WO2011111118A1 - 内燃機関の排気浄化システム - Google Patents

内燃機関の排気浄化システム Download PDF

Info

Publication number
WO2011111118A1
WO2011111118A1 PCT/JP2010/001786 JP2010001786W WO2011111118A1 WO 2011111118 A1 WO2011111118 A1 WO 2011111118A1 JP 2010001786 W JP2010001786 W JP 2010001786W WO 2011111118 A1 WO2011111118 A1 WO 2011111118A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
internal combustion
combustion engine
passage
purification system
Prior art date
Application number
PCT/JP2010/001786
Other languages
English (en)
French (fr)
Inventor
神庭千佳
片山晴之
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2012504160A priority Critical patent/JP5316695B2/ja
Priority to EP10847352A priority patent/EP2546486A1/en
Priority to US13/634,083 priority patent/US20130004374A1/en
Priority to PCT/JP2010/001786 priority patent/WO2011111118A1/ja
Priority to CN2010800653991A priority patent/CN102791981A/zh
Publication of WO2011111118A1 publication Critical patent/WO2011111118A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/36Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an exhaust flap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust purification system having an exhaust temperature raising device that is provided in an exhaust passage of an internal combustion engine and raises the temperature of exhaust gas.
  • An object of the present invention is to provide a novel means capable of suppressing a temperature difference in exhaust gas that reaches a downstream side exhaust purification catalyst from a pre-stage catalyst such as a small oxidation catalyst.
  • One aspect of the present invention is: An exhaust purification device provided in the exhaust passage of the internal combustion engine; A pre-stage catalyst provided in the exhaust passage upstream of the exhaust purification device, through which a part of the exhaust gas flowing through the exhaust passage passes; A bypass passage that directly introduces exhaust gas of the internal combustion engine into the exhaust passage downstream from the upstream catalyst and upstream from the exhaust purification device; A bypass valve for opening and closing the bypass passage; An exhaust gas purification system for an internal combustion engine.
  • the exhaust passage of the internal combustion engine is directly provided in the exhaust passage downstream of the front catalyst and the bypass valve that opens and closes the bypass passage, the exhaust that has passed through the front catalyst and the front catalyst The exhaust gas that has not passed through is agitated by the exhaust gas supplied from the bypass passage. Therefore, the temperature difference in the exhaust gas that reaches the exhaust gas purification catalyst on the downstream side of the front catalyst can be suppressed.
  • the system includes a reducing agent supply device that is provided upstream of the preceding catalyst and supplies the reducing agent to the exhaust gas flowing into the preceding catalyst.
  • the exhaust gas temperature raising device may further include a heating means for heating the reducing agent supplied from the reducing agent supply device.
  • the system further includes a controller for controlling the bypass valve, and the controller is configured so that a difference obtained by subtracting the pressure on the downstream side of the front catalyst from the pressure on the upstream side of the front catalyst exceeds a predetermined value.
  • the bypass valve is controlled. In this aspect, the backflow of the exhaust in the vicinity of the front catalyst can be suppressed.
  • downstream end of the bypass passage is deflected toward the downstream side of the exhaust passage and connected to the exhaust passage.
  • the backflow of the exhaust in the vicinity of the front catalyst can be suppressed.
  • downstream end of the bypass passage is deflected toward the upstream side of the exhaust passage and connected to the exhaust passage.
  • stirring of the exhaust gas that has passed through the front catalyst and the exhaust gas that has not passed through the front catalyst can be promoted.
  • the downstream end of the bypass passage is connected to the exhaust passage toward an intermediate portion in the flow direction of the upstream catalyst.
  • the temperature increase of the pre-stage catalyst can be promoted by the high-temperature exhaust gas introduced from the bypass passage.
  • a turbocharger having a turbine disposed in the exhaust passage is further provided, and an upstream side of the bypass passage is connected to the exhaust passage upstream of the turbine.
  • high-temperature and high-pressure exhaust on the upstream side of the turbine in the exhaust passage can be suitably used.
  • the upstream side of the bypass passage is connected to an exhaust manifold provided in the internal combustion engine.
  • the bypass valve is disposed in the vicinity of the downstream end portion of the bypass passage, and deflects the flow of the exhaust gas from the bypass passage toward the upstream side of the exhaust passage during the opening operation. In this case, stirring of the exhaust gas that has passed through the front catalyst and the exhaust gas that has not passed through the front catalyst can be promoted.
  • the means for solving the problems in the present invention can be used in combination as much as possible.
  • the present invention it is possible to suppress the temperature difference in the exhaust gas that reaches the exhaust purification catalyst on the downstream side from the upstream catalyst.
  • FIG. 1 is a conceptual diagram of a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a fuel supply process to the exhaust passage.
  • FIG. 3 is a side view showing a configuration example of a connection structure between the exhaust pipe and the bypass passage.
  • FIG. 4 is a side view showing a configuration example of a connection structure between the exhaust pipe and the bypass passage.
  • FIG. 5 is a side view showing a configuration example of a connection structure between the exhaust pipe and the bypass passage.
  • FIG. 6 is a front view showing a configuration example of a connection structure between the exhaust pipe and the bypass passage.
  • FIG. 7 is a front view illustrating a configuration example of a connection structure between the exhaust pipe and the bypass passage.
  • FIG. 8 is a front view illustrating a configuration example of a connection structure between the exhaust pipe and the bypass passage.
  • FIG. 9 is a front view illustrating a configuration example of a connection structure between the exhaust pipe and the bypass passage.
  • FIG. 10 is a front view illustrating a configuration example of a connection structure between the exhaust pipe and the bypass passage.
  • FIG. 11 is a front view illustrating a configuration example of a connection structure between the exhaust pipe and the bypass passage.
  • FIG. 12 is a front view showing a configuration example of a connection structure between the exhaust pipe and the bypass passage.
  • FIG. 1 shows a first embodiment of the present invention.
  • the engine body 1 is a compression ignition internal combustion engine (diesel engine) using light oil as fuel, but may be another type of internal combustion engine.
  • the engine body 1 has a combustion chamber 2 in each of the four cylinders. Each combustion chamber 2 is provided with an electronically controlled fuel injection valve 3 for injecting fuel.
  • An intake manifold 4 and an exhaust manifold 5 are connected to the combustion chamber 2.
  • the intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake pipe 6.
  • An inlet of the compressor 7 a is connected to an air cleaner 9 via an air flow meter 8.
  • a throttle valve 10 driven by a step motor (not shown) is disposed in the intake pipe 6.
  • An intercooler 11 for cooling the intake air flowing through the intake pipe 6 is disposed around the intake pipe 6.
  • Engine cooling water is guided into the intercooler 11 and the intake air is cooled by the engine cooling water.
  • the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7.
  • the outlet of the exhaust turbine 7 b is connected to the exhaust purification catalyst 13 via the exhaust pipe 12.
  • a small oxidation catalyst 14 is arranged in the engine exhaust passage upstream of the exhaust purification catalyst 13, that is, in the exhaust pipe 12.
  • the small oxidation catalyst 14 corresponds to the former stage catalyst in the present invention.
  • the small oxidation catalyst 14 has a smaller volume and front projection area than the exhaust purification catalyst 13.
