WO2011114711A1 - マイクロ波加熱装置 - Google Patents

マイクロ波加熱装置 Download PDF

Info

Publication number
WO2011114711A1
WO2011114711A1 PCT/JP2011/001505 JP2011001505W WO2011114711A1 WO 2011114711 A1 WO2011114711 A1 WO 2011114711A1 JP 2011001505 W JP2011001505 W JP 2011001505W WO 2011114711 A1 WO2011114711 A1 WO 2011114711A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power feeding
power
heated
microwave
Prior art date
Application number
PCT/JP2011/001505
Other languages
English (en)
French (fr)
Inventor
大森 義治
信江 等隆
安井 健治
三原 誠
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP11755902.1A priority Critical patent/EP2549832B1/en
Priority to US13/635,864 priority patent/US9029744B2/en
Priority to CN2011800144572A priority patent/CN102804914A/zh
Priority to JP2012505508A priority patent/JP5830687B2/ja
Publication of WO2011114711A1 publication Critical patent/WO2011114711A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to a microwave heating apparatus including a microwave generation unit configured using a semiconductor element.
  • an oscillating unit configured by using a semiconductor element, a plurality of amplifying units that amplify the output of the oscillating unit, and microwave power output from the amplifying unit are used as a power feeding part.
  • a heating chamber supplied via a power supply and an impedance detection unit for detecting the impedance of a power feeding portion that supplies microwave power to the heating chamber see, for example, Patent Document 1.
  • this conventional microwave heating apparatus stable cooking without uneven heating is performed on an object to be heated in the heating chamber by controlling the oscillation frequency based on the detection result of the impedance detection unit.
  • a microwave heating power source that can vary the oscillation frequency
  • an antenna that is a power feeding unit that supplies microwave power to the heating chamber
  • a detector that detects reflected power from the antenna
  • This conventional microwave heating apparatus tracks the oscillation frequency of the microwave heating power source that minimizes the reflected power, and drives the microwave heating power source in the vicinity of the oscillation frequency, so that it can always be driven with high power efficiency. It is configured.
  • an oscillation unit configured using a semiconductor element, a distribution unit that divides the output of the oscillation unit into a plurality, and a plurality of amplification units that amplify each of the distributed outputs, And a synthesizing unit that synthesizes the output of the amplifying unit (see, for example, Patent Document 3).
  • a phase shifter is provided between the distribution unit and the amplification unit.
  • the radiated power ratios and phase differences from a plurality of antennas can be changed arbitrarily and instantaneously to be uniform with respect to the object to be heated in the heating chamber. Heating.
  • the conventional microwave heating apparatus a plurality of power feeding methods for feeding power to the heating chamber using a plurality of antennas have been proposed.
  • the multi-feed type microwave heating apparatus has a problem that it is difficult to heat-treat various objects to be heated in different shapes, types, and amounts housed in a heating chamber to a desired state.
  • the oscillation frequency is optimized based on the detection result of the impedance of the heating chamber and the reflected power, and the heating unevenness is adjusted.
  • the supply of microwave power from one place to the heating chamber is insufficient to appropriately heat various objects to be heated having different shapes, types, and amounts.
  • the impedance of the heating chamber is detected and the reflected power is tracked to check the oscillation frequency that provides the minimum reflected power. Has the problem of taking too much time.
  • the present invention solves the problem in the conventional microwave heating apparatus, detects the arrangement state of the object to be heated, and more quickly sets the optimum heating condition corresponding to the detected arrangement state of the object to be heated.
  • An object is to determine with higher accuracy and optimally control the heating operation based on the determined heating condition.
  • the present invention can heat various objects to be heated in various shapes, types, and quantities to a desired state in a short time, and at the same time, the microwave power returning from the heating chamber to the power feeding unit is suppressed to a low level and the heating operation is highly efficient.
  • a microwave heating apparatus capable of performing the above is provided.
  • the microwave heating apparatus is A heating chamber for storing an object to be heated; A mounting table provided in the heating chamber and having a mounting surface on which the object to be heated is mounted; An oscillator that generates microwave power; A power distribution unit that distributes the output of the oscillation unit to a plurality of; Supplying each output of the power distribution unit to the heating chamber, and a plurality of power supply units disposed on the wall surface of the heating chamber; A phase variable unit that is provided in a transmission path between the power distribution unit and the power supply unit, and varies an output phase of at least one of the power distribution unit; A plurality of power detection units for detecting reflected power returning from the heating chamber to the power feeding unit; A moving mechanism that relatively moves a position of a straight line connecting the two power feeding units in the plurality of power feeding units with respect to the object to be heated on the mounting table; A control unit that controls an oscillation frequency of the oscillation unit, an output phase of the phase variable unit, and a movement position of the movement mechanism unit, and
  • the microwave heating apparatus configured as described above detects the arrangement state of the object to be heated, and based on the detected arrangement state of the object to be heated, the optimum heating condition is faster and more accurate.
  • the heating operation can be optimally controlled based on the determined heating condition.
  • the microwave heating apparatus of the first aspect can heat various objects to be heated of different types and amounts to a desired state in a short time, and at the same time, suppresses the microwave power returning from the heating chamber to a high efficiency.
  • a heating operation can be performed.
  • the control unit in the first aspect supplies microwave power having a phase difference from the two power feeding units to the heating chamber, By detecting the phase difference that minimizes the reflected power returning from the heating chamber to the two power supply units, the object to be heated on the mounting table in the vertical plane including the straight line connecting the two power supply units is detected. It is configured to detect the arrangement state.
  • the microwave heating apparatus according to the second aspect configured as described above has a phase difference that minimizes reflected power with respect to an object to be heated on a mounting table in a vertical plane including a straight line connecting two power feeding units. By detecting this, it becomes possible to accurately and accurately arrange the state of the object to be heated, and the optimum heating conditions for various objects to be heated with different shapes, types, and quantities can be detected with high accuracy in a short time. be able to.
  • the control unit in the second aspect is based on an arrangement state detected with respect to the object to be heated on the mounting table, and includes at least the power feeding unit, The phase varying unit and the moving mechanism unit are configured to be controlled.
  • the microwave heating apparatus according to the third aspect configured as described above performs optimal control based on the determined heating conditions, and heats various objects to be heated of different types and amounts to a desired state in a short time. At the same time, the microwave power returning from the heating chamber can be kept low, and an efficient heating operation can be performed.
  • the microwave heating apparatus when the mounting table in the third aspect is configured to be rotatable, and the moving mechanism unit rotates the mounting table, the two power feeding units
  • the heated object on the mounting table passes through a vertical plane including a straight line connecting the two.
  • the microwave heating apparatus according to the fourth aspect configured as described above can easily and accurately detect the arrangement state of the object to be heated on the mounting table in the vertical plane including the straight line connecting the two power feeding units.
  • the optimum heating conditions for various objects to be heated with different shapes, types and amounts can be detected in a short time.
  • one of the two power feeding units in the fourth aspect is disposed on the outer peripheral side of the mounting table, and the other is disposed on the central side of the mounting table.
  • the microwave heating apparatus of the fifth aspect configured as described above can detect the arrangement state of the object to be heated with high accuracy, and has optimum heating conditions for various objects to be heated having different shapes, types, and amounts. It can be detected with high accuracy in a short time.
  • the microwave heating apparatus is configured such that, in the plurality of power feeding units according to the third aspect, at least one power feeding unit is connected to the moving mechanism so that a radial direction can be rotated. It is a rotating power feeding unit, and the other power feeding unit is a fixed power feeding unit arranged facing the radial direction of the rotating power feeding unit, One of the two power supply units to which the microwave power is supplied is the rotary power supply unit.
  • the moving mechanism unit moves the microwave radiation in a plurality of directions to detect the reflected power a plurality of times, thereby further changing the arrangement state of the object to be heated. It can be detected with high accuracy, and the optimum heating condition can be detected in a short time for various objects to be heated having different shapes, types and amounts.
  • the control unit according to the fifth aspect is configured such that the moving mechanism stops the rotation of the mounting table and connects the two power feeding units. It is comprised so that the position of the said to-be-heated object on the mounting table in the vertical surface containing, quantity, and a magnitude
  • the microwave heating apparatus according to the seventh aspect configured as described above can detect the arrangement state of the object to be heated with high accuracy by detecting the reflected power while the object to be heated is stopped.
  • the control unit according to the fifth aspect is configured so that the moving mechanism continues the rotation of the mounting table and connects the two power feeding units. It is comprised so that the position of the said to-be-heated object on the mounting table in the vertical surface containing, quantity, and a magnitude
  • the microwave heating device according to the eighth aspect configured as described above can continuously grasp the fluctuation of the reflected power with respect to the moving path direction of the object to be heated.
  • the control unit in the third aspect detects an arrangement state of the object to be heated on the mounting table in the initial stage of the heating operation, The main heating operation is performed after controlling at least the power feeding unit, the phase varying unit, and the moving mechanism unit.
  • the microwave heating apparatus according to the ninth aspect configured as described above determines the optimum heating condition corresponding to the detected arrangement state of the object to be heated earlier and with higher accuracy, and is based on the determined heating condition. The heating operation can be optimally controlled.
  • the control unit includes the rotary power supply unit and the fixed power supply unit disposed facing the radial direction of the rotary power supply unit.
  • the microwave power whose phase difference is controlled is supplied to each of the above, and the above-mentioned on the mounting table in a vertical plane including a straight line connecting the rotary power feeding unit and the fixed power feeding unit to which the microwave power is supplied It is comprised so that the arrangement state of to-be-heated material may be detected.
  • the microwave heating apparatus configured as described above can perform the arrangement state of the object to be heated with higher accuracy, and can optimally heat various objects to be heated having different shapes, types, and amounts. The condition can be detected in a short time.
  • the fixed power feeding part in the sixth aspect is arranged at equal intervals in a radial position around the rotary power feeding part
  • the said control part is comprised so that the arrangement
  • the microwave heating apparatus according to the eleventh aspect configured as described above is the arrangement state of the object to be heated by detecting the reflected power a plurality of times by moving the microwave radiation in a plurality of directions by the rotation of the rotary power feeding unit. Can be grasped more continuously, and the optimum heating conditions for various objects to be heated having different shapes, types and amounts can be detected in a short time.
  • the control unit according to the eleventh aspect sequentially stops the radial direction of the rotary power feeding part at a position facing the fixed power feeding part, It is comprised so that the arrangement
  • the microwave heating apparatus according to the twelfth aspect configured as described above can accurately grasp the fluctuation of the reflected power with respect to the moving path direction of the object to be heated, and more detailed information on the object to be heated such as the size and the number of objects. Can be detected, and heating conditions suitable for various objects to be heated having different shapes, types, and amounts can be determined in a short time.
  • the microwave heating apparatus of the present invention accurately detects the arrangement state of the object to be heated in the heating chamber, and determines the optimum heating condition corresponding to the detected arrangement state of the object to be heated earlier and more accurately.
  • the heating operation can be optimally controlled based on the determined heating condition.
  • various objects to be heated having different shapes, types, and amounts can be reliably heated to a desired state in a short time, and at the same time, the microwave power returning from the heating chamber to the power feeding unit can be reduced. It is possible to perform a heating operation with high efficiency.
  • the block diagram which shows the structure of the microwave generation part in the microwave heating apparatus of Embodiment 1 which concerns on this invention.
  • Propagation diagram of microwave in microwave heating apparatus of embodiment 1 according to the present invention Propagation diagram of microwave having phase difference in microwave heating apparatus of embodiment 1 according to the present invention Arrangement of power feeding parts in microwave heating apparatus of embodiment 1 according to the present invention
  • the flowchart which shows the main flow which shows the load state detection operation
  • the flowchart which shows the estimation process of the load state in the microwave heating device of Embodiment 2 which concerns on this invention
  • the schematic block diagram which showed the electric power feeding part and mounting base in the heating chamber in the microwave heating apparatus of Embodiment 3 which concerns on this invention
  • the top view which shows the structure of the electric power feeding part in the heating chamber in the microwave heating apparatus of Embodiment 3 which concerns on this invention.
  • microwave heating apparatus of the present invention a microwave oven will be described.
  • the microwave oven is an example, and the microwave heating apparatus of the present invention is not limited to the microwave oven, and dielectric heating is performed. It includes microwave heating devices such as used heating devices, garbage processing machines, and semiconductor manufacturing devices. Further, the present invention is not limited to the specific configurations of the following embodiments, but includes configurations based on the same technical idea.
  • FIG. 1 is a block diagram showing a configuration of a microwave generation unit in the microwave heating apparatus according to the first embodiment of the present invention.
  • the microwave generation unit in the microwave heating apparatus of the first embodiment includes an oscillation unit 1 configured using a semiconductor element, a power distribution unit 2 that distributes the output of the oscillation unit 1 into two, and a power distribution unit 2.
  • Amplifying units 4a and 4b configured using semiconductor elements that amplify the outputs of the above and power feeding units 5a and 5b that are antennas for supplying microwave power amplified by the amplifying units 4a and 4b into the heating chamber 8 are provided.
  • the microwave generation unit is inserted into each microwave propagation path connecting the power distribution unit 2 and the respective amplification units 4a and 4b, and the phase variable unit 3a, which generates an arbitrary phase difference between the input and output.
  • a power detection unit that detects the microwave power that is inserted into each microwave propagation path connecting the amplification units 4a and 4b and the power supply units 5a and 5b and returns from the heating chamber 8 to the power supply units 5a and 5b.
  • a control unit 7 for controlling the oscillation frequency of the oscillation unit 1 and the output phases of the phase variable units 3a and 3b in accordance with the reflected power detected by the power detection units 6a and 6b.
  • a door (not shown) that opens and closes in order to put in and out the object to be heated 10 is provided on one wall surface constituting the heating chamber 8.
  • the wall surface other than the wall surface provided with the door is made of a shielding plate made of a metal material, and is configured to confine the microwave radiated in the heating chamber 8 in the heating chamber 8.
  • a turntable 9 which is a mounting table for mounting the object 10 to be heated.
  • the turntable 9 is provided in the heating chamber 8 so that the placement surface on which the article to be heated 10 is placed becomes a horizontal plane.
  • a drive shaft of a motor 13 is connected to the center of the turntable 9, and the turntable 9 is configured so that the mounting surface rotates in a horizontal state.
  • the two power feeding portions 5a and 5b have the same specifications and are disposed on a surface substantially parallel to the mounting surface of the turntable 9. In the first embodiment, one power feeding portion 5 a is disposed below the outer peripheral side of the turntable 9, and the other power feeding portion 5 b is disposed below the vicinity of the rotation center of the turntable 9.
  • the microwave heating apparatus by driving the motor 13 during heating, the turntable 9 rotates, and the object to be heated 10 on the turntable 9 moves in the heating chamber 8 to be heated. It has a configuration that can reduce uneven heating in the object 10.
  • the motor 13 corresponds to a moving mechanism unit that moves the object to be heated 10 on the turntable 9 relative to the position of a straight line connecting the power feeding units 5a and 5b.
  • the operation of the microwave heating apparatus of the first embodiment configured as described above will be described below.
  • the object to be heated 10 is placed on the turntable 9 and stored in the heating chamber 8, and the user inputs the heating setting contents related to the object to be heated 10 in the operation unit (not shown).
  • the operation unit When the heating setting content is input in the operation unit, the operation unit outputs a heating start signal to the microwave generation unit, and the heating operation is started.
  • the microwave heating apparatus of the first embodiment in the initial stage of the heating operation, that is, in the stage before the main heating operation in which actual microwave heating is performed on the object to be heated 10, the arrangement of the object to be heated in the heating chamber A load state detection operation for detecting the state is performed. First, this load state detection operation will be described.
  • the control unit 7 Upon receiving the heating start signal from the operation unit, the control unit 7 operates a drive power supply (not shown) to supply power to the oscillation unit 1.
  • a voltage signal whose frequency of the oscillating unit 1 is set to, for example, 2450 MHz is supplied from the driving power source to the oscillating unit 1, and the oscillating unit 1 starts oscillating.
  • the output of the oscillating unit 1 is distributed approximately 1 ⁇ 2 by the power distributing unit 2 and becomes two microwave powers.
  • the control unit 7 controls the drive power supply to operate the amplification units 4a and 4b.
  • the microwave power output from each amplifier 4a, 4b is set to a power smaller than the rated power, for example, 100W.
  • the respective microwave powers output from the amplifying units 4a and 4b operating in parallel are supplied into the heating chamber 8 via the power detection units 6a and 6b and the power feeding units 5a and 5b.
  • the microwave power (reflected power) that has not been absorbed by the object to be heated 10 or the like returns from the heating chamber 8 to the power feeding units 5 a and 5 b.
  • the reflected power returned to each of the power feeding units 5a and 5b is detected by each of the power detection units 6a and 6b.
  • the power detection units 6 a and 6 b transmit a detection signal proportional to the detected reflected power amount to the control unit 7.
  • the control unit 7 detects the amount of reflected power that has returned to each of the power supply units 5a and 5b based on detection signals from the power detection units 6a and 6b.
  • the above-described detection operation of the reflected power amount is performed every predetermined rotation angle of the turntable 9, for example, every 10 degrees, in a state where the object to be heated 10 is placed on the turntable 9.
  • the control unit 7 can detect the position of the turntable 9 having the rotation angle indicating the minimum reflected power amount in the operation of detecting the reflected power amount (operation for detecting the rotation angle).
  • the control unit 7 detects the reflected power with respect to the microwave power having different phases supplied from the two power feeding units 5a and 5b to the heating chamber 8 in the load state detection operation.
  • the detection operation of the reflected power with respect to the microwave power having different phases is performed by changing the phase difference every 10 degrees in the range from 0 degree to 360 degrees by the phase variable sections 3a and 3b provided in the respective microwave propagation paths. ing.
  • the control unit 7 Based on the detection signals from the power detection units 6a and 6b, the control unit 7 detects the amount of reflected power (phase characteristic) for two microwave powers having a phase difference of 10 degrees pitch (phase characteristic detection operation). .
  • the phase characteristic detection operation is performed at the position of the turntable 9 having the rotation angle detected by the rotation angle detection operation described above in a state where the object to be heated 10 is placed on the turntable 9.
  • the phase characteristic detection operation may be alternately performed at every predetermined rotation angle, for example, every 10 degrees in the rotation angle detection operation.
  • the control unit 7 can detect the arrangement state (position, etc.) of the article to be heated 10 based on the phase difference that minimizes the amount of reflected power detected in the phase characteristic detection operation described above.
  • the microwave heating apparatus before starting the main heating operation as described above, the arrangement state of the object to be heated 10 on the turntable 9 is detected, and based on the detection result, the object to be heated 10 is heated. Select an appropriate power supply state and determine the optimal heating conditions.
  • the microwave heating apparatus according to the first embodiment can heat various objects to be heated having different shapes, types, and amounts to a desired state in a short time, and at the same time, microwave power returning from the heating chamber 8.
  • the heating operation can be performed with high efficiency while keeping the temperature low.
  • FIG. 2 is a propagation diagram of microwaves in the microwave heating apparatus of the first embodiment.
  • the microwaves radiated from the two power supply portions 5a and 5b spread radially like radio wave propagations 11a and 11b indicated by arcuate lines. Since microwaves are reflected on the wall surface of the heating chamber 8, the spread of the radio wave propagations 11a and 11b is complicated.
  • the microwave that reaches the object to be heated 10 through reflection on the wall surface of the heating chamber 8 has a long propagation path and a small electric power. For this reason, when considering the microwave power absorbed by the object to be heated 10, the propagation path of the microwave directly absorbed by the object to be heated 10 from the power supply units 5a and 5b becomes dominant.
  • the microwave power is almost summed in the in-phase interference region 12 where the radio wave propagations 11a and 11b overlap. Therefore, when the object to be heated 10 is disposed in the in-phase interference region 12 (A) formed between the two power feeding units 5a and 5b, the object to be heated is strongly heated and the reflected power is reduced.
  • FIG. 3 is a propagation diagram of microwaves in the microwave heating apparatus of the first embodiment, and shows a case where microwaves having a phase difference are radiated from the two power supply units 5a and 5b. As shown in FIG. 3, the microwaves radiated with a phase difference spread radially as indicated by the radio wave propagations 11a and 11b. The in-phase interference region 12 where the radio wave propagations 11a and 11b overlap with each other due to the phase difference at the time of microwave radiation is moved from the position of the in-phase interference region 12 shown in FIG.
  • the in-phase interference region 12 (A) is moved to a desired position between the power feeding units 5a and 5b by changing the phase difference of the microwaves radiated from the two power feeding units 5a and 5b. be able to. Therefore, by sequentially changing the phase difference of the microwaves radiated from the two power supply units 5a and 5b, the phase difference that minimizes the reflected power is detected, and the position between the two power supply units 5a and 5b is detected. It is possible to detect the position of the object to be heated 10 on a straight line connecting the two.
  • FIG. 4 is a layout diagram of the power feeding units 5a and 5b in the microwave heating apparatus of the first embodiment.
  • the two power feeding units 5 a and 5 b are arranged on a straight line including the rotation center P of the turntable 9 which is a mounting table inside the heating chamber 8.
  • the power feeding units 5 a and 5 b are arranged below the turntable 9, and one power feeding unit 5 a is below the circumferential portion (outer peripheral side) of the turntable 9, and the other
  • the power feeding section 5b is directly under the vicinity of the rotation center P of the turntable 9 (center side).
  • the power feeding units 5a and 5b are disposed on the same horizontal plane.
  • the two power feeding parts 5a and 5b are arranged in the heating chamber 8 so that the movement trajectory of the heated object 10 on the turntable 9 passes through a vertical plane including the straight line 15 connecting the two power feeding parts 5a and 5b. ing.
  • the range in which the position of the object to be heated 10 can be detected by microwave power feeding in which the phase difference from the two power feeding units 5a and 5b is changed is the straight line 15 connecting the two power feeding units 5a and 5b. It is the position of the turntable 9 which becomes upper. That is, the range in which the position of the object to be heated 10 can be detected is the position above the turntable 9 between the power feeding units 5a and 5b.
  • the power detection parts 6a and 6b detect the reflected power that has returned to the two power supply parts 5a and 5b, whereby the object to be heated 10 is supplied with the power supply part 5a. , 5b, the reflected power becomes small when crossing the upper part (vertical surface) of the straight line 15 connecting the lines 5 and 5b.
  • the arrangement state of the object to be heated 10 on the turntable 9 can be detected based on the rotational position of the turntable 9 when the reflected power becomes small and the phase difference.
  • the turntable 9 is stopped at the rotational position where the reflected power of the two power feeding units 5a and 5b is minimized, and further supplied from the power feeding units 5a and 5b where the reflected power is minimized.
  • the arrangement state of the object to be heated 10 on the turntable 9 can be detected.
  • Appropriate heating conditions are determined based on the arrangement state of the article to be heated 10 detected on the turntable 9 as described above, and desired microwave power is supplied to the heating chamber 8 from the power supply units 5a and 5b. .
  • an oscillation frequency detection operation for determining the oscillation frequency in the oscillation unit 1 is performed.
  • the control unit 7 controls the oscillation unit 1 to detect the frequency characteristic with respect to the reflected power, and extracts the oscillation frequency that minimizes the reflected power detected by the power detection units 6a and 6b.
  • the oscillation frequency is determined, and the main heating operation is performed at the determined oscillation frequency.
  • the control unit 7 operates the oscillation frequency of the oscillation unit 1 until it reaches 2500 MHz, which is the upper limit of the variable frequency range, for example, from 2400 MHz to a 1 MHz pitch, and the reflected power is minimized.
  • the frequency is fixed.
  • the control part 7 can detect the quantity of the to-be-heated material 10 based on the frequency
  • the arrangement state of the object to be heated 10 on the turntable 9 is detected by detecting the minimum reflected power for each predetermined rotation angle of the turntable 9 to obtain a desired rotation angle.
  • the position of the object to be heated 10 is specified by detecting the phase characteristic of the microwave that is confirmed and has the minimum reflected power at the rotation angle.
  • the present invention is not limited to such a detection operation. For example, a phase characteristic detection may be performed for each predetermined rotation angle of the turntable 9 to perform a load state detection operation with higher accuracy.
  • the phase characteristic is detected for each predetermined rotation angle as described above, when the detected reflected power becomes a value equal to or less than the threshold value, the object to be heated 10 is arranged at the detection position at that time. It may be estimated that the heating operation is started. By comprising in this way, it becomes possible to determine the arrangement
  • phase variable units 3a and 3b are provided for each output of the power distribution unit 2 .
  • the phase difference can be changed.
  • the control unit 7 is at least power feeding units 5a and 5b, phase variable units 3a and 3b, and a moving mechanism unit based on the arrangement state of the object to be heated 10 on the turntable 9.
  • the motor 13 is controlled to perform a microwave heating operation under optimum heating conditions for the object to be heated 10.
  • the control unit 7 controls the oscillation frequency of the oscillation unit 1 and adjusts the outputs of the amplification units 4a and 4b according to the heating conditions.
  • the control unit 7 stops the turntable 9 at every predetermined rotation angle, and the turntable is on a straight line (vertical surface) connecting the two power feeding units 5a and 5B.
  • the configuration example for detecting the arrangement state of the object to be heated 10 on 9 has been described, it is also possible to detect the arrangement state of the object to be heated 10 while the turntable 9 continues to rotate. That is, in the state where the turntable 9 is rotating, the detection operation of the rotation angle of the turntable 9 and the detection operation of the phase characteristic are sequentially performed alternately. As a result, the operation time of the load state detection operation is shortened, and as a result, the heating time can be shortened.
  • the load state detection operation is performed in the initial stage of the heating operation, the arrangement state of the object to be heated 10 on the turntable 9 is detected, and the main heating is performed based on the detection result.
  • the load state detection operation the rotation angle detection operation and the phase characteristic detection operation
  • the microwave heating apparatus can accurately detect the arrangement state of the object to be heated 10 by performing the load state detection operation. Desired microwave heating can be performed with high efficiency.
  • the microwave heating apparatus of the second embodiment is different from the microwave heating apparatus of the first embodiment described above in the load state detection operation executed in the microwave generator, and the basic configuration is the embodiment. 1 is the same as the microwave heating apparatus. 5 to 7 are flowcharts showing the load state detection operation in the microwave heating apparatus of the second embodiment.
