained in the mixture at 0.5wt%.
  • the alignment film and the reactive mesogenic film constitute an alignment control film.
  • a sample was prepared in the same manner as in Preparation Example 1, except that a reactive mesogen membrane was formed using a mixture containing 1 wt% of reactive mesogen.
  • a sample was prepared in the same manner as in Preparation Example 1, except that a reactive mesogen membrane was formed using a mixture containing 2 wt% of reactive mesogen.
  • a sample was prepared in the same manner as in Preparation Example 1, except that no reactive mesogenic membrane was formed.
  • FIG. 15 is a photograph showing the coating characteristics of the alignment control film in each sample according to Preparation Examples 1 to 3, and Comparative Example 1
  • Figure 16 is a sample for each prepared according to Preparation Examples 1 to 3, and Comparative Example 1 It is a photograph showing the black visibility according.
  • FIG. 16 shows the black visibility after manufacturing the liquid crystal display device by bonding each sample (lower substrate) and the upper substrate according to Preparation Examples 1 to 3 and Comparative Example 1 and injecting the liquid crystal between the substrates. It is a photograph measured.
  • the concentration of the reactive mesogen in the mixture of the reactive mesogen mixed with PGMEA forming the reactive mesogen film is less than 1 wt%, the aggregation of polymerized mesogen does not appear. have. Accordingly, it can be seen that black visibility is further improved. Therefore, in order to improve the black visual image, the concentration of the reactive mesogen in the mixture forming the reactive mesogen film may be adjusted to less than 1 wt%.
  • An ITO layer was formed on a first substrate, which is a glass substrate, to form a first electrode, and a first horizontal alignment layer (RN-2174, Nissan) was formed on the first electrode to have a thickness of 100 nm.
  • the first horizontal alignment layer was optically aligned.
  • a mixture of a PGMEA solvent, a polymerization initiator (IRGACURE 651, Ciba Chemical Co., Ltd.), and a reactive mesogen (BASF Co.) was coated to a thickness of several nm to form a first reactive mesogen film. Formed. At this time, the reactive mesogen was contained in the mixture at 0.7 wt% or less.
  • a second horizontal alignment layer (RN-2174, Nissan) on the second electrode to a thickness of 100 nm
  • the second horizontal alignment layer was optically aligned.
  • the mixture was coated with a thickness of several nm on the photo-aligned second horizontal alignment layer to form a second reactive mesogen layer.
  • the substrates were bonded and TN mode liquid crystals were injected.
  • UV irradiation is applied to the first reactive mesogen film and the second reactive mesogen film to polymerize the reactive mesogens to contain polymerized mesogen.
  • Orientation control films were formed.
  • a liquid crystal display device was manufactured in the same manner as in Production Example 4, except that the alignment control films were formed by polymerizing reactive mesogens by UV irradiation without applying an electric field between the first electrode and the second electrode. .
  • a liquid crystal display device was manufactured in the same manner as in Preparation Example 4, except that the forming of the first and second reactive mesogenic films and the step of photopolymerizing them to form the alignment control films were omitted.
  • FIG. 17 is a graph illustrating response speeds of liquid crystal display devices according to Manufacturing Example 4 and Comparative Example 2.
  • FIG. 17 is a graph illustrating response speeds of liquid crystal display devices according to Manufacturing Example 4 and Comparative Example 2.
  • the response speed of the liquid crystal display device (b) according to Preparation Example 4 is equal to the response speed of the liquid crystal display device (a) according to Comparative Example 2, which does not form an alignment control layer, that is, a general TN mode liquid crystal display device. It can be seen that faster than.
  • FIG. 18 is a graph illustrating response speeds of liquid crystal display devices according to Manufacturing Example 5 and Comparative Example 2.
  • FIG. 18 is a graph illustrating response speeds of liquid crystal display devices according to Manufacturing Example 5 and Comparative Example 2.
  • the response speed of the liquid crystal display device d according to Manufacturing Example 5 is equal to the response speed of the liquid crystal display device c according to Comparative Example 2 which does not form an alignment control layer, that is, a general TN mode liquid crystal display device. It can be seen that faster than. As a result, it can be seen that the response speed can be improved without photoelectric polymerization of the reactive mesogenic films without forming an electric field between the electrodes.
  • 19 is a graph showing polar anchoring energy and azimuthal anchoring energy according to the concentration of reactive mesogen in the mixture forming the reactive mesogen film.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)

Abstract

액정 표시 장치 및 그 제조방법을 제공한다. 상기 액정 표시 장치는 서로 마주보는 제1 기판과 제2 기판을 구비한다. 상기 기판들 사이에 액정층이 위치한다. 상기 액정층과 상기 제1 기판 사이에 제1 배향막이 위치한다. 상기 액정층과 상기 제2 기판 사이에 제2 배향막이 위치한다. 상기 제1 배향막과 상기 제2 배향막 중 적어도 하나는 배향 기저막과 배향 조절막의 이중층을 구비한다. 상기 배향 기저막은 선경사를 갖도록 배향된 막이며, 상기 배향 조절막은 중합된 메조겐을 갖는다.