  • the front surface projected area of the small oxidation catalyst 14 is smaller than the cross-sectional area of the surrounding exhaust pipe 12, and thus a part of the exhaust gas passing through the exhaust pipe 12 flows through the small oxidation catalyst 14.
  • the exhaust purification catalyst 13 is composed of, for example, an oxidation catalyst, a three-way catalyst, or a NOx catalyst.
  • the small oxidation catalyst 14 is composed of an oxidation catalyst, and as the catalyst material, for example, Pt / CeO 2 , Mn / CeO 2 , Fe / CeO 2 , Ni / CeO 2 , Cu / CeO 2 or the like can be used. Cordierite or metal is used for the base material of the catalysts 13 and 14.
  • a fuel supply valve 15 for supplying fuel to the small oxidation catalyst 14 is disposed with the injection port facing the exhaust pipe 12.
  • the fuel in the fuel tank 44 is supplied to the fuel supply valve 15 via the fuel pump 43.
  • a pipe line, a control valve, and a compressor for supplying combustion air from the outside into the exhaust pipe 12 may be provided.
  • a glow plug 16 is provided in the exhaust pipe 12 on the downstream side of the fuel supply valve 15.
  • the glow plug 16 is arranged so that the fuel added from the fuel supply valve 15 contacts the tip of the glow plug 16.
  • the glow plug 16 is connected to a DC power source and a booster circuit (both not shown) for supplying power to the glow plug 16.
  • a ceramic heater may be used instead of the glow plug.
  • a collision plate for causing the fuel injected from the fuel supply valve 15 to collide may be disposed in the exhaust pipe 12.
  • the small oxidation catalyst 14, the fuel supply valve 15, and the glow plug 16 constitute an exhaust temperature raising device 40, which is controlled by an ECU 50 described later.
  • a bypass passage 31 is provided so as to connect the upstream side and the downstream side of the small oxidation catalyst 14 in the exhaust passage.
  • the bypass passage 31 connects a point upstream of the turbine 7 b in the exhaust passage and a point downstream of the small oxidation catalyst 14 and upstream of the exhaust purification catalyst 13. Therefore, during the operation of the engine body 1, the bypass passage 31 can directly introduce the exhaust of the engine body 1 into the exhaust passage downstream of the small oxidation catalyst 14.
  • the upstream side of the bypass passage 31 is preferably connected to the exhaust manifold 5, and particularly preferably connected to a collecting portion of the exhaust manifold 5.
  • the bypass passage 31 is provided with a bypass valve 34 that opens and closes the bypass passage 31 and a step motor 35 that drives the bypass valve 34.
  • the bypass valve 34 is a well-known butterfly valve, but any other type of valve may be employed.
  • a first pressure sensor 41 for detecting the pressure in the exhaust passage is installed in the exhaust pipe 12 upstream of the small oxidation catalyst 14.
  • a second pressure sensor 42 for detecting the pressure in the exhaust passage is installed in the exhaust pipe 12 downstream of the small oxidation catalyst 14 and upstream of the exhaust purification catalyst 13.
  • Each fuel injection valve 3 is connected to a common rail 42 via a fuel supply pipe 41, and this common rail 42 is connected to a fuel tank 44 via an electronically controlled fuel pump 43 with variable discharge amount.
  • the fuel stored in the fuel tank 44 is supplied into the common rail 42 by the fuel pump 43, and the fuel supplied into the common rail 42 is supplied to the fuel injection valve 3 through each fuel supply pipe 41.
  • An electronic control unit (ECU) 50 which is a controller, is composed of a well-known digital computer, and is connected to each other by a bidirectional bus, a ROM (read only memory), a RAM (random access memory), a CPU (microprocessor), an input port. And an output port.
  • ECU electronice control unit
  • the output signals of the pressure sensors 41 and 42 are input to the input port of the ECU 50 via corresponding AD converters.
  • a load sensor 52 that generates an output voltage proportional to the amount of depression of the accelerator pedal 51 is connected to the accelerator pedal 51, and the output voltage of the load sensor 52 is input to the input port via a corresponding AD converter.
  • a crank angle sensor 53 that generates an output pulse every time the crankshaft of the engine body 1 rotates, for example, 15 ° is connected to the input port.
  • an intake air temperature sensor 54 installed in the vicinity of the throttle valve 10 is connected to the input port.
  • the output port of the ECU 50 is connected to each step motor for driving the throttle valve 10 and the bypass valve 34 via each corresponding drive circuit.
  • the output port is also connected to the fuel injection valve 3 and the fuel pump 43 via corresponding drive circuits.
  • the operation of these actuators is controlled by the ECU 50.
  • Various programs and reference values / initial values are stored in the ROM of the ECU 50. Such a reference value and an initial value include a temperature reference value C used for processing to be described later.
  • the ECU 50 calculates the fuel supply instruction amount based on parameters indicating the vehicle state including the detection values of the air flow meter 8, the load sensor 52, the crank angle sensor 53, and the intake air temperature sensor 54, in particular, the engine operating state.
  • a control signal is output to open the fuel injection valve 3 for a time corresponding to the amount.
  • an amount of fuel corresponding to the fuel supply instruction amount is supplied from the fuel injection valve 3, and the engine body 1 is operated.
  • the ECU 50 further controls the exhaust temperature raising device 40 and the bypass valve 34 to execute fuel supply to the exhaust passage.
  • the processing routine of FIG. 2 is repeatedly executed every predetermined time ⁇ t during the operation of the engine body 1.
  • the ECU 50 determines whether a request for execution of fuel injection control by the fuel injection valve 15 has been issued (S10).
  • the request for execution of this fuel injection control is the temperature rise of the exhaust purification catalyst 13 at a low temperature such as during cold start, oxidation and combustion of the particulate matter (PM) accumulated in the exhaust purification catalyst 13, and the exhaust purification catalyst 13 being NOx. If it is an occlusion reduction catalyst, it is output by the ECU 50 for the purpose of NOx reduction with respect to the exhaust purification catalyst 13 and SOx poisoning recovery.
  • the condition for requesting the execution of the fuel injection control is, for example, that the temperature detected by the intake air temperature sensor 54 is lower than a predetermined value when the temperature rises at a low temperature.
  • the estimated value of the accumulation amount or occlusion amount of each substance exceeds a predetermined reference value, and the estimated value of the temperature of the exhaust purification catalyst 13 exceeds the predetermined reference value. It is that you are. If no in step S10, that is, if an execution request has not been issued, the bypass valve is closed (S60).
  • step S10 determines whether a request for execution of fuel injection control has been issued. If the determination in step S10 is affirmative, that is, a request for execution of fuel injection control has been issued, the ECU 50 controls the exhaust temperature raising device 40 to supply and ignite fuel, thereby raising the temperature of the small oxidation catalyst 14.
  • a part or all of the fuel is supplied to the small oxidation catalyst 14, and if the small oxidation catalyst 14 is activated at this time, the fuel is oxidized in the small oxidation catalyst 14, and the small oxidation is generated by the oxidation reaction heat generated at this time.
  • the temperature of the catalyst 14 is raised. Further, when the temperature of the small oxidation catalyst 14 is increased, hydrocarbons having a large number of carbon atoms in the fuel are decomposed to generate hydrocarbons having a small number of carbon atoms and high reactivity, thereby making the fuel a highly reactive fuel. Reformed.
  • the small oxidation catalyst 14 constitutes a rapid heat generator that rapidly generates heat on the one hand, and a reformed fuel discharger that discharges the reformed fuel on the other hand. Further, part or all of the fuel supplied from the fuel injection valve 15 is heated or ignited by the glow plug 16, thereby promoting the temperature increase of the exhaust gas.
  • the ECU 50 reads the values of the upstream pressure P1 detected by the first pressure sensor 41 and the downstream pressure P2 detected by the second pressure sensor 42 (S30).
