WO2011114507A1 - 新設地下構造物の施工方法 - Google Patents

新設地下構造物の施工方法 Download PDF

Info

Publication number
WO2011114507A1
WO2011114507A1 PCT/JP2010/054796 JP2010054796W WO2011114507A1 WO 2011114507 A1 WO2011114507 A1 WO 2011114507A1 JP 2010054796 W JP2010054796 W JP 2010054796W WO 2011114507 A1 WO2011114507 A1 WO 2011114507A1
Authority
WO
WIPO (PCT)
Prior art keywords
underground
new
existing
underground structure
fluidized soil
Prior art date
Application number
PCT/JP2010/054796
Other languages
English (en)
French (fr)
Inventor
鎌田 義雄
和正 山
Original Assignee
日本環境製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本環境製造株式会社 filed Critical 日本環境製造株式会社
Priority to KR1020127014104A priority Critical patent/KR20130006420A/ko
Priority to PCT/JP2010/054796 priority patent/WO2011114507A1/ja
Priority to US13/635,512 priority patent/US20130008125A1/en
Priority to CN2010800605127A priority patent/CN102713080A/zh
Publication of WO2011114507A1 publication Critical patent/WO2011114507A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/045Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/0007Base structures; Cellars
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D13/00Large underground chambers; Methods or apparatus for making them