  • the microwave heating apparatus according to the second embodiment includes a microwave generator having the same configuration as the microwave generator in the microwave heating apparatus according to the first embodiment shown in FIG.
  • the heating operation including the load state detection operation executed by the microwave generation unit in the microwave heating apparatus of the second embodiment will be described with reference to the flowcharts of FIGS.
  • FIG. 5 is a flowchart showing a main flow showing the load state detection operation.
  • the heating operation is started by the heating setting content (heating start signal) from the operation unit.
  • the frequency of the oscillation unit 1 is set to a predetermined oscillation frequency, for example, 2450 MHz, and the oscillation unit 1 starts oscillation.
  • step 102 alignment of the turntable 9 is performed. That is, the turntable 9 is set to the initial position.
  • step 103 a phase characteristic detection process to be described later is executed.
  • this phase characteristic detection process the microwave power whose phase has been changed from the two power supply units 5a and 5b is supplied to the heating chamber 8 while the turntable 9 is stopped rotating, and the reflected power is detected. Yes.
  • step 104 the detection result of the previous phase characteristic is recorded. In the recording in step 104, the phase characteristics for each rotation angle of the turntable 9 are recorded.
  • step 105 it is determined whether or not the turntable 9 has rotated once and the detection of the phase characteristics of the entire mounting surface of the turntable 9 has been completed. If the turntable 9 has not made one rotation yet, in step 106, the turntable 9 is rotated by a certain angle, and the next phase characteristic detection process is executed. If it is detected in step 105 that the turntable 9 has made one revolution, a load state estimation process described later is executed in step 107. The position, quantity, and size of the object to be heated on the turntable 9 are detected by the load state estimation process.
  • steps 101 to 107 are the load state detection operation.
  • an oscillation frequency detection process is executed.
  • This oscillation frequency detection process is a process for detecting the oscillation frequency of the oscillation unit 1 at which the reflected power is minimized, and the oscillation frequency of the oscillation unit 1 is detected by sweeping the frequency range from 2400 kHz to 2500 kHz.
  • the optimum rotation angle of the turntable 9 and the phase difference of the microwave power are set based on the detection result in the preceding load state estimation process.
  • step 109 based on the detection result of the load state estimation process and the frequency detection process, the optimum heating condition for the object to be heated 10 is determined, and the main heating operation is started based on the optimum heating condition.
  • FIG. 6 is a flowchart showing the phase characteristic detection process executed in step 103 in the main flow (see FIG. 5).
  • step 201 the phase difference of the microwave power radiated from the two power feeding units 5a and 5b is set to 0 degree as an initial value. That is, microwave power having the same phase is supplied to the heating chamber 8 from the two power supply units 5a and 5b, and the in-phase interference region (the in-phase interference region 12 (FIG. 2) in the middle position between the two power supply units 5a and 5b. A)).
  • step 202 the reflected power values received by the two power feeding units 5a and 5c from the heating chamber 8 are measured.
  • step 203 the measured reflected power value when the phase difference is 0 degree (initial value) is recorded.
  • the measurement of the reflected power value in the above step 202 and step 203 is performed by shifting the phase difference by a constant value, for example, every 10 degrees.
  • the measurement range is a range where the phase difference is 0 to 360 degrees.
  • the routine of measuring the reflected power value in the range of 0 to 360 degrees is executed by repeating the steps from Step 202 to Step 205.
  • FIG. 7 is a flowchart showing a load state estimation process executed in step 107 in the main flow (see FIG. 5).
  • step 301 the detection result of the phase characteristic when the rotation angle of the turntable 9 is the initial value is referred to.
  • step 302 when the rotation angle of the turntable 9 is the initial value, the range of the phase difference where the reflected power value is equal to or less than the threshold value is obtained.
  • the ratio of the reflected power to the microwave power supplied to the heating chamber 8 is used as the threshold value. For example, when the ratio is 50% or less, it is determined that the object to be heated 10 as a load exists at the corresponding position. Is done.
  • step 302 The phase difference range obtained in step 302 is recorded as the load position, that is, the position of the object to be heated 10 on the turntable 9 (step 303).
  • the determination of the presence of the load in step 302 and step 303 and the recording of the load position are executed until the turntable 9 completes one rotation.
  • step 304 it is determined whether or not the rotation angle of the turntable 9 being referred to has completed one rotation. In step 304, if the rotation angle of the turntable 9 being referred to is not completed for one rotation, the process proceeds to step 305. In step 305, it is determined whether or not the load position on the turntable 9 at the previous rotation angle and the load position on the turntable 9 at the current rotation angle are continuous. That is, it is determined whether or not the phase difference range in which the reflected power value at the previous rotation angle is equal to or less than the threshold and the similar phase difference range at the current rotation angle are continuous.
  • step 307 the load position at the current rotation angle is recorded as indicating the position of another load (object to be heated).
  • step 305 when it is determined in step 305 that the load position is continuous, the load (heated object) detected at the current rotation angle in step 306 is the same as the load (heated object) at the previous rotation angle. Recorded as being.
  • step 308 referring to the detection result of the phase characteristic regarding the next rotation angle of the turntable 9, the process proceeds to step 302.
  • step 304 if the rotation angle of the turntable 9 being referred to has completed one rotation, the process proceeds to step 309.
  • step 309 the load range on the turntable 9 is obtained based on the recorded load position, and the arrangement state of the load (object to be heated), that is, the position and quantity of the load, and the size for each load are determined.
  • step 310 the quantity, position, and size of each load (object to be heated) are determined, and the determined information is recorded.
  • the microwave heating apparatus performs the load state detection operation, thereby arranging the heated object 10, that is, the position, quantity, and size of the heated object 10 on the turntable 9.
  • the desired microwave heating can always be performed with high efficiency on the heated portion 10 on the turntable 9.
  • FIG. 8 is a schematic configuration diagram showing a power feeding unit and a mounting table in the heating chamber in the microwave heating apparatus of the third embodiment.
  • FIG. 9 is a plan view showing the configuration of the power feeding unit in the heating chamber in the microwave heating apparatus of the third embodiment.
  • the microwave generator in the microwave heating apparatus of the third embodiment has the same configuration as the microwave generator in the microwave heating apparatus of the first embodiment shown in FIG.
  • the microwave generation unit since three or more power supply units are provided in the heating chamber, the microwave generation unit includes a plurality of power distribution units and variable phases according to the number of power supply units.
  • a power amplifier, an amplifier, and a power detector since three or more power supply units are provided in the heating chamber, the microwave generation unit includes a plurality of power distribution units and variable phases according to the number of power supply units.
  • a power amplifier, an amplifier, and a power detector since three or more power supply units are provided in the heating chamber, the microwave generation unit includes a plurality of power distribution units and variable phases according to the number of power supply units.
  • a shelf 14 is provided in the heating chamber 8 as a mounting table for the article to be heated 10.
  • the placement surface of the shelf 14 is arranged to be a horizontal plane, and the object to be heated 10 is arranged on the placement surface of the shelf 14.
  • a plurality of power feeding units 5a, 5b, 5c, and 5d are arranged on the lower side of the shelf 14. These power feeding units 5a, 5b, 5c, and 5d are fixed to the heating chamber 8, and will be referred to as fixed power feeding units 5a, 5b, 5c, and 5d in the following description. Further, immediately below the center position of the mounting surface of the shelf 14, there is provided a rotating power feeding unit 16 that is a power feeding unit as an antenna capable of rotating the radiation direction in a horizontal plane.
  • the power feeding units 5 a, 5 b, 5 c, and 5 d that are four antennas are arranged at the four corners on the bottom surface of the heating chamber 8 in the region below the shelf 14. Is provided.
  • the rotating power feeding unit 16 serving as a power feeding unit, which is another antenna is disposed at a substantially central position on the bottom surface of the heating chamber 8. The radial direction of the rotary power supply unit 16 is provided so as to be rotatable in the direction of each fixed power supply unit 5a, 5b, 5c, 5d.
  • the fixed power feeding portions 5 a, 5 b, 5 c, 5 d are arranged at equal intervals at radial positions with the rotary power feeding portion 16 as the center.
  • the fixed power feeding units 5 a, 5 b, 5 c, 5 d and the rotary power feeding unit 16 are arranged on a surface substantially parallel to the mounting surface of the shelf 14.
  • the motor 13 rotates the radial direction of the rotary power feeding unit 16 and combines it with the fixed power feeding units 5a, 5b, 5c, or 5d, so that the position 15 of the straight line connecting the power feeding units is a shelf. 14 can be moved relative to the object 10 to be heated.
  • the motor 13 relatively moves the position of the straight line connecting the rotary power feeding unit 16 and the fixed power feeding units 5a, 5b, 5c, or 5d with respect to the object to be heated 10 on the shelf 14. It corresponds to a moving mechanism part.
  • any one of the fixed power feeding units 5a, 5b, 5c, and 5d is selected, and the rotation centered on the selected fixed power feeding unit Microwave power is radiated from the power supply unit 16 into the heating chamber 8.
  • each of the fixed power feeding units 5a, 5b, 5c, and 5d and the rotary power feeding unit 16 are respectively the same as in the configuration of the first embodiment described above.
  • the microwave supplied to is configured to generate an arbitrary phase difference in the phase variable section.
  • the reflected power returning from the heating chamber 8 to the fixed power feeding units 5a, 5b, 5c, 5d and the rotary power feeding unit 16 is detected by the power detection unit.
  • the rotary power feeding unit 16 rotates and moves the microwave radiation direction.
  • uneven heating of the object to be heated 10 on the shelf 14 disposed in the heating chamber 8 is reduced.
  • a load state detection operation similar to the load state detection operation in the first embodiment described above is performed.
  • the load state detection operation in the third embodiment is executed by rotating the rotary power feeding unit 16 at the approximate center of the heating chamber 8.
  • the microwave radiation direction of the rotating power supply unit 16 is set to, for example, the direction of the fixed power supply unit 5a (the lower left direction in FIG. 9), and detection of a phase difference that minimizes reflected power by the combination of the rotating power supply unit 16 and the fixed power supply unit 5a. Do.
  • this phase characteristic detection processing it is possible to detect the arrangement state of the object to be heated 10 above (the vertical plane) the straight line 15 connecting the two power feeding units 5a and 16.
  • the rotating power feeding unit 16 is rotated so that, for example, the microwave radiation direction is the direction of another fixed power feeding unit 5b (the lower right direction in FIG. 9). Detection of the phase difference that minimizes.
  • this phase characteristic detection processing it is possible to detect the arrangement state of the object to be heated 10 above the vertical line (vertical surface) connecting the two power feeding units 5b and 16.
  • the rotating power feeding unit 16 is sequentially rotated to detect the arrangement state of the object to be heated 10 between the rotating power feeding unit 16 and the power feeding unit 5c or 5d.
  • the load state detection operation is performed by rotating the direction in a plane parallel to the placement surface of the object to be heated 10.
  • the phase difference that minimizes the reflected power is sequentially detected by the combination of the rotary power supply unit 16 and the fixed power supply units 5a, 5b, 5c, or 5d in the radiation direction.
  • phase characteristic detection processing it is possible to accurately detect the arrangement state of the object to be heated on the shelf 14 (mounting surface) that is the mounting table. Can do.
  • the phase detection operation and the frequency detection operation described in the first embodiment are performed, and the optimum heating condition for the object to be heated 10 is determined and the main heating operation is performed. It is configured.
  • the microwave heating apparatus of the third embodiment can determine the arrangement state of the object to be heated 10 by performing the load state detection operation, and is always highly efficient with respect to the heated part 10.
  • the desired microwave heating can be performed.
  • the fixed power feeding unit facing the microwave radiation direction is sequentially switched so that the microwave is supplied to the fixed power feeding unit. It may be configured. In this way, when the reflected power is detected during the rotation operation of the rotary power supply unit 16 by sequentially switching to the power supply unit facing the microwave radiation direction, the power supply is close to the position where the object to be heated 10 is disposed. The reflected power of the portion is reduced, and the arrangement of the heated object 10 in the rotation direction can be estimated in a short time.
  • the rotary power feeding unit 16 is provided at the substantially central position of the bottom surface of the heating chamber 8, and the fixed power feeding units 5 a, 5 b, 5 c, 5 d are provided at the four corners of the bottom surface of the heating chamber 8.
  • the fixed power feeding portion provided in the heating chamber 8 is not limited to four places.
  • the configuration in which the load state detection operation for detecting the arrangement state of the object to be heated in the heating chamber is described in the previous stage of the main heating operation has been described. It is also possible to perform the configuration.
  • the control unit Upon receiving the heating start signal from the operation unit, the control unit starts the main heating operation based on the heating setting content set in the operation unit, and simultaneously determines the optimum heating condition that minimizes the reflected power by simultaneously performing the load state detection operation. To do.
  • the optimum heating condition is determined, a microwave heating operation corresponding to the optimum heating condition is executed.
  • the heating time can be shortened.
  • the combination of the power feeding units is installed on one wall surface (bottom surface) of the heating chamber.
  • the combination of power feeding units may be arranged on a plurality of wall surfaces.
  • the optimum heating condition is determined by detecting the arrangement state of the object to be heated, and the microwave heating operation according to the optimum heating condition is performed.
  • the microwave heating apparatus of the present invention can perform microwave heating on various heating objects having different shapes, types, and quantities under optimum heating conditions by performing a load state detection operation. It is useful in various applications such as a heating device using dielectric heating, a garbage processing machine, or a microwave power source of a plasma power source that is a semiconductor manufacturing device.

Abstract

 マイクロ波加熱装置においては、加熱室(8)内には被加熱物(10)を載置する水平な載置面を有する載置台(9,14)と、マイクロ波電力を加熱室に給電し、加熱室壁面に配置された複数の給電部(5a,5b,5c,5d,16)が設けられており、移動機構部(13)により2つの給電部の間を結ぶ直線の位置を被加熱物に対して相対的に移動させて、加熱室から2つの給電部に戻る反射電力が最小となるマイクロ波電力の位相差を検出することにより、載置台上の被加熱物の配置状態を検知するよう構成されている。

Description

マイクロ波加熱装置
 本発明は、半導体素子を用いて構成されたマイクロ波発生部を備えたマイクロ波加熱装置に関するものである。
 従来のこの種のマイクロ波加熱装置としては、半導体素子を用いて構成された発振部と、発振部の出力を増幅する複数の増幅部と、増幅部から出力されたマイクロ波電力が給電部分を介して供給される加熱室と、加熱室へマイクロ波電力を供給する給電部分のインピーダンスを検知するインピーダンス検知部とを有するものがある(例えば、特許文献1参照)。この従来のマイクロ波加熱装置においては、インピーダンス検知部の検知結果により発振周波数を制御することにより、加熱室内の被加熱物において加熱むらのない安定した調理が行われている。
 また、従来のマイクロ波加熱装置としては、発振周波数を可変できるマイクロ波加熱電源と、マイクロ波電力を加熱室へ供給する給電部であるアンテナと、このアンテナからの反射電力を検波する検波器とを有するものがある(例えば、特許文献2参照)。この従来のマイクロ波加熱装置は、反射電力が最小となるマイクロ波加熱電源の発振周波数を追尾し、その発振周波数の近傍でマイクロ波加熱電源を駆動することにより、常に高い電力効率で駆動できるよう構成されている。
 さらに、従来のマイクロ波加熱装置としては、半導体素子を用いて構成された発振部と、発振部の出力を複数に分割する分配部と、分配された各出力をそれぞれ増幅する複数の増幅部と、増幅部の出力を合成する合成部とを有するものがある(例えば、特許文献3参照)。この従来のマイクロ波加熱装置においては、分配部と増幅部との間に位相器が設けられている。この従来のマイクロ波加熱装置では、位相器を制御することにより、複数のアンテナからの放射電力比率や位相差を任意に、かつ瞬時に変化させて、加熱室内の被加熱物に対して一様な加熱を行っている。
特開昭59-165399号公報 特公昭62-048354号公報 特開昭56-132793号公報
 従来のマイクロ波加熱装置においては、加熱室に対して複数のアンテナを用いて給電する複数給電方式が提案されている。しかし、複数給電方式のマイクロ波加熱装置においては、加熱室内に収納された形状、種類、量の異なるさまざまな被加熱物を所望の状態に加熱処理することが難しいという課題を有していた。
 1つのアンテナから加熱室にマイクロ波電力を供給する1給電方式のマイクロ波加熱装置においては、加熱室のインピーダンスや反射電力の検知結果に基づいて、発振周波数の最適化を行い、加熱むらを調整して、より高い電力効率で動作させることは可能である。しかし、加熱室に対して1箇所からのマイクロ波電力の供給では、形状、種類、量の異なるさまざまな被加熱物に対して適切に加熱するには不十分であった。前述の従来のマイクロ波加熱装置の構成を複数箇所に給電部であるアンテナを有する複数給電方式に応用する場合、加熱室のインピーダンス検知のみでは、給電部間の透過電力の影響が把握できないため、検知誤差が大きくなるという課題を有している。
 複数箇所の給電部を同一発振周波数で動作させて、周波数を追尾する制御では、合成された電磁波の分布が固定化され、被加熱物の配置によっては最適な加熱条件を見つけることができず、形状、種類、量の異なるさまざまな被加熱物に対応するには不十分となっていた。
 また、従来のマイクロ波加熱装置では、複数の給電部であるアンテナからの放射電力比率や位相差を変化させるだけでは、形状、種類、量の異なるさまざまな被加熱物を所望の状態で適切に加熱することが難しく、効率の悪い加熱となるという課題を有している。
 また、複数箇所の給電部への発振周波数制御と位相差制御の全ての組み合わせの条件において、加熱室のインピーダンス検知、および反射電力の追尾を行って、最小の反射電力となる発振周波数を確認するには時間がかかりすぎるという課題も有している。
 本発明は、前記従来のマイクロ波加熱装置における課題を解決するものであり、被加熱物の配置状態を検知して、検知された被加熱物の配置状態に対応した最適な加熱条件をより早く、より精度高く決定して、決定した加熱条件に基づいて加熱動作を最適制御することを目的とする。本発明は、形状、種類、量の異なるさまざまな被加熱物を短時間で所望の状態に加熱することができ、同時に加熱室から給電部に戻るマイクロ波電力を低く抑えて効率の高い加熱動作を行うことができるマイクロ波加熱装置を提供する。
 本発明に係る第1の態様のマイクロ波加熱装置は、
 被加熱物を収容する加熱室と、
 前記加熱室内に設けられ、前記被加熱物を載置する載置面を有する載置台と、
 マイクロ波電力を発生させる発振部と、
 前記発振部の出力を複数に分配する電力分配部と、
 前記電力分配部の各出力を前記加熱室に給電し、前記加熱室壁面に配置された複数の給電部と、
 前記電力分配部と前記給電部との間の伝送路に設けられ、前記電力分配部の少なくとも一方の出力位相を可変する位相可変部と、
 前記加熱室から前記給電部に戻る反射電力を検出する複数の電力検出部と、
 前記載置台上の前記被加熱物に対して、前記複数の給電部における2つの給電部の間を結ぶ直線の位置を相対的に移動させる移動機構部と、
 前記発振部の発振周波数、前記位相可変部の出力位相、および前記移動機構部の移動位置を制御する制御部と、を備えるマイクロ波加熱装置であって、
 前記制御部は、前記移動機構部により前記2つの給電部の間を結ぶ直線の位置を前記被加熱物に対して相対的に移動させて、前記位相可変部により制御されたマイクロ波電力を前記2つの給電部から前記加熱室に供給し、前記加熱室から前記2つの給電部に戻る反射電力が最小となるマイクロ波電力の位相差を検出することにより、前記載置台上の前記被加熱物の配置状態を検知するよう構成されている。このように構成された第1の態様のマイクロ波加熱装置は、被加熱物の配置状態を検知して、検知された被加熱物の配置状態に基づき最適な加熱条件をより早く、より精度高く決定することが可能となり、決定した加熱条件に基づいて加熱動作を最適制御することができる。この結果、第1の態様のマイクロ波加熱装置は、種類、量の異なるさまざまな被加熱物を短時間で所望の状態に加熱でき、同時に加熱室から戻るマイクロ波電力を低く抑えて効率の高い加熱動作を行うことができる。
 本発明に係る第2の態様のマイクロ波加熱装置において、前記第1の態様における前記制御部は、前記2つの給電部から前記加熱室に対して位相差を有するマイクロ波電力を供給して、前記加熱室から前記2つの給電部に戻る反射電力が最小となる位相差を検出することにより、前記2つの給電部の間を結ぶ直線を含む鉛直面における前記載置台上の前記被加熱物の配置状態を検知するよう構成されている。このように構成された第2の態様のマイクロ波加熱装置は、2つの給電部の間を結ぶ直線を含む鉛直面における載置台上の被加熱物に対して、反射電力が最小となる位相差の検出を行うことにより、被加熱物の配置状態を簡単に、精度高く行うことが可能となり、形状、種類、量の異なるさまざまな被加熱物に最適な加熱条件を短時間で精度高く検知することができる。
 本発明に係る第3の態様のマイクロ波加熱装置において、前記第2の態様における前記制御部は、前記載置台上の前記被加熱物に関して検知された配置状態に基づき、少なくとも前記給電部、前記位相可変部および前記移動機構部を制御するよう構成されている。このように構成された第3の態様のマイクロ波加熱装置は、決定された加熱条件に基づいて最適制御を行って、種類、量の異なるさまざまな被加熱物を短時間で所望の状態に加熱でき、同時に加熱室から戻るマイクロ波電力を低く抑えて効率の高い加熱動作を行うことができる。
 本発明に係る第4の態様のマイクロ波加熱装置において、前記第3の態様における前記載置台が回転可能に構成され、前記移動機構部が前記載置台を回転させたとき、前記2つの給電部の間を結ぶ直線を含む鉛直面を前記載置台上の前記被加熱物が通過するよう構成されている。このように構成された第4の態様のマイクロ波加熱装置は、2つの給電部の間を結ぶ直線を含む鉛直面における載置台上の被加熱物の配置状態を簡単に、精度高く検出することができ、形状、種類、量の異なるさまざまな被加熱物に対する最適な加熱条件を短時間で検知することができる。
 本発明に係る第5の態様のマイクロ波加熱装置は、前記第4の態様における前記2つの給電部において、一方が前記載置台の外周側に配置され、他方が前記載置台の中央側に配置されている。このように構成された第5の態様のマイクロ波加熱装置は、精度高く被加熱物の配置状態を検出することができ、形状、種類、量の異なるさまざまな被加熱物に最適な加熱条件を短時間で精度高く検知することができる。
 本発明に係る第6の態様のマイクロ波加熱装置は、前記第3の態様における前記複数の給電部において、少なくとも1つの給電部が前記移動機構に連結されて放射方向が回転可能に構成された回転給電部であり、他の給電部が前記回転給電部の放射方向に対向して配置された固定給電部であり、
 マイクロ波電力が供給される2つの給電部における一方の給電部は、前記回転給電部となっている。このように構成された第6の態様のマイクロ波加熱装置は、移動機構部によりマイクロ波の放射を複数方向に移動させて反射電力を複数回検出することにより、被加熱物の配置状態をより精度高く検知することができ、形状、種類、量の異なるさまざまな被加熱物に対して最適な加熱条件を短時間で検知することができる。
 本発明に係る第7の態様のマイクロ波加熱装置において、前記第5の態様における前記制御部は、前記移動機構が前記載置台の回転を停止して、前記2つの給電部の間を結ぶ直線を含む鉛直面における前記載置台上の前記被加熱物の位置、数量および大きさを検知するよう構成されている。このように構成された第7の態様のマイクロ波加熱装置は、被加熱物が停止した状態で反射電力を検出することにより、精度高く被加熱物の配置状態を検知することができる。
 本発明に係る第8の態様のマイクロ波加熱装置において、前記第5の態様における前記制御部は、前記移動機構が前記載置台の回転を継続して、前記2つの給電部の間を結ぶ直線を含む鉛直面における前記載置台上の前記被加熱物の位置、数量および大きさを検知するよう構成されている。このように構成された第8の態様のマイクロ波加熱装置は、被加熱物の移動経路方向に対する反射電力の変動を連続的に把握することができる。
 本発明に係る第9の態様のマイクロ波加熱装置において、前記第3の態様における前記制御部は、加熱動作の初期段階において、前記載置台上の前記被加熱物の配置状態を検知して、少なくとも前記給電部、前記位相可変部および前記移動機構部を制御した後、本加熱動作を行うよう構成されている。このように構成された第9の態様のマイクロ波加熱装置は、検知された被加熱物の配置状態に対応した最適な加熱条件をより早く、より精度高く決定して、決定した加熱条件に基づいて加熱動作を最適制御することができる。
 本発明に係る第10の態様のマイクロ波加熱装置において、前記第6の態様における前記制御部は、前記回転給電部と、前記回転給電部の放射方向に対向して配置された前記固定給電部に位相差が制御されたマイクロ波電力をそれぞれ供給して、前記マイクロ波電力が供給された前記回転給電部と前記固定給電部との間を結ぶ直線を含む鉛直面における前記載置台上の前記被加熱物の配置状態を検知するよう構成されている。このように構成された第10の態様のマイクロ波加熱装置は、被加熱物の配置状態をより精度高く行うことができ、形状、種類、量の異なるさまざまな被加熱物に対して最適な加熱条件を短時間で検知することができる。
 本発明に係る第11の態様のマイクロ波加熱装置において、前記第6の態様における前記固定給電部は前記回転給電部を中心とした放射状の位置に等間隔で配置されており、
 前記制御部は、前記回転給電部の放射方向を回転させて、前記載置台上の前記被加熱物の配置状態を検知するよう構成されている。このように構成された第11の態様のマイクロ波加熱装置は、回転給電部の回転によりマイクロ波の放射を複数方向に移動させて反射電力を複数回検出することにより、被加熱物の配置状態をより連続的に把握することができ、形状、種類、量の異なるさまざまな被加熱物に最適な加熱条件を短時間で検知することができる。
 本発明に係る第12の態様のマイクロ波加熱装置において、前記第11の態様における前記制御部は、前記回転給電部の放射方向を前記固定給電部に対向する位置で順次停止して、前記載置台上の前記被加熱物の配置状態を検知するよう構成されている。このように構成された第12の態様のマイクロ波加熱装置は、被加熱物の移動経路方向に対する反射電力の変動を精度よく把握することができ、大きさや個数など被加熱物のより詳細な情報を検知することができ、形状、種類、量の異なるさまざまな被加熱物に適した加熱条件を短時間で決定することができる。
 本発明のマイクロ波加熱装置は、加熱室内の被加熱物の配置状態を正確に検知して、検知された被加熱物の配置状態に対応した最適な加熱条件をより早く、より精度高く決定して、決定した加熱条件に基づいて加熱動作を最適制御することができる。この結果、本発明によれば、形状、種類、量の異なるさまざまな被加熱物を短時間で所望の状態に確実に加熱することができ、同時に加熱室から給電部に戻るマイクロ波電力を低く抑えて効率の高い加熱動作を行うことができる。
本発明に係る実施の形態1のマイクロ波加熱装置におけるマイクロ波発生部の構成を示すブロック図 本発明に係る実施の形態1のマイクロ波加熱装置におけるマイクロ波の伝播図 本発明に係る実施の形態1のマイクロ波加熱装置における位相差を有するマイクロ波の伝播図 本発明に係る実施の形態1のマイクロ波加熱装置における給電部の配置図 本発明に係る実施の形態2のマイクロ波加熱装置における負荷状態検出動作を示すメインフローを示すフローチャート 本発明に係る実施の形態2のマイクロ波加熱装置における位相特性の検出処理を示すフローチャート 本発明に係る実施の形態2のマイクロ波加熱装置における負荷状態の推定処理を示すフローチャート 本発明に係る実施の形態3のマイクロ波加熱装置における加熱室内の給電部と載置台を示した概略構成図 本発明に係る実施の形態3のマイクロ波加熱装置における加熱室内の給電部の構成を示す平面図
 以下、本発明のマイクロ波加熱装置に係る好適な実施の形態について、添付の図面を参照しつつ説明する。なお、以下の実施の形態のマイクロ波加熱装置においては電子レンジについて説明するが、電子レンジは例示であり、本発明のマイクロ波加熱装置としては電子レンジに限定されるものではなく、誘電加熱を利用した加熱装置、生ゴミ処理機、あるいは半導体製造装置などのマイクロ波加熱装置を含むものである。また、本発明は、以下の実施の形態の具体的な構成に限定されるものではなく、同様の技術的思想に基づく構成を含むものである。
 (実施の形態1)
 図1は、本発明に係る実施の形態1のマイクロ波加熱装置におけるマイクロ波発生部の構成を示すブロック図である。
 図1において、実施の形態1のマイクロ波加熱装置におけるマイクロ波発生部は、半導体素子を用いて構成された発振部1、発振部1の出力を2分配する電力分配部2、電力分配部2の各出力を増幅する半導体素子を用いて構成した増幅部4a,4b、および増幅部4a,4bによって増幅されたマイクロ波電力を加熱室8内に供給するアンテナである給電部5a,5bを備えている。また、マイクロ波発生部には、電力分配部2とそれぞれの増幅部4a,4bとを接続する各マイクロ波伝播路に挿入され、入出力間に任意の位相差を発生させる位相可変部3a,3bと、増幅部4a,4bと給電部5a,5bとを接続する各マイクロ波伝播路に挿入され、加熱室8から各給電部5a,5bに戻ってくるマイクロ波電力を検出する電力検出部6a,6bと、電力検出部6a,6bによって検出された反射電力に応じて発振部1の発振周波数と位相可変部3a,3bの出力位相とを制御する制御部7が設けられている。
 なお、実施の形態1のマイクロ波加熱装置には、被加熱物10を出し入れするために開閉する扉(図示省略)が加熱室8を構成する一壁面に設けられている。加熱室8において、扉を設けた壁面以外の壁面は、金属材料の遮蔽板で構成されており、加熱室8内に放射されたマイクロ波を加熱室8内に閉じ込めるよう構成されている。
 加熱室8の内部には被加熱物10を載置するための載置台であるターンテーブル9が設けられている。ターンテーブル9は、被加熱物10を載置する載置面が水平面となるよう加熱室8内に設けられている。ターンテーブル9の中心にはモータ13の駆動軸が連結されており、ターンテーブル9は載置面が水平状態で回転するよう構成されている。2箇所の給電部5a,5bは、同じ仕様を有して、ターンテーブル9の載置面と実質的に平行な面上に配置されている。実施の形態1においては、一方の給電部5aがターンテーブル9の外周側の下方に配置され、他方の給電部5bがターンテーブル9の回転中心近傍の下方に配置されている。
 実施の形態1のマイクロ波加熱装置は、加熱中においてモータ13を駆動することにより、ターンテーブル9が回転し、ターンテーブル9上の被加熱物10が加熱室8内を移動して、被加熱物10における加熱むらを軽減できる構成を有している。実施の形態1においては、モータ13が給電部5a,5bの間を結ぶ直線の位置に対してターンテーブル9上の被加熱物10を相対的に移動させる移動機構部に相当する。
 以上のように構成された実施の形態1のマイクロ波加熱装置における動作について以下説明する。
 被加熱物10がターンテーブル9上に載置されて加熱室8内に収納され、使用者は当該被加熱物10に関する加熱設定内容を操作部(図示省略)において入力する。操作部において加熱設定内容が入力されると、操作部は加熱開始信号をマイクロ波発生部に出力して、加熱動作が開始される。
 実施の形態1のマイクロ波加熱装置においては、加熱動作の初期段階において、すなわち当該被加熱物10に対する実際のマイクロ波加熱を行う本加熱動作の前の段階において、加熱室内の被加熱物の配置状態を検出する負荷状態検出動作を行う。まず、この負荷状態検出動作について説明する。
 操作部から加熱開始信号を受けた制御部7は、駆動電源(図示省略)を動作させて、発振部1に電力を供給する。
 この時、発振部1の周波数が、例えば2450MHzに設定される電圧信号が駆動電源から発振部1に供給されて、発振部1は発振を開始する。発振部1の出力は電力分配部2にて略1/2に分配され、2つのマイクロ波電力となる。以降、制御部7は駆動電源を制御して増幅部4a,4bを動作させる。なお、この負荷状態検出動作において、各増幅部4a,4bから出力されるマイクロ波電力は、定格電力より小さい電力、例えば100Wに設定される。
 並列動作する増幅部4a,4bから出力されたそれぞれのマイクロ波電力は、電力検出部6a,6b、給電部5a,5bを経て加熱室8内に供給される。加熱室8内へ供給されたマイクロ波電力の内、被加熱物10などに吸収されなかったマイクロ波電力(反射電力)は、加熱室8から給電部5a,5b側に戻る。
 給電部5a,5bのそれぞれに戻ってきた反射電力は、各電力検出部6a,6bにおいて検出される。電力検出部6a,6bは、検出された反射電力量に比例した検出信号を制御部7に送信する。制御部7は、電力検出部6a,6bからの検出信号に基づき各給電部5a,5bに戻ってきた反射電力量を検知する。
 上記の反射電力量の検知動作は、被加熱物10がターンテーブル9に載置された状態において、ターンテーブル9の所定の回転角度毎、例えば10度毎に行われる。制御部7は、反射電力量の検出動作において、最小の反射電力量を示した回転角度のターンテーブル9の位置を検知することができる(回転角度の検出動作)。
 また、制御部7は、負荷状態検出動作において、2箇所の給電部5a,5bから加熱室8に供給された位相の異なるマイクロ波電力に対する反射電力を検知している。位相の異なるマイクロ波電力に対する反射電力の検知動作は、各マイクロ波伝搬路に設けた位相可変部3a,3bにより位相差を0度から360度までの範囲において10度ピッチ毎に変化させて行っている。10度ピッチ毎の位相差を有するマイクロ波電力が給電部5a,5bから加熱室8に供給されたとき、加熱室8から給電部5a,5b側に戻ってくる反射電力量が電力検出部6a,6bにより検出される。制御部7は、電力検出部6a,6bからの検出信号に基づき、10度ピッチ毎の位相差を有する2つのマイクロ波電力に対する反射電力量(位相特性)を検出する(位相特性の検出動作)。
 上記の位相特性の検出動作は、被加熱物10がターンテーブル9に載置された状態において、前述の回転角度の検出動作により検出された回転角度のターンテーブル9の位置で行われる。なお、位相特性の検出動作は、回転角度の検出動作における所定回転角度毎、例えば10度毎に交互に行ってもよい。
 制御部7は、前述の位相特性の検出動作において検出した反射電力量が最小となる位相差に基づいて、被加熱物10の配置状態(位置など)を検知することができる。
 実施の形態1においては、上記のように本加熱動作を開始する前に、ターンテーブル9上における被加熱物10の配置状態を検知し、その検知結果に基づき、当該被加熱物10の加熱に適した給電状態を選択して、最適加熱条件の確定を行う。この結果、実施の形態1のマイクロ波加熱装置は、形状、種類、量の異なるさまざまな被加熱物を短時間で所望の状態に加熱することができるとともに、同時に加熱室8から戻るマイクロ波電力を低く抑えて、効率の高い加熱動作を行うことができる。
 次に、位相差と被加熱物10の配置状態との関係について説明する。図2は、実施の形態1のマイクロ波加熱装置におけるマイクロ波の伝播図である。
 図2に示すように、2箇所の給電部5a,5bから放射されたマイクロ波は、円弧状の線で示す電波伝播11a,11bのように放射状に広がってゆく。加熱室8の壁面ではマイクロ波が反射するため、電波伝播11a,11bの広がりは複雑になる。しかし、加熱室8の壁面での反射を経て被加熱物10に到達するマイクロ波は、伝播経路が長くて電力が小さくなる。このため、被加熱物10が吸収するマイクロ波電力を考える場合には、給電部5a,5bから被加熱物10に直接吸収されるマイクロ波の伝播経路が支配的になる。
 図2に示すように、給電部5a,5bから放射されたマイクロ波が同位相である場合には、電波伝播11a,11bが重なる同相干渉領域12では、マイクロ波電力がほぼ合算される。したがって、2つの給電部5a,5bの間に形成される同相干渉領域12(A)に被加熱物10が配置されると、強く加熱され、反射電力は小さくなる。
 図3は、実施の形態1のマイクロ波加熱装置におけるマイクロ波の伝播図であり、2つの給電部5a,5bから位相差を有するマイクロ波が放射された場合である。図3に示すように、位相差を有して放射されたマイクロ波は、電波伝播11a,11bに示すように放射状に広がってゆく。マイクロ波放射時の位相差により電波伝播11a,11bが同位相で重なる同相干渉領域12は、図2に示した同相干渉領域12の位置から移動している。
 以上のように、2箇所の給電部5a,5bから放射されるマイクロ波の位相差を変化させることにより、同相干渉領域12(A)を給電部5a,5bの間の所望の位置に移動させることができる。したがって、2箇所の給電部5a,5bから放射されるマイクロ波の位相差を順次変化させることにより、反射電力が最小となる位相差を検出して、2つの給電部5a,5bの位置の間を結ぶ直線上における被加熱物10の位置を検知することが可能となる。
 図4は、実施の形態1のマイクロ波加熱装置における給電部5a,5bの配置図である。図4に示すように、2つの給電部5a,5bは、加熱室8の内部の載置台であるターンテーブル9の回転中心Pを含む直線上に配置されている。給電部5a,5bは、図1に示したように、ターンテーブル9の下側に配置されており、一方の給電部5aがターンテーブル9の円周部分(外周側)の下方であり、他方の給電部5bがターンテーブル9の回転中心Pの近傍(中央側)の直下である。また、給電部5a,5bは同じ水平面上に配置される。ターンテーブル9に載置された被加熱物10がモータ13を駆動することにより、ターンテーブル9が回転して被加熱物10が回転移動する。2つの給電部5a,5bの間を結ぶ直線15を含む鉛直面をターンテーブル9上の被加熱物10の移動軌跡が通るように、2つの給電部5a,5bが加熱室8内に配置されている。
 前述のように、2つの給電部5a,5bからの位相差を変更したマイクロ波給電により、被加熱物10の位置を検知できる範囲は、2つの給電部5a,5bの間を結ぶ直線15の上方となるターンテーブル9の位置である。すなわち、被加熱物10の位置を検知できる範囲は、ターンテーブル9上において、給電部5a,5b間の鉛直上方の位置である。
 ターンテーブル9を回転して被加熱物10を移動させながら、2つの給電部5a,5bに戻ってきた反射電力を電力検出部6a,6bにより検出することにより、被加熱物10が給電部5a,5bの間を結ぶ直線15の上方(鉛直面)を横切るとき、反射電力は小さくなる。反射電力が小さくなったときのターンテーブル9の回転位置と、位相差に基づいて、ターンテーブル9上における被加熱物10の配置状態を検知することができる。
 実施の形態1のマイクロ波加熱装置においては、2つの給電部5a,5bの反射電力が最小となる回転位置でターンテーブル9を停止し、さらに反射電力が最小となる給電部5a,5bから供給されたマイクロ波の位相差を検出することにより、被加熱物10のターンテーブル9上の配置状態を検知することができる。
 上記のように検知された被加熱物10のターンテーブル9上の配置状態に基づき、適切な加熱条件が決定されて、給電部5a,5bから所望のマイクロ波電力が加熱室8に供給される。
 なお、実施の形態1のマイクロ波加熱装置においては、発振部1における発振周波数を確定する発振周波数検出動作が実行されている。発振周波数検出動作においては、制御部7が発振部1を制御して反射電力に対する周波数特性を検出し、電力検出部6a,6bが検知する反射電力が最小となる発振周波数を抽出している。この抽出動作において発振周波数を確定して、その確定した発振周波数にて本加熱動作が行われる。この発振周波数検出動作においては、制御部7が、発振部1の発振周波数を、例えば2400MHzから1MHzピッチで周波数可変範囲の上限である2500MHzに到達するまで動作させて、反射電力が最小となる発振周波数を確定している。
 実施の形態1のマイクロ波加熱装置において、ターンテーブル9上の被加熱物10が複数載置された場合には、当該被加熱物10が給電部5a,5bの間を結ぶ直線15の上方(鉛直面)を横切ることにより、反射電力の極小値が複数検出される。このため、反射電力が極小となる回数に基づいて、制御部7は被加熱物10の数量を検知することができる。
 実施の形態1のマイクロ波加熱装置においては、ターンテーブル9上の被加熱物10の配置状態を、ターンテーブル9の所定の回転角度毎における最小の反射電力を検出して、所望の回転角度を確定し、その回転角度において最小の反射電力となるマイクロ波の位相特性を検出して被加熱物10の位置を特定していた。しかし、本発明はこのような検出動作に特定されるものではない。例えば、ターンテーブル9の所定の回転角度毎に位相特性検出を行って、より精度の高い負荷状態検出動作を行ってもよい。また、上記のように所定の回転角度毎に位相特性の検出を行う場合において、検出された反射電力が閾値以下の値となったとき、そのときの検出位置に被加熱物10が配置されていると推定し、本加熱動作を開始してもよい。このように構成することにより、より短時間で被加熱物10の配置状態を確定して、本加熱動作を開始することが可能となる。
 なお、実施の形態1の構成においては、電力分配部2の各出力に位相可変部3a,3bを設けた例で説明したが、位相可変部としてはいずれか一方の出力に接続されていれば、位相差の変更は可能である。
 実施の形態1のマイクロ波加熱装置において、制御部7は、ターンテーブル9上の被加熱物10の配置状態に基づき、少なくとも給電部5a,5b、位相可変部3a,3bおよび移動機構部であるモータ13を制御して、当該被加熱物10に対する最適な加熱条件でマイクロ波加熱動作を行っている。なお、加熱条件に応じて、制御部7は、発振部1の発振周波数の制御、および増幅部4a,4bの出力調整が行われる。
 実施の形態1のマイクロ波加熱装置においては、制御部7がターンテーブル9を所定回転角度毎に停止して、2つの給電部5a、5Bの間を結ぶ直線上(鉛直面)となるターンテーブル9上の被加熱物10の配置状態を検知する構成例で説明したが、ターンテーブル9の回転を継続した状態で被加熱物10の配置状態を検知することも可能である。すなわち、ターンテーブル9が回転している状態において、ターンテーブル9の回転角度の検出動作、および位相特性の検出動作を順次交互に実行される。この結果、負荷状態検出動作の動作時間が短くなり、結果的に加熱時間の短縮を図ることができる。
 実施の形態1のマイクロ波加熱装置においては、加熱動作の初期段階において、負荷状態検出動作を行い、ターンテーブル9上の被加熱物10の配置状態を検知して、その検知結果に基づき本加熱動作を行うよう構成したが、加熱条件に応じた本加熱動作に行いつつ負荷状態検出動作(回転角度の検出動作および位相特性の検出動作)を行うことも可能である。
 上記のように、実施の形態1のマイクロ波加熱装置は、負荷状態検出動作を行うことにより、被加熱物10の配置状態を正確に検知することができ、被加熱部10に対して、常に効率高く所望のマイクロ波加熱を実行することができる。
 (実施の形態2)
 以下、本発明に係る実施の形態2のマイクロ波加熱装置について説明する。実施の形態2のマイクロ波加熱装置は、前述の実施の形態1のマイクロ波加熱装置と異なる点は、マイクロ波発生部において実行される負荷状態検出動作であり、基本的な構成は実施の形態1のマイクロ波加熱装置と同じである。図5から図7は実施の形態2のマイクロ波加熱装置における負荷状態検出動作を示すフローチャートである。
 以下の実施の形態2の説明においては、実施の形態1のマイクロ波加熱装置における構成要素と同じ機能、構成を有するものには同じ符号を付し、その詳細な説明は実施の形態1の説明を適用する。
 実施の形態2のマイクロ波加熱装置は、前述の図1に示した実施の形態1のマイクロ波加熱装置におけるマイクロ発生部と同じ構成のマイクロ波発生部を備えている。以下、実施の形態2のマイクロ波加熱装置におけるマイクロ波発生部で実行される負荷状態検出動作を含む加熱動作について図5から図7のフローチャートを用いて説明する。
[加熱動作]
 図5は負荷状態検出動作を示すメインフローを示すフローチャートである。図5のフローチャートに示すように、操作部からの加熱設定内容(加熱開始信号)により加熱動作が開始される。
 ステップ101においては、発振部1の周波数が、所定の発振周波数、例えば2450MHzに設定されて、発振部1は発振を開始する。
 ステップ102においては、ターンテーブル9の位置合わせが行われる。すなわち、ターンテーブル9は初期位置に設定される。
 ステップ103においては後述する位相特性の検出処理が実行される。この位相特性の検出処理においては、ターンテーブル9を回転停止した状態で2つの給電部5a,5bから位相を変化させたマイクロ波電力を加熱室8に供給して、反射電力の検出を行っている。
 ステップ104において、前段の位相特性の検出結果が記録される。ステップ104における記録は、ターンテーブル9の回転角度毎の位相特性が記録される。
 ステップ105においては、ターンテーブル9が1回転してターンテーブル9における載置面の全体における位相特性の検出が終了したか否かが判定される。ターンテーブル9がまだ1回転していない場合には、ステップ106において一定角度だけターンテーブル9を回転させて、次の位相特性の検出処理を実行する。
 ステップ105において、ターンテーブル9が1回転したことを検出した場合には、ステップ107において、後述する負荷状態の推定処理を実行する。負荷状態の推定処理によりターンテーブル9上の被加熱物に関する位置、数量、大きさが検知される。
 実施の形態2においては、前記のステップ101からステップ107までが負荷状態検出動作である。
 ステップ108においては、発振周波数検出処理が実行される。この発振周波数検出処理においては、反射電力が最小となる発振部1の発振周波数を検出する処理であり、発振部1の発振周波数を2400kHzから2500kHzの周波数領域をスイープして検出する。この発振周波数検出処理においては、前段の負荷状態の推定処理における検知結果に基づいて、ターンテーブル9の最適な回転角度、およびマイクロ波電力の位相差に設定される。
 ステップ109において、負荷状態の推定処理および周波数検出処理の検知結果に基づいて、当該被加熱物10に対する最適加熱条件が決定され、その最適加熱条件により本加熱動作が開始される。
[位相特性の検出処理]
 図6は、前述のメインフロー(図5参照)においてステップ103において実行される位相特性の検出処理を示すフローチャートである。
 ステップ201において、2箇所の給電部5a,5bから放射されるマイクロ波電力の位相差を初期値として0度に設定する。すなわち、同じ位相のマイクロ波電力を2つの給電部5a,5bから加熱室8に供給して、2つの給電部5a,5bの間の中間位置に同相干渉領域(図2における同相干渉領域12(A)参照)を形成する。
 ステップ202において、加熱室8から2つの給電部5a,5cが受け取った反射電力値を測定する。
 ステップ203において、位相差が0度(初期値)のときの測定された反射電力値を記録する。上記のステップ202およびステップ203における反射電力値の測定は、位相差を一定値、例えば10度毎ずらして行われる。その測定範囲は位相差が0度から360度の範囲である。0度から360度の範囲の反射電力値の測定のルーティンはステップ202からステップ205までのステップを繰り返すことにより実行される。
 ステップ204において、位相差が360度であると判定されたとき、この位相特性の検出処理が終了し、図5に示したステップ104へ移行する。
[負荷状態の推定処理]
 図7は、前述のメインフロー(図5参照)においてステップ107において実行される負荷状態の推定処理を示すフローチャートである。
 ステップ301において、ターンテーブル9の回転角度が初期値のときの位相特性の検出結果を参照する。
 ステップ302では、ターンテーブル9の回転角度が初期値のときにおいて、反射電力値が閾値以下となる位相差の範囲を求める。ここで、閾値としては加熱室8に供給されたマイクロ波電力に対する反射電力の比率が用いられており、例えば50%以下の比率のとき、負荷である被加熱物10が該当位置に存在すると判定される。
 ステップ302において求められた位相差の範囲は、負荷位置、即ちターンテーブル9上の被加熱物10の位置として記録される(ステップ303)。ステップ302およびステップ303における負荷の存在の判定、および負荷位置の記録は、ターンテーブル9が1回転完了するまで実行される。
 ステップ304において、参照しているターンテーブル9の回転角度が1回転完了しているか否かが判定される。
 ステップ304において、参照しているターンテーブル9の回転角度が1回転完了していなければ、ステップ305に移行する。ステップ305においては、前回の回転角度のターンテーブル9上の負荷位置と今回の回転角度のターンテーブル9上の負荷位置が連続的であるか否かが判定される。すなわち、前回の回転角度のときの反射電力値が閾値以下となる位相差の範囲と、今回の回転角度のときの同様の位相差の範囲が連続しているか否かが判定される。
 ステップ305において、負荷位置が連続的でないと判定されたときには、ステップ307において、今回の回転角度の負荷位置は、別の負荷(被加熱物)の位置を示しているとして記録される。
 一方、ステップ305において、負荷位置が連続的である判定されたときには、ステップ306において今回の回転角度で検出された負荷(被加熱物)は、前回の回転角度の負荷(被加熱物)と同じものであるとして記録される。
 ステップ308においては、ターンテーブル9の次の回転角度に関する位相特性の検出結果を参照して、ステップ302へ移行する。
 ステップ304において、参照しているターンテーブル9の回転角度が1回転完了していれば、ステップ309に移行する。ステップ309においては、記録された負荷位置に基づき、ターンテーブル9上の負荷範囲を求めて、負荷(被加熱物)の配置状態、すなわち負荷の位置、数量、および負荷毎の大きさを判定する。
 ステップ310においては、負荷(被加熱物)の数量、位置、および負荷毎の大きさを確定して、その確定した情報が記録される。
 上記のように、実施の形態2のマイクロ波加熱装置は、負荷状態検出動作を行うことにより、被加熱物10の配置状態、すなわち被加熱物10のターンテーブル9上の位置、数量、大きさを確定することができ、ターンテーブル9上の被加熱部10に対して、常に効率高く所望のマイクロ波加熱を実行することができる。
 (実施の形態3)
 以下、本発明に係る実施の形態3のマイクロ波加熱装置について説明する。実施の形態3のマイクロ波加熱装置において、前述の実施の形態1のマイクロ波加熱装置と異なる点は、給電部と載置台の構成、およびマイクロ波発生部において実行される負荷状態検出動作である。実施の形態3のマイクロ波加熱装置における、その他の基本的な構成は、前述の実施の形態1のマイクロ波加熱装置と同じである。図8は実施の形態3のマイクロ波加熱装置における加熱室内の給電部と載置台を示した概略構成図である。図9は実施の形態3のマイクロ波加熱装置における加熱室内の給電部の構成を示す平面図である。
 以下の実施の形態3の説明においては、実施の形態1のマイクロ波加熱装置における構成要素と同じ機能、構成を有するものには同じ符号を付し、その詳細な説明は実施の形態1の説明を適用する。
 実施の形態3のマイクロ波加熱装置におけるマイクロ波発生部は、前述の図1に示した実施の形態1のマイクロ波加熱装置におけるマイクロ波発生部と同様の構成を備えている。ただし、実施の形態3のマイクロ波加熱装置においては、3個以上の給電部を加熱室内に備えているため、マイクロ波発生部は、給電部の数に応じて複数の電力分配部、位相可変部、増幅部、および電力検出部が設けられている。
 図8に示すように、実施の形態3のマイクロ波加熱装置においては、被加熱物10の載置台として棚14が加熱室8内に設けられている。棚14の載置面は水平面となるよう配置されており、棚14の載置面上に被加熱物10が配置される。
 実施の形態3のマイクロ波加熱装置においては、複数の給電部5a,5b,5c,5dが棚14の下側に配置されている。これらの給電部5a,5b,5c,5dは加熱室8に固定されており、以後の説明においては固定給電部5a,5b,5c,5dと称す。また、棚14の載置面の中心位置の直下には、放射方向を水平面内に回転させることができるアンテナとしての給電部である回転給電部16が設けられている。
 図9に示すように、実施の形態3のマイクロ波加熱装置では、4つのアンテナである給電部5a,5b,5c,5dが、棚14の下側の領域において、加熱室8の底面における四隅に設けられている。また、別のアンテナである給電部としての回転給電部16は、加熱室8の底面における略中心位置に配置されている。回転給電部16の放射方向は各固定給電部5a,5b,5c,5dの方向に向くよう回転可能に設けられている。すなわち、固定給電部5a,5b,5c,5dは回転給電部16を中心とした放射状の位置に等間隔で配置されている。固定給電部5a,5b,5c,5dおよび回転給電部16は、棚14の載置面と実質的に平行な面上に配置されている。実施の形態3においては、モータ13により回転給電部16の放射方向を回転させ、固定給電部5a,5b,5c,又は5dと組合せることで、給電部の間を結ぶ直線の位置15を棚14上の被加熱物10に対して相対的に移動させることができる。
 実施の形態3においては、モータ13が棚14上の被加熱物10に対して回転給電部16と固定給電部5a,5b,5c,又は5dの間を結ぶ直線の位置を相対的に移動させる移動機構部に相当する。
 実施の形態3のマイクロ波加熱装置において加熱動作を行うときは、固定給電部5a,5b,5c,5dにおけるいずれか1つの固定給電部が選択され、選択された固定給電部と中心にある回転給電部16からマイクロ波電力が加熱室8内に放射されるよう構成されている。
 実施の形態3のマイクロ波加熱装置においては、前述の実施の形態1の構成と同様に、固定給電部5a,5b,5c,5dのいずれか1つの固定給電部、および回転給電部16のそれぞれに供給されるマイクロ波は、位相可変部において任意の位相差を発生させることができるよう構成されている。また、加熱室8から固定給電部5a,5b,5c,5dおよび回転給電部16に戻ってくる反射電力は、電力検出部において検出される。
 モータ13が駆動されることにより、回転給電部16が回転して、マイクロ波放射方向を移動させている。このように、回転給電部16のマイクロ波放射方向を移動させることにより、加熱室8内に配置された棚14上の被加熱物10の加熱むらが軽減されている。
 実施の形態3のマイクロ波加熱装置においては、前述の実施の形態1における負荷状態検出動作と同様の負荷状態検出動作が行われる。
 実施の形態3における負荷状態検出動作は、加熱室8の略中心にある回転給電部16を回転して実行される。回転給電部16のマイクロ波放射方向を、例えば固定給電部5aの方向(図9における左下方向)として、回転給電部16と固定給電部5aの組合せで反射電力を最小にする位相差の検出を行う。この位相特性の検出処理により、2箇所の給電部5a,16の間を結ぶ直線15の上方(鉛直面)における被加熱物10の配置状態を検知することができる。
 次に、回転給電部16を回転させて、例えばマイクロ波放射方向を別の固定給電部5bの方向(図9における右下方向)として、回転給電部16と固定給電部5bの組合せで反射電力を最小にする位相差の検出を行う。この位相特性の検出処理により、2箇所の給電部5b,16の間を結ぶ直線の上方(鉛直面)における被加熱物10の配置状態を検知することができる。同様に、回転給電部16を順次回転させて、回転給電部16と、給電部5c又は5dとの間の被加熱物10の配置状態を検知する。
 上記のように、実施の形態3のマイクロ波加熱装置においては、加熱室8の底面の略中心位置、すなわち棚14の載置面の中心の直下にある回転給電部16からのマイクロ波放射の方向を、被加熱物10の載置面と平行な面内で回転させることにより、負荷状態検出動作を行っている。この負荷状態検出動作においては、回転給電部16と、その放射方向にある固定給電部5a,5b,5c又は5dとの組合せにより、反射電力を最小にする位相差の検出を順次行っている。このように反射電力が最小となる位相差の検出(位相特性の検出処理)を行うことにより、載置台である棚14(載置面)上の被加熱物の配置状態を正確に検知することができる。
 実施の形態3のマイクロ波加熱装置においては、前述の実施の形態1において説明した位相検出動作および周波数検出動作を行って、被加熱物10に対する最適加熱条件を確定して本加熱動作を行うよう構成されている。
 上記のように、実施の形態3のマイクロ波加熱装置は、負荷状態検出動作を行うことにより、被加熱物10の配置状態を決定することができ、被加熱部10に対して、常に効率高く所望のマイクロ波加熱を実行することができる。
 なお、負荷状態検出動作において、回転給電部16を回転させながら、マイクロ波の放射方向に対向する固定給電部が励起されるよう順次切り替え、当該固定給電部に対してマイクロ波の供給を行うよう構成してもよい。このように、マイクロ波の放射方向に対向する給電部に順次切替えて、回転給電部16の回転動作中において、反射電力の検出を行うと、被加熱物10が配置されている位置に近い給電部の反射電力が小さくなり、回転方向の被加熱物10の配置を短時間で推測することが可能となる。
 また、実施の形態3の構成においては、加熱室8の底面の略中心位置に回転給電部16を設け、加熱室8の底面の四隅に固定給電部5a,5b,5c,5dを設けた構成を説明したが、加熱室8内に設ける固定給電部は4箇所に限定されるものではない。回転給電部16を中心とした放射状の位置に等間隔でより多くの固定給電部を配設することにより、被加熱物の配置状態をより正確に検知することが可能となる。
 前述の各実施の形態においては、本加熱動作の前段階において、加熱室内の被加熱物の配置状態を検出する負荷状態検出動作を行う構成について説明したが、本加熱動作と同時に負荷状態検出動作を行うよう構成することも可能である。操作部から加熱開始信号を受けた制御部は、操作部において設定された加熱設定内容に基づき本加熱動作を開始すると共に、負荷状態検出動作を同時に行い反射電力が最小となる最適加熱条件を確定する。最適加熱条件が確定されると、その最適加熱条件に応じたマイクロ波加熱動作が実行される。このように、本加熱動作と同時に負荷状態検出動作を行うことにより、加熱時間の短縮を図ることが可能となる。
 なお、前述の各実施の形態における説明では、給電部の組み合わせを加熱室の1壁面(底面)に設置した例で説明したが、複数の壁面に配置して構成することも可能である。
 以上のように、本発明のマイクロ波加熱装置においては、被加熱物の配置状態を検知することにより最適な加熱条件を確定して、その最適な加熱条件に応じたマイクロ波加熱動作を行うことにより、形状、種類、量の異なるさまざまな被加熱物を短時間で所望の状態に加熱することができ、同時に加熱室から給電部に戻るマイクロ波電力を低く抑えて、効率の高いマイクロ波加熱動作を行うことができる。
 本発明のマイクロ波加熱装置は、負荷状態検出動作を行うことにより、形状、種類、量の異なるさまざまな被加熱物に対して最適な加熱条件でマイクロ波加熱を行うことができため、電子レンジで代表されるような誘電加熱を利用した加熱装置、生ゴミ処理機、或いは半導体製造装置であるプラズマ電源のマイクロ波電源などの各種用途において有用である。
 1 発振部
 2 電力分配部
 3a,3b 位相可変部
 4a,4b 増幅部
 5a,5b,5c,5d 給電部
 6a,6b 電力検出部
 7 制御部
 8 加熱室
 9 ターンテーブル
 10 被加熱物
 13 モータ
 14 棚
 16 回転給電部

Claims (12)

  1.  被加熱物を収容する加熱室と、
     前記加熱室内に設けられ、前記被加熱物を載置する載置面を有する載置台と、
     マイクロ波電力を発生させる発振部と、
     前記発振部の出力を複数に分配する電力分配部と、
     前記電力分配部の各出力を前記加熱室に給電し、前記加熱室壁面に配置された複数の給電部と、
     前記電力分配部と前記給電部との間の伝送路に設けられ、前記電力分配部の少なくとも一方の出力位相を可変する位相可変部と、
     前記加熱室から前記給電部に戻る反射電力を検出する複数の電力検出部と、
     前記載置台上の前記被加熱物に対して、前記複数の給電部における2つの給電部の間を結ぶ直線の位置を相対的に移動させる移動機構部と、
     前記発振部の発振周波数、前記位相可変部の出力位相、および前記移動機構部の移動位置を制御する制御部と、を備えるマイクロ波加熱装置であって、
     前記制御部は、前記移動機構部により前記2つの給電部の間を結ぶ直線の位置を前記被加熱物に対して相対的に移動させて、前記位相可変部により制御されたマイクロ波電力を前記2つの給電部から前記加熱室に供給し、前記加熱室から前記2つの給電部に戻る反射電力が最小となるマイクロ波電力の位相差を検出することにより、前記載置台上の前記被加熱物の配置状態を検知するよう構成されたマイクロ波加熱装置。
  2.  前記制御部は、前記2つの給電部から前記加熱室に対して位相差を有するマイクロ波電力を供給して、前記加熱室から前記2つの給電部に戻る反射電力が最小となる位相差を検出することにより、前記2つの給電部の間を結ぶ直線を含む鉛直面における前記載置台上の前記被加熱物の配置状態を検知するよう構成された請求項1に記載のマイクロ波加熱装置。
  3.  前記制御部は、前記載置台上の前記被加熱物に関して検知された配置状態に基づき、少なくとも前記給電部、前記位相可変部および前記移動機構部を制御するよう構成された請求項2に記載のマイクロ波加熱装置。
  4.  前記載置台が回転可能に構成され、前記移動機構部が前記載置台を回転させたとき、前記2つの給電部の間を結ぶ直線を含む鉛直面を前記載置台上の前記被加熱物が通過するよう構成された請求項3に記載のマイクロ波加熱装置。
  5.  前記2つの給電部において、一方が前記載置台の外周側に配置され、他方が前記載置台の中央側に配置された請求項4に記載のマイクロ波加熱装置。
  6.  前記複数の給電部において、少なくとも1つの給電部が前記移動機構に連結されて放射方向が回転可能に構成された回転給電部であり、他の給電部が前記回転給電部の放射方向に対向して配置された固定給電部であり、
     マイクロ波電力が供給される2つの給電部における一方の給電部は、前記回転給電部となる請求項3に記載のマイクロ波加熱装置。
  7.  前記制御部は、前記移動機構が前記載置台の回転を停止して、前記2つの給電部の間を結ぶ直線を含む鉛直面における前記載置台上の前記被加熱物の位置、数量および大きさを検知するよう構成された請求項5に記載のマイクロ波加熱装置。
  8.  前記制御部は、前記移動機構が前記載置台の回転を継続して、前記2つの給電部の間を結ぶ直線を含む鉛直面における前記載置台上の前記被加熱物の位置、数量および大きさを検知するよう構成された請求項5に記載のマイクロ波加熱装置。
  9.  前記制御部は、加熱動作の初期段階において、前記載置台上の前記被加熱物の配置状態を検知して、少なくとも前記給電部、前記位相可変部および前記移動機構部を制御した後、本加熱動作を行うよう構成された請求項3に記載のマイクロ波加熱装置。
  10.  前記制御部は、前記回転給電部と、前記回転給電部の放射方向に対向して配置された前記固定給電部に位相差が制御されたマイクロ波電力をそれぞれ供給して、前記マイクロ波電力が供給された前記回転給電部と前記固定給電部との間を結ぶ直線を含む鉛直面における前記載置台上の前記被加熱物の配置状態を検知するよう構成された請求項6に記載のマイクロ波加熱装置。
  11.  前記固定給電部は前記回転給電部を中心とした放射状の位置に等間隔で配置されており、
     前記制御部は、前記回転給電部の放射方向を回転させて、前記載置台上の前記被加熱物の配置状態を検知するよう構成された請求項6に記載のマイクロ波加熱装置。
  12.  前記制御部は、前記回転給電部の放射方向を前記固定給電部に対向する位置で順次停止して、前記載置台上の前記被加熱物の配置状態を検知するよう構成された請求項11に記載のマイクロ波加熱装置。
PCT/JP2011/001505 2010-03-19 2011-03-15 マイクロ波加熱装置 WO2011114711A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11755902.1A EP2549832B1 (en) 2010-03-19 2011-03-15 Microwave heating apparatus
US13/635,864 US9029744B2 (en) 2010-03-19 2011-03-15 Microwave heating apparatus
CN2011800144572A CN102804914A (zh) 2010-03-19 2011-03-15 微波加热装置
JP2012505508A JP5830687B2 (ja) 2010-03-19 2011-03-15 マイクロ波加熱装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010063818 2010-03-19
JP2010-063818 2010-03-19

Publications (1)

Publication Number Publication Date
WO2011114711A1 true WO2011114711A1 (ja) 2011-09-22

Family

ID=44648823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001505 WO2011114711A1 (ja) 2010-03-19 2011-03-15 マイクロ波加熱装置

Country Status (5)

Country Link
US (1) US9029744B2 (ja)
EP (1) EP2549832B1 (ja)
JP (1) JP5830687B2 (ja)
CN (1) CN102804914A (ja)
WO (1) WO2011114711A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110663108A (zh) * 2017-05-03 2020-01-07 应用材料公司 用于半导体处理期间的微波腔体中均匀热分布的方法和设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8492686B2 (en) 2008-11-10 2013-07-23 Goji, Ltd. Device and method for heating using RF energy
ES2534411T3 (es) * 2009-11-10 2015-04-22 Goji Limited Dispositivo y método para el control de la energía
CN102933905B (zh) * 2010-05-26 2015-04-01 Lg电子株式会社 烹调装置
EP2953425B1 (en) 2014-06-03 2019-08-21 Ampleon Netherlands B.V. Radio frequency heating apparatus
KR102402039B1 (ko) 2015-11-16 2022-05-26 삼성전자주식회사 조리 장치 및 이의 제어 방법
CN110996422B (zh) * 2019-12-30 2022-02-01 广东美的厨房电器制造有限公司 微波加热组件、微波加热设备和控制方法
CN111031622B (zh) * 2019-12-30 2022-02-25 广东美的厨房电器制造有限公司 微波加热组件、微波加热设备和控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132793A (en) 1980-03-19 1981-10-17 Hitachi Netsu Kigu Kk High frequency heater
JPS59134593A (ja) * 1983-01-20 1984-08-02 松下電器産業株式会社 高周波加熱装置
JPS59165399A (ja) 1983-03-09 1984-09-18 株式会社東芝 高周波加熱装置
JPS6248354A (ja) 1985-08-28 1987-03-03 Fujiwara Jiyouki Sangyo Kk 諸味粕剥装置における粕濾布自動供給装置
JP2008310969A (ja) * 2007-06-12 2008-12-25 Panasonic Corp マイクロ波処理装置
JP2009181728A (ja) * 2008-01-29 2009-08-13 Panasonic Corp マイクロ波処理装置
JP2009238402A (ja) * 2008-03-26 2009-10-15 Panasonic Corp マイクロ波処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696486A (en) 1979-12-28 1981-08-04 Matsushita Electric Ind Co Ltd High frequency heater
JP2006128075A (ja) * 2004-10-01 2006-05-18 Seiko Epson Corp 高周波加熱装置、半導体製造装置および光源装置
KR20060079814A (ko) * 2005-01-03 2006-07-06 삼성전자주식회사 전자레인지의 조리제어장치 및 그 방법
JP2007024388A (ja) * 2005-07-15 2007-02-01 Matsushita Electric Ind Co Ltd 加熱調理装置
JP5064924B2 (ja) * 2006-08-08 2012-10-31 パナソニック株式会社 マイクロ波処理装置
US8610038B2 (en) * 2008-06-30 2013-12-17 The Invention Science Fund I, Llc Microwave oven

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132793A (en) 1980-03-19 1981-10-17 Hitachi Netsu Kigu Kk High frequency heater
JPS59134593A (ja) * 1983-01-20 1984-08-02 松下電器産業株式会社 高周波加熱装置
JPS59165399A (ja) 1983-03-09 1984-09-18 株式会社東芝 高周波加熱装置
JPS6248354A (ja) 1985-08-28 1987-03-03 Fujiwara Jiyouki Sangyo Kk 諸味粕剥装置における粕濾布自動供給装置
JP2008310969A (ja) * 2007-06-12 2008-12-25 Panasonic Corp マイクロ波処理装置
JP2009181728A (ja) * 2008-01-29 2009-08-13 Panasonic Corp マイクロ波処理装置
JP2009238402A (ja) * 2008-03-26 2009-10-15 Panasonic Corp マイクロ波処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2549832A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110663108A (zh) * 2017-05-03 2020-01-07 应用材料公司 用于半导体处理期间的微波腔体中均匀热分布的方法和设备
JP2020521275A (ja) * 2017-05-03 2020-07-16 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 半導体処理中のマイクロ波空洞における均一の熱分布のための方法および装置
JP7289267B2 (ja) 2017-05-03 2023-06-09 アプライド マテリアルズ インコーポレイテッド 半導体処理中のマイクロ波空洞における均一の熱分布のための方法および装置
CN110663108B (zh) * 2017-05-03 2024-03-12 应用材料公司 用于半导体处理期间的微波腔体中均匀热分布的方法和设备

Also Published As

Publication number Publication date
JP5830687B2 (ja) 2015-12-09
EP2549832A1 (en) 2013-01-23
US20130008896A1 (en) 2013-01-10
EP2549832B1 (en) 2015-12-30
EP2549832A4 (en) 2014-11-05
CN102804914A (zh) 2012-11-28
JPWO2011114711A1 (ja) 2013-06-27
US9029744B2 (en) 2015-05-12

Similar Documents

Publication Publication Date Title
JP5830687B2 (ja) マイクロ波加熱装置
JP5286905B2 (ja) マイクロ波処理装置
US9398644B2 (en) Radio-frequency heating apparatus and radio-frequency heating method
JP2009032638A (ja) マイクロ波処理装置
EP3525550B1 (en) Microwave heating device and method for operating a microwave heating device
CN108567111B (zh) 烹调至少一个食品的系统
WO2013183200A1 (ja) 高周波加熱装置
EP2677839A1 (en) Microwave heating apparatus with multi-feeding points
CN101828427A (zh) 微波加热装置
CN109156052B (zh) 微波加热装置以及用于操作微波加热装置的方法
JP5169371B2 (ja) マイクロ波処理装置
JP5217882B2 (ja) マイクロ波処理装置
JP5169255B2 (ja) マイクロ波処理装置
JP2008021493A (ja) マイクロ波利用装置
JP5217993B2 (ja) マイクロ波処理装置
JP5471515B2 (ja) マイクロ波処理装置
JP2008166090A (ja) マイクロ波加熱装置
JP5444734B2 (ja) マイクロ波処理装置
JP2009170335A (ja) 高周波加熱装置
JP2008060016A (ja) マイクロ波利用装置
JP2009181727A (ja) マイクロ波処理装置
JP2009252564A (ja) マイクロ波処理装置
US20240032161A1 (en) Intelligent microwave cooking system
US11774105B2 (en) Intelligent microwave cooking system
JP4966650B2 (ja) マイクロ波加熱装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014457.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755902

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505508

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011755902

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13635864

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE