WO2011111100A1 - 空気圧リニアガイド方式の並列スライダ装置およびその制御方法および測定装置 - Google Patents

空気圧リニアガイド方式の並列スライダ装置およびその制御方法および測定装置 Download PDF

Info

Publication number
WO2011111100A1
WO2011111100A1 PCT/JP2010/001714 JP2010001714W WO2011111100A1 WO 2011111100 A1 WO2011111100 A1 WO 2011111100A1 JP 2010001714 W JP2010001714 W JP 2010001714W WO 2011111100 A1 WO2011111100 A1 WO 2011111100A1
Authority
WO
WIPO (PCT)
Prior art keywords
slider
linear guide
pneumatic linear
air
parallel
Prior art date
Application number
PCT/JP2010/001714
Other languages
English (en)
French (fr)
Inventor
直居薫
石崎洋一
井内達人
関口孝一
Original Assignee
黒田精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黒田精工株式会社 filed Critical 黒田精工株式会社
Priority to PCT/JP2010/001714 priority Critical patent/WO2011111100A1/ja
Priority to KR1020127023341A priority patent/KR101562096B1/ko
Priority to DE112010005364T priority patent/DE112010005364T5/de
Priority to US13/261,422 priority patent/US8984971B2/en
Priority to JP2011047009A priority patent/JP5624916B2/ja
Priority to TW100107722A priority patent/TWI500902B/zh
Publication of WO2011111100A1 publication Critical patent/WO2011111100A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • F16C29/025Hydrostatic or aerostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness

Definitions

  • the present invention relates to a pneumatic linear guide type parallel slider device, a control method therefor, and a measuring device, and more specifically, a parallel slider in which two sliders are provided in parallel to each other so as to be movable by a pneumatic linear guide.
  • the present invention relates to an apparatus, a control method thereof, and a measuring apparatus using the parallel slider device.
  • a measuring device that measures the flatness (thickness unevenness) of the front and back surfaces of a large-diameter and thin disk (object to be measured) such as a silicon wafer having a diameter of 300 mm, the object to be measured along a predetermined plane, for example, on a vertical surface
  • a support body that is supported along the first and second guide rails that are arranged in parallel with each other along the plane on both sides of the front surface and the back surface of the support;
  • Each of the first and second guide rails has a first slider and a second slider which are individually movable in the longitudinal direction of the rail, and the front surface (surface) of the object to be measured is provided on the first slider.
  • the first measuring means (displacement meter) for measuring the distance to the measurement object is attached
  • the second measuring means (displacement meter) for measuring the distance to the back surface (back surface) of the object to be measured is attached to the second slider.
  • the first measuring means (displacement meter) for measuring the distance to the measurement object is attached
  • the second measuring means (displacement meter) for measuring the distance to the back surface (back surface) of the object to be measured
  • the linear guide that guides the movement of the first and second sliders in the longitudinal direction of the rails relative to the first and second guide rails of the first and second sliders on which the measuring means is mounted has high accuracy and straightness.
  • pneumatic linear guides with hydrostatic bearing structures are used.
  • Such a slider mechanism is called an air slide mechanism.
  • the guide rail can be set at a position close to the height position where the front and back surfaces of the measured object such as a silicon wafer are scanned. And the distance in the height direction of the displacement meter can be shortened.
  • each slider since the air slide mechanism is arranged independently on both the front side and the back side of the support, each slider must be driven individually in synchronization with each other. There is a possibility that the measurement position of the object to be measured by the displacement meter may be shifted on the front and back sides due to uneven feeding in the moving direction of the slider. It is feared that this causes an error in measuring the thickness of the object to be measured. Further, even if there is an error in the parallelism of the parallel two-axis air slide mechanisms arranged independently, an error is caused in the measurement of the thickness of the object to be measured.
  • the two-axis sliders are mechanically connected to each other in order to eliminate the deviation of the measurement position due to uneven feeding and to ensure parallelism. It has been.
  • the guide rails that make up the air slide mechanism arranged independently on the two axes have slight straightness errors and rolling direction errors.
  • the sliders that move on the two guide rails arranged in parallel each move so that the two sliders are synchronized with each other in the direction of movement even if the straightness error of this guide rail is very small.
  • the relative distance slightly changes in the direction orthogonal to the moving direction.
  • the problem to be solved by the present invention is that when two sliders are mechanically connected in the above-described pneumatic linear guide type parallel slider device, that is, a parallel air slide mechanism, the mechanical rigidity of the connecting portion of the slider And the air bearing rigidity (slider support rigidity) of the air slide mechanism influence each other to reduce the reproducibility of the parallelism, thereby ensuring a highly accurate reproducibility of the parallelism.
  • the pneumatic linear guide type parallel slider device is movable in the rail longitudinal direction to the first guide rail and the second guide rail which are arranged in parallel to each other, and to each of the first and second guide rails.
  • a first pneumatic linear guide and a second pneumatic linear guide each having an air gap between each guide rail and each slider.
  • the first slider and the second slider are mechanically connected to each other, and the slider support rigidity of the first pneumatic linear guide and the slider support rigidity of the second pneumatic linear guide are Are different from each other.
  • the slider support rigidity of the pneumatic linear guide is determined by changing the size of the air gap, the shape of the air pocket for static pressure, the diameter of the air ejection port, and the pressure receiving area of the slider, thereby changing the first pneumatic linear guide and the second pneumatic linear guide. And can be different.
  • the pneumatic linear guide type parallel slider device control method includes a first guide rail and a second guide rail arranged in parallel to each other, and a rail longitudinal direction in each of the first and second guide rails.
  • a first pneumatic linear guide and a second pneumatic linear guide each having an air gap between each guide rail and each slider.
  • a control method for a parallel slider device configured, wherein the first slider and the second slider are mechanically coupled to each other, wherein the air pressure supplied to the first pneumatic linear guide and the second Air pressure control is performed to vary the air pressure supplied to the air pressure linear guide.
  • the measuring apparatus includes the parallel slider apparatus according to the above-described invention, wherein a support body that supports an object to be measured is disposed between the first guide rail and the second guide rail, A first measuring means for measuring the distance to one surface of the object to be measured is attached to one slider, and a second distance to measure the distance to the other surface of the object to be measured is attached to the second slider. Measuring means are attached.
  • the slider support rigidity of the first pneumatic linear guide and the slider support rigidity of the second pneumatic linear guide are different from each other, so The straight error is stably absorbed on the side where the slider support rigidity, that is, the air bearing rigidity is low.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2.
  • the pneumatic circuit diagram of the pneumatic control used for implementation of the parallel slider apparatus of the pneumatic linear guide system by this embodiment, and its control method.
  • the pneumatic circuit diagram of the pneumatic control which shows the parallel slider apparatus of the pneumatic linear guide system by other embodiment.
  • a support 12 is disposed on the horizontal upper surface of the base 10.
  • the support 12 supports a disk-shaped silicon wafer W that is an object to be measured.
  • the support 12 is fixedly mounted on the base 10 and is fixed to the fixed base 14 so as to be rotatable. And an annular rotator 16.
  • the annular rotator 16 is supported by a stationary base 14 around a horizontal central axis extending in the front-rear direction by a static pressure air bearing (not shown).
  • a plurality of support arms 20 having rollers 18 at their tips are provided at equal intervals in the circumferential direction on the inner peripheral portion of the annular rotating body 16.
  • the annular rotating body 16 supports the silicon wafer W along the vertical plane in the annular space by the support arm 20 in a state where the roller 18 is engaged with an outer peripheral groove (not shown) of the silicon wafer W. If a more detailed description of the support structure of the silicon wafer W is necessary, refer to Japanese Patent No. 4132503.
  • the support 12 incorporates a brushless DC motor having a fixed base 14 as a stator member and an annular rotating body 16 as a rotor.
  • This brushless DC motor drives the annular rotator 16 to rotate.
  • Left and right end brackets 30 and 32 are attached to the upper surface of the base 10.
  • the left and right end brackets 30 and 32 are arranged on the left and right sides of the support 12, and the left and right end portions of the front guide rail (first guide rail) 40 and the rear guide rail (second guide rail) 42 are arranged on the upper part. Each is fixedly supported.
  • the front guide rail 40 is a straight rail (straight) having an I-shaped cross-sectional shape having protruding portions (flange portions) 40A and 40B in the vertical direction (see FIG. 3).
  • the front surface of the support 12 extends horizontally in the left-right direction while being fixedly connected to the upper portions of the brackets 30, 32 and bridged between the left and right end brackets 30, 32.
  • the rear guide rail 42 is a straight rail (straight) having an I-shaped cross section having protruding portions 42A and 42B in the vertical direction, and the left and right end portions are fixed to the upper portions of the left and right end brackets 30 and 32, respectively.
  • the back side of the support 12 extends horizontally in the left-right direction.
  • the front guide rail 40 and the rear guide rail 42 described above are located at the same height and extend in parallel to each other.
  • front guide rail 40 and the rear guide rail 42 are connected to each other at the upper left and right ends by reinforcing connection plates 34 and 36.
  • a front slider (first slider) 44 is provided on the front guide rail 40 so as to be movable in the left-right direction, which is the rail longitudinal direction.
  • the front slider 44 is configured as a rectangular cylinder surrounding the outer periphery of the front guide rail 40 by four rectangular plate members 44A to 44D.
  • a first air gap G1 (see FIG. 5) is set in between, and air ejection ports 46 opened toward the opposing surfaces are formed in the rectangular plate members 44A to 44D of the front slider 44, respectively. (See FIG. 3).
  • Compressed air adjusted to the first pressure P1 by the first pressure regulator 102 is supplied from the compressed air source 100 to the air ejection port 46 (see FIG. 5).
  • a first pneumatic linear guide 48 of a hydrostatic bearing type is formed between the front guide rail 40 and the front slider 44.
  • the linear movement of the front slider 44 along the rail longitudinal direction of the front guide rail 40 is guided by the first pneumatic linear guide 48 in a non-contact state with respect to the front guide rail 40.
  • a rear slider (second slider) 50 is provided on the rear guide rail 42 so as to be movable in the left-right direction which is the rail longitudinal direction.
  • the rear slider 50 is formed into a rectangular cylinder surrounding the outer periphery of the rear guide rail 42 by four rectangular plate members 50A to 50D.
  • a second air gap G2 (see FIG. 5) is set between the two surfaces, and air ejection ports 52 opened toward the opposing surfaces are formed in the rectangular plate members 50A to 50D of the rear slider 50, respectively. (See FIG. 3).
  • a second pneumatic linear guide 54 of a hydrostatic bearing type is configured between the rear guide rail 42 and the rear slider 50. The linear movement of the rear slider 50 along the rail longitudinal direction of the rear guide rail 42 is guided by the second pneumatic linear guide 54 in a non-contact state with respect to the rear guide rail 42.
  • FIGS. 3 and 5 the air gaps of the first and second pneumatic linear guides 48 and 54 are shown exaggerated larger than actual.
  • Connecting base members 56 and 58 are fixedly attached to the lower bottoms of the front slider 44 and the rear slider 50, respectively.
  • the front and rear ends of the connecting round bars 60, 62 are fixed to the left and right sides of each of the connecting base members 56, 58 by V blocks 68, 70 fixed to the connecting base members 56, 58 by fastening bolts 64, 66. (See FIG. 4). Accordingly, the front slider 44 and the rear slider 50 are mechanically and rigidly connected to the same left-right direction position (scanning direction position) and the same front-rear direction position.
  • This mechanical connection is performed by holding the connecting round bars 60, 62 by the V blocks 68, 70 and pressing the connecting round bars 60, 62 against the left and right surfaces (planes) of the connecting base members 56, 58. Therefore, it is performed with high lateral accuracy.
  • a stator member 74 of a front linear servo motor 72 is fixedly mounted by a bracket 76 at a front position of the front guide rail 40 of the base 10.
  • the stator member 74 is long in the left-right direction and extends in parallel with the front guide rail 40.
  • a movable member 78 of the front linear servo motor 72 is attached to the front slider 44. As a result, the front slider 44 is driven in the left-right direction by the front linear servo motor 72.
  • the stator member 82 of the rear linear servo motor 80 is fixedly attached to the rear position of the rear guide rail 42 of the base 10 by a bracket 84.
  • the stator member 82 is long in the left-right direction and extends in parallel with the rear guide rail 42.
  • a movable member 86 of a rear linear servo motor 80 is attached to the rear slider 50. As a result, the rear slider 50 is driven in the left-right direction by the rear linear servo motor 80.
  • the front slider 44 and the rear slider 50 are driven by the individual front linear servo motor 72 and the rear linear servo motor 80.
  • the left and right sides of the front slider 44 and the rear slider 50 are respectively arranged between the front guide rail 40 and the front slider 44 and between the rear guide rail 42 and the rear slider 50.
  • a linear scale for detecting the actual position of the direction movement is provided.
  • the position control of the front slider 44 and the rear slider 50 by the front linear servo motor 72 and the rear linear servo motor 80 is performed based on the actual positions of the front slider 44 and the rear slider 50 detected by the linear scale (not shown).
  • the feedback compensation information is synchronized in such a manner that the front side slider 44 and the rear side slider 50 have the same lateral movement position (scanning position) under the same position command by a feedback control system independent of each other in a fully closed manner. Is called.
  • a fine motion table device 90 having a table 88 movable in the front-rear direction is mounted on the front slider 44.
  • a displacement meter 92 is mounted on the table 88.
  • the displacement meter 92 is a non-contact type, such as a capacitance displacement meter, and is disposed at a height that passes through the center of the silicon wafer W that is an object to be measured attached to the annular rotating body 16. Measure the distance to the surface of W.
  • a fine movement table device 96 having a table 94 movable in the front-rear direction is mounted on the rear slider 50.
  • a displacement meter 98 is mounted on the table 94.
  • the displacement meter 98 is also a non-contact type, such as a capacitance displacement meter, and is disposed at a height that passes through the center of the silicon wafer W that is the object to be measured attached to the annular rotating body 16. Measure the distance to the back side of W.
  • the flatness of the silicon wafer W is measured by moving the front slider 44 and the rear slider 50 in the left-right direction while the silicon wafer W is rotated by the annular rotator 16, and the displacement gauges 92 and 98 are changed in diameter. This is done by measuring the distance from the scanning position of the displacement meters 92, 98 to the front and back surfaces of the silicon wafer W by the displacement meters 92, 98 while scanning in a direction transverse to the direction.
  • the size of the second air gap G2 of the second pneumatic linear guide 54 is the same as that of the first pneumatic linear guide 48, as well shown in FIG. It is larger than the air gap G1.
  • the set pressure of the first pressure regulator 102 and the set pressure of the second pressure regulator 104 are the same, and the supply air pressure of the first pneumatic linear guide 48 and the second pneumatic linear guide 54
  • the supply air pressure may be the same pressure.
  • the slider support rigidity of the second pneumatic linear guide 54 is lower than the slider support rigidity of the first pneumatic linear guide 48 by an amount larger than the air gap G1.
  • the front and rear sliders 44 and 50 that move on the two front and rear guide rails 40 and 42 arranged in parallel to each other are perpendicular to the moving direction (if the guide rails 40 and 42 have a straightness error) (
  • the relative distance in the front-back direction will fluctuate.
  • the first air gap G1 of the first pneumatic linear guide 48 changes because the slider support rigidity of the second pneumatic linear guide 54 is lower than the slider support rigidity of the first pneumatic linear guide 48.
  • the second air gap G2 of the second pneumatic linear guide 54 changes, and the absorption of the straight error due to the air gap change is stably performed on the side where the slider support rigidity is low.
  • the stability of the relative distance between the front slider 44 and the rear slider 50 that are mechanically coupled is improved, and the flatness measurement and thickness measurement of the silicon wafer W are performed by the straight error component of the guide rails 40 and 42. It is performed with high accuracy without including.
  • the supplied air pressure may be different between the first pneumatic linear guide 48 and the second pneumatic linear guide 54.
  • the set pressure of the first pressure regulator 102 and the set pressure of the second pressure regulator 104 are set to different values, and the second pressure P2 that is the supply air pressure of the second air pressure linear guide 54 is What is necessary is just to make it slightly lower than the 1st pressure P1 which is the supply air pressure of the 1st pneumatic linear guide 48.
  • the size of the first air gap G1 of the first pneumatic linear guide 48 and the size of the second air gap G2 of the second pneumatic linear guide 54 may be the same.
  • the stability of the relative distance between the front slider 44 and the rear slider 50 that are mechanically coupled is improved, and the flatness measurement and thickness measurement of the silicon wafer W are performed by the straight error component of the guide rails 40 and 42. It is performed with high accuracy without including.
  • the first pressure regulator 102 and the second pressure regulator 104 are arranged in parallel. However, as indicated by the phantom line in FIG. 5, the first pressure having the higher set pressure is used.
  • the regulator 102 may be arranged in series with the second pressure regulator 104 closer to the compressed air source 100 than the second pressure regulator 104 on the lower side.
  • the supply air pressure may be different between the first pneumatic linear guide 48 and the second pneumatic linear guide 54.
  • the control of the supply air pressure is performed by the first pressure regulator 102 and the second pressure regulator 104 arranged in parallel, or the first pressure regulator 102 having the higher set pressure is controlled by the first pressure regulator 102 on the lower side.
  • the second pressure regulator 104 may be arranged in series with the second pressure regulator 104 on the compressed air source 100 side from the second pressure regulator 104.
  • the bearing rigidity of the pneumatic linear guide is the shape of the air pocket for static pressure, the diameter (inner diameter) of the air ejection port that supplies air pressure to the air gap, Since it depends on the pressure receiving area of the slider, the first pneumatic linear guide 48 and the second pneumatic linear guide 54 can also be set to have different slider support rigidity by these settings.
  • the rear area of the second pneumatic linear guide 54 is determined from the opening area A1 with respect to the air gap of the static pressure air pocket 47 formed in the front slider 44 of the first pneumatic linear guide 48.
  • the opening area A2 with respect to the air gap of the static pressure air pocket 53 formed in the side slider 50 is large.
  • the second air diameter D1 of the air ejection port 46 formed in the front slider 44 for supplying air pressure to the air gap of the first air pressure linear guide 48 is
  • the diameter D2 of the air ejection port 52 formed in the rear slider 50 for supplying air pressure to the air gap of the air pressure linear guide 54 is large.
  • the pressure receiving area of the first pneumatic linear guide 48 in the front slider 44 and the pressure receiving area of the second pneumatic linear guide 54 in the rear slider 50 are the left-right direction (movement direction) of the front slider 44 and the rear slider 50 itself. By changing the dimensions, the areas can be different, and the smaller the pressure receiving area, the lower the slider support rigidity.
  • the pneumatic linear guide having different slider support rigidity can be similarly applied to a porous type air bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

【課題】空気圧リニアガイドによる並列スライダ装置において、二つのスライダを機械的に連結した場合に、スライダの連結部分の機械的剛性とエアスライド機構のエア軸受剛性とが互いに影響を及ぼしあって平行度の再現性が低下することを排除し、高精度な平行度再現性を保証すること。 【解決手段】第1の空気圧リニアガイド(48)と第2の空気圧リニアガイド(54)とでエアギャップの大きさや供給空気圧を相違させることにより、スライダ支持剛性(エア軸受剛性)に差を生じさせ、エアギャップ変化による真値誤差の吸収が、エア軸受剛性が低い側において安定して行われるようにする。

Description

空気圧リニアガイド方式の並列スライダ装置およびその制御方法および測定装置
 本発明は、空気圧リニアガイド方式の並列スライダ装置およびその制御方法および測定装置に関し、更に詳細には、互い平行に二本のガイドレールに各々スライダが空気圧リニアガイドによって移動可能に設けられた並列スライダ装置およびその制御方法およびその並列スライダ装置を用いられた測定装置に関する。
 直径300mmのシリコンウェーハ等、大口径で薄い円盤(被測定物)の表裏面の平坦度(厚さむら)を測定する測定装置として、被測定物を所定の平面に沿って、例えば垂直面に沿って支持する支持体と、前記支持体の前面側と背面側の両側に各々前記平面に沿って互いに平行に配置された直線状の第1のガイドレールおよび第2のガイドレールと、前記第1および第2のガイドレールの各々にレール長手方向に個別に移動可能に設けられた第1のスライダおよび第2のスライダとを有し、前記第1のスライダに前記被測定物の前面(表面)までの距離を測定する第1の測定手段(変位計)が取り付けられ、前記第2のスライダに前記被測定物の背面(裏面)までの距離を測定する第2の測定手段(変位計)が取り付けられたものが知られている(例えば、特許文献1)。
 測定手段を搭載している第1および第2のスライダの第1および第2のガイドレールに対する第1および第2のスライダのレール長手方向の移動を案内するリニアガイドは、高精度な直進性を保証するために、各々、静圧軸受構造による空気圧リニアガイドが用いられている。このようなスライダ機構はエアスライド機構と呼ばれている。
 上述の構成による測定装置では、被測定物を支持する支持体の前面側と背面側の両側に各々独立してエアスライド機構を配置する必要があるが、ガイドレールの高さ位置を、変位計がシリコンウェーハ等の被測定物の表裏面を走査する高さ位置に近い位置に設定するすることができ、ガイドレールが支持体の下方に配置されているような場合に比して、ガイドレールと変位計との高さ方向の離間距離を短くすることができる。
 このことにより、ガイドレールに対するスライダの移動軸線周りの変位に起因するローリング方向誤差が、ガイドレールと変位計との高さ方向の離間距離に比例して誤差が大きくなることが排除され、表裏面の独立した平坦度測定を高精度に行えるようになる。
日本国特許庁公開特許(特開平11-351867号)公報
 しかしながら、この場合には、支持体の前面側と背面側の両側に独立してエアスライド機構を配置していることから、それぞれのスライダを互いに同期させて個別に駆動しなくてはならず、スライダの移動方向に送りむらによって変位計による被測定物の測定位置に表裏でずれを生じる虞がある。このことに起因して被測定物の厚さ測定に誤差を引き起すことが懸念される。また、独立に配置された並列2軸のエアスライド機構の平行度に誤差があっても、被測定物の厚さ測定に誤差を引き起することになる。
 このことに対して、送りむらによる測定位置のずれを排除し、かつ平行度を確保するために、2軸のスライダを互いに機械的に連結することが、本願出願人と同一の出願人によって考えられている。
 しかし、2軸独立に配置したエアスライド機構を構成するガイドレールは、わずかながら真直誤差やローリング方向誤差を有する。平行に配置された2本のガイドレール上を各々移動するスライダは、このガイドレールの真直誤差がごく僅かであっても、二つのスライダが移動方向の位置を互いに合わせて同期するように移動した場合、この移動方向と直交する方向に相対距離が僅かながら変化することになる。
 このような状況において、前述のように2軸のスライダを互いに機械的に連結した場合には、連結部分の機械的剛性が高いほど、上記の相対距離の誤差を解消しようとする一方で、スライドは、一定のエア軸受剛性にて全面拘束されているために、これら機械的結合部の剛性とエア軸受剛性とが相互に干渉し合うこととなり、結果として上記の相対距離を一定に保つ目的に対し、不安定な要素となってしまう。
 このため、二つのスライダを連結した場合には、この連結部分の機械的剛性とエアスライド機構のエア軸受剛性(空気圧リニアガイドによるスライダの支持剛性)とが互いに影響を及ぼしあって平行度の再現性を低下させる懸念がある。
 この発明が解決しようとする課題は、上述のような空気圧リニアガイド方式の並列スライダ装置、つまり並列エアスライド機構において、二つのスライダを機械的に連結した場合に、スライダの連結部分の機械的剛性とエアスライド機構のエア軸受剛性(スライダ支持剛性)とが互いに影響を及ぼしあって平行度の再現性が低下することを排除し、高精度な平行度再現性を保証することである。
 この発明による空気圧リニアガイド方式の並列スライダ装置は、互いに平行に配置された第1のガイドレールおよび第2のガイドレールと、前記第1および第2のガイドレールの各々にレール長手方向に移動可能に設けられた第1のスライダおよび第2のスライダとを有し、各ガイドレールと各スライダとの間にエアギャップを有する第1の空気圧リニアガイドと第2の空気圧リニアガイドとが構成されている並列スライダ装置であって、前記第1のスライダと前記第2のスライダとが互いに機械的に連結され、第1の空気圧リニアガイドのスライダ支持剛性と第2の空気圧リニアガイドのスライダ支持剛性とが互いに相違している。
 空気圧リニアガイドのスライダ支持剛性は、エアギャップの大きさ、静圧用エアポケットの形状、空気噴出ポートの口径、スライダの受圧面積を変えることにより、第1の空気圧リニアガイドと第2の空気圧リニアガイドとで相違させることができる。
 この発明による空気圧リニアガイド方式の並列スライダ装置の制御方法は、互いに平行に配置された第1のガイドレールおよび第2のガイドレールと、前記第1および第2のガイドレールの各々にレール長手方向に移動可能に設けられた第1のスライダおよび第2のスライダとを有し、各ガイドレールと各スライダとの間にエアギャップを有する第1の空気圧リニアガイドと第2の空気圧リニアガイドとが構成され、前記第1のスライダと前記第2のスライダとが互いに機械的に連結されている並列スライダ装置の制御方法であって、前記第1の空気圧リニアガイドに供給する空気圧と前記第2の空気圧リニアガイドに供給する空気圧を相違させる空気圧制御を行う。
 この発明による測定装置は、上述の発明による並列スライダ装置を有し、前記第1のガイドレールと前記第2のガイドレールとの間に、被測定物を支持する支持体が配置され、前記第1のスライダに前記被測定物の一方の面までの距離を測定する第1の測定手段が取り付けられ、前記第2のスライダに前記被測定物の他方の面までの距離を測定する第2の測定手段が取り付けられている。
 この発明による空気圧リニアガイド方式の並列スライダ装置によれば、第1の空気圧リニアガイドのスライダ支持剛性と第2の空気圧リニアガイドのスライダ支持剛性とが互いに相違していることにより、エアギャップ変化による真直誤差の吸収が、スライダ支持剛性、つまりエア軸受剛性が低い側において安定して行われるようになる。
 これにより、スライダの連結部分の機械的剛性とエア軸受剛性とが互いに影響を及ぼし合って平行度の再現性が低下することが排除され、高精度な平行度再現性が保証される。
この発明による空気圧リニアガイド方式の並列スライダ装置を用いられたウェーハ平坦度測定装置の一つの実施形態を示す斜視図。 本実施形態によるウェーハ平坦度測定装置の正面図。 図2の線III-IIIに沿った断面図。 本実施形態による空気圧リニアガイド方式の並列スライダ装置の前後スライダ連結機構部分の斜視図。 本実施形態による空気圧リニアガイド方式の並列スライダ装置およびその制御方法の実施に用いられる空気圧制御の空気圧回路図。 他の実施形態による空気圧リニアガイド方式の並列スライダ装置を示す空気圧制御の空気圧回路図。
 この発明に係る好適な実施の形態を添付図面を参照して説明する。なお、以下の添付図面を参照した説明において用いられる前後、上下、左右の方向は、各添付図面に表記された方向とする。
 図1、図2に示されているように、基台10の水平な上面には支持体12が配置されている。支持体12は、被測定物である円盤状のシリコンウェーハWを支持するものであり、基台10上に固定装着されたドーム形状の固定台14と、固定台14に回転可能に取り付けられた円環回転体16とを有する。
 円環回転体16は静圧式のエアベアリング(図示省略)によって前後方向に延在する水平な中心軸線周りに固定台14より回転可能に支持されている。円環回転体16の内周部には、先端にコロ18を有する複数個の支持アーム20が周方向に等間隔に設けられている。円環回転体16は、コロ18がシリコンウェーハWの外周溝(図示省略)に係合する状態で、支持アーム20によってシリコンウェーハWを円環状空間内に垂直面に沿って支持する。なお、このシリコンウェーハWの支持構造について、より詳細な説明が必要ならば、特許第4132503号公報を参照されたい。
 図には示されていないが、支持体12には、固定台14をステータ部材、円環回転体16をロータとするブラシレスDCモータが組み込まれている。このブラシレスDCモータは円環回転体16を回転駆動する。
 基台10の上面には左右のエンドブラケット30、32が取り付けられている。左右のエンドブラケット30、32は、支持体12の左右両側に配置され、上部に前側ガイドレール(第1のガイドレール)40と後側ガイドレール(第2のガイドレール)42の左右両端部を各々固定支持している。
 換言すると、前側ガイドレール40は、上下に迫り出し部(フランジ部)40A、40Bを有するI形横断面形状の直線レール(真直)であり(図3参照)、左右の端部を左右のエンドブラケット30、32の上部に固定連結され、左右のエンドブラケット30、32間に橋渡しされた状態で、支持体12の前面側を左右方向に水平に延在している。
 同様に、後側ガイドレール42は、上下に迫り出し部42A、42Bを有するI形横断面形状の直線レール(真直)であり、左右の端部を左右のエンドブラケット30、32の上部に固定連結され、左右のエンドブラケット30、32間に橋渡しされた状態で、支持体12の背面側を左右方向に水平に延在している。
 上述の前側ガイドレール40と後側ガイドレール42とは、同一高さ位置にあって互い平行に延在している。
 また、前側ガイドレール40と後側ガイドレール42は、左右両端の上部を補強連結板34、36によって互い連結されている。
 前側ガイドレール40には前側スライダ(第1のスライダ)44がレール長手方向である左右方向に移動可能に設けられている。前側スライダ44は、4枚の矩形板材44A~44Dにより、前側ガイドレール40の外周を取り囲む四角筒体に構成されている。
 前側スライダ44の矩形板材44A~44Dの各々の内面と、これに対向する前側ガイドレール40の上側の迫り出し部40Aの上面及び前後両面と下側の迫り出し部40Bの下底面及び前後両面との間には、各々、第1のエアギャップG1(図5参照)が設定され、前側スライダ44の矩形板材44A~44Dには各々対向面に向けて開口した空気噴出ポート46が形成されている(図3参照)。
 空気噴出ポート46には、圧縮空気源100より第1のプレッシャレギュレータ102によって第1の圧力P1に調圧された圧縮空気が供給される(図5参照)。これにより、前側ガイドレール40と前側スライダ44との間に静圧軸受式の第1の空気圧リニアガイド48が構成される。前側ガイドレール40のレール長手方向に沿った前側スライダ44の直線移動は、第1の空気圧リニアガイド48によって前側ガイドレール40に対して非接触状態で案内される。
 同様に、後側ガイドレール42には後側スライダ(第2のスライダ)50がレール長手方向である左右方向に移動可能に設けられている。後側スライダ50は、4枚の矩形板材50A~50Dにより、後側ガイドレール42の外周を取り囲む四角筒体に構成されている。
 後側スライダ50の矩形板材50A~50Dの各々の内面と、これに対向する後側ガイドレール42の上側の迫り出し部42Aの上面及び前後両面と下側の迫り出し部42Bの下底面及び前後両面との間には、各々、第2のエアギャップG2(図5参照)が設定され、後側スライダ50の矩形板材50A~50Dには各々対向面に向けて開口した空気噴出ポート52が形成されている(図3参照)。
 空気噴出ポート52には、圧縮空気源100より第2のプレッシャレギュレータ104によって第2の圧力P2に調圧された圧縮空気が供給される(図5参照)。これにより、後側ガイドレール42と後側スライダ50との間に静圧軸受式の第2の空気圧リニアガイド54が構成される。後側ガイドレール42のレール長手方向に沿った後側スライダ50の直線移動は、第2の空気圧リニアガイド54によって後側ガイドレール42に対して非接触状態で案内される。
 なお、図3、図5では、第1、第2の空気圧リニアガイド48、54のエアギャップは、実際より大きく誇張して図示されている。
 前側スライダ44と後側スライダ50の各々の下底部には連結用ベース部材56、58が固定装着されている。連結用ベース部材56、58の各々の左右両面には、連結丸棒60、62の前後両端部が締結ボルト64、66によって連結用ベース部材56、58に固定されたVブロック68、70によって固定されている(図4参照)。これにより、前側スライダ44と後側スライダ50とが互いに同一の左右方向位置(走査方向位置)および同一の前後方向位置に、機械的に剛固に連結される。
 この機械的な連結は、Vブロック68、70によって連結丸棒60、62を保持して連結丸棒60、62を連結用ベース部材56、58の各々の左右両面(平面)に押し付けることにより行われているので、高い左右方向位置精度をもって行われることになる。
 基台10の前側ガイドレール40の前側位置には前側リニアサーボモータ72の固定子部材74がブラケット76によって固定装着されている。固定子部材74は、左右方向に長く、前側ガイドレール40と平行に延在している。前側スライダ44には前側リニアサーボモータ72の可動子部材78が取り付けられている。これにより、前側スライダ44は前側リニアサーボモータ72によって左右方向に駆動される。
 基台10の後側ガイドレール42の後側位置には後側リニアサーボモータ80の固定子部材82がブラケット84によって固定装着されている。固定子部材82は、左右方向に長く、後側ガイドレール42と平行に延在している。後側スライダ50には後側リニアサーボモータ80の可動子部材86が取り付けられている。これにより、後側スライダ50は後側リニアサーボモータ80によって左右方向に駆動される。
 このようにして、前側スライダ44と後側スライダ50は、個別の前側リニアサーボモータ72、後側リニアサーボモータ80により駆動される。図には示されていないが、前側ガイドレール40と前側スライダ44との間と、後側ガイドレール42と後側スライダ50との間には、各々、前側スライダ44、後側スライダ50の左右方向移動の実位置を検出するリニアスケールが設けられている。
 前側リニアサーボモータ72、後側リニアサーボモータ80による前側スライダ44、後側スライダ50の位置制御は、前述のリニアスケール(図示省略)より検出される前側スライダ44、後側スライダ50の実位置をフィードバック補償情報としてフルクローズ方式で、互いに独立したフィードバック制御系によって、同一位置指令のもとに前側スライダ44と後側スライダ50の左右方向移動位置(走査位置)が同じなるように同期して行われる。
 前側スライダ44上には前後方向に移動可能なテーブル88を備えた微動テーブル装置90が取り付けられている。テーブル88には変位計92が搭載されている。変位計92は、静電容量式変位計等、非接触式のものであり、円環回転体16に取り付けられた被測定物であるシリコンウェーハWの中心を通る高さに配置され、シリコンウェーハWの表面までの距離を測定する。
 同様に、後側スライダ50上には前後方向に移動可能なテーブル94を備えた微動テーブル装置96が取り付けられている。テーブル94には変位計98が搭載されている。変位計98も、静電容量式変位計等、非接触式のものであり、円環回転体16に取り付けられた被測定物であるシリコンウェーハWの中心を通る高さに配置され、シリコンウェーハWの裏面までの距離を測定する。
 シリコンウェーハWの平坦度測定は、円環回転体16によってシリコンウェーハWを回転させた状態で、前側スライダ44、後側スライダ50の左右方向移動によって変位計92、98を、シリコンウェーハWを直径方向に横切る方向に走査移動しながら変位計92、98によって変位計92、98の走査位置からシリコンウェーハWの表面、裏面までの距離を測定することにより行われる。
 本実施形態に重要なことは、図5によく示されているように、第2の空気圧リニアガイド54の第2のエアギャップG2の大きさは、第1の空気圧リニアガイド48の第1のエアギャップG1より大きいことである。なお、本実施形態では、第1のプレッシャレギュレータ102の設定圧と第2のプレッシャレギュレータ104の設定圧とが同じで、第1の空気圧リニアガイド48の供給空気圧と第2の空気圧リニアガイド54の供給空気圧とが同一圧であってよい。
 このエアギャップの大きさの相違により、第1の空気圧リニアガイド48と第2の空気圧リニアガイド54とでスライダ支持剛性(エア軸受剛性)に差が生じ、第2のエアギャップG2が第1のエアギャップG1より大きい分、第2の空気圧リニアガイド54のスライダ支持剛性が第1の空気圧リニアガイド48のスライダ支持剛性より低くなる。
 互いに平行に配置された前後2本のガイドレール40、42上を各々移動する前側と後側のスライダ44、50は、ガイドレール40、42に真直誤差があると、移動方向と直交する方向(前後方向)の相対距離が変動することになる。相対距離が変動すると、第2の空気圧リニアガイド54のスライダ支持剛性が第1の空気圧リニアガイド48のスライダ支持剛性より低いことにより、第1の空気圧リニアガイド48の第1のエアギャップG1は変化することなく、第2の空気圧リニアガイド54の第2のエアギャップG2が変化し、エアギャップ変化による真直誤差の吸収が、スライダ支持剛性が低い側において安定して行われるようになる。
 これにより、前側スライダ44と後側スライダ50の相対距離変動が生じることが回避され、両スライダ44、50の相互連結部分の機械的剛性とスライダ支持剛性とが互いに影響を及ぼし合って両スライダ44、50の平行度の再現性が低下することが排除され、高精度な平行度再現性が保証される。
 この結果、機械的結合されている前側スライダ44と後側スライダ50との相対距離の安定度が向上し、シリコンウェーハWの平坦度測定、厚さ測定が、ガイドレール40、42の真直誤差成分を含むことなく、高精度に行われるようになる。
 他の実施形態として、第1の空気圧リニアガイド48と第2の空気圧リニアガイド54とで供給空気圧が相違していてもよい。この実施形態では、第1のプレッシャレギュレータ102の設定圧と第2のプレッシャレギュレータ104の設定圧とを違った値にし、第2の空気圧リニアガイド54の供給空気圧である第2の圧力P2を、第1の空気圧リニアガイド48の供給空気圧である第1の圧力P1より少し低くすればよい。なお、この実施形態では、第1の空気圧リニアガイド48の第1のエアギャップG1の大きさと第2の空気圧リニアガイド54の第2のエアギャップG2の大きさは同じであってよい。
 この供給空気圧の相違により、第1の空気圧リニアガイド48と第2の空気圧リニアガイド54とでスライダ支持剛性(エア軸受剛性)に差が生じ、第2の圧力P2が第1の圧力P1より低い分、第2の空気圧リニアガイド54のスライダ支持剛性が第1の空気圧リニアガイド48のスライダ支持剛性より低くなる。
 これにより、この実施形態でも、前側スライダ44と後側スライダ50の相対距離変動が生じることが回避され、両スライダ44、50の相互連結部分の機械的剛性とスライダ支持剛性とが互いに影響を及ぼし合って両スライダ44、50の平行度の再現性が低下することが排除され、高精度な平行度再現性が保証される。
 この結果、機械的結合されている前側スライダ44と後側スライダ50との相対距離の安定度が向上し、シリコンウェーハWの平坦度測定、厚さ測定が、ガイドレール40、42の真直誤差成分を含むことなく、高精度に行われるようになる。
 上述の実施形態では、第1のプレッシャレギュレータ102と第2のプレッシャレギュレータ104とは並列配置であるが、図5に仮想線によって示されているように、設定圧が高いほうの第1のプレッシャレギュレータ102を、低い側の第2のプレッシャレギュレータ104より圧縮空気源100側に、第2のプレッシャレギュレータ104と直列に配置してもよい。
 なお、必要に応じて、第1の空気圧リニアガイド48の第1のエアギャップG1の大きさと第2の空気圧リニアガイド54の第2のエアギャップG2の大きさとを相違させることに加えて、第1の空気圧リニアガイド48と第2の空気圧リニアガイド54とで供給空気圧を相違させてもよい。この場合も、供給空気圧の制御は、並列配置の第1のプレッシャレギュレータ102と第2のプレッシャレギュレータ104とによって行うことも、設定圧が高いほうの第1のプレッシャレギュレータ102を、低い側の第2のプレッシャレギュレータ104より圧縮空気源100側に、第2のプレッシャレギュレータ104と直列に配置して行うこともできる。
 空気圧リニアガイドの軸受剛性、つまりスライダ支持剛性は、エアギャップの大きさ、供給空気圧の圧力値以外に、静圧用エアポケットの形状、エアギャップに空気圧を供給する空気噴出ポートの口径(内径)、スライダの受圧面積によっても決まるから、これらの設定によっても、第1の空気圧リニアガイド48と第2の空気圧リニアガイド54とでスライダ支持剛性を異なったものに設定することもできる。
 図6に示されている実施例では、第1の空気圧リニアガイド48の前側スライダ44に形成されている静圧用エアポケット47のエアギャップに対する開口面積A1より、第2の空気圧リニアガイド54の後側スライダ50に形成されている静圧用エアポケット53のエアギャップに対する開口面積A2が大きい。
 また、図6に示されている実施例では、第1の空気圧リニアガイド48のエアギャップに空気圧を供給するために前側スライダ44に形成されている空気噴出ポート46の口径D1より、第2の空気圧リニアガイド54のエアギャップに空気圧を供給するために後側スライダ50に形成されている空気噴出ポート52の口径D2が大きい。
 前側スライダ44における第1の空気圧リニアガイド48の受圧面積と、後側スライダ50における第2の空気圧リニアガイド54の受圧面積とは、前側スライダ44、後側スライダ50自体の左右方向(移動方向)の寸法を変えることにより、異なった面積とすることができ、受圧面積が小さいほうがスライダ支持剛性が低い。
 なお、上述したように、スライダ支持剛性が異なる空気圧リニアガイドは、多孔質タイプのエアーベアリングによるものにも、同様に適用することができる。
 以上、本発明を、その好適形態実施例について説明したが、当業者であれば容易に理解できるように、本発明はこのような実施例により限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。

Claims (9)

  1.  互いに平行に配置された第1のガイドレールおよび第2のガイドレールと、前記第1および第2のガイドレールの各々にレール長手方向に移動可能に設けられた第1のスライダおよび第2のスライダとを有し、各ガイドレールと各スライダとの間にエアギャップを有する第1の空気圧リニアガイドと第2の空気圧リニアガイドとが構成されている並列スライダ装置であって、
     前記第1のスライダと前記第2のスライダとが互いに機械的に連結され、
     第1の空気圧リニアガイドのスライダ支持剛性と第2の空気圧リニアガイドのスライダ支持剛性とが互いに相違している並列スライダ装置。
  2.  前記第1のスライダと前記第1のガイドレールとの間のエアギャップの大きさと前記第2のスライダと前記第2のガイドレールとの間のエアギャップの大きさとが互いに相違している請求項1に記載の並列スライダ装置。
  3.  前記第1の空気圧リニアガイドと前記第2の空気圧リニアガイドとで供給空気圧が相違している請求項1に記載の並列スライダ装置。
  4.  前記第1の空気圧リニアガイドに供給する空気圧を第1の値に設定する第1の空気圧設定手段と、
     前記第2の空気圧リニアガイドに供給する空気圧を前記第1の値とは異なった第2の値に設定する第2の空気圧設定手段とを有する請求項3に記載の並列スライダ装置。
  5.  前記第1の空気圧リニアガイドと前記第2の空気圧リニアガイドには各々静圧用エアポケットが形成されており、前記第1の空気圧リニアガイドの前記静圧用エアポケットの形状と前記第2の空気圧リニアガイドの前記静圧用エアポケットの形状が互いに相違している請求項1に記載の並列スライダ装置。
  6.  前記第1の空気圧リニアガイドのエアギャップに空気圧を供給する空気噴出ポートの口径と前記第2の空気圧リニアガイドのエアギャップに空気圧を供給する空気噴出ポートの口径とが互いに相違している請求項1に記載の並列スライダ装置。
  7.  前記第1のスライダにおける前記第1の空気圧リニアガイドの受圧面積と前記第2のスライダにおける第2の空気圧リニアガイドのの受圧面積とが互いに相違している請求項1に記載の並列スライダ装置。
  8.  互いに平行に配置された第1のガイドレールおよび第2のガイドレールと、前記第1および第2のガイドレールの各々にレール長手方向に移動可能に設けられた第1のスライダおよび第2のスライダとを有し、各ガイドレールと各スライダとの間にエアギャップを有する第1の空気圧リニアガイドと第2の空気圧リニアガイドとが構成され、前記第1のスライダと前記第2のスライダとが互いに機械的に連結されている並列スライダ装置の制御方法であって、
     前記第1の空気圧リニアガイドに供給する空気圧と前記第2の空気圧リニアガイドに供給する空気圧を相違させる空気圧制御を行う並列スライダ装置の制御方法。
  9.  請求項1から7の何れか一項に記載の並列スライダ装置を有し、
     前記第1のガイドレールと前記第2のガイドレールとの間に、被測定物を支持する支持体が配置され、
     前記第1のスライダに前記被測定物の一方の面までの距離を測定する第1の測定手段が取り付けられ、前記第2のスライダに前記被測定物の他方の面までの距離を測定する第2の測定手段が取り付けられている測定装置。
PCT/JP2010/001714 2010-03-10 2010-03-10 空気圧リニアガイド方式の並列スライダ装置およびその制御方法および測定装置 WO2011111100A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2010/001714 WO2011111100A1 (ja) 2010-03-10 2010-03-10 空気圧リニアガイド方式の並列スライダ装置およびその制御方法および測定装置
KR1020127023341A KR101562096B1 (ko) 2010-03-10 2010-03-10 공기압 리니어 가이드 방식의 병렬 슬라이더 장치 및 그 제어 방법 및 측정 장치
DE112010005364T DE112010005364T5 (de) 2010-03-10 2010-03-10 Parallelschiebevorrichtung mit einer Druckluftlinearführung, Steuerverfahren dafür und Messvorrichtung, welche diese verwendet
US13/261,422 US8984971B2 (en) 2010-03-10 2010-03-10 Parallel slider device with a pneumatic linear guide, control method therefor and measuring device using same
JP2011047009A JP5624916B2 (ja) 2010-03-10 2011-03-03 空気圧リニアガイド方式の並列スライダ装置およびその制御方法および測定装置
TW100107722A TWI500902B (zh) 2010-03-10 2011-03-08 A parallel sliding device device and its control method and measuring device for pressure linear guide mode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/001714 WO2011111100A1 (ja) 2010-03-10 2010-03-10 空気圧リニアガイド方式の並列スライダ装置およびその制御方法および測定装置

Publications (1)

Publication Number Publication Date
WO2011111100A1 true WO2011111100A1 (ja) 2011-09-15

Family

ID=44562949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001714 WO2011111100A1 (ja) 2010-03-10 2010-03-10 空気圧リニアガイド方式の並列スライダ装置およびその制御方法および測定装置

Country Status (5)

Country Link
US (1) US8984971B2 (ja)
KR (1) KR101562096B1 (ja)
DE (1) DE112010005364T5 (ja)
TW (1) TWI500902B (ja)
WO (1) WO2011111100A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI666421B (zh) * 2018-07-10 2019-07-21 英屬維京群島商詮優科技有限公司 自動化設備之位移量測機構
CN113833754A (zh) * 2021-09-17 2021-12-24 浙江健壮传动科技有限公司 一种组合导轨滑块系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177245A (ja) * 1982-04-12 1983-10-17 Toyoda Mach Works Ltd 静圧軸受を用いた可動台のバ−ガイド装置
JPH04347008A (ja) * 1991-05-21 1992-12-02 Sumitomo Heavy Ind Ltd 可動ステージ装置
JPH05215133A (ja) * 1992-02-03 1993-08-24 Canon Inc 静圧流体軸受およびその位置決め制御装置
JPH06330944A (ja) * 1993-05-24 1994-11-29 Fujitsu Autom Ltd 静圧移動案内装置
JPH11351857A (ja) * 1998-06-08 1999-12-24 Kuroda Precision Ind Ltd 薄板の表面形状測定方法および薄板の表面形状測定装置
JP2007146995A (ja) * 2005-11-29 2007-06-14 Kyocera Corp 静圧スライダ
JP2008067463A (ja) * 2006-09-06 2008-03-21 Nsk Ltd リニアモータ式テーブル装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4322380B2 (ja) 1999-03-23 2009-08-26 株式会社山文電気 シート厚み又はうねり計測方法及び装置
JP4132503B2 (ja) 1999-11-24 2008-08-13 黒田精工株式会社 薄円板の支持構造
JP2003508696A (ja) * 2000-02-18 2003-03-04 株式会社ニコン 静圧気体軸受
JP3942971B2 (ja) * 2002-07-08 2007-07-11 株式会社ソディック 移動体駆動装置
JP2004330405A (ja) * 2003-05-06 2004-11-25 Azumino Sekkeishitsu:Kk 精密移動位置決めステージ
JP2006033910A (ja) * 2004-07-12 2006-02-02 Sumitomo Heavy Ind Ltd リニアモータ及びこのリニアモータを用いたステージ装置
KR100976994B1 (ko) * 2005-12-15 2010-08-19 쿄세라 코포레이션 정압 슬라이더
TW200729673A (en) * 2006-01-27 2007-08-01 Min-Fu Xie Synchronized motion control system for dual parallel linear motors
CN101414185B (zh) * 2008-11-21 2010-08-11 广东工业大学 精密伺服线性驱动系统性能试验装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177245A (ja) * 1982-04-12 1983-10-17 Toyoda Mach Works Ltd 静圧軸受を用いた可動台のバ−ガイド装置
JPH04347008A (ja) * 1991-05-21 1992-12-02 Sumitomo Heavy Ind Ltd 可動ステージ装置
JPH05215133A (ja) * 1992-02-03 1993-08-24 Canon Inc 静圧流体軸受およびその位置決め制御装置
JPH06330944A (ja) * 1993-05-24 1994-11-29 Fujitsu Autom Ltd 静圧移動案内装置
JPH11351857A (ja) * 1998-06-08 1999-12-24 Kuroda Precision Ind Ltd 薄板の表面形状測定方法および薄板の表面形状測定装置
JP2007146995A (ja) * 2005-11-29 2007-06-14 Kyocera Corp 静圧スライダ
JP2008067463A (ja) * 2006-09-06 2008-03-21 Nsk Ltd リニアモータ式テーブル装置

Also Published As

Publication number Publication date
TW201137307A (en) 2011-11-01
US20120318078A1 (en) 2012-12-20
US8984971B2 (en) 2015-03-24
TWI500902B (zh) 2015-09-21
DE112010005364T5 (de) 2013-03-28
KR101562096B1 (ko) 2015-10-20
KR20130048197A (ko) 2013-05-09

Similar Documents

Publication Publication Date Title
CN110142647B (zh) 一种液体静压导轨稳态性能实时测量装置及方法
US7845257B2 (en) Ultra-precision machine tool
CN103252761B (zh) 具有角度补偿功能的大行程二维纳米工作台系统
CN104364893B (zh) 一种平面定位系统与使用该平面定位系统的方法
JP5797942B2 (ja) エンコーダ・フィードバック、誤差マッピング、および空気圧制御を用いた誤差補償システム
CN115790455B (zh) 一种喷墨打印基板平整度检测系统
CN103389052A (zh) 一种可补偿轴系误差的立式晶圆形状测量装置
US9504163B2 (en) Y axis beam positioning system for a PCB drilling machine
US11784084B2 (en) High precision air bearing stage with capability of parasitic error compensation
JP4592445B2 (ja) 薄板の表面形状測定装置
JP2006105878A (ja) 基板の平坦度測定装置および形状寸法測定装置
WO2011111100A1 (ja) 空気圧リニアガイド方式の並列スライダ装置およびその制御方法および測定装置
TWI360133B (ja)
JP5624916B2 (ja) 空気圧リニアガイド方式の並列スライダ装置およびその制御方法および測定装置
JP2008256715A (ja) 薄板の表面形状測定装置
KR20160032211A (ko) 기판 이동을 위한 위치 설정 장치
TW200808489A (en) Stage device
US20040134083A1 (en) Apparatus for the measurement or machining of an object, provided with a displacement stage with wedge-shaped guides
KR20060122743A (ko) 형상 측정기
JP5588897B2 (ja) 並列スライダ装置の制御装置および制御方法および測定装置
JP2008096114A (ja) 測定装置
US20100096935A1 (en) Air bushing linear stage system
JP2017013210A (ja) 二軸位置決めステージ装置
KR20100078253A (ko) 롤과 플레이트의 정렬 시스템
JP5122416B2 (ja) エアテーブル装置および軸受間隔修正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10847335

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13261422

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127023341

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120100053642

Country of ref document: DE

Ref document number: 112010005364

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10847335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP