WO2011111548A1 - 断熱部材、断熱合わせガラス及び断熱合わせガラス物品 - Google Patents
断熱部材、断熱合わせガラス及び断熱合わせガラス物品 Download PDFInfo
- Publication number
- WO2011111548A1 WO2011111548A1 PCT/JP2011/054180 JP2011054180W WO2011111548A1 WO 2011111548 A1 WO2011111548 A1 WO 2011111548A1 JP 2011054180 W JP2011054180 W JP 2011054180W WO 2011111548 A1 WO2011111548 A1 WO 2011111548A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin layer
- heat insulating
- liquid crystal
- insulating member
- cholesteric
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10788—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10009—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
- B32B17/10036—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10165—Functional features of the laminated safety glass or glazing
- B32B17/10431—Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
- B32B17/1044—Invariable transmission
- B32B17/10458—Polarization selective transmission
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10614—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
- B32B17/10633—Infrared radiation absorbing or reflecting agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10651—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising colorants, e.g. dyes or pigments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10761—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2419/00—Buildings or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31616—Next to polyester [e.g., alkyd]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31645—Next to addition polymer from unsaturated monomers
Definitions
- the present invention relates to a heat insulating member, a heat insulating laminated glass, and a heat insulating laminated glass article.
- laminated glass is used as a window glass for vehicles.
- Laminated glass usually includes at least a pair of glass plates and an intermediate film such as a resin film provided between the glass plates.
- Such a laminated glass has high safety because glass fragments are hardly scattered even when it is damaged by impact (see Patent Document 1).
- development of films that block light in the infrared region (infrared rays) has been promoted from the viewpoint of promoting energy saving by improving the cooling and heating efficiency (Patent Documents 2 and 3).
- a layer containing particles that absorb infrared rays is provided on a film that blocks infrared rays.
- Patent Document 3 a twisted nematic liquid crystal layer having a cholesteric infrared reflection characteristic is provided.
- Patent Document 3 since a sufficient amount of infrared rays cannot be blocked only by the twisted nematic liquid crystal layer, the technique described in Patent Document 3 is described. Also, a layer containing particles that absorb infrared rays was provided.
- the amount of particles that absorb infrared rays will be increased.
- the near infrared region is a wavelength region very close to the visible region. Therefore, normally, particles that absorb near infrared light also absorb light having a wavelength in the visible region (visible light). Therefore, when the amount of particles that absorb near-infrared rays is increased, the amount of visible light that is blocked is increased accordingly, and the visible light transmittance is reduced.
- the laminated glass there is a demand to color the laminated glass from the viewpoint of enhancing aesthetics.
- a layer containing a pigment may be provided on the laminated glass.
- the amount of pigment to be used is usually increased if an attempt is made to make the color dark enough to be visually recognized. Since the pigment absorbs visible light, the visible light transmittance is lowered even when the laminated glass is colored.
- laminated glass is required to have a high visible light transmittance.
- windshields for automobiles are subject to laws and regulations so that the visible light transmittance is a certain value or more. Therefore, it is desired for the laminated glass to increase the visible light transmittance to the extent required according to the use even when the infrared ray is blocked and colored as described above.
- the present invention was devised in view of the above-described problems, and includes a heat insulating member, a heat insulating laminated glass, and a heat insulating laminated glass article that have high visible light transmittance, can effectively block infrared rays, and can be colored with a high degree of freedom.
- the purpose is to provide.
- the present inventors have found that the cholesteric resin layer whose cholesteric regularity is adjusted so that infrared rays can be reflected with a wide wavelength range in the infrared region has a visible light transmittance. It was found that the near-infrared rays can be sufficiently blocked without damaging, so that the visible light transmittance does not become excessively low even when colored with a pigment, and the present invention has been completed. That is, according to the present invention, the following [1] to [15] are provided.
- At least one cholesteric resin layer whose cholesteric regularity is adjusted so as to have a band reflecting 300% or more of incident light in a wavelength region of 800 nm to 2500 nm and having a wavelength width of 300 nm or more; A binder layer containing a pigment, A heat insulating member having a yellow index of 2.0 or less.
- the heat insulating member according to [1] comprising a resin layer containing inorganic fine particles.
- the pigment is one or more pigments selected from the group consisting of azo pigments, quinacridone pigments, diketopyrrolol pigments, anthraquinone pigments, dioxazine pigments, and phthalocyanine pigments.
- R 1 is selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, —OR 3 , —O—C ( ⁇ O) —R 3 , and —C ( ⁇ O) —OR 3.
- R 3 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms which may have a substituent.
- R 3 is an alkyl group
- R 4 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
- n independently represents an integer of 2 to 12.
- [15] comprising two glass plates, And at least one cholesteric resin layer having a cholesteric regularity adjusted so as to have a band reflecting 300% or more of incident light in a wavelength region of 800 nm to 2500 nm and having a wavelength width of 300 nm or more between the two glass plates; A resin layer containing inorganic fine particles and a binder layer containing a pigment, A heat-insulated laminated glass article, wherein at least one of the cholesteric resin layers is located between a resin layer containing the inorganic fine particles and an infrared ray source.
- the heat insulating member of the present invention it is possible to realize a heat insulating member that has high visible light transmittance, can effectively block infrared rays, and can be colored with a high degree of freedom.
- the heat insulating laminated glass of the present invention it is possible to realize a heat insulating laminated glass that has a high visible light transmittance, can effectively block infrared rays, and can be colored with a high degree of freedom.
- the heat-insulated laminated glass article of the present invention it is possible to realize a heat-insulated laminated glass article that has high visible light transmittance, can effectively block infrared rays, and can be colored with a high degree of freedom.
- FIG. 1 is a cross-sectional view schematically showing a layer structure of a heat-insulated laminated glass according to the first embodiment of the present invention.
- FIG. 2 is a cross-sectional view schematically showing the layer configuration of the heat-insulated laminated glass according to the second embodiment of the present invention.
- FIG. 3 is a cross-sectional view schematically showing the layer structure of the heat insulating laminated glass according to the third embodiment of the present invention.
- FIG. 4 is a cross-sectional view schematically showing the layer structure of the heat insulating laminated glass according to the fourth embodiment of the present invention.
- FIG. 5 is a cross-sectional view schematically showing the layer structure of the heat insulating laminated glass according to the fifth embodiment of the present invention.
- FIG. 6 is a cross-sectional view schematically showing the layer structure of the heat insulating laminated glass according to the sixth embodiment of the present invention.
- the visible region means a wavelength region having a wavelength of 400 nm to 750 nm
- the infrared region means a wavelength region having a wavelength longer than the upper limit of the visible region.
- the infrared region refers to a wavelength region having a wavelength of 800 nm to 1300 nm.
- the heat insulating member of the present invention is a cholesteric resin layer (hereinafter referred to as appropriate) having a cholesteric regularity adjusted so as to have a band reflecting at least 40% of incident light in a wavelength range of 300 nm or more in a wavelength region of 800 nm to 2500 nm. "Adjusted cholesteric resin layer”) and a binder layer containing a pigment (hereinafter referred to as “colored binder layer” as appropriate).
- the heat insulating member of the present invention is usually provided with a resin layer containing inorganic fine particles (hereinafter referred to as “fine particle-containing resin layer” as appropriate).
- the heat insulating member of the present invention is usually a sheet-like or film-like member, and can exhibit a heat insulating action by effectively blocking infrared rays.
- the heat insulating member of the present invention is usually used as an intermediate film of heat insulating laminated glass. Specifically, the heat insulating member of the present invention is sandwiched between at least a pair of glass plates to constitute a heat insulating laminated glass.
- the adjusted cholesteric resin layer is a cholesteric resin layer in which the cholesteric regularity is adjusted so as to have a band reflecting 300% or more of incident light with a wavelength width of 300 nm or more in a wavelength region of 800 nm to 2500 nm. That means.
- “Cholesteric regularity” means that molecular axes are aligned in a certain direction on one plane, but the direction of molecular axes is slightly different on the next plane, and the angle is further shifted on the next plane.
- the structure is such that the molecular axes are shifted (twisted) one after another in the normal direction of the plane.
- Such a structure in which the direction of the molecular axis is twisted is called a chiral structure.
- the normal line (chiral axis) of the plane is preferably substantially parallel to the thickness direction of the cholesteric resin layer.
- cholesteric resin layer refers to a resin layer having cholesteric regularity.
- adjusting the cholesteric regularity so as to have a bandwidth that reflects 40% or more of incident light in a wavelength region of 800 nm to 2500 nm with a bandwidth of 300 nm or more means that the period of cholesteric regularity is changed.
- the bandwidth of the band that reflects 40% or more of incident light in the wavelength region of 800 nm to 2500 nm, which the adjustment cholesteric resin layer has is preferably 350 nm or more, and more preferably 400 nm or more.
- the pitch length p of the chiral structure and the wavelength ⁇ of the circularly polarized light reflected are expressed by the formula ( A) and the formula (B).
- ⁇ c represents the center wavelength of the selective reflection band
- n o denotes the refractive index along the short axis of the liquid crystal compounds
- n e is the refractive index of the long axis of the liquid crystal compound
- N represents (n e + n o ) / 2
- p represents the pitch length of the chiral structure
- ⁇ represents the incident angle of light (angle from the normal of the surface).
- the center wavelength ⁇ c of the selective reflection band depends on the pitch length p of the chiral structure in the cholesteric resin layer. By changing the pitch length of this chiral structure, the selective reflection band can be changed.
- the inorganic fine particles used in Patent Documents 2 and 3 were able to obtain only a broad change in characteristics between the visible region and the near infrared region with respect to the ability to block light. For this reason, it has been difficult in the past to efficiently block near infrared rays while increasing the visible light transmittance.
- the adjusted cholesteric resin layer according to the present invention can efficiently reflect infrared rays in the near-infrared to mid-infrared region of 800 nm to 2500 nm. Therefore, the heat insulating member of the present invention provided with the adjusted cholesteric resin layer can efficiently block infrared rays in the near-infrared to mid-infrared region without relying on inorganic fine particles.
- the cholesteric resin layer efficiently reflects the light in the selective reflection band and transmits the light in the other wavelength bands, so that a balance between visible light and near infrared light can be achieved, and the visible light transmittance is increased. It is possible to block infrared rays while maintaining high. Therefore, since the heat insulating member of the present invention can maintain the visible light transmittance at a high level even if it is colored with a pigment, the type and amount of the pigment can be set with a high degree of freedom, which is difficult to realize with the conventional technology. Color and intensity can be colored.
- the thickness of the adjusted cholesteric resin layer is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, and usually 100 ⁇ m or less, from the viewpoints of preventing disorder of alignment and a decrease in transmittance, and the wide wavelength range (reflection wavelength band) of selective reflection.
- the thickness is preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less, still more preferably 15 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
- the number of the adjusted cholesteric resin layers that the heat insulating member of the present invention has may be one layer or two or more layers. It is preferable that the number of adjustment cholesteric resin layers be two or more because the wavelength band of the light beam that can be reflected can be widened, that is, the band can be broadened.
- adjustment cholesteric resin layers When two or more adjustment cholesteric resin layers are provided, it is preferable to combine adjustment cholesteric resin layers having different twist directions of molecular axes. Combining a right-twisted type adjusted cholesteric resin layer and a left-twisted type adjusted cholesteric resin layer, one of right circularly polarized light and left circularly polarized light is reflected by the right-twisted type adjusted cholesteric resin layer, and the other The circularly polarized light can be reflected by the left twist type adjustment cholesteric resin layer. For this reason, it is possible to reflect both right circularly polarized light and left circularly polarized light. As a whole, the bandwidth of the band reflecting 40% or more of incident light is broadened, or 50% of incident infrared light depending on the wavelength range. The above reflectance can be realized.
- the infrared light incident on the heat insulating member of the present invention is reflected by the first adjustment cholesteric resin layer in one of the right circularly polarized light and the left circularly polarized light, and then the polarization state is converted in the retardation layer, It is further reflected by the second adjustment cholesteric resin layer.
- the adjustment cholesteric resin layers with different twist directions of the molecular axes are combined.
- the bandwidth of the band reflecting 40% or more of the incident light is widened or incident depending on the wavelength range. It is possible to realize a reflectance of 50% or more of infrared rays.
- the adjusted cholesteric resin layer is a cholesteric resin layer whose cholesteric regularity is adjusted so as to have a band reflecting 300% or more of incident light in a wavelength range of 800 nm to 2500 nm with a bandwidth of 300 nm or more.
- the adjusted cholesteric resin layer is produced by preparing a liquid crystal composition containing a liquid crystal compound, applying the liquid crystal composition to the surface of a base material, and curing it by drying or the like as necessary.
- liquid crystal compound a liquid crystal polymer as a polymer may be used, a polymerizable liquid crystal compound as a monomer may be used, or a combination thereof may be used.
- the liquid crystal compound used in this case has a large refractive index anisotropy ⁇ n, specifically, the refractive index anisotropy ⁇ n is usually 0.21 or more, preferably 0.22 or more, more preferably 0. .23 or higher is desirable.
- the bandwidth ⁇ of the reflection can be circularly polarized light depending on the difference between n e and n o, it depends on the refractive index anisotropy ⁇ n of the thus liquid crystal compound, the refractive index This is because the bandwidth ⁇ of circularly polarized light that can be reflected tends to increase as the anisotropy ⁇ n increases.
- the refractive index anisotropy ⁇ n of the liquid crystal compound is preferably as large as possible, it is practically 0.35 or less.
- Typical examples of the method for producing the adjusted cholesteric resin layer include the following method (a) and method (b).
- the prepared liquid crystal polymer solution is applied in the form of a film on a substrate and dried.
- the cholesteric regularity of the obtained coating film is adjusted so as to have a band that reflects 40% or more of incident light in a wavelength region of 800 nm to 2500 nm with a bandwidth of 300 nm or more.
- the prepared polymerizable liquid crystal composition is applied in the form of a film on a substrate and dried. After polymerization in the obtained coating film, the cholesteric regularity is adjusted so that a band that reflects 40% or more of incident light in a wavelength region of 800 nm to 2500 nm has a bandwidth of 300 nm or more.
- the method (b) is preferable because the target adjusted cholesteric resin layer can be formed more efficiently.
- the method (a) and the method (b) will be described respectively.
- Method (a) First, a liquid crystal polymer and, if necessary, a chiral agent, a surfactant, an alignment modifier, etc. are dissolved in a solvent to prepare a liquid crystal polymer solution as a liquid crystal composition. To do.
- liquid crystal polymer examples include a nematic liquid crystal polymer containing a low molecular chiral agent; a liquid crystal polymer having a chiral component introduced; a mixture of a nematic liquid crystal polymer and a cholesteric liquid crystal polymer;
- the liquid crystal polymer having a chiral component introduced therein is a liquid crystal polymer that itself functions as a chiral agent.
- the mixture of the nematic liquid crystal polymer and the cholesteric liquid crystal polymer can adjust the pitch of the chiral structure of the nematic liquid crystal polymer by changing the mixing ratio thereof.
- liquid crystal polymer examples include nematic alignment composed of para-substituted aromatic units such as azomethine, azo, azoxy, ester, biphenyl, phenylcyclohexane, and bicyclohexane, and para-substituted cyclohexyl units.
- Cholesteric regularity imparted by a method of introducing a chiral component composed of a compound having an asymmetric carbon, a low molecular chiral agent, etc. into a compound having a para-substituted cyclic compound that imparts properties Japanese Patent Laid-Open No. Sho 55- 21479, US Pat. No. 5,332,522, etc.
- Examples of the terminal substituent at the para position in the para-substituted cyclic compound include a cyano group, an alkyl group, and an alkoxyl group.
- a liquid crystal polymer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the liquid crystal polymer is not limited by its manufacturing method.
- the liquid crystal polymer can be obtained, for example, by subjecting a monomer having a mesogenic structure to radical polymerization, cationic polymerization, or anionic polymerization.
- a monomer having a mesogenic structure can be obtained, for example, by introducing a mesogenic group into a vinyl monomer such as an acrylic ester or a methacrylic ester directly or via a spacer portion by a known method.
- the liquid crystal polymer can be transferred, for example, by an addition reaction of a vinyl-substituted mesogen monomer in the presence of a platinum-based catalyst through the Si—H bond of polyoxymethylsilylene; via a functional group attached to the main chain polymer.