Definitions

  • the present invention relates to a method for constructing a new underground structure, and more particularly, to a method for constructing a new underground structure that can reduce the load of the new underground structure on the existing underground structure and reduce the construction cost.
  • Patent Document 1 proposes a method for newly installing an underground structure without dismantling the existing underground structure.
  • a beam is installed at the center of the height of the existing underground outer wall on the first basement floor, and a load is applied to the beam with a jack in the direction of the outer wall. While removing the floor beam.
  • This series of operations will be performed on each floor, a new wall will be placed inside the existing underground outer wall, a composite wall with the existing underground outer wall will be constructed, and then the floor beams will be removed. This series of work will be carried out on each floor to construct a new underground structure.
  • JP 2005-201007 A JP 2005-201007 A
  • the present invention has been made in view of such problems, and it is possible to reduce the load burden of a new underground structure related to an existing underground structure and to reduce the construction cost for constructing the new underground structure.
  • the purpose is to provide a construction method.
  • the present invention provides a new underground structure construction method in which a new underground structure is constructed without dismantling and removing the existing underground structure, and a fluidized soil is provided on the inner peripheral surface of the existing underground structure.
  • the present invention provides a construction method for a new underground structure characterized by filling a fluidized soil wall to construct a new concrete frame on the inner peripheral surface of the fluidized soil wall.
  • the present invention provides a construction method for a new underground structure that constructs a new underground structure using a part of the existing underground structure without dismantling and removing the existing underground structure, A first formwork is erected on the inner peripheral surface of the existing underground structure at a predetermined interval from the existing underground structure, and a fluidized soil is filled between the existing underground structure and the first formwork. A fluidized soil wall is constructed, a second mold body is erected on the inner peripheral surface of the fluidized soil wall with a predetermined distance from the fluidized soil wall, and the fluidized soil wall and the second mold frame
  • the present invention provides a construction method for a new underground structure characterized by constructing a new concrete frame by placing concrete between the bodies.
  • first frame body and the second frame body are maintained in a standing state by a separator, and the first frame body and the second frame body are: It is desirable to be a formwork panel formed by bending and cutting a steel plate-shaped material into a substantially rectangular front shape and a substantially square wave cross section.
  • the new underground structure formed on the existing underground structure is constructed by the fluidized soil wall and the new concrete structure. It is possible to reduce the amount of concrete used compared to building with a frame alone. Moreover, since the fluidized soil has a specific gravity lower than that of concrete, it is possible to reduce the load burden of the newly installed underground structure related to the existing underground structure.
  • FIG. 1 is a longitudinal side view showing the structure of an underground structure constructed by the construction method according to the present embodiment.
  • the underground structure constructed by the construction method according to the present embodiment is a newly installed basement having a basement that can be used as a living space and an underground pit that is an underground facility for housing piping facilities and the like. It is a structure and is constructed such that the fluidized soil wall 300 is sandwiched between the existing underground concrete frame 200 and the newly installed underground concrete frame 400.
  • the underground pit in the underground structure is an underground space for accommodating piping facilities and the like, and if there is a space for accommodating the piping facilities and the like in the basement, there is no need to provide an underground pit.
  • the underground structure shown in FIG. 1 is an underground structure having only the first floor underground, but the number of underground floors may be any number, and even in that case, there is no change in the configuration and construction method. Absent.
  • the pillars etc. that have built the structure are dismantled and removed, and only the existing underground concrete frame 200 consisting of the existing beam 201, existing bearing wall 202, and existing foundation (foundation / underground beam) 203 Remains in the form.
  • the fluidized soil wall 300 is constructed inside the existing underground concrete frame 200.
  • This fluidized soil wall 300 is constructed by filling a fluidized soil (a fluidized backfilling material that can be pumped with a slurry-like backfilled soil previously mixed with cement at a factory). .
  • a fluidized soil a fluidized backfilling material that can be pumped with a slurry-like backfilled soil previously mixed with cement at a factory.
  • the formwork panel 500 is driven into the existing underground concrete frame 200 at a predetermined interval, and this standing state is held by the separator 501 and fluidized between the formwork panel 500 and the existing underground concrete frame 200.
  • the fluidized soil wall 300 is constructed by filling and solidifying the soil.
  • a new frame that is, a new underground concrete frame 400 is constructed inside the fluidized soil wall 300.
  • the new underground concrete frame 400 is composed of a new slab 401, a new beam 402, and a new wall 403 that form the floor of the basement and the ceiling of the underground pit.
  • a new formwork panel 600 is driven inside the fluidized soil wall 300 at a predetermined interval, and the formwork panel 600 and the above-described formwork panel 500 of the fluidized soil wall 300 are separated from each other. It connects with 601 and hold
  • FIG. 2 and 3 are diagrams showing the configuration of the formwork panels 500 and 600 used in the underground structure construction method according to the present embodiment.
  • formwork panels 500 and 600 are buried formwork panels formed by bending and cutting a steel plate-like material into a substantially rectangular front shape and a substantially square wave shape in cross section. It is.
  • this formwork panel 500 a panel steel plate is bent into a substantially square wave cross section, whereby a plurality of parallel protrusions 11 are arranged in parallel at a predetermined interval to reinforce the strength of the panel itself.
  • the panel cross section into an equilateral angular wave shape, it is possible to exhibit particularly excellent strength against the force from the front or back side.
  • the direction in which the ridges 11 are formed is the length direction of the mold panel 500, and the direction perpendicular to the length direction of the mold panel 500 is the width direction.
  • the ridge 11 is composed of an upper surface 31 and two side surfaces 32 that are connected in the width direction of the upper surface 31.
  • a plurality of ribs 12 having a convex section in the width direction and grooves 16 having a concave section in the width direction are repeatedly formed in parallel to the convex lines 11 at predetermined intervals on the concave surface between the convex lines 11. Yes.
  • a predetermined length of the notch 13 is parallel to the ridge 11 at a predetermined interval. It is provided in the form of a broken line.
  • a corner portion of the mold can be formed by bending the mold panel 500 along a line of the dashed cuts 13 at a predetermined angle. Further, the mold panel 500 can be easily cut into a desired size by repeatedly bending the mold panel 500 several times in the forward and reverse directions along the line of the dashed cuts 13. Yes.
  • This notch 13 is a notch having a minute width and a predetermined length penetrating the front and back of the formwork panel 500. This incision 13 is such that excess water contained in the concrete or fluidized soil can be discharged from the notch 13 after placing concrete or filling with fluidized soil. It is formed with a width (gap) and length that does not leak.
  • a plurality of lid-shaped lid portions 14 are provided on the upper surface 31 side of the ridge 11.
  • the lid portion 14 is opened to form a separator insertion hole.
  • FIG. 4 is a view showing the XX cross section of FIG.
  • the new underground structure has a structure in which a fluidized soil wall 300 is provided between an existing underground concrete frame 200 and a new underground concrete frame 400.
  • the formwork panel 500 is driven, and then the anchor 307 is driven into the existing underground concrete frame 200, and the separator 501 is connected to the anchor 307 thus driven,
  • the mold panel 500 is held in an upright state, and in this state, the fluidized soil is filled.
  • washers 301 and 302 having both ends bent are provided.
  • the washer 301 is provided on the back side (the existing underground concrete frame 200 side) of the form panel 500 and is fastened to the form panel 500 by a nut 303.
  • the washer 302 is provided on the surface side of the formwork panel 500 (on the new underground concrete frame 400 side).
  • the washer 302 is a washer that is long in the longitudinal direction, and is fastened by a long nut 304 to the tip of the separator 501 protruding from the formwork panel 500.
  • the fluidized soil wall 300 is constructed by filling the fluidized soil between the existing underground concrete frame 200 and the formwork panel 500.
  • the formwork panel 600 is newly driven inside the fluidized soil wall 300 at a predetermined interval, and the formwork panel 600 and the formwork panel 500 of the fluidized soil wall 300
  • the separators 601 are connected to maintain the standing state, and concrete is placed between the formwork panel 500 and the new formwork panel 600 of the fluidized soil wall 300 and constructed.
  • one end of the separator 601 is connected to the long nut 304, the other end is connected to the formwork panel 600, the standing state of the formwork panel 600 is maintained, and a pipe 305 is provided on the surface side of the formwork panel 600.
  • This is fixed with a home tie 306. In this state, by placing concrete between the formwork panel 500 and the formwork panel 600, a new underground concrete frame 400 is constructed.
  • FIG. 5 is a flowchart showing the construction procedure of the underground structure
  • FIGS. 6 to 11 are diagrams showing the construction method of the underground structure according to this embodiment performed based on this enforcement procedure.
  • the construction method of the underground structure will be described with reference to FIGS. 6 to 11 based on the flowchart showing the construction procedure of FIG. Fig. 6 (a) is a view after removing a part of the existing underground concrete frame, and Fig. 6 (b) is a part of the existing underground concrete frame, and then carrying earth and sand into the underground pit.
  • Fig. 7 (a) is a diagram in which earth and sand are carried into the existing underground concrete frame
  • FIG. 7 (b) is a diagram in which a new pile is installed on a part of the foundation
  • Fig. 8 ( Fig. 8 (a) is a diagram in which the existing load-bearing wall and the existing beams are removed from the earth and sand that have been backfilled to a depth that can withstand earth pressure, and a cut-up beam erection is installed.
  • Fig. 9 (a) is a diagram with a concrete frame of a new pressure-resistant panel installed in the underground pit
  • Fig. 9 (b) is a diagram showing a new concrete foundation and slab in the underground pit.
  • FIG. 10 (a) is a diagram for dismantling and dismantling the erection of the beam for retaining the mountain.
  • FIG. 10 (a) is a diagram for dismantling and dismantling the erection of the beam for retaining the mountain.
  • FIG. 10 (b) is a diagram in which a fluidized soil wall is provided in the basement
  • FIG. 11 (a) is a diagram in which a formwork panel for a new concrete frame is assembled in the basement
  • FIG. ) Is a diagram of a new concrete frame installed in the basement.
  • the existing underground concrete frame 200 is a mountain retaining wall for supporting earth pressure from the ground with the existing beam 201, the existing bearing wall 202, and the existing foundation 203 as continuous existing outer walls. Use.
  • step S101 earth and sand.
  • This backfilling operation can reduce the burden of earth pressure on the existing underground concrete frame 200 used as the retaining wall. Further, the backfilling operation makes it possible to secure a work place for a heavy machine (not shown) on the ground and to support the weight of the heavy machine. With this heavy machine, as shown in FIG.
  • the new pile 405a can be installed in the hole 405 that has been opened in advance (step S102).
  • This new pile 405a is for supporting the weight of a new frame (mainly a new wall) constructed inside the existing underground concrete frame 200.
  • the installation of the new pile 405a is not necessary depending on the pressure resistance performance of the existing foundation 203 and the existing pressure board 208 of the existing underground concrete frame 200 and the ground strength which is the supporting force of the ground.
  • the erection of the retaining beam for the mountain retaining is performed.
  • 406 is installed in a part of the existing beam 201 (step S104).
  • a retaining H steel having an H-shaped cross section is used for the retaining beam erection 406 for the retaining ring.
  • the earth pressure applied to the existing underground concrete frame 200 can be reduced by the raised beam 406 for retaining the mountain.
  • the remaining earth and sand used for backfilling is removed (step S105).
  • the fluidized soil wall is formed in the underground pit in a state in which the earth pressure from the surrounding underground is supported by the existing underground concrete frame 200 and the erection 406 of the mountain retaining beam.
  • Build 300 In order to construct the fluidized soil wall 300, first, a plurality of anchors 307 are driven into the existing foundation 203 serving as a wall of an underground pit, and a separator 501 is connected to each of the anchors 307 (step S106). Next, the above-mentioned formwork panel 500 is assembled so as to conform to the shape inside the existing underground concrete frame 200, and this formwork panel 500 is held upright by the separator 501 (step S107). Further, the mold panel 500 and the separator 501 are fixed by fastening with the washers 301 and 302 and the nut 303 as described above.
  • the fluidized soil wall 300 is built in the underground pit by filling and hardening the fluidized soil between the existing foundation 203 and the formwork panel 500 (step S108).
  • the fluidized soil to be used is a slurry-like back-filled soil in which cement is mixed and managed in advance in a factory, and is a back-filled soil that can be transported by a ready-mixed concrete mixer and pumped. Then, when the fluidized soil wall 300 is constructed, by using the formwork panel 500, excess moisture can be discharged by the cuts 13 provided in the formwork panel 500, and the fluidized soil is hardened. It is possible to shorten the time.
  • a reinforcing bar (not shown) for constructing the new pressure resistant board 407 is assembled on the existing pressure resistant board 208 in the underground pit (step S109), and the new pressure resistant board 407 is constructed. Concrete to be placed is placed (step S110).
  • a formwork panel 600 is installed inside the fluidized soil wall 300 (steps). S111).
  • a reinforcing bar is assembled inside the fluidized soil wall 300 (step S112), the separator 601 is connected to the separator 501 protruding from the formwork panel 500, and the assembled formwork panel 600 is held upright by the separator 601. .
  • the formwork panel 600 is provided so as to have a slab shape while the formwork panel 600 is supported by a support column. At this time, since the formwork panel 600 can be easily bent along the notches 13 provided in the formwork panel 600, the formwork panel 600 can be assembled into a slab shape.
  • the formwork panel 600 held in an upright state and the formwork panel 600 assembled in a slab shape are installed so as to be connected to each other.
  • the formwork panel 600 installed in this way is placed on the surface side of the formwork panel 600 as described above.
  • a pipe 305 that is 600 long in the longitudinal direction is fixed by a home tie 306.
  • a new slab 401 and a new foundation 404 are constructed by placing concrete (step S113). Thereby, the new concrete foundation frame 400 can be constructed in the underground pit.
  • the notch 13 provided in the formwork panel 600 prevents the concrete from leaking and discharges excess moisture in the concrete when the concrete is placed. it can.
  • the cut beam protuberance 406 for retaining beams installed on the existing beam 201 is dismantled and removed (step S114), and as shown in FIG. A fluidized soil wall 300 is constructed.
  • a plurality of anchors 307 are driven into the existing beams 201 and the existing bearing walls 202 of the existing underground concrete frame 200, and the separators 501 are connected to the respective anchors 307 (step S115).
  • the formwork panel 500 is assembled so as to be connected to the formwork panel 500 installed in the underground pit, and the standing state is held by the separator 501 (step S116). At this time, the formwork panel 500 and the separator 501 are fastened and fixed by the washers 301 and 302 and the nut 303.
  • the fluidized soil is filled between the existing underground concrete frame 200 and the formwork panel 500 to construct the fluidized soil wall 300 (step S117).
  • the fluidized soil wall 300 constructed in the underground pit and the fluidized soil wall 300 constructed in the basement are constructed as one continuous wall.
  • the load of the fluidized soil wall 300 is supported by a part of the existing beam 201, the existing bearing wall 202, and the existing foundation 203 constituting the existing underground concrete frame 200.
  • step S121 rebars for the new slab 401 are assembled (step S121), and concrete is placed between the fluidized soil wall 300 and the formwork panel 600 (step S122).
  • step S122 the new concrete frame 400 for basements can be constructed.
  • the new concrete frame 400 constructed in the underground pit and the new concrete frame 400 constructed in the basement are continuous new concrete frames, and the load of this frame is supported by the new pile 405a.
  • the construction method of the underground structure uses the existing underground concrete frame as a retaining wall without dismantling the existing underground concrete frame, and a fluidized soil wall and a new installation.
  • a new underground structure can be constructed by building a concrete frame.
  • the fluidized soil wall built inside the existing underground concrete frame and the new concrete frame are independent from each other across the formwork panel, and the load of the fluidized soil wall is different from that of the existing underground concrete frame. It can be supported by the contacted portion, and the load of the new concrete frame can be supported by a pre-installed new pile or the foundation part of an existing underground concrete frame.
  • the load of the fluidized soil wall and the new concrete frame can be dispersed and supported on the existing underground concrete frame, the load supported by the existing underground concrete frame can be reduced.
  • the load supported by the existing underground concrete frame can be reduced.
  • the thickness of the new underground concrete frame can be reduced, the amount of concrete can be reduced.
  • the formwork panel according to the present embodiment can reinforce the strength of the panel itself because a plurality of parallel ridges are arranged in parallel at predetermined intervals by bending the panel steel plate into a substantially square wave shape in cross section. it can. Thereby, even when fluidized soil is filled or when concrete is cast, it can sufficiently withstand the lateral pressure applied to the formwork panel. And the notch of the predetermined length provided in this formwork panel makes it easy to bend the formwork panel itself, and it is possible to promote the discharge of excess moisture while preventing the fluidized soil and concrete from leaking out. . As a result, it is possible to speed up the construction of the fluidized soil wall and the newly installed underground concrete frame while facilitating the bending of the formwork panel at the corner.
  • FIG. 3 is a view showing an AA cross section of the formwork panel shown in FIG. 2.
  • FIG. 2 is a cross-sectional view showing an XX cross section of the underground structure shown in FIG. 1.
  • It is the schematic of the construction method of the newly installed underground structure which concerns on this embodiment.
  • It is the schematic of the construction method of the newly installed underground structure which concerns on this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Architecture (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

【課題】 既存地下躯体に係る新設地下躯体の荷重負担を低減させると共に、新設地下躯体の構築するための工費の縮減を図ることが可能な新設地下構造物の施工方法を提供することを目的とする。 【解決手段】 居住空間として利用可能な地下室と、配管設備等を収容するための地下施設である地下ピットを有する新設地下構造物100であって、既存地下コンクリート躯体200と、新設地下コンクリート躯体400との間に流動化ソイル壁300を挟むようにして構築されている。

Description

新設地下構造物の施工方法
 本発明は、新設地下構造物の施工方法に関し、特に、既存地下構造物へ係る新設地下構造物の荷重負担を低減させ、工費の縮減を図ることができる新設地下構造物の施工方法に関する。
 ビルなどの各種建物を建て替えるときには、既存の建物を解体する必要があるが、地下階などの地下構造物を備えている建物では、既存地下構造物も解体する必要がある。ところが、その既存地下構造物を構成する地下外壁や柱、地中梁、基礎等は、周辺地盤からの土圧を負担しており、無計画に解体すると地山の崩落や地盤変位などを招き、隣接地域に多大な影響を与えるおそれがある。
 そこで、既存地下構造物を解体することなく、地下構造物を新設する方法が特許文献1に提案されている。
 特許文献1で提案されている地下構造物の施工法は、まず、地下1階の既存地下外壁の階高中央部に切梁を設置し、ジャッキで外壁方向に向かって切梁に負荷をかけながら、床梁を撤去する。この一連の作業を各階で行い、既存地下外壁の内側に新設壁を打設し、既存地下外壁との合成壁を構築し、その後、床梁を撤去する。この一連の作業を各階で行い、新設地下構造物の施工を行う。
特開2005-201007号公報
 しかしながら、特許文献1で開示されている地下構造物の施工法によれば、構築される合成壁は、既存地下外壁と新設壁とを一体化させるものであるために、階下へ係る荷重負担が増大する。そのため、この荷重を支持するためにより多くの支持力が必要となりそのための工費が嵩むという問題がある。
 本発明は係る問題に鑑みてなされたものであり、既存地下躯体に係る新設地下躯体の荷重負担を低減させると共に、新設地下躯体を構築するための工費の縮減を図ることが可能な地下構造物の施工方法を提供することを目的とする。
 本発明は、上記目的を達成するために、既存地下躯体を全て解体撤去することなく新設地下躯体を構築する新設地下構造物の施工方法において、該既存地下躯体の内周面に流動化ソイルを充填して流動化ソイル壁を構築し、該流動化ソイル壁の内周面に新設コンクリート躯体を構築することを特徴とする新設地下構造物の施工方法を提供するものである。
 また、本発明は、上記目的を達成するために、既存地下躯体を全て解体撤去することなく該既存地下躯体の一部を利用して新設地下躯体を構築する新設地下構造物の施工方法において、該既存地下躯体の内周面に該既存地下躯体と所定間隔をもって第1の型枠体を立設し、該既存地下躯体と該第1の型枠体の間に流動化ソイルを充填して流動化ソイル壁を構築し、該流動化ソイル壁の内周面に該流動化ソイル壁と所定間隔をもって第2の型枠体を立設し、該流動化ソイル壁と該第2の型枠体の間にコンクリートを打設して新設コンクリート躯体を構築する、ことを特徴とする新設地下構造物の施工方法を提供するものである。
 この場合、前記第1の枠体と前記第2の枠体は、セパレータによってその立設状態が保持されていることが望ましく、また、前記第1の枠体と前記第2の枠体は、鋼製の板形状の材質を正面略方形状かつ断面略角波形状に折り曲げ切断加工して成形した型枠パネルであることが望ましい。
 本発明によれば、新設地下構造物を構築する際に、既存地下躯体に形成する新設地下躯体を、流動化ソイル壁と、新設コンクリート躯体とによって構築しているため、新設地下躯体を新設コンクリート躯体のみで構築するよりも、コンクリートの使用量を減らすことができる。また、流動化ソイルは、コンクリートよりも比重が低いため、既存地下躯体に係る新設地下躯体の荷重負担を低減させることができる。
 以下、図面を参照しながら本実施形態に係る新設地下構造物の施工方法について説明する。
 図1は、本実施形態に係る施工方法によって構築される地下構造物の構造を示す縦断側面図である。
 図1に示すように、本実施形態に係る施工方法によって構築される地下構造物は、居住空間として利用可能な地下室と、配管設備等を収容するための地下施設である地下ピットを有する新設地下構造物であって、既存地下コンクリート躯体200と、新設地下コンクリート躯体400との間に流動化ソイル壁300を挟むようにして構築されている。
 なお、この地下構造物における地下ピットは、配管設備等を収容するための地下空間であって、配管設備等を地下室に収容する空間があれば、地下ピットを設ける必要はない。また、図1に示す地下構造物では、地下1階のみの地下構造物となっているが、地下の階数は何階あってもよく、その場合においても構成及び施工方法には何の変わりはない。
 既存地下構造物を解体する際、構造物を構築していた柱等は解体撤去され、既存梁201、既存耐力壁202、既存基礎(基礎・地中梁)203からなる既存地下コンクリート躯体200のみが残存した形となっている。
 この既存地下コンクリート躯体200の内側に、流動化ソイル壁300を構築する。この流動化ソイル壁300は、流動化ソイル(予め工場にてセメントを配合管理したスラリー状の埋め戻し土でポンプ打設可能な流動化した埋め戻し材)を充填して構築されるものである。具体的には、既存地下コンクリート躯体200の内側に所定の間隔をもって型枠パネル500を打ち込み、この起立状態をセパレータ501で保持し、この型枠パネル500と既存地下コンクリート躯体200の間に流動化ソイルを充填して固化し流動化ソイル壁300を構築するものである。
 そして、流動化ソイル壁300の内側に、新たな躯体、即ち、新設地下コンクリート躯体400を構築する。新設地下コンクリート躯体400は、地下室の床及び地下ピットの天井を構成する新設スラブ401と、新設梁402と、新設壁403とから構成される。この新設地下コンクリート躯体400は、流動化ソイル壁300の内側に新たに型枠パネル600を所定の間隔をもって打ち込み、この型枠パネル600と前述した流動化ソイル壁300の型枠パネル500とをセパレータ601で連結して起立状態を保持し、流動化ソイル壁300の型枠パネル500と新たな型枠パネル600との間にコンクリートを打設して構築するものである。
 図2及び図3は、本実施形態に係る地下構造物の施工方法に使用する型枠パネル500,600の構成を示す図である。
 図2に示すように、型枠パネル500,600は、鋼製の板形状の材質を、正面略方形状かつ断面略角波形状に折り曲げ、切断加工して成形した埋め殺し型の型枠パネルである。この型枠パネル500は、パネル鋼板を断面略角波形状に折り曲げることで、互いに平行な複数の凸条11が所定間隔で並設され、パネル自体の強度を補強している。また、パネル断面を等辺角波型に成形することで、特に表面又は裏面側からの力に対して優れた強度を発揮することができる。
 なお、本実施形態において、この凸条11の形成方向を型枠パネル500の長さ方向とし、型枠パネル500においてその長さ方向に垂直な方向を幅方向とする。
 図に示すように、この凸条11は、上面31と、この上面31の両幅方向に連設されている2面の側面32とにより構成されている。また、各凸条11間の凹面には、所定間隔ごとに、複数の幅方向の断面凸状のリブ12と、幅方向の断面凹状の溝部16が、凸条11に平行に繰り返し形成されている。
 さらに、凸条11のパネル幅方向の両端、すなわち、リブ12とそのリブ12に隣接する溝部16との間の境界線上には、所定長の切込み13が、所定間隔で凸条11と平行に破線状に設けられている。この破線状の切込み13の列に沿って型枠パネル500を所定の角度に折り曲げることにより、型枠のコーナー部を形成することができるようになっている。また、この破線状の切込み13の列に沿って、型枠パネル500を正逆方向に数回繰り返し折り曲げることにより、型枠パネル500を所望のサイズに容易に切断することができるようになっている。
 この切込み13は、型枠パネル500の表裏に貫通した微小幅、所定長の切込みである。この切込み13は、コンクリートの打設や流動化ソイルの充填後に、その切込み13から、コンクリートや流動化ソイルに含まれる余分な水分が排出可能な程度であって、液状のコンクリートや流動化ソイルが漏出しない程度の幅(間隙)および長さで形成されている。
 凸条11の上面31側には、複数の蓋状の蓋部14が設けられている。この蓋部14は、開蓋させることにより、セパレータ挿入穴を形成する。このセパレータ挿入穴に、前述したセパレータ501,601を挿入して所定方法で締結することで、型枠パネル500,600の立設状態を保持することができる。
 図4は、図1のX-X断面を示す図である。
 図に示すように、新設地下構造物は、既存地下コンクリート躯体200と、新設地下コンクリート躯体400との間に流動化ソイル壁300を有する構造となっている。
 流動化ソイル壁300を構築するには、まず、型枠パネル500を打ち込み、次に、既存地下コンクリート躯体200にアンカー307を打ち込み、この打ち込まれたアンカー307にセパレータ501を連結し、このセパレータ501によって型枠パネル500を起立状態に保持し、この状態にあって流動化ソイルを充填して構築する。
 型枠パネル500とセパレータ501との接続箇所には、両端が曲げ加工された座金301,302が設けられている。座金301は、型枠パネル500の裏面側(既存地下コンクリート躯体200側)に設けられており、ナット303によって型枠パネル500に締結する。座金302は、型枠パネル500の表面側(新設地下コンクリート躯体400側)に設けられている。座金302は、長手方向に長い座金であり、型枠パネル500から突出したセパレータ501の先端に長ナット304によって締結する。そして、既存地下コンクリート躯体200と、型枠パネル500との間に流動化ソイルを充填して、流動化ソイル壁300を構築する。
 新設地下コンクリート躯体400は、前述したように、流動化ソイル壁300の内側に新たに型枠パネル600を所定の間隔をもって打ち込み、この型枠パネル600と流動化ソイル壁300の型枠パネル500とをセパレータ601で連結して起立状態を保持し、流動化ソイル壁300の型枠パネル500と新たな型枠パネル600との間にコンクリートを打設して構築するものである。この際、長ナット304にセパレータ601の一端を連結させ、他端を型枠パネル600に連結し、型枠パネル600の起立状態を保持させ、型枠パネル600の表面側にパイプ305を設けて、これをホームタイ306で固定する。この状態で、型枠パネル500と型枠パネル600との間にコンクリートを打設することで、新設地下コンクリート躯体400が構築される。
 図5は、地下構造物の施工手順を示したフローチャートであり、図6~図11は、この施行手順に基づいて行われる本実施形態に係る地下構造物の施工方法を示す図である。
 以下、図5の施工手順を示すフローチャートに基づき、図6~図11を参照しつつ、地下構造物の施工方法について説明する。
 なお、図6(a)は、既存地下コンクリート躯体の一部を撤去した後の図であり、図6(b)は、既存地下コンクリート躯体の一部を撤去した後、地下ピットへ土砂を搬入した図であり、図7(a)は、既存地下コンクリート躯体内へ土砂を搬入した図であり、図7(b)は、基礎の一部に新設杭を設置した図であり、図8(a)は、既存耐力壁と、既存梁とが土圧に耐える深さまで埋め戻しした土砂を取り除き、山留め用切梁腹起しの設置を行う図であり、図8(b)は、地下ピットに流動化ソイル壁を設けた図であり、図9(a)は、地下ピットに新設耐圧盤のコンクリート躯体を設けた図であり、図9(b)は、地下ピットに新設コンクリート基礎、スラブを設けた図であり、図10(a)は、山留め用切梁腹起しの解体撤去を行う図であり、図10(b)は、地下室に流動化ソイル壁を設けた図であり、図11(a)は、地下室に新設コンクリート躯体用の型枠パネルを組み立てた図であり、図11(b)は、地下室に新設コンクリート躯体を設けた図である。
<既存地下コンクリート躯体の一部の撤去>
 まず、図6(a)に示すように、地上部分の構造物を撤去した後に、既存地下コンクリート躯体200の地下室及び地下ピットに構築された既存柱204を解体撤去し、地下室及び地下ピットのスラブ205,206を解体により開口を設け(既存梁201を残し解体して土圧を受ける場合もある)、既存耐圧盤208の一部を解体して開口を設ける(ステップS100)。そして、既存柱204の解体撤去により、地下室及び地下ピットに新設躯体を構築するための空間を確保するとともに、既存梁201を残してスラブ205,206を解体して開口を設け、作業現場の確保を行う。
 なお、本実施形態において、既存地下コンクリート躯体200は、既存梁201と、既存耐力壁202と、既存基礎203とを連続した既存外壁として、地中からの土圧を支持するための山留め壁として利用する。
<埋め戻し作業及び新設杭の設置>
 次に、図6(b)に示すように、スラブ205,206を、既存梁201を残して解体して設けられた開口から既存地下コンクリート躯体200の地下ピット内に土砂を搬入し、図7(a)に示すように、地下室内に土砂を搬入して、既存地下コンクリート躯体200内を土砂で埋め戻しを行う(ステップS101)。この埋め戻し作業により、山留め壁として利用している既存地下コンクリート躯体200にかかる土圧の負担を軽減することができる。また、埋め戻し作業によって、地上部分に重機(図示せず)の作業場所の確保と、重機の重量の支持が可能となり、この重機により、図7(b)に示すように、既存耐圧盤208に予め開けられた穴部405に新設杭405aの設置を行うことができる(ステップS102)。この新設杭405aは、既存地下コンクリート躯体200の内側に構築する新設躯体(主に新設する壁)の重量を支持するためのものである。
 なお、新設杭405aの設置は、既存地下コンクリート躯体200の既存基礎203と既存耐圧盤208の耐圧性能と地盤の支持力である地耐力によっては必要ない。
<埋め戻しの土砂の撤去及び山留め用切梁腹起しの設置>
 次に、図8(a)に示すように、新設杭405aの設置後、埋め戻しに使用した土砂を地下室内及び地下ピット内から既存耐力壁202と既存梁201が土圧に耐える深さまで埋め戻しした土砂を取り除き(ステップS103)、残存する既存梁201を撤去する。次に、既存梁201の解体撤去と埋め戻しに使用した土砂の取り除きによって、周囲の地中から既存地下コンクリート200にかかる土圧が増大するために、一時的な補助として山留め用切梁腹起し406を既存梁201の一部分へ設置する(ステップS104)。山留め用切梁腹起し406は、断面がH形の山留めH鋼を使用する。これにより、既存地下コンクリート躯体200へかかる土圧を山留め用切梁腹起し406によって低減させることができる。山留め用切梁腹起し406の設置後に、残りの埋め戻しに使用した土砂を取り除く(ステップS105)。
<地下ピットの流動化ソイル壁の構築>
 次に、図8(b)に示すように、周囲の地中からの土圧を既存地下コンクリート躯体200と山留め用切梁腹起し406とで支持した状態で、地下ピットに流動化ソイル壁300を構築する。この流動化ソイル壁300を構築するために、まず、地下ピットの壁となっている既存基礎203に複数のアンカー307を打ち込み、このアンカー307のそれぞれにセパレータ501を連結させる(ステップS106)。次に、前述した型枠パネル500を既存地下コンクリート躯体200の内側の形状に合わせるようにして組立て、この型枠パネル500をセパレータ501によって起立状態を保持させる(ステップS107)。また、型枠パネル500とセパレータ501とは、前述したとおり、座金301,302とナット303とで締結することで固定されている。
 次に、既存基礎203と型枠パネル500との間に流動化ソイルを充填して硬化させることにより流動化ソイル壁300を地下ピット内に構築する(ステップS108)。ここで、使用する流動化ソイルは、予め工場でセメントを配合管理したスラリー状の埋め戻し土であり、生コンクリートミキサー車で運搬してポンプ打設可能な埋め戻し土である。そして、流動化ソイル壁300を構築する際に、型枠パネル500を使用することで、この型枠パネル500に設けられた切込み13によって余分な水分を排出することができ、流動化ソイルの硬化時間を短縮させることが可能である。
<地下ピットの新設コンクリート躯体の構築>
 次に、図9(a)に示すように、地下ピットの既存耐圧盤208上に新設耐圧盤407を構築するための鉄筋(図示せず)を組立て(ステップS109)、新設耐圧盤407を構築するためのコンクリートを打設する(ステップS110)。次に、図9(b)に示すように、新設スラブ401及び新設基礎(基礎・地中梁)404を構築するために、流動化ソイル壁300の内側に型枠パネル600を設置する(ステップS111)。まず、流動化ソイル壁300の内側に鉄筋を組立て(ステップS112)、セパレータ601を型枠パネル500から突出したセパレータ501に連結させ、このセパレータ601によって組み立てた型枠パネル600を起立状態に保持させる。また、地下ピット用の新設スラブ401を構築するために、型枠パネル600を支持柱で支持しながら、スラブの形状となるように、型枠パネル600を設ける。この時、型枠パネル600に設けられている切込み13に沿って容易に型枠パネル600を折り曲げることができるため、スラブ形状に型枠パネル600を組み立てることができる。また、起立状態に保持された型枠パネル600とスラブ形状に組み立てた型枠パネル600とは、互いに連設するようにして設置されている。
 このようにして設置された型枠パネル600には、コンクリートを打設した際に型枠パネル600にかかる側圧を支持するために、前述したように、型枠パネル600の表面側に型枠パネル600の長手方向に長いパイプ305をホームタイ306で固定する。次に、コンクリートを打設ことで新設スラブ401及び新設基礎404を構築する(ステップS113)。これにより、地下ピットに新設コンクリート基礎躯体400を構築することができる。
 また、新設コンクリート躯体400を構築した際、型枠パネル600に設けられている切込み13は、コンクリートを打設した際に、コンクリートの漏出を防ぐと共に、コンクリート中の余分な水分の排出することができる。
<地下室の流動化ソイル壁の構築>
 次に、図10(a)に示すように、既存梁201に設置されている山留め用切梁腹起し406を解体撤去し(ステップS114)、図10(b)に示すように、地下室に流動化ソイル壁300を構築する。
 まず、既存地下コンクリート躯体200の既存梁201と既存耐力壁202とに、複数のアンカー307を打ち込み、それぞれのアンカー307にセパレータ501を連結させる(ステップS115)。次に、地下ピットに設置した型枠パネル500に連設するようにして型枠パネル500を組立て、セパレータ501によって起立状態を保持させる(ステップS116)。この時、型枠パネル500と、セパレータ501とは、座金301,302と、ナット303とで締結して固定される。
 そして、既存地下コンクリート躯体200と型枠パネル500との間に流動化ソイルを充填して、流動化ソイル壁300を構築する(ステップS117)。これにより、地下ピットに構築した流動化ソイル壁300と、地下室に構築した流動化ソイル壁300とが連続した1つの壁として構築される。そして、この流動化ソイル壁300の荷重は、既存地下コンクリート躯体200を構成する既存梁201,既存耐力壁202、既存基礎203の一部が支持する。
<地下室の新設コンクリート躯体の構築>
 次に、図11(a)に示すように、地下ピットに構築した新設地下コンクリート躯体400の上部に、まず、新設地下コンクリート躯体400となる柱、梁、壁、床を構築するための鉄筋を組み立てる(ステップS118)。次に、地下室用に構築した流動化ソイル壁300の型枠パネル500から突出したセパレータ501にセパレータ601を連結させ(ステップS119)、このセパレータ601によって型枠パネル600を起立状態に保持させる。そして、地下室用の新設スラブ401及び新設梁402を構築するための型枠パネル600を組み立てる(ステップS120)。この型枠パネル600は、支持柱によって支持されている。
 なお、起立状態に保持された型枠パネル600と、スラブ及び梁の形状に組み立てられた型枠パネル600とは、連続した型枠パネル600となるように連結させて組み立てる。
 次に、新設スラブ401用の鉄筋を組立て(ステップS121)、流動化ソイル壁300と型枠パネル600との間にコンクリートを打設する(ステップS122)。これにより、地下室用の新設コンクリート躯体400を構築することができる。また、地下ピットに構築された新設コンクリート躯体400と、地下室に構築された新設コンクリート躯体400とは、連続した新設コンクリート躯体であって、この躯体の荷重は、新設杭405aによって支持される。
 以上の説明から、本実施形態に係る地下構造物の施工方法は、既存地下コンクリート躯体を解体することなく、この既存地下コンクリート躯体を山留め壁として利用し、内側に、流動化ソイル壁と、新設コンクリート躯体とを構築することで、新設地下構造物を施工することができる。
 そして、既存地下コンクリート躯体の内側に構築される流動化ソイル壁と、新設コンクリート躯体とは、型枠パネルを挟んで、それぞれが独立しており、流動化ソイル壁の荷重は既存地下コンクリート躯体と接している部分で支持することができ、新設コンクリート躯体の荷重は、事前に設けられた新設杭や既存地下コンクリート躯体の基礎部分で支持することができる。
 これにより、流動化ソイル壁と新設コンクリート躯体との荷重を既存地下コンクリート躯体に分散して支持させることができるため、既存地下コンクリート躯体が支持する負担を軽減することができる。
 また、既存地下コンクリート躯体と新設地下コンクリート躯体との間に流動化ソイル壁を設けることで、本来、既存地下コンクリート躯体に直接、新設地下コンクリート躯体を設ける工法に対し、流動化ソイル壁の存在により新設地下コンクリート躯体の厚さを薄くすることができるため、コンクリートの量を減らすことができる。
 また、本実施形態に係る型枠パネルは、パネル鋼板を断面略角波形状に折り曲げることで、平行な複数の凸条が所定間隔で並設されるため、パネル自体の強度を補強することができる。これにより、流動化ソイルを充填した場合や、コンクリートを打設した場合でも型枠パネルにかかる側圧に対して十分に耐えることができる。そして、この型枠パネルに設けられている所定長の切込みが型枠パネル自体の折り曲げを容易にすると共に、流動化ソイルやコンクリートの漏出を防止しつつ、余分な水分の排出を促すことができる。これにより、コーナーでの型枠パネルの折り曲げ加工を容易にしつつ、流動化ソイル壁や新設地下コンクリート躯体の構築を早めることができる。
本実施形態に係る新設地下構造物の構成を示した図である。 本実施形態で使用する型枠パネルの概略構成図である。 図2に示す型枠パネルのA-A断面を示した図である。 図1に示す地下構造物のX-X断面を示した横断面図である。 本実施形態に係る新設地下構造物の施工方法の手順を示したフローチャートである。 本実施形態に係る新設地下構造物の施工方法の概略図である。 本実施形態に係る新設地下構造物の施工方法の概略図である。 本実施形態に係る新設地下構造物の施工方法の概略図である。 本実施形態に係る新設地下構造物の施工方法の概略図である。 本実施形態に係る新設地下構造物の施工方法の概略図である。 本実施形態に係る新設地下構造物の施工方法の概略図である。
 11  凸条
 12  リブ
 13  切込み
 14  蓋部
 16  溝部
 31  上面
 32  側面
 200  既存地下コンクリート躯体
 201  既存梁
 202  既存耐力壁
 203  既存基礎(基礎・地中梁)
 204  既存柱
 205、206  スラブ
 208  既存耐圧盤
 300  流動化ソイル壁
 301、302  座金
 303  ナット
 304  長ナット
 305  パイプ
 306  ホームタイ
 307  アンカー
 400  新設地下コンクリート躯体
 401  新設スラブ
 402  新設梁
 403  新設壁
 404  新設基礎(基礎・地中梁)
 405  新設穴
 405a  新設杭
 406  山留め用切梁腹起し
 407  新設耐圧盤
 500、600  型枠パネル
 501、601  セパレータ

Claims (4)

  1.  既存地下躯体を全て解体撤去することなく新設地下躯体を構築する新設地下構造物の施工方法において、
     該既存地下躯体の内周面に流動化ソイルを充填して流動化ソイル壁を構築し、該流動化ソイル壁の内周面に新設コンクリート躯体を構築することを特徴とする新設地下構造物の施工方法。
  2.  既存地下躯体を全て解体撤去することなく該既存地下躯体の一部を利用して新設地下躯体を構築する新設地下構造物の施工方法において、
     該既存地下躯体の内周面に該既存地下躯体と所定間隔をもって第1の型枠体を立設し、
     該既存地下躯体と該第1の型枠体の間に流動化ソイルを充填して流動化ソイル壁を構築し、
     該流動化ソイル壁の内周面に該流動化ソイル壁と所定間隔をもって第2の型枠体を立設し、
     該流動化ソイル壁と該第2の型枠体の間にコンクリートを打設して新設コンクリート躯体を構築する、
     ことを特徴とする新設地下構造物の施工方法。
  3.  前記第1の枠体と前記第2の枠体は、セパレータによってその立設状態が保持されていることを特徴とする請求項2に記載の新設地下構造物の施工方法。
  4.  前記第1の枠体と前記第2の枠体は、鋼製の板形状の材質を正面略方形状かつ断面略角波形状に折り曲げ切断加工して成形した型枠パネルであることを特徴とする請求項2または3に記載の新設地下構造物の施工方法。
PCT/JP2010/054796 2010-03-19 2010-03-19 新設地下構造物の施工方法 WO2011114507A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127014104A KR20130006420A (ko) 2010-03-19 2010-03-19 신설 지하 구조물의 시공 방법
PCT/JP2010/054796 WO2011114507A1 (ja) 2010-03-19 2010-03-19 新設地下構造物の施工方法
US13/635,512 US20130008125A1 (en) 2010-03-19 2010-03-19 Construction method for new underground structure
CN2010800605127A CN102713080A (zh) 2010-03-19 2010-03-19 新建地下构造物的施工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/054796 WO2011114507A1 (ja) 2010-03-19 2010-03-19 新設地下構造物の施工方法

Publications (1)

Publication Number Publication Date
WO2011114507A1 true WO2011114507A1 (ja) 2011-09-22

Family

ID=44648634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054796 WO2011114507A1 (ja) 2010-03-19 2010-03-19 新設地下構造物の施工方法

Country Status (4)

Country Link
US (1) US20130008125A1 (ja)
KR (1) KR20130006420A (ja)
CN (1) CN102713080A (ja)
WO (1) WO2011114507A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102691310A (zh) * 2012-06-06 2012-09-26 上海市城市建设设计研究总院 预制拼装式综合管廊进风井
CN102691312A (zh) * 2012-06-06 2012-09-26 上海市城市建设设计研究总院 预制拼装式管线结合井
CN102691311A (zh) * 2012-06-06 2012-09-26 上海市城市建设设计研究总院 预制拼装式综合管廊通风机房
CN103195090A (zh) * 2013-04-15 2013-07-10 合肥建工集团有限公司 地下腔室上开小孔注砼软模成型支柱
CN108203994A (zh) * 2018-03-14 2018-06-26 中建四局第建筑工程有限公司 一种地下室上顺下逆施工技术的方法
CN116290079A (zh) * 2023-02-15 2023-06-23 中铁二院工程集团有限责任公司 预制挡墙及其边幅预制块、中间幅预制块和开洞施工方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103775100B (zh) * 2014-02-26 2016-05-04 华瀚管道系统科技有限公司 一种预制装配式城市综合管廊
JP6474653B2 (ja) * 2015-03-13 2019-02-27 公益財団法人鉄道総合技術研究所 新設・既設地下構造物の接続構造
JP6827256B2 (ja) * 2016-08-02 2021-02-10 大成建設株式会社 建物の建替え方法
CN115233700A (zh) * 2022-08-29 2022-10-25 中建三局集团华南有限公司 一种基坑内支撑梁转换结构及其施工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0960165A (ja) * 1995-08-17 1997-03-04 Okada Takeo 型枠パネル
JPH10183653A (ja) * 1996-12-20 1998-07-14 Kajima Corp 盛土下カルバート
JP2001303599A (ja) * 2000-04-19 2001-10-31 Shimizu Corp 建物の解体・構築方法および建物
JP2010084460A (ja) * 2008-10-01 2010-04-15 Nippon Kankyo Seizo Kk 地下構造物の施工方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3232022A (en) * 1961-11-21 1966-02-01 Morton M Rosenfeld Method of making a family blast shelter in a basement
US3416322A (en) * 1966-11-14 1968-12-17 Albert G. Bodine Sonic method and apparatus for implanting underground concrete walls
US4040216A (en) * 1975-05-19 1977-08-09 A & T Development Corporation Pillars, walls and buildings
US4263762A (en) * 1979-03-09 1981-04-28 Reed Stanley B Structural foundation assembly
US4508472A (en) * 1982-11-03 1985-04-02 Iowa State University Research Foundation, Inc. Method for controlling moisture-expansive clay supporting building foundations
CA1230461A (en) * 1987-02-20 1987-12-22 Stuart R. Walkinshaw Enclosure conditioned housing system
US5331782A (en) * 1988-12-12 1994-07-26 Wohlgemuth Franz F Basement enclosure
US5845456A (en) * 1989-03-06 1998-12-08 Read; Robert R. Basement waterproofing
US5035095A (en) * 1989-12-15 1991-07-30 Joseph Bevilacqua Basement wall structure to prevent water leakage
US5199233A (en) * 1990-05-23 1993-04-06 Misawa Homes Co. Ltd. Prefabricated concrete basement and process for constructing the same
US5301918A (en) * 1992-01-06 1994-04-12 Miller C B Form assembly for construction of concrete culverts
US5735090A (en) * 1995-08-08 1998-04-07 Papke; William Modular foundation construction and method
US6606836B2 (en) * 1999-07-02 2003-08-19 Elmer Jefferson Miller Flexible liner for a concrete container
KR100811382B1 (ko) * 2000-08-04 2008-03-07 야나기하라 미노리 형틀 패널 및 패널 유지 부재
US6991402B2 (en) * 2002-10-17 2006-01-31 Stormtrap Llc Methods and modules for an underground assembly for storm water retention or detention
US7017309B2 (en) * 2002-11-04 2006-03-28 Mcnett Thomas J Waterproof sealing system for a building foundation
US6990775B2 (en) * 2003-06-18 2006-01-31 Masonry Technology, Inc. Moisture drainage product, wall system incorporating such product and method therefore
AU2004288174B2 (en) * 2003-10-28 2007-08-16 Warren Environmental & Coating, Llc Method for preparing in-ground tunnel structures
US20060096204A1 (en) * 2004-11-05 2006-05-11 Titan Structural L.L.C. Structural wall apparatuses, systems, and methods
US7313891B2 (en) * 2005-04-20 2008-01-01 Showers Robert J Wall finishing system
US7181888B1 (en) * 2006-01-12 2007-02-27 George Facaros Interconnected double hull construction for basements
US7930861B2 (en) * 2006-12-04 2011-04-26 Composite Panel Systems Llc Building, building walls and other structures
US8375671B1 (en) * 2011-08-12 2013-02-19 Thrasher Basement Systems, Inc. System and method for providing basement wall stabilization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0960165A (ja) * 1995-08-17 1997-03-04 Okada Takeo 型枠パネル
JPH10183653A (ja) * 1996-12-20 1998-07-14 Kajima Corp 盛土下カルバート
JP2001303599A (ja) * 2000-04-19 2001-10-31 Shimizu Corp 建物の解体・構築方法および建物
JP2010084460A (ja) * 2008-10-01 2010-04-15 Nippon Kankyo Seizo Kk 地下構造物の施工方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102691310A (zh) * 2012-06-06 2012-09-26 上海市城市建设设计研究总院 预制拼装式综合管廊进风井
CN102691312A (zh) * 2012-06-06 2012-09-26 上海市城市建设设计研究总院 预制拼装式管线结合井
CN102691311A (zh) * 2012-06-06 2012-09-26 上海市城市建设设计研究总院 预制拼装式综合管廊通风机房
CN103195090A (zh) * 2013-04-15 2013-07-10 合肥建工集团有限公司 地下腔室上开小孔注砼软模成型支柱
CN103195090B (zh) * 2013-04-15 2015-04-01 合肥建工集团有限公司 地下腔室上开小孔注砼软模成型支柱
CN108203994A (zh) * 2018-03-14 2018-06-26 中建四局第建筑工程有限公司 一种地下室上顺下逆施工技术的方法
CN116290079A (zh) * 2023-02-15 2023-06-23 中铁二院工程集团有限责任公司 预制挡墙及其边幅预制块、中间幅预制块和开洞施工方法
CN116290079B (zh) * 2023-02-15 2024-06-11 中铁二院工程集团有限责任公司 预制挡墙及其边幅预制块、中间幅预制块和开洞施工方法

Also Published As

Publication number Publication date
KR20130006420A (ko) 2013-01-16
CN102713080A (zh) 2012-10-03
US20130008125A1 (en) 2013-01-10

Similar Documents

Publication Publication Date Title
WO2011114507A1 (ja) 新設地下構造物の施工方法
US20160340855A1 (en) Modular construction mold apparatus and method for constructing concrete buildings and structures
KR101843023B1 (ko) 흙막이벽체파일과 건축물외부벽체 연결전단키 및 이를 이용한 지하구조물 시공방법
KR100313720B1 (ko) 가설 흙막이 벽용 철골 버팀대를 영구 구조물의 일부로 사용하는
KR102396786B1 (ko) 기존 지하 외벽의 보강을 통한 신설 건물의 지하 증축 및 역타 공법
JP4997207B2 (ja) 地下構造物の施工方法
JP2000352296A (ja) 地下構造物直下の通路の形成方法
JP5228862B2 (ja) 地下構造、地下構造の構築方法
KR100625115B1 (ko) 가설보조기둥을 이용한 철근콘크리트 역타설 지하구조물축조 공법
JP6283906B2 (ja) 支柱基礎
JP3760304B2 (ja) 建物の基礎施工方法
JP4228308B2 (ja) 既存床の補強工法および既存建物の免震化工法
KR20080059951A (ko) 가시설 겸용 파일기초와 지하옹벽 시공방법 및 그를 위한전단마찰 보강재
JPH11310928A (ja) 既存構造物の免震補強工法
KR20210119935A (ko) 버팀보를 이용한 지하구조물 및 그 시공방법
JP3641227B2 (ja) 地下構造躯体の施工法
JP6860895B2 (ja) 擁壁及びその施工方法
KR20140126883A (ko) 지하 구조물의 시공방법
JP4438540B2 (ja) 地下連続壁の応力負担材および施工方法
KR20210098162A (ko) 주열식 강관 벽체를 이용한 지중구조물 및 그 시공방법
KR200308716Y1 (ko) 프리스트레스트 가시설
KR100327547B1 (ko) 가설흙막이벽을영구구조물로활용하는지하옹벽구축방법
JP2571427B2 (ja) 既存地下構造体を利用した大荷重作業床工法
KR102601694B1 (ko) 지하건축물 신속 철거방법
KR102400508B1 (ko) 흙막이벽 설치 구조물의 시공방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080060512.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127014104

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13635512

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP