WO2011114021A1 - Procede et compositions utiles pour l'etancheificati0n et l'assemblage de composants d'un groupe moto-propulseur - Google Patents

Procede et compositions utiles pour l'etancheificati0n et l'assemblage de composants d'un groupe moto-propulseur Download PDF

Info

Publication number
WO2011114021A1
WO2011114021A1 PCT/FR2011/000142 FR2011000142W WO2011114021A1 WO 2011114021 A1 WO2011114021 A1 WO 2011114021A1 FR 2011000142 W FR2011000142 W FR 2011000142W WO 2011114021 A1 WO2011114021 A1 WO 2011114021A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyorganosiloxane
symbol
hydrocarbon radical
monovalent hydrocarbon
Prior art date
Application number
PCT/FR2011/000142
Other languages
English (en)
Inventor
Tania Ireland
Original Assignee
Bluestar Silicones France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bluestar Silicones France filed Critical Bluestar Silicones France
Priority to CN201180022634.1A priority Critical patent/CN102884136B/zh
Priority to BR112012023235A priority patent/BR112012023235A2/pt
Priority to EP11718422.6A priority patent/EP2556116B1/fr
Priority to US13/635,338 priority patent/US8841372B2/en
Priority to KR1020127026982A priority patent/KR101526040B1/ko
Priority to CA2793624A priority patent/CA2793624C/fr
Priority to ES11718422.6T priority patent/ES2602740T3/es
Publication of WO2011114021A1 publication Critical patent/WO2011114021A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/102Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/28Non-macromolecular organic substances
    • C08L2666/44Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/54Inorganic substances

Definitions

  • the present invention relates to a crosslinkable silicone elastomer composition and a method using the composition according to the invention to form seals and assembly components of a powertrain.
  • the silicone elastomers prepared from the composition according to the invention have:
  • coolant any coolant used to evacuate the calories of a mechanical or electronic system.
  • Crosslinkable silicone compositions made of elastomer for forming seals are known. Indeed, they are particularly suitable for the formation of "in-situ" seals, which are formed directly during assembly of the elements, in particular in the automotive field.
  • crosslinkable silicone elastomer compositions known for this type of application those which crosslink from room temperature form a category that attracts the attention because they do not require the establishment of energy consuming oven.
  • RTV-1 single-component compositions
  • RTV-2 bi-component compositions
  • RTV Room Temperature Vulcanising
  • powertrain formulators engine oil, gearbox and deck lubricant, oil / gasoline mixture, coolant, fuel oil or antifreeze liquid
  • powertrain formulators continue to improve the performance of these products through the addition of fuel additives. more and more effective.
  • the amount of additives incorporated in these products increases more and more, which has the effect of increasing their chemical aggressivity with respect to the flexible members, for example the seals, present in the devices in which these products are used.
  • Patent Application JP-A-2009197188 describes silicone compositions having good resistance to contact with the different fluids used in a powertrain, but these compositions comprise complex and expensive crosslinkable oils which contain a C 1 to C 5 alkylene ring and represented by the symbol Y in the following formulas:
  • Another objective is to propose a new sealing process
  • At least one polyorganosiloxane A comprising at least one alkoxylated group and consisting of identical or different siloxyl units of formula:
  • R 4 represents a monovalent C-hydrocarbon radical
  • R 5 represents a monovalent C-hydrocarbon radical; to C4 OR an alkoxyalkyl radical optionally comprising an ester function, and
  • the index b ⁇ 1 is such that the polyorganosiloxane A contains at least one alkoxylated group Z,
  • siloxane D having from 2 to 10 identical or different siloxyl units of formula:
  • R 2 represents a monovalent C-hydrocarbon radical
  • R 3 represents a C 5 monovalent hydrocarbon radical; C 8 or an alkoxyalkyl radical optionally comprising an ester function, and with the proviso that for at least one siloxyl unit the index y' ⁇ 1.
  • an additive E capable of absorbing an oil used in a propellant group such as acetylene black,
  • G optionally at least one additive I such as a color base, a pigment or a thixotropic agent.
  • an additive I such as a color base, a pigment or a thixotropic agent.
  • the silicone elastomers prepared from the composition according to the invention have the advantage of maintaining good mechanical properties even when they are in prolonged contact with chemically aggressive fluids such as those used for example in a powertrain.
  • chemically aggressive fluids include, for example: motor oils, gearbox and deck lubricants, blends
  • oils / gasoline, coolants, fuels and antifreeze fluids are oils / gasoline, coolants, fuels and antifreeze fluids.
  • the crosslinkable polyorganosiloxane A is linear and has the structural formula:
  • R 1 which may be identical or different, each represent a substituted or unsubstituted, aliphatic, cyclanic or aromatic saturated monovalent hydrocarbon radical C1 to C13;
  • the substituents R2 which may be identical or different, each represent a substituted or unsubstituted, aliphatic, cyclanic or aromatic saturated monovalent hydrocarbon radical C 1 to C 13;
  • the substituents R 3 which may be identical or different, each represent a linear or branched C 1 to C 6 alkyl radical;
  • N is of sufficient value to give the polyorganopolysiloxane of formula A a dynamic viscosity at 25 ° C ranging from 1,000 to 1,000,000 mPa.s;
  • the polyorganosiloxane A comprising at least one alkoxylated group is obtained by reacting, optionally in situ, in the presence of a catalytically effective amount of at least one catalyst C of
  • the substituents R 1 which are identical or different, each represent a monovalent C-hydrocarbon radical; at C30 and selected from the group consisting of alkyl, cycloalkyl, aryl radicals; alkaryls and aralkyls, and
  • At least two siloxyl units comprising a SiOH group are present in the polyorganosiloxane A ', with
  • R 2 represents a monovalent C-hydrocarbon radical
  • R 3 identical or different, each represent a
  • the polyorganosiloxane A ' is preferably an ⁇ , ⁇ -dihydroxypolydiorganosiloxane polymer having a viscosity of between 50 and 5,000,000 mPa.s at 25 ° C.
  • the polyalkoxylated silanes B are products accessible on the silicone market; moreover their use in compositions hardening at room temperature is known; it appears in particular in the French patents FR-A-1,126,411, FR-A-1,179,969, FR-A-1,189,216, FR-A-1,198,749, FR-A-1,248,826, FR-A -1 314 649, FR-A-1 423 477, FR-A-1 432 799 and FR-A-2 067636.
  • polyalkoxylated silanes B mention may be made of those of formula:
  • very finely divided mineral fillers with an average particle diameter of less than 0.1 ⁇ m are used. These fillers include fumed silicas and precipitated silicas; their BET surface area is generally greater than 40 m 2 / g. These fillers may also be in the form of more coarsely divided products with an average particle diameter greater than 0.1 ⁇ m. Examples of such fillers include ground quartz, diatomaceous earth silicas, calcium carbonate optionally surface-treated with an organic acid or an ester of an organic acid, calcined clay, titanium oxide.
  • rutile type oxides of iron, zinc, chromium, zirconium, magnesium, various forms of alumina (hydrated or not), boron nitride, lithopone, barium metaborate, barium sulfate glass microbeads; their specific surface area is generally less than 30 m 2 / g.
  • these fillers may have been surface-modified by treatment with the various organosilicon compounds usually employed for this purpose.
  • these organosilicon compounds may be organochlorosilanes, diorganocyclopolysiloxanes, hexaorganodisiloxanes, hexaorganodisilazanes or diorganocyclopolysilazanes (French patents FR-A-1 126 884, FR-A-1 136 885, FR-A-1 236 505, British patent GB -A-1,024,234).
  • the treated fillers contain, in most cases, from 3 to 30% of their weight of organosilicic compounds.
  • the charges may consist of a mixture of several types of charges of different particle size; for example, they may consist of 30 to 70% of finely divided silicas of BET specific surface area greater than 40 m 2 / g and 70 to 30% of more coarsely divided silicas with a specific surface area of less than 30 m 2 / g. These charges may have been surface treated
  • the filler G is present and is preferably a surface-treated calcium carbonate with a stearic acid.
  • the composition according to the invention may comprise at least one adhesion promoter
  • VTMO vinyltrimethoxysilane
  • GLYMO 3-glycidoxypropyltrimethoxysilane
  • MEMO methacryloxypropyltrimethoxysilane
  • the functionalization catalyst C is lithium hydroxide (or lithium hydroxide) or potassium hydroxide.
  • Lithium is largely in commerce. It is preferably used in solution in an alcohol, such as, for example, methanol or ethanol.
  • the condensation catalyst F is a derivative of tin, zinc or titanium or an optionally silylated guanidine.
  • a condensation catalyst derived from tin the condensation catalyst F
  • the condensation catalyst F is tin 2-ethyl hexanoate, dibutyltin dilaurate, dibutyltin diacetate (see NOLL's book “Chemistry and technology of silicone", page 337, Academy Press, 1968- 2nd edition or patents EP-147 323 or EP235049).
  • the condensation catalyst F is
  • radicals R 1 which are identical or different, represent, independently of one another, a linear or branched monovalent alkyl group, a cycloalkyl group, a group
  • (cycloalkyl) alkyl the ring being substituted or not and may comprise at least one heteroatom or a fluoroalkyl group
  • the radical R 2 represents a hydrogen atom, a linear or branched monovalent alkyl group, a cycloalkyl group, a substituted or unsubstituted ring-substituted alkyl group and may comprise at least one heteroatom, an aromatic group or an arylalkyl group, a fluoroalkyl group, an alkylamine or alkylguanidine group, and
  • the radical R 3 represents a linear or branched monovalent alkyl group, a cycloalkyl group, a substituted or unsubstituted ring-substituted alkyl group and may comprise at least one heteroatom, an arylalkyl, fluoroalkyl, alkylamine or alkylguanidine group,
  • radical R 2 when the radical R 2 is not a hydrogen atom, the radicals R 2 and R 3 may be bonded to form a 3-, 4-, 5-, 6- or 7-membered aliphatic ring optionally substituted by one or more substituents.
  • the condensation catalyst F is a guanidine of formula:
  • the ring being substituted or unsubstituted and may comprise at least one heteroatom or a fluoroalkyl group, an aromatic group an arylalkyl group, a fluoroalkyl group, an alkylamine or alkylguanidine group, and
  • radicals R 1 , R 2 , R 3 or R 4 may be linked in pairs so as to form a 3-, 4-, 5-, 6- or 7-membered aliphatic ring optionally substituted with one or more substituents. They are pentasubstituted guanidines and have the advantage of being liquid, colorless, odorless and soluble in silicone matrices.
  • the condensation catalyst F is a metal complex or salt of zinc of formula:
  • L 1 represents a ligand which is a ⁇ -dicarbonylato anion or the enolate anion of a ⁇ -dicarbonyl compound or an acetylacetato anion derived from a ⁇ -ketoester, and
  • L 2 represents an anionic ligand different from L 1 .
  • condensation catalyst F will be chosen from the following compounds:
  • This catalyst has the advantage of being liquid at ambient temperature (25 ° C.) and soluble in organic solvents, even in alkanes, and in silicone oils.
  • the polyorganosiloxane composition X according to the invention comprises:
  • R 4 represents a monovalent hydrocarbon radical C1 to C13;
  • R 5 represents a monovalent hydrocarbon radical in C-
  • the index b ⁇ 1 is such that the polyorganosiloxane A contains at least one alkoxylated group Z, B) from 1 to 50 parts by weight of at least one siloxane D which is a condensate obtained by partial hydrolysis and condensation of a polyalkoxylated silane, said siloxane D having from 2 to 10 identical or different siloxyl units of formula :
  • G from 0 to 20 parts by weight of at least one additive I such as a color base, a
  • thixotropic agent As an example of a thixotropic agent, mention may be made of:
  • inorganic thickeners boric acid and borates, titanates, aluminates, zirconates;
  • fluorinated resins preferably based on polyfluoroethylene (PFE) and more preferably still based on polytetrafluoroethylene (PTFE or Teflon®).
  • PFE polyfluoroethylene
  • PTFE polytetrafluoroethylene
  • Another subject of the invention relates to an elastomer obtained by crosslinking in the presence of water of the polyorganosiloxane composition X according to the invention and as defined above.
  • Another subject of the invention relates to the use of the polyorganosiloxane composition X according to the invention and as defined above or of the elastomer according to the invention and as defined above for preparing silicone sealants having good resistance to aging in fluids used in a powertrain.
  • the last object of the invention relates to a method for sealing and assembling at least one component of a powertrain comprising the following steps a) to d):
  • said polyorganosiloxane composition X is applied to at least one contact zone of said component in a continuous or discontinuous manner and possibly in the form of a bead,
  • said silicone polyorganosiloxane composition X is allowed to crosslink in the presence of moisture brought by the ambient air or by the prior addition of water so as to form a seal
  • said component is assembled to another component of the powertrain so that the formed joint ensures assembly and sealing between the two components of the powertrain.
  • silicone gaskets encompasses several types of gaskets, namely "glanded” gaskets (JF) also known as crushed gaskets and profiled gaskets (JPP) also called “shaped gaskets”.
  • the "fluent" seals are generally formed following the application of a pasty bead of the compositions on the contact zone between two metal or plastic elements to be assembled.
  • the pasty cord is first deposited on one of the elements and then the other element is applied to the first; this results in crushing of the bead before it turns into an elastomer.
  • This type of seals is intended for assemblies that should not be commonly dismantled (sump seals, timing case seals, etc.).
  • “Profiled” joints are used in particular in the transport and automotive sector, for sealing applications on all engine parts requiring disassembly as examples, the cylinder head cover, oil pump, water pump, water box, oil pan, timing case, clutch guide.
  • “Profile Joints” (JPP) are usually formed as a result of the application of a pasty cord compositions on the contact area between two elements to assemble.
  • the "profiled piece seal” is generally a closed bead of silicone elastomer of ovoid section deposited in a well defined profile and to seal two (or more) removable parts.
  • compositions used in the process according to the invention harden rapidly at ambient temperature and even in a confined environment, it follows that the silicone seals resulting from the hardening of these compositions can be prepared under very restrictive industrial manufacturing conditions. They may, for example, be manufactured on the usual assembly lines of the automotive industry equipped with an automatic device for depositing the compositions.
  • This automatic device often has a mixing head and a dispensing nozzle, which moves according to the profile of the joints to be manufactured.
  • the compositions manufactured and dispensed by means of this apparatus preferably have a curing time which is well adjusted in order firstly to prevent caking in the mixing head and secondly to obtain complete crosslinking after the end of the coating. pasty cord on the pieces to be grouted.
  • These "shaped" seals are especially suitable for rocker cover seals, gearbox covers, distribution spacers and even oil seals.
  • the component can be of various and varied nature is made of glass, plastic, metal ...
  • component of the power unit is selected from the group consisting of: a cylinder head, an oil pan, a cylinder head cover, a timing cover, a bearing bar, a cylinder block motor, a gearbox, a pump water pump, a crankcase ventilation unit, a water filter, an oil filter, an oil pump, a housing comprising electronic components of a powertrain or a clutch housing.
  • the silicone composition is applied to the component either in the form of a continuous or discontinuous joint, or in the form of a continuous or discontinuous layer. To form a continuous or discontinuous layer, it is possible to use the removal or deposition techniques. classic coating.
  • Monocomponent bases are described in detail, for example in the patents EP 141 685, EP 147 323, EP 102 268, EP 21 859, FR 2 121 289 and FR 2 121 631, cited with reference.
  • Dynasylan 40 Si (OEt) 4 partially hydrolyzed and condensed.
  • Dynasylan 6490 Vinyltrimethoxysilane (VTMO) partially hydrolyzed and condensed. Condensation catalysts:
  • Tyzor PITA SM 20% by weight of CH 3 Si (OCH 3 ) 3 and 80% by weight of (iPrO) 2 Ti (ethylacetoacetonate) 2
  • Adhesion promoters 20% by weight of CH 3 Si (OCH 3 ) 3 and 80% by weight of (iPrO) 2 Ti (ethylacetoacetonate) 2
  • Dynasyian DAMO (Evonik): N-beta- (aminoethyl) -gamma-aminopropyltrimethoxysilane Dynasylan GLYMO (Evonik) gamma-glycidoxypropyltrimethoxysilane
  • Celite350 Diatomaceous earth (supplier World Minerals)
  • Winnofil SPM calcium carbonate treated stearate (Solvay supplier)
  • BLR3 calcium carbonate surface treated with a stearate (supplier Omya)
  • a seal in the form of a 2 mm thick film is then prepared with each of the formulations and allowed to crosslink for 7 days under controlled conditions (23 ° C +/- 2 ° C and 50% +/- 5 humidity ).
  • the Shore A hardness and tensile mechanical properties are then measured from specimens with a thickness of 2 mm after 14 days of crosslinking.
  • a parallelepiped silicone elastomer seal 1mm thick is applied between two sterigmes.
  • the test piece thus obtained after 14 days of crosslinking at 23 ° C. +/- 2 ° C. and 50% relative humidity +/- 5%, is subjected to tensile-shear stress. Bonding is characterized by the breaking stress (MPa) and the type of fracture (percentage of cohesive profile).
  • the AG3 grade aluminum test pieces are scraped beforehand to remove the oxide layer and then cleaned with solvent and dried.
  • test pieces are dipped in a mixture of heptane and Elf Diesel 5W30 (95/5) oil during and then drained before removing the silicone elastomer seal. Linen Results

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)
  • Silicon Polymers (AREA)

Abstract

La présente invention a pour objet une composition silicone réticulable en élastomère et un procédé utilisant la composition selon l'invention pour former des joints d'étanchéité et d'assemblage des composants d'un groupe moto-propulseur. Les élastomères silicones préparés à partir de la composition selon l'invention présentent: une bonne résistance au vieillissement dans des fluides agressifs chimiquement tels que ceux utilisés par exemple dans un groupe motopropulseur en l'occurrence les huiles moteur, les lubrifiants pour boîte de vitesse et pont, les mélanges huile/essence, les liquides de refroidissement, les fuels ou les liquides antigel, et; de bonnes propriétés d'adhésion même sur des surfaces polluées par des huiles utilisées dans un groupe motopropulseur, et; de bonnes propriétés de résistance mécanique telles que la résistance à la rupture, le module à 100 % d'allongement et la dureté shore.

Description

PROCEDE ET COMPOSITIONS UTILES POUR L'ETANCHEIFICATION ET
L'ASSEMBLAGE DE COMPOSANTS D'UN GROUPE MOTO-PROPULSEUR
La présente invention a pour objet une composition silicone réticulable en élastomère et un procédé utilisant la composition selon l'invention pour former des joints d'étanchéité et d'assemblage des composants d'un groupe moto-propulseur. Les élastomères silicones préparés à partir de la composition selon l'invention présentent:
- une bonne résistance au vieillissement dans des fluides agressifs chimiquement tels que ceux utilisés par exemple dans un groupe motopropulseur en l'occurrence les huiles moteur, les lubrifiants pour boîte de vitesse et pont, les mélanges huile/essence, les liquides de refroidissement, les fuels ou les liquides antigel,
- de bonnes propriétés d'adhésion même sur des surfaces polluées par des huiles utilisées dans un groupe motopropulseur, et
- de bonnes propriétés de résistance mécanique telles que la résistance à la rupture, le module à 100 % d'allongement et la dureté shore.
Par "liquide de refroidissement", on entend tout liquide caloporteur utilisé pour évacuer les calories d'un système mécanique ou électronique.
Les compositions silicones réticulables en élastomère pour former des joints d'étanchéité sont connues. En effet, elles conviennent en particulier pour la formation de joints d'étanchéité "in-situ", qui sont formés directement lors de l'assemblage des éléments, en particulier dans le domaine de l'automobile.
Parmi les compositions silicones réticulables en élastomère connues pour ce type d'application, celles qui réticulent dès la température ambiante forment une catégorie qui attire toute l'attention car elles ne nécessitent pas la mise en place de four consommateur d'énergie.
Ces compositions silicones sont classées en 2 groupes distincts: les compositions monocomposantes (RTV-1) et les compositions bi-composantes (RTV-2). Le terme "RTV" est l'acronyme pour "Room Température Vulcanising". Lors de la réticulation, l'eau (soit apportée par une humidité atmosphérique dans le cas des RTV-1 , soit introduite dans une partie de la composition dans le cas des RTV-2) permet la réaction de polycondensation, qui conduit à la formation du réseau élastomère. Généralement, les compositions monocomposantes (RTV-1) réticulent quand elles sont exposées à l'humidité de l'air. Le plus souvent, la cinétique des réactions de
polycondensation est extrêmement lente; ces réactions sont donc catalysées par un catalyseur approprié.
De plus, face à une industrie du transport en pleine évolution, on voit apparaître de nouvelles contraintes liées à l'augmentation des rendements moteurs, à l'augmentation des températures de fonctionnement, à la diminution de la consommation en carburant et à la diminution de la fréquence d'entretien.
Ainsi, les formulateurs de fluides motopropulseurs (huile moteur, lubrifiant pour boite de vitesse et pont, mélange huile/essence, liquide de refroidissement, fuel ou liquide antigel) continuent d'améliorer les performances de ces produits par l'addition d'additifs de plus en plus efficace. La quantité d'additifs incorporée dans ces produits augmente de plus en plus, ce qui a pour effet d'augmenter leur agressivité chimique vis à vis des organes souples, par exemple les joints d'étanchéité, présents dans les dispositifs dans lesquels ces produits sont utilisés.
La demande de brevet JP-A-2009197188 décrit des compositions silicones ayant une bonne résistance au contact des différents fluides utilisés dans un groupe motopropulseur mais ces compositions comprennent des huiles réticulables complexes et coûteuses qui contiennent une rotule alkylène en C1 à C5 et représenté par le symbole Y dans les formules suivantes :
Figure imgf000003_0001
(RO)3.NSi-Y-(SiR1 20)x(SiR1R20)d
Figure imgf000003_0002
R)3-N ( 3)
Il existe donc un besoin croissant pour trouver de nouvelles compositions silicones utiles pour former des joints d'étanchéité et d'assemblage des composants d'un groupe moto-propulseur, même sur des surfaces polluées par des huiles. Ainsi, un des objectifs essentiels de la présente invention est de proposer de nouvelles compositions d'organopolysiloxanes durcissant en un élastomère silicone en présence d'eau ou d'humidité utiles pour l'étanchéification et l'assemblage des éléments d'un groupe moto- propulseur.
Un autre objectif est de proposer un nouveau procédé d'étanchéification et
d'assemblage de composants d'un groupe moto-propulseur au moyen de joints silicones ayant une bonne résistance au contact des différents fluides utilisés dans un groupe motopropulseur tout en ayant de bonnes propriétés d'adhésion.
Ces objectifs, parmi d'autres, sont atteints par la présente invention qui concerne une Composition polyorganosiloxane X réticulable en élastomère en présence d'eau par des réactions de polycondensation comprenant :
A) au moins un polyorganosiloxane A comprenant au moins un groupement alcoxylé et constitué de motifs siloxyles identiques ou différents, de formule :
(Z)b(R4)aSiO[4.(a.+b)]/2 (D
dans laquelle :
• le symbole Z = [-(OCH2CH2)c-OR5], avec c=0 ou 1 ,
• a= 0, 1 , 2 ou 3; b= 0, 1, 2 ou 3, a+b= 0, 1 , 2 ou 3,
• le symbole R4 représente un radical monovalent hydrocarboné en C-| à C-^
• le symbole R5 représente un radical monovalent hydrocarboné en C-| à CQ OU un radical alkoxyalkyle comprenant éventuellement une fonction ester, et
• avec la condition que pour au moins un motif siloxyle l'indice b≥1 de manière à ce que le polyorganosiloxane A contienne au moins un groupement alcoxylé Z,
B) au moins un siloxane D qui est un condensât obtenu par hydrolyse partielle et
condensation d'un silane polyalcoxylé, le dit siloxane D ayant de 2 à 10 motifs siloxyles, identiques ou différents, de formule :
(R2)x.(OR3)y. SiOr4.(x'+y')]/2 (2)
dans laquelle :
- x'= 0, 1 , 2 ou 3; y'= 0, 1 , 2 ou 3, x'+y"= 0, 1 , 2 ou 3,
- le symbole R2 représente un radical monovalent hydrocarboné en C-| à C-^ et
- le symbole R3 représente un radical monovalent hydrocarboné en C-| à Cg ou un radical alkoxyalkyle comprenant éventuellement une fonction ester, et - avec la condition que pour au moins un motif siloxyle l'indice y'≥1.
C) un additif E susceptible d'absorber une huile utilisée dans un groupe moto-propulseur tel que le noir d'acétylène,
D) une quantité catalytiquement efficace d'au moins un catalyseur de condensation F,
E) éventuellement au moins une charge G,
F) éventuellement au moins un promoteur d'adhérence H, et
G) éventuellement au moins un additif I tel qu'une base colorante, un pigment ou un agent thixotropant. Pour atteindre cet objectif, la Demanderesse a eu le mérite de mettre en évidence, de manière tout à fait surprenante et inattendue, que l'utilisation d'un siloxane D qui est un condensât obtenu par hydrolyse partielle et condensation d'un silane polyalcoxylé en association avec un additif E susceptible d'absorber une huile utilisée dans un groupe moto- propulseur tel que le noir d'acétylène, permet de préparer des joints assurant
l'étanchéification et l'assemblage, de composants ou d'éléments utilisés dans un groupe moto-propulseur et ceci même avec des polyorganosiloxanes alcoxylés ne présentant pas de rotule alkyle tels que décrits dans la demande de brevet JP-A-2009197188.
De plus, les élastomères silicones préparés à partir de la composition selon l'invention présentent l'avantage de maintenir de bonnes propriétés mécaniques même lorsqu'ils sont en contact prolongé avec des fluides agressifs sur le plan chimique tels que ceux utilisés par exemple dans un groupe motopropulseur.
Comme exemple de fluides agressifs sur le plan chimique on peut citer par exemple: les huiles pour moteur, les lubrifiants pour boite de vitesse et pont, les mélanges
huiles/essence, les liquides de refroidissement, les fuels et les liquides antigel.
De préférence, le polyorganosiloxane réticulable A est linéaire et a pour formule développée:
(R2)a[(OCH2CH2)bOR3]; Si(R2)a[(OCH2CH2)bOR¾,
Figure imgf000005_0001
(3) dans laquelle : • les substituants R1 , identiques ou différents, représentent chacun un radical monovalent hydrocarboné saturé ou non en Ci à C13, substitué ou non substitué, aliphatique, cyclanique ou aromatique ;
• les substituants R2, identiques ou différents, représentent chacun un radical monovalent hydrocarboné saturé ou non en C-j à C13, substitué ou non substitué, aliphatique, cyclanique ou aromatique ;
• les substituants R3, identiques ou différents, représentent chacun un radical alkyle, linéaire ou ramifié, en Ci à Ce ;
• n a une valeur suffisante pour conférer au polyorganopolysiloxane de formule A une viscosité dynamique à 25°C allant de 1.000 à 1.000.000 mPa.s ; et
• l'indice a est égal à zéro ou 1 et l'indice b est égal à zéro ou 1 ;
Selon un autre mode de réalisation préféré, le le polyorganosiloxane A comprenant au moins un groupement alcoxylé est obtenu en faisant réagir, éventuellement in-situ, en présence d'une quantité catalytiquement efficace d'au moins un catalyseur C de
fonctionnalisation:
a) au moins un polyorganosiloxane A' comprenant des motifs siloxyles de formule :
(R1)x(OH)y SiO(4.x.y)//2 (4)
dans laquelle :
- x+y= 0, 1 , 2 ou 3 ;
- les substituants R1 , identiques ou différents, représentent chacun un radical monovalent hydrocarboné en C-| à C30 et choisi parmi le groupe constitué par les radicaux alkyles, cycloalkyles, aryles ; alkaryles et aralkyles, et
- au moins deux motifs siloxyles comprenant un groupement≡SiOH sont présents dans le polyorganosiloxane A', avec
b) au moins un silane polyalcoxylé B de formule :
(R2)zSi(OR3)(4.z) (5)
dans laquelle :
- z = 0 ou 1 ,
- le symbole R2 représente un radical monovalent hydrocarboné en C-| à Ci3, et - les symboles R3, identiques ou différents, représentent chacun un
radical monovalent hydrocarboné en C-| à CQ ou un radical alkoxyalkyle présentant éventuellement une fonction ester, La préparation de polyorganosiloxane comprenant des groupements alcoxylés par fonctionnalisation est décrite par exemple dans la demande de brevet français n°
FR2638752-A1.
Selon un autre mode de réalisation préféré, le polyorganosiloxane A' est de préférence un polymère α,οο-dihydroxypolydiorganosiloxane, de viscosité comprise entre 50 et 5 000 000 mPa.s à 25°C.
Les silanes polyalcoxylés B sont des produits accessibles sur le marché des silicones ; de plus leur emploi dans les compositions durcissant dès la température ambiante est connu ; il figure notamment dans les brevets français FR-A-1 126 411, FR-A-1 179 969, FR- A-1 189 216, FR-A-1 198 749, FR-A-1 248 826, FR-A-1 314 649, FR-A-1 423 477, FR-A-1 432 799 et FR-A-2 067636.
Comme exemples de silanes polyalcoxylés B , on peut citer ceux de formule:
Si(OCH3)4
Si(OCH2CH3)4
Si(OCH2CH2CH3)4
(CH30)3SiCH3
(C2H50)3SiCH3
(CH30)3Si(CH=CH2)
(C2H50)3Si(CH=CH2)
(CH30)3Si(CH2-CH=CH2)
(CH30)3Si[CH2-(CH3)C=CH2]
(C2H50)3Si(OCH3)
Si(OCH2-CH2-OCH3)4
CH3Si(OCH2-CH2-OCH3)3
(CH2=CH)Si(OCH2CH2OCH3)3
C6H5Si(OCH3)3
C6H5Si(OCH2-CH2-OCH3)3. L'introduction d'une charge G a pour but de conférer de bonnes caractéristiques mécaniques et rhéologiques aux élastomères découlant du durcissement des compositions conformes à l'invention.
On utilise, par exemple, des charges minérales très finement divisés dont le diamètre particulaire moyen est inférieur à 0,1 sm. Parmi ces charges figurent les silices de combustion et les silices de précipitation; leur surface spécifique BET est généralement supérieure à 40 m2/g. Ces charges peuvent également se présenter sous la forme de produits plus grossièrement divisés, de diamètre particulaire moyen supérieur à 0,1 pm. Comme exemples de telles charges, on peut citer le quartz broyé, les silices de diatomées, le carbonate de calcium éventuellement traité en surface par un acide organique ou par un ester d'un acide organique, l'argile calcinée, l'oxyde de titane du type rutile, les oxydes de fer, de zinc, de chrome, de zirconium, de magnésium, les différentes formes d'alumine (hydratée ou non), le nitrure de bore, le lithopone, le métaborate de baryum, le sulfate de baryum, les microbilles de verre; leur surface spécifique est généralement inférieure à 30 m2/g.
Ces charges peuvent avoir été modifiées en surface par traitement avec les divers composés organosiliciques habituellement employés pour cet usage. Ainsi ces composés organosiliciques peuvent être des organochlorosilanes, des diorganocyclopolysiloxanes, des hexaorganodisiloxanes, des hexaorganodisilazanes ou des diorganocyclopolysilazanes (brevets français FR-A-1 126 884, FR-A-1 136 885, FR-A-1 236 505, brevet anglais GB-A-1 024 234). Les charges traitées renferment, dans la plupart des cas, de 3 à 30 % de leur poids de composés organosiliciques. Les charges peuvent être constituées d'un mélange de plusieurs types de charges de granulométrie différente; ainsi par exemple, elles peuvent être constituées de 30 à 70 % de silices finement divisées de surface spécifique BET supérieure à 40 m2 /g et de 70 à 30 % de silices plus grossièrement divisées de surface spécifique inférieure à 30 m2/g. Ces charges peuvent avoir été traitées en surface
De préférence la charge G est présente et est de préférence un carbonate de calcium traité en surface par un acide stéarique. La composition selon l'invention peut comprendre au moins un promoteur d'adhérence
H tel que par exemple :
vinyltriméthoxysilane (VTMO), 3-glycidoxypropyl-triméthoxysilane (GLYMO),
méthacryloxypropyltriméthoxysilane (MEMO),
[H2N(CH2)3]Si(OCH2CH2CH3)3,
Figure imgf000009_0001
[H2N(CH2)3]Si(OC2H5)3
[H2N(CH2)4]Si(OCH3)3
[H2NCH2CH(CH3)CH2CH2]SiCH3(OCH3) 2
[H2NCH2]Si(OCH3)3
[n-C4H9-HN-CH2]Si(OCH3)3
[H2N(CH2)2NH(CH2)3]Si(OCH3)3
[H2N(CH2)2NH(CH2)3]Si(OCH2CH2OCH3)3
[CH3NH(CH2)2NH(CH2)3]Si(OCH3)3
[H(NHCH2CH2)2NH(CH2)3]Si(OCH3)3
HS(CH2)3Si(OCH3)3
NH2CONH2(CH2)3Si(OCH3)3
H2(CH2)NH(CH2)3Si(OCH3)2
OCH(CH2)CHOCH3
H2(CH2)NH(CH2)3Si-CH=CH2
(OCH3)2
ou des oligomères polyorganosiloxaniques contenant de tels groupes organiques à une teneur supérieure à 20%.
De préférence le catalyseur C de fonctionnalisation est la lithine (ou hydroxyde de lithium) ou la potasse.
La lithine se trouve largement dans le commerce. De préférence elle est utilisée en solution dans un alcool, tel que par exemple du méthanol ou de l'éthanol.
Selon un mode de réalisation préféré, le catalyseur de condensation F est un dérivé de l'étain, du zinc ou du titane ou une guanidine éventuellement silylée. Comme catalyseur de condensation dérivé de l'étain, on peut utiliser les
monocarboxylates et les dicarboxylates d'étain tels que l'éthyl-2 hexanoate d'étain, le dilaurate de dibutylétain, le diacétate de dibutylétain (voir le livre de NOLL "Chemistry and technology of silicone", page 337, Académie Press, 1968-2ème édition ou les brevets EP- 147 323 ou EP235049). Selon un mode de réalisation préféré, le catalyseur de condensation F est
guanidine répondant à la formule générale (I):
Figure imgf000010_0001
dans laquelle,
- les radicaux R1, identiques ou différents, représentent, indépendamment l'un de l'autre, un groupe alkyle monovalent linéaire ou ramifié, un groupement cycloalkyle, un groupe
(cycloalkyl)alkyle, le cycle étant substitué ou non et pouvant comprendre au moins un hétéroatome ou un groupement fluoroalkyle,
- le radical R2 représente un atome d'hydrogène, un groupement alkyle monovalent linéaire ou ramifié, un groupement cycloalkyle, un groupement alkyle substitué par un cycle, substitué ou non et pouvant comprendre au moins un hétéroatome, un groupement aromatique un groupe arylalkyle, un groupement fluoroalkyle, un groupement alkylamine ou alkylguanidine, et
- le radical R3 représente un groupement alkyle monovalent linéaire ou ramifié, un groupement cycloalkyle, un groupement alkyle substitué par un cycle, substitué ou non et pouvant comprendre au moins un hétéroatome, un groupement arylalkyle, fluoroalkyle, alkylamine ou alkylguanidine,
- lorsque le radical R2 n'est pas un atome d'hydrogène, les radicaux R2 et R3 peuvent être liés pour former un cycle aliphatique à 3, 4, 5, 6 ou 7 chaînons éventuellement substitué par un ou plusieurs substituants.
Il s'agit de guanidines 1 ,2,3-trisubstituées et 1 ,2,3,3-tétrasubstituées et présentent l'avantage d'être liquides, incolores, inodores et solubles dans les matrices silicones. Des exemples de ce type de catalyseurs sont décrits dans la demande de brevet internationale WO2009/118307.
De préférence on utilisera les catalyseurs (A1) à (A6) suivants:
Figure imgf000010_0002
(A1) (A2)
Figure imgf000011_0001
(A5) (A6)
Selon un autre mode de réalisation préféré, le catalyseur de condensation F est une guanidine de formule :
Figure imgf000011_0002
(il)
dans laquelle,
- les radicaux R1, R2, R3, R4 ou R5 identiques ou différents, représentent, indépendamment l'un de l'autre, un groupe alkyle monovalent linéaire ou ramifié, un groupement cycloalkyle, un groupe (cycloalkyl)alkyle, le cycle étant substitué ou non et pouvant comprendre au moins un hétéroatome ou un groupement fluoroalkyle, un groupement aromatique un groupe arylalkyle, un groupement fluoroalkyle, un groupement alkylamine ou alkylguanidine, et
- les radicaux R1, R2, R3 ou R4 peuvent être liés deux à deux de manière à former un cycle aliphatique à 3, 4, 5, 6 ou 7 chaînons éventuellement substitué par un ou plusieurs substituants. Il s'agit de guanidines pentasubstituées et présentent l'avantage d'être liquides, incolores, inodores et solubles dans les matrices silicones.
Selon un mode de réalisation particulier, les composés (A7) à (A9) suivants sont préférés:
Figure imgf000012_0001
(A9)
Ils sont par exemple décrits dans la demande de brevet français n° FR- 0806610 déposé le 25 novembre 2008.
Selon un autre mode de réalisation, le catalyseur de condensation F est un complexe ou sel métallique du zinc de formule:
Figure imgf000012_0002
dans laquelle:
- M≥ 1 et r2≥0 et M+r2=2,
- le symbole L1 représente un ligand qui est un anion β-dicarbonylato ou l'anion énolate d'un composé β-dicarbonylé ou un anion acétylacétato dérivé d'un β- cétoester, et
- le symbole L2 représente un ligand anionique différent de L1.
Des exemples de ce type de catalyseurs sont décrits dans la demande internationale WO-2009/106723. De préférence on choisira le catalyseur de condensation F parmi les composés suivants :
(A10): Zn(DPM)2 ou [Zn (t-Bu-acac)2] avec DPM=(t-Bu-acac) = l'anion 2,2,6,6- tétraméthyl-3,5-heptanedionato ou l'anion énolate de la 2,2,6,6-tétraméthyl-3,5- heptanedione,
(A11): [Zn (EAA)2] avec EAA = l'anion éthyle acétoacétato ou l'anion énolate de l'éthyle acétoacétate,
(A12): [Zn (iPr-AA)2] avec iPr-AA = l'anion isopropyle acétoacétato ou l'anion énolate de l'is
Figure imgf000013_0001
Ce catalyseur présente l'avantage d'être liquide à température ambiante (25°C) et soluble dans des solvants organiques, même dans des alcanes, et dans les huiles silicones.
Selon un mode de réalisation préféré, la composition polyorganosiloxane X selon l'invention comprend :
A) pour 100 parties en poids d'au moins un polyorganosiloxane A comprenant au moins un groupement alcoxylé et constitué de motifs siloxyles identiques ou différents, de formule :
(Z)b(R4)aSiO[4.(a'+b)]/2 (1)
dans laquelle:
le symbole Z = [-(OCH2CH2)c-OR5], avec c=0 ou 1 ,
• a= 0, 1 , 2 ou 3; b= 0, 1 , 2 ou 3, a+b= 0, 1 , 2 ou 3,
• le symbole R4 représente un radical monovalent hydrocarboné en Ci à C13 le symbole R5 représente un radical monovalent hydrocarboné en C-| à Cg un radical alkoxyalkyle comprenant éventuellement une fonction ester, et
• avec la condition que pour au moins un motif siloxyle l'indice b≥1 de manière à ce que le polyorganosiloxane A contienne au moins un groupement alcoxylé Z, B) de 1 à 50 parties en poids d'au moins un siloxane D qui est un condensât obtenu par hydrolyse partielle et condensation d'un silane polyalcoxylé, le dit siloxane D ayant de 2 à 10 motifs siloxyles, identiques ou différents, de formule :
(R2)x-(OR3)y. SiOr4.(x'+y>)]/2 (2)
dans laquelle:
• x'= 0, 1 , 2 ou 3; y'= 0, 1, 2 ou 3, x'+y'= 0, 1 , 2 ou 3,
• le symbole représente un radical monovalent hydrocarboné en C-| à c13,
• le symbole représente un radical monovalent hydrocarboné en C-| à Ce ou un radical alkoxyalkyle compenant éventuellement une fonction ester, et
• avec la condition que pour au moins un motif siloxyle l'indice y'≥1.
C) de 0,1 à 50 parties en poids d'un additif E susceptible d'absorber une huile utilisée dans un groupe moto-propulseur tel que le noir d'acétylène,
D) de 0,01 à 50 parties en poids une quantité catalytiquement efficace d'au moins un catalyseur de condensation F,
E) de 0 à 250 parties en poids d'au moins une charge G,
F) de 0 à 60 parties en poids d'au moins un promoteur d'adhérence H, et
G) de 0 à 20 parties en poids d'au moins un additif I tel qu'une base colorante, un
pigment ou un agent thixotropant.
Comme exemple d'agent thixotropant on peut citer :
- les épaississants inorganiques, l'acide borique et les borates, les titanates, les aluminates, les zirconates ;
- les composés portant des groupements hydroxyles ;
- les composés à base de polyéthylène et/ou polypropylène ;
- les composés comprenant des fonctions aminés cycliques ;
- les composés de type polyéther ou comprenant des groupements polyéther, et
- les résines fluorées, de préférence à base de polyfluoroéthylène (PFE) et plus préférentiellement encore à base de polytétrafluoroéthylène (PTFE ou téflon®).
Un autre objet de l'invention concerne un élastomère obtenu par réticulation en présence d'eau de la composition polyorganosiloxane X selon l'invention et telle que définie ci-dessus. Un autre objet de l'invention concerne l'utilisation de la composition polyorganosiloxane X selon l'invention et telle que définie ci-dessus ou de Pélastomère selon l'invention et tel que défini ci-dessus pour préparer des joints silicones d'étanchéité ayant une bonne résistance au vieillissement dans des fluides utilisés dans un groupe motopropulseur.
Enfin le dernier objet selon l'invention concerne un procédé d'étanchéification et d'assemblage d'au moins un composant d'un groupe moto-propulseur comprenant les étapes a) à d) suivantes:
a) on prépare une composition polyorganosiloxane X selon l'invention et telle que définie ci-dessus,
b) on applique ladite composition polyorganosiloxane X sur au moins une zone de contact dudit composant de manière continue ou discontinue et éventuellement sous la forme d'un cordon,
c) on laisse réticuler ladite composition polyorganosiloxane X en élastomère silicone en présence d'humidité apportée par l'air ambiant ou par addition préalable d'eau de manière à former un joint d'étanchéité, et
d) on assemble ledit composant à un autre composant du groupe moto-propulseur de manière à ce que le joint formé assure l'assemblage et l'étanchéité entre les deux composants du groupe moto-propulseur.
Dans le domaine de l'automobile, les élastomères silicones sont souvent utilisés sous la forme de joints silicones. Le terme "joints silicones" englobent plusieurs types de joints d'étanchéités, à savoir les joints "flués" (JF) également appelés joints écrasés et les joints profilés sur pièce (JPP) également appelés "joints en forme".
Les joints "flués" (JF) sont généralement formés à la suite de l'application d'un cordon pâteux des compositions sur la zone de contact entre 2 éléments métalliques ou plastiques à assembler. Le cordon pâteux est d'abord déposé sur l'un des éléments puis l'autre élément est appliqué sur le premier; il en résulte un écrasement du cordon avant qu'il ne se transforme en élastomère. Ce type de joints s'adresse à des assemblages ne devant pas être couramment démontés (joints de carter d'huile, joints de carter de distribution...).
Les joints "profilés sur pièce" (JPP) sont utilisés en particulier dans le secteur du transport et de l'automobile, pour des applications d'étanchéité sur toutes les pièces moteur exigeant une démontabilité telles à titre d'exemples, le couvre culasse, pompe à huile, pompe à eau, boîte à eau, carter d'huile, carter de distribution, guide d'embrayage. Les "joints profilés sur pièce" (JPP) sont généralement formés à la suite de l'application d'un cordon pâteux des compositions sur la zone de contact entre 2 éléments à assembler.
Toutefois, après la dépose du cordon pâteux sur l'un des éléments on laisse réticuler le cordon en élastomère puis on applique le deuxième élément sur le premier. Il en résulte qu'un tel assemblage est aisément démontable puisque l'élément qui est appliqué sur celui ayant reçu le joint, n'adhère pas à ce joint. Par ailleurs le joint, par son caractère
élastomérique, épouse les irrégularités des surfaces à jointoyer de ce fait, il est inutile d'usiner soigneusement les surfaces devant être mises en contact les unes avec les autres et de serrer avec force les assemblages obtenus. Ces particularités permettent de supprimer dans une certaine mesure, les joints de fixation, des entretoises, des nervures destinées habituellement à raidir et renforcer les éléments d'assemblages. Le "joint profilés sur pièce" est généralement un cordon fermé d'élastomère silicone de section ovoïde déposé selon un profil bien défini et devant assurer l'étanchéité de deux (ou plusieurs) pièces démontables.
Comme les compositions utilisées dans le procédé selon l'invention durcissent rapidement à température ambiante et même en milieu confiné, il en résulte que les joints d'étanchéité silicones découlant du durcissement de ces compositions peuvent être préparés dans des conditions de fabrication industrielle très contraignantes. Ils peuvent, par exemple, être fabriqués sur les chaînes de montage usuelles de l'industrie automobile munies d'un appareil automatique de dépose des compositions. Cet appareil automatique possède bien souvent une tête mélangeuse et une buse de dépose, celle-ci se déplaçant selon le profil des joints à fabriquer. Les compositions, fabriquées et distribuées au moyen de cet appareil ont de préférence une durée de durcissement bien ajustée pour d'une part éviter des prises en masse dans la tête mélangeuse et d'autre part obtenir une réticulation complète après la fin de la dépose du cordon pâteux sur les pièces à jointoyer. Ces joints "en forme" conviennent plus spécialement pour les joints de couvre-culbuteurs, de couvercles de boîtes à vitesses, d'entretoises de distribution et même de carters d'huile.
Le composant peut être de nature diverse et variée est en verre, en plastique, en métal...
Selon un autre mode de réalisation particulier du procédé selon l'invention le
composant du groupe moto-propulseur est choisi parmi le groupe constitué par: une culasse, un carter d'huile, un couvre-culasse, un carter de distribution, un barreau de palier, un bloc cylindre moteur, une boîte de vitesses, une pompe à eau, un boîtier de réaspiration des gaz carter, un filtre à eau, un filtre à huile, une pompe à huile, un boîtier comprenant des composants électroniques d'un groupe moto-propulseur ou un carter d'embrayage. De manière générale, on applique la composition silicone sur le composant soit sous la forme de joint continu ou discontinu, soit sous la forme de couche continue ou discontinue, Pour former une couche continue ou discontinue, on peut utiliser les techniques de dépose ou d'enduction classiques.
Après le dépôt des compositions telles quelles, sur des substrats solides, en atmosphère humide, on constate qu'un processus de durcissement en élastomère se met en œuvre, il s'effectue de l'extérieur à l'intérieur de la masse déposée. Une peau se forme d'abord en surface puis la réticulation se poursuit en profondeur. La formation complète de la peau, qui se traduit par un toucher non collant de la surface, demande une période de temps de quelques minutes; cette période dépendant du taux d'humidité relative de l'atmosphère entourant les compositions et de la faculté de réticulation de celles-ci.
Des bases monocomposantes sont décrites en détail par exemple dans les brevets EP 141 685, EP 147 323, EP 102 268, EP 21 859, FR 2 121 289 et FR 2 121 631 , cités en référence.
D'autres avantages et caractéristiques de la présente invention apparaîtront à la lecture des exemples suivants donnés à titre illustratif nullement limitatif.
EXEMPLES I) Préparation des formulations
Produits commerciaux utilisés
Silanes (Comparatifs) et silanes partiellement hvdrolvsés et condensés (selon l'invention) : Dynasylan VTMO : (CH2=CH2)Si(OCH3) 3 (fournisseur Evonik)
Dynasylan MTMS : CH3Si(OCH3) 3 (fournisseur Evonik)
Dynasylan A : Si(OEt)4 (fournisseur Evonik)
Dynasylan 40 : Si(OEt) 4 hydrolysé partiellement et condensé.
Dynasylan 6490 : Vinyltriméthoxysilane (VTMO) hydrolysé partiellement et condensé. Catalyseurs de condensation :
Tyzor PITA SM : 20% pds de CH3Si(OCH3)3 et 80% en poids de (iPrO)2Ti(éthylacétoacétonate)2 Promoteurs d'adhérence :
Dynasyian DAMO (Evonik): N-béta-(aminoéthyl)-gamma-aminopropyltriméthoxysilane Dynasylan GLYMO (Evonik) gamma-glycidoxypropyltriméthoxysilane
Charges:
Célite350 : Terre de diatomée (fournisseur World Minerais)
Silice AE55 : Silice de combustion traitée en surface
Winnofil SPM : carbonate de calcium traité stéarate (fournisseur Solvay)
BLR3 : carbonate de calcium traité en surface par un stéarate (fournisseur Omya)
Noir Y70 : Noir d'acétylène (fournisseur SN2A)
Produits préparés
Synthèse 1-butyl-2,3-dicyclohexylguanidine (2)
Figure imgf000018_0001
Un mélange de 15.69 g de N-butylamine (0,214 mol) et de 22.13 g de dicyclohexylcarbodiimide (0,107 mol) est chauffé à reflux 2h. L'analyse par CPG montre alors une conversion supérieure à 99.6 % de la dicyclohexylcarbodiimide. Le mélange final incolore est concentré à 60°C sous 1 mbar pendant 2 h pour donner 29.7 g d'un liquide incolore et pratiquement inodore moyennement visqueux, correspondant à la guanidine attendue 2 (rendement 99 %).
Exemple comparatif C1
Dans un mélangeur équipé d'un mobile d'agitation de type « papillon » sont introduits 895 g d'huile polydiméthylsiloxane α,ω-dihydroxylée contenant 0,065% en poids de groupements hydoxyle OH et 12 g de vinyltriméthoxysilane (VTMO, Evonik). Ce mélange est homogénéisé par rotation du « papillon » à 200t/mn pendant 2 minutes. Ensuite 4,8 g d'un catalyseur de fonctionnalisation à base de lithine monohydratée dissoute dans le méthanol sont alors ajoutés. Suit une phase d'homogénéisation de 4 minutes à 400 t/mn. Puis, 108 g de silice de combustion traitée D4 sont incorporées à vitesse d'agitation de 190t/mn et dispersés pendant 4 minutes supplémentaires à 400 t/mn. Puis, 144 g de terre de diatomée (Célite350, World Minerais) sont incorporées à vitesse d'agitation de 200t/mn et dispersés pendant 4 minutes supplémentaires à 400 t/mn. Le milieu subit alors une phase de dégazage sous vide partiel de 50 mbar puis le mélange est placé sous azote et conservé à l'abri de l'humidité. Sous azote et agitation sont ajoutés 24g de catalyseur Tyzor PITA SM. Le milieu est agité puis subit une phase de dégazage sous vide partiel de 40 mbar à 130 t/mn. Enfin le mélange est transféré en cartouches plastiques fermées.
Exemple comparatif C2
Dans un mélangeur équipé d'un mobile d'agitation de type « papillon » sont introduits 765 g d'huile polydiméthylsiloxane α,ω-dihydroxylée contenant 0,065% en poids de groupements hydoxyle OH, 95,5 g de noir d'acétylène Y70 (société SN2A) et 23,8 g de vinyltriméthoxysilane (VTMO, Evonik). Ce mélange est homogénéisé par rotation du « papillon » à 200t/mn pendant 2 minutes. Ensuite 0,58 g d'un catalyseur de fonctionnalisation à base de lithine monohydratée dissoute dans le méthanol sont alors ajoutés. Suit une phase d'homogénéisation de 4 minutes à 400 t/mn. Puis, 302 g de carbonate de calcium BLR3 (société Solvay) sont incorporées à vitesse d'agitation de 200t/mn et dispersés pendant 4 minutes supplémentaires à 400 t/mn. Le milieu subit alors une phase de dégazage sous vide partiel de 50 mbar puis le mélange est placé sous azote et conservé à l'abri de l'humidité.
Sous azote et agitation sont ajoutés 15 g de Tyzor PITA SM. Le milieu est agité puis subit une phase de dégazage sous vide partiel de 40 mbar à 130 t/mn. Enfin le mélange est transféré en cartouches plastiques fermées. Exemple comparatif C3
Dans un mélangeur équipé d'un mobile d'agitation de type « papillon » sont introduits 626 g d'huile polydiméthylsiloxane α,ω-dihydroxylée contenant 0,045% en poids de groupements hydoxyle OH, 120g d'huile polydiméthylsiloxane α,ω-trimethylsilylé de viscosité 100 mPa.s, 96 g de noir d'acétylène Y70 (société SN2A) et 48 g de vinyltriméthoxysilane (VTMO, Evonik). Ce mélange est homogénéisé par rotation du « papillon » à 200t/mn pendant 2 minutes. Ensuite 0,6 g d'un catalyseur de fonctionnalisation à base de lithine monohydratée dissoute dans le méthanol sont alors ajoutés. Suit une phase d'homogénéisation de 4 minutes à 400 t/mn. Puis, 300 g de carbonate de calcium BLR3 (société Solvay) sont incorporées à vitesse d'agitation de 200t/mn et dispersés pendant 4 minutes supplémentaires à 400 t/mn. Le milieu subit alors une phase de dégazage sous vide partiel de 50 mbar puis le mélange est placé sous azote et conservé à l'abri de l'humidité. Sous azote et agitation sont ajoutés à 6 g de Dynasylan DAMO et 3,6 g de di(cyclohexyl)méthylbutylguanidine (1). Le milieu est agité puis subit une phase de dégazage sous vide partiel de 40 mbar à 130 t/mn. Enfin le mélange est transféré en cartouches plastiques fermées.
Exemple Comparatif C4
Même exemple que celui décrit dans l'exemple C1 mais 12 g de méthyltrimethoxysilane partiellement hydrolysé (1) sont également ajoutés juste avant l'introduction du catalyseur Tyzor PITA SM.
Exemple Comparatif C5
Même exemple que celui décrit dans exemple C1 mais 24 g de méthyltrimethoxysilane partiellement hydrolysé (1) sont également ajoutés juste avant l'introduction du catalyseur Tyzor PITA SM.
Exemple 5 (Invention)
Même exemple que C2 mais 48 g de méthyltrimethoxysilane partiellement hydrolysé et condensé sont également ajoutés juste avant l'introduction du catalyseur Tyzor PITA SM. Exemple 6 (Invention)
Dans un mélangeur équipé d'un mobile d'agitation de type « papillon » sont introduits 585 g d'huile polydiméthylsiloxane α,ω-dihydroxylée contenant 0,045% en poids de groupements hydoxyle OH, 120g d'huile polydiméthylsiloxane α,ω-trimethylsilylé de viscosité 100 mPa.s, 96 g de noir d'acétylène Y70 (société SN2A) et 24 g de vinyltriméthoxysilane (VTMO, Evonik). Ce mélange est homogénéisé par rotation du « papillon » à 200t/mn pendant 2 minutes. Ensuite 0,5 g d'un catalyseur de fonctionnalisation à base de lithine monohydratée dissoute dans le méthanol sont alors ajoutés. Suit une phase d'homogénéisation de 4 minutes à 400 t/mn. Puis, 300 g de carbonate de calcium BLR3 (société Solvay) sont incorporées à vitesse d'agitation de 200t/mn et dispersés pendant 4 minutes supplémentaires à 400 t/mn. Le milieu subit alors une phase de dégazage sous vide partiel de 50 mbar puis le mélange est placé sous azote et conservé à l'abri de l'humidité.
Sous azote et agitation sont ajoutés 48 g de méthyltrimethoxysilane partiellement hydrolysé (1), 12 g de Dynasylan GLYMO et 15 g de catalyseur Tyzor PITA SM. Le milieu est agité puis subit une phase de dégazage sous vide partiel de 40 mbar à 130 t/mn. Enfin le mélange est transféré en cartouches plastiques fermées. Exemple 7 (Invention)
Même exemple que C3 avec 24 g de Vinyltriméthoxysilane au lieu de 48 g et ajout de 48 g de Dynasylan 6490 juste avant l'introduction du catalyseur 1-butyl-2,3-dicyclohexylguanidine (2).
II) Caractérisation des produits a) Propriétés mécaniques
Un joint sous la forme d'un film de 2mm d'épaisseur est alors préparé avec chacune des formulations et laissé réticuler pendant 7 jours dans des conditions contrôlées (23°C+/- 2°C et 50%+/- 5 d'humidité). La dureté Shore A et les propriétés mécaniques à la traction (allongement à la rupture, résistance à la rupture et module à 100% d'allongement) sont alors mesurées à partir d'éprouvettes d'épaisseur 2mm après 14 jours de réticulation. b) Propriétés de résistance aux huiles moteur
Des joints sous forme de films de 2 mm d'épaisseur sont préalablement mis à réticuler en salle conditionnée à 23°C et à 50 % d'hygrométrie pendant 14 jours. Dans chaque cas, 3 éprouvettes de forme carrée découpées dans les joints et dont la dureté Shore A a été préalablement mesurée (par superposition des 3 carrés), sont introduites dans un flacon en verre de 150 ml rempli d'huile 5W30 diesel (distribuée par la société Total). Après chauffage à 150°C pendant 3 jours et retour à la température ambiante, les éprouvettes sont essuyées à l'aide d'un papier absorbant et la dureté Shore A est mesurée à l'aide d'un duromètre Zwick. c) Propriétés d'adhérence
Un joint parallélépipède d'élastomère silicone de 1mm d'épaisseur est appliqué entre deux sterigmes. L'éprouvette ainsi obtenue, après 14 jours de réticulation à 23°C+/- 2°C et 50% humidité relative+/- 5% est soumise à une sollicitation en traction-cisaillement. Le collage est caractérisé par la contrainte à la rupture (MPa) et le type de rupture (pourcentage de profil cohésif).
Les éprouvettes en Aluminium de qualité AG3 sont préalablement grattées afin d'éliminer la couche d'oxyde puis nettoyées au solvant et séchées.
Pour les tests d'adhérence sur surface polluée d'huile, les éprouvettes sont trempées dans un mélange d'heptane et d'huile Elf Diesel 5W30 (95/5) pendant puis égouttées avant de déposer le joint d'élastomère silicone. lin Résultats
Tableau 1
Cl C4 C5
Teneur en
catalyseur de
Composition condensation 0 1 2 "
(1) ajoutée (%
pds)
Dureté Shore A
36 42 46 (3*2 mm)
Résistance à la
3,0 3,7 4,1 rupture (MPa)
Après 7j de
réticulation Allongement à la
430 420 360 à 23°C et rupture (%)
50 %HR
Module à 100% 1,0 1,2 1,5
Après traitement Dureté Shore A
2 7 15 dans l'huile Elf (3*2 mm)
"Evolution"
5w30
Tableau 2.
Exemples comparatifs Exemples de l'invention
C2 C3 5 6 7
(1) en parties 0 0 4 4 0
DS6490 en
0 0 0 0 4 parties
Formulations
Promoteur
0 DAMO 0 GLYMO DAMO adhérence
Tyzor PITA Tyzor PITA Tyzor PITA
Catalyseur (2) (2)
SM SM SM
Dureté Shore
8 33 50 38
A (3*2 mm) 43
Résistance à la
Après 7j de 0,3 2,3 1,9 1,8 2,2 rupture (MPa)
réticulation
à 23°C et Elongation à la
460 420 220 330 285 50 %H rupture (%)
Module à 100% 0,15 0,71 1,14 0,86 1,16
Force de Aluminium 1,0 MPa 0,9 MPa
Pas mesuré 0,8 MPa (95%) Pas mesuré rupture (MPa) AG3 (100%RC) (95%)
et cohésion
(%) pour des
collages de
1mm
d'épaisseur Aluminium 0,1 MPa 0,9 MPa 0,5 MPa 0,8 MPa 1,0 MPa
AG3 surface
polluée d'huile (0%) (30%) (5%) (95%) (85% )
Après
traitement dans Dureté Shore A
<1 8 25 20 25 à 32 l'huile Elf (3*2 mm)
"Evolution" (non mesurable)
5w30

Claims

REVENDICATIONS
1 - Composition polyorganosiloxane X réticulable en élastomère en présence d'eau par des réactions de polycondensation comprenant :
A) au moins un polyorganosiloxane A comprenant au moins un groupement alcoxylé et constitué de motifs siloxyles identiques ou différents, de formule :
(Z)b(R4)aSiO[4.(a.+b)]/2 (1)
dans laquelle :
• le symbole Z = [-(OCH2CH2)c-OR5], avec c=0 ou 1 ,
• a= 0, 1, 2 ou 3; b= 0, 1, 2 ou 3, a+b= 0, 1, 2 ou 3,
• le symbole R4 représente un radical monovalent hydrocarboné en C-| à C13
• le symbole R5 représente un radical monovalent hydrocarboné en C-j à CQ OU un radical alkoxyalkyle comprenant éventuellement une fonction ester, et
• avec la condition que pour au moins un motif siloxyle l'indice b≥1 de manière à ce que le polyorganosiloxane A contienne au moins un groupement alcoxylé Z,
B) au moins un siloxane D qui est un condensât obtenu par hydrolyse partielle et
condensation d'un silane polyalcoxylé, le dit siloxane D ayant de 2 à 10 motifs siloxyles, identiques ou différents, de formule :
(R2)x.(OR3)y. SiO[4.(x'+y.)]/2 (2)
dans laquelle :
- x'= 0, 1, 2 ou 3; γ= 0, 1, 2 ou 3, x'+y'= 0, 1, 2 ou 3,
- le symbole R2 représente un radical monovalent hydrocarboné en C-| à C-|3j et
- le symbole R3 représente un radical monovalent hydrocarboné en Ci à Ce ou un radical alkoxyalkyle comprenant éventuellement une fonction ester, et
- avec la condition que pour au moins un motif siloxyle l'indice y'≥1.
C) un additif E susceptible d'absorber une huile utilisée dans un groupe moto-propulseur tel que le noir d'acétylène,
D) une quantité catalytiquement efficace d'au moins un catalyseur de condensation F,
E) éventuellement au moins une charge G,
F) éventuellement au moins un promoteur d'adhérence H, et G) éventuellement au moins un additif I tel qu'une base colorante, un pigment ou un agent thixotropant.
2 - Composition polyorganosiloxane X selon la revendication 1 dans laquelle le
polyorganosiloxane réticulable A est linéaire et a pour formule développée:
Si(R2)J(OCH2CH2)bOR3].
Figure imgf000025_0001
(3) dans laquelle :
• les substituants R1 , identiques ou différents, représentent chacun un radical monovalent hydrocarboné saturé ou non en C-j à C13, substitué ou non substitué, aliphatique, cyclanique ou aromatique ;
• les substituants R2, identiques ou différents, représentent chacun un radical monovalent hydrocarboné saturé ou non en Ci à C-)3, substitué ou non substitué, aliphatique, cyclanique ou aromatique ;
• les substituants R3, identiques ou différents, représentent chacun un radical alkyle, linéaire ou ramifié, en Ci à Ce ;
• n a une valeur suffisante pour conférer au polyorganopolysiloxane de formule A une viscosité dynamique à 25°C allant de 1.000 à 1.000.000 mPa.s ; et
• l'indice a est égal à zéro ou 1 et l'indice b est égal à zéro ou 1 ;
3 - Composition polyorganosiloxane X selon la revendication 1 dans laquelle le
polyorganosiloxane A comprenant au moins un groupement alcoxylé est obtenu en faisant réagir, éventuellement in-situ, en présence d'une quantité catalytiquement efficace d'au moins un catalyseur C de fonctionnalisation:
a) au moins un polyorganosiloxane A' comprenant des motifs siloxyles de formule :
(Rl)x(OH)y SiO(4.x.y)//2 (4)
dans laquelle :
- x+y= 0, 1 , 2 ou 3 ; - les substituants R1 , identiques ou différents, représentent chacun un radical monovalent hydrocarboné en Ci à C30 et choisi parmi le groupe constitué par les radicaux alkyles, cycloalkyles, aryles ; alkaryles et aralkyles, et
- au moins deux motifs siloxyles comprenant un groupement≡SiOH sont présents dans le polyorganosiloxane A', avec
b) au moins un silane polyalcoxylé B de formule :
(R2)ZSÎ(OR3)(4.Z) (5)
dans laquelle :
- z = 0 ou 1 ,
- le symbole R^ représente un radical monovalent hydrocarboné en C-| à C13, et
- les symboles R3, identiques ou différents, représentent chacun un radical monovalent hydrocarboné en Ci à CQ OU un radical alkoxyalkyle présentant éventuellement une fonction ester,
4 - Composition polyorganosiloxane X selon l'une quelconque des revendications prédédentes dans laquelle au moins une charge G est présente et de préférence un carbonate de calcium traité en surface par un acide stéarique. 5 - Composition polyorganosiloxane X selon la revendication 3 dans laquelle le catalyseur C de fonctionnalisation est la lithine ou la potasse..
6 - Composition polyorganosiloxane X selon la revendication 1 dans laquelle le catalyseur de condensation F est un dérivé de rétain, du zinc ou du titane ou une guanidine
éventuellement silylée.
7 - Composition polyorganosiloxane X selon la revendication 6 dans laquelle le catalyseur de condensation F est une guanidine répondant à la formule générale (I):
Figure imgf000026_0001
dans laquelle : • les radicaux R1, identiques ou différents, représentent, indépendamment l'un de l'autre, un groupe alkyle monovalent linéaire ou ramifié, un groupement cycloalkyle, un groupe (cycloalkyl)alkyle, le cycle étant substitué ou non et pouvant comprendre au moins un hétéroatome ou un groupement
fluoroalkyle,
• le radical R2 représente un atome d'hydrogène, un groupement alkyle monovalent linéaire ou ramifié, un groupement cycloalkyle, un groupement alkyle substitué par un cycle, substitué ou non et pouvant comprendre au moins un hétéroatome, un groupement aromatique un groupe arylalkyle, un groupement fluoroalkyle, un groupement alkylamine ou alkylguanidine,
• le radical R3 représente un groupement alkyle monovalent linéaire ou ramifié, un groupement cycloalkyle, un groupement alkyle substitué par un cycle, substitué ou non et pouvant comprendre au moins un hétéroatome, un groupement arylalkyle, fluoroalkyle, alkylamine ou alkylguanidine, et
• lorsque le radical R2 n'est pas un atome d'hydrogène, les radicaux R2 et R3 peuvent être liés pour former un cycle aliphatique à 3, , 5, 6 ou 7 chaînons éventuellement substitué par un ou plusieurs substituants.
8 - Composition polyorganosiloxane X selon la revendication 6 dans laquelle le catalyseur de condensation F est une guanidine de formule :
Figure imgf000027_0001
(H)
dans laquelle :
• les radicaux R1, R2, R3, R4 ou R5 identiques ou différents, représentent, indépendamment l'un de l'autre, un groupe alkyle monovalent linéaire ou ramifié, un groupement cycloalkyle, un groupe (cycloalkyl)alkyle, le cycle étant substitué ou non et pouvant comprendre au moins un hétéroatome ou un groupement fluoroalkyle, un groupement aromatique un groupe arylalkyle, un groupement fluoroalkyle, un groupement alkylamine ou alkylguanidine, et • les radicaux R1, R2, R3 ou R4 peuvent être liés deux à deux de manière à former un cycle aliphatique à 3, 4, 5, 6 ou 7 chaînons éventuellement substitué par un ou plusieurs substituants. 9 - Composition polyorganosiloxane X selon la revendication 6 dans laquelle le catalyseur de condensation F est un complexe ou sel métallique du zinc de formule:
[Zn (L% (L ] (III)
dans laquelle:
• r1≥ 1 et r2≥ 0 et la somme Π +r2=2,
· le symbole L1 représente un ligand qui est un anion β-dicarbonylato ou l'anion énolate d'un composé β-dicarbonylé ou un anion acétylacétato dérivé d'un β- cétoester, et
• le symbole L2 représente un ligand anionique différent de L1.
10 - Composition polyorganosiloxane X selon l'une quelconque des revendications précédentes comprenant :
A) pour 100 parties en poids d'au moins un polyorganosiloxane A comprenant au moins un groupement alcoxylé et constitué de motifs siloxyles identiques ou différents, de formule :
(Z)b(R4)aSiO[4.(a.+b)]/2 (1)
dans laquelle:
• le symbole Z = [-(OCH2CH2)c-OR5], avec c=0 ou 1 ,
• a= 0, 1, 2 ou 3; b= 0, 1 , 2 ou 3, a+b= 0, 1 , 2 ou 3,
· le symbole R4 représente un radical monovalent hydrocarboné en Ci à Ci3>
• le symbole R5 représente un radical monovalent hydrocarboné en Ci à CQ OU un radical alkoxyalkyle comprenant éventuellement une fonction ester, et
• avec la condition que pour au moins un motif siloxyle l'indice b≥1 de manière à ce que le polyorganosiloxane A contienne au moins un groupement alcoxylé Z,
B) de 1 à 50 parties en poids d'au moins un siloxane D qui est un condensât obtenu par hydrolyse partielle et condensation d'un silane polyalcoxylé, le dit siloxane D ayant de 2 à 10 motifs siloxyles, identiques ou différents, de formule :
(R2)x.(OR3)y. SiO[4.(x>+y')]/2 (2)
dans laquelle: • x'= 0, 1, 2 ou 3; = 0, 1, 2 ou 3, x'+y'= 0, 1 , 2 ou 3,
• le symbole R2 représente un radical monovalent hydrocarboné en C-| à c13,
• le symbole R3 représente un radical monovalent hydrocarboné en Ci à Ce ou un radical alkoxyalkyle compenant éventuellement une fonction ester, et
• avec la condition que pour au moins un motif siloxyle l'indice y'≥1.
C) de 0,1 à 50 parties en poids d'un additif E susceptible d'absorber une huile utilisée dans un groupe moto-propulseur tel que le noir d'acétylène,
D) de 0,01 à 50 parties en poids une quantité catalytiquement efficace d'au moins un catalyseur de condensation F,
E) de 0 à 250 parties en poids d'au moins une charge G,
F) de 0 à 60 parties en poids d'au moins un promoteur d'adhérence H, et
G) de 0 à 20 parties en poids d'au moins un additif I tel qu'une base colorante, un
pigment ou un agent thixotropant.
11 - Elastomère obtenu par réticulation en présence d'eau de la composition
polyorganosiloxane X telle que définie selon l'une quelconque des revendications
précédentes.
12 - Utilisation de la composition polyorganosiloxane X telle que définie selon l'une quelconque des revendications 1 à 10 ou de l'élastomère tel que défini selon la revendication 11 pour préparer des joints silicones d'étanchéité ayant une bonne résistance au
vieillissement dans des fluides utilisés dans un groupe motopropulseur.
13 - Procédé d'étanchéification et d'assemblage d'au moins un composant d'un groupe moto-propulseur comprenant les étapes a) à d) suivantes:
a) on prépare une composition polyorganosiloxane X telle que définie selon l'une
quelconque des revendications 1 à 10,
b) on applique ladite composition polyorganosiloxane X sur au moins une zone de
contact dudit composant de manière continue ou discontinue et éventuellement sous la forme d'un cordon,
c) on laisse réticuler ladite composition polyorganosiloxane X en élastomère silicone en présence d'humidité apportée par l'air ambiant ou par addition préalable d'eau de manière à former un joint d'étanchéité, et on assemble ledit composant à un autre composant du groupe moto-propulseur de manière à ce que le joint formé assure l'assemblage et l'étanchéité entre les deux composants du groupe moto-propulseur.
PCT/FR2011/000142 2010-03-16 2011-03-15 Procede et compositions utiles pour l'etancheificati0n et l'assemblage de composants d'un groupe moto-propulseur WO2011114021A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201180022634.1A CN102884136B (zh) 2010-03-16 2011-03-15 用于发动机组组件的密封和组装的方法和组合物
BR112012023235A BR112012023235A2 (pt) 2010-03-16 2011-03-15 composição de poliorganosiloxano x, elastômero obtido por reticulação, uso e processo para vedação e montagem de pelo menos um componente de um sistema de transmissão
EP11718422.6A EP2556116B1 (fr) 2010-03-16 2011-03-15 Procede et compositions utiles pour l'etancheificati0n et l'assemblage de composants d'un groupe moto-propulseur
US13/635,338 US8841372B2 (en) 2010-03-16 2011-03-15 Method and compositions for the sealing and assembly of power train components
KR1020127026982A KR101526040B1 (ko) 2010-03-16 2011-03-15 파워 트레인 부품의 밀봉 및 조립을 위한 방법 및 조성물
CA2793624A CA2793624C (fr) 2010-03-16 2011-03-15 Procede et compositions utiles pour l'etancheification et l'assemblage de composants d'un groupe moto-propulseur
ES11718422.6T ES2602740T3 (es) 2010-03-16 2011-03-15 Procedimiento y composiciones útiles para el sellado y el ensamblaje de componentes de un grupo moto-propulsor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1001053 2010-03-16
FR1001053 2010-03-16

Publications (1)

Publication Number Publication Date
WO2011114021A1 true WO2011114021A1 (fr) 2011-09-22

Family

ID=42198973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/000142 WO2011114021A1 (fr) 2010-03-16 2011-03-15 Procede et compositions utiles pour l'etancheificati0n et l'assemblage de composants d'un groupe moto-propulseur

Country Status (10)

Country Link
US (1) US8841372B2 (fr)
EP (1) EP2556116B1 (fr)
KR (1) KR101526040B1 (fr)
CN (1) CN102884136B (fr)
BR (1) BR112012023235A2 (fr)
CA (1) CA2793624C (fr)
ES (1) ES2602740T3 (fr)
HU (1) HUE029487T2 (fr)
PL (1) PL2556116T3 (fr)
WO (1) WO2011114021A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102537347A (zh) * 2012-01-18 2012-07-04 深圳市新星轻合金材料股份有限公司 一种密封圈及其制备方法
WO2014016019A1 (fr) * 2012-07-25 2014-01-30 Basf Coatings Gmbh Composition d'agents de revêtement à base de polyuréthane, procédés de revêtement en plusieurs étapes
WO2014051674A1 (fr) * 2012-09-26 2014-04-03 Dow Corning Corporation Objet en caoutchouc doté d'un revêtement en silicone élastomère
WO2014096573A1 (fr) 2012-12-20 2014-06-26 Bluestar Silicones France Sas Procédé et compositions utiles pour l'étancheification et l'assemblage de composants d'un groupe moto-propulseur
JP2014532091A (ja) * 2011-09-16 2014-12-04 ブルースター・シリコーンズ・フランス・エスアエス パワートレインの部品のシーリング及び組立てのための方法及び組成物
US20160208151A1 (en) * 2013-09-20 2016-07-21 Sika Technology Ag Combination of rtv-1 silicone formulation and accelerator with enhanced cure characteristics

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10100068B2 (en) * 2014-04-16 2018-10-16 Sika Technology Ag Amidine group—or guanidine group—containing silane
CN115612446B (zh) * 2022-10-27 2024-01-26 江西蓝星星火有机硅有限公司 灌封用导热加成型有机硅组合物

Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR806610A (fr) 1935-05-20 1936-12-21 Aeg Installation pour le trafic à haute fréquence à deux ou plus de deux ondes
FR1126411A (fr) 1954-02-18 1956-11-22 Dow Corning élastomères siloxanes
FR1126884A (fr) 1954-10-02 1956-12-03 Teves Kg Alfred Régulateur de pression pour la répartition harmonique de la pression
FR1136885A (fr) 1954-10-06 1957-05-21 Dow Corning Procédé de fabrication de produits organosiliciques pulvérulents hydrophobes
FR1179969A (fr) 1955-08-05 1959-05-29 Wacker Chemie Gmbh Produits élastomères à base d'organo-polysiloxanes, leur fabrication et leurs appications
FR1189216A (fr) 1956-10-01 1959-10-01 Thomson Houston Comp Francaise Compositions d'organopolysiloxanes durcissables à la température ambiante
FR1198749A (fr) 1958-02-06 1959-12-09 Rhone Poulenc Sa Compositions organopolysiloxaniques vulcanisables
FR1236505A (fr) 1956-04-11 1960-07-22 Thomson Houston Comp Francaise Perfectionnement aux organopolysiloxanes renfermant des charges renforçantes
FR1248826A (fr) 1959-02-20 1960-12-23 Wacker Chemie Gmbh Masses de caoutchoucs silicones durcissant à l'air
FR1314649A (fr) 1961-02-27 1963-01-11 Dow Corning Composés intermédiaires silicones contenant des radicaux oximes
FR1423477A (fr) 1964-02-06 1966-01-03 Bayer Ag Nouvelles masses d'organopolysiloxanes se transformant en élastomères sous l'action de l'eau
FR1432799A (fr) 1965-02-12 1966-03-25 Rhone Poulenc Sa Aldiminoxysilanes et siloxanes et compositions en contenant
GB1024234A (en) 1962-06-27 1966-03-30 Midland Silicones Ltd Improvements in or relating to siloxane elastomers
FR2067636A5 (fr) 1969-11-12 1971-08-20 Rhone Poulenc Sa
FR2121289A5 (fr) 1971-01-06 1972-08-18 Gen Electric
FR2121631A1 (fr) 1971-01-06 1972-08-25 Gen Electric
EP0021859A1 (fr) 1979-06-08 1981-01-07 Rhone-Poulenc Specialites Chimiques Compositions organopolysiloxaniques durcissant en élastomères dès la température ambiante en présence d'eau
EP0102268A1 (fr) 1982-07-30 1984-03-07 Rhone-Poulenc Chimie Compositions organopolysiloxaniques monocomposantes comportant en tant que réticulants des silanes à groupements acyloxyle ou cétoniminoxyle et catalysées par des dérivés organiques du titane ou du zirconium
EP0141685A1 (fr) 1983-08-12 1985-05-15 Rhone-Poulenc Specialites Chimiques Compositions organopolysiloxaniques monocomposantes résistant aux microorganismes
EP0147323A2 (fr) 1983-12-28 1985-07-03 Rhone-Poulenc Chimie Composition polyorganosiloxanique durcissant en élastomère etcomportant un catalyseur à l'étain chelate.
EP0235049A1 (fr) 1986-01-09 1987-09-02 Rhone-Poulenc Chimie Système catalytique à l'étain pour composition organopolysiloxane durcissable dès la température ambiante
FR2638752A1 (fr) 1988-11-04 1990-05-11 Rhone Poulenc Chimie Procede de preparation de diorganopolysiloxanes a groupements terminaux alcoxy
US5247011A (en) * 1990-11-28 1993-09-21 Dow Corning Toray Silicone Co., Ltd. Room temperature-curable organopolysiloxane composition
US5641832A (en) * 1993-02-24 1997-06-24 Toshiba Silicone Co. Ltd. Room temperature-curable organopolysiloxane composition
EP1985666A1 (fr) * 2006-02-16 2008-10-29 Kaneka Corporation Composition durcissable
WO2009106723A1 (fr) 2007-12-20 2009-09-03 Bluestar Silicones France Composition organopolyseloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d'organopolysiloxanes
JP2009197188A (ja) 2008-02-25 2009-09-03 Three Bond Co Ltd 油面接着性室温硬化型オルガノポリシロキサン組成物及びその硬化物
WO2009118307A2 (fr) 2008-03-28 2009-10-01 Bluestar Silicones France Composes a structure guanidine et leurs utilisations comme catalyseurs de polycondensation d'organopolysiloxanes

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221693A (en) * 1979-03-02 1980-09-09 Getson John C Composition free of surface cure inhibition and method for preparing the same
US4489199A (en) * 1983-08-08 1984-12-18 General Electric Company Room temperature vulcanizable organopolysiloxane compositions
JPH0830181B2 (ja) * 1986-08-25 1996-03-27 東レ・ダウコ−ニング・シリコ−ン株式会社 ガスケツト・パツキング材組成物
US4777205A (en) * 1987-07-22 1988-10-11 Wacker Silicones Corporation Electrically conductive compositions
JPH07113086B2 (ja) * 1988-06-02 1995-12-06 東レ・ダウコーニング・シリコーン株式会社 室温硬化性オルガノポリシロキサン組成物
JPH02102263A (ja) * 1988-10-11 1990-04-13 Shin Etsu Chem Co Ltd 導電性シリコーンゴム組成物
JP2808296B2 (ja) * 1989-02-28 1998-10-08 東芝シリコーン株式会社 プライマー組成物
US5183873A (en) * 1991-10-21 1993-02-02 Wacker Silicones Corporation Room temperature stable organopolysiloxane compositions
US6114438A (en) * 1995-09-08 2000-09-05 Dow Corning Corporation Oil resistant silicone sealants
WO1999066012A2 (fr) * 1998-06-17 1999-12-23 Loctite Corporation Silicones resistants a l'huile
EP1398362A1 (fr) * 2001-03-30 2004-03-17 Central Glass Company, Limited Article hydrophobe
US7205050B2 (en) * 2003-06-09 2007-04-17 Permatex, Inc. Low shear adhesion RTV silicone
JP2006117777A (ja) * 2004-10-21 2006-05-11 Dow Corning Toray Co Ltd 電気・電子部品封止・シール用シリコーンゴム組成物および電気・電子機器
WO2006106359A2 (fr) * 2005-04-06 2006-10-12 Dow Corning Corporation Compositions d'organosiloxane
JP4933094B2 (ja) * 2005-12-27 2012-05-16 信越化学工業株式会社 熱伝導性シリコーングリース組成物
TWI419931B (zh) * 2006-06-16 2013-12-21 Shinetsu Chemical Co 導熱聚矽氧潤滑脂組成物

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR806610A (fr) 1935-05-20 1936-12-21 Aeg Installation pour le trafic à haute fréquence à deux ou plus de deux ondes
FR1126411A (fr) 1954-02-18 1956-11-22 Dow Corning élastomères siloxanes
FR1126884A (fr) 1954-10-02 1956-12-03 Teves Kg Alfred Régulateur de pression pour la répartition harmonique de la pression
FR1136885A (fr) 1954-10-06 1957-05-21 Dow Corning Procédé de fabrication de produits organosiliciques pulvérulents hydrophobes
FR1179969A (fr) 1955-08-05 1959-05-29 Wacker Chemie Gmbh Produits élastomères à base d'organo-polysiloxanes, leur fabrication et leurs appications
FR1236505A (fr) 1956-04-11 1960-07-22 Thomson Houston Comp Francaise Perfectionnement aux organopolysiloxanes renfermant des charges renforçantes
FR1189216A (fr) 1956-10-01 1959-10-01 Thomson Houston Comp Francaise Compositions d'organopolysiloxanes durcissables à la température ambiante
FR1198749A (fr) 1958-02-06 1959-12-09 Rhone Poulenc Sa Compositions organopolysiloxaniques vulcanisables
FR1248826A (fr) 1959-02-20 1960-12-23 Wacker Chemie Gmbh Masses de caoutchoucs silicones durcissant à l'air
FR1314649A (fr) 1961-02-27 1963-01-11 Dow Corning Composés intermédiaires silicones contenant des radicaux oximes
GB1024234A (en) 1962-06-27 1966-03-30 Midland Silicones Ltd Improvements in or relating to siloxane elastomers
FR1423477A (fr) 1964-02-06 1966-01-03 Bayer Ag Nouvelles masses d'organopolysiloxanes se transformant en élastomères sous l'action de l'eau
FR1432799A (fr) 1965-02-12 1966-03-25 Rhone Poulenc Sa Aldiminoxysilanes et siloxanes et compositions en contenant
FR2067636A5 (fr) 1969-11-12 1971-08-20 Rhone Poulenc Sa
FR2121289A5 (fr) 1971-01-06 1972-08-18 Gen Electric
FR2121631A1 (fr) 1971-01-06 1972-08-25 Gen Electric
EP0021859A1 (fr) 1979-06-08 1981-01-07 Rhone-Poulenc Specialites Chimiques Compositions organopolysiloxaniques durcissant en élastomères dès la température ambiante en présence d'eau
EP0102268A1 (fr) 1982-07-30 1984-03-07 Rhone-Poulenc Chimie Compositions organopolysiloxaniques monocomposantes comportant en tant que réticulants des silanes à groupements acyloxyle ou cétoniminoxyle et catalysées par des dérivés organiques du titane ou du zirconium
EP0141685A1 (fr) 1983-08-12 1985-05-15 Rhone-Poulenc Specialites Chimiques Compositions organopolysiloxaniques monocomposantes résistant aux microorganismes
EP0147323A2 (fr) 1983-12-28 1985-07-03 Rhone-Poulenc Chimie Composition polyorganosiloxanique durcissant en élastomère etcomportant un catalyseur à l'étain chelate.
EP0235049A1 (fr) 1986-01-09 1987-09-02 Rhone-Poulenc Chimie Système catalytique à l'étain pour composition organopolysiloxane durcissable dès la température ambiante
FR2638752A1 (fr) 1988-11-04 1990-05-11 Rhone Poulenc Chimie Procede de preparation de diorganopolysiloxanes a groupements terminaux alcoxy
US5247011A (en) * 1990-11-28 1993-09-21 Dow Corning Toray Silicone Co., Ltd. Room temperature-curable organopolysiloxane composition
US5641832A (en) * 1993-02-24 1997-06-24 Toshiba Silicone Co. Ltd. Room temperature-curable organopolysiloxane composition
EP1985666A1 (fr) * 2006-02-16 2008-10-29 Kaneka Corporation Composition durcissable
WO2009106723A1 (fr) 2007-12-20 2009-09-03 Bluestar Silicones France Composition organopolyseloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d'organopolysiloxanes
JP2009197188A (ja) 2008-02-25 2009-09-03 Three Bond Co Ltd 油面接着性室温硬化型オルガノポリシロキサン組成物及びその硬化物
WO2009118307A2 (fr) 2008-03-28 2009-10-01 Bluestar Silicones France Composes a structure guanidine et leurs utilisations comme catalyseurs de polycondensation d'organopolysiloxanes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200961, Derwent World Patents Index; AN 2009-N15005, XP002585011 *
NOLL: "Chemistry and technology of silicone", 1968, ACADEMIC PRESS, pages: 337
PARBHOO B ET AL: "Fundamental aspects of adhesion technology in silicones", 1 January 2002, ADHESION SCIENCE AND ENGINEERING, ELSEVIER B.V, NETHERLANDS, PAGE(S) 677 - 709, ISBN: 978-0-444-51140-9, XP008136182 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014532091A (ja) * 2011-09-16 2014-12-04 ブルースター・シリコーンズ・フランス・エスアエス パワートレインの部品のシーリング及び組立てのための方法及び組成物
CN102537347A (zh) * 2012-01-18 2012-07-04 深圳市新星轻合金材料股份有限公司 一种密封圈及其制备方法
WO2014016019A1 (fr) * 2012-07-25 2014-01-30 Basf Coatings Gmbh Composition d'agents de revêtement à base de polyuréthane, procédés de revêtement en plusieurs étapes
US9644111B2 (en) 2012-07-25 2017-05-09 Basf Coatings Gmbh Polyurethane coating material composition, multi-stage coating methods
WO2014051674A1 (fr) * 2012-09-26 2014-04-03 Dow Corning Corporation Objet en caoutchouc doté d'un revêtement en silicone élastomère
CN104981501A (zh) * 2012-12-20 2015-10-14 蓝星有机硅法国两合公司 可用于驱动系的部件的密封和组装的方法和组合物
FR3000090A1 (fr) * 2012-12-20 2014-06-27 Bluestar Silicones France Procede et compositions utiles pour l'etancheification et l'assemblage de composants d'un groupe moto-propulseur
JP2016501955A (ja) * 2012-12-20 2016-01-21 ブルースター・シリコーンズ・フランス・エスアエス パワートレインの部品を密封しかつ組立てるために使用できる方法及び組成物
US9469783B2 (en) 2012-12-20 2016-10-18 Bluestar Silicones France Sas Method and compositions that can be used for sealing and assembling components of a powertrain
CN104981501B (zh) * 2012-12-20 2017-02-22 蓝星有机硅法国两合公司 可用于驱动系的部件的密封和组装的方法和组合物
WO2014096573A1 (fr) 2012-12-20 2014-06-26 Bluestar Silicones France Sas Procédé et compositions utiles pour l'étancheification et l'assemblage de composants d'un groupe moto-propulseur
KR101736649B1 (ko) 2012-12-20 2017-05-16 블루스타 실리콘즈 프랑스 에스에이에스 파워트레인 부품의 밀봉 및 조립에 사용할 수 있는 방법 및 조성물
US20160208151A1 (en) * 2013-09-20 2016-07-21 Sika Technology Ag Combination of rtv-1 silicone formulation and accelerator with enhanced cure characteristics

Also Published As

Publication number Publication date
BR112012023235A2 (pt) 2016-05-17
PL2556116T3 (pl) 2017-02-28
CA2793624C (fr) 2017-01-17
ES2602740T3 (es) 2017-02-22
KR20120140251A (ko) 2012-12-28
CA2793624A1 (fr) 2011-09-22
HUE029487T2 (en) 2017-02-28
US20130102720A1 (en) 2013-04-25
EP2556116B1 (fr) 2016-08-17
EP2556116A1 (fr) 2013-02-13
US8841372B2 (en) 2014-09-23
CN102884136B (zh) 2014-10-01
KR101526040B1 (ko) 2015-06-04
CN102884136A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
EP2556116B1 (fr) Procede et compositions utiles pour l&#39;etancheificati0n et l&#39;assemblage de composants d&#39;un groupe moto-propulseur
EP2756211B1 (fr) Procede et composition utiles pour l&#39;etancheification et l&#39;assemblage de composants d&#39;un groupe moto-propulseur
CA2764716C (fr) Procede d&#39;etancheification et d&#39;assemblage de composants d&#39;un groupe moto-propulseur
EP2935407B1 (fr) Procédé et compositions utiles pour l&#39;étancheification et l&#39;assemblage de composants d&#39;un groupe moto-propulseur
EP2222688B1 (fr) Composes a structure guanidine et leurs utilisations comme catalyseurs de polycondensation d&#39;organopolysiloxanes
CA2744667C (fr) Composes a structure guanidine et leurs utilisations comme catalyseurs de polycondensation d&#39;organopolysiloxanes
EP2222775B1 (fr) Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d&#39;organopolysiloxanes
EP2222770B1 (fr) Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d&#39;organopolysiloxanes
WO2009106722A1 (fr) Composition organopolysiloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d&#39;organopolysiloxanes
WO2009118307A2 (fr) Composes a structure guanidine et leurs utilisations comme catalyseurs de polycondensation d&#39;organopolysiloxanes
EP2222773A1 (fr) Composition organopolyseloxanique vulcanisable a temperature ambiante en elastomere et nouveaux catalyseurs de polycondensation d&#39;organopolysiloxanes
CA2764713C (fr) Procede d&#39;etancheification et d&#39;assemblage de composants d&#39;un groupe moto-propulseur

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180022634.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11718422

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2793624

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127026982

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011718422

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011718422

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012023235

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 13635338

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112012023235

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120914