- a mesogenic group By introducing a mesogenic group by an esterification reaction using a catalyst; a monomer having a mesogenic group introduced into a part of malonic acid via a spacer part and a diol, if necessary, can be obtained by polycondensation reaction. it can.
- chiral agent As the chiral agent introduced into the liquid crystal polymer as a chiral component or contained in the liquid crystal polymer solution as required, a conventionally known agent can be used. Examples thereof include chiral monomers described in JP-A-6-281814, chiral agents described in JP-A-8-209127, and photoreactive chiral compounds described in JP-A-2003-131187.
- p represents the pitch length of the chiral structure
- c represents the concentration of the chiral agent.
- the pitch length of the chiral structure is a distance in the chiral axis direction until the angle of the molecular axis in the chiral structure gradually shifts as it advances along the plane and then returns to the original molecular axis direction again.
- a chiral agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the kind and amount of the specific chiral agent can be set so that the prepared cholesteric resin layer to be produced has desired optical characteristics.
- the prepared liquid crystal polymer solution is applied in a film form on a substrate and dried to obtain an adjusted cholesteric resin layer as a coating film.
- the substrate can be used regardless of organic or inorganic, but a transparent substrate is preferable.
- transparent means that the total light transmittance is 80% or more with a thickness of 1 mm.
- polycycloolefins for example, Zeonex, Zeonore (registered trademark; manufactured by Zeon Corporation), Arton (registered trademark; manufactured by JSR Corporation), and Apel (registered trademark; (Mitsui Chemicals Co., Ltd.)
- transparent resin base materials such as polyethylene terephthalate, polycarbonate, polyimide, polyamide, polymethyl methacrylate, polystyrene, polyvinyl chloride, polytetrafluoroethylene, cellulose, cellulose triacetate, and polyethersulfone.
- the inorganic material include silicon, glass, and calcite. Of these, organic materials are preferred.
- a film-like substrate is usually used as the substrate.
- This substrate may be a single layer or a laminate.
- any of a combination of an organic material and an inorganic material, a combination of only an organic material, and a combination of only an inorganic material may be used.
- An alignment film can be used to form the adjusted cholesteric resin layer.
- the alignment film is usually formed on the surface of the substrate in order to regulate the orientation of the cholesteric resin layer having cholesteric regularity in one direction in the plane.
- the alignment film contains a polymer such as polyimide, polyvinyl alcohol, polyester, polyarylate, polyamideimide, polyetherimide, and polyamide.
- the alignment film can be obtained by applying a solution (composition for alignment film) containing such a polymer on the substrate in the form of a film, drying it, and rubbing it in one direction.
- the material of the alignment film may be used alone or in combination of two or more at any ratio.
- the thickness of the alignment film is usually 0.01 ⁇ m or more, preferably 0.05 ⁇ m or more, and usually 5 ⁇ m or less, preferably 1 ⁇ m or less.
- the alignment film or the substrate may be rubbed prior to the application of the liquid crystal polymer solution.
- the rubbing treatment method is not particularly limited, and examples thereof include a method of rubbing the alignment film in a certain direction with a roll made of a synthetic fiber such as nylon or a natural fiber such as cotton or a felt.
- the alignment film is preferably washed with isopropyl alcohol or the like after the rubbing treatment.
- the alignment film may be provided with a function of regulating the orientation of the cholesteric resin layer having cholesteric regularity in one direction in the plane by irradiating the surface of the alignment film with polarized ultraviolet rays. it can.
- the method (a) there is no limitation on the method of coating the liquid crystal polymer solution on the substrate in the form of a film.
- spin coating method roll coating method, flow coating method, printing method, dip coating method, casting film formation
- Known coating methods such as a method, a bar coating method, a die coating method, and a gravure printing method may be used.
- the dried cholesteric resin layer containing the liquid crystal polymer is obtained as a cured coating film by drying after the application of the liquid crystal polymer solution.
- the drying temperature is usually in the range of 40 ° C to 150 ° C.
- the liquid crystal polymer layer formed in the form of a film on the base material has a cholesteric rule so that in a wavelength region of 800 nm to 2500 nm, a band that reflects 40% or more of incident light has a bandwidth of 300 nm or more.
- the kind and amount of the chiral agent contained in the liquid crystal polymer solution may be appropriately set, or an appropriate one may be selected as the chiral component to be introduced into the liquid crystal polymer.
- the mixture of the nematic liquid crystal polymer and the cholesteric liquid crystal polymer can adjust the pitch of the chiral structure of the nematic liquid crystal polymer by changing the mixing ratio thereof.
- Method (b) first, a liquid crystal composition in which a polymerizable liquid crystal compound, a polymerization initiator and a chiral agent, and, if necessary, a surfactant and an alignment modifier are dissolved in a solvent. A polymerizable liquid crystal composition is prepared.
- Polymerizable liquid crystal compound As the polymerizable liquid crystal compound used as the liquid crystal compound in the method (b), for example, JP-A-11-130729, JP-A-8-104870, JP-A-2005-309255, JP-A-2005-263789, JP 2001-519317 A, JP 2002-533742 A, JP 2002-308832 A, JP 2002-265421 A, JP 62-070406 A, JP 11-100575 A, JP JP-A-2008-291218, JP-A-2008-242349, International Publication No. 2009/133290, Japanese Patent Application No. 2008-170835, and the like can be used.
- R 1 represents a hydrogen atom; a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom; a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, t-
- R 3 represents a hydrogen atom; or an optionally substituted alkyl group having 1 to 10 carbon atoms.
- R 3 is an optionally substituted alkyl group having 1 to 10 carbon atoms
- examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, Examples thereof include an n-butyl group, a sec-butyl group, a t-butyl group, an n-pentyl group, and an n-hexyl group.
- alkyl groups having 1 to 4 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, and n-butyl group are preferable.
- R 3 is an optionally substituted alkyl group having 1 to 10 carbon atoms
- the optionally substituted alkyl group include a fluorine atom, chlorine atom, bromine atom, iodine Halogen atoms such as atoms; carbon such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, t-butoxy group, n-pentyloxy group, n-hexyloxy group, etc.
- Examples thereof include alkoxy groups of 1 to 6;
- the alkyl group may have one or more substituents, and the alkyl group may have one or more substituents.
- R 3 is an alkyl group
- R 4 represents a hydrogen atom; or a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group, etc.
- R 1 is preferably a group represented by —C ( ⁇ O) —OR 2 .
- R 2 represents an alkyl group having 1 to 10 carbon atoms, and the alkyl group includes —O—, —S—, —O—C ( ⁇ O) —, —C ( ⁇ O) —O.
- One group or two or more groups selected from the group consisting of-and combinations thereof may be present (except when two or more of -O- and -S- are present adjacent to each other). ).
- R 2 a methyl group is preferable.
- the compound represented by the formula (1) is preferably a compound represented by the following formula (2).
- R 2 in formula (2) discussed above, is the same as R 2 in the formula (1).
- a polymeric liquid crystal compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the compound represented by the formula (1) can be produced, for example, by a method described in JP-A-2008-291218 by combining known methods in organic synthetic chemistry.
- a polymerizable cholesteric resin layer is formed as a resin layer containing a polymer (liquid crystalline polymer, liquid crystal polymer) obtained by polymerizing a polymerizable liquid crystal compound.
- Polymers obtained by polymerizing polymerizable liquid crystal compounds include homopolymers obtained by homopolymerizing polymerizable liquid crystal compounds, copolymers of two or more polymerizable liquid crystal compounds, polymerizable liquid crystal compounds and other copolymers. And a copolymer with a possible monomer (that is, a monomer other than the polymerizable liquid crystal compound and copolymerizable with the polymerizable liquid crystal compound).
- Examples of the copolymerizable monomer include 4- (2-methacryloyloxyethyloxy) benzoic acid-4′-methoxyphenyl, 4- (6-methacryloyloxyhexyloxy) benzoic acid biphenyl, 4- ( 2-acryloyloxyethyloxy) benzoic acid-4′-cyanobiphenyl, 4- (2-methacrylolyloxyethyloxy) benzoic acid-4′-cyanobiphenyl, 4- (2-methacrylolyloxyethyloxy) benzoic acid Acid-3 ′, 4′-difluorophenyl, 4- (2-methacryloyloxyethyloxy) benzoic acid naphthyl, 4-acryloyloxy-4′-decylbiphenyl, 4-acryloyloxy-4′-cyanobiphenyl, 4- ( 2-acryloyloxyethyloxy) -4′-cyanobiphenyl, 4- (2-methyl Acryloyloxy
- the content of the copolymerizable monomer contained in the polymerizable liquid crystal composition is 50% by weight or less of the total polymerizable monomer (that is, the total of the polymerizable liquid crystal compound and the copolymerizable monomer). Preferably, 30 weight% or less is more preferable. When in this range, a polymer having a high glass transition temperature (Tg) and high film hardness can be obtained after polymerization.
- Tg glass transition temperature
- Polymerization initiator As a polymerization initiator contained in the polymerizable liquid crystal composition, either a thermal polymerization initiator or a photopolymerization initiator may be used. Among these, a photopolymerization initiator is preferable because an adjusted cholesteric resin layer in which cholesteric regularity is adjusted more easily and efficiently is obtained.
- photopolymerization initiator examples include polynuclear quinone compounds (US Pat. No. 3,046,127 and US Pat. No. 2,951,758), oxadiazole compounds (US Pat. No. 4,221,970), ⁇ -carbonyl compounds (US). Patent No. 2,367,661, US Pat. No. 2,367,670), acyloin ether (US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatic acyloin compound (US Pat. No. 2,722,512), triaryl Examples include combinations of imidazole dimer and p-aminophenyl ketone (US Pat. No.
- a polymerization initiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the amount of the polymerization initiator contained in the polymerizable liquid crystal composition is usually 1 part by weight or more, usually 10 parts by weight or less, preferably 5 parts by weight or less with respect to 100 parts by weight of the total polymerizable monomer.
- the irradiation energy is preferably 0.1 mJ / cm 2 or more, preferably 50 J / cm 2 or less, more preferably 800 mJ / cm 2 or less.
- the irradiation method of ultraviolet rays is not particularly limited. Further, the ultraviolet irradiation energy is appropriately selected depending on the type of the polymerizable liquid crystal compound.
- chiral agent examples of the chiral agent contained in the polymerizable liquid crystal composition are described in JP 2003-66214 A, JP 2003-313187 A, US Pat. No. 6,468,444, International Publication No. 98/00428, etc. What was done can be used suitably. Among these, those having a large HTP, which is an index representing the efficiency of twisting the liquid crystal compound, are preferable from the viewpoint of economy.
- the chiral agent may or may not exhibit liquid crystallinity as long as a liquid crystal layer having a desired cholesteric regularity can be formed.
- a chiral agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the amount of the chiral agent contained in the polymerizable liquid crystal composition is usually 0.01 parts by weight or more, preferably 0.1 parts by weight or more, more preferably 0.8 parts by weight with respect to 100 parts by weight of the polymerizable liquid crystal compound as the liquid crystal compound. It is 5 parts by weight or more, usually 35 parts by weight or less, preferably 25 parts by weight or less, more preferably 15 parts by weight or less.
- the polymerizable liquid crystal composition may contain a surfactant as necessary.
- the surfactant is used to adjust the surface tension of the coating film of the polymerizable liquid crystal composition.
- a nonionic surfactant is preferable, and an oligomer having a molecular weight of about several thousand is preferable.
- surfactant may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- the amount of the surfactant contained in the polymerizable liquid crystal composition is usually 0.01 parts by weight or more, preferably 0.03 parts by weight or more, more preferably 0 with respect to 100 parts by weight of the polymerizable liquid crystal compound which is a liquid crystal compound. 0.05 parts by weight or more, usually 10 parts by weight or less, preferably 5 parts by weight or less, more preferably 1 part by weight or less.
- solvent examples include organic solvents such as ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, and ethers. Among these, ketones are preferable in consideration of environmental load.
- a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- the amount of the solvent contained in the polymerizable liquid crystal composition is usually 40 parts by weight or more, preferably 60 parts by weight or more, more preferably 80 parts by weight or more with respect to 100 parts by weight of the polymerizable liquid crystal compound that is a liquid crystal compound. Usually, it is 1000 parts by weight or less, preferably 800 parts by weight or less, more preferably 600 parts by weight or less. By setting the amount of the solvent within the above range, it can be applied uniformly without application spots.
- the prepared polymerizable liquid crystal composition is coated on a substrate in a film shape and dried to obtain a coating film.
- the substrate, coating method and drying method used in method (b) can be the same as in method (a).
- a polymerization component such as a polymerizable liquid crystal compound and a copolymerizable monomer is polymerized, and then the cholesteric rule of the film.
- the properties are adjusted to obtain an adjusted cholesteric resin layer.
- the polymerization and the adjustment of the cholesteric regularity are preferably performed in the same manner as the method disclosed in International Publication No. 2008/007782.
- a step of forming a photopolymerizable coating film by coating a polymerizable liquid crystal composition containing a photopolymerization initiator as a polymerization initiator on a substrate and drying it (coating formation step (I))
- a step of irradiating the obtained coating film with selective ultraviolet rays also referred to as ultraviolet rays for broadening the band
- selective ultraviolet irradiation step (II) selective ultraviolet irradiation step
- An adjusted cholesteric resin layer can be formed by performing a step (cholesteric regularity adjusting step (III)) for changing the thickness and a step (curing step (IV) for curing the coating film).
- the selective ultraviolet irradiation step (II) and the cholesteric regularity adjustment step (III) are repeated a plurality of times.
- the coating film is irradiated with selective ultraviolet rays.
- the temperature at the time of selective UV irradiation is usually 20 to 40 ° C.
- the integrated light quantity of the selected ultraviolet irradiation is usually less than 0.5 mJ / cm 2 or more 50 mJ / cm 2.
- the integrated light quantity is measured using an illuminometer on the substrate surface having a peak sensitivity at the wavelength of the selected ultraviolet ray (specifically, for example, having a peak sensitivity at 360 nm).
- the coating film is a photopolymerizable coating film formed using a polymerizable liquid crystal composition containing a photopolymerization initiator, a polymerization reaction or a crosslinking reaction proceeds in the coating film by irradiation with selective ultraviolet rays.
- the selective ultraviolet ray is selected as a wavelength range or illuminance that can vary the degree of crosslinking (or degree of polymerization) of the polymerizable liquid crystal compound in the photopolymerizable coating film described above in the thickness direction of the film.
- the photopolymerizable coating is not completely cured (100% polymerization) by irradiation with the selective ultraviolet rays. By irradiating with selective ultraviolet rays, it becomes possible to vary the degree of crosslinking of the liquid crystal in the coating film in the thickness direction of the film, so that the band reflecting 40% or more of incident light has a bandwidth of 200 nm or more. It becomes easy to adjust the regularity.
- the selective ultraviolet ray used in the selective ultraviolet ray irradiation step (II) it is preferable to use an ultraviolet ray having a wavelength range of 100 nm or less. Specifically, it is preferable to use ultraviolet rays having only wavelengths of 300 nm or more and less than 400 nm.
- the light source for example, a mercury lamp light source, a metal halide lamp light source, or the like can be used.
- the control of the wavelength range is, for example, a method using a bandpass filter having a center wavelength of 365 nm, a method in which the width of the wavelength range is within 100 nm, centering on the wavelength at which the polymerization initiator contained in the coating film exhibits maximum absorption. Etc.
- the selected ultraviolet rays may be irradiated from the coating film side, from the substrate side, or from both sides of the coating film side and the substrate side.
- irradiation from the base material side is preferable from the viewpoint of reducing polymerization inhibition due to oxygen.
- the stability of illuminance and irradiation time will be controlled more precisely (specifically, usually within ⁇ 3%). Irradiation is preferred.
- the coating film when irradiating from the substrate side, it is preferable to perform a step of cooling the coating film on the substrate to bring the temperature of the coating film to 20 ° C. to 40 ° C. before the selective ultraviolet irradiation step (II).
- a step of cooling the coating film on the substrate By irradiating the coating film maintained at 20 ° C. to 40 ° C. with the above-mentioned selective ultraviolet rays, a light intensity distribution is generated in the thickness direction of the coating film, and as a result, a cholesteric resin having a different degree of crosslinking in the coating thickness direction.
- a layer can be formed.
- the method for cooling the coating film include cooling by cold air supply, cooling by a cooling roll, and the like.
- a cholesteric regularity adjusting step (III) for changing the cholesteric regularity cycle of the coating film is performed.
- “changing the cycle of the cholesteric regularity of the coating film” means changing the pitch of the cholesteric resin layer having the cholesteric regularity in the thickness direction.
- Examples of the method for changing the period of cholesteric regularity include: (i) a method in which the coating film is heated at a temperature equal to or higher than a temperature showing a liquid crystal phase; (ii) a method in which a liquid crystal compound is further applied to the coating film; ) A method of further applying a non-liquid crystal compound to the coating film.
- One of these methods may be performed once, each of which may be repeated twice or more, or two or more methods may be combined.
- the method (i) is preferable from the viewpoint of easy operation and effects.
- the temperature is usually 0.001 to 20 minutes at a temperature of 50 to 115 ° C., preferably 0.00 at a temperature of 65 to 115 ° C. 001 to 10 minutes, more preferably 0.01 to 5 minutes at a temperature of 65 to 115 ° C.
- the processing temperature and processing time also vary accordingly.
- the selective ultraviolet irradiation step (II) and the cholesteric regularity adjustment step (III) described above are repeated a plurality of times. By repeating these steps a plurality of times, the pitch of the chiral structure of the cholesteric resin layer can be changed more greatly.
- the conditions for selective ultraviolet irradiation and cholesteric regularity adjustment are appropriately adjusted for each number of times in order to adjust the reflection band.
- count of repetition It is preferable that it is 2 times or more and 4 times or less from a viewpoint on productivity and an installation. If it is performed 5 times or more, the facility becomes large and the productivity may be lowered.
- “repeating” the selective ultraviolet irradiation step (II) and the cholesteric regularity adjusting step (III) includes performing the selective ultraviolet irradiation step (II) and the subsequent cholesteric regularity adjusting step (III). It means repeating the sequence. That is, when the selective ultraviolet irradiation step (II) and the cholesteric regularity adjustment step (III) are repeated twice, the steps (II)-(III)-(II)-(III) are performed in this order. You may perform other processes, such as the said cooling, between these processes.
- the coating film is cured (coating film curing step (IV)).
- the curing method is not particularly limited as long as the coating film is cured to have cholesteric regularity, but is a method of irradiating the main curing ultraviolet light so that the integrated light amount becomes 10 mJ / cm 2 or more. It is preferable.
- the main curing ultraviolet ray means an ultraviolet ray set to a wavelength range or illuminance that can completely cure the coating film.
- the integrated light quantity of the main curing ultraviolet ray is preferably 10 mJ / cm 2 or more, more preferably 50 mJ / cm 2 or more, preferably 1000 mJ / cm 2 or less, more preferably 800 mJ / cm 2 or less.
- the irradiation direction of the main curing ultraviolet ray may be from either the coating film side or the substrate side, but it is preferable to irradiate from the coating film side from the viewpoint of good irradiation efficiency of ultraviolet rays.
- the irradiation of the main curing ultraviolet ray is preferably performed in an atmosphere with a small amount of oxygen gas such as a nitrogen gas atmosphere. By carrying out in such an atmosphere, it is possible to reduce the influence of polymerization inhibition by oxygen.
- the oxygen gas concentration at the time of irradiation with the main curing ultraviolet ray is preferably 3% or less, more preferably 1% or less, and particularly preferably 500 ppm or less on a weight basis.
- the coating film on the substrate it is preferable to perform a step of cooling the coating film on the substrate to 20 ° C. to 40 ° C. before the coating film curing step (IV).
- a step of cooling the coating film on the substrate it is preferable to perform a step of cooling the coating film on the substrate to 20 ° C. to 40 ° C. before the coating film curing step (IV).
- the mechanical properties of the cholesteric resin layer having cholesteric regularity can be improved while maintaining the wide band.
- the adjusted cholesteric resin layer is obtained as described above.
- a conventionally well-known thing can be used as a coating-film formation apparatus suitable for the manufacturing method of the adjustment cholesteric resin layer mentioned above.
- a coating device that continuously feeds the substrate and a coating head that forms a coating film by applying a liquid crystal composition onto the substrate fed from the feeding device, and the coating film is formed.
- a coating film forming apparatus provided with two or more systems is mentioned.
- the feeding device and the coating head are not particularly limited, and known ones can be used.
- the cooling means used for the said coating-film formation apparatus can be comprised with a cooling zone apparatus, a cooling roll, etc., for example, and it is preferable to comprise with a cooling zone apparatus.
- the said cooling means is good also as an apparatus which surrounds a part of conveyance path
- each of the selective ultraviolet irradiation device and the main curing ultraviolet irradiation device it is preferable to provide all the cooling means before each of the selective ultraviolet irradiation device and the main curing ultraviolet irradiation device, and more preferably, immediately before each of the selective ultraviolet irradiation device and the main curing ultraviolet irradiation device.
- the colored binder layer refers to a binder layer containing a pigment.
- the “binder layer” is a layer formed of a binder for bonding the layers constituting the heat insulating member of the present invention together or for bonding the heat insulating member of the present invention to another member.
- “Binder” means an adhesive in a broad sense, and includes narrowly defined adhesives (hot melt adhesive, UV curable pressure sensitive adhesive, EB type curable pressure sensitive adhesive, etc.) that lose tack at room temperature upon curing. ) And pressure-sensitive adhesives (such as pressure-sensitive adhesives) that do not lose tack.
- the heat insulating member of the present invention can be colored in a desired color. Since the pigment absorbs visible light, the visible light transmittance of the heat insulating member of the present invention is reduced by the amount of the pigment, but the heat insulating member of the present invention is not a conventional particle that absorbs infrared rays. Since the near-infrared rays are blocked by the cholesteric resin layer, the visible light transmittance can be maintained high despite having the function of blocking infrared rays. Therefore, the kind and amount of the pigment can be adjusted with a high degree of freedom. In addition, it is possible to include a pigment in a layer other than the binder layer, but by including the pigment in the binder layer, the heat insulating member of the present invention can be thinned.
- the binder is not particularly limited as long as it is transparent.
- a thermoplastic resin type or a thermosetting resin type may be used.
- the thermoplastic resin binder include vinyl acetate, polyvinyl alcohol, polyvinyl acetal, vinyl chloride, acrylic, polyamide, polyethylene, and cellulose.
- an acrylic binder is preferable.
- a copolymer of ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate and the like with methacrylic acid ester, styrene, acrylonitrile, vinyl acetate or the like is preferable.
- thermosetting resin binder examples include melamine, phenol, resorcinol, polyester, polyurethane, epoxy, and polyaromatic binders.
- a polyurethane binder or an epoxy binder is preferable.
- the polyurethane-based binder is mainly composed of a polymer obtained by reacting isocyanate and alcohol with an excess of alcohol, and is suitably used as a hot melt or a solvent-soluble type.
- the polyurethane binder is easily cured at room temperature using a curing agent such as an amine curing agent or by heating.
- binder may be used alone, or two or more kinds may be used in combination at any ratio.
- These binders may be used in the form of films, aqueous solutions, emulsions and the like.
- the pigment contained in the colored binder layer is a substance colored in a desired color
- an inorganic pigment may be used, an organic pigment may be used, or both an inorganic pigment and an organic pigment may be used.
- the specific pigment type can be selected according to the color to be exhibited in the heat insulating member of the present invention.
- Examples of the inorganic pigment include carbon black, metal oxide, metal sulfide, metal chloride and the like.
- organic pigments include azo pigments, phthalocyanine pigments, and condensed polycyclic pigments.
- Examples of the azo pigment include C.I. I. Pigment red 220, C.I. I. Pigment red 144, C.I. I. Pigment red 214, C.I. I. And condensed azo pigments such as CI Pigment Red 221.
- Examples of the phthalocyanine pigment include C.I. I. Pigment blue 15: 1, C.I. I. Pigment blue 15: 2, C.I. I. Pigment blue 15: 3, C.I. I. Pigment blue 15: 4, C.I. I.
- CI Pigment Blue 15 examples include C.I. I. Pigment red 177, C.I. I. Anthraquinone pigments such as C.I. Pigment Blue 60; I. Perylene pigments such as CI Pigment Red 123; I. Perinone pigments such as CI Pigment Orange 43; I. Pigment red 202, C.I. I. Pigment red 122, C.I. I. Pigment red 282, C.I. I. Quinacridone pigments such as CI Pigment Violet 19; I. Pigment violet 23, C.I. I. A dioxazine pigment such as CI Pigment Violet 37; I.
- CI indolinone pigments such as CI Pigment Yellow 109; I. CI indoline pigments such as CI Pigment Orange 66; I. Quinophthalone pigments such as CI Pigment Yellow 138; I. Indigo pigments such as CI Pigment Red 88; I. A metal complex pigment such as CI Pigment Green 8; I. Pigment red 254, C.I. I. Pigment red 255, C.I. I. And diketopyrrolopyrrole pigments such as CI Pigment Red 264.
- one or more pigments selected from the group consisting of azo pigments, quinacridone pigments, diketopyrrolol pigments, anthraquinone pigments, dioxazine pigments, and phthalocyanine pigments are preferred.
- a pigment may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- the amount of the pigment can be set according to the color intensity to be exhibited in the heat insulating member of the present invention.
- the specific amount of the pigment is not uniform depending on the kind of the pigment and the binder and the thickness of the colored binder layer, but is usually 0.01 parts by weight or more, preferably 0.05 parts by weight with respect to 100 parts by weight of the binder. Above, more preferably 0.1 parts by weight or more, usually 30 parts by weight or less, preferably 20 parts by weight or less, more preferably 10 parts by weight or less.
- the coloring binder layer may contain components other than a binder and a pigment as needed.
- inorganic fine particles and ultraviolet absorbers described later may be included.
- ultraviolet absorbers include salicylic acid, benzophenone, and benzotriazole.
- examples of the salicylic acid ultraviolet absorber include phenyl salicylate, pt-butylphenyl salicylate, and p-octylphenyl salicylate.
- benzophenone ultraviolet absorber examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, 2,2 ′ -Dihydroxy-4,4'-dimethoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone.
- benzotriazole ultraviolet absorber examples include 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-5′-t-butylphenyl) benzotriazole, 2- ( 2'-hydroxy-3 ', 5'-di-t-butylphenyl) benzotriazole, 2- (2'-hydroxy-3'-t-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2 -(2'-hydroxy-3 ', 5'-di-t-butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3', 5'-di-t-amylphenyl) benzotriazole 2- (2′-hydroxy-3 ′-(3 ′′, 4 ′′, 5 ′′, 6 ′′ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole, 2,2-methylenebis [4 -( , 1,3,3-t-
- a ultraviolet absorber may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the content of these ultraviolet absorbers depends on the thickness of the binder layer, but is usually 0.05 parts by weight or more, preferably 0.1 parts by weight or more, and usually 30 parts by weight or less, preferably 100 parts by weight of the binder. Is used in the range of 20 parts by weight or less.
- the thickness of the colored binder layer is usually 1 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more, and usually 200 ⁇ m or less, preferably 150 ⁇ m or less.
- the fine particle-containing resin layer refers to a resin layer containing inorganic fine particles.
- the strength of the heat insulating member of the present invention can be increased and hardly damaged.
- the fragments even if it is damaged, it is difficult for the fragments to scatter, so safety can be improved.
- the point which makes it difficult to disperse fragments is particularly useful when the heat insulating member of the present invention is applied to heat insulating laminated glass as will be described later.
- the resin contained in the fine particle-containing resin layer is not particularly limited as long as it is a transparent resin.
- the resin include polyvinyl butyral, ethylene-vinyl acetate copolymer, alicyclic olefin polymer, chain olefin polymer such as polyethylene and polypropylene, triacetyl cellulose, polyvinyl alcohol, polyimide, polyarylate, polyester, polycarbonate, Polysulfone, polyether sulfone, modified acrylic polymer, epoxy resin, polystyrene, acrylic resin and the like can be mentioned.
- polyvinyl butyral, ethylene-vinyl acetate copolymer, and polyester are preferable.
- resin may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- the inorganic fine particles contained in the fine particle-containing resin layer usually absorb infrared rays having a wavelength corresponding to the type. Therefore, by providing the fine particle-containing resin layer containing inorganic fine particles, the heat insulating member of the present invention can block infrared rays more effectively.
- the inorganic fine particles preferably have an absorption peak at a longer wavelength than the band in which the adjusted cholesteric resin layer reflects 40% or more of incident light.
- infrared light in the wavelength region close to the visible region is reflected by the adjusted cholesteric resin layer, and infrared light in the longer wavelength region (mainly mid infrared region and far infrared region)
- the entire infrared ray including the near infrared ray, the mid infrared ray and the far infrared ray can be blocked, so that the heat insulating effect can be exhibited more effectively.
- inorganic fine particles having an absorption peak in a long wavelength region far from the visible region have no absorption in the visible region, or even if absorbed, the degree of absorption is small. Even in this case, it is difficult to reduce the visible light transmittance of the heat insulating member of the present invention.
- examples of suitable inorganic fine particles include metal oxide fine particles and hexaboride fine particles.
- the metal oxide fine particles include ATO (antimony-doped tin oxide) fine particles and ITO (tin-doped indium oxide) fine particles.
- the hexaboride fine particles include lanthanum hexaboride fine particles.
- One kind of inorganic fine particles may be used alone, or two or more kinds may be used in combination at any ratio.
- the median diameter of the inorganic fine particles on a volume basis is preferably 200 nm or less, more preferably 100 nm or less. If it is larger than 200 nm, the aggregation of inorganic fine particles tends to occur, haze is generated, and the transparency of the heat insulating member of the present invention may be impaired.
- the lower limit is not particularly limited, but is usually 20 nm or more.
- the median diameter on the volume basis can be measured by, for example, a laser diffraction / scattering particle size distribution measuring apparatus.
- the amount of the inorganic fine particles is not uniform depending on the kind of the resin and inorganic fine particles and the thickness of the fine particle-containing resin layer, but is usually 0.01 parts by weight or more, preferably 0.05 parts by weight with respect to 100 parts by weight of the resin. Above, more preferably 0.1 parts by weight or more, usually 50 parts by weight or less, preferably 40 parts by weight or less, more preferably 30 parts by weight or less.
- the fine particle-containing resin layer may contain components other than the resin and the inorganic fine particles as necessary.
- the thickness of the fine particle-containing resin layer is usually 0.01 mm or more, preferably 0.1 mm or more, more preferably 0.2 mm or more, and usually 10 mm or less, preferably 5 mm or less.
- the heat insulating member of the present invention includes at least two adjusted cholesteric resin layers having the same twist direction and cholesteric regularity
- the heat insulating member of the present invention has a nematic resin layer between the two adjusted cholesteric resin layers. It is preferable to provide.
- the “nematic resin layer” refers to a resin layer having nematic regularity, and is usually obtained by curing or curing a nematic liquid crystal.
- the nematic resin layer is usually a retardation layer that exhibits front retardation.
- one of the right circularly polarized light and left circularly polarized light incident on the heat insulating member of the present invention is reflected by the first adjustment cholesteric resin layer, and then the infrared polarization state is converted in the nematic resin layer, Further reflection is possible with the second adjustment cholesteric resin layer.
- the bandwidth of the band that reflects 40% or more of incident light is broadened, or 50% or more of reflected infrared light is reflected. Rate can be realized.
- the size of the front retardation developed in the nematic resin layer is preferably 400 nm or more, more preferably 450 nm or more, particularly preferably 500 nm or more, preferably 800 nm or less, more preferably 750 nm or less, particularly preferably at a wavelength of 550 nm. Is 700 nm or less.
- the nematic resin layer expresses a front retardation of approximately 1 ⁇ 2 wavelength with respect to the infrared of the selective reflection band reflected by the adjustment cholesteric resin layer, so the right circularly polarized light is converted to the left circularly polarized light. Or left circularly polarized light can be converted to right circularly polarized light.
- a nematic liquid crystal composition containing a rod-like liquid crystal compound having a polymerizable group is preferably applied on another layer such as an alignment film to obtain a nematic liquid crystal layer, and then 1
- the method of hardening the said nematic liquid crystal layer by light irradiation and / or a heating process more than once is mentioned.
- the rod-like liquid crystal compound includes JP 2002-030042 A, JP 2004-204190 A, JP 2005-263789 A, and JP 2007-119415 A.
- Conventionally known rod-shaped liquid crystal compounds having a polymerizable group described in JP-A No. 2007-186430 and the like can be used.
- a rod-shaped liquid crystal compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the polymerizable liquid crystal compound represented by the formula (1) is preferable
- the polymerizable liquid crystal compound represented by the formula (2) is more preferable.
- the nematic liquid crystal composition may contain a polymerization initiator in order to improve the film strength and durability after curing.
- a polymerization initiator the thing similar to what was used by the polymeric liquid crystal composition demonstrated by the manufacturing method of a cholesteric resin layer can be used by the same usage.
- a polymerization initiator may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
- the nematic liquid crystal composition may contain a surfactant.
- a surfactant those similar to those used in the polymerizable liquid crystal composition described in the method for producing a cholesteric resin layer can be used in the same manner.
- surfactant may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
- the nematic liquid crystal composition may further contain other components as necessary.
- other components include a solvent, a crosslinking agent, a polymerization inhibitor for improving pot life, an antioxidant for improving durability, an ultraviolet absorber, and a light stabilizer.
- these other components may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. These other components can be contained in a range that does not significantly reduce the desired optical performance.
- the method for producing the nematic liquid crystal composition is not particularly limited, and can be produced by mixing the above-described components.
- the prepared nematic liquid crystal composition is applied onto another layer such as an alignment film to obtain a liquid crystal layer.
- the application can be performed by, for example, an extrusion coating method, a direct gravure coating method, a reverse gravure coating method, a die coating method, a bar coating method, or the like.
- the liquid crystal layer obtained by the application is cured to obtain a nematic resin layer.
- an alignment treatment may be performed as necessary.
- the alignment treatment can be performed, for example, by heating the liquid crystal layer at 50 to 150 ° C. for 0.5 to 10 minutes. By performing the alignment treatment, the liquid crystal layer can be aligned well.
- the curing of the liquid crystal layer can be performed by, for example, one or more times of light irradiation, heating treatment, or a combination thereof.
- the heating condition is, for example, a temperature of usually 40 ° C. or higher, preferably 50 ° C. or higher, usually 200 ° C. or lower, preferably 140 ° C. or lower, usually 1 second or longer, preferably 5 seconds or longer, usually 3 minutes or shorter, preferably Is performed in 120 seconds or less.
- a nematic resin layer can be obtained by curing the liquid crystal layer in this manner.
- the film thickness of the nematic resin layer can be set according to the size of the front retardation to be expressed, but is usually 2 ⁇ m to 8 ⁇ m.
- the heat insulating member of the present invention may include components other than the above-described adjusted cholesteric resin layer, colored binder layer, fine particle-containing resin layer, and nematic resin layer.
- the heat insulating member of the present invention includes, for example, a cholesteric resin layer other than the adjusted cholesteric resin layer, a binder layer that does not contain a pigment, a resin layer that does not contain inorganic fine particles, and a base material used in the manufacture of a cholesteric resin layer or a nematic resin layer And an alignment film or the like.
- the protective film which can be peeled may be provided from a viewpoint which prevents the heat insulation member of this invention from being damaged at the time of a preservation
- the yellow lindex is usually 2.0 or less, preferably 1.8 or less, more preferably 1.6 or less.
- the lower limit of the yellow index is not limited, but is usually ⁇ 10 or more. Since the heat insulating member of the present invention blocks near infrared rays by adjusting cholesteric resin layers instead of particles that absorb infrared rays as in the prior art, the amount of particles that cause yellow coloring can be reduced. Such a low yellow index value can be realized.
- the visible light transmittance of the heat insulating member of the present invention is usually 60% or more, preferably 65% or more, more preferably 70% or more.
- the upper limit is ideally 100%, but is usually 99% or less. Since the heat insulating member of the present invention is configured to block near infrared rays with the adjusted cholesteric resin layer, the above-described high visible light transmittance can be realized without excessively reducing the visible light transmittance.
- the visible light transmittance can be measured by the method described in JIS R3106.
- the solar radiation transmittance of the heat insulating member of the present invention is usually 60% or less, preferably 55% or less, more preferably 50% or less.
- the lower limit is preferably a value such that the visible light transmittance satisfies the above range, and is specifically 10% or more. According to the heat insulating member of the present invention, since infrared rays can be effectively blocked, solar radiation transmittance can be lowered at least by the amount of blocking infrared rays.
- the infrared rays are not absorbed and blocked by particles as in the prior art, but are reflected and blocked by the cholesteric resin layer, so the degree of temperature rise of the heat insulating member due to light absorption Is small.
- the solar transmittance can be measured by the method defined in JIS R3106.
- the heat insulating member of the present invention is usually a sheet-like or film-like member, but may be a plate-like member, for example.
- the thickness of the heat insulating member of the present invention is usually 1 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and usually 10 mm or less, preferably 5 mm or less, more preferably 1 mm or less.
- the heat insulating laminated glass of the present invention includes at least two glass plates, and includes the heat insulating member of the present invention between the two glass plates. That is, the heat insulation laminated glass of this invention is equipped with the glass plate, the heat insulation member of this invention, and the glass plate in this order, and the heat insulation member of this invention functions as an intermediate film of a laminated glass.
- the glass plate may be not only a silicate glass plate but also a special glass plate formed of other glass or containing a component other than a glass component. Moreover, you may use combining these glass plates arbitrarily.
- the kind of specific glass plate can be selected according to the use of the heat insulation laminated glass of this invention.
- the heat-insulated laminated glass of the present invention includes at least two glass plates, and may include, for example, three or more glass plates.
- the thickness of a glass plate can be set according to a use, it is 0.5 mm or more and 30 mm or less normally.
- the heat insulating laminated glass of the present invention includes the heat insulating member of the present invention that can effectively block infrared rays, the heat insulating action of the present invention can be suppressed by suppressing heating by infrared rays.
- permeability of the heat insulation member of this invention is high, the heat insulation laminated glass of this invention provided with it can also make visible light transmittance high.
- the heat insulating member of the present invention can be colored with a high degree of freedom while maintaining high visible light transmittance and low solar transmittance, the heat insulating laminated glass of the present invention provided with the heat insulating laminated glass also has the above-mentioned excellent performance.
- the heat-insulated laminated glass of the present invention can be colored even in colors that have been difficult to realize with conventional laminated glass having an effect of blocking infrared rays.
- the heat-insulated laminated glass has an advantage in that it can be colored in an achromatic color (neutral gray). It is remarkable.
- the heat-insulating member of the present invention functions as an intermediate film, it is usually possible to increase strength and make it difficult to break, or to improve penetration resistance and sound insulation.
- the heat insulating laminated glass of the present invention also includes the fine particle-containing resin layer by providing the fine particle-containing resin layer in the heat insulating member of the present invention
- the heat insulating laminated glass article including the heat insulating laminated glass is at least one layer of the adjusted cholesteric resin layer.
- the heat-insulated laminated glass article refers to an object to which the heat-insulated laminated glass of the present invention is applied, and examples thereof include windows for vehicles or buildings, translucent wall materials, and transparent containers.
- the infrared source includes, for example, a heating device, but usually means the sun.
- the infrared rays emitted from the infrared source are reflected by the adjusted cholesteric resin layer first, and the adjusted cholesteric resin Infrared rays that have passed through the layer enter the fine particle-containing resin layer.
- the energy of the infrared rays absorbed by the fine particle-containing resin layer can be reduced, the temperature rise due to the absorption of infrared rays can be suppressed, and the heat insulation effect can be enhanced.
- the heat-insulated laminated glass article is used as an article for partitioning the inside and outside of the space.
- the heat insulating laminated glass of the present invention can have a structure suitable for one surface thereof to face an infrared source such as the sun.
- the surface facing the outside of the vehicle can be convex, and the surface facing the interior can be concave.
- the convex surface is the surface facing the infrared source.
- the heat insulation laminated glass of this invention can have the structure where at least one layer of an adjustment cholesteric resin layer is located between the surface facing the said infrared rays source, and a fine particle containing resin layer.
- FIG. 1 is a cross-sectional view schematically showing a layer structure of a heat insulating laminated glass 1 according to the first embodiment of the present invention.
- the heat insulating laminated glass 1 includes a first glass plate 11, a resin layer 21 not containing inorganic fine particles, an adjusted cholesteric resin layer 31, a colored binder layer 41, and a second glass plate 12 in this order.
- a first glass plate 11 a resin layer 21 not containing inorganic fine particles
- an adjusted cholesteric resin layer 31 a colored binder layer 41
- a second glass plate 12 in this order.
- the heat insulation laminated glass 1 is comprised in this way, when sunlight L is irradiated from the upper direction in the figure, the sunlight L will inject from the 1st glass plate 11, and is contained in the irradiated sunlight L After the reflected infrared light is reflected by the adjustment cholesteric resin layer 31, it is emitted from the second glass plate 12. According to such a heat insulating laminated glass 1, since the adjustment cholesteric resin layer 31 reflects infrared rays, the infrared transmittance can be lowered, and consequently the solar radiation transmittance can be lowered.
- the adjustment cholesteric resin layer 31 selectively reflects light in the infrared region and has a small effect of blocking visible light, according to the heat insulating laminated glass 1, the visible light transmittance can be kept high.
- the coloring binder layer 41 contains a pigment, the heat insulation laminated glass 1 can be colored to a desired color.
- the adjustment cholesteric resin layer 31 has a small effect of blocking visible light, the kind and amount of the pigment can be set with a high degree of freedom.
- FIG. 2 is a cross-sectional view schematically showing a layer structure of the heat insulating laminated glass 2 according to the second embodiment of the present invention.
- the heat insulating laminated glass 2 includes a first glass plate 11, a colored binder layer 41, an adjusted cholesteric resin layer 31, a fine particle-containing resin layer 22, and a second glass plate 12 in this order.
- the heat insulation laminated glass 2 is comprised in this way, when sunlight L is irradiated from the upper direction in the figure, the sunlight L will inject from the 1st glass plate 11, and is contained in the irradiated sunlight L
- the reflected infrared rays are reflected by the adjustment cholesteric resin layer 31 and further absorbed by the inorganic fine particles in the fine particle-containing resin layer 22, and then emitted from the second glass plate 12.
- the effect similar to the heat insulation laminated glass 1 which concerns on 1st embodiment is acquired.
- infrared rays can be absorbed by the inorganic fine particles contained in the fine particle-containing resin layer 22, the infrared transmittance can be further reduced.
- FIG. 3 is a cross-sectional view schematically showing a layer structure of the heat insulating laminated glass 3 according to the third embodiment of the present invention.
- the heat insulating laminated glass 3 includes a first glass plate 11, a pigment-free binder layer 42, a first adjustment cholesteric resin layer 31, a colored binder layer 41, and a second adjustment cholesteric resin layer 32.
- the fine particle-containing resin layer 22 and the second glass plate 12 are provided in this order.
- the heat insulation laminated glass 3 is comprised in this way, when sunlight L is irradiated from upper direction in the figure, the sunlight L will inject from the 1st glass plate 11, and is contained in the irradiated sunlight L
- the reflected infrared rays are reflected by the first adjustment cholesteric resin layer 31, reflected by the second adjustment cholesteric resin layer 32, and further absorbed by the inorganic fine particles in the fine particle-containing resin layer 22, and then emitted from the second glass plate 12.
- the effect similar to the heat insulation laminated glass 2 which concerns on 2nd embodiment is acquired.
- the heat insulation laminated glass 3 is equipped with the adjustment cholesteric resin layers 31 and 32, it can further reduce the infrared transmittance.
- the twist direction of the first adjustment cholesteric resin layer 31 and the second adjustment cholesteric resin layer 32 are different, both the right circularly polarized light and the left circularly polarized light are adjusted by the adjusted cholesteric resin layers 31 and 32. Since circularly polarized light can be reflected, the infrared transmittance can be reduced particularly effectively.
- FIG. 4 is a cross-sectional view schematically showing a layer structure of the heat insulating laminated glass 4 according to the fourth embodiment of the present invention.
- the heat insulating laminated glass 4 includes a first glass plate 11, a pigment-free binder layer 42, a first adjustment cholesteric resin layer 31, a nematic resin layer 51, a colored binder layer 41, a second binder layer 42.
- the adjustment cholesteric resin layer 32, the fine particle-containing resin layer 22, and the second glass plate 12 are provided in this order.
- the heat insulation laminated glass 4 is comprised in this way, when sunlight L is irradiated from the upper direction in the figure, the sunlight L will inject from the 1st glass plate 11, and is contained in the irradiated sunlight L
- the reflected infrared light is reflected by the first adjustment cholesteric resin layer 31, is reflected by the second adjustment cholesteric resin layer 32 after the polarization state is converted by the nematic resin layer 51, and is further reflected by inorganic fine particles in the fine particle-containing resin layer 22. After being absorbed, light is emitted from the second glass plate 12.
- the effect similar to the heat insulation laminated glass 2 which concerns on 2nd embodiment is acquired.
- the heat insulation laminated glass 4 is equipped with two adjustment cholesteric resin layers 31 and 32, it can further reduce the infrared transmittance.
- the first adjustment cholesteric resin layer 31 and the second adjustment cholesteric resin layer 32 have the same twist direction, more polarization can be reflected by the adjustment cholesteric resin layers 31 and 32.
- the nematic resin layer 51 can give front retardation of approximately 1 ⁇ 2 wavelength to the light in the selective reflection band of the adjusted cholesteric resin layers 31 and 32, both right circularly polarized light and left circularly polarized light are provided. Since the polarized light can be reflected, the effect is particularly remarkable.
- FIG. 5 is a cross-sectional view schematically showing a layer structure of the heat insulating laminated glass 5 according to the fifth embodiment of the present invention.
- the heat insulating laminated glass 5 includes a first glass plate 11, a binder layer 42 containing no pigment, a first adjustment cholesteric resin layer 31, a nematic resin layer 51, a colored binder layer 41, a second binder layer 42.
- the adjustment cholesteric resin layer 32, the binder layer 43 containing no pigment, the resin layer 21 containing no inorganic fine particles, the fine particle-containing resin layer 22 and the second glass plate 12 are provided in this order.
- the heat insulation laminated glass 5 is comprised in this way, when sunlight L is irradiated from upper direction in the figure, the sunlight L will inject from the 1st glass plate 11, and is contained in the irradiated sunlight L
- the reflected infrared light is reflected by the first adjustment cholesteric resin layer 31, is reflected by the second adjustment cholesteric resin layer 32 after the polarization state is converted by the nematic resin layer 51, and is further reflected by inorganic fine particles in the fine particle-containing resin layer 22. After being absorbed, light is emitted from the second glass plate 12. According to such a heat insulation laminated glass 5, the effect similar to the heat insulation laminated glass 4 which concerns on 4th embodiment is acquired.
- FIG. 6 is a cross-sectional view schematically showing the layer configuration of the heat insulating laminated glass 6 according to the sixth embodiment of the present invention.
- the heat insulating laminated glass 6 was used for manufacturing the first glass plate 11, the binder layer 42 not containing a pigment, the first adjustment cholesteric resin layer 31, and the first adjustment cholesteric resin layer 31.
- the plate 12 is provided in this order.
- the heat insulation laminated glass 6 is comprised in this way, when sunlight L is irradiated from upper direction in the figure, the sunlight L will inject from the 1st glass plate 11, and is contained in the irradiated sunlight L
- the reflected infrared light is reflected by the first adjustment cholesteric resin layer 31, is reflected by the second adjustment cholesteric resin layer 32 after the polarization state is converted by the nematic resin layer 51, and is further reflected by inorganic fine particles in the fine particle-containing resin layer 22. After being absorbed, light is emitted from the second glass plate 12. According to such a heat insulation laminated glass 6, the effect similar to the heat insulation laminated glass 4 which concerns on 4th embodiment is acquired.
- the configuration of the heat insulating laminated glass of the present invention is not limited to the configuration described in the first to sixth embodiments.
- the member having the configuration excluding the first and second glass plates 11 and 12 from the heat insulating laminated glasses 1 to 6 described in the first to sixth embodiments corresponds to the heat insulating member of the present invention.
- the heat insulation member of this invention is normally used as an intermediate film of heat insulation laminated glass combining with a glass plate, you may use it combining with members other than a glass plate.
- a film made of an alicyclic olefin polymer (trade name “ZEONOR FILM ZF16-100” manufactured by Optes Co., Ltd.) was prepared, and one side thereof was rubbed.
- the polymerizable liquid crystal composition A was applied to the surface subjected to rubbing using a # 20 wire bar to form a coating film.
- the coating film was subjected to an orientation treatment at 130 ° C. for 2 minutes to form a cholesteric liquid crystal layer having a dry film thickness of 10 ⁇ m.
- the cholesteric liquid crystal layer was irradiated with ultraviolet rays corresponding to 2000 mJ / cm 2 with a mercury lamp in a nitrogen atmosphere to obtain a film A on which a cholesteric resin layer having a thickness of about 10 ⁇ m was formed.
- a film A was observed with a polarizing microscope, it was confirmed that there was no alignment defect and a transparent cholesteric resin layer without haze was formed.
- a polymerizable liquid crystal composition B shown in Table 1 was prepared, and a film B on which a cholesteric resin layer was formed was obtained in the same manner as the film A except that this polymerizable liquid crystal composition B was used. It was.
- the film B was similarly observed with a polarizing microscope, and it was confirmed that a transparent cholesteric resin layer having no alignment defect and no haze was formed.
- Nematic liquid crystal composition C was prepared by mixing each component of the materials used in the mixing ratio shown in Table 2.
- This nematic liquid crystal composition C was applied onto the cholesteric resin layer of film A produced above using a # 8 wire bar, and subjected to an alignment treatment at 80 ° C. for 3 minutes, and a nematic liquid crystal layer having a dry film thickness of 4 ⁇ m. Formed.
- the obtained nematic liquid crystal layer was irradiated with ultraviolet rays corresponding to 2000 mJ / cm 2 with a mercury lamp in a nitrogen atmosphere to obtain a film C on which a nematic resin layer having a thickness of about 4 ⁇ m was formed.
- the film C was observed with a polarizing microscope, there was no alignment defect, and it was confirmed that a transparent nematic resin layer without haze was formed.
- the director on the air interface side of the cholesteric resin layer was prepared, it is considered that nematic regularity without alignment defects was obtained without performing a special alignment treatment.
- a film D having a nematic resin layer formed was obtained in the same manner as the film C except that the nematic liquid crystal composition C was applied on the cholesteric resin layer of the film B instead of the film A.
- the film D was similarly observed with a polarizing microscope, and it was confirmed that a transparent nematic resin layer having no alignment defect and no haze was formed.
- nematic liquid crystal composition D shown in Table 2 was similarly prepared. Same as film D except that nematic liquid crystal composition D was used instead of nematic liquid crystal composition C, # 5 wire bar was used, and the dry film thickness of the nematic resin layer was 2.4 ⁇ m. Thus, a film E on which a nematic resin layer was formed was obtained. The film E was similarly observed with a polarizing microscope, and it was confirmed that a transparent nematic resin layer having no alignment defect and no haze was formed.
- the binder composition was applied onto the nematic resin layer of film C using a # 100 bar and dried at 100 ° C. for 1 minute to form a binder layer. Next, this binder layer and the separately prepared cholesteric resin layer of film A were disposed so as to face each other, and a film H was obtained.
- the nematic resin layer of film D and the cholesteric resin layer of film B were bonded together through a binder layer to obtain film I.
- the film J was obtained by bonding the nematic resin layer of the film E and the cholesteric resin layer of the film B through a binder layer in the same manner.
- the binder composition was applied onto the cholesteric resin layer of film A using a # 100 bar and dried at 100 ° C. for 1 minute to form a binder layer.
- the obtained film is referred to as film K.
- Example 1 A 0.7-mm-thick polyvinyl butyral sheet in which tin-doped indium oxide (median diameter 60 ⁇ m) was dispersed at a concentration of 1% by weight and film H were bonded at 150 ° C. for 2 minutes to obtain a heat insulating member.
- the color of the heat insulating member obtained by visual observation was bluish purple and had no haze.
- a transmission spectrum and a reflection spectrum at a wavelength of 300 nm to 2100 nm were measured using an ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation, V-570), and a yellow index and hues a * and b * was measured. The appearance was neutral (neutral gray). Further, the visible light transmittance and solar transmittance were measured according to JIS R3106. The results are shown in Table 3.
- Example 2 A heat insulating member was obtained in the same manner as in Example 1 except that the film I was used instead of the film H. About the obtained heat insulation member, it carried out similarly to Example 1, and measured yellow index, hue a * and b *, visible-light transmittance, and solar transmittance. The results are shown in Table 3.
- Example 3 A heat insulating member was obtained in the same manner as in Example 2 except that tin-doped indium oxide was replaced with antimony-doped tin oxide (median diameter 60 ⁇ m). About the obtained heat insulation member, it carried out similarly to Example 1, and measured yellow index, hue a * and b *, visible-light transmittance, and solar transmittance. The results are shown in Table 3.
- Example 4 A heat insulating member was obtained in the same manner as in Example 1 except that the film J was used instead of the film H. About the obtained heat insulation member, it carried out similarly to Example 1, and measured yellow index, hue a * and b *, visible-light transmittance, and solar transmittance. The results are shown in Table 3.
- Example 5 A heat insulating member was obtained in the same manner as in Example 4 except that tin-doped indium oxide was replaced with antimony-doped tin oxide. About the obtained heat insulation member, it carried out similarly to Example 1, and measured yellow index, hue a * and b *, visible-light transmittance, and solar transmittance. The results are shown in Table 3.
- Example 6 A heat insulating member was obtained in the same manner as in Example 1 except that the film K was used instead of the film H. About the obtained heat insulation member, it carried out similarly to Example 1, and measured yellow index, hue a * and b *, visible-light transmittance, and solar transmittance. The results are shown in Table 3.
- Example 7 a heat insulating member was produced in the same manner as in Table 4 except that the wire bar to be used was properly used and the film thickness of the nematic liquid crystal composition was changed. That is, by using different wire bars as shown in Table 4, a film similar to the film D was produced except that the dry film thickness of the nematic liquid crystal composition C was changed, and thus obtained. A film similar to the film I was produced except that the film was used instead of the film D, and a heat insulating member was produced in the same manner as in Example 2 except that the film was used instead of the film I.
- Visible light transmittance and solar radiation transmittance of the obtained heat insulating member were measured. The results are shown in Table 4.
- Table 4 a sample having a visible light transmittance of 60% or more was rated “excellent”, a sample having a transmittance of 50% or more and 60% or less was “good”, and a sample having a transmittance of less than 50% was “bad”.
- the solar radiation transmittance of 60% or less was evaluated as “excellent”, the solar radiation transmittance of 50% or more and 60% or less as “good”, and the solar radiation transmittance greater than 60% as “bad”.
- the front retardation Re of the nematic resin layer is obtained by multiplying the refractive index anisotropy ⁇ n0.14 of the nematic resin layer and the thickness (nm) of the nematic resin layer, and is shown in Table 4.
- Example 13 Production of heat insulating laminated glass and heat insulating effect
- Green glass having a thickness of 2.76 mm was placed on the polyvinyl butyral sheet side containing tin-doped indium oxide of the heat insulating member produced in Example 2.
- a polyvinyl butyral sheet and green glass were arranged in this order. Then, it heated at 150 degreeC for 30 minutes, and produced the heat insulation laminated glass.
- the obtained heat-insulated laminated glass was arranged so that the polyvinyl butyral sheet containing tin-doped indium oxide was on the emission side with respect to the cholesteric resin layer, the transmission spectrum was measured, and the hues a * and b * were measured. As a result, a * was ⁇ 1.43 and b * was 0.45.
- the hue of the green glass used is a green tone with a * of ⁇ 0.73 and b * of 0.25. From these facts, it was confirmed that the green appearance can be maintained even when the heat insulating laminated glass is processed into the heat insulating laminated glass.
- the solar reflectance was 28.5%. Further, with respect to this heat insulating laminated glass, the reflection spectrum was measured so that the cholesteric resin layer was on the emission side, and the solar reflectance was measured, and it was 10.5%. Therefore, when used as a heat insulating laminated glass for buildings and vehicles, the cholesteric resin layer side is the outside light side (that is, the side close to the infrared source), and the resin layer containing inorganic fine particles is the indoor side and the inside of the vehicle (that is, the inside). By disposing on the far side of the infrared source, a more effective heat insulation effect can be expected.
- the heat insulating member of the present invention is suitable for use as an intermediate film of heat insulating laminated glass, for example.
- the heat insulation laminated glass of this invention is suitable, for example as a window material for vehicles or a building, a translucent wall material, a transparent container, etc.
Landscapes
- Laminated Bodies (AREA)
- Joining Of Glass To Other Materials (AREA)
- Optical Filters (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polarising Elements (AREA)
Abstract
Description
また近年では、冷暖房効率を向上させて省エネルギー化を推進する観点から、赤外領域の光(赤外線)を遮断するフィルムの開発が進められている(特許文献2,3)。
すなわち、本発明によれば、以下の〔1〕~〔15〕が提供される。
顔料を含むバインダー層とを備え、
イエローインデックスが2.0以下である、断熱部材。
〔2〕 無機微粒子を含む樹脂層を備える、〔1〕記載の断熱部材。
〔3〕 可視光線透過率が60%以上で、且つ、日射透過率が60%以下である、〔1〕又は〔2〕記載の断熱部材。
〔4〕 同一の捩れ方向及びコレステリック規則性を有する2層の前記コレステリック樹脂層を備え、
前記2層のコレステリック樹脂層の間にネマチック樹脂層を備える、〔1〕~〔3〕のいずれか一項に記載の断熱部材。
〔5〕 前記ネマチック樹脂層の波長550nmにおける正面レターデーションが400nm以上800nm以下である、〔4〕記載の断熱部材。
〔6〕 前記顔料が、アゾ系顔料、キナクリドン系顔料、ジケトピロロール系顔料、アントラキノン系顔料、ジオキサジン系顔料、フタロシアニン系顔料からなる群より選ばれる1種類以上の顔料である、〔1〕~〔5〕のいずれか一項に記載の断熱部材。
〔7〕 前記コレステリック樹脂層が、屈折率異方性Δnが0.21以上の液晶化合物を含む液晶組成物を硬化してなる樹脂層である、〔1〕~〔6〕のいずれか一項に記載の断熱部材。
〔8〕 前記コレステリック樹脂層が、式(1)で表される化合物を含有する液晶組成物から形成されたものである、〔1〕~〔7〕のいずれか一項に記載の断熱部材。
R1は、水素原子、ハロゲン原子、炭素数1~10のアルキル基、-OR3、-O-C(=O)-R3、および-C(=O)-OR3からなる群より選ばれるいずれかを表す。ここで、R3は、水素原子又は置換基を有してもよい炭素数1~10のアルキル基を表す。R3がアルキル基である場合、当該アルキル基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR4-C(=O)-、-C(=O)-NR4-、-NR4-、-C(=O)-、およびこれらの組み合わせからなる群より選ばれる1以上の基が介在していてもよい(ただし、-O-及び-S-がそれぞれ2以上隣接して介在する場合を除く。)。ここで、R4は、水素原子または炭素数1~6のアルキル基を表す。
nは、それぞれ独立に、2~12の整数を表す。)
〔9〕 前記ネマチック樹脂層が、式(1)で表される化合物を含有する液晶組成物から形成された、〔4〕又は〔5〕記載の断熱部材。
〔10〕 前記式(1)で表される化合物が、式(2)で表される化合物である、〔8〕記載の断熱部材。
R2は、炭素数1~10のアルキル基を表し、当該アルキル基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、およびこれらの組み合わせからなる群より選ばれる1以上の基が介在していてもよい(ただし、-O-および-S-がそれぞれ2以上隣接して介在する場合を除く。)。)
〔11〕 前記式(1)で表される化合物が、式(2)で表される化合物である、〔9〕記載の断熱部材。
R2は、炭素数1~10のアルキル基を表し、当該アルキル基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、およびこれらの組み合わせからなる群より選ばれる1以上の基が介在していてもよい(ただし、-O-および-S-がそれぞれ2以上隣接して介在する場合を除く。)。)
〔12〕 前記無機微粒子が、金属酸化物微粒子又は6ホウ化物微粒子の一方又は両方である、〔2〕記載の断熱部材。
〔13〕 前記無機微粒子を含む樹脂層が、ポリビニルブチラール又はエチレン-酢酸ビニル共重合体を含む、〔2〕又は〔12〕記載の断熱部材。
〔14〕 2枚のガラス板を備え、
前記2枚のガラス板の間に、〔1〕~〔13〕のいずれか一項に記載の断熱部材を備える、断熱合わせガラス。
〔15〕 2枚のガラス板を備え、
前記2枚のガラス板の間に、800nm~2500nmの波長領域において入射光の40%以上を反射する帯域を300nm以上の波長幅で有するようにコレステリック規則性が調整された少なくとも1層のコレステリック樹脂層と、無機微粒子を含む樹脂層と、顔料を含むバインダー層とを備え、
前記コレステリック樹脂層のうち少なくとも1層が、前記無機微粒子を含む樹脂層と赤外線源との間に位置する、断熱合わせガラス物品。
本発明の断熱合わせガラスによれば、可視光線透過率が高く、赤外線を効果的に遮断でき、且つ、高い自由度で着色できる断熱合わせガラスを実現できる。
本発明の断熱合わせガラス物品によれば、可視光線透過率が高く、赤外線を効果的に遮断でき、且つ、高い自由度で着色できる断熱合わせガラス物品を実現できる。
なお、本明細書において、特に断らない限り、可視領域とは波長400nm~750nmの波長領域のことをいい、赤外領域とは可視領域の上限よりも長波長の波長領域のことをいい、近赤外領域とは波長800nm~1300nmの波長領域のことをいう。
本発明の断熱部材は、少なくとも、800nm~2500nmの波長領域において入射光の40%以上を反射する帯域を300nm以上の波長幅で有するようにコレステリック規則性が調整されたコレステリック樹脂層(以下、適宜「調整コレステリック樹脂層」という。)と、顔料を含むバインダー層(以下、適宜「着色バインダー層」という。)とを備える。また、本発明の断熱部材は、通常は無機微粒子を含む樹脂層(以下、適宜「微粒子含有樹脂層」という。)を備える。本発明の断熱部材は通常はシート状又はフィルム状の部材であり、赤外線を効果的に遮断することにより断熱作用を発揮できるようになっている。
本発明の断熱部材は、通常、断熱合わせガラスの中間膜として用いられる。具体的には、本発明の断熱部材は少なくとも一対のガラス板の間に挟みこまれて、断熱合わせガラスを構成するようになっている。
調整コレステリック樹脂層は、前記のように、800nm~2500nmの波長領域において、入射光の40%以上を反射する帯域を300nm以上の波長幅で有するようにコレステリック規則性が調整されたコレステリック樹脂層のことをいう。
式(B):no×p×cosθ≦λ≦ne×p×cosθ
方法(a):液晶ポリマー、並びに、必要に応じてカイラル剤、界面活性剤及び配向調整剤等を溶剤に溶解させた液晶組成物(以下、適宜「液晶ポリマー溶液」という。)を用意する。用意した液晶ポリマー溶液を基材上に膜状に塗布し、乾燥させる。この際、得られた塗膜について、800nm~2500nmの波長領域において、入射光の40%以上を反射する帯域を300nm以上の帯域幅で有するようにコレステリック規則性が調整されるようにする。
方法(b):重合性液晶化合物、重合開始剤及びカイラル剤、並びに、必要に応じて界面活性剤及び配向調整剤等を溶剤に溶解させた液晶組成物(以下、適宜「重合性液晶組成物」という。)を用意する。用意した重合性液晶組成物を基材上に膜状に塗布し、乾燥させる。得られた塗膜において重合をした後、800nm~2500nmの波長領域において、入射光の40%以上を反射する帯域を300nm以上の帯域幅で有するようにコレステリック規則性を調整する。
以下、前記の方法(a)及び方法(b)について、それぞれ説明する。
方法(a)では、まず、液晶ポリマー、並びに、必要に応じてカイラル剤、界面活性剤及び配向調整剤等を溶剤に溶解させて液晶組成物として液晶ポリマー溶液を用意する。
方法(a)で液晶化合物として用いる液晶ポリマーとしては、例えば、低分子カイラル剤含有のネマチック液晶ポリマー;カイラル成分導入の液晶ポリマー;ネマチック液晶ポリマーとコレステリック液晶ポリマーとの混合物;等が挙げられる。カイラル成分導入の液晶ポリマーとは、それ自体がカイラル剤の機能を果たす液晶ポリマーである。ネマチック液晶ポリマーとコレステリック液晶ポリマーとの混合物は、それらの混合比率を変えることによって、ネマチック液晶ポリマーのカイラル構造のピッチを調整することができるものである。
なお、液晶ポリマーは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
液晶ポリマーにカイラル成分として導入したり、必要に応じて液晶ポリマー溶液に含有させたりするカイラル剤としては、従来公知のものを使用することができる。例えば、特開平6-281814号公報に記載されたカイラルモノマー、特開平8-209127号公報に記載されたカイラル剤、特開2003-131187号公報に記載の光反応型カイラル化合物等が挙げられる。
具体的なカイラル剤の種類及び量は、製造される調整コレステリック樹脂層が所望の光学特性を有するように設定しうる。
方法(a)では、用意した液晶ポリマー溶液を基材上に膜状に塗布し、乾燥させて、塗膜として調整コレステリック樹脂層を得る。
基材としては、有機、無機を問わず使用することができるが、透明基材が好ましい。ここで透明とは、1mm厚で全光線透過率が80%以上であることをいう。
配向膜は、例えば、ポリイミド、ポリビニルアルコール、ポリエステル、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、ポリアミドなどのポリマーを含有するものである。配向膜は、このようなポリマーを含有する溶液(配向膜用組成物)を基材上に膜状に塗布し、乾燥させ、そして一方向にラビング処理等することで、得られる。なお、配向膜の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
配向膜の厚みは、通常0.01μm以上、好ましくは0.05μm以上であり、通常5μm以下、好ましくは1μm以下である。
また、ラビング処理する方法以外に、配向膜の表面に偏光紫外線を照射する方法によっても、配向膜にコレステリック規則性を持つコレステリック樹脂層を面内で一方向に配向規制する機能を持たせることができる。
方法(b)では、まず、重合性液晶化合物、重合開始剤及びカイラル剤、並びに、必要に応じて界面活性剤及び配向調整剤等を溶剤に溶解させた液晶組成物として重合性液晶組成物を用意する。
方法(b)で液晶化合物として用いる重合性液晶化合物としては、例えば、特開平11-130729号公報、特開平8-104870号公報、特開2005-309255号公報、特開2005-263789号公報、特表2001-519317号公報、特表2002-533742号公報、特開2002-308832号公報、特開2002-265421号公報、特開昭62-070406号公報、特開平11-100575号公報、特開2008-291218号公報、特開2008-242349号公報、国際公開第2009/133290号、特願2008-170835号等に記載のものを用いることができる。
また、nはそれぞれ独立に2~12の整数を表し、6であるのが好ましい。
以上より、前記式(1)で表される化合物は、下記式(2)で表される化合物であることが好ましい。なお、下記式(2)においてR2は、上で述べた、式(1)におけるR2と同様である。
前記式(1)で表される化合物は、有機合成化学における公知の方法を組み合わせることによって、例えば、特開2008-291218号公報に記載の方法により製造することができる。
方法(b)では、重合性液晶化合物を重合し、そうして得られる重合体(液晶性高分子、液晶ポリマー)を含む樹脂の層として調整コレステリック樹脂層を形成する。重合性液晶化合物を重合して得られる重合体としては、重合性液晶化合物を単独重合させた単独重合体、2種類以上の重合性液晶化合物の共重合体、重合性液晶化合物と他の共重合可能な単量体(即ち重合性液晶化合物以外の単量体であって、重合性液晶化合物と共重合しうる単量体)との共重合体などが挙げられる。
重合性液晶組成物に含有させる重合開始剤としては、熱重合開始剤、光重合開始剤のいずれを用いてもよい。中でも、より容易且つ効率よくコレステリック規則性が調整された調整コレステリック樹脂層が得られることから、光重合開始剤が好ましい。
なお、重合開始剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
重合性液晶組成物に含有させるカイラル剤としては、例えば、特開2003-66214号公報、特開2003-313187号公報、米国特許第6468444号明細書、国際公開第98/00428号パンフレット等に掲載されたものを適宜使用することができる。中でも、液晶化合物を捩じる効率を表す指標であるHTPの大きなものが経済性の観点から好ましい。また、カイラル剤は、所望するコレステリック規則性を有する液晶層が形成できれば、液晶性を示しても示さなくてもよい。なお、カイラル剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
重合性液晶組成物には、必要に応じて、界面活性剤を含有させてもよい。界面活性剤は、重合性液晶組成物の塗膜の表面張力を調整するために用いられる。界面活性剤としては、ノニオン系の界面活性剤が好ましく、分子量が数千程度のオリゴマーであることが好ましい。なお、界面活性剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
重合性液晶組成物に用いる溶剤としては、例えば、ケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、およびエーテル類などの有機溶媒が挙げられる。これらの中でも、環境への負荷を考慮した場合にはケトン類が好ましい。なお、溶剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
方法(b)では、用意した重合性液晶組成物を基材上に膜状に塗布し、乾燥させて塗膜を得る。方法(b)に用いる基材、塗布方法及び乾燥方法は、方法(a)と同様としうる。
方法(b)では、重合性液晶組成物を塗布及び乾燥させて得られた塗膜において、重合性液晶化合物及び共重合可能な単量体等の重合成分を重合させた後、膜のコレステリック規則性を調整し、調整コレステリック樹脂層を得る。前記の重合及びコレステリック規則性の調整は、国際公開第2008/007782号に開示されている方法と同様に行うことが好ましい。
前記の塗膜は光重合開始剤を含有する重合性液晶組成物を用いて形成された光重合性塗膜であるので、選択紫外線の照射により塗膜内で重合反応ないし架橋反応が進行する。
選択紫外線の照射により、塗膜の中の液晶の架橋度を膜の厚み方向に異ならせることが可能となり、入射光の40%以上を反射する帯域が200nm以上の帯域幅を有するように、コレステリック規則性を調整することが容易となる。
光源としては、例えば、水銀ランプ光源、メタルハライドランプ光源等を用いることができる。
前記波長範囲の制御は、例えば、中心波長365nmのバンドパスフィルターを用いる方法、塗膜に含まれる重合開始剤が最大の吸収を示す波長を中心とした、波長範囲の幅を100nm以内とする方法等が挙げられる。
本硬化紫外線の照射方向は、塗膜側と基材側のどちらからでも良いが、紫外線の照射効率が良い点から、塗膜側から照射することが好ましい。
また、前記の塗膜形成装置に用いられる冷却手段は、例えば、冷却ゾーン装置、冷却ロール等により構成することができ、冷却ゾーン装置により構成することが好ましい。当該冷却手段は、基材の搬送経路の一部分を囲み、その中の温度を、液晶組成物の硬化に適した一定の温度に保つ装置としてもよい。また、前記の冷却手段すべてを、選択紫外線照射装置および本硬化紫外線照射装置それぞれよりも前に備えることが好ましく、選択紫外線照射装置および本硬化紫外線照射装置それぞれの直前に備えることがより好ましい。
着色バインダー層は、前記のように、顔料を含むバインダー層のことをいう。ここで「バインダー層」とは、本発明の断熱部材を構成する層同士を貼り合わせたり、本発明の断熱部材を別の部材に貼り付けたりするためのバインダーで形成された層である。また、「バインダー」とは広義の接着剤のことを意味し、硬化によって常温下でタックを失う狭義の接着剤(ホットメルト接着剤、UV硬化型粘着剤、EB型硬化粘着剤等を含む。)と、タックを失わない粘着剤(感圧接着剤等)との両方を包含する。
また、顔料をバインダー層以外の層に含ませることも可能であるが、バインダー層に顔料を含ませることにより、本発明の断熱部材を薄型化することが可能となる。
熱可塑性樹脂系のバインダーとしては、例えば、酢酸ビニル系、ポリビニルアルコール系、ポリビニルアセタール系、塩化ビニル系、アクリル系、ポリアミド系、ポリエチレン系、セルロース系のものなどが挙げられる。中でも、アクリル系バインダーが好ましい。アクリル系バインダーにおける主成分としては、アクリル酸エチル、アクリル酸ブチル、アクリル酸-2-エチルヘキシル等と、メタクリル酸エステル、スチレン、アクリロニトリル、酢酸ビニル等との共重合体が、好適である。
これらバインダーは、その使用形態としてフィルム、水溶液、エマルジョン等であってもよい。
有機顔料の例を挙げると、アゾ系顔料、フタロシアニン系顔料、縮合多環顔料などが挙げられる。アゾ系顔料としては、例えば、C.I.ピグメントレッド220、C.I.ピグメントレッド144、C.I.ピグメントレッド214、C.I.ピグメントレッド221等の縮合アゾ顔料などが挙げられる。フタロシアニン系顔料としては、例えば、C.I.ピグメントブルー15:1、C.I.ピグメントブルー15:2、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:4、C.I.ピグメントブルー15:6等の銅フタロシアニン顔料などが挙げられる。縮合多環顔料としては、例えば、C.I.ピグメントレッド177、C.I.ピグメントブルー60等のアントラキノン系顔料;C.I.ピグメントレッド123等のペリレン系顔料;C.I.ピグメントオレンジ43等のペリノン系顔料;C.I.ピグメントレッド202、C.I.ピグメントレッド122、C.I.ピグメントレッド282、C.I.ピグメントバイオレット19等のキナクリドン系顔料;C.I.ピグメントバイオレット23、C.I.ピグメントバイオレット37等のジオキサジン系顔料;C.I.ピグメントイエロー109等のイソインドリノン系顔料;C.I.ピグメントオレンジ66等のイソインドリン系顔料;C.I.ピグメントイエロー138等のキノフタロン系顔料;C.I.ピグメントレッド88等のインジゴ系顔料;C.I.ピグメントグリーン8等の金属錯体顔料;C.I.ピグメントレッド254、C.I.ピグメントレッド255、C.I.ピグメントレッド264等のジケトピロロピロール系顔料などが挙げられる。中でも、アゾ系顔料、キナクリドン系顔料、ジケトピロロール系顔料、アントラキノン系顔料、ジオキサジン系顔料、フタロシアニン系顔料からなる群より選ばれる1種類以上の顔料が好ましい。
なお、顔料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
紫外線吸収剤の例として、サリチル酸系、ベンゾフェノン系、ベンゾトリアゾール系等が挙げられる。具体的には、サリチル酸系紫外線吸収剤としては、例えば、フェニルサリシレート、p-t-ブチルフェニルサリシレート、p-オクチルフェニルサリシレートが挙げられる。ベンゾフェノン系紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-ドデシルオキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノンが挙げられる。ベンゾトリアゾール系紫外線吸収剤としては、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-アミルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-(3’’,4’’,5’’,6’’-テトラヒドロフタルイミドメチル)-5’-メチルフェニル)ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2(2’-ヒドロキシ-5’-メタクリロキシフェニル)-2H-ベンゾトリアゾールが挙げられる。なお、紫外線吸収剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。これら紫外線吸収剤の含有量は、バインダー層の厚みによるが、バインダー100重量部に対して、通常0.05重量部以上、好ましくは0.1重量部以上であり、通常30重量部以下、好ましくは20重量部以下の範囲で用いる。
微粒子含有樹脂層は、前記のように、無機微粒子を含む樹脂層のことをいう。本発明の断熱部材が樹脂層を備えることにより、本発明の断熱部材の強度を高めて破損し難くできる。また、例え破損した場合でも破片が飛散し難くなるため、安全性を高めることもできる。破片を飛散し難くできる点は、後述するように本発明の断熱部材を断熱合わせガラスに適用した場合に、特に有用である。
なお、樹脂は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
無機微粒子は、調整コレステリック樹脂層が入射光の40%以上を反射する帯域よりも長波長に吸収ピークを有することが好ましい。これにより、可視領域に近い波長領域(主に近赤外領域)の赤外線は調整コレステリック樹脂層で反射し、それよりも長い波長領域(主に中赤外領域及び遠赤外領域)の赤外線は無機微粒子で吸収することで、近赤外線、中赤外線及び遠赤外線を含む赤外線全体を遮断できるようになるので、断熱作用をより効果的に発揮できる。この際、可視領域から遠い長波長の波長領域に吸収ピークを有する無機微粒子は、可視領域に吸収を持たないか、吸収するとしても吸収の程度が小さいため、微粒子含有樹脂層に多く含ませた場合でも、本発明の断熱部材の可視光線透過率を低下させ難い。
本発明の断熱部材が同一の捩れ方向及びコレステリック規則性を有する少なくとも2層の調整コレステリック樹脂層を備える場合、本発明の断熱部材は、前記の2層の調整コレステリック樹脂層の間にネマチック樹脂層を備えることが好ましい。ここで「ネマチック樹脂層」とは、ネマチック規則性を有する樹脂層をいい、通常はネマチック液晶を重合又は架橋させることにより硬化させて得られる。ネマチック樹脂層は通常は正面レターデーションを発現する位相差層となる。このため、本発明の断熱部材に入射した赤外線の右円偏光及び左円偏光のうちの一方を第一の調整コレステリック樹脂層で反射し、その後、ネマチック樹脂層において赤外線の偏光状態を変換し、第二の調整コレステリック樹脂層で更に反射できる。これにより、右円偏光及び左円偏光のうちの片方だけを反射する場合と比較して、入射光の40%以上を反射する帯域の帯域幅を広げたり、入射する赤外線の50%以上の反射率を実現したりすることが可能となる。
これらの他の成分は、所望の光学的性能を著しく低下させない範囲で含有させることができる。
本発明の断熱部材は、上述した調整コレステリック樹脂層、着色バインダー層、微粒子含有樹脂層及びネマチック樹脂層以外の構成要素を備えていてもよい。
本発明の断熱部材は、例えば、調整コレステリック樹脂層以外のコレステリック樹脂層、顔料を含まないバインダー層、無機微粒子を含まない樹脂層、並びに、コレステリック樹脂層又はネマチック樹脂層の製造に用いた基材及び配向膜などを備えていてもよい。また、保存及び運搬時に本発明の断熱部材が傷つくことを防止する観点から、剥離可能な保護フィルムを備えていてもよい。
本発明の断熱部材は、イエローリンデックスが、通常2.0以下、好ましくは1.8以下、より好ましくは1.6以下である。また、前記イエローインデックスの下限に制限は無いが、通常-10以上である。本発明の断熱部材は、従来のように赤外線を吸収する粒子ではなく調整コレステリック樹脂層によって近赤外線を遮断するようにしたため、黄色の着色の原因となる粒子の量を減らすことができ、前記のような低いイエローインデックス値を実現できる。
なお、イエローインデックス(YI)は、紫外可視近赤外分光光度計を用いて波長380nm~780nmの透過スペクトルを測定し、下記式から求められる。
YI=100(1.28X-1.06Z)/Y
式中、X、Y、Zは国際照明委員会で定めた3刺激値である。
なお、可視光線透過率は、JIS R3106に記載された方法により測定できる。
なお、日射透過率は、JIS R3106に規定された方法により測定できる。
本発明の断熱合わせガラスは、少なくとも2枚のガラス板を備え、その2枚のガラス板の間に、本発明の断熱部材を備える。すなわち、本発明の断熱合わせガラスは、ガラス板、本発明の断熱部材及びガラス板をこの順に備え、本発明の断熱部材が合わせガラスの中間膜として機能するようになっている。
さらに、本発明の断熱合わせガラスは、ガラス板を少なくとも2枚備え、例えば3枚以上のガラス板を備えていてもよい。
また、本発明の断熱部材の可視光線透過率が高いため、それを備える本発明の断熱合わせガラスも可視光線透過率を高くすることができる。
さらに、本発明の断熱部材が高い可視光線透過率と低い日射透過率とを維持しながら高い自由度で着色可能であるため、それを備える本発明の断熱合わせガラスも、前記の優れた性能を損なうことなく高い自由度で着色可能である。したがって、本発明の断熱合わせガラスは、赤外線を遮断する効果を有する従来の合わせガラスでは実現困難であった色にも着色可能であり、例えば無彩色(ニュートラルグレー)に着色できる点ではその利点が顕著である。
以下、図面を示して本発明の断熱合わせガラスの実施形態について説明する。
図1は本発明の第一実施形態に係る断熱合わせガラス1の層構成を模式的に示す断面図である。図1に示すように、断熱合わせガラス1は、第一のガラス板11、無機微粒子を含まない樹脂層21、調整コレステリック樹脂層31、着色バインダー層41及び第二のガラス板12を、この順に備える。
このような断熱合わせガラス1によれば、調整コレステリック樹脂層31が赤外線を反射するため、赤外線の透過率を下げ、ひいては日射透過率を下げることができる。また、調整コレステリック樹脂層31は赤外領域の光を選択的に反射し、可視光線を遮る作用は小さいため、断熱合わせガラス1によれば可視光線透過率を高く維持することができる。また、着色バインダー層41が顔料を含むため、断熱合わせガラス1を所望の色に着色することができる。さらに、調整コレステリック樹脂層31は可視光線を遮る作用は小さいため、顔料の種類及び量を高い自由度で設定することが可能である。
図2は本発明の第二実施形態に係る断熱合わせガラス2の層構成を模式的に示す断面図である。図2に示すように、断熱合わせガラス2は、第一のガラス板11、着色バインダー層41、調整コレステリック樹脂層31、微粒子含有樹脂層22及び第二のガラス板12を、この順に備える。
このような断熱合わせガラス2によれば、第一実施形態に係る断熱合わせガラス1と同様の効果が得られる。さらに、微粒子含有樹脂層22に含まれる無機微粒子により赤外線を吸収できるため、赤外線の透過率を更に下げることができる。
図3は本発明の第三実施形態に係る断熱合わせガラス3の層構成を模式的に示す断面図である。図3に示すように、断熱合わせガラス3は、第一のガラス板11、顔料を含まないバインダー層42、第一の調整コレステリック樹脂層31、着色バインダー層41、第二の調整コレステリック樹脂層32、微粒子含有樹脂層22及び第二のガラス板12を、この順に備える。
このような断熱合わせガラス3によれば、第二実施形態に係る断熱合わせガラス2と同様の効果が得られる。また、断熱合わせガラス3は調整コレステリック樹脂層31,32を2層備えているため、赤外線の透過率を更に下げることができる。この際、第一の調整コレステリック樹脂層31と第二の調整コレステリック樹脂層32を、その捩れ方向が異なるようにすれば、調整コレステリック樹脂層31,32により右円偏光及び左円偏光の両方の円偏光を反射できるため、特に効果的に赤外線の透過率を下げることができる。
図4は本発明の第四実施形態に係る断熱合わせガラス4の層構成を模式的に示す断面図である。図4に示すように、断熱合わせガラス4は、第一のガラス板11、顔料を含まないバインダー層42、第一の調整コレステリック樹脂層31、ネマチック樹脂層51、着色バインダー層41、第二の調整コレステリック樹脂層32、微粒子含有樹脂層22及び第二のガラス板12を、この順に備える。
このような断熱合わせガラス4によれば、第二実施形態に係る断熱合わせガラス2と同様の効果が得られる。また、断熱合わせガラス4は調整コレステリック樹脂層31,32を2層備えているため、赤外線の透過率を更に下げることができる。この際、第一の調整コレステリック樹脂層31と第二の調整コレステリック樹脂層32を、その捩れ方向が同一になるようにすれば、調整コレステリック樹脂層31,32により更に多くの偏光を反射できるため、効果的に赤外線の透過率を下げることができる。特に、ネマチック樹脂層51により調整コレステリック樹脂層31,32の選択反射帯域の光に略1/2波長の正面レターデーションを与えることができる場合には、右円偏光及び左円偏光の両方の円偏光を反射できるため、特に効果が顕著である。
図5は本発明の第五実施形態に係る断熱合わせガラス5の層構成を模式的に示す断面図である。図5に示すように、断熱合わせガラス5は、第一のガラス板11、顔料を含まないバインダー層42、第一の調整コレステリック樹脂層31、ネマチック樹脂層51、着色バインダー層41、第二の調整コレステリック樹脂層32、顔料を含まないバインダー層43、無機微粒子を含まない樹脂層21、微粒子含有樹脂層22及び第二のガラス板12を、この順に備える。
このような断熱合わせガラス5によれば、第四実施形態に係る断熱合わせガラス4と同様の効果が得られる。
図6は本発明の第六実施形態に係る断熱合わせガラス6の層構成を模式的に示す断面図である。図6に示すように、断熱合わせガラス6は、第一のガラス板11、顔料を含まないバインダー層42、第一の調整コレステリック樹脂層31、第一の調整コレステリック樹脂層31の製造に用いた配向膜61、ネマチック樹脂層51、着色バインダー層41、第二の調整コレステリック樹脂層32、顔料を含まないバインダー層43、無機微粒子を含まない樹脂層21、微粒子含有樹脂層22及び第二のガラス板12を、この順に備える。
このような断熱合わせガラス6によれば、第四実施形態に係る断熱合わせガラス4と同様の効果が得られる。
なお、本発明の断熱合わせガラスの構成は上述した第一~第六実施形態で説明した構成に限定されるものではない。
また、第一~第六実施形態で説明した断熱合わせガラス1~6から第一及び第二のガラス板11,12を除いた構成の部材は、本発明の断熱部材に該当する。このように本発明の断熱部材は通常はガラス板と組み合わせて断熱合わせガラスの中間膜として用いるが、ガラス板以外の部材と組み合わせて使用しても良い。
なお、以下の実施例において、「Me」はメチル基を表し、「Et」はエチル基を表す。
表1に示す配合割合で使用材料の各成分を混合し、固形分約40重量%の重合性液晶組成物Aを調製した。
表1に示す界面活性剤としては、ネオス社製のフタージェント209Fを用いた。
表1に示す光重合開始剤としては、チバジャパン社製のイルガキュアOXE02を用いた。
フィルムAを偏光顕微鏡で観察したところ、配向欠陥は皆無であり、ヘイズのない透明なコレステリック樹脂層が形成されていることが確認できた。
表2に示す配合割合で使用材料の各成分を混合し、ネマチック液晶組成物Cを調製した。
表2において、重合性液晶化合物(3)としては、BASF社製のパリオカラーLC242(屈折率異方性Δn=0.14)を用いた。
フィルムCを偏光顕微鏡で観察したところ、配向欠陥は皆無であり、ヘイズのない透明なネマチック樹脂層が形成されていることが確認できた。なお、コレステリック樹脂層の空気界面側のダイレクターが揃っていたために、特別な配向処理を施すことなく配向欠陥のないネマチック規則性が得られたものと考えられる。
顔料(商品名「クロモフタールVioletB」、チバジャパン社)を0.0045重量部、顔料(商品名「クロモフタールBlueA3R」、チバジャパン社)を0.0055重量部、及び、酢酸エチルを10重量部混合し、30分間超音波処理した後、粘着剤(商品名「SKダイン2094」、綜研化学社)5重量部および硬化剤(商品名「E-AX」、綜研化学社)0.014重量部を加えて攪拌し、バインダー組成物を調製した。
また、同様の要領で、フィルムEのネマチック樹脂層とフィルムBのコレステリック樹脂層とをバインダー層を介して貼り合わせてフィルムJを得た。
さらに、バインダー組成物を♯100のバーを使用して、フィルムAのコレステリック樹脂層上に塗布し、100℃で1分間乾燥して、バインダー層を形成した。得られたフィルムをフィルムKとする。
スズドープ酸化インジウム(メジアン径60μm)を1重量%の濃度で分散した厚み0.7mmのポリビニルブチラールシートとフィルムHとを150℃で2分間貼り合せ処理をして、断熱部材を得た。
得られた断熱部材の目視による色調は青紫で、ヘイズのないものであった。
得られた断熱部材について、紫外可視近赤外分光光度計(日本分光社製、V-570)を用いて波長300nm~2100nmの透過スペクトルと反射スペクトルを測定し、イエローインデックス並びに色相a*及びb*を測定した。外観は無彩色(ニュートラルグレー)だった。さらにJIS R3106に従って可視光線透過率と日射透過率を測定した。結果を表3に示す。
フィルムHの代わりにフィルムIを用いたこと以外は実施例1と同様にして、断熱部材を得た。得られた断熱部材について、実施例1と同様にしてイエローインデックス、色相a*及びb*、可視光線透過率並びに日射透過率を測定した。結果を表3に示す。
スズドープ酸化インジウムをアンチモンドープ酸化スズ(メジアン径60μm)に代えたこと以外は実施例2と同様にして、断熱部材を得た。得られた断熱部材について、実施例1と同様にしてイエローインデックス、色相a*及びb*、可視光線透過率並びに日射透過率を測定した。結果を表3に示す。
フィルムHの代わりにフィルムJを用いたこと以外は実施例1と同様にして、断熱部材を得た。得られた断熱部材について、実施例1と同様にしてイエローインデックス、色相a*及びb*、可視光線透過率並びに日射透過率を測定した。結果を表3に示す。
スズドープ酸化インジウムをアンチモンドープ酸化スズに代えたこと以外は実施例4と同様にして、断熱部材を得た。得られた断熱部材について、実施例1と同様にしてイエローインデックス、色相a*及びb*、可視光線透過率並びに日射透過率を測定した。結果を表3に示す。
フィルムHの代わりにフィルムKを用いたこと以外は実施例1と同様にして、断熱部材を得た。得られた断熱部材について、実施例1と同様にしてイエローインデックス、色相a*及びb*、可視光線透過率並びに日射透過率を測定した。結果を表3に示す。
実施例2において、表4に示すように使用するワイヤーバーを使い分けてネマチック液晶組成物の膜厚を変えて塗布したこと以外は同様にして断熱部材を作製した。すなわち、表4に示すように使用するワイヤーバーを使い分けることにより、ネマチック液晶組成物Cの乾燥膜厚を変えて塗布したこと以外はフィルムDと同様のフィルムを作製し、そうして得られたフィルムをフィルムDの代わりに用いたこと以外はフィルムIと同様のフィルムを作製し、そのフィルムをフィルムIの代わりに用いたこと以外は実施例2と同様にして断熱部材を製造した。
さらに、ネマチック樹脂層の正面レターデーションReを、ネマチック樹脂層の屈折率異方性Δn0.14とネマチック樹脂層の厚み(nm)を乗じて求め、表4に示す。
実施例2で作製した断熱部材のスズドープ酸化インジウムを含むポリビニルブチラールシート側に、厚さ2.76mmのグリーンガラスを配置した。また、その反対側にはポリビニルブチラールシートおよびグリーンガラスをこの順に配置した。その後、150℃で30分間加熱して、断熱合せガラスを作製した。
本発明の断熱合わせガラスは、例えば、車両用又は建造物用の窓材、透光性の壁材、透明容器等として用いて好適である。
11,12 ガラス板
21 無機微粒子を含まない樹脂層
22 微粒子含有樹脂層
31 調製コレステリック樹脂層
32 調製コレステリック樹脂層
41 着色バインダー層
42,43 顔料を含まないバインダー層
51 ネマチック樹脂層
61 配向膜
Claims (15)
- 800nm~2500nmの波長領域において入射光の40%以上を反射する帯域を300nm以上の波長幅で有するようにコレステリック規則性が調整された少なくとも1層のコレステリック樹脂層と、
顔料を含むバインダー層とを備え、
イエローインデックスが2.0以下である、断熱部材。 - 無機微粒子を含む樹脂層を備える、請求項1記載の断熱部材。
- 可視光線透過率が60%以上で、且つ、日射透過率が60%以下である、請求項1記載の断熱部材。
- 同一の捩れ方向及びコレステリック規則性を有する2層の前記コレステリック樹脂層を備え、
前記2層のコレステリック樹脂層の間にネマチック樹脂層を備える、請求項1記載の断熱部材。 - 前記ネマチック樹脂層の波長550nmにおける正面レターデーションが400nm以上800nm以下である、請求項4記載の断熱部材。
- 前記顔料が、アゾ系顔料、キナクリドン系顔料、ジケトピロロール系顔料、アントラキノン系顔料、ジオキサジン系顔料、フタロシアニン系顔料からなる群より選ばれる1種類以上の顔料である、請求項1記載の断熱部材。
- 前記コレステリック樹脂層が、屈折率異方性Δnが0.21以上の液晶化合物を含む液晶組成物を硬化してなる樹脂層である、請求項1記載の断熱部材。
- 前記コレステリック樹脂層が、式(1)で表される化合物を含有する液晶組成物から形成されたものである、請求項1記載の断熱部材。
R1は、水素原子、ハロゲン原子、炭素数1~10のアルキル基、-OR3、-O-C(=O)-R3、および-C(=O)-OR3からなる群より選ばれるいずれかを表す。ここで、R3は、水素原子又は置換基を有してもよい炭素数1~10のアルキル基を表す。R3がアルキル基である場合、当該アルキル基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR4-C(=O)-、-C(=O)-NR4-、-NR4-、-C(=O)-、およびこれらの組み合わせからなる群より選ばれる1以上の基が介在していてもよい(ただし、-O-及び-S-がそれぞれ2以上隣接して介在する場合を除く。)。ここで、R4は、水素原子または炭素数1~6のアルキル基を表す。
nは、それぞれ独立に、2~12の整数を表す。) - 前記ネマチック樹脂層が、式(1)で表される化合物を含有する液晶組成物から形成された、請求項4記載の断熱部材。
R1は、水素原子、ハロゲン原子、炭素数1~10のアルキル基、-OR3、-O-C(=O)-R3、および-C(=O)-OR3からなる群より選ばれるいずれかを表す。ここで、R3は、水素原子又は置換基を有してもよい炭素数1~10のアルキル基を表す。R3がアルキル基である場合、当該アルキル基には、-O-、-S-、-O-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-NR4-C(=O)-、-C(=O)-NR4-、-NR4-、-C(=O)-、およびこれらの組み合わせからなる群より選ばれる1以上の基が介在していてもよい(ただし、-O-及び-S-がそれぞれ2以上隣接して介在する場合を除く。)。ここで、R4は、水素原子または炭素数1~6のアルキル基を表す。
nは、それぞれ独立に、2~12の整数を表す。) - 前記無機微粒子が、金属酸化物微粒子又は6ホウ化物微粒子の一方又は両方である、請求項2記載の断熱部材。
- 前記無機微粒子を含む樹脂層が、ポリビニルブチラール又はエチレン-酢酸ビニル共重合体を含む、請求項2記載の断熱部材。
- 2枚のガラス板を備え、
前記2枚のガラス板の間に、請求項1~13のいずれか一項に記載の断熱部材を備える、断熱合わせガラス。 - 2枚のガラス板を備え、
前記2枚のガラス板の間に、800nm~2500nmの波長領域において入射光の40%以上を反射する帯域を300nm以上の波長幅で有するようにコレステリック規則性が調整された少なくとも1層のコレステリック樹脂層と、無機微粒子を含む樹脂層と、顔料を含むバインダー層とを備え、
前記コレステリック樹脂層のうち少なくとも1層が、前記無機微粒子を含む樹脂層と赤外線源との間に位置する、断熱合わせガラス物品。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012504406A JP5803903B2 (ja) | 2010-03-09 | 2011-02-24 | 断熱部材、断熱合わせガラス及び断熱合わせガラス物品 |
US13/582,915 US8895151B2 (en) | 2010-03-09 | 2011-02-24 | Heat insulating member, heat insulating laminated glass, and heat insulating laminated glass article |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010052002 | 2010-03-09 | ||
JP2010-052002 | 2010-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011111548A1 true WO2011111548A1 (ja) | 2011-09-15 |
Family
ID=44563356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/054180 WO2011111548A1 (ja) | 2010-03-09 | 2011-02-24 | 断熱部材、断熱合わせガラス及び断熱合わせガラス物品 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8895151B2 (ja) |
JP (1) | JP5803903B2 (ja) |
WO (1) | WO2011111548A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013072985A (ja) * | 2011-09-27 | 2013-04-22 | Fujifilm Corp | 赤外光反射層及び赤外光反射板並びにガラス用積層中間膜シート及び合わせガラスとそれらの製造方法 |
WO2014010532A1 (ja) * | 2012-07-10 | 2014-01-16 | コニカミノルタ株式会社 | 誘電多層膜構造を有する赤外遮蔽フィルム |
WO2014061279A1 (ja) | 2012-10-19 | 2014-04-24 | 日本化薬株式会社 | 熱線遮蔽シート |
WO2019009252A1 (ja) * | 2017-07-04 | 2019-01-10 | 富士フイルム株式会社 | ハーフミラー |
WO2023054013A1 (ja) * | 2021-09-28 | 2023-04-06 | 日東電工株式会社 | 高分子分散型液晶フィルム、高分子分散型液晶フィルムの製造方法および高分子分散型液晶形成用組成物 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2013348226A1 (en) * | 2012-11-21 | 2015-07-09 | Nexeon Energy Solutions LLC | Energy-efficient film |
JP2014231467A (ja) * | 2013-05-30 | 2014-12-11 | 日本化薬株式会社 | 赤外線反射フィルムおよびこれを用いた合わせガラス |
WO2017018468A1 (ja) * | 2015-07-28 | 2017-02-02 | 日本ゼオン株式会社 | コレステリック樹脂積層体、製造方法及び用途 |
EP4312066A3 (en) * | 2017-09-07 | 2024-04-17 | FUJIFILM Corporation | One-way mirror film for displaying projected images, laminated glass for displaying projected images, and image display system |
TWI668256B (zh) * | 2018-09-03 | 2019-08-11 | 清豐企業股份有限公司 | 基於保留特定波長之透光材料,其隔熱複合材料及其複合載體 |
CN114488381A (zh) * | 2022-03-18 | 2022-05-13 | 京东方科技集团股份有限公司 | 一种偏光片及其制备方法、显示模组 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008542065A (ja) * | 2005-05-26 | 2008-11-27 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | ねじれネマチック液晶を含む多層ラミネート |
JP2008545556A (ja) * | 2005-05-26 | 2008-12-18 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | ねじれネマチック液晶を含む高強度多層ラミネート |
JP2009514022A (ja) * | 2005-10-25 | 2009-04-02 | スリーエム イノベイティブ プロパティズ カンパニー | 赤外光反射性フィルム |
JP2009522399A (ja) * | 2005-12-29 | 2009-06-11 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 赤外線の透過を低減するための組成物 |
WO2011007796A1 (ja) * | 2009-07-16 | 2011-01-20 | 日本ゼオン株式会社 | 断熱部材 |
Family Cites Families (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2367661A (en) | 1941-12-31 | 1945-01-23 | Du Pont | Process of photopolymerization |
US2367670A (en) | 1941-12-31 | 1945-01-23 | Du Pont | Cementing process |
US2448828A (en) | 1946-09-04 | 1948-09-07 | Du Pont | Photopolymerization |
US2722512A (en) | 1952-10-23 | 1955-11-01 | Du Pont | Photopolymerization process |
NL108006C (ja) | 1957-05-17 | |||
US3046127A (en) | 1957-10-07 | 1962-07-24 | Du Pont | Photopolymerizable compositions, elements and processes |
US3549367A (en) | 1968-05-24 | 1970-12-22 | Du Pont | Photopolymerizable compositions containing triarylimidazolyl dimers and p-aminophenyl ketones |
US4212970A (en) | 1977-11-28 | 1980-07-15 | Fuji Photo Film Co., Ltd. | 2-Halomethyl-5-vinyl-1,3,4-oxadiazole compounds |
JPS5928328B2 (ja) | 1977-11-29 | 1984-07-12 | 富士写真フイルム株式会社 | 光重合性組成物 |
DE2831909A1 (de) | 1978-07-20 | 1980-02-07 | Basf Ag | Fluessig-kristalline polymerphase mit cholesterischer struktur, verfahren zu ihrer herstellung und ihre verwendung |
DE3337024A1 (de) | 1983-10-12 | 1985-04-25 | Hoechst Ag, 6230 Frankfurt | Lichtempfindliche, trichlormethylgruppen aufweisende verbindungen, verfahren zu ihrer herstellung und diese verbindungen enthaltendes lichtempfindliches gemisch |
JPS6270406A (ja) | 1985-09-24 | 1987-03-31 | Fuji Photo Film Co Ltd | 配向フイルムの作成方法 |
DE4240743A1 (de) | 1992-12-03 | 1994-06-09 | Consortium Elektrochem Ind | Pigmente mit vom Betrachtungswinkel abhängiger Farbigkeit, ihre Herstellung und Verwendung |
TW289095B (ja) | 1993-01-11 | 1996-10-21 | ||
US5332522A (en) | 1993-04-29 | 1994-07-26 | The University Of Rochester | Thermotropic chiral nematic liquid crystalline copolymers |
US5593617A (en) | 1994-09-12 | 1997-01-14 | Hoffmann-Laroche Inc. | Photochemically polymerizable liquid crystals |
JPH08209127A (ja) | 1995-02-02 | 1996-08-13 | Fuji Photo Film Co Ltd | 光学異方性素子、その製造方法及び液晶表示素子 |
WO1997030136A1 (en) | 1996-02-15 | 1997-08-21 | Merck Patent Gmbh | Cholesteric flakes |
WO1998000428A1 (en) | 1996-07-01 | 1998-01-08 | Merck Patent Gmbh | Chiral dopants |
US6180028B1 (en) | 1997-07-31 | 2001-01-30 | Asahi Glass Company Ltd. | Liquid-crystal composition and polymeric liquid crystal obtained by polymerizing the same |
JPH11100575A (ja) | 1997-07-31 | 1999-04-13 | Asahi Glass Co Ltd | 液晶組成物およびこれを重合した高分子液晶 |
JP2001515094A (ja) | 1997-09-02 | 2001-09-18 | ビーエーエスエフ アクチェンゲゼルシャフト | コレステリック効果層およびその製造方法 |
DE19745647A1 (de) | 1997-10-15 | 1999-04-22 | Basf Ag | Wärmeisolationsbeschichtung |
JP3948799B2 (ja) | 1997-10-27 | 2007-07-25 | 株式会社Adeka | 3官能化合物および高分子液晶 |
US6773766B2 (en) | 1998-12-22 | 2004-08-10 | Basf Aktiengesellschaft | Utilization of polymerizable liquid crystal substances for the production of optical components |
DE19859584A1 (de) | 1998-12-22 | 2000-06-29 | Basf Ag | Verwendung polymerisierbarer flüssigkristalliner Substanzen zur Herstellung optischer Bauelemente |
DE19913604A1 (de) | 1999-03-25 | 2000-09-28 | Basf Ag | Chirale Verbindungen und deren Verwendung als chirale Dotierstoffe zur Herstellung von cholesterisch-flüssigkristallinen Zusammensetzungen |
JP2001262144A (ja) * | 2000-03-16 | 2001-09-26 | Dainippon Ink & Chem Inc | 液晶干渉性微粒子及びその製造方法 |
DE10016524A1 (de) | 2000-04-03 | 2001-10-04 | Basf Ag | Polymerisierbare Flüssigkristalle |
JP4058480B2 (ja) | 2001-03-12 | 2008-03-12 | 日東電工株式会社 | 液晶性(メタ)アクリレート化合物、該化合物を含有する液晶組成物およびこれらを用いた光学フィルム |
JP4058481B2 (ja) | 2001-04-12 | 2008-03-12 | 日東電工株式会社 | 重合性液晶化合物および光学フィルム |
JP2003066214A (ja) | 2001-08-22 | 2003-03-05 | Fuji Photo Film Co Ltd | コレステリック液晶カラーフィルタの製造方法 |
JP4132779B2 (ja) | 2001-10-26 | 2008-08-13 | 富士フイルム株式会社 | 選択反射膜及びその製造方法 |
JP2003313187A (ja) | 2002-04-18 | 2003-11-06 | Fuji Photo Film Co Ltd | 光学活性イソソルビド誘導体及びその製造方法、光反応型キラル剤、液晶組成物、液晶カラーフィルター、光学フィルム及び記録媒体、並びに液晶の螺旋構造を変化させる方法、液晶の螺旋構造を固定化する方法 |
JP4507490B2 (ja) | 2002-12-26 | 2010-07-21 | チッソ株式会社 | 光重合性液晶組成物および液晶フィルム |
JP4339745B2 (ja) | 2003-08-22 | 2009-10-07 | 積水化学工業株式会社 | 合わせガラス及び合わせガラス用中間膜 |
JP4721721B2 (ja) | 2004-02-18 | 2011-07-13 | 株式会社Adeka | 重合性化合物及び該化合物を含有する重合性液晶組成物 |
JP2005309255A (ja) | 2004-04-23 | 2005-11-04 | Asahi Denka Kogyo Kk | 配向性高分子 |
US7632568B2 (en) | 2005-01-07 | 2009-12-15 | 3M Innovative Properties Company | Solar control multilayer film |
JP2007119415A (ja) | 2005-10-31 | 2007-05-17 | Adeka Corp | 縮合環を有する重合性液晶化合物並びに該重合性液晶化合物の単独重合物及び共重合物 |
JP4545095B2 (ja) | 2006-01-11 | 2010-09-15 | 株式会社Adeka | 新規重合性化合物 |
US20090269502A1 (en) | 2006-07-13 | 2009-10-29 | Zeon Corporation | Method for producing circular polarization separation sheet, and apparatus for coating layer formation |
JP4994851B2 (ja) | 2007-01-15 | 2012-08-08 | 京セラドキュメントソリューションズ株式会社 | クリーニング装置及びこれを搭載した画像形成装置 |
JP2008242349A (ja) | 2007-03-29 | 2008-10-09 | Nippon Zeon Co Ltd | 光学素子、偏光板、位相差板、照明装置、および液晶表示装置 |
JP5401822B2 (ja) | 2007-04-24 | 2014-01-29 | 日本ゼオン株式会社 | 重合性液晶化合物、重合性液晶組成物、液晶性高分子および光学異方体 |
WO2008133290A1 (ja) | 2007-04-24 | 2008-11-06 | Zeon Corporation | 重合性液晶化合物、重合性液晶組成物、液晶性高分子および光学異方体 |
TWI439537B (zh) | 2007-09-28 | 2014-06-01 | Zeon Corp | Liquid crystal compositions and their use |
FR2929616B1 (fr) | 2008-04-08 | 2011-09-09 | Total France | Procede de reticulation de compositions bitume/polymere presentant des emissions reduites d'hydrogene sulfure |
JP5729305B2 (ja) * | 2009-10-22 | 2015-06-03 | 日本ゼオン株式会社 | 断熱粒子顔料及び赤外線反射コート液 |
TWI438085B (zh) * | 2011-11-01 | 2014-05-21 | A & R & D Technology Co Ltd | 隔熱紙 |
-
2011
- 2011-02-24 WO PCT/JP2011/054180 patent/WO2011111548A1/ja active Application Filing
- 2011-02-24 US US13/582,915 patent/US8895151B2/en active Active
- 2011-02-24 JP JP2012504406A patent/JP5803903B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008542065A (ja) * | 2005-05-26 | 2008-11-27 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | ねじれネマチック液晶を含む多層ラミネート |
JP2008545556A (ja) * | 2005-05-26 | 2008-12-18 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | ねじれネマチック液晶を含む高強度多層ラミネート |
JP2009514022A (ja) * | 2005-10-25 | 2009-04-02 | スリーエム イノベイティブ プロパティズ カンパニー | 赤外光反射性フィルム |
JP2009522399A (ja) * | 2005-12-29 | 2009-06-11 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 赤外線の透過を低減するための組成物 |
WO2011007796A1 (ja) * | 2009-07-16 | 2011-01-20 | 日本ゼオン株式会社 | 断熱部材 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013072985A (ja) * | 2011-09-27 | 2013-04-22 | Fujifilm Corp | 赤外光反射層及び赤外光反射板並びにガラス用積層中間膜シート及び合わせガラスとそれらの製造方法 |
WO2014010532A1 (ja) * | 2012-07-10 | 2014-01-16 | コニカミノルタ株式会社 | 誘電多層膜構造を有する赤外遮蔽フィルム |
JPWO2014010532A1 (ja) * | 2012-07-10 | 2016-06-23 | コニカミノルタ株式会社 | 誘電多層膜構造を有する赤外遮蔽フィルム |
WO2014061279A1 (ja) | 2012-10-19 | 2014-04-24 | 日本化薬株式会社 | 熱線遮蔽シート |
WO2019009252A1 (ja) * | 2017-07-04 | 2019-01-10 | 富士フイルム株式会社 | ハーフミラー |
JPWO2019009252A1 (ja) * | 2017-07-04 | 2020-04-23 | 富士フイルム株式会社 | ハーフミラー |
US11433743B2 (en) | 2017-07-04 | 2022-09-06 | Fujifilm Corporation | Half mirror |
WO2023054013A1 (ja) * | 2021-09-28 | 2023-04-06 | 日東電工株式会社 | 高分子分散型液晶フィルム、高分子分散型液晶フィルムの製造方法および高分子分散型液晶形成用組成物 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011111548A1 (ja) | 2013-06-27 |
JP5803903B2 (ja) | 2015-11-04 |
US8895151B2 (en) | 2014-11-25 |
US20120327318A1 (en) | 2012-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5803903B2 (ja) | 断熱部材、断熱合わせガラス及び断熱合わせガラス物品 | |
JP5729305B2 (ja) | 断熱粒子顔料及び赤外線反射コート液 | |
KR101869369B1 (ko) | 광반사 필름, 및 이를 이용한 광제어 필름, 광학 필름, 기능성 유리 및 헤드업 디스플레이 | |
US10866435B2 (en) | Optical film for eyewear with light control, light reflection, and polarization layers | |
JP6530763B2 (ja) | 画像表示機能付きミラー | |
EP2899574B1 (en) | Heat ray cutting film and method for producing same, and laminated glass and heat ray cutting member | |
TWI746811B (zh) | 畫像顯示裝置 | |
EP2833172A1 (en) | Light-reflecting layer, light-reflecting plate, interlayer sheet for laminated glass, laminated glass and processes for produciton of same | |
WO2013047142A1 (ja) | 赤外光反射層及び赤外光反射板並びにガラス用積層中間膜シート及び合わせガラスとそれらの製造方法 | |
JP2010256625A (ja) | 断熱部材 | |
JP2018522274A (ja) | 反射偏光子およびこれを含むバックライトユニット | |
JP2008129483A (ja) | 色純度向上シート、光学装置、画像表示装置、液晶表示装置および太陽電池 | |
EP3441802B1 (en) | Optical film for eyewear, and optical laminate and eyewear using the optical film | |
JP2018017839A (ja) | 機能性ガラスおよびこれを用いたヘッドアップディスプレイ | |
JP6098223B2 (ja) | 機能性フィルム | |
WO2008050784A1 (fr) | Filtre optique, plaque de polarisation, dispositif d'éclairage et dispositif d'affichage à cristaux liquides | |
TWI383181B (zh) | Method for manufacturing a wide-frequency twisted layer liquid crystal film, a circularly polarizing plate, a linear polarizing element, a lighting device, and a liquid crystal display device (2) | |
WO2011007796A1 (ja) | 断熱部材 | |
WO2023080116A1 (ja) | 反射フィルム、ウインドシールドガラス、ヘッドアップディスプレイシステム及びこのヘッドアップディスプレイシステムを有する輸送機 | |
EP3410164A1 (en) | Half mirror and mirror with image display function | |
JPWO2019035358A1 (ja) | 車両用ミラー、車両用画像表示機能付きミラー | |
CN110441854B (zh) | 背光单元 | |
EP4411452A1 (en) | Head-up display system and transport |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11753208 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012504406 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13582915 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11753208 Country of ref document: EP Kind code of ref document: A1 |