Description

중합된 메조겐을 함유하는 배향 조절막을 구비하는 액정 표시 장치 및 그 제조 방법
본 발명은 표시 장치에 관한 것으로, 더욱 자세하게는 액정 표시 장치에 관한 것이다.
액정 표시 장치는 평판 표시 장치의 한 종류로서, 얇고, 가벼우며, 소비전력이 낮은 장점으로 인해 다른 평판 표시 장치에 비해 널리 사용되고 있다.
상기 액정 표시 장치에서 배향막은 액정층 내의 액정 분자들이 특정 선경사각을 갖도록 정렬하기 위해 도입된다. 그러나, 현재 사용중인 배향막은 액정 분자에 충분한 배향규제력(anchoring force)을 주기 어려워, 응답속도 및 표시품질을 개선하는데 있어 장애요인이 될 수 있다.
본 발명이 해결하고자 하는 과제는 응답속도와 표시품질이 향상된 액정 표시 장치를 제공하는 것이다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 이루기 위하여 본 발명의 일 측면은 액정 표시 장치를 제공한다. 상기 액정 표시 장치는 서로 마주보는 제1 기판과 제2 기판을 구비한다. 상기 기판들 사이에 액정층이 위치한다. 상기 액정층과 상기 제1 기판 사이에 제1 배향막이 위치한다. 상기 액정층과 상기 제2 기판 사이에 제2 배향막이 위치한다. 상기 제1 배향막과 상기 제2 배향막 중 적어도 하나는 배향 기저막과 배향 조절막의 이중층을 구비한다. 상기 배향 기저막은 선경사를 갖도록 배향된 막이며, 상기 배향 조절막은 중합된 메조겐을 갖는다.
상기 배향 조절막은 상기 액정층의 위상지연값의 0.1배 이하의 위상지연값을 가질 수 있다. 상기 배향 조절막은 상기 배향 기저막에 비해 배향규제력(anchoring energy)이 더 클 수 있다. 상기 배향 기저막은 광배향된 막일 수 있다.
상기 액정 표시 장치는 상기 제1 배향막과 상기 제1 기판 사이에 위치하는 제1 전극과 제2 전극을 더 구비할 수 있고, 상기 액정층은 양의 유전율 이방성을 갖는 액정을 구비할 수 있다. 이 경우, 상기 액정 표시 장치는 IPS 모드 또는 FFS 모드를 구현할 수 있다.
상기 배향 기저막의 선경사의 극각과 상기 배향 조절막의 선경사의 극각은 서로 다를 수 있다.
상기 액정 표시 장치는 상기 제1 배향막과 상기 제1 기판 사이에 위치하는 제1 전극과 상기 제2 배향막과 상기 제2 기판 사이에 위치하는 제2 전극을 더 구비할 수 있고, 상기 액정층은 양의 유전율 이방성을 갖는 액정을 구비할 수 있다. 이 경우, 상기 액정 표시 장치는 TN 모드, OCB 모드, 또는 ECB 모드를 구현할 수 있다. 또한, 상기 배향 조절막의 선경사의 극각은 상기 배향 기저막의 선경사의 극각에 비해 클 수 있다.
상기 액정 표시 장치는 상기 제1 배향막과 상기 제1 기판 사이에 위치하는 제1 전극과 상기 제2 배향막과 상기 제2 기판 사이에 위치하는 제2 전극을 더 구비할 수 있고, 상기 액정층은 음의 유전율 이방성을 갖는 액정을 구비할 수 있다. 이 경우, 상기 액정 표시 장치는 VA 모드를 구현할 수 있다. 또한, 상기 배향 조절막의 선경사의 극각은 상기 배향 기저막의 선경사의 극각에 비해 작을 수 있다.
상기 배향 기저막은 제1 배향 방향을 갖는 제1 도메인과 제2 배향 방향을 갖는 제2 도메인을 구비할 수 있다.
상기 중합된 메조겐은 하기 화학식 1로 표시되는 반응성 메조겐이 중합된 것일 수 있다.
[화학식 1]
P1-A1-(Z1-A2)n-P2,
여기서, P1과 P2는 아크릴레이트(acrylate), 메타크릴레이트(methacrylate), 비닐(vinyl), 비닐옥시(vinyloxy) 및 에폭시(epoxy) 그룹 중에서 독립적으로 선택되는 것이고, A1과 A2는 1,4-페닐렌(phenylen)과 나프탈렌(naphthalene)-2,6-다일(diyl) 그룹 중에서 독립적으로 선택되는 것이며, Z1은 COO-, OCO- 및 단일 결합 중의 하나이고, n은 0, 1 및 2 중의 하나이다.
상기 반응성 메조겐은 하기 화학식들 2 내지 4로 표시되는 것들 중 어느 하나일 수 있다.
[화학식 2]
[규칙 제26조에 의한 보정 22.11.2010] 
Figure WO-DOC-FIGURE-19a
[화학식 3]
[규칙 제26조에 의한 보정 22.11.2010] 
Figure WO-DOC-FIGURE-21
[화학식 4]
[규칙 제26조에 의한 보정 22.11.2010] 
Figure WO-DOC-FIGURE-23
여기서, P1과 P2는 아크릴레이트(acrylate), 메타크릴레이트(methacrylate), 비닐(vinyl), 비닐옥시(vinyloxy) 및 에폭시(epoxy) 그룹 중에서 독립적으로 선택된다.
상기 과제를 이루기 위하여 본 발명의 일 측면은 액정 표시 장치의 제조방법을 제공한다. 먼저, 제1 기판 상에 선경사를 갖도록 배향된 제1 배향 기저막을 형성한다. 상기 제1 배향 기저막 상에 반응성 메조겐을 함유하는 제1 반응성 메조겐막을 형성한다. 상기 제1 배향 기저막과 상기 제1 반응성 메조겐막이 형성된 제1 기판을 제2 기판과 결합한다. 상기 결합된 제1 기판과 제2 기판 사이에 액정층을 형성한다. 상기 제1 반응성 메조겐막 내의 반응성 메조겐을 중합하여 중합된 메조겐을 구비하는 제1 배향 조절막을 형성한다.
상기 반응성 메조겐막 내의 반응성 메조겐을 중합하는 단계는 상기 반응성 메조겐막에 전계가 인가된 상태에서 수행할 수 있다. 상기 반응성 메조겐막에 전계를 인가하는 것은 상기 액정층을 형성한 후, 상기 기판들 중 적어도 어느 하나에 형성된 제1 전극과 제2 전극 사이에 전계를 인가하여 수행할 수 있다.
상기 반응성 메조겐막 내의 반응성 메조겐을 중합하는 것은 상기 반응성 메조겐막에 광을 조사하여 수행할 수 있다.
상기 반응성 메조겐막 내의 반응성 메조겐을 중합하는 단계는 상기 액정층을 형성한 후 수행할 수 있다. 이와는 달리, 상기 반응성 메조겐막 내의 반응성 메조겐을 중합하는 단계는 상기 제1 기판과 상기 제2 기판을 결합하기 전에 수행할 수 있다.
상기 반응성 메조겐막은 반응성 메조겐과 용제를 함유하는 혼합물을 사용하여 형성할 수 있다. 나아가, 상기 반응성 메조겐막을 형성하는 혼합물은 중합 개시제를 더 포함할 수 있다. 상기 반응성 메조겐막을 형성하는 혼합물의 전체 중량에 대해 상기 반응성 메조겐은 1wt% 미만으로 함유될 수 있다.
상기 반응성 메조겐막 내의 반응성 메조겐을 중합할 때, 상기 반응성 메조겐막 내에 용제가 잔존할 수 있다.
상기 제1 기판과 상기 제2 기판을 결합하기 전에, 상기 제2 기판 상에 선경사를 갖도록 배향된 제2 배향 기저막을 형성할 수 있다. 상기 제2 배향 기저막 상에 반응성 메조겐을 함유하는 제2 반응성 메조겐막을 형성할 수 있다. 상기 제2 반응성 메조겐막 내의 반응성 메조겐을 중합하여 중합된 메조겐을 구비하는 제2 배향 조절막을 형성할 수 있다.
본 발명에 따르면, 중합된 메조겐을 함유하는 배향 조절막은 이들에 접하는 액정에 강화된 배향규제력을 미쳐, 액정의 방향자를 안정화 또는 고정시킬 수 있다. 그 결과, 액정 표시 장치의 문턱전압을 낮출 수 있고 응답속도를 향상시킬 수 있으며, 블랙 시인성 등이 개선되어 표시품질이 향상될 수 있다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1 내지 도 3은 본 발명의 일 실시예에 따른 액정 표시 장치의 제조방법을 나타낸 단면도들이다.
도 4 내지 도 7은 본 발명의 다른 실시예에 따른 액정 표시 장치의 제조방법을 나타낸 단면도들이다.
도 8 및 도 9은 본 발명의 다른 실시예에 따른 액정 표시 장치의 제조방법을 나타낸 단면도들이다.
도 10은 본 발명의 다른 실시예에 따른 액정 표시 장치를 나타낸 레이아웃도이다.
도 11 내지 도 14는 본 발명의 다른 실시예에 따른 액정 표시 장치의 제조방법을 나타낸 단면도들이다.
도 15는 제조예들 1 내지 3, 및 비교예 1에 따른 각 시료에서 배향 조절막의 코팅특성을 나타낸 사진이고, 도 16은 제조예들 1 내지 3, 및 비교예 1에 따라 제조된 각 시료에 따른 블랙 시인성을 나타낸 사진이다.
도 17은 제조예 4 및 비교예 2에 따른 액정 표시 장치들의 응답 속도를 나타낸 그래프이다.
도 18은 제조예 5 및 비교예 2에 따른 액정 표시 장치들의 응답 속도를 나타낸 그래프이다.
도 19는 반응성 메조겐막을 형성하는 혼합물 내의 반응성 메조겐의 농도에 따른 극각 배향 규제력(polar anchoring energy)과 방위각 배향 규제력(Azimuthal anchoring energy)을 나타낸 그래프이다.
이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실시예를 보다 상세하게 설명한다. 그러나, 본 발명은 여기서 설명되어지는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다.
도 1 내지 도 3은 본 발명의 일 실시예에 따른 액정 표시 장치의 제조방법을 나타낸 단면도들이다.
도 1을 참고하면, 제1 기판(10)이 제공된다. 상기 제1 기판(10)은 광투과 기판으로서, 유리 기판일 수 있다. 제1 기판(10) 상에 서로 평행한 제1 전극(12) 및 제2 전극(미도시)을 형성할 수 있다. 액정 표시 장치의 동작과정에서 상기 제1 전극(12)와 제2 전극 사이에는 전계가 형성된다. 상기 전극들(12)을 형성하기 전에 상기 제1 기판(10) 상에 박막트랜지스터들(미도시)을 형성할 수 있다. 이 경우, 상기 전극들(12)은 상기 박막트랜지스터들과 각각 전기적으로 연결될 수 있다. 상기 전극들(12)은 ITO(Indium Tin Oxide)나 IZO(Indium Zinc Oxide) 등의 투명한 도전막일 수 있다.
상기 전극들(12) 상에 제1 배향 기저막(14)을 형성할 수 있다. 상기 제1 배향 기저막(14)은 폴리 아믹산(poly-amic acid), 폴리 이미드(poly-imide), 레시틴(lecithin), 나일론(nylon), 또는 PVA(polyvinylalcohol)를 사용하여 형성될 수 있다. 상기 제1 배향 기저막(14)은 물리적 러빙법, 광배향법 또는 그루브 패터닝법에 의해 배향된 막으로서, 선경사를 가져 액정(또는 메조겐)을 정렬시킬 수 있는 막이다.
본 명세서에서, 선경사는 각도(angle)와 방향(direction)을 가질 수 있으며, 이하에서는 이를 각각 극각(polar angle, 0-180) 및 방위각(azimuthal angle, 0-360)으로 정의하도록 한다. 즉, 선경사는 방위각(azimuthal angle,0-360) 및 극각(polar angle, 0-180)을 모두 포함하는 의미로 해석될 수 있다. 여기서, 방위각은 액정(또는 메조겐) 방향자가 기판과 수평한 면에서 어느 한 방향의 기준에 대해 기울어진 각도를 의미한다. 한편, 극각은 기판과 수평한 면과 액정(또는 메조겐)의 방향자 사이의 각도를 의미한다.
이러한 제1 배향 기저막(14)은 수평배향 기저막, 수직배향 기저막 또는 이들의 이중층일 수 있다. 상기 수평배향 기저막은 액정(또는 메조겐)에 약 4 내지 약 5도의 극각을 부여할 수 있고, 상기 수직배향 기저막은 액정(또는 메조겐)에 약 89 내지 약 90도의 극각을 부여할 수 있는 막일 수 있다. 상기 제1 배향 기저막(14)이 상기 수평배향 기저막과 상기 수직배향 기저막의 이중층인 경우에, 이들 두 배향 기저막들의 적층 순서와 두께를 조절하여 상기 제1 배향 기저막(14)이 액정(또는 메조겐)에 부여하는 극각을 조절할 수 있다. 일 예로서, 상기 제1 배향 기저막(14)이 상기 수평배향 기저막과 상기 수직배향 기저막이 차례로 적층된 막이고, 상기 수직배향 기저막의 두께를 상기 수평배향 기저막의 두께에 비해 크게 조절함으로써 상기 제1 배향 기저막(14)이 액정(또는 메조겐)에 부여하는 극각을 증가시킬 수 있고, 상기 수직배향 기저막의 두께를 상기 수평배향 기저막의 두께에 비해 적게 조절함으로써 상기 제1 배향 기저막(14)이 액정(또는 메조겐)에 부여하는 극각을 감소시킬 수 있다.
복수 개의 도메인을 형성하는 경우에, 각 도메인 별로 액정(또는 메조겐)에 부여하는 선경사의 방위각을 달리할 수 있으며, 또한, 상기 복수 개의 도메인에서 수직배향 기저막과 수평배향 기저막의 조합을 달리하여 각 도메인 별로 액정(또는 메조겐)에 부여하는 선경사의 극각을 달리할 수 있다. 이 경우, 멀티 도메인 구조를 실현할 수 있다.
일 예로서, 상기 제1 배향 기저막(14)은 액정(또는 메조겐)에 부여하는 선경사의 극각이 2도 미만이 되도록 형성한다. 또는, 각 도메인 별로 상기 제1 전극(12)과 제2 전극의 배치를 서로 다르게 하여 상기 제1 전극(12)과 제2 전극 사이에 발생하는 전계의 방향을 서로 다르게 할 수 있고, 이 경우 상기 제1 전극(12)과 제2 전극 사이에 발생하는 전계의 방향과 상기 제1 배향 기저막(14)에 부여된 선경사의 방위각이 이루는 각이 각 도메인 별로 달라짐에 따라 멀티 도메인 구조가 실현될 수 있다.
상기 제1 배향 기저막(14) 상에 제1 반응성 메조겐막(16)을 형성할 수 있다. 상기 제1 배향 기저막(14)과 상기 제1 반응성 메조겐막(16)은 제1 배향막(BA)을 형성할 수 있다.
상기 제1 반응성 메조겐막(16)은 반응성 메조겐을 용제 내에 혼합한 혼합물을 상기 제1 배향 기저막(14) 상에 코팅함으로써 형성할 수 있다. 상기 반응성 메조겐은 액정성을 나타내는 모노머 또는 올리고머인 메조겐과 이의 양측에 각각 결합된 중합가능한 말단기들을 함유할 수 있다. 상기 메조겐은 막대 모양 또는 판모양을 가진 "캘라미틱(calamitic)" 메조겐일 수 있고, 이와는 달리 디스크 모양을 가진 "디스코틱" 메조겐일 수 있다. 상기 말단기들은 서로에 관계없이 아크릴레이트(acrylate), 메타크릴레이트(methacrylate), 비닐(vinyl), 비닐옥시(vinyloxy) 또는 에폭시(epoxy)일 수 있다.
상기 반응성 메조겐의 예로는 아래의 식으로 표현되는 화합물을 들 수 있다:
[화학식 1]
P1-A1-(Z1-A2)n-P2,
여기서, P1과 P2는 아크릴레이트(acrylate), 메타크릴레이트(methacrylate), 비닐(vinyl), 비닐옥시(vinyloxy) 및 에폭시(epoxy) 그룹 중에서 독립적으로 선택되는 것이고, A1과 A2는 1,4-페닐렌(phenylen)과 나프탈렌(naphthalene)-2,6-다일(diyl) 그룹 중에서 독립적으로 선택되는 것이며, Z1은 COO-, OCO- 및 단일 결합 중의 하나이고, n은 0, 1 및 2 중의 하나이다.
좀 더 구체적으로는 아래의 식 중 하나로 표현되는 화합물을 들 수 있다:
[화학식 2]
[규칙 제26조에 의한 보정 22.11.2010] 
Figure WO-DOC-FIGURE-60
[화학식 3]
[규칙 제26조에 의한 보정 22.11.2010] 
Figure WO-DOC-FIGURE-62
[화학식 4]
[규칙 제26조에 의한 보정 22.11.2010] 
Figure WO-DOC-FIGURE-64
여기서, P1과 P2는 아크릴레이트(acrylate), 메타크릴레이트(methacrylate), 비닐(vinyl), 비닐옥시(vinyloxy) 및 에폭시(epoxy) 그룹 중에서 독립적으로 선택된다.
또한, 상기 제1 반응성 메조겐막(16)을 형성하기 위한 용제는 예를 들면, PGMEA(propylene glycol methyl ether acetate) 또는 톨루엔(toluene), 크실렌(xylene)과 같은 방향족 용제일 수 있다. 상기 제1 반응성 메조겐막(16)을 형성하기 위한 반응성 메조겐과 용제의 혼합물에는 중합 개시제가 더 함유될 수 있다. 상기 중합 개시제는 메틸에틸케톤퍼록시드 이외에, 예를 들면 벤조일퍼록시드, 큐멘히드로퍼록시드, t-부틸퍼옥토에이트, 디큐밀퍼록시드나, 벤조일알킬에테르계, 아세토페논계, 벤조페논계, 크산톤계 벤조인에테르계, 벤질케탈계의 중합 개시제일 수 있다.
상기 제1 반응성 메조겐막(16)을 형성하기 위한 혼합물 전체 중량에 대해 반응성 메조겐은 1wt% 미만으로 함유될 수 있다. 또한, 상기 제1 반응성 메조겐막(16)의 두께는 수 내지 수십 nm일 수 있다. 반면, 상기 제1 배향 기저막(14)의 두께는 수백 nm 정도일 수 있다.
상기 제1 반응성 메조겐막(16) 내의 메조겐은 상기 제1 배향 기저막(14)에 부여된 선경사에 따라 정렬될 수 있다. 부연하면, 상기 제1 반응성 메조겐막(16) 내의 메조겐은 상기 제1 배향 기저막(14)에 부여된 상기 선경사의 방위각에 따라 메조겐 방향자의 방위각이 정렬되고, 또한 상기 제1 배향 기저막(14)에 부여된 선경사의 극각에 따라 메조겐 방향자의 1차 극각이 결정될 수 있다. 상술한 바와 같이, 제1 배향 기저막(14)을 액정(또는 메조겐)에 부여하는 선경사의 극각이 2도미만이 되도록 형성한 경우에, 상기 반응성 메조겐막(16) 내의 메조겐의 1차 극각은 2도미만일 수 있다.
이어서, 상기 제1 기판(10)을 열처리함으로써, 상기 제1 반응성 메조겐막(16) 내의 용제를 제거할 수 있다. 이 때, 열처리는 예를 들어, 60도에서 90초동안 진행될 수 있다. 그러나, 상기 용제를 제거하는 공정은 생략될 수도 있다.
도 2를 참조하면, 제2 기판(20) 상에 제2 배향 기저막(24), 및 반응성 메조겐을 함유하는 제2 반응성 메조겐막(26)을 차례로 형성한다. 상기 제2 배향 기저막(24)과 상기 제2 반응성 메조겐막(26)은 제2 배향막(UA)을 형성할 수 있다. 상기 제2 배향 기저막(24), 및 제2 반응성 메조겐막(26)을 형성하는 물질 및 형성하는 방법은 도 1를 참조하여 설명한 제1 배향 기저막(14), 및 제1 반응성 메조겐막(16)을 형성하는 물질 및 형성하는 방법과 같을 수 있다. 그러나, 이에 한정되지 않고 상기 제1 반응성 메조겐막(16)과 제2 반응성 메조겐막(26) 중 어느 하나는 생략될 수도 있다.
이 후, 상기 제1 기판(10) 또는 상기 제2 기판(20) 중 어느 하나에 실런트를 도포하여 액정 충전 영역을 정의하되, 이 때 액정 주입구도 같이 형성할 수 있다. 그런 다음, 상기 제2 배향 기저막(24)이 상기 제1 기판(10)을 바라보도록 상기 제1 기판(10)과 상기 제2 기판(20)을 정렬시킨 후 결합한다. 이어서, 진공 상태에서 상기 액정 주입구를 액정 저장조에 담그고 진공을 해제함으로써 상기 액정 충전 영역 내에 액정을 주입하여 액정층(30)을 형성한 다음, 액정 주입구를 밀봉할 수 있다. 이 때, 상기 액정 충전 영역 내에 액정과 더불어서 반응성 메조겐을 같이 주입할 수도 있다. 상기 액정층(30)을 형성하는 액정들은 양의 유전율 이방성을 갖는 액정일 수 있으며, 이 경우 액정 표시 장치는 IPS(In Plain Switching)모드, 또는 FFS(Fringe Field Switching) 모드의 장치일 수 있다. 이 경우에, 상기 제1 기판(10)과 상기 제2 기판(20)은 상기 제1 배향 기저막(14)과 상기 제2 배향 기저막(24)의 선경사의 방위각이 서로 평행하도록 결합될 수 있다.
상기 액정층(30)을 형성하는 액정들 중 상기 배향막들(BA, UA)에 인접하는 액정들은 상기 배향막들(BA, UA)에 부여된 선경사, 구체적으로는 상기 배향 기저막들(14, 24) 및/또는 상기 반응성 메조겐막들(16, 26)내 의 반응성 메조겐들에 부여된 선경사에 따라 정렬될 수 있다. 상술한 바와 같이 상기 배향 기저막들(14, 24) 및/또는 상기 반응성 메조겐막들(16, 26) 내의 반응성 메조겐들에 부여된 선경사의 1차 극각이 2도 미만인 경우에, 상기 액정층(30)을 형성하는 액정들 중 상기 배향막들(BA, UA)에 인접하는 액정들의 방향자의 극각은 기판(10, 20)에 대해 거의 수평에 가까울 수 있다.
도 3을 참조하면, UV 등의 광을 상기 제1 반응성 메조겐막(16) 및/또는 상기 제2 반응성 메조겐막(26)에 조사하여, 상기 반응성 메조겐막(16, 26) 내의 반응성 메조겐을 중합 즉, 광중합함으로써, 중합된 메조겐들(16a, 26a)을 함유하는 제1 및 제2 배향 조절막(16', 26')을 형성한다. 상기 광조사는 약 30분 동안 수행될 수 있다. 이 때, 상기 배향 조절막들(16', 26') 내에 형성된 상기 중합된 메조겐들(16a, 26a)은 상기 배향 기저막들(14, 24)에 의해 부여된 선경사에 부합하는 배열을 가질 수 있다. 특히, 상술한 바와 같이 상기 반응성 메조겐막(16, 26) 내의 용제를 제거하는 공정이 생략된 경우에는, 상기 반응성 메조겐막(16, 26) 내의 반응성 메조겐을 광중합할 때 상기 반응성 메조겐막(16, 26) 내에 용제가 잔존할 수 있다. 이 경우, 중합된 메조겐(16a, 26a)은 상기 배향 기저막들(14, 24)에 의해 부여된 선경사에 더 잘 부합하도록 정렬할 수 있다.
다른 실시예에서, 상기 제1 전극(12)과 상기 제2 전극(미도시) 사이에 전계를 인가하여 상기 액정층(30) 내의 액정을 배열한 상태에서, 상기 광중합을 수행할 수도 있다.
상기 배향 조절막(16', 26')은 상기 배향 기저막(14, 24)의 배향규제력(anchoring energy)에 비해 강화된 배향규제력을 가질 수 있다. 특히, 상기 배향 기저막(14, 24)이 다소 약한 배향규제력을 나타내는 광배향된 막인 경우에, 상기 배향 조절막(16', 26')으로 인해 배향규제력이 보충 또는 강화될 수 있다. 이와 같이, 상기 배향 조절막(16', 26') 내의 중합된 메조겐들(16a, 26a)은 이들에 접하는 액정에 강화된 배향규제력을 미쳐, 액정의 방향자를 안정화 또는 고정시킬 수 있다. 그 결과, 액정 표시 장치의 문턱전압을 낮출 수 있고 응답속도를 향상시킬 수 있으며, 블랙 시인성을 개선되어 표시품질이 향상될 수 있다.
한편, 상기 배향 조절막들(16', 26') 중 어느 하나의 위상지연값은 상기 액정층(30)의 위상지연값에 거의 영향을 주지 않을 정도로 작다. 이를 위해, 상기 배향 조절막들(16', 26') 중 어느 하나의 위상지연값은 상기 액정층(30)의 위상지연값의 0.1 배 이하를 나타낼 수 있다. 이를 수학식으로 나타내면 다음과 같다. 이를 위해, 상기 배향 조절막(16', 26')의 두께는 수 내지 수십 nm일 수 있다.
[수학식]
Figure PCTKR2010006274-appb-I000007
상기 수학식에서, n 및 d는 각각 배향 조절막의 굴절율 및 두께이고, n' 및 d'는 각각 액정층의 굴절율 및 두께이다.
도 4 내지 도 7은 본 발명의 다른 실시예에 따른 액정 표시 장치의 제조방법을 나타낸 단면도들이다. 본 실시예에 따른 액정 표시 장치는 양의 유전율 이방성을 갖는 액정을 구비하며, 후술하는 것을 제외하고는 도 1 내지 도 3을 참조하여 설명한 제조 방법과 유사하다.
도 4를 참고하면, 제1 기판(10) 상에 제1 전극(12)을 형성할 수 있다. 상기 제1 전극(12)을 형성하기 전에 상기 제1 기판(10) 상에 박막트랜지스터(미도시)를 형성할 수 있다. 이 경우, 상기 제1 전극(12)은 상기 박막트랜지스터와 전기적으로 연결될 수 있다.
상기 제1 전극(12) 상에 제1 배향 기저막(14)을 형성할 수 있다. 상기 제1 배향 기저막(14)은 폴리 아믹산(poly-amic acid), 폴리 이미드(poly-imide), 레시틴(lecithin), 나일론(nylon), 또는 PVA(polyvinylalcohol)를 사용하여 형성될 수 있다. 상기 제1 배향 기저막(14)은 물리적 러빙법, 광배향법 또는 그루브 패터닝법에 의해 배향된 막으로서, 선경사를 가져 액정(또는 메조겐)을 정렬시킬 수 있는 막이다.
이러한 제1 배향 기저막(14)은 수평배향 기저막, 수직배향 기저막 또는 이들의 이중층일 수 있다. 상기 제1 배향 기저막(14)이 상기 수평배향 기저막과 상기 수직배향 기저막의 이중층인 경우에, 이들 두 배향 기저막들의 적층 순서와 두께를 조절하여 상기 제1 배향 기저막(14)이 액정(또는 메조겐)에 부여하는 극각을 조절할 수 있다. 복수 개의 도메인을 형성하는 경우에, 각 도메인 별로 액정(또는 메조겐)에 부여하는 선경사의 방위각을 달리할 수 있으며, 또한, 상기 복수 개의 도메인에서 수직배향 기저막과 수평배향 기저막의 조합을 달리하여 각 도메인 별로 액정(또는 메조겐)에 부여하는 선경사의 극각을 달리할 수 있다. 이 경우, 멀티 도메인 구조를 실현할 수 있다. 일 예로서, 상기 제1 배향 기저막(14)이 액정(또는 메조겐)에 부여하는 선경사의 극각이 2 ~ 10도가 되도록 형성한다.
상기 제1 배향 기저막(14) 상에 제1 반응성 메조겐막(16)을 형성할 수 있다. 상기 제1 배향 기저막(14)과 상기 제1 반응성 메조겐막(16)은 제1 배향막(BA)을 형성할 수 있다. 상기 제1 반응성 메조겐막(16)은 반응성 메조겐을 용제 내에 혼합한 혼합물을 상기 제1 배향 기저막(14) 상에 코팅함으로써 형성할 수 있다. 상기 제1 반응성 메조겐막(16)을 형성하기 위한 반응성 메조겐과 용제의 혼합물에는 중합 개시제가 더 함유될 수 있다. 상기 제1 반응성 메조겐막(16)을 형성하기 위한 혼합물 전체 중량에 대해 반응성 메조겐은 1wt% 미만으로 함유될 수 있다. 또한, 상기 제1 반응성 메조겐막(16)의 두께는 수 내지 수십 nm일 수 있다.
상기 제1 반응성 메조겐막(16) 내의 메조겐은 상기 제1 배향 기저막(14)에 부여된 선경사에 따라 정렬될 수 있다. 부연하면, 상기 제1 반응성 메조겐막(16) 내의 메조겐은 상기 제1 배향 기저막(14)에 부여된 상기 선경사의 방위각에 따라 메조겐 방향자의 방위각이 정렬되고, 또한 상기 제1 배향 기저막(14)에 부여된 선경사의 극각에 따라 메조겐 방향자의 1차 극각이 결정될 수 있다. 상술한 바와 같이, 제1 배향 기저막(14)을 액정(또는 메조겐)에 부여하는 선경사의 극각이 2 ~ 10도가 되도록 형성한 경우에, 상기 제1 반응성 메조겐막(16) 내의 메조겐의 1차 극각은 2 ~ 10도 정도가 될 수 있다.
이어서, 상기 제1 기판(10)을 열처리함으로써, 상기 제1 반응성 메조겐막(16) 내의 용제를 제거할 수 있다. 그러나, 상기 용제를 제거하는 공정은 생략될 수도 있다.
도 5를 참조하면, 제2 기판(20) 상에 제2 전극(22), 제2 배향 기저막(24), 및 반응성 메조겐을 함유하는 제2 반응성 메조겐막(26)을 차례로 형성한다. 상기 제2 배향 기저막(24)과 상기 제2 반응성 메조겐막(26)은 제2 배향막(UA)을 형성할 수 있다. 상기 제2 전극(22), 상기 제2 배향 기저막(24), 및 제2 반응성 메조겐막(26)을 형성하는 물질 및 형성하는 방법은 도 4를 참조하여 설명한 제1 전극(12), 제1 배향 기저막(14), 및 제1 반응성 메조겐막(16)을 형성하는 물질 및 형성하는 방법과 같을 수 있다. 그러나, 이에 한정되지 않고 상기 제1 반응성 메조겐막(16)과 제2 반응성 메조겐막(26) 중 어느 하나는 생략될 수도 있다.
이 후, 상기 제1 기판(10)과 상기 제2 기판(20)을 상기 제2 전극(22)이 상기 제1 기판(10)을 바라보도록 정렬시킨 후 결합한다. 이어서, 상기 제1 기판(10)과 상기 제2 기판(20) 사이에 액정을 주입하여 액정층(30)을 형성한다. 이 때, 상기 제1 기판(10)과 상기 제2 기판(20) 사이에 상기 액정과 더불어서 반응성 메조겐을 같이 주입할 수도 있다. 상기 액정층(30) 내의 액정들은 양의 유전율 이방성을 갖는 액정들일 수 있으며, 일 예로서 TN(Twisted Nematic)모드, OCB(Optically Compensated Bend) 모드, 또는 ECB(Electrically Controlled Birefringence)모드의 액정들일 수 있다. 상기 TN 모드의 액정들인 경우에, 상기 제1 기판(10)과 상기 제2 기판(20)은 상기 제1 배향 기저막(14)과 상기 제2 배향 기저막(24)의 선경사의 방위각이 서로 교차, 일 예로서 직교하도록 결합될 수 있다.
상기 액정층(30)을 형성하는 액정들 중 상기 배향막들(BA, UA)에 인접하는 액정들은 상기 배향막들(BA, UA)에 부여된 선경사, 구체적으로는 상기 배향 기저막들(14, 24) 및/또는 상기 반응성 메조겐막들(16, 26) 내의 반응성 메조겐들에 부여된 선경사에 따라 정렬될 수 있다. 일 예로서, 상술한 바와 같이 상기 배향 기저막들(14, 24) 및/또는 상기 반응성 메조겐막들(16, 26) 내의 반응성 메조겐들에 부여된 선경사의 1차 극각이 2 ~ 10도인 경우에, 상기 액정층(30)을 형성하는 액정들 중 상기 배향막들(BA, UA)에 인접하는 액정들의 극각은 2 ~ 10도 정도일 수 있다.
도 6을 참조하면, 상기 제1 전극(12)과 상기 제2 전극(22) 사이에 전계를 인가하여 상기 액정층(30) 내의 액정들을 배열할 수 있다. 구체적으로, 양의 유전율 이방성을 갖는 상기 액정의 방향자는 전계 방향에 수평한 방향으로 회전한다. 그 결과, 상기 액정층(30)을 형성하는 액정들 중 상기 배향막들(BA, UA)에 인접하는 액정들의 극각 또한 증가할 수 있으며, 이에 대응하여 상기 반응성 메조겐막들(16, 26) 내의 반응성 메조겐들의 극각 또한 증가할 수 있다. 다만, 상기 제1 전극(12)과 상기 제2 전극(22) 사이에 인가되는 전계의 크기에 따라서 상기 액정 방향자의 회전 정도가 달라질 수 있고, 이에 따라 상기 반응성 메조겐막들(16, 26) 내의 반응성 메조겐들의 극각의 증가 정도가 달라질 수 있다.
이 상태에서, UV 등의 광을 상기 제1 반응성 메조겐막(16) 및/또는 상기 제2 반응성 메조겐막(26)에 조사하여, 상기 반응성 메조겐막(16, 26) 내의 반응성 메조겐을 중합 즉, 광중합함으로써, 중합된 메조겐(16a, 26a)을 함유하는 제1 및 제2 배향 조절막(16', 26')을 형성한다. 상기 광조사는 약 30분 동안 수행될 수 있다. 이 때, 상기 배향 조절막들(16', 26')은 상기 액정층(30) 내의 액정의 배열 상태에 부합하는 선경사 구체적으로, 2차 극각을 갖는 중합된 메조겐들(16a, 26a)을 함유할 수 있다. 여기서 상기 제1 전극(12)과 상기 제2 전극(22) 사이에 인가된 전계의 크기 및/또는 광조사량를 달리함으로써, 상기 중합된 메조겐들(16a, 26a)의 2차 극각을 조절할 수 있다. 이 때, 상기 제1 배향 조절막(16') 내의 중합된 메조겐(16a)의 2차 극각은 이에 인접한 상기 제1 배향 기저막(14)의 극각보다 클 수 있고, 상기 제2 배향 조절막(26') 내의 중합된 메조겐(26a)의 2차 극각은 이에 인접한 상기 제2 배향 기저막(24)의 극각보다 클 수 있다.
다른 실시예에서, 상기 제1 전극(12)과 상기 제2 전극(22) 사이에 전계를 인가하지 않은 상태에서 상기 반응성 메조겐막(16, 26) 내의 반응성 메조겐을 광중합하여, 중합된 메조겐(16a, 26a)을 함유하는 제1 및 제2 배향 조절막(16', 26')을 형성할 수도 있다. 이 경우, 상기 배향 조절막들(16', 26') 내의 중합된 메조겐(16a, 26a)은 상기 배향 기저막들(14, 24)에 의해 부여된 1차 극각과 거의 동일한 2차 극각을 나타낼 수 있다. 다만, 상기 광중합 단계에서 광조사량의 변화에 의해 상기 중합된 메조겐들의 2차 극각은 1차 극각과 다소 달라질 수는 있다.
한편, 상술한 바와 같이 상기 반응성 메조겐막(16, 26) 내의 용제를 제거하는 공정이 생략된 경우에는, 상기 반응성 메조겐막(16, 26) 내의 반응성 메조겐을 광중합할 때 상기 반응성 메조겐막(16, 26) 내에 용제가 잔존할 수 있다. 이 경우, 중합된 메조겐(16a, 26a)은 상기 액정층(30) 내의 액정의 배열 상태에 더 잘 부합하도록 정렬하거나(전계 인가 하는 경우) 또는 상기 배향 기저막들(14, 24)에 의해 부여된 선경사에 더 잘 부합하도록 정렬할 수 있다(전계 인가 하지 않는 경우).
도 7을 참조하면, 상기 제1 전극(12)과 상기 제2 전극(22) 사이에 인가된 전계를 제거한다. 상기 배향 조절막(16', 26') 내의 상기 중합된 메조겐(16a, 26a)은 전계가 제거된 후에도 2차 극각을 유지할 수 있으며, 또한 상기 배향 조절막(16', 26')은 상기 배향 기저막(14, 24)의 배향규제력(anchoring energy)에 비해 강화된 배향규제력을 가질 수 있다. 특히, 상기 배향 기저막(14, 24)이 다소 약한 배향규제력을 나타내는 광배향된 막인 경우에, 상기 배향 조절막(16', 26')으로 인해 배향규제력이 보충 또는 강화될 수 있다. 이와 같이, 상기 배향 조절막(16', 26') 내의 중합된 메조겐들(16a, 26a)은 이들에 접하는 액정에 강화된 배향규제력을 미쳐, 액정의 방향자를 안정화 또는 고정시킬 수 있다. 그 결과, 액정 표시 장치의 문턱전압을 낮출 수 있고 응답속도를 향상시킬 수 있으며, 블랙 시인성을 개선되어 표시품질이 향상될 수 있다.
한편, 상기 배향 조절막들(16', 26') 중 어느 하나의 위상지연값은 상기 액정층(30)의 위상지연값에 거의 영향을 주지 않을 정도로 작다. 이를 위해, 상기 배향 조절막들(16', 26') 중 어느 하나의 위상지연값은 상기 액정층(30)의 위상지연값의 0.1 배 이하를 나타낼 수 있다. 이를 수학식으로 나타내면 다음과 같다. 이를 위해, 상기 배향 조절막(16', 26')의 두께는 수 내지 수십 nm일 수 있다.
[수학식]
Figure PCTKR2010006274-appb-I000008
상기 수학식에서, n 및 d는 각각 배향 조절막의 굴절율 및 두께이고, n' 및 d'는 각각 액정층의 굴절율 및 두께이다.
도 8 및 도 9은 본 발명의 다른 실시예에 따른 액정 표시 장치의 제조방법을 나타낸 단면도들이다. 본 실시예에 따른 제조방법은 도 4 내지 도 7을 참조하여 설명한 제조방법과는 달리 기판들을 결합시키지 않은 상태에서 반응성 메조겐들을 중합시키는 것을 특징으로 하며, 후술하는 것을 제외하고는 도 4 내지 도 7을 참조하여 설명한 제조방법과 실질적으로 동일하다.
먼저, 도 4를 참조하여 설명한 바와 같이, 제1 기판(10) 상에 제1 전극(12)을 형성하고, 상기 제1 전극(12) 상에 제1 배향 기저막(14)을 형성한 후, 상기 제1 배향 기저막(14)을 배향하여 선경사를 부여한다. 일 예로서, 상기 제1 배향 기저막(14)이 액정(또는 메조겐)에 부여하는 선경사의 극각이 2 ~ 10도가 되도록 형성한다. 상기 제1 배향 기저막(14) 상에 제1 반응성 메조겐막을 형성한다. 상기 제1 배향 기저막(14)과 상기 제1 반응성 메조겐막(16)은 제1 배향막을 형성할 수 있다.
상기 제1 반응성 메조겐막 내의 메조겐은 상기 제1 배향 기저막(14)에 부여된 선경사에 따라 정렬될 수 있다. 부연하면, 상기 제1 반응성 메조겐막 내의 메조겐은 상기 제1 배향 기저막(14)에 부여된 상기 선경사의 방위각에 따라 메조겐 방향자의 방위각이 정렬되고, 또한 상기 제1 배향 기저막(14)에 부여된 선경사의 극각에 따라 메조겐 방향자의 1차 극각이 결정될 수 있다. 상술한 바와 같이, 제1 배향 기저막(14)을 액정(또는 메조겐)에 부여하는 선경사의 극각이 2 ~ 10도가 되도록 형성한 경우에, 상기 제1 반응성 메조겐막(16) 내의 메조겐의 1차 극각은 2 ~ 10도 정도가 될 수 있다.
이어서, 상기 제1 기판(10)을 열처리함으로써, 상기 제1 반응성 메조겐막 내의 용제를 제거할 수 있다. 그러나, 상기 용제를 제거하는 공정은 생략될 수도 있다.
이 후, UV 등의 광을 상기 제1 반응성 메조겐막에 조사하여, 상기 제1 반응성 메조겐막 내의 반응성 메조겐을 중합함으로써, 중합된 메조겐(16a)을 함유하는 제1 배향 조절막(16')을 형성한다. 상기 제1 배향 조절막(16')은 상기 배향 기저막(14)에 의해 부여된 1차 극각과 거의 동일한 2차 극각을 나타낼 수 있다. 다만, 상기 광중합 단계에서 광조사량의 변화에 의해 상기 중합된 메조겐(16a)의 2차 극각은 1차 극각과 다소 달라질 수는 있다. 이러한 방법으로, 복수 개의 도메인에서 서로 다른 2차 극각를 갖는 중합된 메조겐들을 형성할 수 있다. 상기 광조사는 약 30분 동안 수행될 수 있다.
상기 광조사와 동시에 상기 제1 반응성 메조겐막에 전계를 인가할 수도 있다. 이는 상기 제1 전극(12)과 다른 외부 전극(미도시)을 사용하여 수행할 수 있다. 상기 제1 반응성 메조겐막에 전계가 인가된 경우, 상기 제1 반응성 메조겐막 내의 반응성 메조겐의 방향자는 상기 전계 방향에 따라 회전할 수 있다. 이와 같이, 전계 방향에 따라 방향자가 회전된 반응성 메조겐들이 상기 광조사에 의해 중합된 경우 상기 제1 배향 조절막(16') 내의 중합된 메조겐(16a)의 2차 극각은 더 정밀하게 제어될 수 있다. 일 예로서, 상기 제1 배향 조절막(16') 내의 중합된 메조겐(16a)의 2차 극각은 이에 인접한 상기 제1 배향 기저막(14)의 선경사의 극각보다 클 수 있다.
한편, 상술한 바와 같이 상기 제1 반응성 메조겐막 내의 용제를 제거하는 공정이 생략된 경우에는, 상기 제1 반응성 메조겐막 내의 반응성 메조겐을 광중합할 때 상기 제1 반응성 메조겐막 내에 용제가 잔존할 수 있다. 이 경우, 중합된 메조겐(16a)은 상기 제1 배향 기저막(14)에 의해 부여된 선경사에 더 잘 부합하도록 정렬하거나(전계 인가 하지 않는 경우), 상기 전계 방향에 더 잘 부합하도록 정렬할 수 있다(전계 인가 하는 경우).
도 9를 참조하면, 제2 기판(20) 상에 제2 전극(22), 제2 배향 기저막(24), 및 제2 배향 조절막(26')을 형성한다. 상기 제2 배향 조절막(26')은 중합된 메조겐(26a)을 함유하고, 상기 제2 배향 기저막(24)과 상기 제2 배향 조절막(26')은 제2 배향막(UA)을 형성할 수 있다. 상기 제2 전극(22), 상기 제2 배향 기저막(24), 및 제2 배향 조절막(26')을 형성하는 물질 및 형성하는 방법은 도 4 및 도 8를 참조하여 설명한 상기 제1 전극(12), 상기 제1 배향 기저막(14), 및 제1 배향 조절막(16')을 형성하는 물질 및 형성하는 방법과 같을 수 있다. 그러나, 이에 한정되지 않고 상기 제1 배향 조절막(16')과 상기 제2 배향 조절막(26') 중 어느 하나는 생략될 수도 있다.
이 후, 상기 제1 기판(10)과 상기 제2 기판(20)을 상기 제2 전극(22)이 상기 제1 기판(10)을 바라보도록 정렬시킨 후 결합한다. 이어서, 상기 제1 기판(10)과 상기 제2 기판(20) 사이에 액정을 주입하여 액정층(30)을 형성한다. 이 때, 상기 제1 기판(10)과 상기 제2 기판(20) 사이에 상기 액정과 더불어서 반응성 메조겐을 같이 주입할 수도 있다. 상기 액정층(30)을 형성하는 액정들은 양의 유전율 이방성을 갖는 수직 회전 모드 액정들일 수 있으며, 일 예로서 TN(Twisted Nematic)모드, OCB(Optically Compensated Bend) 모드, 또는 ECB(Electrically Controlled Birefringence)모드 액정들일 수 있다. 상기 액정들이 TN 모드를 갖는 경우에, 상기 제1 기판(10)과 상기 제2 기판(20)은 상기 제1 배향 기저막(14)과 상기 제2 배향 기저막(24)의 선경사의 방위각은 서로 교차, 일 예로서 직교하도록 결합될 수 있다.
상기 배향 조절막들(16', 26') 내의 중합된 메조겐들(16a, 26a)은 이에 인접하는 액정에 강화된 배향규제력을 미쳐, 액정의 방향자를 안정화 또는 고정시킬 수 있다. 그 결과, 액정 표시 장치의 문턱전압을 낮출 수 있고 응답속도를 향상시킬 수 있으며, 블랙 시인성 등이 개선되어 표시품질이 향상될 수 있다.
한편, 상기 배향 조절막들(16', 26') 중 어느 하나의 위상지연값은 상기 액정층(30)의 위상지연값에 거의 영향을 주지 않을 정도로 작다. 이를 위해, 상기 배향 조절막들(16', 26') 중 어느 하나의 위상지연값은 상기 액정층(30)의 위상지연값의 0.1 배 이하를 나타낼 수 있다. 이를 수학식으로 나타내면 다음과 같다. 이를 위해, 상기 배향 조절막(16', 26')의 두께는 수 내지 수십 nm일 수 있다.
[수학식]
Figure PCTKR2010006274-appb-I000009
상기 수학식에서, n 및 d는 각각 배향 조절막의 굴절율 및 두께이고, n' 및 d'는 각각 액정층의 굴절율 및 두께이다.
도 10은 본 발명의 다른 실시예에 따른 액정 표시 장치를 나타낸 레이아웃도로서, 제1기판에 한정하여 나타낸 도면이다. 도 11 내지 도 14는 본 발명의 다른 실시예에 따른 액정 표시 장치의 제조방법을 나타낸 단면도들이다. 도 11 내지 도 14에서 제1 기판의 단면들은 도 10의 절단선 I-I'를 따라 취해진 단면들이다. 본 실시예에 따른 액정 표시 장치는 음의 유전율 이방성을 갖는 액정을 구비하며, 후술하는 것을 제외하고는 도 1 내지 도 3을 참조하여 설명한 제조 방법과 실질적으로 동일하다.
도 10 및 도 11을 참고하면, 제1 기판(10) 상에 제1 전극(12)을 형성할 수 있다. 상기 제1 전극(12)을 형성하기 전에 상기 제1 기판(10) 상에 박막트랜지스터(TFT), 게이트 라인(GL) 및 데이터 라인(DL)을 형성할 수 있다. 구체적으로, 상기 제1 기판(10) 상에 게이트 라인(GL)과 상기 게이트 라인(GL)로부터 돌출된 게이트 전극(G)을 형성할 수 있다. 상기 게이트 전극(G) 상에 게이트 절연막(미도시)을 형성하고, 상기 게이트 절연막 상에 상기 게이트 전극(G)의 상부를 가로지르는 반도체층(AL) 을 형성할 수 있다. 이 후, 상기 게이트 라인(GL)의 상부를 가로지르는 데이터 라인(DL), 및 상기 반도체층(AL)의 양단부에 각각 접속하는 소오스/드레인 전극들(SD1, SD2)을 형성할 수 있다. 상기 소오스/드레인 전극들(SD1, SD2) 중 하나는 상기 데이터 라인(DL)으로부터 돌출된다. 상기 게이트 전극(G), 상기 반도체층(AL), 상기 소오스/드레인 전극들(SD1, SD2)은 상기 박막트랜지스터(TFT)를 구성한다. 상기 박막트랜지스터(TFT) 상에 층간절연막(미도시)을 형성한 후, 상기 층간절연막 내에 상기 소오스/드레인 전극들(SD1, SD2) 중 나머지 하나를 노출시키는 비아홀(VH)을 형성한 후, 상기 비아홀(VH)이 형성된 층간절연막 상에 상기 제1 전극(12)을 형성한다. 그 결과, 상기 소오스/드레인 전극들(SD1, SD2) 중 나머지 하나 즉, 상기 박막트랜지스터(TFT)와 상기 제1 전극(12)이 전기적으로 연결된다.
상기 게이트 라인(GL)과 상기 데이터 라인(DL)의 교차에 의해 단위 화소(UP)가 정의되며, 상기 단위 화소(UP) 내에 상기 박막트랜지스터(TFT)와 상기 제1 전극(12)이 배치될 수 있다. 상기 제1 전극(12)은 절개부(opening)을 포함하지 않을 수 있다.
상기 제1 전극(12) 상에 제1 배향 기저막(14)을 형성할 수 있다. 상기 제1 배향 기저막(14)은 폴리 아믹산(poly-amic acid), 폴리 이미드(poly-imide), 레시틴(lecithin), 나일론(nylon), 또는 PVA(polyvinylalcohol)를 사용하여 형성될 수 있다. 이어서, 상기 제1 배향 기저막(14)을 배향하여 액정(또는 메조겐)을 정렬시킬 수 있는 선경사를 부여한다. 상기 제1 배향 기저막(14)의 일부분 즉 제1 도메인(DM1)을 제1 방향(R1)으로 배향하고, 다른 일부분 즉 제2 도메인(DM2)을 상기 제1 방향(R1)과는 다른 제2 방향(R2)으로 배향한다. 도시된 제1 배향 방향(R1)과 제2 배향 방향(R2)은 예시적인 것으로 이에 한정되는 것은 아니다. 이러한 배향은 물리적 러빙법, 광배향법 또는 그루브 패터닝법을 사용하여 수행할 수 있으며, 제2 도메인(DM2)을 마스크를 사용하여 가린 상태에서 제1 도메인(DM1)을 제1 방향(R1)으로 배향하고 또한 제1 도메인(DM1)을 마스크를 사용하여 가린 상태에서 제2 도메인(DM2)을 제2 방향(R2)으로 배향할 수 있다.
이러한 제1 배향 기저막(14)은 수평배향막, 수직배향막 또는 이들의 이중층일 수 있다. 상기 제1 배향 기저막(14)이 상기 수평배향막과 상기 수직배향막의 이중층인 경우에, 이들 두 배향막들의 적층 순서와 두께를 조절하여 상기 제1 배향 기저막(14)이 액정(또는 메조겐)에 부여하는 선경사의 극각을 조절할 수 있다. 상술한 바와 같이 복수 개의 도메인을 형성하는 경우에, 각 도메인 별로 액정(또는 메조겐)에 부여하는 선경사의 방위각을 달리할 수 있으며, 또한, 상기 복수 개의 도메인에서 수직배향막과 수평배향막의 조합을 달리하여 각 도메인 별로 액정(또는 메조겐)에 부여하는 선경사의 극각을 달리할 수 있다. 일 예로서, 상기 제1 배향 기저막(14)이 액정(또는 메조겐)에 부여하는 선경사의 극각이 80 ~ 90도가 되도록 형성한다.
상기 제1 배향 기저막(14) 상에 반응성 메조겐막(16)을 형성할 수 있다. 상기 제1 배향 기저막(14)과 상기 반응성 메조겐막(16)은 제1 배향막(BA)을 형성할 수 있다. 상기 반응성 메조겐막(16) 내의 메조겐은 상기 제1 배향 기저막(14)에 부여된 선경사에 따라 정렬될 수 있다. 부연하면, 상기 반응성 메조겐막(16) 내의 메조겐은 상기 제1 배향 기저막(14)에 부여된 상기 선경사의 방위각에 따라 메조겐 방향자의 방위각이 정렬되고, 또한 상기 제1 배향 기저막(14)에 부여된 선경사의 극각에 따라 메조겐 방향자의 1차 극각이 결정될 수 있다. 상술한 바와 같이, 제1 도메인(DM1) 내에서는 상기 반응성 메조겐막(16) 내의 메조겐의 방위각은 제1 방향(R1)일 수 있고, 제2 도메인(DM2) 내에서는 상기 반응성 메조겐막(16) 내의 메조겐의 방위각은 제2 방향(R1)일 수 있다. 또한, 제1 배향 기저막(14)을 액정(또는 메조겐)에 부여하는 선경사의 극각이 80 ~ 90도가 되도록 형성한 경우에, 상기 반응성 메조겐막(16) 내의 메조겐의 1차 극각은 80 ~ 90도 정도 일 수 있다.
도 10 및 도 12를 참조하면, 제2 기판(20) 상에 제2 전극(22), 제2 배향 기저막(24), 및 제2 반응성 메조겐막(26)을 차례로 형성한다. 상기 제2 배향 기저막(24)과 상기 제2 반응성 메조겐막(26)은 제2 배향막(UA)을 형성할 수 있다. 상기 제2 전극(22), 상기 제2 배향 기저막(24), 및 제2 반응성 메조겐막(26)을 형성하는 물질 및 형성하는 방법은 도 11을 참조하여 설명한 상기 제1 전극(12), 상기 제1 배향 기저막(14), 및 제1 반응성 메조겐막(16)을 형성하는 물질 및 형성하는 방법과 같을 수 있다. 그러나, 이에 한정되지 않고 상기 제1 반응성 메조겐막(16)과 제2 반응성 메조겐막(26) 중 어느 하나는 생략될 수도 있다.
이 후, 상기 제1 기판(10)과 상기 제2 기판(20)을 상기 제2 전극(22)이 상기 제1 기판(10)을 바라보도록 정렬시킨 후 결합한다. 이어서, 상기 제1 기판(10)과 상기 제2 기판(20) 사이에 액정을 주입하여 액정층(30)을 형성한다. 이 때, 상기 제1 기판(10)과 상기 제2 기판(20) 사이에 상기 액정과 더불어서 반응성 메조겐을 같이 주입할 수도 있다. 상기 액정층(30)을 형성하는 액정들은 음의 유전율 이방성을 갖고, 이에 따라 본 실시예에 따른 액정 표시 장치는 VA(Vertical Alignment)모드를 구현할 수 있다.
상기 액정층(30)을 형성하는 액정들 중 상기 배향막들(BA, UA)에 인접하는 액정들은 상기 배향막들(BA, UA)에 부여된 선경사, 구체적으로는 상기 배향 기저막들(14, 24) 및/또는 상기 반응성 메조겐막들(16, 26) 내의 반응성 메조겐들에 부여된 선경사에 따라 정렬될 수 있다. 일 예로서, 상술한 바와 같이, 제1 도메인(DM1) 내에서는 상기 액정층(30)을 형성하는 액정들 중 상기 제1 배향막(BA)에 인접하는 액정들의 방위각은 제1 방향(R1)일 수 있고, 제2 도메인(DM2) 내에서는 상기 액정층(30)을 형성하는 액정들 중 상기 제1 배향막(BA)에 인접하는 액정들의 방위각은 제2 방향(R2)일 수 있다. 또한, 상기 배향 기저막들(14, 24) 및/또는 상기 반응성 메조겐막들(16, 26) 내의 반응성 메조겐들에 부여된 선경사의 극각이 80 ~ 90도인 경우에, 상기 액정층(30)을 형성하는 액정들 중 상기 배향막들(BA, UA)에 인접하는 액정들의 극각은 80 ~ 90도 정도일 수 있다.
도 10 및 도 13을 참조하면, 상기 제1 전극(12)과 상기 제2 전극(22) 사이에 전계를 인가하여 상기 액정층(30) 내의 액정을 배열할 수 있다. 구체적으로, 상기 액정이 음의 유전율 이방성을 갖는 경우에, 상기 액정의 방향자는 전계 방향에 수직한 방향으로 회전한다. 그 결과, 상기 액정층(30)을 형성하는 액정들 중 상기 배향막들(BA, UA)에 인접하는 액정들의 극각은 감소하며, 이에 따라 상기 반응성 메조겐막들(16, 26) 내의 반응성 메조겐들의 극각 또한 감소할 수 있다. 다만, 상기 제1 전극(12)과 상기 제2 전극(22) 사이에 인가되는 전계의 크기에 따라서 상기 액정 방향자의 회전 정도가 달라질 수 있고, 이에 따라 상기 반응성 메조겐막들(16, 26) 내의 반응성 메조겐들의 극각의 감소 정도가 달라질 수 있다.
이 상태에서, UV 등의 광을 상기 제1 반응성 메조겐막(16) 및/또는 상기 제2 반응성 메조겐막(26)에 조사하여, 상기 반응성 메조겐막(16, 26) 내의 반응성 메조겐을 중합함으로써, 제1 및 제2 배향 조절막들(16', 26')을 형성한다. 이 때, 상기 배향 조절막들(16', 26')은 전계가 인가된 상태에서 상기 액정층(30) 내의 액정의 배열 상태에 부합하는 선경사 구체적으로, 2차 극각을 갖는 중합된 메조겐들(16a1, 16a2, 26a1, 26a2)을 함유한다. 여기서 상기 제1 전극(12)과 상기 제2 전극(22) 사이에 인가된 전계의 크기 및/또는 광조사량를 달리함으로써, 상기 중합된 반응성 메조겐들의 2차 극각을 조절할 수 있다. 이 경우, 상기 제1 배향 조절막(16') 내의 중합된 메조겐들(16a1, 16a2)의 2차 극각은 이에 인접한 상기 제1 배향 기저막(14)의 극각보다 작을 수 있고, 상기 제2 배향 조절막(26') 내의 중합된 메조겐들(26a1, 26a2)의 2차 극각은 이에 인접한 상기 제2 배향 기저막(24)의 극각보다 작을 수 있다.
다른 실시예에서, 상기 제1 전극(12)과 상기 제2 전극(22) 사이에 전계를 인가하지 않은 상태에서 상기 반응성 메조겐막(16, 26) 내의 반응성 메조겐을 광중합하여, 중합된 메조겐(16a1, 16a2, 26a1, 26a2)을 함유하는 제1 및 제2 배향 조절막(16', 26')을 형성할 수도 있다. 이 경우, 상기 배향 조절막들(16', 26') 내의 중합된 메조겐들(16a1, 16a2, 26a1, 26a2)은 상기 배향 기저막들(14, 24)에 의해 부여된 1차 극각과 거의 동일한 2차 극각을 나타낼 수 있다. 다만, 상기 광중합 단계에서 광조사량의 변화에 의해 상기 중합된 메조겐들(16a1, 16a2, 26a1, 26a2)의 2차 극각은 1차 극각과 다소 달라질 수는 있다.
한편, 상술한 바와 같이 상기 반응성 메조겐막(16, 26) 내의 용제를 제거하는 공정이 생략된 경우에는, 상기 반응성 메조겐막(16, 26) 내의 반응성 메조겐을 광중합할 때 상기 반응성 메조겐막(16, 26) 내에 용제가 잔존할 수 있다. 이 경우, 중합된 메조겐(16a1, 16a2, 26a1, 26a2)은 상기 액정층(30) 내의 액정의 배열 상태에 더 잘 부합하도록 정렬하거나(전계 인가 하는 경우) 또는 상기 배향 기저막들(14, 24)에 의해 부여된 선경사에 더 잘 부합하도록 정렬할 수 있다(전계 인가 하지 않는 경우).
도 10 및 도 14를 참조하면, 상기 제1 전극(12)과 상기 제2 전극(22) 사이에 인가된 전계를 제거한다. 상기 제1 및 제2 배향 조절막들(16', 26') 내의 상기 중합된 메조겐들(16a1, 16a2, 26a1, 26a2)은 전계가 제거된 후에도 2차 극각을 유지할 수 있다. 또한, 상기 중합된 메조겐들(16a1, 16a2, 26a1, 26a2)은 상기 반응성 메조겐막(16, 26) 내의 메조겐들에 부여된 방위각을 유지하여, 제1 도메인(DM1) 내에서는 제1 방향(R1)의 방위각을 제2 도메인(DM2) 내에서는 제2 방향(R2)의 방위각을 나타낼 수 있다.
상기 배향 조절막(16', 26')은 상기 배향 기저막(14, 24)의 배향규제력(anchoring energy)에 비해 강화된 배향규제력을 가질 수 있다. 특히, 상기 배향 기저막(14, 24)이 다소 약한 배향규제력을 나타내는 광배향된 막인 경우에, 상기 배향 조절막(16', 26')으로 인해 배향규제력이 보충 또는 강화될 수 있다. 이와 같이, 상기 배향 조절막(16', 26') 내의 상기 중합된 메조겐들(16a1, 16a2, 26a1, 26a2)은 이들에 접하는 액정에 강화된 배향규제력을 미쳐, 액정의 방향자를 안정화 또는 고정시킬 수 있다. 그 결과, 액정 표시 장치의 문턱전압을 낮출 수 있고 응답속도를 향상시킬 수 있으며, 블랙 시인성을 개선되어 표시품질이 향상될 수 있다.
이와 더불어서, VA 모드 액정표시장치의 광시야각화를 위해 전극을 패터닝하거나 또는 전극 하부에 돌기를 형성하여, 액정에 미치는 전계의 방향을 조절하여 액정의 방위각을 각 도메인 별로 서로 다르게 하여 멀티 도메인을 구현하여 왔다. 그러나, 본 실시예에서는 이러한 전극 패터닝 또는 전극 하부에 돌기 형성을 실시하지 않고도 액정의 방위각을 각 도메인별로 서로 다르게 형성할 수 있어 멀티 도메인의 구현이 가능하다. 이로써, 제1 전극 내에 슬릿 등의 절개부를 형성할 필요가 없으며 또한 전극 하부에 돌기부를 형성하지 않아도 된다. 그 결과, 상기 절개부 또는 돌기부 근처를 차폐시키는 광차폐막을 형성하지 않을 수 있다. 그러나, 이에 한정되는 것은 아니며 액정의 방향자를 더 안정화시키기 위한 방안으로 전극 패터닝 또는 전극 하부에 돌기 형성을 추가적으로 더 수행할 수도 있다.
이하, 본 발명의 이해를 돕기 위해 바람직한 실험예들(examples)을 제시한다. 다만, 하기의 실험예들은 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예들에 의해 한정되는 것은 아니다.
<제조예 1>
유리 기판 상에 ITO층을 형성하여 전극을 형성하고, 상기 전극 상에 수평 배향막(AL-22620, JSR사)을 100 nm의 두께로 형성하였다. 상기 수평 배향막에 러빙 공정을 수행하였다. 상기 러빙된 수평 배향막 상에 PGMEA 용제, 중합개시제(IRGACURE 651, Ciba chemical사), 및 반응성 메조겐(BASF사)을 혼합한 혼합물을 수 nm의 두께로 코팅하여 반응성 메조겐막을 형성하였다. 이 때, 상기 혼합물 내에서 상기 반응성 메조겐은 0.5wt%로 함유되었다. 상기 배향막과 상기 반응성 메조겐막은 배향 조절막을 구성한다.
<제조예 2>
반응성 메조겐이 1wt%로 함유된 혼합물을 사용하여 반응성 메조겐막을 형성한 것을 제외하고는 제조예 1과 동일한 방법을 사용하여 시료를 제작하였다.
<제조예 3>
반응성 메조겐이 2wt%로 함유된 혼합물을 사용하여 반응성 메조겐막을 형성한 것을 제외하고는 제조예 1과 동일한 방법을 사용하여 시료를 제작하였다.
<비교예 1>
반응성 메조겐막을 형성하지 않은 것을 제외하고는 제조예 1과 동일한 방법을 사용하여 시료를 제작하였다.
도 15는 제조예들 1 내지 3, 및 비교예 1에 따른 각 시료에서 배향 조절막의 코팅특성을 나타낸 사진이고, 도 16은 제조예들 1 내지 3, 및 비교예 1에 따라 제조된 각 시료에 따른 블랙 시인성을 나타낸 사진이다. 부연하면, 도 16은 제조예들 1 내지 3, 및 비교예 1에 따른 각 시료(하부 기판)와 상부 기판을 합착하고, 기판들 사이에 액정을 주입하여 액정표시장치를 제조한 후, 블랙 시인성을 측정한 사진이다.
도 15 및 도 16을 참조하면, 반응성 메조겐막을 형성하는 PGMEA에 반응성 메조겐을 혼합시킨 혼합물 내의 반응성 메조겐의 농도가 1wt% 미만인 경우에, 중합된 메조겐의 뭉침 현상이 나타나지 않음을 알 수 있다. 이에 따라 블랙 시인성이 더욱 향상됨을 알 수 있다. 따라서, 블랙 시인상의 향상을 위해서는 반응성 메조겐막을 형성하는 혼합물 내의 반응성 메조겐의 농도는 1wt% 미만으로 조절될 수 있다.
<제조예 4>
유리 기판인 제1 기판 상에 ITO층을 형성하여 제1 전극을 형성하고, 상기 제1 전극 상에 제1 수평 배향막(RN-2174, Nissan 사)을 100 nm의 두께로 형성하였다. 상기 제1 수평 배향막을 광배향하였다. 상기 광배향된 제1 수평 배향막 상에 PGMEA 용제, 중합개시제 (IRGACURE 651, Ciba chemical사), 및 반응성 메조겐( BASF 사)을 혼합한 혼합물을 수 nm의 두께로 코팅하여 제1 반응성 메조겐막을 형성하였다. 이 때, 상기 혼합물 내에서 상기 반응성 메조겐은 0.7wt% 이하로 함유되었다. 한편, 유리 기판인 제2 기판 상에 ITO층을 형성하여 제2 전극을 형성하고, 상기 제2 전극 상에 제2 수평 배향막(RN-2174, Nissan사)을 100 nm의 두께로 형성한 후, 상기 제2 수평 배향막을 광배향하였다. 상기 광배향된 제2 수평 배향막 상에 상기 혼합물을 수 nm의 두께로 코팅하여 제2 반응성 메조겐막을 형성하였다. 이 후, 상기 기판들을 합착하고 TN 모드 액정들을 주입하였다. 상기 제1 전극과 상기 제2 전극 사이에 전계를 인가한 상태에서, 상기 제1 반응성 메조겐막과 상기 제2 반응성 메조겐막에 UV를 조사하여 상기 반응성 메조겐들을 중합하여 중합된 메조겐을 함유하는 배향 조절막들을 형성하였다.
<제조예 5>
제1 전극과 제2 전극 사이에 전계를 인가하지 않은 상태에서, UV 조사에 의해 반응성 메조겐들을 중합하여 배향 조절막들을 형성한 것을 제외하고는 제조예 4와 동일한 방법으로 액정 표시 장치를 제조하였다.
<비교예 2>
제1 및 제2 반응성 메조겐막들의 형성 단계 및 이들을 광중합하여 배향 조절막들을 형성하는 단계를 생략한 것을 제외하고는 제조예 4와 동일한 방법으로 액정 표시 장치를 제조하였다.
도 17은 제조예 4 및 비교예 2에 따른 액정 표시 장치들의 응답 속도를 나타낸 그래프이다.
도 17을 참조하면, 제조예 4에 따른 액정 표시 장치(b)의 응답속도는 배향 조절막을 형성하지 않은 즉 일반 TN 모드 액정 표시 장치인 비교예 2에 따른 액정 표시 장치(a)의 응답속도에 비해 빨라졌음을 알 수 있다.
도 18은 제조예 5 및 비교예 2에 따른 액정 표시 장치들의 응답 속도를 나타낸 그래프이다.
도 18을 참조하면, 제조예 5에 따른 액정 표시 장치(d)의 응답속도는 배향 조절막을 형성하지 않은 즉 일반 TN 모드 액정 표시 장치인 비교예 2에 따른 액정 표시 장치(c)의 응답속도에 비해 빨라졌음을 알 수 있다. 이로써, 반응성 메조겐막들을 광중합하여 배향 조절막들을 형성할 때, 전극들 사이에 전계를 인가하지 않더라도 응답속도를 향상시킬 수 있음을 알 수 있다.
도 19는 반응성 메조겐막을 형성하는 혼합물 내의 반응성 메조겐의 농도에 따른 극각 배향 규제력(polar anchoring energy)과 방위각 배향 규제력(Azimuthal anchoring energy)을 나타낸 그래프이다.
도 19를 참조하면, 반응성 메조겐이 함유되지 않았을 때(0wt%)에 비해 반응성 메조겐이 함유됨에 따라 반응성 메조겐막의 극각 배향 규제력과 방위각 배향 규제력이 향상됨을 알 수 있다.
이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러가지 변형 및 변경이 가능하다.

Claims (31)

  1. 서로 마주보는 제1 기판과 제2 기판;
    상기 기판들 사이에 위치하는 액정층;
    상기 액정층과 상기 제1 기판 사이에 위치하는 제1 배향막; 및
    상기 액정층과 상기 제2 기판 사이에 위치하는 제2 배향막을 포함하고,
    상기 제1 배향막과 상기 제2 배향막 중 적어도 하나는 선경사를 갖도록 배향된 배향 기저막과 중합된 메조겐을 갖는 배향 조절막의 이중층을 구비하는 액정 표시 장치.
  2. 제1항에 있어서,
    상기 배향 조절막은 상기 액정층의 위상지연값의 0.1배 이하의 위상지연값을 갖는 액정 표시 장치.
  3. 제1항에 있어서,
    상기 배향 조절막은 상기 배향 기저막에 비해 배향규제력(anchoring energy)이 더 큰 액정 표시 장치.
  4. 제1항에 있어서,
    상기 배향 기저막은 광배향된 막인 액정 표시 장치.
  5. 제1항에 있어서,
    상기 제1 배향막과 상기 제1 기판 사이에 위치하는 제1 전극과 제2 전극을 더 구비하고,
    상기 액정층은 양의 유전율 이방성을 갖는 액정을 구비하는 액정 표시 장치.
  6. 제5항에 있어서,
    상기 액정 표시 장치는 IPS 모드 또는 FFS 모드인 액정 표시 장치.
  7. 제1항에 있어서,
    상기 배향 기저막의 선경사의 극각과 상기 배향 조절막의 선경사의 극각은 서로 다른 액정 표시 장치.
  8. 제1항에 있어서,
    상기 제1 배향막과 상기 제1 기판 사이에 위치하는 제1 전극과 상기 제2 배향막과 상기 제2 기판 사이에 위치하는 제2 전극을 더 구비하고,
    상기 액정층은 양의 유전율 이방성을 갖는 액정을 구비하는 액정 표시 장치.
  9. 제8항에 있어서,
    상기 배향 조절막의 선경사의 극각은 상기 배향 기저막의 선경사의 극각에 비해 큰 액정 표시 장치.
  10. 제8항에 있어서,
    상기 액정 표시 장치는 TN 모드, OCB 모드, 또는 ECB 모드인 액정 표시 장치.
  11. 제1항에 있어서,
    상기 제1 배향막과 상기 제1 기판 사이에 위치하는 제1 전극과 상기 제2 배향막과 상기 제2 기판 사이에 위치하는 제2 전극을 더 구비하고,
    상기 액정층은 음의 유전율 이방성을 갖는 액정을 구비하는 액정 표시 장치.
  12. 제11항에 있어서,
    상기 배향 조절막의 선경사의 극각은 상기 배향 기저막의 선경사의 극각에 비해 작은 액정 표시 장치.
  13. 제11항에 있어서,
    상기 액정 표시 장치는 VA 모드인 액정 표시 장치.
  14. 제1항, 제8항, 및 제11항 중 어느 한 항에 있어서,
    상기 배향 기저막은 제1 배향 방향을 갖는 제1 도메인과 제2 배향 방향을 갖는 제2 도메인을 구비하는 액정 표시 장치.
  15. 제1항에 있어서,
    상기 중합된 메조겐은 하기 화학식 1로 표시되는 반응성 메조겐이 중합된 것인 액정 표시 장치:
    [화학식 1]
    P1-A1-(Z1-A2)n-P2,
    여기서, P1과 P2는 아크릴레이트(acrylate), 메타크릴레이트(methacrylate), 비닐(vinyl), 비닐옥시(vinyloxy) 및 에폭시(epoxy) 그룹 중에서 독립적으로 선택되는 것이고, A1과 A2는 1,4-페닐렌(phenylen)과 나프탈렌(naphthalene)-2,6-다일(diyl) 그룹 중에서 독립적으로 선택되는 것이며, Z1은 COO-, OCO- 및 단일 결합 중의 하나이고, n은 0, 1 및 2 중의 하나이다.
  16. [규칙 제26조에 의한 보정 22.11.2010] 
    제15항에 있어서, 상기 반응성 메조겐은 하기 화학식들 2 내지 4로 표시되는 것들 중 어느 하나인 액정 표시 장치: [화학식 2]
    Figure WO-DOC-FIGURE-16a
    [화학식 3]
    Figure WO-DOC-FIGURE-16b
    [화학식 4]
    Figure WO-DOC-FIGURE-16c
    여기서, P1과 P2는 아크릴레이트(acrylate), 메타크릴레이트(methacrylate), 비닐(vinyl), 비닐옥시(vinyloxy) 및 에폭시(epoxy) 그룹 중에서 독립적으로 선택된다.
  17. 제1 기판 상에 선경사를 갖도록 배향된 제1 배향 기저막을 형성하는 단계;
    상기 제1 배향 기저막 상에 반응성 메조겐을 함유하는 제1 반응성 메조겐막을 형성하는 단계;
    상기 제1 배향 기저막과 상기 제1 반응성 메조겐막이 형성된 제1 기판을 제2 기판과 결합하는 단계;
    상기 결합된 제1 기판과 제2 기판 사이에 액정층을 형성하는 단계; 및
    상기 제1 반응성 메조겐막 내의 반응성 메조겐을 중합하여 중합된 메조겐을 구비하는 제1 배향 조절막을 형성하는 단계를 포함하는 액정 표시 장치의 제조방법.
  18. 제17항에 있어서,
    상기 반응성 메조겐막 내의 반응성 메조겐을 중합하는 단계는 상기 반응성 메조겐막에 전계가 인가된 상태에서 수행하는 액정 표시 장치의 제조방법.
  19. 제18항에 있어서,
    상기 반응성 메조겐막에 전계를 인가하는 것은
    상기 액정층을 형성한 후, 상기 기판들 중 적어도 어느 하나에 형성된 제1 전극과 제2 전극 사이에 전계를 인가하여 수행하는 액정 표시 장치의 제조방법.
  20. 제17항 또는 제19항에 있어서,
    상기 반응성 메조겐막 내의 반응성 메조겐을 중합하는 것은 상기 반응성 메조겐막에 광을 조사하여 수행하는 액정 표시 장치의 제조방법.
  21. 제17항에 있어서,
    상기 반응성 메조겐막 내의 반응성 메조겐을 중합하는 단계는 상기 액정층을 형성한 후 수행하는 액정 표시 장치의 제조방법.
  22. 제17항에 있어서,
    상기 반응성 메조겐막 내의 반응성 메조겐을 중합하는 단계는 상기 제1 기판과 상기 제2 기판을 결합하기 전에 수행하는 액정 표시 장치의 제조방법.
  23. 제17항에 있어서,
    상기 반응성 메조겐은 하기 화학식 1로 표시되는 액정 표시 장치의 제조방법:
    [화학식 1]
    P1-A1-(Z1-A2)n-P2,
    여기서, P1과 P2는 아크릴레이트(acrylate), 메타크릴레이트(methacrylate), 비닐(vinyl), 비닐옥시(vinyloxy) 및 에폭시(epoxy) 그룹 중에서 독립적으로 선택되는 것이고, A1과 A2는 1,4-페닐렌(phenylen)과 나프탈렌(naphthalene)-2,6-다일(diyl) 그룹 중에서 독립적으로 선택되는 것이며, Z1은 COO-, OCO- 및 단일 결합 중의 하나이고, n은 0, 1 및 2 중의 하나이다.
  24. [규칙 제26조에 의한 보정 22.11.2010] 
    제23항에 있어서, 상기 반응성 메조겐은 하기 화학식들 2 내지 4로 표시되는 것들 중 어느 하나인 액정 표시 장치의 제조방법: [화학식 2]
    Figure WO-DOC-FIGURE-24a
    [화학식 3]
    Figure WO-DOC-FIGURE-24b
    [화학식 4]
    Figure WO-DOC-FIGURE-24c
    여기서, P1과 P2는 아크릴레이트(acrylate), 메타크릴레이트(methacrylate), 비닐(vinyl), 비닐옥시(vinyloxy) 및 에폭시(epoxy) 그룹 중에서 독립적으로 선택된다.
  25. 제17항에 있어서,
    상기 반응성 메조겐막은 반응성 메조겐과 용제를 함유하는 혼합물을 사용하여 형성하는 액정 표시 장치의 제조방법.
  26. 제25항에 있어서,
    상기 반응성 메조겐막을 형성하는 혼합물은 중합 개시제를 더 포함하는 액정 표시 장치의 제조방법.
  27. 제25항에 있어서,
    상기 반응성 메조겐막을 형성하는 혼합물의 전체 중량에 대해 상기 반응성 메조겐은 1wt% 미만으로 함유되는 액정 표시 장치의 제조방법.
  28. 제25항에 있어서,
    상기 반응성 메조겐막 내의 반응성 메조겐을 중합할 때, 상기 반응성 메조겐막 내에 용제가 잔존하는 액정 표시 장치의 제조방법.
  29. 제17항에 있어서,
    상기 배향 기저막은 광배향된 막인 액정 표시 장치의 제조방법.
  30. 제17항에 있어서,
    상기 배향 기저막은 제1 배향 방향을 갖는 제1 도메인과 제2 배향 방향을 갖는 제2 도메인을 구비하는 액정 표시 장치의 제조방법.
  31. 제17항에 있어서,
    상기 제1 기판과 상기 제2 기판을 결합하기 전에, 상기 제2 기판 상에 선경사를 갖도록 배향된 제2 배향 기저막을 형성하는 단계, 및 상기 제2 배향 기저막 상에 반응성 메조겐을 함유하는 제2 반응성 메조겐막을 형성하는 단계를 더 포함하고,
    상기 제2 반응성 메조겐막 내의 반응성 메조겐을 중합하여 중합된 메조겐을 구비하는 제2 배향 조절막을 형성하는 단계를 더 포함하는 액정 표시 장치의 제조방법.
PCT/KR2010/006274 2010-03-16 2010-09-14 중합된 메조겐을 함유하는 배향 조절막을 구비하는 액정 표시 장치 및 그 제조 방법 WO2011115338A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/635,051 US9551902B2 (en) 2010-03-16 2010-09-14 Liquid crystal display with an alignment control layer containing polymerized mesogen and a manufacturing method of the liquid crystal display
CN201080066845.0A CN102985872B (zh) 2010-03-16 2010-09-14 具有包括聚合液晶的取向控制膜的液晶显示装置及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0023415 2010-03-16
KR20100023415 2010-03-16

Publications (1)

Publication Number Publication Date
WO2011115338A1 true WO2011115338A1 (ko) 2011-09-22

Family

ID=44649408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006274 WO2011115338A1 (ko) 2010-03-16 2010-09-14 중합된 메조겐을 함유하는 배향 조절막을 구비하는 액정 표시 장치 및 그 제조 방법

Country Status (4)

Country Link
US (1) US9551902B2 (ko)
KR (1) KR101725997B1 (ko)
CN (1) CN102985872B (ko)
WO (1) WO2011115338A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038332A (ja) * 2012-08-20 2014-02-27 Lg Chem Ltd 液晶配向膜およびこれを含む液晶セル
US9201271B2 (en) 2012-08-20 2015-12-01 Lg Chem, Ltd. Liquid crystal alignment layer and liquid crystal cell comprising the same
KR20190030842A (ko) 2017-09-15 2019-03-25 전북대학교산학협력단 광반응성기를 가지는 배향유도형 액정 단량체, 그를 이용한 액정의 수평배향방법 및 그로부터 제조된 액정표시장치
KR20190075705A (ko) 2017-12-21 2019-07-01 전북대학교산학협력단 수평배향 유도용 액정 조성물, 그를 이용한 수평배향형 액정표시장치의 제조방법 및 그 액정표시장치

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101379017B1 (ko) * 2012-04-25 2014-03-27 한양대학교 산학협력단 액정 표시 장치 및 그 제조 방법
KR101373675B1 (ko) * 2012-05-25 2014-03-14 한국화학연구원 광반응 효율이 향상된 중합성 메조겐 및 이를 포함하는 중합성 액정 조성물
WO2014192922A1 (ja) * 2013-05-31 2014-12-04 日産化学工業株式会社 横電界駆動型液晶表示素子用液晶配向膜を有する基板の製造方法
TWI619994B (zh) * 2013-06-05 2018-04-01 日產化學工業股份有限公司 具有橫向電場驅動型液晶顯示元件用液晶配向膜之基板之製造方法
CN103353690B (zh) 2013-06-28 2015-09-23 京东方科技集团股份有限公司 一种液晶显示面板及其制备方法、液晶显示装置
KR102069822B1 (ko) * 2013-07-24 2020-01-28 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
KR102076757B1 (ko) * 2013-08-26 2020-02-13 삼성디스플레이 주식회사 액정 표시 장치
KR102092942B1 (ko) 2013-09-02 2020-03-25 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
KR20150137148A (ko) 2014-05-28 2015-12-09 삼성디스플레이 주식회사 액정 표시 장치 및 이의 제조 방법
WO2016037061A1 (en) * 2014-09-05 2016-03-10 Massachusetts Institute Of Technology Methods and apparatus for liquid crystal photoalignment
JP7131771B2 (ja) * 2016-06-22 2022-09-06 国立大学法人長岡技術科学大学 液晶光学素子及び液晶光学素子の製造方法
CN110192148B (zh) * 2016-11-22 2022-07-19 日产化学株式会社 液晶表示元件的制造方法以及液晶表示元件用基板和液晶表示元件组装体
CN110958913B (zh) * 2017-06-13 2023-05-05 海名斯精细化工公司 涂料体系
JP6589964B2 (ja) * 2017-11-14 2019-10-16 セイコーエプソン株式会社 表示装置および液晶装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268318A (ja) * 1997-03-06 1998-10-09 Sharp Corp 光学装置および液晶表示装置ならびに光学装置の製造方法
KR20070021145A (ko) * 2004-02-10 2007-02-22 다이니폰 인사츠 가부시키가이샤 액정 표시 소자
KR20070021095A (ko) * 2003-08-08 2007-02-22 메르크 파텐트 게엠베하 액정 분자를 정렬하기 위해 반응성 메소젠을 갖는 정렬층
KR100711901B1 (ko) * 2005-09-08 2007-04-27 주식회사 엘지화학 액정배향 공중합체 및 이를 이용한 액정표시소자

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2343011A (en) * 1998-10-20 2000-04-26 Sharp Kk A liquid crystal display device
JP4178920B2 (ja) * 2001-12-03 2008-11-12 セイコーエプソン株式会社 配向膜、配向膜の形成方法、液晶装置、並びに投射型表示装置
US20040138408A1 (en) * 2002-01-02 2004-07-15 Harris Frank W. Polymide lcd alignment layer
US6781665B2 (en) * 2002-02-04 2004-08-24 Fujitsu Display Technologies Corporation Liquid crystal display and method of manufacturing the same
GB2388201A (en) * 2002-04-30 2003-11-05 Hewlett Packard Co Liquid crystal device
JP4472263B2 (ja) 2003-03-20 2010-06-02 シャープ株式会社 液晶表示装置の製造方法
KR101192630B1 (ko) 2005-12-30 2012-10-18 엘지디스플레이 주식회사 횡전계형 액정표시장치용 어레이 기판
JP4320338B2 (ja) 2006-12-07 2009-08-26 エルジー ディスプレイ カンパニー リミテッド 液晶パネルセルの製造方法
TWI372922B (en) * 2008-06-30 2012-09-21 Chimei Innolux Corp Manufacturing method of alignment film and manufacturing method of liquid crystal display panel
US8325315B2 (en) * 2008-08-19 2012-12-04 Samsung Display Co., Ltd. Mother panel and method of manufacturing display panel using the same
WO2010026721A1 (ja) * 2008-09-03 2010-03-11 シャープ株式会社 配向膜、配向膜材料および配向膜を有する液晶表示装置ならびにその製造方法
US20110261295A1 (en) * 2008-09-17 2011-10-27 Kim Jae-Hoon Liquid crystal display and manufacturing method of the same
WO2010061491A1 (ja) * 2008-11-27 2010-06-03 シャープ株式会社 配向膜および配向膜を有する液晶表示装置ならびに配向膜の形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268318A (ja) * 1997-03-06 1998-10-09 Sharp Corp 光学装置および液晶表示装置ならびに光学装置の製造方法
KR20070021095A (ko) * 2003-08-08 2007-02-22 메르크 파텐트 게엠베하 액정 분자를 정렬하기 위해 반응성 메소젠을 갖는 정렬층
KR20070021145A (ko) * 2004-02-10 2007-02-22 다이니폰 인사츠 가부시키가이샤 액정 표시 소자
KR100711901B1 (ko) * 2005-09-08 2007-04-27 주식회사 엘지화학 액정배향 공중합체 및 이를 이용한 액정표시소자

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038332A (ja) * 2012-08-20 2014-02-27 Lg Chem Ltd 液晶配向膜およびこれを含む液晶セル
KR101545725B1 (ko) * 2012-08-20 2015-08-19 주식회사 엘지화학 액정 배향막 및 이를 포함하는 액정 셀
US9201271B2 (en) 2012-08-20 2015-12-01 Lg Chem, Ltd. Liquid crystal alignment layer and liquid crystal cell comprising the same
KR20190030842A (ko) 2017-09-15 2019-03-25 전북대학교산학협력단 광반응성기를 가지는 배향유도형 액정 단량체, 그를 이용한 액정의 수평배향방법 및 그로부터 제조된 액정표시장치
KR20190075705A (ko) 2017-12-21 2019-07-01 전북대학교산학협력단 수평배향 유도용 액정 조성물, 그를 이용한 수평배향형 액정표시장치의 제조방법 및 그 액정표시장치

Also Published As

Publication number Publication date
KR101725997B1 (ko) 2017-04-12
CN102985872A (zh) 2013-03-20
CN102985872B (zh) 2015-07-01
US9551902B2 (en) 2017-01-24
US20130050624A1 (en) 2013-02-28
KR20110104416A (ko) 2011-09-22

Similar Documents

Publication Publication Date Title
WO2011115338A1 (ko) 중합된 메조겐을 함유하는 배향 조절막을 구비하는 액정 표시 장치 및 그 제조 방법
US10634954B2 (en) Liquid crystal display device and manufacturing method thereof
WO2014092520A1 (ko) 액정 소자
WO2010032946A2 (en) Alignment material, alignment layer, liquid crystal display device and manufacturing method thereof
JP5357153B2 (ja) 液晶表示装置およびその製造方法
US8758871B2 (en) Liquid crystal display and method for manufacturing same
JP3395877B2 (ja) 液晶表示装置及びその製造方法
EP2584400A1 (en) Liquid crystal display device, alignment film, and method for manufacturing the same
US20050271833A1 (en) Liquid crystal display
KR101632925B1 (ko) 표시 장치 및 표시 장치의 제조 방법
WO2014084687A1 (ko) 광학 필름
WO2010151078A2 (en) Photopolymerizable resin composition
WO2016159601A1 (ko) 반사형 액정 소자 및 이의 용도
US10684513B2 (en) Liquid crystal display and production method therefor
WO2013085315A1 (ko) 액정셀
US7220467B2 (en) Photo-alignment material and liquid crystal display device and its manufacturing method using the same
KR101971923B1 (ko) 액정 표시 소자 및 감방사선성 수지 조성물
KR20150030108A (ko) 액정 표시 장치 및 이의 제조 방법
KR101027876B1 (ko) 면내 스위칭 모드의 액정표시장치와 그 제조방법
WO2013109070A1 (ko) 액정 조성물
KR100293432B1 (ko) 횡전계방식액정표시장치
US10989964B2 (en) Liquid crystal display device
WO2018080089A1 (ko) 투과도 가변 필름
KR20020068695A (ko) 액정표시장치의 컬러필터 오버코팅재
WO2014092519A1 (ko) 중합성 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066845.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13635051

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10848035

Country of ref document: EP

Kind code of ref document: A1