  • the ECU 50 determines whether or not the difference obtained by subtracting the downstream pressure P2 from the read upstream pressure P1 is larger than a predetermined reference value C (S40).
  • the reference value C can be experimentally determined to a value that does not cause a backflow of exhaust gas in the vicinity of the small oxidation catalyst 14.
  • the value of the reference value C may be fixed or may be dynamically acquired based on a physical quantity indicating the system state.
  • the reference value C is preferably within a predetermined range including 0, and is preferably a positive value in order to suppress sensitive operation due to the influence of exhaust pulsation or the like.
  • step S40 If the result in step S40 is affirmative, the ECU 50 outputs a control to the actuator so that the bypass valve 34 is opened (S50). Therefore, exhaust from the engine body 1 is directly introduced through the bypass passage 31. In the case of negative in step S40, the ECU 50 outputs a control to the actuator so that the bypass valve 34 is closed (S60). Therefore, the introduction of exhaust gas through the bypass passage 31 is not performed.
  • the bypass valve 34 is controlled so that the difference obtained by subtracting the downstream pressure P2 from the upstream pressure P1 always exceeds the reference value C.
  • the bypass passage 31 that directly introduces the exhaust of the engine main body 1 into the exhaust passage downstream of the small oxidation catalyst 14 and the bypass valve 34 that opens and closes the bypass passage 31 are provided.
  • the exhaust gas that has passed through the small oxidation catalyst 14 and the exhaust gas that has not passed through the small oxidation catalyst 14 are agitated by the exhaust gas supplied from the bypass passage 31.
  • the temperature difference in the exhaust gas that reaches the purification catalyst 13 can be suppressed.
  • the exhaust purification catalyst 13 can be used on an average over the whole, so that the size and / or the amount of the catalytic substance of the exhaust purification catalyst 13 can be further reduced.
  • the system includes a fuel injection valve 15 that is provided upstream of the small oxidation catalyst 14 and supplies a reducing agent to the exhaust gas flowing into the small oxidation catalyst 14, and a glow plug 16 that heats the supplied reducing agent. Therefore, the exhaust gas can be suitably heated and reformed.
  • the ECU 50 controls the bypass valve 34 so that the difference obtained by subtracting the downstream pressure P2 from the upstream pressure P1 of the small oxidation catalyst 14 exceeds a predetermined value C. Therefore, the exhaust gas in the vicinity of the small oxidation catalyst 14 is controlled. Backflow can be suppressed.
  • the upstream side of the bypass passage 31 is connected to the exhaust passage upstream of the exhaust turbine 7b of the turbocharger 7, the high-temperature and high-pressure exhaust upstream of the exhaust turbine 7b is preferably used. Can be used. Further, since the upstream side of the bypass passage 31 is connected to the exhaust manifold 5, the exhaust introduced from the bypass passage 31 can be made particularly high. Further, since the upstream side of the bypass passage 31 is connected to the collecting portion of the exhaust manifold 5, the influence of exhaust pulsation can be suppressed.
  • 3, 4, and 5 are cross-sectional views of the exhaust pipe 12, respectively, as viewed from the downstream side to the upstream side of the small oxidation catalyst 14.
  • the downstream end of the bypass passage 31 is connected to the exhaust pipe 12 such that the axis AL1 intersects the exhaust pipe 12 and the axis AL2 of the small oxidation catalyst 14. is there.
  • the exhaust flow F1 from the bypass passage 31 crosses the high temperature region downstream of the small oxidation catalyst 14 and the bypass 12a that is the region in the exhaust pipe 12 around the small oxidation catalyst 14. , The stirring of exhaust can be promoted.
  • FIG. 4 (ii) shows a configuration in which the downstream end of the bypass passage 31 is connected to the tangent line of the pipe wall of the exhaust pipe 12.
  • the exhaust flow F2 from the bypass passage 31 promotes the generation of vortices in the exhaust pipe 12, it is possible to promote the stirring of the exhaust.
  • the downstream end of the bypass passage 31 is connected to the exhaust pipe 12 so that the axis AL1 is shifted from the central axis AL2 of the exhaust pipe 12 and the small oxidation catalyst 14. It is a thing.
  • the turbulent flow in the exhaust pipe 12 is promoted due to the shift S, the stirring of the exhaust can be promoted.
  • downstream end portion of the bypass passage 31 is connected to the exhaust pipe 12 so that the axis AL1 is deflected ⁇ 1 toward the downstream side of the exhaust pipe 12. .
  • the backflow of the exhaust in the vicinity of the small oxidation catalyst 14 can be suppressed.
  • the downstream end of the bypass passage 31 is connected to the exhaust pipe 12 so that the axis AL1 is deflected ⁇ 2 toward the upstream side of the exhaust pipe 12. .
  • stirring of the exhaust gas that has passed through the small oxidation catalyst 14 and the exhaust gas that has not passed through the small oxidation catalyst 14 can be promoted.
  • an extension portion 31 a that is an extension of the tube wall of the bypass passage 31 is disposed on the upstream side of the opening edge of the downstream end portion of the bypass passage 31.
  • the backflow of the exhaust gas from the bypass passage 31 in the vicinity of the small oxidation catalyst 14 can be suppressed by the extension portion 31a.
  • the guide plate 36 is arranged on the upstream side of the opening edge of the downstream end portion of the bypass passage 31.
  • the guide plate 36 is inclined toward the downstream side from the proximal end portion toward the distal end portion thereof, and thereby, the exhaust from the bypass passage 31 is deflected ⁇ 3 toward the downstream side of the exhaust pipe 12.
  • the backflow of the exhaust gas from the bypass passage 31 in the vicinity of the small oxidation catalyst 14 can be suppressed.
  • the bypass valve 34 that is a butterfly valve is disposed in the vicinity of the downstream end portion of the bypass passage 31, and at the time of opening operation (indicated by a two-dot chain line), A downstream portion of the valve body of the bypass valve 34 projects into the exhaust passage. Therefore, the flow of the exhaust gas from the bypass passage 31 can be deflected downstream by the valve body of the bypass valve 34, and the backflow of the exhaust gas in the vicinity of the small oxidation catalyst 14 can be suppressed.
  • the bypass valve 34 that is a butterfly valve is disposed in the vicinity of the downstream end portion of the bypass passage 31, and at the time of opening operation (indicated by a two-dot chain line), An upstream portion of the valve body of the bypass valve 34 projects into the exhaust passage. Therefore, the flow of the exhaust gas from the bypass passage 31 can be deflected to the upstream side by the valve body of the bypass valve 34, and the stirring of the exhaust gas can be promoted.
  • the effect similar to aspect (ix) (x) is realizable also by the flap valve provided with the rotating shaft at the end of the valve body.
  • the downstream ends of the plurality of bypass passages 31 may be connected to the single exhaust pipe 12.
  • the arrangement of the plurality of bypass passages 31 connected to the single exhaust pipe 12 may be symmetric or asymmetric in the cross section of the exhaust pipe 12 or may be rotationally symmetric.
  • bypass valve 34 is in two states of open or closed. However, the opening degree may be changed in multiple steps or continuously between these two states.
  • the pressure in the exhaust pipe 12 is directly detected by the pressure sensors 41 and 42.
  • the parameters indicating the state of the engine for example, the detected value of the air flow meter 8, the opening of the throttle valve 10, and the inside of the combustion chamber You may estimate based on the amount of fuel injection. Substances other than fuel may be used as the reducing agent.
  • the present invention can also be applied to an engine that does not have a turbocharger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 内燃機関(1)の排気通路(12)に設けられた排気浄化装置(13)と、前記排気浄化装置(13)よりも上流側の前記排気通路(12)に設けられ、当該排気通路(12)を流れる排気の一部が通過する前段触媒(14)と、前記内燃機関(1)の排気を前記前段触媒(14)よりも下流側の前記排気通路(12)に直接導入するバイパス通路(31)と、前記バイパス通路(31)を開閉するバイパス弁(34)と、を備えたことを特徴とする内燃機関の排気浄化システム。

Description

内燃機関の排気浄化システム
 本発明は、内燃機関の排気通路に設けられて排ガスを昇温する排気昇温装置を有する排気浄化システムに関する。
 機関の排気通路内に配置された排気浄化触媒の上流に、当該排気浄化触媒よりも体積が小さい小型酸化触媒を配置した排気浄化装置が提案されている(例えば特許文献1及び2を参照)。このタイプの装置では、小型酸化触媒から生じる熱により排気浄化触媒を早期に活性化すること、及び小型酸化触媒に供給した燃料などの還元剤を改質することが期待されている。
特開2009-156164号公報 特開2009-209804号公報
 しかしながら、このタイプの装置では、小型酸化触媒を通過した排気と、小型酸化触媒を通過しない排気との間で、温度差が大きくなる場合があり、その場合には下流側の排気浄化触媒の浄化性能及び耐久性に影響しうる。他方、小型酸化触媒と排気浄化触媒との間に、排気の混合を促進するための整流板を設けると、排気系の全長が過度に長くなるおそれがある。
 本発明の目的は、小型酸化触媒のような前段触媒からその下流側の排気浄化触媒に到達する排気における温度差を抑制できる新規な手段を提供することにある。
 本発明の1態様は、
 内燃機関の排気通路に設けられた排気浄化装置と、
 前記排気浄化装置よりも上流側の前記排気通路に設けられ、当該排気通路を流れる排気の一部が通過する前段触媒と、
 前記内燃機関の排気を前記前段触媒よりも下流側であって前記排気浄化装置よりも上流側の前記排気通路に直接導入するバイパス通路と、
 前記バイパス通路を開閉するバイパス弁と、
 を備えたことを特徴とする内燃機関の排気浄化システム
である。
 この態様では、内燃機関の排気を前段触媒よりも下流側の排気通路に直接導入するバイパス通路と、バイパス通路を開閉するバイパス弁とを備えたので、前段触媒を通過した排気と、前段触媒を通過していない排気とが、バイパス通路から供給される排気によって攪拌される。したがって、前段触媒の下流側の排気浄化触媒に到達する排気における温度差を抑制することができる。
 好適には、システムは前記前段触媒よりも上流側に設けられ前記前段触媒に流入する排気に還元剤を供給する還元剤供給装置を備える。この場合には更に、排気昇温装置は、前記還元剤供給装置から供給された還元剤を加熱する加熱手段を備えてもよい。
 好適には、システムは前記バイパス弁を制御するコントローラを更に備え、前記コントローラは、前記前段触媒の上流側の圧力から前記前段触媒の下流側の圧力を減じた差分が所定値を上回るように、前記バイパス弁を制御する。この態様では、前段触媒の近傍における排気の逆流を抑制することができる。
 好適には、前記バイパス通路の下流側の端部は、前記排気通路の下流側に向けて偏向して前記排気通路に接続されている。この態様では、前段触媒の近傍における排気の逆流を抑制することができる。
 好適には、前記バイパス通路の下流側の端部は、前記排気通路の上流側に向けて偏向して前記排気通路に接続されている。この態様では、前段触媒を通過した排気と、前段触媒を通過していない排気との攪拌を促進することができる。
 好適には、前記バイパス通路の下流側の端部は、前記前段触媒の流れ方向における中間部に向けて前記排気通路に接続されている。この態様では、バイパス通路から導入された高温の排気により、前段触媒の昇温を促進できる。
 好適には、前記排気通路に配置されたタービンを有するターボチャージャを更に備え、前記バイパス通路の上流側は、前記タービンよりも上流側の前記排気通路に接続されている。この態様では、排気通路におけるタービンの上流側の高温かつ高圧の排気を好適に利用することができる。この場合には、好適には、前記バイパス通路の上流側は、前記内燃機関に備えられた排気マニホールドに接続されている。
 好適には、前記バイパス弁は、前記バイパス通路の下流側の端部の近傍に配置され、かつ、開動作時に、前記バイパス通路からの排気の流れを、前記排気通路の上流側に偏向させる。この場合には、前段触媒を通過した排気と、前段触媒を通過していない排気との攪拌を促進することができる。
 なお、本発明における課題を解決するための手段は、可能な限り組み合わせて使用することができる。
 本発明によれば、前段触媒からその下流側の排気浄化触媒に到達する排気における温度差を抑制することができる。
図1は、本発明の第1実施形態の概念図である。 図2は、排気通路への燃料供給処理を示すフローチャートである。 図3は、排気管とバイパス通路との接続構造の構成例を示す側面図である。 図4は、排気管とバイパス通路との接続構造の構成例を示す側面図である。 図5は、排気管とバイパス通路との接続構造の構成例を示す側面図である。 図6は、排気管とバイパス通路との接続構造の構成例を示す正面図である。 図7は、排気管とバイパス通路との接続構造の構成例を示す正面図である。 図8は、排気管とバイパス通路との接続構造の構成例を示す正面図である。 図9は、排気管とバイパス通路との接続構造の構成例を示す正面図である。 図10は、排気管とバイパス通路との接続構造の構成例を示す正面図である。 図11は、排気管とバイパス通路との接続構造の構成例を示す正面図である。 図12は、排気管とバイパス通路との接続構造の構成例を示す正面図である。
 本発明の好適な実施形態について、以下に詳細に説明する。図1は本発明の第1実施形態を示す。図1において、エンジン本体1は、軽油を燃料とする圧縮点火式内燃機関(ディーゼルエンジン)であるが、他の形式の内燃機関であってもよい。エンジン本体1は、4つの気筒のそれぞれに燃焼室2を有する。各燃焼室2には、燃料を噴射するための電子制御式の燃料噴射弁3が配置されている。燃焼室2には、吸気マニホールド4および排気マニホールド5が接続されている。吸気マニホールド4は、吸気管6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結されている。コンプレッサ7aの入口は、エアフローメータ8を介してエアクリーナ9に連結されている。
 吸気管6内には、ステップモータ(不図示)により駆動されるスロットル弁10が配置されている。吸気管6の周りには、吸気管6内を流れる吸入空気を冷却するためのインタークーラ11が配置されている。インタークーラ11内に機関冷却水が導かれ、機関冷却水によって吸入空気が冷却される。
 排気マニホールド5は、排気ターボチャージャ7の排気タービン7bの入口に連結されている。排気タービン7bの出口は、排気管12を介して、排気浄化触媒13に連結されている。この排気浄化触媒13上流の機関排気通路内、即ち排気管12内には、小型酸化触媒14が配置されている。小型酸化触媒14は、本発明における前段触媒に相当する。小型酸化触媒14は、排気浄化触媒13よりも体積及び前面投影面積が小さい。小型酸化触媒14の前面投影面積は、その周囲の排気管12の断面積よりも小さく、したがって小型酸化触媒14には、排気管12を通過する排気ガスの一部が流通する。
 排気浄化触媒13は、例えば酸化触媒、三元触媒又はNOx触媒から構成されている。小型酸化触媒14は酸化触媒から構成されており、触媒物質としては例えばPt/CeO、Mn/CeO、Fe/CeO、Ni/CeO、Cu/CeO等を用いることができる。触媒13,14の基材には、コージェライトあるいはメタルが用いられている。
 この小型酸化触媒14上流の排気管12内には、小型酸化触媒14に燃料を供給するための燃料供給弁15が、その噴射口を排気管12内部に臨ませて配置されている。燃料供給弁15には、燃料タンク44内の燃料が燃料ポンプ43を介して供給される。燃焼を促進させるために、外部から排気管12の内部に燃焼用空気を供給するための管路、制御弁及びコンプレッサを設けても良い。
 燃料供給弁15よりも下流側の排気管12内には、グロープラグ16が設けられている。グロープラグ16は、その先端部に燃料供給弁15から添加される燃料が接触するように配置されている。グロープラグ16には、これに給電するための直流電源及び昇圧回路(いずれも不図示)が接続されている。着火するための手段としては、グロープラグに代えてセラミックヒータを用いてもよい。燃料の微粒化を促進するために、燃料供給弁15から噴射された燃料を衝突させるための衝突板を、排気管12内に配置してもよい。小型酸化触媒14、燃料供給弁15およびグロープラグ16は、排気昇温装置40を構成し、この排気昇温装置40は、後述するECU50によって制御される。
 排気通路における小型酸化触媒14の上流側と下流側とを接続するように、バイパス通路31が設けられている。バイパス通路31は、排気通路におけるタービン7bよりも上流側の点と、小型酸化触媒14の下流側であって排気浄化触媒13よりも上流側の点とを接続する。したがって、エンジン本体1の動作中には、バイパス通路31は、エンジン本体1の排気を小型酸化触媒14よりも下流側の排気通路に直接導入することができる。バイパス通路31の上流側は、排気マニホールド5に接続するのが好適であり、また、排気マニホールド5の集合部に接続するのが特に好適である。バイパス通路31には、当該バイパス通路31を開閉するバイパス弁34、及びこれを駆動するステップモータ35が設けられている。バイパス弁34は周知のバタフライ弁であるが、他の任意の種類の弁を採用することもできる。
 小型酸化触媒14よりも上流側の排気管12内には、排気通路内の圧力を検出するための第1圧力センサ41が設置されている。小型酸化触媒14よりも下流側であって排気浄化触媒13よりも上流側の排気管12内には、排気通路内の圧力を検出するための第2圧力センサ42が設置されている。
 各燃料噴射弁3は、燃料供給管41を介してコモンレール42に連結され、このコモンレール42は電子制御式の吐出量可変な燃料ポンプ43を介して燃料タンク44に連結される。燃料タンク44内に貯蔵されている燃料は燃料ポンプ43によってコモンレール42内に供給され、コモンレール42内に供給された燃料は各燃料供給管41を介して燃料噴射弁3に供給される。
 コントローラである電子制御ユニット(ECU)50は、周知のデジタルコンピュータからなり、双方向性バスによって互いに接続されたROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)、CPU(マイクロプロセッサ)、入力ポートおよび出力ポートを具備する。
 圧力センサ41,42の出力信号は、対応するAD変換器を介してECU50の入力ポートに入力される。アクセルペダル51には、アクセルペダル51の踏込み量に比例した出力電圧を発生する負荷センサ52が接続され、負荷センサ52の出力電圧は、対応するAD変換器を介して入力ポートに入力される。更に入力ポートには、エンジン本体1のクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ53が接続される。更に入力ポートには、スロットル弁10の近傍に設置された吸気温度センサ54が接続される。
 他方、ECU50の出力ポートは、対応する各駆動回路を介して、スロットル弁10およびバイパス弁34の駆動用の各ステップモータに接続される。出力ポートはまた、対応する各駆動回路を介して燃料噴射弁3及び燃料ポンプ43に接続される。これらアクチュエータ類の動作は、ECU50によって制御される。ECU50のROMには、各種プログラム及び基準値・初期値が格納されている。このような基準値及び初期値は、後述する処理に使用される温度の基準値Cを含む。
 ECU50は、エアフローメータ8、負荷センサ52、クランク角センサ53および吸気温度センサ54の検出値を含む車両の状態、とくにエンジンの動作状態を示すパラメータに基づいて、燃料供給指示量を算出し、指示量に応じた時間だけ燃料噴射弁3を開くべく制御信号を出力する。この制御信号に従って、燃料供給指示量に応じた量の燃料が燃料噴射弁3から供給され、エンジン本体1が運転される。
 上記のエンジン本体1の運転制御と並行して、ECU50はさらに、排気昇温装置40及びバイパス弁34を制御して、排気通路への燃料供給を実行する。図2の処理ルーチンは、エンジン本体1の動作中にわたって所定時間Δtごとに繰返し実行される。
 図2において、ECU50は、燃料噴射弁15による燃料噴射制御の実行要求が出されているかを判定する(S10)。この燃料噴射制御の実行要求は、冷間始動時など低温時の排気浄化触媒13の昇温、排気浄化触媒13における堆積した粒子状物質(PM)の酸化及び燃焼、及び排気浄化触媒13がNOx吸蔵還元触媒である場合には、排気浄化触媒13に対するNOx還元並びにSOx被毒回復を目的として、ECU50により出力される。燃料噴射制御の実行要求がされるための条件は、低温時における昇温の場合は、たとえば吸気温度センサ54の検出温度が所定値よりも低いことであり、排気浄化触媒13に対するNOx還元並びにSOx被毒回復の場合には、例えば、各物質の堆積量又は吸蔵量の推定値が所定の基準値を上回っていること、及び排気浄化触媒13の温度の推定値が所定の基準値を上回っていることである。ステップS10で否定、すなわち実行要求が出されていない場合には、バイパス弁がクローズされる(S60)。
 ステップS10で肯定、すなわち燃料噴射制御の実行要求が出されている場合には、ECU50は排気昇温装置40を制御して、燃料の供給及び着火を行い、これにより小型酸化触媒14を昇温させる。
 燃料の一部又は全部は小型酸化触媒14に供給され、このとき小型酸化触媒14が活性化していれば、小型酸化触媒14内で燃料が酸化させられ、このとき発生する酸化反応熱によって小型酸化触媒14が昇温させられる。また、小型酸化触媒14の温度が高くなると、燃料中の炭素数の多い炭化水素が分解して、炭素数が少なく反応性の高い炭化水素が生成され、これによって燃料が反応性の高い燃料に改質される。換言すれば、小型酸化触媒14は、一方では急速に発熱する急速発熱器を構成し、他方では、改質された燃料を排出する改質燃料排出器を構成する。また、燃料噴射弁15から供給された燃料の一部又は全部は、グロープラグ16により昇温又は着火され、これによって排ガスの昇温が促進される。
 次に、ECU50は、第1圧力センサ41により検出される上流側圧力P1、及び第2圧力センサ42により検出される下流側圧力P2の値を読み込む(S30)。次にECU50は、読み込まれた上流側圧力P1から下流側圧力P2を減じた差分を、予め定められた基準値Cよりも大であるかを判断する(S40)。この基準値Cの値は小型酸化触媒14の近傍における排気の逆流が生じないような値に実験的に定めることができる。基準値Cの値は固定であっても、システムの状態を示す物理量に基づいて動的に取得してもよい。基準値Cは0を含む所定範囲内とするのが好適であり、排気脈動の影響などによる過敏な動作を抑制すべく、正の値とするのが好適である。
 ステップS40で肯定の場合には、ECU50はバイパス弁34がオープンするようにアクチュエータに制御出力を行う(S50)。したがってバイパス通路31を通じて、エンジン本体1からの排気が直接導入される。ステップS40で否定の場合には、ECU50はバイパス弁34がクローズするように、アクチュエータに制御出力を行う(S60)。したがってバイパス通路31を通じた排気の導入は行われない。
 以上の処理の結果、本実施形態では、上流側圧力P1から下流側圧力P2を減じた差分が基準値Cを常に上回るように、バイパス弁34が制御される。
 以上のとおり、本実施形態では、エンジン本体1の排気を小型酸化触媒14よりも下流側の排気通路に直接導入するバイパス通路31と、このバイパス通路31を開閉するバイパス弁34と、を備えた。その結果、小型酸化触媒14を通過した排気と、小型酸化触媒14を通過していない排気とが、バイパス通路31から供給される排気によって攪拌され、これによって、小型酸化触媒14の下流側の排気浄化触媒13に到達する排気における温度差を抑制することができる。この温度差の抑制によって、排気浄化触媒13をその全体にわたってより平均的に使用できるので、排気浄化触媒13のサイズ及び/又は触媒物質量をより小さくすることも可能になる。
 また通常、排気マニホールド5内の圧力は排気タービン7bの下流側よりも高いので、本実施形態では低負荷時であっても好適な攪拌を行うことができる。また、通常、排気マニホールド5内の温度は排気タービン7bの下流側よりも高いので、バイパス通路からの高温の排気を好適に利用することが可能になる。
 また、システムが小型酸化触媒14よりも上流側に設けられ小型酸化触媒14に流入する排気に還元剤を供給する燃料噴射弁15と、供給された還元剤を加熱するグロープラグ16とを備えたので、排気を好適に昇温及び改質することができる。
 また、ECU50が、小型酸化触媒14の上流側の圧力P1から下流側の圧力P2を減じた差分が所定値Cを上回るようにバイパス弁34を制御するので、小型酸化触媒14の近傍における排気の逆流を抑制することができる。
 また、本実施形態では、バイパス通路31の上流側が、ターボチャージャ7の排気タービン7bよりも上流側の排気通路に接続されているので、排気タービン7bの上流側の高温かつ高圧の排気を好適に利用することができる。また、バイパス通路31の上流側は、排気マニホールド5に接続されているので、バイパス通路31から導入される排気を特に高温にすることができる。さらに、バイパス通路31の上流側は排気マニホールド5の集合部に接続したので、排気脈動の影響を抑制することができる。
 次に、バイパス通路31の配置に関する各種の態様について説明する。図3、図4及び図5は、それぞれ、排気管12の断面図であって、小型酸化触媒14の下流側から上流側に向けて見たものである。図3に示される態様(i)は、バイパス通路31の下流側の端部を、その軸線AL1が排気管12及び小型酸化触媒14の軸線AL2と交わるように、排気管12に接続したものである。この態様では、バイパス通路31からの排気の流れF1が、小型酸化触媒14の下流側の高温の領域と、小型酸化触媒14の周囲の排気管12内の領域である迂回路12aとを横切るので、排気の攪拌を促進することができる。
 図4に示される態様(ii)は、バイパス通路31の下流側の端部を、排気管12の管壁の接線上に接続したものである。この態様では、バイパス通路31からの排気の流れF2が、排気管12内における渦の生成を促進するので、排気の攪拌を促進することができる。
 図5に示される態様(iii)は、バイパス通路31の下流側の端部を、その軸線AL1が排気管12及び小型酸化触媒14の中心軸AL2からシフトSするように、排気管12に接続したものである。この態様では、シフトSに起因して排気管12内の乱流が促進されるので、排気の攪拌を促進することができる。
 図6に示される態様(iv)は、バイパス通路31の下流側の端部を、その軸線AL1が排気管12の下流側に向けて偏向α1するように、排気管12に接続したものである。この態様では、小型酸化触媒14の近傍における排気の逆流を抑制することができる。
 図7に示される態様(v)は、バイパス通路31の下流側の端部を、その軸線AL1が排気管12の上流側に向けて偏向α2するように、排気管12に接続したものである。この態様では、小型酸化触媒14を通過した排気と、小型酸化触媒14を通過していない排気との攪拌を促進することができる。
 図8に示される態様(vi)は、バイパス通路31の下流側の端部を、小型酸化触媒14の流れ方向における中間部に向けて、排気管12に接続したものである。この態様では、バイパス通路31から導入された高温の排気により、小型酸化触媒14の昇温を促進できる。
 図9に示される態様(vii)は、バイパス通路31の下流側の端部の開口縁の上流側に、バイパス通路31の管壁の延長である延長部31aを配置したものである。この態様では、バイパス通路31からの排気の小型酸化触媒14の近傍における逆流を、延長部31aによって抑制することができる。
 図10に示される態様(viii)は、バイパス通路31の下流側の端部の開口縁の上流側に、ガイド板36を配置したものである。ガイド板36は、その基端部から末端部に向けて下流側に傾斜しており、これによって、バイパス通路31からの排気を排気管12の下流側に向けて偏向α3させる。この態様では、バイパス通路31からの排気の小型酸化触媒14の近傍における逆流を抑制することができる。
 図11に示される態様(ix)では、バタフライ弁であるバイパス弁34を、バイパス通路31の下流側の端部の近傍に配置し、かつ、開動作時(二点鎖線で示す)には、バイパス弁34の弁体のうち下流側の部分が、排気通路内に突出する。したがって、バイパス通路31からの排気の流れを、バイパス弁34の弁体によって下流側に偏向させることができ、排気の小型酸化触媒14の近傍における逆流を抑制することができる。
 図12に示される態様(x)では、バタフライ弁であるバイパス弁34を、バイパス通路31の下流側の端部の近傍に配置し、かつ、開動作時(二点鎖線で示す)には、バイパス弁34の弁体のうち上流側の部分が、排気通路内に突出する。したがって、バイパス通路31からの排気の流れを、バイパス弁34の弁体によって上流側に偏向させることができ、排気の攪拌を促進することができる。なお、態様(ix)(x)と同様の効果は、弁体の一端に回動軸を備えたフラップ弁によっても実現できる。
 単一の排気管12に対して、複数のバイパス通路31の下流側の端部を接続してもよい。単一の排気管12に接続される複数のバイパス通路31の配置は、排気管12の横断面において対称であっても非対称であってもよく、また回転対称であってもよい。
 本発明をある程度の具体性をもって説明したが、クレームされた発明の精神や範囲から離れることなしに、さまざまな改変や変更が可能であることは理解されなければならない。上記実施形態及び各変形例に示された種々の技術手段は、可能な限り互いに組み合わせることができる。上記実施形態及び各変形例では、バイパス弁34をオープン又はクローズの2状態としたが、これら2状態の間で多段階的あるいは連続的に開度を変化させてもよい。
 上記実施形態では、排気管12内の圧力を圧力センサ41,42により直接検出したが、エンジン1の状態を示すパラメータ、例えばエアフローメータ8の検出値、スロットル弁10の開度、及び燃焼室内の燃料噴射量に基づいて推定してもよい。還元剤としては燃料以外の物質を用いてもよい。また本発明は、ターボチャージャを有しないエンジンに適用することも可能である。
 4 吸気マニホールド
 5 排気マニホールド
 6 吸気管
 7 ターボチャージャ
 12 排気管
 13 排気浄化触媒
 14 小型酸化触媒
 31 バイパス通路
 34 バイパス弁
 50 ECU

Claims (10)

  1.  内燃機関の排気通路に設けられた排気浄化装置と、
     前記排気浄化装置よりも上流側の前記排気通路に設けられ、当該排気通路を流れる排気の一部が通過する前段触媒と、
     前記内燃機関の排気を前記前段触媒よりも下流側であって前記排気浄化装置よりも上流側の前記排気通路に直接導入するバイパス通路と、
     前記バイパス通路を開閉するバイパス弁と、
     を備えたことを特徴とする内燃機関の排気浄化システム。
  2.  請求項1に記載の内燃機関の排気浄化システムであって、
     前記前段触媒よりも上流側に設けられ前記前段触媒に流入する排気に還元剤を供給する還元剤供給装置を更に備えたことを特徴とする内燃機関の排気浄化システム。
  3.  請求項2に記載の内燃機関の排気浄化システムであって、
     前記還元剤供給装置から供給された還元剤を加熱する加熱手段を更に備えたことを特徴とする内燃機関の排気浄化システム。
  4.  請求項1に記載の内燃機関の排気浄化システムであって、
     前記バイパス弁を制御するコントローラを更に備え、
     前記コントローラは、前記前段触媒の上流側の圧力から前記前段触媒の下流側の圧力を減じた差分が所定値を上回るように、前記バイパス弁を制御することを特徴とする内燃機関の排気浄化システム。
  5.  請求項1に記載の内燃機関の排気浄化システムであって、
     前記バイパス通路の下流側の端部は、前記排気通路の下流側に向けて偏向して前記排気通路に接続されていることを特徴とする内燃機関の排気浄化システム。
  6.  請求項1に記載の内燃機関の排気浄化システムであって、
     前記バイパス通路の下流側の端部は、前記排気通路の上流側に向けて偏向して前記排気通路に接続されていることを特徴とする内燃機関の排気浄化システム。
  7.  請求項1に記載の内燃機関の排気浄化システムであって、
     前記バイパス通路の下流側の端部は、前記前段触媒の流れ方向における中間部に向けて前記排気通路に接続されていることを特徴とする内燃機関の排気浄化システム。
  8.  請求項1に記載の内燃機関の排気浄化システムであって、
     前記排気通路に配置されたタービンを有するターボチャージャを更に備え、
     前記バイパス通路の上流側は、前記タービンよりも上流側の前記排気通路に接続されていることを特徴とする内燃機関の排気浄化システム。
  9.  請求項8に記載の内燃機関の排気浄化システムであって、
     前記バイパス通路の上流側は、前記内燃機関に備えられた排気マニホールドに接続されていることを特徴とする内燃機関の排気浄化システム。
  10.  請求項1に記載の内燃機関の排気浄化システムであって、
     前記バイパス弁は、前記バイパス通路の下流側の端部の近傍に配置され、かつ、開動作時に、前記バイパス通路からの排気の流れを、前記排気通路の上流側に偏向させることを特徴とする内燃機関の排気浄化システム。
PCT/JP2010/001786 2010-03-12 2010-03-12 内燃機関の排気浄化システム WO2011111118A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012504160A JP5316695B2 (ja) 2010-03-12 2010-03-12 内燃機関の排気浄化システム
EP10847352A EP2546486A1 (en) 2010-03-12 2010-03-12 Exhaust purification system for an internal combustion engine
US13/634,083 US20130004374A1 (en) 2010-03-12 2010-03-12 Exhaust purification system for internal combustion engine
PCT/JP2010/001786 WO2011111118A1 (ja) 2010-03-12 2010-03-12 内燃機関の排気浄化システム
CN2010800653991A CN102791981A (zh) 2010-03-12 2010-03-12 内燃机的排气机净化系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/001786 WO2011111118A1 (ja) 2010-03-12 2010-03-12 内燃機関の排気浄化システム

Publications (1)

Publication Number Publication Date
WO2011111118A1 true WO2011111118A1 (ja) 2011-09-15

Family

ID=44562967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001786 WO2011111118A1 (ja) 2010-03-12 2010-03-12 内燃機関の排気浄化システム

Country Status (5)

Country Link
US (1) US20130004374A1 (ja)
EP (1) EP2546486A1 (ja)
JP (1) JP5316695B2 (ja)
CN (1) CN102791981A (ja)
WO (1) WO2011111118A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103339351A (zh) * 2012-01-04 2013-10-02 丰田自动车株式会社 排气加热方法
JP2016133091A (ja) * 2015-01-21 2016-07-25 三菱重工業株式会社 排気ガスダクト、船舶
JP2016223401A (ja) * 2015-06-03 2016-12-28 愛三工業株式会社 排気浄化装置
JP2022526523A (ja) * 2019-03-27 2022-05-25 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. 排出ガス浄化装置、当該排出ガス浄化装置を具備する内燃エンジン、及び排出ガスを規制するための方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015007414A1 (de) * 2015-06-06 2016-12-08 Man Truck & Bus Ag Abgasstrang für eine Brennkraftmaschine
DE102022127238A1 (de) * 2022-10-18 2024-04-18 Emitec Technologies GmbH Heizmodul für eine Abgasanlage einer Brennkraftmaschine sowie zugehöriges Verfahren

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276225U (ja) * 1985-10-30 1987-05-15
JPH0660725U (ja) * 1993-01-29 1994-08-23 いすゞ自動車株式会社 内燃機関の排気浄化装置
JPH09222024A (ja) * 1996-02-15 1997-08-26 Ishikawajima Harima Heavy Ind Co Ltd ターボ過給式エンジンの排気バイパス装置
JP2005127257A (ja) * 2003-10-24 2005-05-19 Toyota Motor Corp 内燃機関の排気浄化装置
JP2009156164A (ja) * 2007-12-26 2009-07-16 Toyota Motor Corp 内燃機関の排気浄化装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271022A (ja) * 1989-04-12 1990-11-06 Nissan Motor Co Ltd 内燃機関の排気微粒子処理装置
JPH0988568A (ja) * 1995-09-26 1997-03-31 Toyota Motor Corp 内燃機関の排気装置
JP3648809B2 (ja) * 1995-10-30 2005-05-18 日産自動車株式会社 エンジンの排気浄化装置
DE19833619A1 (de) * 1998-07-25 2000-01-27 Porsche Ag Abgasanlage für aufgeladene Brennkraftmaschinen
DE10021421A1 (de) * 2000-05-03 2002-02-28 Audi Ag Vorrichtung zur Abgasreinigung
JP2002276346A (ja) * 2001-03-23 2002-09-25 Hitachi Ltd ターボ過給機付き火花点火筒内噴射エンジンとその制御法
JP4044908B2 (ja) * 2004-03-11 2008-02-06 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4254630B2 (ja) * 2004-06-24 2009-04-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7527126B2 (en) * 2004-07-07 2009-05-05 Sango Co., Ltd. Exhaust apparatus of an internal combustion engine
KR100680792B1 (ko) * 2005-12-09 2007-02-08 현대자동차주식회사 질소산화물 제거 촉매와 촉매 여과 장치를 구비한NOx-PM 동시 저감 장치의 재생 제어 방법 및 장치
JP4672567B2 (ja) * 2006-02-08 2011-04-20 愛三工業株式会社 内燃機関の排気浄化装置
DE102007049171B4 (de) * 2007-10-13 2020-12-17 Bayerische Motoren Werke Aktiengesellschaft Abgasstrang für eine Brennkraftmaschine mit diagnosefähigem Absperrventil sowie diagnosefähiges Absperrventil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276225U (ja) * 1985-10-30 1987-05-15
JPH0660725U (ja) * 1993-01-29 1994-08-23 いすゞ自動車株式会社 内燃機関の排気浄化装置
JPH09222024A (ja) * 1996-02-15 1997-08-26 Ishikawajima Harima Heavy Ind Co Ltd ターボ過給式エンジンの排気バイパス装置
JP2005127257A (ja) * 2003-10-24 2005-05-19 Toyota Motor Corp 内燃機関の排気浄化装置
JP2009156164A (ja) * 2007-12-26 2009-07-16 Toyota Motor Corp 内燃機関の排気浄化装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103339351A (zh) * 2012-01-04 2013-10-02 丰田自动车株式会社 排气加热方法
JP2016133091A (ja) * 2015-01-21 2016-07-25 三菱重工業株式会社 排気ガスダクト、船舶
JP2016223401A (ja) * 2015-06-03 2016-12-28 愛三工業株式会社 排気浄化装置
JP2022526523A (ja) * 2019-03-27 2022-05-25 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. 排出ガス浄化装置、当該排出ガス浄化装置を具備する内燃エンジン、及び排出ガスを規制するための方法
JP7481359B2 (ja) 2019-03-27 2024-05-10 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. 排出ガス浄化装置、当該排出ガス浄化装置を具備する内燃エンジン、及び排出ガスを規制するための方法

Also Published As

Publication number Publication date
JPWO2011111118A1 (ja) 2013-06-27
JP5316695B2 (ja) 2013-10-16
EP2546486A1 (en) 2013-01-16
CN102791981A (zh) 2012-11-21
US20130004374A1 (en) 2013-01-03

Similar Documents

Publication Publication Date Title
JP4953107B2 (ja) 内燃機関の排気装置
JP5316695B2 (ja) 内燃機関の排気浄化システム
JP5299572B2 (ja) 内燃機関
JP6153715B2 (ja) 二次空気噴射装置のための故障診断システムを有する自動車及び故障診断方法
CN101490399B (zh) 内燃机的排气再循环系统
WO2011108024A1 (ja) 内燃機関の排気浄化装置
WO2011101896A1 (ja) 内燃機関の排気浄化装置
JP4720647B2 (ja) 内燃機関の排気還流装置
WO2012011148A1 (ja) 内燃機関の排気浄化装置
JP2011247208A (ja) 内燃機関
JP4730351B2 (ja) 内燃機関の排気浄化装置
WO2011125098A1 (ja) 内燃機関の排気装置
US9528421B2 (en) Exhaust device of internal combustion engine
JP2019135388A (ja) 内燃機関の排気浄化装置
JP6939986B2 (ja) 内燃機関の排気浄化装置の温度制御方法及び内燃機関の制御装置
JP2002256862A (ja) 内燃機関用排出ガス浄化装置
JP2010150978A (ja) 排気浄化装置
JP2011220302A (ja) 内燃機関の排気装置
JP2004092557A (ja) エンジン制御装置
JP2003083139A (ja) 内燃機関の排気昇温装置
JP2012012962A (ja) 内燃機関の排気装置
JP2011220300A (ja) 内燃機関の排気装置
JP2011220301A (ja) 内燃機関の排気装置
JP2020045818A (ja) 診断装置
JP2011236852A (ja) 内燃機関

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065399.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847352

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012504160

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13634083

Country of ref document: US

Ref document number: 2010847352

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE