WO2011108672A2 - 均一系不斉水素化触媒 - Google Patents

均一系不斉水素化触媒 Download PDF

Info

Publication number
WO2011108672A2
WO2011108672A2 PCT/JP2011/054980 JP2011054980W WO2011108672A2 WO 2011108672 A2 WO2011108672 A2 WO 2011108672A2 JP 2011054980 W JP2011054980 W JP 2011054980W WO 2011108672 A2 WO2011108672 A2 WO 2011108672A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
optically active
carbonyl compound
ring
Prior art date
Application number
PCT/JP2011/054980
Other languages
English (en)
French (fr)
Other versions
WO2011108672A3 (ja
Inventor
央徳 伊藤
裕徳 前田
容嗣 堀
Original Assignee
高砂香料工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高砂香料工業株式会社 filed Critical 高砂香料工業株式会社
Priority to EP11750781.4A priority Critical patent/EP2543437A4/en
Priority to JP2012503268A priority patent/JP5711209B2/ja
Publication of WO2011108672A2 publication Critical patent/WO2011108672A2/ja
Publication of WO2011108672A3 publication Critical patent/WO2011108672A3/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/04Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/62Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by hydrogenation of carbon-to-carbon double or triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • B01J2231/645Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/828Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel

Definitions

  • the present invention provides an optically active carbonyl compound optically active by selectively asymmetric hydrogenation of a carbon-carbon double bond of an ⁇ , ⁇ -unsaturated carbonyl compound using a homogeneous asymmetric hydrogenation catalyst.
  • the present invention relates to a method for producing an aldehyde or an optically active ketone.
  • Patent Documents 1 and 2 A method of performing simultaneous hydrogenation is known (Patent Documents 1 and 2). Since these methods are methods of hydrogenating carbon-carbon double bonds with hydrogen gas using a small amount of a homogeneous catalyst, no auxiliary agent is required and therefore a large amount of waste is not generated.
  • Patent Document 3 Non-Patent Document 1
  • Patent Document 4 Non-Patent Document 2
  • the catalyst used in the methods of Patent Documents 1 and 2 is known as a homogeneous hydrogenation catalyst using an expensive rhodium metal containing an expensive optically active ligand.
  • asymmetric hydrogenation of citral (a mixture of geranial and neral) using these homogeneous hydrogenation catalysts different optical isomers are obtained from neral and geranial, respectively. It is necessary to carry out the reaction separately.
  • a catalyst amount of about 20 mol% is required with respect to the raw material unsaturated aldehyde or unsaturated ketone, and the hydrogenation substrate Hantzsch. Since an ester is required in an equivalent amount or more with respect to the unsaturated aldehyde or ketone as a raw material, it is economically disadvantageous as a method for producing an optically active aldehyde or optically active ketone.
  • the object of the present invention is to use an organic catalyst and an inexpensive transition metal complex as an asymmetric hydrogenation catalyst, to asymmetrically hydrogenate the carbon-carbon double bond of an ⁇ , ⁇ -unsaturated carbonyl compound, and to produce a corresponding optically active aldehyde or optical
  • the present invention relates to a method for obtaining an active ketone.
  • the present invention relates to a method for obtaining optically active citronellal by hydrogenating citral, geranial, or neral by an asymmetric hydrogenation reaction.
  • the present inventors use a specific transition metal complex, an optically active cyclic nitrogen-containing compound, or a specific transition metal complex, an optically active cyclic nitrogen-containing compound, and an acid.
  • an ⁇ , ⁇ -unsaturated carbonyl compound was asymmetrically hydrogenated to obtain a corresponding optically active aldehyde or optically active ketone, and the present invention was completed.
  • the same optics can be obtained from a single catalyst, for example, from any of Neral and Geranial in a Z configuration, E configuration relationship, or citral, which is a mixture of Neral and Geranial. It was found that an isomer was obtained.
  • the catalyst of the present invention provides a completely new concept in that the same optical isomer can be produced in the asymmetric hydrogenation of citral independently of the mixing ratio of neral and geranial.
  • the present invention includes the following inventions.
  • a homogeneous asymmetric hydrogenation catalyst comprising at least one transition metal complex selected from Group 8 to 10 transition metals in the periodic table and an optically active cyclic nitrogen-containing compound.
  • a homogeneous asymmetric hydrogenation catalyst comprising a complex of at least one transition metal selected from Group 8 to 10 transition metals in the periodic table, an optically active cyclic nitrogen-containing compound, and an acid.
  • the optically active cyclic nitrogen-containing compound has the general formula (1)
  • ring A is a 3- to 7-membered ring which may have a substituent and contains at least one atom selected from the group consisting of carbon, nitrogen, sulfur, oxygen and phosphorus.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an alkenyl group that may have a substituent, An aryl group which may have a substituent, an aralkyl group which may have a substituent, an alkoxy group which may have a substituent, a carboxyl group which may have a substituent, and a substituent; An alkoxycarbonyl group which may have, an amide group which may have a substituent, a carbamoyl group which may have a substituent, or a siloxy group which may have a substituent.
  • R 1 and R 2 are not the same substituent.
  • One of R 1 and R 2 may be bonded to ring A to further form a ring.
  • * Represents an asymmetric carbon atom.
  • ⁇ 6> Optically reacting an ⁇ , ⁇ -unsaturated carbonyl compound with hydrogen or a hydrogen-donating compound in the presence of the homogeneous asymmetric hydrogenation catalyst according to any one of ⁇ 1> to ⁇ 5>.
  • An ⁇ , ⁇ -unsaturated carbonyl compound is represented by the general formula (2)
  • R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group which may have a substituent, an optionally substituted cycloalkyl group, or a substituted group.
  • An optically active carbonyl compound produced by the general formula (3) is an ⁇ , ⁇ -unsaturated carbonyl compound represented by general formula (3):
  • R 3 , R 4 , R 5 and R 6 are the same as defined in formula (2).
  • One or both of the two * s represent an asymmetric carbon atom.
  • ⁇ 6> The production method according to ⁇ 6>, wherein the optically active carbonyl compound represented by the formula: ⁇ 8>
  • ⁇ 9> The production method according to ⁇ 7>, wherein the ⁇ , ⁇ -unsaturated carbonyl compound is a 5- to 16-membered cyclic ketone.
  • ⁇ 10> Donating hydrogen or hydrogen to an ⁇ , ⁇ -unsaturated carbonyl compound in the presence of at least one transition metal complex selected from Group 8 to 10 transition metals in the periodic table and an optically active cyclic nitrogen-containing compound An optically active carbonyl compound is produced by reacting with a compound to produce an optically active carbonyl compound.
  • An ⁇ , ⁇ -unsaturated carbonyl compound is converted to hydrogen or hydrogen in the presence of at least one transition metal complex selected from Group 8 to 10 transition metal in the periodic table, an optically active cyclic nitrogen-containing compound, and an acid.
  • the optically active cyclic nitrogen-containing compound has the general formula (1)
  • ring A is a 3- to 7-membered ring which may have a substituent and contains at least one atom selected from the group consisting of carbon, nitrogen, sulfur, oxygen and phosphorus.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an alkenyl group that may have a substituent, An aryl group which may have a substituent, an aralkyl group which may have a substituent, an alkoxy group which may have a substituent, a carboxyl group which may have a substituent, and a substituent; An alkoxycarbonyl group which may have, an amide group which may have a substituent, a carbamoyl group which may have a substituent, or a siloxy group which may have a substituent.
  • R 1 and R 2 are not the same substituent.
  • One of R 1 and R 2 may be bonded to ring A to further form a ring.
  • * Represents an asymmetric carbon atom.
  • the optically active cyclic nitrogen-containing compound has the general formula (1)
  • ring A is a 3- to 7-membered ring which may have a substituent and contains at least one atom selected from the group consisting of carbon, nitrogen, sulfur, oxygen and phosphorus.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an alkenyl group that may have a substituent, An aryl group which may have a substituent, an aralkyl group which may have a substituent, an alkoxy group which may have a substituent, a carboxyl group which may have a substituent, and a substituent; An alkoxycarbonyl group which may have, an amide group which may have a substituent, a carbamoyl group which may have a substituent, or a siloxy group which may have a substituent.
  • R 1 and R 2 are not the same substituent.
  • One of R 1 and R 2 may be bonded to ring A to further form a ring.
  • * Represents an asymmetric carbon atom.
  • the ⁇ , ⁇ -unsaturated carbonyl compound is represented by the general formula (2)
  • R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group which may have a substituent, an optionally substituted cycloalkyl group, or a substituted group.
  • An optically active carbonyl compound produced by the general formula (3) is an ⁇ , ⁇ -unsaturated carbonyl compound represented by general formula (3):
  • R 3 , R 4 , R 5 and R 6 are the same as defined in formula (2).
  • One or both of the two * s represent an asymmetric carbon atom.
  • ⁇ 17> The production method according to ⁇ 15>, wherein the ⁇ , ⁇ -unsaturated carbonyl compound is a 5- to 16-membered cyclic ketone.
  • the present invention contributes to enantioselectivity as a catalyst in an asymmetric hydrogenation reaction, together with a transition metal complex, as an additive that contributes to enantioselectivity, and as an additive that contributes to enantioselectivity.
  • a transition metal complex As the additive, an optically active cyclic nitrogen-containing compound and an acid are used.
  • the asymmetric hydrogenation catalyst of the present invention may be prepared and reacted in advance as in the case of conventional asymmetric hydrogenation catalysts, but the reaction step for preparing the catalyst may not be performed in advance.
  • the asymmetric hydrogenation can be carried out simply by mixing the raw material compound, the optically active cyclic nitrogen-containing compound and the transition metal complex, and adding an acid as necessary. It is also possible.
  • the operation is simple, and the transition metal complex and the optically active cyclic nitrogen-containing compound can be recovered and reused, which is industrially advantageous.
  • the catalyst of the present invention when used, it can be produced even when a compound having a Z configuration or an E configuration is used as a substrate at the double bond at the ⁇ -position and ⁇ -position of the ⁇ , ⁇ -unsaturated carbonyl compound.
  • the configuration of the optically active carbonyl compound depends on the configuration of the optically active cyclic nitrogen-containing compound used, not the conformation of the substrate. Therefore, in the present invention, an optically active carbonyl compound having the same configuration can be produced even when a mixture of a Z configuration compound and an E configuration compound is used as a substrate.
  • FIG. 2 is an H 1 -NMR chart of the complex of Example 2-1 (palladium acetate + (R)-(+)-2- (Diphenylmethyl) pyrrolidine).
  • FIG. 2 is an enlarged view of a low magnetic field portion of the H 1 -NMR chart of FIG. 2 is a H 1 -NMR chart of the complex of Example 2-2 (palladium acetate + (R)-(+)-2- (Diphenylmethyl) pyrrolidine + trifluoroacetic acid).
  • FIG. 4 is an enlarged view of a low magnetic field portion of the H 1 -NMR chart of FIG. 2 is an H 1 -NMR chart of (R)-(+)-2- (Diphenylmethyl) pyrrolidine.
  • FIG. 6 is an enlarged view of a low magnetic field portion of the H 1 -NMR chart of FIG. 2 is an H 1 -NMR chart of (R)-(+)-2- (Diphenylmethyl) pyrrolidine + trifluoroacetic acid.
  • FIG. 8 is an enlarged view of a low magnetic field portion of the H 1 -NMR chart of FIG.
  • an ⁇ , ⁇ -unsaturated carbonyl compound is used as a substrate and this is asymmetrically hydrogenated using the catalyst of the present invention to produce an optically active aldehyde or optically active ketone as an optically active carbonyl compound.
  • the ⁇ , ⁇ -unsaturated carbonyl compound used as the substrate is not particularly limited, and examples thereof include a compound represented by the following general formula (2).
  • the double bond at the ⁇ -position and the ⁇ -position includes both the Z configuration and the E configuration.
  • R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group which may have a substituent, an cycloalkyl group which may have a substituent, or a substituent.
  • R 5 and R 6 may form a ring.
  • R 4 is not a hydrogen atom
  • R 5 and R 6 may be the same as each other.
  • R 4 is a hydrogen atom
  • R 5 and R 6 are other than a hydrogen atom and are different from each other. That is, all of R 4 , R 5 , and R 6 are not hydrogen atoms.
  • optically active aldehyde or optically active ketone which is an optically active carbonyl compound represented by the following formula (3) is produced by asymmetric hydrogenation of the compound represented by the above formula (2) using the catalyst of the present invention.
  • R 3 , R 4 , R 5 and R 6 are the same as defined in formula (2).
  • Two * represent one or both asymmetric carbon atoms.
  • ⁇ , ⁇ -unsaturated carbonyl compound represented by the general formula (2) and the optically active carbonyl compound represented by the general formula (3) a group represented by R 3 , R 4 , R 5 , and R 6
  • R 3 , R 4 , R 5 , and R 6 Certain alkyl groups, cycloalkyl groups, alkenyl groups, aryl groups, aralkyl groups, alkoxycarbonyl groups, carbonyloxy groups, nitrile groups, and perhalogenoalkyl groups will be described. Any of these groups may have a substituent.
  • alkyl group examples include linear or branched alkyl groups having 1 to 30 carbon atoms, preferably 1 to 10 carbon atoms, and specifically include methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl group, 2-butyl group, isobutyl group, tert-butyl group, n-pentyl group, 2-pentyl group, 3-pentyl group, tert-pentyl group, 2-methylbutyl group, 3-methylbutyl group, 2, 2-dimethylpropyl group, 1,2-dimethylpropyl group, n-hexyl group, 2-hexyl group, 3-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1 -Dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 2,3-
  • alkyl groups may have a substituent, and examples of the substituent of the alkyl group include an alkenyl group, an alkynyl group, an aryl group, an aliphatic heterocyclic group, an aromatic heterocyclic group, an alkoxy group, Examples thereof include an alkylenedioxy group, an aryloxy group, an aralkyloxy group, a heteroaryloxy group, a substituted amino group, a nitro group, a nitrile group, a perhalogenoalkyl group, and a halogen atom.
  • substituent of the alkyl group include an alkenyl group, an alkynyl group, an aryl group, an aliphatic heterocyclic group, an aromatic heterocyclic group, an alkoxy group, Examples thereof include an alkylenedioxy group, an aryloxy group, an aralkyloxy group, a heteroaryloxy group, a substituted amino group, a nitro group, a nit
  • the alkenyl group as a substituent of the alkyl group may be linear or branched, and examples thereof include alkenyl groups having 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms. Specific examples include a vinyl group, a propenyl group, a 1-butenyl group, a pentenyl group, and a hexenyl group.
  • the alkynyl group as a substituent of the alkyl group may be linear or branched, and examples thereof include alkynyl groups having 2 to 15 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms. Specific examples include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 3-butynyl group, pentynyl group and hexynyl group.
  • Examples of the aryl group as the substituent of the alkyl group include an aryl group having 6 to 14 carbon atoms. Specifically, a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a biphenyl group, a tolyl group, a xylyl group, Examples include mesityl group, methoxyphenyl group, dimethoxyphenyl group, and fluorophenyl group.
  • Examples of the aliphatic heterocyclic group as a substituent of the alkyl group include 2 to 14 carbon atoms and at least one, preferably 1 to 3 hetero atoms such as a nitrogen atom, an oxygen atom, and a sulfur atom.
  • Examples include groups containing heteroatoms.
  • a 5- or 6-membered monocyclic aliphatic heterocyclic group and a polycyclic or condensed aliphatic heterocyclic group are exemplified.
  • aliphatic heterocyclic group examples include a 2-oxo-1-pyrrolidinyl group, piperidino group, piperazinyl group, morpholino group, tetrahydrofuryl group, tetrahydropyranyl group, and tetrahydrothienyl group.
  • the aromatic heterocyclic group as a substituent of the alkyl group has, for example, 2 to 15 carbon atoms and has at least one hetero atom, preferably 1 to 3 hetero atoms such as nitrogen atom, oxygen atom and sulfur atom.
  • Examples include groups containing atoms.
  • a 5- or 6-membered monocyclic aromatic heterocyclic group and a polycyclic or condensed aromatic heterocyclic group are used.
  • aromatic heterocyclic group examples include, for example, furyl group, thienyl group, pyridyl group, pyrimidinyl group, pyrazinyl group, pyridazinyl group, pyrazolinyl group, imidazolyl group, oxazolinyl group, thiazolinyl group, benzofuryl group, benzothienyl group, A quinolyl group, an isoquinolyl group, a quinoxalinyl group, a phthalazinyl group, a quinazolinyl group, a naphthyridinyl group, a cinnolinyl group, a benzoimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, and the like can be given.
  • alkoxy group as the substituent of the alkyl group examples include linear or branched alkoxy groups having 1 to 6 carbon atoms, specifically, methoxy group, ethoxy group, n-propoxy group, isopropoxy group.
  • alkylenedioxy group examples include an alkylenedioxy group having 1 to 3 carbon atoms, and specifically include a methylenedioxy group, an ethylenedioxy group, a propylenedioxy group, and an isopropylidene group. Dendioxy group and the like can be mentioned.
  • Examples of the aralkyloxy group as a substituent of the alkyl group include an aralkyloxy group having 7 to 12 carbon atoms, and specifically include a benzyloxy group, 2-phenylethoxy group, 1-phenylpropoxy group, 2-phenyl Propoxy group, 3-phenylpropoxy group, 1-phenylbutoxy group, 2-phenylbutoxy group, 3-phenylbutoxy group, 4-phenylbutoxy group, 1-phenylpentyloxy group, 2-phenylpentyloxy group, 3-phenyl Pentyloxy group, 4-phenylpentyloxy group, 5-phenylpentyloxy group, 1-phenylhexyloxy group, 2-phenylhexyloxy group, 3-phenylhexyloxy group, 4-phenylhexyloxy group, 5-phenylhexyl group Examples include a siloxy group and a 6-phenylhexyloxy group.
  • heteroaryloxy group as a substituent of the alkyl group include, for example, at least one hetero atom, preferably 1 to 3 hetero atoms such as nitrogen atom, oxygen atom, sulfur atom, etc.
  • heteroaryloxy groups include 2-pyridyloxy group, 2-pyrazyloxy group, 2-pyrimidyloxy group, 2-quinolyloxy group and the like.
  • Examples of the substituted amino group as the substituent of the alkyl group include an N-methylamino group, an N, N-dimethylamino group, an N, N-diethylamino group, an N, N-diisopropylamino group, and an N-cyclohexylamino group.
  • a mono or dialkylamino group such as: N-phenylamino group, N, N-diphenylamino group, N-naphthylamino group, N-naphthyl-N-phenylamino group or the like; N-benzylamino group; Examples thereof include mono- or diaralkylamino groups such as N, N-dibenzylamino group.
  • Examples of the perhalogenoalkyl group substituted for the alkyl group include a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, a trichloromethyl group, and a pentachloroethyl group.
  • halogen atom substituted for the alkyl group examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • cycloalkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group. These cycloalkyl groups may have a substituent, and examples of the substituent include the substituents described in the description of the substituent of the alkyl group.
  • alkenyl group examples include chain, branched or cyclic alkenyl groups having, for example, 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms.
  • Specific examples of the alkenyl group include a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, and 3-pentenyl.
  • alkenyl groups may have a substituent, and examples of the substituent include the groups described in the description of the substituent of the alkyl group.
  • aryl group examples include aryl groups having 6 to 14 carbon atoms, and specific examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group. These aryl groups may have a substituent, and examples of the substituent include the groups described in the description of the substituent of the alkyl group.
  • an aralkyl group having 7 to 12 carbon atoms is preferable, and specific examples include a benzyl group, a 2-phenylethyl group, a 1-phenylpropyl group, a 3-naphthylpropyl group, and the like.
  • These aralkyl groups may have a substituent, and examples of the substituent include groups described in the description of the alkyl group.
  • the alkoxycarbonyl group an alkoxycarbonyl group having 2 to 15 carbon atoms is preferable.
  • a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, a butoxycarbonyl group, an isopropoxycarbonyl group, a phenoxycarbonyl group, a naphthoxycarbonyl group, A benzyloxycarbonyl group etc. are mentioned.
  • These alkoxycarbonyl groups may have a substituent, and examples of the substituent include the groups described in the description of the alkyl group.
  • the acyloxy group is preferably an aralkyl group having 2 to 15 carbon atoms, such as an acetyloxy group, propanoyloxy group, butanoyloxy group, octanoyloxy group, benzoyloxy group, toluoyloxy group, xyloxy group , Naphthoyloxy group, phenanthroyloxy group, anthranoyloxy group and the like.
  • These acyloxy groups may have a substituent, and examples of the substituent include groups described in the description of the alkyl group.
  • R 3 and R 4 , R 3 and R 5 , R 3 and R 6 , R 4 and R 6 , or R 5 and R 6 are, for example, a cyclopentane ring, cyclohexane ring, indane ring, tetralin ring, cyclopentene ring, cyclohexene ring, cycloheptene ring, indene ring, dihydronaphthalene Ring, octahydronaphthalene ring, decahydronaphthalene ring and the like.
  • These rings may be substituted with an alkyl group as described above, an acyl group described below, or the like.
  • acyl group examples include an acetyl group, a propanoyl group, a butanoyl group, an octanoyl group, a benzoyl group, a toluoyl group, a xyloyl group, a naphthoyl group, a phenanthroyl group, and an anthranoyl group.
  • ⁇ , ⁇ -unsaturated aldehyde used as the substrate in the present invention include the following compounds.
  • those having Z configuration and E configuration include both of them.
  • the wavy line in the compound represents the Z configuration and the E configuration, or a mixture thereof.
  • Me represents a methyl group
  • Ph represents a phenyl group
  • Bn represents a benzyl group.
  • geranial (A below), neral (B below) and citral are particularly preferable.
  • the ⁇ , ⁇ -unsaturated ketone used as a substrate in the present invention is preferably a 5- to 16-membered ketone.
  • Specific examples of ⁇ , ⁇ -unsaturated ketones include the following compounds.
  • ⁇ , ⁇ -unsaturated ketone ⁇ - and ⁇ -position double bonds those having a Z configuration and an E configuration include both of them.
  • the wavy line in the compound represents the Z configuration and the E configuration, or a mixture thereof.
  • Ph represents a phenyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • Pr represents a propyl group
  • Bn represents a benzyl group.
  • the catalyst of the present invention contains at least one transition metal complex selected from Group 8 to 10 transition metals in the periodic table, an optically active cyclic nitrogen-containing compound, and, if necessary, an acid as an additional component, and these are reacted. It is a homogeneous asymmetric hydrogenation catalyst obtained by this.
  • the transition metal complex used in the present invention is a complex of at least one transition metal selected from Group 8 to 10 transition metals in the periodic table, as long as the asymmetric hydrogenation reaction of the present invention proceeds.
  • Group 8-10 metals in the periodic table include nickel (Ni), ruthenium (Ru), rhodium (Rh), iridium (Ir), palladium (Pd) and platinum (Pt). Particularly preferred metals are Palladium.
  • the valence in the complex is preferably from 0 valence to 3 valence.
  • the ligands of the metal complex used include hydrogen atom, alkyl group, alkoxy group, olefin, alkyne, ⁇ -allyl, aryl group, carbene, nitrene, halogen atom, carboxy group, carbon monoxide, isonitrile, nitrogen coordination.
  • Examples thereof include monodentate to tridentate ligands such as ligands and phosphorus ligands, and solvent ligands such as nitriles and tetrahydrofuran, and several types of ligands may be coordinated.
  • the child may be racemic or optically active.
  • Examples of the transition metal complex used in the present invention include compounds represented by the following general formula (4).
  • M represents a transition metal of Groups 8 to 10 in the periodic table;
  • L represents a ligand;
  • W represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkoxy group, a carboxyl group, a diene, or An anion;
  • U represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an aryl group, a carboxyl group, a diene, an anion or a ligand other than L;
  • Z represents an anion or an amine;
  • N represents an integer of 5;
  • n, p, q, and s represent integers of 0 to 5, and
  • p + q + s is 1 or more.
  • transition metal of Groups 8 to 10 in the periodic table represented by M for example, nickel (Ni), ruthenium (Ru), rhodium (Rh), iridium (Ir), palladium ( Pd) and platinum (Pt).
  • Examples of the ligand represented by L include monodentate to tridentate ligands such as nitrogen ligands and phosphorus ligands.
  • Examples of the halogen atom represented by W and U include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl group represented by W and U examples include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, and hexyl. Group, heptyl group, octyl group and the like.
  • Examples of the aryl group represented by W and U include aromatic monocycles such as phenyl, naphthyl, anthryl, phenanthryl, indenyl, and mesityl groups, and polycyclic groups.
  • Examples of the alkoxy group represented by W and U include methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, t-butoxy group, penoxy group, benzyloxy group and the like.
  • Examples of the carboxy group represented by W and U include a fermyloxy group, an acetoxy group, a propionyloxy group, a butyryloxy group, and a benzoyloxy group.
  • Examples of the diene represented by W and U include butadiene, 1,5-cyclooctadiene, norbornadiene, and the like.
  • Examples of ligands other than L represented by U include neutral compounds such as aromatic compounds or olefins, alkyl nitriles having 1 to 5 carbon atoms, benzonitrile, phthalonitrile, pyridine, substituted pyridine, dimethyl sulfoxide, Examples include dimethylformamide, dimethylacetamide, acetone, dibenzylideneacetone (dba) and the like.
  • Examples of the anion represented by Z include NO 3 , SO 4 , CO 3 , BH 4 , BH 4 , I 3 , ClO 4 , OTf, PF 6 , SbF 6 , and BPh 4 .
  • Examples of the amine represented by Z include trialkylamine compounds, diamine compounds, pyridines, dialkylammonium ions, and the like.
  • transition metal complexes include, for example, nickel complexes such as bis (1,5-cyclooctadiene) nickel, 1,2-bis (diphenylphosphino) ethanenickel, bis (triphenylphosphine) nickel bromide, bis (Triphenylphosphine) nickel chloride, bis (triphenylphosphine) nickel dicarbonyl, methallylnickel chloride dimer, nickel acetate, nickel acetoacetonate, nickel trifluoromethanesulfonate.
  • nickel complexes such as bis (1,5-cyclooctadiene) nickel, 1,2-bis (diphenylphosphino) ethanenickel, bis (triphenylphosphine) nickel bromide, bis (Triphenylphosphine) nickel chloride, bis (triphenylphosphine) nickel dicarbonyl, methallylnickel chloride dimer, nickel acetate, nickel acetoacetonate
  • Ruthenium complexes include bis (2-methylallyl) (1,5-cyclooctadiene) ruthenium, carbonylchlorohydridotris (triphenylphosphine) ruthenium, carbonyl (dihydrido) tris (triphenylphosphine) ruthenium, chloro (cyclopentadiene). And enyl) bis (triphenylphosphine) ruthenium, cyclopentadienyl (paracymene) ruthenium hexafluorophosphate, dichloro (paracymene) ruthenium dimer, and dichloro (1,5-cyclooctadiene) ruthenium polymer.
  • Rhodium complexes include acetylacetonate (1,5-cyclooctadiene) rhodium, bis (1,5-cyclooctadiene) rhodium tetrafluoroborate, bis (1,5-cyclooctadiene) rhodium trifluoromethanesulfonate, Bis (norbornadiene) rhodium tetrafluoroborate, chlorocarbonylbis (triphenylphosphine) rhodium, chloro (1,5-cyclooctadiene) rhodium dimer, dicarbonylacetylacetonatodium, rhodium acetate dimer, hexarhodium hexadecacarbonyl, chlorotris Mention may be made of (triphenylphosphine) rhodium.
  • Examples of the iridium complex include chlorocarbonylbis (triphenylphosphine) iridium dimer, chloro (1,5-cyclooctadiene) iridium dimer, 1,5-cyclooctadiene (acetylacetonato) iridium, dicarbonylacetylacetonatoiridium, Examples include dichloro (pentamethylcyclopentadienyl) iridium dimer, hydridocarbonyltris (triphenylphosphine) iridium, iridium acetylacetonate, and iridium trichloride.
  • Palladium complexes include allyl palladium chloride dimer, bis [1,2-bis (diphenylphosphino) ethane] palladium, tris (dibenzylideneacetone) dipalladium, palladium chloride, bis (2-methylallyl) palladium chloride dimer, diacetate bis ( Triphenylphosphine) palladium, dichlorobis (acetonitrile) palladium, dichloro [1,2-bis (diphenylphosphino) ethane] palladium, trans-dichlorobis (triphenylphosphine) palladium, dichloro (1,5-cyclooctadiene) palladium, Cis-dichloro (N, N, N ′, N′-tetramethylethylenediamine) palladium, palladium acetate, palladium acetylacetonate, tetrakis (triphenylphosphite) ) Can be mentioned
  • Platinum complexes include bis (ethylenediamine) platinum, bis (tri-t-butylphosphine) platinum, dibromo (1,5-cyclooctadiene) platinum, dichlorobis (benzonitrile) platinum, cis-dichlorobis (pyridine) platinum, cis -(Dichlorobis) triphenylphosphineplatinum, dichloro (1,5-cyclooctadiene) platinum, dichloro (dicyclopentadienyl) platinum, platinum acetylacetonate, platinum chloride, tetrakis (triphenylphosphine) platinum it can.
  • the catalyst of the present invention may contain an auxiliary ligand.
  • an auxiliary ligand thereby, the reactivity of a complex catalyst can be improved and the selectivity of asymmetric hydrogenation can be improved.
  • the auxiliary ligand may be an optically active substance.
  • the auxiliary ligand is preferably contained in an amount of 0.5 to 8 equivalents with respect to the metal atom. With such a content, the performance of the metal complex catalyst can be improved according to the corresponding metal atom.
  • the optically active cyclic nitrogen-containing compound used as a catalyst component in the present invention will be described.
  • the optically active cyclic nitrogen-containing compound is coordinated to the transition metal of Groups 8 to 10 in the periodic table, which is the catalyst metal.
  • the configuration of the optically active carbonyl compound, which is the target product depends on the configuration of the optically active cyclic nitrogen-containing compound used as a cocatalyst component, not the conformation of the substrate.
  • the ⁇ , ⁇ -unsaturated carbonyl compound serving as a substrate is an optical component having the same configuration regardless of whether a Z configuration compound or an E configuration compound is used, or when a mixture is used as a substrate. Active carbonyl compounds can be prepared.
  • optically active cyclic nitrogen-containing compound examples include an optically active cyclic nitrogen-containing compound represented by the general formula (1).
  • ring A is a 3- to 7-membered ring which may have a substituent and contains at least one atom selected from the group consisting of carbon, nitrogen, sulfur, oxygen and phosphorus.
  • R 1 and R 2 are each independently a hydrogen atom, an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an alkenyl group that may have a substituent, An aryl group which may have a substituent, an aralkyl group which may have a substituent, an alkoxy group which may have a substituent, a carboxyl group which may have a substituent, and a substituent.
  • R 1 and R 2 are not the same substituent.
  • One of R 1 and R 2 may be bonded to ring A to further form a ring.
  • * Represents an asymmetric carbon atom.
  • Ring A includes, for example, an aziridine skeleton, azetidine skeleton, pyrrolidine skeleton, indoline skeleton, pyrroline skeleton, pyrazolidine skeleton, imidazolidine skeleton, imidazolidinone skeleton, pyrazoline skeleton, thiazolidine skeleton, piperidine skeleton, piperazine skeleton, Examples include a morpholine skeleton and a thiomorpholine skeleton. Substituents may be present in these basic skeletons.
  • Examples of the substituent present in the basic skeleton of ring A include an oxo group, a halogen group, an alkyl group, an alkoxy group, an amino group, a hydroxycarbonyl group, an alkoxycarbonyl group, an acyl group, an aryl group, and an aralkyl group.
  • Examples of the alkyl group, alkoxy group, alkoxycarbonyl group, aryl group, and aralkyl group include groups listed in the description of R 1 and R 2 .
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • amino group examples include an amino group, a methylamino group, an ethylamino group, a propylamino group, an isopropylamino group, a butylamino group, a t-butylamino group, an octylamino group, a cyclohexylamino group, a phenylamino group, and a styrylamino group.
  • Jill anthracenyl amino group examples include an acetyl group, a propanoyl group, a butanoyl group, an octanoyl group, a benzoyl group, a toluoyl group, a xyloyl group, a naphthoyl group, a phenanthroyl group, and an anthranoyl group.
  • ring A is preferably a pyrrolidine skeleton that may have a substituent and an imidazolidinone skeleton that may have a substituent.
  • alkyl group examples include linear or branched alkyl groups having 1 to 30 carbon atoms, preferably 1 to 10 carbon atoms, and specifically include methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl group, 2-butyl group, isobutyl group, tert-butyl group, n-pentyl group, 2-pentyl group, 3-pentyl group, tert-pentyl group, 2-methylbutyl group, 3-methylbutyl group, 2, 2-dimethylpropyl group, 1,2-dimethylpropyl group, n-hexyl group, 2-hexyl group, 3-hexyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1 -Dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 2,3-
  • alkyl groups may have a substituent, and examples of the substituent of the alkyl group include an alkenyl group, an alkynyl group, an aryl group, an aliphatic heterocyclic group, an aromatic heterocyclic group, a hydroxy group, Examples include alkoxy groups, trialkylsiloxy groups, alkylenedioxy groups, aryloxy groups, aralkyloxy groups, heteroaryloxy groups, substituted amino groups, perhalogenoalkyl groups, and halogen atoms.
  • the alkenyl group as a substituent of the alkyl group may be linear or branched, and examples thereof include alkenyl groups having 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, and more preferably 2 to 6 carbon atoms. Specific examples include a vinyl group, a propenyl group, a 1-butenyl group, a pentenyl group, and a hexenyl group.
  • the alkynyl group as a substituent of the alkyl group may be linear or branched, and examples thereof include alkynyl groups having 2 to 15 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms. Specific examples include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 3-butynyl group, pentynyl group and hexynyl group.
  • Examples of the aryl group as the substituent of the alkyl group include an aryl group having 6 to 14 carbon atoms. Specifically, a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, a biphenyl group, a tolyl group, a xylyl group, Examples include mesityl group, methoxyphenyl group, dimethoxyphenyl group, and fluorophenyl group.
  • Examples of the aliphatic heterocyclic group as a substituent of the alkyl group include 2 to 14 carbon atoms and at least one, preferably 1 to 3 hetero atoms such as a nitrogen atom, an oxygen atom, and a sulfur atom.
  • Examples include groups containing heteroatoms.
  • a 5- or 6-membered monocyclic aliphatic heterocyclic group and a polycyclic or condensed aliphatic heterocyclic group are exemplified.
  • aliphatic heterocyclic group examples include a 2-oxo-1-pyrrolidinyl group, piperidino group, piperazinyl group, morpholino group, tetrahydrofuryl group, tetrahydropyranyl group, and tetrahydrothienyl group.
  • the aromatic heterocyclic group as a substituent of the alkyl group has, for example, 2 to 15 carbon atoms and has at least one hetero atom, preferably 1 to 3 hetero atoms such as nitrogen atom, oxygen atom and sulfur atom.
  • Examples include groups containing atoms.
  • a 5- or 6-membered monocyclic aromatic heterocyclic group and a polycyclic or condensed aromatic heterocyclic group are used.
  • aromatic heterocyclic group examples include, for example, furyl group, thienyl group, pyridyl group, pyrimidinyl group, pyrazinyl group, pyridazinyl group, pyrazolinyl group, imidazolyl group, oxazolinyl group, thiazolinyl group, benzofuryl group, benzothienyl group, A quinolyl group, an isoquinolyl group, a quinoxalinyl group, a phthalazinyl group, a quinazolinyl group, a naphthyridinyl group, a cinnolinyl group, a benzoimidazolyl group, a benzoxazolyl group, a benzothiazolyl group, and the like can be given.
  • alkoxy group as a substituent of the alkyl group examples include linear or branched alkoxy groups having 1 to 8 carbon atoms, such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group.
  • trialkylsiloxy group as a substituent of the alkyl group include a trimethylsiloxy group, a triethylsiloxy group, a dimethyl tert-butylsiloxy group, and the like.
  • alkylenedioxy group examples include an alkylenedioxy group having 1 to 3 carbon atoms, and specifically include a methylenedioxy group, an ethylenedioxy group, a propylenedioxy group, and an isopropylidene group. Dendioxy group and the like can be mentioned.
  • Examples of the aralkyloxy group as a substituent of the alkyl group include an aralkyloxy group having 7 to 12 carbon atoms, and specifically include a benzyloxy group, a 2-phenylethoxy group, a 1-phenylpropoxy group, and a 2-phenylpropoxy group.
  • heteroaryloxy group as a substituent of the alkyl group include, for example, at least one hetero atom, preferably 1 to 3 hetero atoms such as nitrogen atom, oxygen atom, sulfur atom, etc.
  • heteroaryloxy groups include 2-pyridyloxy group, 2-pyrazyloxy group, 2-pyrimidyloxy group, 2-quinolyloxy group and the like.
  • substituted amino group as the substituent of the alkyl group examples include N-methylamino group, N, N-dimethylamino group, N, N-diethylamino group, N, N-diisopropylamino group, N-cyclohexylamino group, Mono- or dialkylamino groups such as pyrrolidyl, piperidyl and morpholyl groups; mono- or diaryls such as N-phenylamino, N, N-diphenylamino, N-naphthylamino, N-naphthyl-N-phenylamino Amino group; mono- or diaralkylamino group such as N-benzylamino group, N, N-dibenzylamino group and the like.
  • Examples of the perhalogenoalkyl group substituted for the alkyl group include a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, a trichloromethyl group, and a pentachloroethyl group.
  • halogen atom substituted for the alkyl group examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • cycloalkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group. These cycloalkyl groups may have a substituent, and examples of the substituent include the substituents described in the description of the substituent of the alkyl group.
  • alkenyl group examples include chain, branched or cyclic alkenyl groups having, for example, 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms.
  • Specific examples of the alkenyl group include a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, and 3-pentenyl.
  • alkenyl groups may have a substituent, and examples of the substituent include the groups described in the description of the substituent of the alkyl group.
  • aryl group examples include aryl groups having 6 to 14 carbon atoms, and specific examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group. These aryl groups may have a substituent, and examples of the substituent include the groups described in the description of the substituent of the alkyl group.
  • aralkyl group for example, an aralkyl group having 7 to 45 carbon atoms is preferable, and specifically, benzyl group, tolylmethyl group, xylylmethyl group, mesitylmethyl group, 4-phenylphenylmethyl group, 3-phenylphenylmethyl group, 2-phenyl group.
  • Phenylmethyl group 4-mesitylphenylmethyl group, 1-naphthylmethyl group, 2-naphthylmethyl group, 9-anthranylmethyl group, 9-phenanthrylmethyl group, 3,5-diphenylphenylmethyl group, 2-phenyl Ethyl group, 1-phenylpropyl group, 3-naphthylpropyl group, diphenylmethyl group, ditolylmethyl group, dixylylmethyl group, dimesitylmethyl group, di (4-phenylphenyl) methyl group, di (3-phenylphenyl) methyl group, Di (2-phenylphenyl) methyl group, di (4-mesity) Phenyl) methyl group, di1-naphthylmethyl group, di2-naphthylmethyl group, di9-anthranylmethyl group, di9-phenanthrylmethyl group, bis (3,5-diphenylphenyl) methyl group, triphenylmethyl
  • an alkoxy group having 1 to 30 carbon atoms is preferable.
  • carboxyl group for example, a carboxyl group having 1 to 30 carbon atoms is preferable, and specifically, an acetoxy group, an n-propanoyloxy group, an isopropanoyloxy group, an n-butanoyloxy group, a 2-butanoyloxy group, an isobutanoyloxy group.
  • Tert-butanoyloxy group n-pentanoyloxy group, 2-methylbutanoyloxy group, 3-methylbutanoyloxy group, 2,2-dimethylpropanoyloxy group, n-hexanoyloxy group, 2-methylpentanoyloxy group, 3-methylpentanoyloxy group, 4-methylpentanoyloxy group, 5-methylpentanoyloxy group, cyclopentanoyloxy group, cyclohexanoyloxy group, dicyclopentylacetoxy group, dicyclohexylacetoxy group, tricyclopentylacetoxy group, Tricyclohexylacetate Shi group, phenylacetoxy group, diphenyl acetoxy group, triphenyl acetoxy group, benzoyloxy group, Nafutoirokishi group and the like.
  • These carboxy groups may have a substituent, and examples of the substituent include the groups described in the description of the alky
  • an alkoxycarbonyl group having 1 to 30 carbon atoms is preferable.
  • an amide group having 1 to 30 carbon atoms is preferable.
  • Specific examples include an acetamido group, an n-propionamide group, an isopropionamide group, an n-butanamide group, a 2-butanamide group, an isobutanamide group, and a tert-butanamide.
  • amide groups may have a substituent, and examples of the substituent include the groups described in the description of the alkyl group.
  • a carbamoyl group having 1 to 30 carbon atoms is preferable, and specifically, a carbamoyl group, a methylcarbamoyl group, an ethylcarbamoyl group, an n-propylcarbamoyl group, an isopropylcarbamoyl group, an n-butylcarbamoyl group, 2- Butylcarbamoyl group, isobutylcarbamoyl group, tert-butylcarbamoyl group, n-pentylcarbamoyl group, cyclopentylcarbamoyl group, cyclohexylcarbamoyl group, cycloheptylcarbamoyl group, dimethylcarbamoyl group, diethylcarbamoyl group, din-propylcarbamoyl group, diisopropylcar
  • siloxy group examples include trimethylsiloxy group, triethylsiloxy group, dimethyl tert-butylsiloxy group and the like. These siloxy groups may have a substituent, and examples of the substituent include groups described in the description of the alkyl group.
  • optically active cyclic nitrogen-containing compound examples include the following compounds.
  • Me represents a methyl group
  • Ph represents a phenyl group
  • Bu represents a butyl group
  • Bn represents a benzyl group
  • Et represents an ethyl group
  • TMS represents a trimethylsilyl group
  • Pr represents a propyl group
  • iPr represents an isopropyl group
  • a polymer represents a polymer chain.
  • an acid as another catalyst component.
  • an acid By using an acid, the optically active cyclic nitrogen-containing compound can be present in the system as a salt, and thus the catalytic reaction can be promoted. Further, the presence of the acid as a counter of the complex catalyst can stabilize the complex catalyst.
  • Organic acids and inorganic acids can be used as the acid, but organic acids are particularly preferred.
  • organic acids include acetic acid, chloroacetic acid, difluoroacetic acid, trifluoroacetic acid, trichloroacetic acid, tribromoacetic acid, benzoic acid, 2,4-dinitrobenzoic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoromethane A sulfonic acid etc. are mentioned.
  • the inorganic acid include hydrofluoric acid, hydrochloric acid, odorous acid, iodic acid, sulfuric acid, perchloric acid, phosphoric acid, nitric acid and the like.
  • the transition metal complex and the nitrogen compound in the solvent if necessary.
  • the acid or auxiliary ligand may be added in advance and adjusted in situ, or the solvent may be distilled off from a solution prepared in advance in a solvent and added to the target hydrogenated substrate later. In this way, the homogeneous asymmetric hydrogenation catalyst of the present invention can be obtained.
  • an optical hydrogenation reaction is carried out by subjecting an ⁇ , ⁇ -unsaturated carbonyl compound to an asymmetric hydrogenation reaction in the presence of the above-described catalyst or in the presence of the above-described transition metal complex and optically active cyclic nitrogen-containing compound.
  • Optically active carbonyl compounds such as active aldehydes or optically active ketones are obtained.
  • each compound including a transition metal complex and an optically active cyclic nitrogen-containing compound can be obtained from a commercial item.
  • the amount of the transition metal complex used as the catalyst of the present invention varies depending on various reaction conditions, but is, for example, 0.0001 to 1-fold mol with respect to the substrate ⁇ , ⁇ -unsaturated carbonyl compound, preferably Can be used in an amount of 0.001 to 0.05 moles.
  • the amount of the optically active cyclic nitrogen-containing compound used as a component of the catalyst of the present invention varies depending on various reaction conditions, but it is, for example, 0.001 to 20 times that of the substrate ⁇ , ⁇ -unsaturated carbonyl compound.
  • the molar amount is preferably 0.001 to 0.05 times the molar amount.
  • the amount of the acid used as a component of the catalyst of the present invention varies depending on various reaction conditions, but is, for example, 0.01 to 10 times mol, preferably 0.2, with respect to the optically active cyclic nitrogen-containing compound. Up to 4 times mol can be used.
  • an ⁇ , ⁇ -unsaturated carbonyl compound is asymmetrically hydrogenated using the catalyst of the present invention to produce an optically active carbonyl compound, it can be carried out in the presence or absence of a solvent. Preferably it is done.
  • solvents used include aliphatic hydrocarbon organic solvents such as hexane, heptane and octane; alicyclic hydrocarbon organic solvents such as cyclohexane and methylcyclohexane; aromatic carbonization such as benzene, toluene and xylene.
  • Hydrogen-based organic solvents such as diethyl ether, diisopropyl ether, dimethoxyethane, tetrahydrofuran, dioxane, dioxolane; water; alcohol-based organic solvents such as methanol, ethanol, propanol, isopropanol, and tertiary butanol; dichloromethane, dichloroethane, Halogenated hydrocarbon organic solvents such as chlorobenzene and bromotoluene; dimethylformamide, acetonitrile and the like are preferable, and a mixed solvent of these solvents can be used as necessary.
  • ether-based organic solvents such as diethyl ether, diisopropyl ether, dimethoxyethane, tetrahydrofuran, dioxane, dioxolane
  • water alcohol-based organic solvents such as methanol, ethanol, propanol, isopropanol, and tertiary
  • heptane, toluene, and tetrahydrofuran are particularly preferable.
  • the amount of the solvent to be used can be appropriately selected depending on the reaction conditions and the like, but it is, for example, 0 to 20 times, preferably 0 to 5 times the volume of the substrate ⁇ , ⁇ -unsaturated carbonyl compound.
  • hydrogen gas is used as a hydrogen source, and the hydrogen pressure is 0.01 MPa to 10 MPa, preferably 0.1 MPa to 1 MPa.
  • the reaction temperature is -78 to 100 ° C, preferably 10 to 40 ° C.
  • the reaction time varies depending on the reaction conditions, but is usually 1 to 30 hours.
  • optically active carbonyl compound obtained as described above can be isolated and purified by commonly used operations such as extraction, recrystallization and various chromatography.
  • the steric configuration of the obtained optically active carbonyl compound can produce d-form or l-form (R-form or S-form) by appropriately selecting the steric configuration of the optically active cyclic nitrogen-containing compound.
  • Example 1-1 In a 10 ml reaction flask, 1 g of citral (6.57 mmol, the ratio of neral-geranial in the reagent is 1: 1), 2.9 mg of palladium acetate (0.2 mol%), (R)-(+)-2- (Diphenylmethyl) 31 mg (2 mol%) of pyrroridine, 15 mg (2 mol%) of trifluoroacetic acid and 2 ml of toluene were added and stirred to form a hydrogen atmosphere. After stirring at room temperature for 21 hours and analysis by gas chromatography, the conversion rate from citral to citronellal was 50.6%, and the obtained citronellal was d-form, and its optical purity was 40.3% e . e. Met.
  • Example 1-2 In a 10 ml reaction flask, 1 g of citral (6.57 mmol, the ratio of neral-geranial in the reagent is 1: 1), 5.8 mg of palladium acetate (0.4 mol%), (R)-(+)-2- (Diphenylmethyl) 31 mg (2 mol%) of pyrroridine and 2 ml of toluene were added and stirred to form a hydrogen atmosphere. After stirring at room temperature for 21 hours and analysis by gas chromatography, the conversion from citral to citronellal was 99.8%, and the obtained citronellal was d-form, and its optical purity was 18.2% e . e. Met.
  • Example 1-3 In a 10 ml reaction flask, 1 g (6.57 mmol) of neral, 5.8 mg (0.4 mol%) of palladium acetate, 31 mg (2 mol%) of (R)-(+)-2- (Diphenylmethyl) pyrrolidine, 15 mg of trifluoroacetic acid ( 2 mol%) and 2 ml of toluene were added and stirred to obtain a hydrogen atmosphere. After stirring at room temperature for 21 hours and analysis by gas chromatography, the conversion rate from nelar to citronellal was 94.5%, and the obtained citronellal was d-form, and its optical purity was 25.6% e . e. Met.
  • Example 1-4 In a 10-ml reaction flask, 1 g (6.57 mmol) of geranial, 5.8 mg (0.4 mol%) of palladium acetate, 31 mg (2 mol%) of (R)-(+)-2- (Diphenylmethyl) pyrrolidine, 15 mg of trifluoroacetic acid ( 2 mol%) and 2 ml of toluene were added and stirred to obtain a hydrogen atmosphere. After stirring at room temperature for 21 hours and analysis by gas chromatography, the conversion from geranial to citronellal was 93.2%, and the obtained citronellal was d-form, and its optical purity was 40.5% e . e. Met.
  • Examples 1-5 to 1-15 The reaction was performed in the same manner as in Example 1 except that the palladium complex, the solvent, and the auxiliary ligand were changed. The results are shown in Table 1 below. All obtained citronellals are d-forms.
  • Example 2-1 A 10 ml reaction flask was charged with 2.9 mg (0.2 mol%) of palladium acetate, 31 mg (2 mol%) of (R)-(+)-2- (Diphenylmethyl) pyrrolidine and 2 ml of toluene. After degassing, the mixture was stirred overnight at room temperature, and then concentrated to obtain a complex. This complex had a signal different from (R)-(+)-2- (Diphenylmethyl) pyrrolidine on H 1 -NMR, and (R)-(+)-2- (Diphenylmethyl) pyrrolidine was converted to palladium. It was confirmed that the structure was coordinated.
  • the H 1 -NMR chart of the complex is shown in FIGS.
  • H 1 -NMR charts of (R)-(+)-2- (Diphenylmethyl) pyrrolidine are shown in FIGS.
  • Example 2-2 A 10 ml reaction flask was charged with 2.9 mg (0.2 mol%) of palladium acetate, 31 mg (2 mol%) of (S)-(+)-2- (Diphenylmethyl) pyrrolidine, 15 mg (2 mol%) of trifluoroacetic acid, and 2 ml of toluene. It is. After degassing, the mixture was stirred overnight at room temperature, and then concentrated to obtain a complex. This complex had a signal different from (R)-(+)-2- (Diphenylmethyl) pyrrolidine on H 1 -NMR, and (R)-(+)-2- (Diphenylmethyl) pyrrolidine was converted to palladium.
  • the H 1 -NMR chart of the complex is shown in FIG. 3 and FIG.
  • an H 1 -NMR chart of (R)-(+)-2- (Diphenylmethyl) pyrrolidine is shown in FIGS. 5 and 6, and trifluoroacetic acid of (R)-(+)-2- (Diphenylmethyl) pyrrolidine is shown.
  • the H 1 -NMR chart of the salt is shown in FIG. 7 and FIG.
  • Example 2-3 A 10 ml reaction flask was charged with 1 g of citral (6.57 mmol, the ratio of neral to geranial in the reagent is 1: 1), the catalyst obtained in Example 2-1, 15 mg (2 mol%) of trifluoroacetic acid, and 2 ml of toluene and stirred. The atmosphere was hydrogen. After stirring at room temperature for 21 hours and analysis by gas chromatography, the conversion rate from citral to citronellal was 50.6%, and the obtained citronellal was d-form, and its optical purity was 40.3% e . e. Met.
  • Example 3-1 In a 10 ml reaction flask, 1 g of citral (6.57 mmol, the ratio of neral-geranial in the reagent is 1: 1), 5.8 mg of palladium acetate (0.4 mol%), (S)-(+)-2- (tert- Butyl) -3-methyl-4-imidazolidinone trifluoroacetic acid salt 36 mg (2 mol%) and toluene 2 ml were added and stirred to form a hydrogen atmosphere. After stirring for 21 hours at room temperature and analyzed by gas chromatography, the conversion rate from citral to citronellal was 51.0%, and the obtained citronellal was l-form, and its optical purity was 27.1% e. . e. Met.
  • Example 3-2 In a 10 ml reaction flask, 1 g of citral (6.57 mmol, the ratio of neral-geranial in the reagent is 1: 1), 5.8 mg of palladium acetate (0.4 mol%), (S)-(+)-2- (tert- Butyl) -3-methyl-4-imidazolidinone trifluoroacetic acid salt 36 mg (2 mol%) and THF 2 ml were added and stirred to form a hydrogen atmosphere. After stirring at room temperature for 21 hours and analysis by gas chromatography, the conversion rate from citral to citronellal was 58.5%, and the obtained citronellal was l-form, and its optical purity was 34.8% e. . e. Met.
  • Example 3-3 In a 10 ml reaction flask, 1 g of citral (6.57 mmol, the ratio of neral-geranial in the reagent is 1: 1), 16.4 mg (0.4 mol%) of R-BINAP, 5.8 mg (0.4 mol%) of palladium acetate, ( S)-(+)-2- (tert-Butyl) -3-methyl-4-imidazolidinone trifluoroacetic acid salt 36 mg (2 mol%) and THF 2 ml were added and stirred to form a hydrogen atmosphere.
  • Example 3-4 In a 10 ml reaction flask, 1 g of citral (6.57 mmol, the ratio of neral-geranial in the reagent is 1: 1), 5.8 mg of palladium acetate (0.4 mol%), (L) -2- (Diphenylamido) pyrrolidine 25 mg (2 mol) %), 15 mg (2 mol%) of trifluoroacetic acid and 2 ml of toluene were added and stirred to form a hydrogen atmosphere. After stirring at room temperature for 21 hours and analysis by gas chromatography, the conversion from citral to citronellal was 41.9%, and the obtained citronellal was l-form, and its optical purity was 3.0% e . e. Met.
  • Example 4-1 In a 10 ml reaction flask, 1 g of citral (6.57 mmol, 1: 1 ratio of neral-geranial in the reagent), 62.8 mg (1 mol%) of Willkinson complex, 31 mg of (R)-(+)-2- (Diphenylmethyl) pyrrolidine 31 mg (2 mol%), trifluoroacetic acid 15 mg (2 mol%), and ethanol 2 ml were added and stirred to form a hydrogen atmosphere. After stirring for 21 hours at room temperature and analyzed by gas chromatography, the conversion rate from citral to citronellal was 28.7%, and the obtained citronellal was d-form, and its optical purity was 5.0% e . e. Met.
  • Example 4-2 In a 10 ml reaction flask, 1 g of citral (6.57 mmol, 1: 1 ratio of neral-geranial in the reagent), 62.8 mg (1 mol%) of Willkinson complex, 31 mg of (R)-(+)-2- (Diphenylmethyl) pyrrolidine 31 mg (2 mol%) and 2 ml of ethanol were added and stirred to obtain a hydrogen atmosphere. After stirring at room temperature for 21 hours and analysis by gas chromatography, the conversion from citral to citronellal was 65.7%, and the obtained citronellal was d-form, and its optical purity was 1.5% e . e. Met.
  • Example 4-3 In a 10 ml reaction flask, 1 g of citral (6.57 mmol, the ratio of neral-geranial in the reagent is 1: 1), iridium trichloride nhydrate 19.5 mg (2 mol%), (R)-(+)-2- (Diphenylmethyl) pyrrolidine 31 mg (2 mol%), trifluoroacetic acid 15 mg (2 mol%), and THF 2 ml were added and stirred to form a hydrogen atmosphere. After stirring at room temperature for 21 hours and analysis by gas chromatography, the conversion rate from citral to citronellal was 9.02%, and the obtained citronellal was d-form, and its optical purity was 20.8% e . e. Met.
  • Example 4-4 In a 10 ml reaction flask, 1 g of citral (6.57 mmol, the ratio of neral-geranial in the reagent is 1: 1), 19.6 mg (1 mol%) of pentamethylcyclopentadienyliridium dichloride dimer, (R)-(+)- 2- (Diphenylmethyl) pyrrolidine (31 mg, 2 mol%), trifluoroacetic acid (15 mg, 2 mol%), and THF (2 ml) were added and stirred to form a hydrogen atmosphere. After stirring for 21 hours at room temperature and analyzed by gas chromatography, the conversion rate from citral to citronellal was 11.2%, and the obtained citronellal was d-form, and its optical purity was 3.9% e . e. Met.
  • Example 5-1 In a 10 ml reaction flask, 550 mg (3.6 mmol) of geranial, 5.4 mg (0.83 mol%) of a hexarhodium hexadecacarbonyl complex, (S)-(+)-2- (tert-Butyl) -3-methyl-4 -Imidazolidinone trifluoroacetic acid salt 19.5 mg (2 mol%), (+)-DIOP 37.6 mg (2.1 mol%), and 2 ml of toluene were added and stirred to form a hydrogen atmosphere.
  • Example 5-2 In a 10 ml reaction flask, 550 mg (3.6 mmol) of neral, 5.4 mg (0.83 mol%) of hexarhodium hexadecacarbonyl complex, (S)-(+)-2- (tert-Butyl) -3-methyl-4 -Imidazolidinone trifluoroacetic acid salt 19.5 mg (2 mol%), (+)-DIOP 37.6 mg (2.1 mol%), and 2 ml of toluene were added and stirred to form a hydrogen atmosphere.
  • Example 5-3 In a 10 ml reaction flask, 550 mg of citral (3.6 mmol, the ratio of neral-geranial in the reagent is 1: 1), 5.4 mg (0.83 mol%) of hexarhodium hexadecacarbonyl complex, (S)-(+)-2 -(Tert-Butyl) -3-methyl-4-imidazolidinone trifluoroacetic acid salt 19.5 mg (2 mol%), (+)-DIOP 37.6 mg (2.1 mol%), toluene 2 ml were added and stirred. did. After stirring at room temperature for 21 hours and analysis by gas chromatography, the conversion from citral to citronellal was 34.9%, and the obtained citronellal was d-form, and its optical purity was 4.8% e . e. Met.
  • the catalyst for asymmetric hydrogenation used in the present invention is a substrate by simply mixing a specific metal complex, an optically active cyclic nitrogen-containing compound, or a specific metal complex, an optically active cyclic nitrogen-containing compound, and an acid.
  • An optically active ⁇ , ⁇ -carbonyl compound can be produced by selectively and simply asymmetric hydrogenation of a carbon-carbon double bond of an ⁇ , ⁇ -unsaturated carbonyl compound.
  • optically active citronellal can be obtained by selectively asymmetric hydrogenation of citral (a mixture of geranial and neral), geranial, or the ⁇ , ⁇ -carbon-carbon double bond of neral.
  • Optically active citronellal is not only useful as a perfume itself, but also an important raw material for optically active citronellol, optically active isopulegol, and optically active menthol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 本発明は、α、β-不飽和カルボニル化合物を選択的に不斉水素化することにより、光学活性カルボニル化合物である光学活性アルデヒド又は光学活性ケトンを製造する触媒、特に、シトラール、ゲラニアール又はネラールを選択的に不斉水素化することにより、香料として有用な光学活性シトロネラールを得るための、反応混合物に可溶性でない触媒、及び対応する光学活性カルボニル化合物の製造方法の提供を目的とする。特にシトラールの不斉水素化において、ネラールとゲラニアールの混合比率に全く依存せずに、同一の光学異性体のシトロネロールを得るための製造方法の提供を目的とする。本発明は、周期表における第8~10族の遷移金属より選ばれる少なくとも一種の遷移金属の錯体と光学活性環状含窒素化合物とを含み、必要に応じてさらに酸を含む触媒を用いて、α、β-不飽和カルボニル化合物を不斉水素化する。

Description

均一系不斉水素化触媒
 本発明は、均一系不斉水素化用触媒を用い、α、β-不飽和カルボニル化合物の炭素-炭素二重結合を選択的に不斉水素化することにより、光学活性カルボニル化合物である光学活性アルデヒド又は光学活性ケトンを製造する方法に関するものである。
 従来から、α、β-不飽和アルデヒドの炭素-炭素二重結合を水素ガスで不斉水素化する試みは行なわれており、特に香料として重要な光学活性シトロネラールを得るためにネラール、ゲラニアールを不斉水素化する方法は知られている(特許文献1、2)。これらの方法は、少量の均一系触媒を用い水素ガスにより炭素-炭素二重結合を水素化する方法であることから、助剤を必要としないため大量の廃棄物がでない。
 また、均一系触媒を用いたα、β-不飽和ケトンの炭素炭素二重結合の不斉水素化が報告されている(特許文献3、非特許文献1)。
 一方、有機不斉触媒とHantzschエステルを用いたα、β-不飽和化合物の水素移動型不斉水素化反応が報告されている(特許文献4、非特許文献2)。
日本国特公昭61-23775号公報 日本国特表2008-515843号公報 日本国特表平9-502459号公報 米国特許出願公開第2006/0161024号明細書
J.Org.Chem.1995,60,P357. Acc.Chem.Res.2007,40,1327-1339
 しかしながら、特許文献1及び2の方法で使用する触媒は高価な光学活性の配位子を含む高価なロジウム金属等を用いた均一系水素化触媒として知られている。こられの均一系水素化触媒を用いて、シトラール(ゲラニアールとネラールとの混合物)の不斉水素化の場合、ネラールとゲラニアールからは、それぞれ別の光学異性体が得られるため、ネラールとゲラニアールとを別けて反応を行う必要がある。
 さらに、非特許文献1及び特許文献3の有機触媒を用いる方法では、原料の不飽和アルデヒド又は不飽和ケトンに対して20mol%程度の触媒量が必要であることと、水素化の基質であるHantzschエステルは原料の不飽和アルデヒド又はケトンに対して等量以上必要であることから、光学活性アルデヒド又は光学活性ケトンの製造方法としては経済的に不利である。
 本発明の目的は、有機触媒と安価な遷移金属錯体を不斉水素化触媒として用い、α、β-不飽和カルボニル化合物の炭素-炭素二重結合を不斉水素化し対応する光学活性アルデヒド又は光学活性ケトンを得る方法に関する。特にシトラール、ゲラニアール、又はネラールを不斉水素化反応により水素化して、光学活性なシトロネラールを得る方法に関する。
 本発明者等は上記課題を解決するために鋭意検討を行った結果、特定の遷移金属錯体、光学活性環状含窒素化合物または、特定の遷移金属錯体、光学活性環状含窒素化合物、及び酸を用いることにより、α、β-不飽和カルボニル化合物を不斉水素化し、対応する光学活性アルデヒド又は光学活性ケトンが得られることを見いだし、本発明を完成するに到った。
 特に、本発明の触媒系を用いることにより、単一の触媒から、例えば、Z配置、E配置の関係にあるネラールとゲラニアール、またはネラールとゲラニアールの混合物であるシトラールのいずれからでも、同一の光学異性体が得られることを見出した。
 本発明の触媒は、シトラールの不斉水素化において、ネラールとゲラニアールの混合比率に全く依存せずに、同一の光学異性体を製造できることにおいて、全く新しい概念を提供している。
 すなわち本発明は以下の各発明を包含する。
<1> 周期表における第8~10族の遷移金属より選ばれる少なくとも一種の遷移金属の錯体と光学活性環状含窒素化合物とを含む均一系不斉水素化触媒。
<2> 周期表における第8~10族の遷移金属より選ばれる少なくとも一種の遷移金属に光学活性環状含窒素化合物が配位してなる<1>に記載の均一系不斉水素化触媒。
<3> 周期表における第8~10族の遷移金属より選ばれる少なくとも一種の遷移金属の錯体と光学活性環状含窒素化合物と酸とを含む均一系不斉水素化触媒。
<4> 光学活性環状含窒素化合物が、一般式(1)
Figure JPOXMLDOC01-appb-C000008
(式(1)中、環Aは3~7員環で、置換基を有していてもよく、炭素、窒素、硫黄、酸素、及び燐からなる群より選ばれる少なくとも一種の原子を含む。
及びRは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいカルボキシル基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアミド基、置換基を有してもよいカルバモイル基、又は置換基を有していてもよいシロキシ基を表す。ただしRとRは同じ置換基になることはない。また、R又はRの一方が環Aと結合しさらに環を形成していてもよい。*は不斉炭素原子を表す。)
で表される化合物である<1>~<3>のいずれか一に記載の均一系不斉水素化触媒。
<5> 遷移金属錯体が、ニッケル、ルテニウム、ロジウム、イリジウム、パラジウム及び白金から選ばれる何れかの遷移金属錯体である<1>~<4>のいずれか一に記載の均一系不斉水素化触媒。
<6> α,β-不飽和カルボニル化合物を、<1>~<5>のいずれか一に記載の均一系不斉水素化触媒の存在下、水素または水素を供与する化合物と反応させて光学活性カルボニル化合物を製造する光学活性カルボニル化合物の製造方法。
<7> α,β-不飽和カルボニル化合物が、一般式(2)
Figure JPOXMLDOC01-appb-C000009
(式中、R、R、R及びRは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、又は置換基を有していてもよいアラルキル基を表す。また、RとRとで環を形成してもよい。ただし、Rが水素原子でないときはR及びRは互いに同じでもよく、Rが水素原子のときはR及びRは水素原子以外であり互いに異なる。)
で表わされるα,β-不飽和カルボニル化合物であり、生成する光学活性カルボニル化合物が、一般式(3)
Figure JPOXMLDOC01-appb-C000010
(式(3)中、R、R、R及びRは、式(2)の定義と同じである。2つの*は、一方又は両方が不斉炭素原子を表す。)
で表される光学活性カルボニル化合物である<6>に記載の製造方法。
<8> α、β-不飽和カルボニル化合物が、ゲラニアール、ネラール又はシトラールである<7>に記載の製造方法。
<9> α、β-不飽和カルボニル化合物が、5~16員環の環状ケトン類である<7>に記載の製造方法。
<10> α、β-不飽和カルボニル化合物を、周期表における第8~10族の遷移金属より選ばれる少なくとも一種の遷移金属の錯体と光学活性環状含窒素化合物の存在下に水素または水素を供与する化合物と反応させて光学活性カルボニル化合物を製造する光学活性カルボニル化合物の製造方法。
<11> α、β-不飽和カルボニル化合物を、周期表における第8~10族の遷移金属より選ばれる少なくとも一種の遷移金属の錯体と光学活性環状含窒素化合物および酸の存在下に水素または水素を供与する化合物と反応させて光学活性カルボニル化合物を製造する光学活性カルボニル化合物の製造方法。
<12> 光学活性環状含窒素化合物が、一般式(1)
Figure JPOXMLDOC01-appb-C000011
(式(1)中、環Aは3~7員環で、置換基を有していてもよく、炭素、窒素、硫黄、酸素、及び燐からなる群より選ばれる少なくとも一種の原子を含む。
及びRは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいカルボキシル基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアミド基、置換基を有してもよいカルバモイル基、又は置換基を有していてもよいシロキシ基を表す。ただしRとRは同じ置換基になることはない。また、R又はRの一方が環Aと結合しさらに環を形成していてもよい。*は不斉炭素原子を表す。)
で表される化合物である<10>又は<11>に記載の方法。
<13> 光学活性環状含窒素化合物が、一般式(1)
Figure JPOXMLDOC01-appb-C000012
(式(1)中、環Aは3~7員環で、置換基を有していてもよく、炭素、窒素、硫黄、酸素、及び燐からなる群より選ばれる少なくとも一種の原子を含む。
及びRは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいカルボキシル基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアミド基、置換基を有してもよいカルバモイル基、又は置換基を有していてもよいシロキシ基を表す。ただしRとRは同じ置換基になることはない。また、R又はRの一方が環Aと結合しさらに環を形成していてもよい。*は不斉炭素原子を表す。)
で表される化合物である<10>~<12>のいずれか一に記載の製造方法。
<14> 遷移金属錯体が、ニッケル、ルテニウム、ロジウム、イリジウム、パラジウム及び白金から選ばれる何れかの遷移金属錯体である<10>~<13>のいずれか一に記載の製造方法。
<15> α,β-不飽和カルボニル化合物が、一般式(2)
Figure JPOXMLDOC01-appb-C000013
(式中、R、R、R及びRは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、又は置換基を有していてもよいアラルキル基を表す。また、RとRとで環を形成してもよい。ただし、Rが水素原子でないときはR及びRは互いに同じでもよく、Rが水素原子のときはR及びRは水素原子以外であり互いに異なる。)
で表わされるα,β-不飽和カルボニル化合物であり、生成する光学活性カルボニル化合物が、一般式(3)
Figure JPOXMLDOC01-appb-C000014
(式(3)中、R、R、R及びRは、式(2)の定義と同じである。2つの*は、一方又は両方が不斉炭素原子を表す。)
で表される光学活性カルボニル化合物である<10>~<14>のいずれか一に記載の製造方法。
<16> α、β-不飽和カルボニル化合物が、ゲラニアール、ネラール又はシトラールである<15>に記載の製造方法。
<17> α、β-不飽和カルボニル化合物が、5~16員環の環状ケトン類である<15>に記載の製造方法。
 本発明は上記のように、不斉水素化反応における触媒として、遷移金属錯体と共に、エナンチオ選択性に寄与する添加物として光学活性環状含窒素化合物、または、遷移金属錯体と共に、エナンチオ選択性に寄与する添加物として光学活性環状含窒素化合物、及び酸を用いるものである。
 本発明の不斉水素化触媒は、従来の不斉水素化触媒のように予め触媒を調製して反応を行ってもよいが、予め触媒を調製するための反応工程をしなくてもよい。すなわち、本発明の不斉水素化反応においては、単に、原料化合物、光学活性環状含窒素化合物及び遷移金属錯体を混合し、更に必要に応じて酸を加えるだけで、不斉水素化することができるものでもある。このように操作も簡便であり、また、遷移金属錯体及び光学活性環状含窒素化合物は回収して再使用することも可能であり、工業的にも有利である。
 また、本発明の触媒を使用する際に、α、β-不飽和カルボニル化合物のα位とβ位の二重結合においてZ配置及びE配置の化合物のいずれを基質として使用した場合においても、生成する光学活性カルボニル化合物の立体配置は、基質の立体配座ではなく使用する光学活性環状含窒素化合物の立体配置に依存する。そのため、本発明では、Z配置化合物とE配置化合物との混合物を基質として使用した場合においても、同じ立体配置の光学活性カルボニル化合物を製造することができる。
実施例2-1の錯体(酢酸パラジウム+(R)-(+)-2-(Diphenylmethyl)pyrroridine)のH-NMRチャートである。 図1のH-NMRチャートの低磁場部分を拡大した図である。 実施例2-2の錯体(酢酸パラジウム+(R)-(+)-2-(Diphenylmethyl)pyrroridine+トリフルオロ酢酸)のH-NMRチャートである。 図3のH-NMRチャートの低磁場部分を拡大した図である。 (R)-(+)-2-(Diphenylmethyl)pyrroridineのH-NMRチャートである。 図5のH-NMRチャートの低磁場部分を拡大した図である。 (R)-(+)-2-(Diphenylmethyl)pyrroridine+トリフルオロ酢酸のH-NMRチャートである。 図7のH-NMRチャートの低磁場部分を拡大した図である。
 以下、本発明について詳細に説明する。
 本発明においては、α、β-不飽和カルボニル化合物を基質として用い、これを本発明の触媒を使用して不斉水素化し、光学活性カルボニル化合物である光学活性アルデヒド又は光学活性ケトンを製造する。
<基質>
 基質として用いられるα、β-不飽和カルボニル化合物としては、特に限定されないが、例えば下記一般式(2)で示される化合物が挙げられる。なお、α、β-不飽和カルボニル化合物のα位とβ位の二重結合において、Z配置及びE配置があるものは、それらの何れも含むものである。
下記一般式(2)
Figure JPOXMLDOC01-appb-C000015
 式中、R、R、R及びRは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、または置換基を有していてもよいアラルキル基を表す。また、RとRとで環を形成してもよい。ただし、Rが水素原子でないときはR及びRは互いに同じでもよく、Rが水素原子のときはR及びRは水素原子以外であり互いに異なる。すなわち、R、R、及びRの全てが水素原子になることはない。
 前記式(2)で示される化合物を本発明の触媒を使用して不斉水素化することにより、下記式(3)で示される光学活性カルボニル化合物である光学活性アルデヒド又は光学活性ケトンが製造される。
Figure JPOXMLDOC01-appb-C000016
 式中、R、R、R及びRは、式(2)の定義と同じである。2つの*は、一方又は両方が不斉炭素原子を表す。
 一般式(2)で示されるα、β-不飽和カルボニル化合物及び一般式(3)で表される光学活性カルボニル化合物において、R、R、R、及びRで表される基である、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、アルコキシカルボニル基、カルボニルオキシ基、ニトリル基及びパーハロゲノアルキル基について説明する。これらの基はいずれも置換基を有していてもよい。
 アルキル基としては、鎖状又は分岐状の例えば炭素数1~30、好ましくは炭素数1~10のアルキル基が挙げられ、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、2-ペンチル基、3-ペンチル基、tert-ペンチル基、2-メチルブチル基、3-メチルブチル基、2,2-ジメチルプロピル基、1,2-ジメチルプロピル基、n-ヘキシル基、2-ヘキシル基、3-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基、2-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-1-メチルプロピル基、1-エチル-2-メチルプロピル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基及びドコシル基等が挙げられる。
 また、これらアルキル基は置換基を有していてもよく、該アルキル基の置換基としては、例えばアルケニル基、アルキニル基、アリール基、脂肪族複素環基、芳香族複素環基、アルコキシ基、アルキレンジオキシ基、アリールオキシ基、アラルキルオキシ基、ヘテロアリールオキシ基、置換アミノ基、ニトロ基、ニトリル基、パーハロゲノアルキル基及びハロゲン原子等が挙げられる。
 アルキル基の置換基としてのアルケニル基としては、直鎖状でも分岐状でもよい、例えば炭素数2~20、好ましくは炭素数2~10、より好ましくは炭素数2~6のアルケニル基が挙げられ、具体的にはビニル基、プロペニル基、1-ブテニル基、ペンテニル基及びヘキセニル基等が挙げられる。
 アルキル基の置換基としてのアルキニル基としては、直鎖状でも分岐状でもよい、例えば炭素数2~15、好ましくは炭素数2~10、より好ましくは炭素数2~6のアルキニル基が挙げられ、具体的にはエチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、3-ブチニル基、ペンチニル基及びヘキシニル基等が挙げられる。
 アルキル基の置換基としてのアリール基としては、例えば炭素数6~14のアリール基が挙げられ、具体的にはフェニル基、ナフチル基、アンスリル基、フェナンスリル基、ビフェニル基、トリル基、キシリル基、メシチル基、メトキシフェニル基、ジメトキシフェニル基及びフルオロフェニル基等が挙げられる。
 アルキル基の置換基としての脂肪族複素環基としては、例えば炭素数2~14であって、異種原子として少なくとも1個、好ましくは1~3個の例えば窒素原子、酸素原子、硫黄原子等のヘテロ原子を含んでいる基があげられる。好ましくは、5又は6員の単環の脂肪族複素環基、及び多環又は縮合環の脂肪族複素環基が挙げられる。脂肪族複素環基の具体例としては、例えば、2-オキソ-1-ピロリジニル基、ピペリジノ基、ピペラジニル基、モルホリノ基、テトラヒドロフリル基、テトラヒドロピラニル基及びテトラヒドロチエニル基等が挙げられる。
 アルキル基の置換基としての芳香族複素環基としては、例えば炭素数2~15であって、異種原子として少なくとも1個、好ましくは1~3個の窒素原子、酸素原子、硫黄原子等の異種原子を含んでいる基があげられる。好ましくは、5又は6員の単環の芳香族複素環基、及び多環又は縮合環の芳香族複素環基が挙げられる。芳香族複素環基の具体例としては、例えば、フリル基、チエニル基、ピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、ピラゾリニル基、イミダゾリル基、オキサゾリニル基、チアゾリニル基、ベンゾフリル基、ベンゾチエニル基、キノリル基、イソキノリル基、キノキサリニル基、フタラジニル基、キナゾリニル基、ナフチリジニル基、シンノリニル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基及びベンゾチアゾリル基等が挙げられる。
 アルキル基の置換基としてのアルコキシ基としては、直鎖状又は分岐状の、例えば炭素数1~6のアルコキシ基が挙げられ、具体的にはメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、2-ブトキシ基、イソブトキシ基、tert-ブトキシ基、n-ペンチロキシ基、2-メチルブトキシ基、3-メチルブトキシ基、2,2-ジメチルプロポキシ基、n-ヘキシロキシ基、2-メチルペンチロキシ基、3-メチルペンチロキシ基、4-メチルペンチロキシ基及び5-メチルペンチロキシ基等が挙げられる。
 アルキル基の置換基としてのアルキレンジオキシ基としては、例えば炭素数1~3のアルキレンジオキシ基が挙げられ、具体的にはメチレンジオキシ基、エチレンジオキシ基、プロピレンジオキシ基及びイソプロピリデンジオキシ基等が挙げられる。
 アルキル基の置換基としてのアリールオキシ基としては、例えば炭素数6~14のアリールオキシ基が挙げられ、具体的にはフェノキシ基、ナフチロキシ基及びアンスリロキシ基等が挙げられる。
 アルキル基の置換基としてのアラルキルオキシ基としては、例えば炭素数7~12のアラルキルオキシ基が挙げられ、具体的にはベンジルオキシ基、2-フェニルエトキシ基、1-フェニルプロポキシ基、2-フェニルプロポキシ基、3-フェニルプロポキシ基、1-フェニルブトキシ基、2-フェニルブトキシ基、3-フェニルブトキシ基、4-フェニルブトキシ基、1-フェニルペンチロキシ基、2-フェニルペンチロキシ基、3-フェニルペンチロキシ基、4-フェニルペンチロキシ基、5-フェニルペンチロキシ基、1-フェニルヘキシロキシ基、2-フェニルヘキシロキシ基、3-フェニルヘキシロキシ基、4-フェニルヘキシロキシ基、5-フェニルヘキシロキシ基及び6-フェニルヘキシロキシ基等が挙げられる。
 アルキル基の置換基としてのヘテロアリールオキシ基としては、例えば、異種原子として少なくとも1個、好ましくは1~3個の窒素原子、酸素原子、硫黄原子等の異種原子を含んでいる、炭素数2~14のヘテロアリールオキシ基が挙げられ、具体的には、2-ピリジルオキシ基、2-ピラジルオキシ基、2-ピリミジルオキシ基及び2-キノリルオキシ基等が挙げられる。
 アルキル基の置換基としての置換アミノ基としては、例えば、N-メチルアミノ基、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基、N,N-ジイソプロピルアミノ基、N-シクロヘキシルアミノ基等のモノ又はジアルキルアミノ基;N-フェニルアミノ基、N,N-ジフェニルアミノ基、N-ナフチルアミノ基、N-ナフチル-N-フェニルアミノ基等のモノ又はジアリールアミノ基;N-ベンジルアミノ基、N,N-ジベンジルアミノ基等のモノ又はジアラルキルアミノ基等が挙げられる。
 アルキル基に置換するパーハロゲノアルキル基としては、例えば、トリフロロメチル基、ペンタフロロエチル基、ヘプタフロロプロピル基、ノナフロロブチル基、トリクロロメチル基、ペンタクロロエチル基等が挙げられる。
 アルキル基に置換するハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。
 シクロアルキル基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基及びシクロヘキシル基等が挙げられる。
 これらシクロアルキル基は置換基を有していてもよく、該置換基としては、前記のアルキル基の置換基の説明で述べたような置換基が挙げられる。
 アルケニル基としては、鎖状又分岐状あるいは環状の、例えば炭素数2~20、好ましくは炭素数2~10のアルケニル基が挙げられる。具体的なアルケニル基としては、例えばビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-シクロペンテニル基、3-シクロペンテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基、4-メチル-3-ペンテニル基、4,8-ジメチル-3,7-ノナジエニル基、1-シクロヘキセニル基及び3-シクロヘキセニル基等が挙げられる。
 これらアルケニル基は置換基を有していてもよく、該置換基としては、前記のアルキル基の置換基の説明で述べたような基が挙げられる。
 アリール基としては、例えば炭素数6~14のアリール基が挙げられ、具体的にはフェニル基、ナフチル基、アントリル基、フェナンスリル基、ビフェニル基等が挙げられる。 これらアリール基は置換基を有していてもよく、該置換基としてはアルキル基の置換基の説明で述べたような基が挙げられる。
 アラルキル基としては、例えば炭素数7~12のアラルキル基が好ましく、具体的にはベンジル基、2-フェニルエチル基、1-フェニルプロピル基、3-ナフチルプロピル基等が挙げられる。
 これらアラルキル基は置換基を有していてもよく、該置換基としてはアルキル基の説明で述べたような基が挙げられる。
 アルコキシカルボニル基としては、炭素数2~15のアルコキシカルボニル基が好ましく、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基、イソプロポキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基、ベンジルオキシカルボニル基等が挙げられる。
 これらアルコキシカルボニル基は置換基を有していてもよく、該置換基としてはアルキル基の説明で述べたような基が挙げられる。
 アシルオキシ基としては、炭素数2~15のアラルキル基が好ましく,例えば、アセチルオキシ基、プロパノイルオキシ基、ブタノイルオキシ基、オクタノイルオキシ基、ベンゾイルオキシ基、トルオイルオキシ基、キシロイルオキシ基、ナフトイルオキシ基、フェナンスロイルオキシ基、アントラノイルオキシ基等が挙げられる。
 これらアシルオキシ基は置換基を有していてもよく、該置換基としてはアルキル基の説明で述べたような基が挙げられる。
 一般式(2)で表されるα、β-不飽和カルボニル化合物及び一般式(3)で表される光学活性カルボニル化合物において、RとR、RとR、RとR、RとR、又はRとRとで形成する環としては、例えば、シクロペンタン環、シクロヘキサン環、インダン環、テトラリン環、シクロペンテン環、シクロヘキセン環、シクロヘプテン環、インデン環、ジヒドロナフタレン環、オクタヒドロナフタレン環、デカヒドロナフタレン環等が挙げられる。これらの環は、前述したようなアルキル基、以下で説明するアシル基等で置換されていてもよい。
 アシル基としては、例えば、アセチル基、プロパノイル基、ブタノイル基、オクタノイル基、ベンゾイル基、トルオイル基、キシロイル基、ナフトイル基、フェナンスロイル基、アントラノイル基等が挙げられる。
 本発明において基質として用いられるα、β-不飽和アルデヒドの具体例としては、例えば以下のような化合物が挙げられる。なお、α、β-不飽和アルデヒドのα位とβ位の二重結合において、Z配置及びE配置があるものは、それらの何れも含むものである。以下化合物中の波線は、Z配置及びE配置、又はそれらの混合物を表す。
 以下、化合物中、Meはメチル基、Phはフェニル基、Bnはベンジル基を表す。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 前記したようなα、β-不飽和アルデヒドの中でも、ゲラニアール(下記A)、ネラール(下記B)及びシトラールが特に好ましいものとして挙げられる。
Figure JPOXMLDOC01-appb-C000019
 本発明において基質として用いられるα、β-不飽和ケトンは、5~16員環のケトン類が好ましい。
 α、β-不飽和ケトンの具体例としては、例えば以下のような化合物が挙げられる。なお、α、β-不飽和ケトンのα位とβ位の二重結合において、Z配置及びE配置があるものは、それらの何れも含むものである。以下、化合物中の波線は、Z配置及びE配置、又はそれらの混合物を表す。
 以下化合物中、Phはフェニル基、Etはエチル基、Buはブチル基、Prはプロピル基、Bnはベンジル基を表す。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
<触媒>
 次に、本発明の触媒について説明する。
 本発明の触媒は、周期表における第8~10族の遷移金属より選ばれる少なくとも一種の遷移金属の錯体と光学活性環状含窒素化合物、必要に応じて酸を追加成分として含み、これらを反応させることにより得られる均一系不斉水素化触媒である。
 本発明で用いられる遷移金属錯体は、周期表における第8~10族の遷移金属より選ばれる少なくとも一種の遷移金属の錯体であって、本発明の不斉水素化反応が進行するものであれば特に制限されるものではない。
 周期表における第8~10族の金属としては、ニッケル(Ni)、ルテニウム(Ru)、ロジウム(Rh)、イリジウム(Ir)、パラジウム(Pd)及び白金(Pt)が挙げられ、特に好ましい金属はパラジウムである。また、錯体における価数は0価から3価が好ましい。
 使用される金属錯体の配位子としては、水素原子、アルキル基、アルコキシ基、オレフィン、アルキン、π―アリル、アリール基、カルベン、ナイトレン、ハロゲン原子、カルボキシ基、一酸化炭素、イソニトリル、窒素配位子、燐配位子等の単座から三座の配位子、ニトリル、テトラヒドロフラン等の溶媒配位子が挙げられ、数種の配位子が配位していても良く、それらの配位子はラセミ体であっても光学活性体あっても良い。
 本発明において用いられる遷移金属錯体としては、例えば下記一般式(4)で表される化合物が挙げられる。
 [M      (4)
(式中、Mは周期表における第8~10族の遷移金属を示し;Lは配位子を示し;Wは水素原子、ハロゲン原子、アルキル基、アリール基、アルコキシ基、カルボキシル基、ジエン又はアニオンを示し;Uは水素原子、ハロゲン原子、アルキル基、アルコキシ基、アリール基、カルボキシル基、ジエン、アニオン又はL以外の配位子を示し;Zはアニオン又はアミンを示し:m及びrは1~5の整数を示し;n、p、q及びsは0~5の整数を示し、p+q+sは1以上である。)
 一般式(4)において、Mで表される周期表における第8~10族の遷移金属としては、例えば、ニッケル(Ni)、ルテニウム(Ru)、ロジウム(Rh)、イリジウム(Ir)、パラジウム(Pd)および白金(Pt)等が挙げられる。
 Lで表される配位子としては、例えば、窒素配位子、燐配位子等の単座から三座の配位子が挙げられる。
 WおよびUで表されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 WおよびUで表されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等が挙げられる。
 WおよびUで表されるアリール基としては、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基、インデニル基、メシチル基等の芳香族単環、多環式基等が挙げられる。
 WおよびUで表されるアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基、ペノキシ基、ベンジルオキシ基等があげられる。
 WおよびUで表されるカルボキシ基としては、例えば、フェルミルオキシ基、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、ベンゾイルオキシ基等が挙げられる。
 WおよびUで表されるジエンとしては、ブタジエン、1,5-シクロオクタジエン、ノルボルナジエン等が挙げられる。
 WおよびUで表されるアニオンとしては、NO、SO、CO、BH、BH、I、ClO、OTf(Tfは、トリフラート基(SOCF)を示す)、PF、SbF、BPh(Phは、フェニル基を示す)等が挙げられる。
 Uで表されるL以外の配位子としては、中性配位子である芳香族化合物またはオレフィン、炭素数1~5のアルキルニトリル、ベンゾニトリル、フタロニトリル、ビリジン又は置換ピリジン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、アセトン、ジベンジリデンアセトン(dba)等が挙げられる。
 Zで表されるアニオンとしては、NO、SO、CO、BH、BH、I、ClO、OTf、PF、SbF、BPh等が挙げられる。
 Zで表されるアミンとしては、トリアルキルアミン化合物、ジアミン化合物、ピリジン類、ジアルキルアンモニウムイオン類等を挙げることができる。
 遷移金属錯体の具体例として、例えば、ニッケル錯体としては、ビス(1,5-シクロオクタジエン)ニッケル、1,2-ビス(ジフェニルホスフィノ)エタンニッケル、ビス(トリフェニルホスフィン)ニッケルブロミド、ビス(トリフェニルホスフィン)ニッケルクロリド、ビス(トリフェニルホスフィン)ニッケルジカルボニル、メタリルニッケルクロリドダイマー、酢酸ニッケル、ニッケルアセトアセトナート、ニッケルトリフロロメタンスルホネートを挙げることができる。
 ルテニウム錯体としては、ビス(2-メチルアリル)(1,5-シクロオクタジエン)ルテニウム、カルボニルクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム、カルボニル(ジヒドリド)トリス(トリフェニルホスフィン)ルテニウム、クロロ(シクロペンタジエニル)ビス(トリフェニルホスフィン)ルテニウム、シクロペンタジエニル(パラサイメン)ルテニウムヘキサフロロホスフェート、ジクロロ(パラサイメン)ルテニウムダイマー、ジクロロ(1,5-シクロオクタジエン)ルテニウム ポリマーを挙げることができる。
 ロジウム錯体としては、アセチルアセトナート(1,5-シクロオクタジエン)ロジウム、ビス(1,5-シクロオクタジエン)ロジウムテトラフロロボレート、ビス(1,5-シクロオクタジエン)ロジウムトリフロロメタンスルホネート、ビス(ノルボルナジエン)ロジウムテトラフロロボレート、クロロカルボニルビス(トリフェニルホスフィン)ロジウム、クロロ(1,5-シクロオクタジエン)ロジウムダイマー、ジカルボニルアセチルアセトナートロジウム、酢酸ロジウムダイマー、ヘキサロジウム ヘキサデカカルボニル、クロロトリス(トリフェニルホスフィン)ロジウムを挙げることができる。
 イリジウム錯体としては、クロロカルボニルビス(トリフェニルホスフィン)イリジウムダイマー、クロロ(1,5-シクロオクタジエン)イリジウムダイマー、1,5-シクロオクタジエン(アセチルアセトナート)イリジウム、ジカルボニルアセチルアセトナートイリジウム、ジクロロ(ペンタメチルシクロペンタジエニル)イリジウムダイマー、ヒドリドカルボニルトリス(トリフェニルホスフィン)イリジウム、イリジウムアセチルアセトナート、三塩化イリジウムを挙げることができる。
 パラジウム錯体としては、アリルパラジウムクロリドダイマー、ビス[1,2-ビス(ジフェニルホスフィノ)エタン]パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム、塩化パラジウム、ビス(2-メチルアリル)パラジウムクロリドダイマー、ジアセタートビス(トリフェニルホスフィン)パラジウム、ジクロロビス(アセトニトリル)パラジウム、ジクロロ[1,2-ビス(ジフェニルホスフィノ)エタン]パラジウム、トランス-ジクロロビス(トリフェニルホスフィン)パラジウム、ジクロロ(1,5-シクロオクタジエン)パラジウム、シス-ジクロロ(N、N、N’、N’-テトラメチルエチレンジアミン)パラジウム、酢酸パラジウム、パラジウムアセチルアセトナート、テトラキス(トリフェニルホスフィン)パラジウムを挙げることができる。
 白金錯体としては、ビス(エチレンジアミン)プラチナ、ビス(トリ-t-ブチルホスフィン)プラチナ、ジブロモ(1,5-シクロオクタジエン)プラチナ、ジクロロビス(ベンゾニトリル)プラチナ、シス-ジクロロビス(ピリジン)プラチナ、シス-(ジクロロビス)トリフェニルホスフィンプラチナ、ジクロロ(1,5-シクロオクタジエン)プラチナ、ジクロロ(ジシクロペンタジエニル)プラチナ、プラチナアセチルアセトナート、塩化白金、テトラキス(トリフェニルホスフィン)プラチナを挙げることができる。
 本発明の触媒は、補助配位子を含んでもよい。これにより、錯体触媒の反応性を向上させ、不斉水素化の選択性を向上させることが可能となる。
 具体的には、一酸化炭素、シクロペンタジエン、ペンタメチルシクロペンタジエン、シクロオクテン、シクロオクタジエン(COD)、p-シメン、アセトニトリル、ベンゾニトリル、ピコリン酸、トリフェニルホスフィン、トリt-ブチルホスフィン、トリフェニルホスファイト、トリフェニルホスフェート、トリシクロヘキシルホスフィン、ジ-t-ブチル(2,2-ジフェニル-1-メチル-1-シクロプロピル)フォスフィン(BRIDP)、トリ-n-オクチルフォスフィン、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル(BINAP)、2,2’-ビス(5,5’,6,6’,7,7’,8,8’-オクタヒドロジフェニルホスフィノ)-1,1’-ビナフチル(H8-BINAP)、5,5’-ビス(ジフェニルホスフィノ)-4,4’-ビ-1,3-ベンゾオキサゾール(SEGPHOS)、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビフェニル(BIPHEP)、1,2-ビス((2R,5R)-2,5-ジメチル-ホスフォラノ)ベンゼン(DUPHOS)、ビス(ジフェニルフォスフィノ)ブタン(Chiraphos)、1,2-ビス(ジフェニルフォスフィノ)エタン(Dppe)、1,2-ビス(ジフェニルフォスフィノ)フェロセン(Dppf)、1,2-ビス(ジフェニルフォスフィノ)プロパン(Dppp)、2,2’-ビピリジン、2,2’:6’,2’’-ターピリジン、N-メチルプロリンエチルエステル、N-メチル-2-ジフェニルメチルピロリジン等が好ましく使用できる。補助配位子は光学活性体でも良い。
 補助配位子は、金属原子に対して0.5~8等量含むことが好ましい。かかる含有量であれば、対応する金属原子に応じて金属錯体触媒の性能を向上することが可能となる。
 続いて、本発明における触媒成分として用いられる光学活性環状含窒素化合物について説明する。本発明の触媒において、光学活性環状含窒素化合物は、触媒金属である周期表における第8~10族の遷移金属に配位している。
 本発明において、目的生成物である光学活性カルボニル化合物の立体配置は、基質の立体配座ではなく、共触媒成分として使用する光学活性環状含窒素化合物の立体配置に依存する。そのため、本発明では、基質となるα、β-不飽和カルボニル化合物がZ配置化合物とE配置化合物のいずれを使用した場合においても、また混合物を基質として使用した場合においても、同じ立体配置の光学活性カルボニル化合物を製造することができる。
 光学活性環状含窒素化合物としては、例えば、一般式(1)で表される光学活性環状含窒素化合物があげられる。
Figure JPOXMLDOC01-appb-C000022
 式(1)中、環Aは3~7員環で、置換基を有していてもよく、炭素、窒素、硫黄、酸素、及び燐からなる群より選ばれる少なくとも一種の原子を含む。
 R及びRは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいカルボキシル基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアミド基、置換基を有してもよいカルバモイル基、置換基を有していてもよいシロキシ基を表す。ただしRとRは同じ置換基になることはない。また、R又はRの一方が環Aと結合しさらに環を形成していてもよい。*は不斉炭素原子を表す。
 環Aは、基本骨格としては、例えば、アジリジン骨格、アゼチジン骨格、ピロリジン骨格、インドリン骨格、ピロリン骨格、ピラゾリジン骨格、イミダゾリジン骨格、イミダゾリジノン骨格、ピラゾリン骨格、チアゾリジン骨格、ピペリジン骨格、ピペラジン骨格、モルホリン骨格、チオモルホリン骨格等が挙げられる。これらの基本骨格に置換基が存在していてもよい。
 環Aの基本骨格に存在する置換基としては、オキソ基、ハロゲン基、アルキル基、アルコキシ基、アミノ基、ヒドロキシカルボニル基、アルコキシカルボニル基、アシル基、アリール基、アラルキル基が挙げられる。アルキル基、アルコキシ基、アルコキシカルボニル基、アリール基、及びアラルキル基としては、R及びRの説明で列挙する基が挙げられる。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。アミノ基としては、例えば、アミノ基、メチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、t-ブチルアミノ基、オクチルアミノ基、シクロヘキシルアミノ基、フェニルアミノ基、スチレニルアミノ基、ナフチルアミノ基、ベンジルアミノ基、アントラセニルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジイソプロピルアミノ基、ジブチルアミノ基、ジt-ブチルアミノ基、ジオクチルアミノ基、ジシクロヘキシルアミノ基、ジフェニルアミノ基、ジスチレニルアミノ基、ジナフチルアミノ基、ジベンジルアミノ基、ジアントラセニルアミノ基、メチルフェニルアミノ基、エチルブチルアミノ基、フェニルシクロヘキシルアミノ基、t-ブチルナフチルアミノ基、ベンジルアントラセニルアミノ基等が挙げられる。
 アシル基としては、例えば、アセチル基、プロパノイル基、ブタノイル基、オクタノイル基、ベンゾイル基、トルオイル基、キシロイル基、ナフトイル基、フェナンスロイル基、アントラノイル基等が挙げられる。
 環Aとしては、これらの中でも、置換基を有してもよいピロリジン骨格及び置換基を有してもよいイミダゾリジノン骨格類が好ましい。
 次に、R及びRで表される基である、アルキル基、シクロアルキル基、アルケニル基、アリール基、アラルキル基、アルコキシ基、カルボキシル基、アルコキシカルボニル基、アミド基、カルバモイル基、シロキシ基について説明する。これらの基はいずれも置換基を有していてもよい。
 アルキル基としては、鎖状又は分岐状の例えば炭素数1~30、好ましくは炭素数1~10のアルキル基が挙げられ、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、2-ペンチル基、3-ペンチル基、tert-ペンチル基、2-メチルブチル基、3-メチルブチル基、2,2-ジメチルプロピル基、1,2-ジメチルプロピル基、n-ヘキシル基、2-ヘキシル基、3-ヘキシル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基、2-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-1-メチルプロピル基、1-エチル-2-メチルプロピル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基、ヘンイコシル基及びドコシル基等が挙げられる。
 また、これらアルキル基は置換基を有していてもよく、該アルキル基の置換基としては、例えばアルケニル基、アルキニル基、アリール基、脂肪族複素環基、芳香族複素環基、ヒドロキシ基、アルコキシ基、トリアルキルシロキシ基、アルキレンジオキシ基、アリールオキシ基、アラルキルオキシ基、ヘテロアリールオキシ基、置換アミノ基、パーハロゲノアルキル基及びハロゲン原子等が挙げられる。
 アルキル基の置換基としてのアルケニル基としては、直鎖状でも分岐状でもよい、例えば炭素数2~20、好ましくは炭素数2~10、より好ましくは炭素数2~6のアルケニル基が挙げられ、具体的にはビニル基、プロペニル基、1-ブテニル基、ペンテニル基及びヘキセニル基等が挙げられる。
 アルキル基の置換基としてのアルキニル基としては、直鎖状でも分岐状でもよい、例えば炭素数2~15、好ましくは炭素数2~10、より好ましくは炭素数2~6のアルキニル基が挙げられ、具体的にはエチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、3-ブチニル基、ペンチニル基及びヘキシニル基等が挙げられる。
 アルキル基の置換基としてのアリール基としては、例えば炭素数6~14のアリール基が挙げられ、具体的にはフェニル基、ナフチル基、アンスリル基、フェナンスリル基、ビフェニル基、トリル基、キシリル基、メシチル基、メトキシフェニル基、ジメトキシフェニル基及びフルオロフェニル基等が挙げられる。
 アルキル基の置換基としての脂肪族複素環基としては、例えば炭素数2~14であって、異種原子として少なくとも1個、好ましくは1~3個の例えば窒素原子、酸素原子、硫黄原子等のヘテロ原子を含んでいる基があげられる。好ましくは、5又は6員の単環の脂肪族複素環基、及び多環又は縮合環の脂肪族複素環基が挙げられる。脂肪族複素環基の具体例としては、例えば、2-オキソ-1-ピロリジニル基、ピペリジノ基、ピペラジニル基、モルホリノ基、テトラヒドロフリル基、テトラヒドロピラニル基及びテトラヒドロチエニル基等が挙げられる。
 アルキル基の置換基としての芳香族複素環基としては、例えば炭素数2~15であって、異種原子として少なくとも1個、好ましくは1~3個の窒素原子、酸素原子、硫黄原子等の異種原子を含んでいる基があげられる。好ましくは、5又は6員の単環の芳香族複素環基、及び多環又は縮合環の芳香族複素環基が挙げられる。芳香族複素環基の具体例としては、例えば、フリル基、チエニル基、ピリジル基、ピリミジニル基、ピラジニル基、ピリダジニル基、ピラゾリニル基、イミダゾリル基、オキサゾリニル基、チアゾリニル基、ベンゾフリル基、ベンゾチエニル基、キノリル基、イソキノリル基、キノキサリニル基、フタラジニル基、キナゾリニル基、ナフチリジニル基、シンノリニル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基及びベンゾチアゾリル基等が挙げられる。
 アルキル基の置換基としてのアルコキシ基としては、直鎖状又は分岐状の、例えば炭素数1~8のアルコキシ基が挙げられ、具体的にはメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、2-ブトキシ基、イソブトキシ基、tert-ブトキシ基、n-ペンチロキシ基、2-メチルブトキシ基、3-メチルブトキシ基、2,2-ジメチルプロポキシ基、n-ヘキシロキシ基、2-メチルペンチロキシ基、3-メチルペンチロキシ基、4-メチルペンチロキシ基、5-メチルペンチロキシ基、シクロペンチロキシ基及びシクロヘキシロキシ基等が挙げられる。
 アルキル基の置換基としてのトリアルキルシロキシ基としては、例えばトリメチルシロキシ基、トリエチルシロキシ基、ジメチルtert-ブチルシロキシ基等が挙げられる。
アルキル基の置換基としてのアルキレンジオキシ基としては、例えば炭素数1~3のアルキレンジオキシ基が挙げられ、具体的にはメチレンジオキシ基、エチレンジオキシ基、プロピレンジオキシ基及びイソプロピリデンジオキシ基等が挙げられる。
 アルキル基の置換基としてのアリールオキシ基としては、例えば炭素数6~15のアリールオキシ基が挙げられ、具体的にはフェノキシ基、ナフチロキシ基、アンスリロキシ基、トリルオキシ基、キシリルオキシ基、4-フェニルフェノキシ基、3,5-ジフェニルフェノキシ基、4-メシチルフェノキシ基及び3,5-ビス(トリフロロメチル)フェノキシ基等が挙げられる。
 アルキル基の置換基としてのアラルキルオキシ基としては、例えば炭素数7~12のアラルキルオキシ基が挙げられ、具体的にはベンジロキシ基、2-フェニルエトキシ基、1-フェニルプロポキシ基、2-フェニルプロポキシ基、3-フェニルプロポキシ基、1-フェニルブトキシ基、2-フェニルブトキシ基、3-フェニルブトキシ基、4-フェニルブトキシ基、1-フェニルペンチロキシ基、2-フェニルペンチロキシ基、3-フェニルペンチロキシ基、4-フェニルペンチロキシ基、5-フェニルペンチロキシ基、1-フェニルヘキシロキシ基、2-フェニルヘキシロキシ基、3-フェニルヘキシロキシ基、4-フェニルヘキシロキシ基、5-フェニルヘキシロキシ基及び6-フェニルヘキシロキシ基等が挙げられる。
 アルキル基の置換基としてのヘテロアリールオキシ基としては、例えば、異種原子として少なくとも1個、好ましくは1~3個の窒素原子、酸素原子、硫黄原子等の異種原子を含んでいる、炭素数2~14のヘテロアリールオキシ基が挙げられ、具体的には、2-ピリジルオキシ基、2-ピラジルオキシ基、2-ピリミジルオキシ基及び2-キノリルオキシ基等が挙げられる。
 アルキル基の置換基としての置換アミノ基としては、例えば、N-メチルアミノ基、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基、N,N-ジイソプロピルアミノ基、N-シクロヘキシルアミノ基、ピロリジル基、ピペリジル基及びモルホリル基等のモノ又はジアルキルアミノ基;N-フェニルアミノ基、N,N-ジフェニルアミノ基、N-ナフチルアミノ基、N-ナフチル-N-フェニルアミノ基等のモノ又はジアリールアミノ基;N-ベンジルアミノ基、N,N-ジベンジルアミノ基等のモノ又はジアラルキルアミノ基等が挙げられる。
 アルキル基に置換するパーハロゲノアルキル基としては、例えば、トリフロロメチル基、ペンタフロロエチル基、ヘプタフロロプロピル基、ノナフロロブチル基、トリクロロメチル基、ペンタクロロエチル基等が挙げられる。
 アルキル基に置換するハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。
 シクロアルキル基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基及びシクロヘキシル基等が挙げられる。
 これらシクロアルキル基は置換基を有していてもよく、該置換基としては、前記のアルキル基の置換基の説明で述べたような置換基が挙げられる。
 アルケニル基としては、鎖状又分岐状あるいは環状の、例えば炭素数2~20、好ましくは炭素数2~10のアルケニル基が挙げられる。具体的なアルケニル基としては、例えばビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-シクロペンテニル基、3-シクロペンテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基、4-メチル-3-ペンテニル基、4,8-ジメチル-3,7-ノナジエニル基、1-シクロヘキセニル基及び3-シクロヘキセニル基等が挙げられる。
 これらアルケニル基は置換基を有していてもよく、該置換基としては、前記のアルキル基の置換基の説明で述べたような基が挙げられる。
 アリール基としては、例えば炭素数6~14のアリール基が挙げられ、具体的にはフェニル基、ナフチル基、アントリル基、フェナンスリル基、ビフェニル基等が挙げられる。 これらアリール基は置換基を有していてもよく、該置換基としてはアルキル基の置換基の説明で述べたような基が挙げられる。
 アラルキル基としては、例えば炭素数7~45のアラルキル基が好ましく、具体的にはベンジル基、トリルメチル基、キシリルメチル基、メシチルメチル基、4-フェニルフェニルメチル基、3-フェニルフェニルメチル基、2-フェニルフェニルメチル基、4-メシチルフェニルメチル基、1-ナフチルメチル基、2-ナフチルメチル基、9-アントラニルメチル基、9-フェナントリルメチル基、3,5-ジフェニルフェニルメチル基、2-フェニルエチル基、1-フェニルプロピル基、3-ナフチルプロピル基、ジフェニルメチル基、ジトリルメチル基、ジキシリルメチル基、ジメシチルメチル基、ジ(4-フェニルフェニル)メチル基、ジ(3-フェニルフェニル)メチル基、ジ(2-フェニルフェニル)メチル基、ジ(4-メシチルフェニル)メチル基、ジ1-ナフチルメチル基、ジ2-ナフチルメチル基、ジ9-アントラニルメチル基、ジ9-フェナントリルメチル基、ビス(3,5-ジフェニルフェニル)メチル基、トリフェニルメチル基、トリトリルメチル基、トリキシリルメチル基、トリメシチルメチル基、トリ(4-フェニルフェニル)メチル基、トリ(3-フェニルフェニル)メチル基、トリ(2-フェニルフェニル)メチル基、トリ(4-メシチルフェニル)メチル基、トリ1-ナフチルメチル基、トリ2-ナフチルメチル基、トリ9-アントラニルメチル基、トリ9-フェナントリルメチル基、トリス(3,5-ジフェニルフェニル)メチル基、ヒドロキシフェニルメチル基、ヒドロキシジフェニルメチル基、ヒドロキシジトリルメチル基、ヒドロキシジ(4-t-ブチルフェニル)メチル基、ヒドロキシジキシリルメチル基、ヒドロキシジ(2-フェニルフェニル)メチル基、ヒドロキシジ(3-フェニルフェニル)メチル基、ヒドロキシジ(4-フェニルフェニル)メチル基、ヒドロキシビス(3,5-ジフェニルフェニル)メチル基、ヒドロキシジ(4-メシチルフェニル)メチル基、ヒドロキシビス(3,5-ジトリフロロメチルフェニル)メチル基、トリメチルシロキシフェニルメチル基、トリメチルシロキシジフェニルメチル基、トリメチルシロキシジトリルメチル基、トリメチルシロキシジ(4-t-ブチルフェニル)メチル基、トリメチルシロキシジキシリルメチル基、トリメチルシロキシジ(2-フェニルフェニル)メチル基、トリメチルシロキシジ(3-フェニルフェニル)メチル基、トリメチルシロキシジ(4-フェニルフェニル)メチル基、トリメチルシロキシビス(3,5-ジフェニルフェニル)メチル基、トリメチルシロキシジ(4-メシチルフェニル)メチル基及びトリメチルシロキシビス(3,5-ジトリフロロメチルフェニル)メチル基等が挙げられる。
 これらアラルキル基は置換基を有していてもよく、該置換基としてはアルキル基の説明で述べたような基が挙げられる。
 アルコキシ基としては、たとえば炭素数1~30のアルコキシ基が好ましく、具体的にはメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、2-ブトキシ基、イソブトキシ基、tert-ブトキシ基、n-ペンチロキシ基、2-メチルブトキシ基、3-メチルブトキシ基、2,2-ジメチルプロポキシ基、n-ヘキシロキシ基、2-メチルペンチロキシ基、3-メチルペンチロキシ基、4-メチルペンチロキシ基、5-メチルペンチロキシ基、シクロペンチロキシ基、シクロヘキシロキシ基、ジシクロペンチルメトキシ基、ジシクロヘキシルメトキシ基、トリシクロペンチルメトキシ基、トリシクロヘキシルメトキシ基、フェニルメトキシ基、ジフェニルメトキシ基及びトリフェニルメトキシ基等が挙げられる。
 これらアルコキシ基は置換基を有していてもよく、該置換基としてはアルキル基の説明で述べたような基が挙げられる。
 カルボキシル基としては、例えば炭素数1~30のカルボキシル基が好ましく、具体的にはアセトキシ基、n-プロパノイロキシ基、イソプロパノイロキシ基、n-ブタノイロキシ基、2-ブタノイロキシ基、イソブタノイロキシ基、tert-ブタノイロキシ基、n-ペンタノイロキシ基、2-メチルブタノイロキシ基、3-メチルブタノイロキシ基、2,2-ジメチルプロパノイロキシ基、n-ヘキサノイロキシ基、2-メチルペンタノイロキシ基、3-メチルペンタノイロキシ基、4-メチルペンタノイロキシ基、5-メチルペンタノイロキシ基、シクロペンタノイロキシ基、シクロヘキサノイロキシ基、ジシクロペンチルアセトキシ基、ジシクロヘキシルアセトキシ基、トリシクロペンチルアセトキシ基、トリシクロヘキシルアセトキシ基、フェニルアセトキシ基、ジフェニルアセトキシ基、トリフェニルアセトキシ基、ベンゾイロキシ基、ナフトイロキシ基等が挙げられる。
 これらカルボキシ基は置換基を有していてもよく、該置換基としてはアルキル基の説明で述べたような基が挙げられる。
 アルコキシカルボニル基としては、たとえば炭素数1~30のアルコキシカルボニル基が好ましく、具体的にはメトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、2-ブトキシカルボニル基、イソブトキシカルボニル基、tert-ブトキシカルボニル基、n-ペンチロキシカルボニル基、2-メチルブトキシカルボニル基、3-メチルブトキシカルボニル基、2,2-ジメチルプロポキシカルボニル基、n-ヘキシロキシカルボニル基、2-メチルペンチロキシカルボニル基、3-メチルペンチロキシカルボニル基、4-メチルペンチロキシカルボニル基、5-メチルペンチロキシカルボニル基、シクロペンチロキシカルボニル基、シクロヘキシロキシカルボニル基、ジシクロペンチルメトキシカルボニル基、ジシクロヘキシルメトキシカルボニル基、トリシクロペンチルメトキシカルボニル基、トリシクロヘキシルメトキシカルボニル基、フェニルメトキシカルボニル基、ジフェニルメトキシカルボニル基及びトリフェニルメトキシカルボニル基等が挙げられる。
 これらアルコキシカルボニル基は置換基を有していてもよく、該置換基としてはアルキル基の説明で述べたような基が挙げられる。
 アミド基としては、例えば炭素数1~30のアミド基が好ましく具体的にはアセトアミド基、n-プロピオンアミド基、イソプロピオンアミド基、n-ブタナミド基、2-ブタナミド基、イソブタナミド基、tert-ブタナミド基、n-ペンタナミド基、2-メチルブタナミド基、3-メチルブタナミド基、2,2-ジメチルプロピオンアミド基、n-ヘキサナミド基、2-メチルペンタナミド基、3-メチルペンタナミド基、4-メチルペンタナミド基、5-メチルペンタナミド基、シクロペンタナミド基、シクロヘキサナミド基、ジシクロペンチルアセトアミド基、ジシクロヘキシルアセトアミド基、トリシクロペンチルアセトアミド基、トリシクロヘキシルアセトアミド基、フェニルアセトアミド基、ジフェニルアセトアミド基、トリフェニルアセトアミド基、ベンズアミド基、ナフタレンアミド基等が挙げられる。
 これらアミド基は置換基を有していてもよく、該置換基としてはアルキル基の説明で述べたような基が挙げられる。
 カルバモイル基としては、例えば炭素数1~30のカルバモイル基が好ましく具体的には、カルバモイル基、メチルカルバモイル基、エチルカルバモイル基、n-プロピルカルバモイル基、イソプロピルカルバモイル基、n-ブチルカルバモイル基、2-ブチルカルバモイル基、イソブチルカルバモイル基、tert-ブチルカルバモイル基、n-ペンチルカルバモイル基、シクロペンチルカルバモイル基、シクロヘキシルカルバモイル基、シクロヘプチルカルバモイル基、ジメチルカルバモイル基、ジエチルカルバモイル基、ジn-プロピルカルバモイル基、ジイソプロピルカルバモイル基、ジn-ブチルカルバモイル基、ジ2-ブチルカルバモイル基、ジイソブチルカルバモイル基、ジtert-ブチルカルバモイル基、ジn-ペンチルカルバモイル基、ジシクロペンチルカルバモイル基、ジシクロヘキシルカルバモイル基、ジシクロヘプチルカルバモイル基、N,N-1,4-テトラメチレンカルバモイル基、N,N-1,5-ペンタメチレンカルバモイル基、モルホリンカルバモイル基、フェニルカルバモイル基、トリルカルバモイル基、キシリルカルバモイル基、メシチルカルバモイル基、3,5-ジtert-ブチルフェニルカルバモイル基、p-フェニルカルバモイル基、m-フェニルカルバモイル基、o-フェニルカルバモイル基、4-フェニルフェニルカルバモイル基、3-フェニルフェニルカルバモイル基、2-フェニルフェニルカルバモイル基、4-メシチルフェニルカルバモイル基、3,5-ジフェニルフェニルカルバモイル基、ナフチルカルバモイル基、フェナントリルカルバモイル基、アントラニルカルバモイル基、ジフェニルカルバモイル基、ジトリルカルバモイル基、ジキシリルカルバモイル基、ジメシチルカルバモイル基、ビス(3,5-ジtert-ブチルフェニル)カルバモイル基、ジp-フェニルカルバモイル基、ジm-フェニルカルバモイル基、ジo-フェニルカルバモイル基、ジ(4-フェニルフェニル)カルバモイル基、ジ(3-フェニルフェニル)カルバモイル基、ジ(2-フェニルフェニル)カルバモイル基、ジ(4-メシチルフェニル)カルバモイル基、ビス(3,5-ジフェニルフェニル)カルバモイル基、ジナフチルカルバモイル基、ジフェナントリルカルバモイル基及びジアントラニルカルバモイル基等が挙げられる。
 これらカルバモイル基は置換基を有していてもよく、該置換基としてはアルキル基の説明で述べたような基が挙げられる。
 シロキシ基としては、例えばトリメチルシロキシ基、トリエチルシロキシ基、ジメチルtert-ブチルシロキシ基等があげられる。
 これらシロキシ基は置換基を有していてもよく、該置換基としてはアルキル基の説明で述べたような基が挙げられる。
 具体的な光学活性環状含窒素化合物としては、例えば以下のような化合物が挙げられる。
 以下化合物中、Meはメチル基、Phはフェニル基、Buはブチル基、Bnはベンジル基、Etはエチル基、TMSはトリメチルシリル基、Prはプロピル基、iPrはイソプロピル基、polymerはポリマー鎖を表す。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
 更に、本発明においてはもう一つの触媒成分として酸を用いることが好ましい。酸を用いることで、光学活性環状含窒素化合物を塩として系内に存在させるができ、これにより、触媒反応を促進させることが出来る。また、酸が錯体触媒のカウンターとして存在することで錯体触媒の安定化を図ることが出来る。
 酸としては有機酸及び無機酸を用いることができるが、特に有機酸が好ましい。
 具体的な有機酸の例としては、酢酸、クロロ酢酸、ジフロロ酢酸、トリフロロ酢酸、トリクロロ酢酸、トリブロモ酢酸、安息香酸、2,4-ジニトロ安息香酸、パラトルエンスルホン酸、メタンスルホン酸、トリフロロメタンスルホン酸等が挙げられる。
 具体的な無機酸の例としては、弗酸、塩酸、臭酸、ヨウ酸、硫酸、過塩素酸、燐酸、硝酸等が挙げられる。
 前記した遷移金属錯体と、光学活性環状含窒素化合物と、必要に応じて酸もしくは補助配位子を反応させ、予め触媒を調製する場合は、溶媒中に遷移金属錯体と窒素化合物、必要に応じて酸もしくは補助配位子をあらかじめ添加し、in situにて調整しても良く、あらかじめ溶媒中で調整した溶液から溶媒を留去して、後ほど目的の水素化基質に添加しても良い。このようにして、本願発明の均一系不斉水素化触媒を得ることができる。
<製造方法>
 本発明では、前記した触媒の存在下に、または、前記した遷移金属錯体及び光学活性環状含窒素化合物の存在下に、α、β-不飽和カルボニル化合物を不斉水素化反応させることにより、光学活性アルデヒド又は光学活性ケトンのような光学活性カルボニル化合物が得られる。なお、遷移金属錯体及び光学活性環状含窒素化合物をはじめとする各化合物は市販品から入手できる。
 本発明の触媒として用いられる遷移金属錯体の使用量は、種々の反応条件により異なるが、基質であるα、β-不飽和カルボニル化合物に対して、例えば0.0001~1倍モルであり、好ましくは0.001~0.05倍モル用いることができる。
 本発明の触媒の成分として用いられる光学活性環状含窒素化合物の使用量は、種々の反応条件により異なるが、基質であるα、β-不飽和カルボニル化合物に対して、例えば0.001~20倍モルであり、好ましくは0.001~0.05倍モル用いることができる。
 本発明の触媒の成分として用いられる酸の使用量は、種々の反応条件により異なるが、光学活性環状含窒素化合物に対して、例えば、0.01~10倍モルであり、好ましくは0.2~4倍モル用いることができる。
 本発明の触媒を用いてα、β-不飽和カルボニル化合物を不斉水素化し光学活性カルボニル化合物を製造する際には、溶媒の存在下又は非存在下で行うことができるが、溶媒存在下で行うことが好ましい。
 使用される具体的な溶媒としては、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素系有機溶媒;シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素系有機溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系有機溶媒;ジエチルエーテル、ジイソプロピルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン、ジオキソランなどのエーテル系有機溶媒;水;メタノール、エタノール、プロパノール、イソプロパノール、ターシャリーブタノール等のアルコール系有機溶媒;ジクロロメタン、ジクロロエタン、クロロベンゼン、ブロモトルエン等のハロゲン化炭化水素系有機溶媒;ジメチルホルムアミド、アセトニトリル等が好ましく、必要に応じこれらの溶媒の混合溶媒を用いることもできる。これら溶媒の中でも、ヘプタン、トルエン、テトラヒドロフランが特に好ましい。
 溶媒の使用量は、反応条件等により適宜選択することができるが、基質であるα、β-不飽和カルボニル化合物に対して例えば0~20倍容量、好ましくは0~5倍容量である。
 本発明の方法は、水素ガスを水素源として行うが、その水素圧は、0.01MPa~10MPaであり、好ましくは0.1MPa~1MPaである。反応温度は、-78~100℃であり、好ましくは10~40℃である。反応時間は、反応条件により異なるが、通常1~30時間である。
 上記のようにして得られた光学活性カルボニル化合物は、例えば抽出、再結晶、各種クロマトグラフィー等の通常用いられる操作により、単離精製を行うことができる。また、得られる光学活性カルボニル化合物の立体配置は、光学活性環状含窒素化合物の立体配置を適宜選択することによって、d体又はl体(R体又はS体)を製造することができる。
 以下、本発明を比較例および実施例を用いて詳細に説明するが、本発明はこれらにより何ら限定されるものではない。
 なお、実施例中での生成物の測定は、次の機器装置類を用いて行われた。
核磁気共鳴スペクトル:
 H-NMR:Oxford 300MHz FT-NMR(300MHz)(バリアン社製)
ガスクロマトグラフィー:
 GC-2010ガスクロマトグラフ(株式会社島津製作所製)
カラム:
 転化率測定 DB-WAX(0.25mm×30m)(Agilent社製)
 光学純度測定 β-DEX-225(0.25mm×30m)、β-DEX-325(0.25mm×30m)(スペリコ社製)
検出器:FID
 また、金属錯体はAldrich社又はStrem社から、光学活性環状含窒素化合物はAldrich社から購入したものを使用した。
(実施例1-1~1-15)
 触媒金属としてパラジウム錯体を、共触媒(光学活性環状含窒素化合物)として(R)-(+)-2-(Diphenylmethyl)pyrroridineを用いた例を以下に記す。
(R)-(+)-2-(Diphenylmethyl)pyrroridine
Figure JPOXMLDOC01-appb-C000050
(実施例1-1)
 10ml反応フラスコに、シトラール1g(6.57mmol、試薬中のネラール・ゲラニアール比は1:1)、酢酸パラジウム2.9mg(0.2mol%)、(R)-(+)-2-(Diphenylmethyl)pyrroridine 31mg(2mol%)、トリフルオロ酢酸15mg(2mol%)、トルエン2mlを入れて攪拌し、水素雰囲気とした。室温にて21時間攪拌した後、ガスクロマトグラフィ-で分析したところ、シトラールからシトロネラールへの転化率は50.6%で、得られたシトロネラールはd体であり、その光学純度は40.3%e.e.であった。
(実施例1-2)
 10ml反応フラスコに、シトラール1g(6.57mmol、試薬中のネラール・ゲラニアール比は1:1)、酢酸パラジウム5.8mg(0.4mol%)、(R)-(+)-2-(Diphenylmethyl)pyrroridine 31mg(2mol%)、トルエン2mlを入れて攪拌し、水素雰囲気とした。室温にて21時間攪拌した後、ガスクロマトグラフィ-で分析したところ、シトラールからシトロネラールへの転化率は99.8%で、得られたシトロネラールはd体であり、その光学純度は18.2%e.e.であった。
(実施例1-3)
 10ml反応フラスコに、ネラール1g(6.57mmol)、酢酸パラジウム5.8mg(0.4mol%)、(R)-(+)-2-(Diphenylmethyl)pyrroridine 31mg(2mol%)、トリフルオロ酢酸15mg(2mol%)、トルエン2mlを入れて攪拌し、水素雰囲気とした。室温にて21時間攪拌した後、ガスクロマトグラフィ-で分析したところ、ネラールからシトロネラールへの転化率は94.5%で、得られたシトロネラールはd体であり、その光学純度は25.6%e.e.であった。
(実施例1-4)
 10ml反応フラスコに、ゲラニアール1g(6.57mmol)、酢酸パラジウム5.8mg(0.4mol%)、(R)-(+)-2-(Diphenylmethyl)pyrroridine 31mg(2mol%)、トリフルオロ酢酸15mg(2mol%)、トルエン2mlを入れて攪拌し、水素雰囲気とした。室温にて21時間攪拌した後、ガスクロマトグラフィ-で分析したところ、ゲラニアールからシトロネラールへの転化率は93.2%で、得られたシトロネラールはd体であり、その光学純度は40.5%e.e.であった。
(実施例1-5~1-15)
 パラジウム錯体、溶媒、補助配位子を変更した以外は、全て実施例1と同様に反応を行なった。結果を以下の表1に示す。得られたシトロネラールは全てd体である。
Figure JPOXMLDOC01-appb-T000051
(実施例2-1~2-3)
 触媒の製造例及び製造した触媒を用いた不斉水素化反応の例を以下に示す。
(実施例2-1)
 10ml反応フラスコに、酢酸パラジウム2.9mg(0.2mol%)、(R)-(+)-2-(Diphenylmethyl)pyrroridine 31mg(2mol%)、トルエン2mlを仕込んだ。脱気後、室温にて一晩攪拌した後、次いで濃縮することにより錯体を得た。
 この錯体は、H-NMR上に(R)-(+)-2-(Diphenylmethyl)pyrroridineと異なるシグナルが観測されたことにより(R)-(+)-2-(Diphenylmethyl)pyrroridineがパラジウムに配位した構造であることが確認された。
 錯体のH-NMRチャートを図1及び図2に示す。また、比較として(R)-(+)-2-(Diphenylmethyl)pyrroridineのH-NMRチャートを図5及び図6に示す。
(実施例2-2)
 10ml反応フラスコに、酢酸パラジウム2.9mg(0.2mol%)、(S)-(+)-2-(Diphenylmethyl)pyrroridine 31mg(2mol%)、トリフルオロ酢酸15mg(2mol%)、トルエン2mlを仕込んだ。脱気後、室温にて一晩攪拌した後、次いで濃縮することにより錯体を得た。
 この錯体は、H-NMR上に(R)-(+)-2-(Diphenylmethyl)pyrroridineと異なるシグナルが観測されたことにより(R)-(+)-2-(Diphenylmethyl)pyrroridineがパラジウムに配位した構造であることが確認された。
 錯体のH-NMRチャートを図3及び図4に示す。また、比較として(R)-(+)-2-(Diphenylmethyl)pyrroridineのH-NMRチャートを図5及び図6に、(R)-(+)-2-(Diphenylmethyl)pyrroridineのトリフルオロ酢酸塩のH-NMRチャートを図7及び図8に示す。
(実施例2-3)
 10ml反応フラスコに、シトラール1g(6.57mmol、試薬中のネラール・ゲラニアール比は1:1)、実施例2-1で得た触媒、トリフルオロ酢酸15mg(2mol%)、トルエン2mlを入れて攪拌し、水素雰囲気とした。室温にて21時間攪拌した後、ガスクロマトグラフィ-で分析したところ、シトラールからシトロネラールへの転化率は50.6%で、得られたシトロネラールはd体であり、その光学純度は40.3%e.e.であった。
(実施例3-1~3-4)
 共触媒(光学活性環状含窒素化合物)として(S)-(+)-2-(tert-Butyl)-3-methyl-4-imidazolidinone trifluoroaceticacid saltを用いた例を以下に記す。
(S)-(+)-2-(tert-Butyl)-3-methyl-4-imidazolidinone trifluoroaceticacid salt
Figure JPOXMLDOC01-appb-C000052
(実施例3-1)
 10ml反応フラスコに、シトラール1g(6.57mmol、試薬中のネラール・ゲラニアール比は1:1)、酢酸パラジウム5.8mg(0.4mol%)、(S)-(+)-2-(tert-Butyl)-3-methyl-4-imidazolidinone trifluoroaceticacid salt 36mg(2mol%)、トルエン2mlを入れて攪拌し、水素雰囲気とした。室温にて21時間攪拌した後、ガスクロマトグラフィ-で分析したところ、シトラールからシトロネラールへの転化率は51.0%で、得られたシトロネラールはl体であり、その光学純度は27.1%e.e.であった。
(実施例3-2)
 10ml反応フラスコに、シトラール1g(6.57mmol、試薬中のネラール・ゲラニアール比は1:1)、酢酸パラジウム5.8mg(0.4mol%)、(S)-(+)-2-(tert-Butyl)-3-methyl-4-imidazolidinone trifluoroaceticacid salt 36mg(2mol%)、THF2mlを入れて攪拌し、水素雰囲気とした。室温にて21時間攪拌した後、ガスクロマトグラフィ-で分析したところ、シトラールからシトロネラールへの転化率は58.5%で、得られたシトロネラールはl体であり、その光学純度は34.8%e.e.であった。
(実施例3-3)
 10ml反応フラスコに、シトラール1g(6.57mmol、試薬中のネラール・ゲラニアール比は1:1)、R-BINAP16.4mg(0.4mol%)、酢酸パラジウム5.8mg(0.4mol%)、(S)-(+)-2-(tert-Butyl)-3-methyl-4-imidazolidinone trifluoroaceticacid salt 36mg(2mol%)、THF2mlを入れて攪拌し、水素雰囲気とした。室温にて21時間攪拌した後、ガスクロマトグラフィ-で分析したところ、シトラールからシトロネラールへの転化率は10.0%で、得られたシトロネラールはl体であり、その光学純度は29.5%e.e.であった。
(実施例3-4)
 10ml反応フラスコに、シトラール1g(6.57mmol、試薬中のネラール・ゲラニアール比は1:1)、酢酸パラジウム5.8mg(0.4mol%)、(L)-2-(Diphenylamido)pyrrolidine 25mg(2mol%)、トリフルオロ酢酸15mg(2mol%)、トルエン2mlを入れて攪拌し、水素雰囲気とした。室温にて21時間攪拌した後、ガスクロマトグラフィ-で分析したところ、シトラールからシトロネラールへの転化率は41.9%で、得られたシトロネラールはl体であり、その光学純度は3.0%e.e.であった。
(実施例4-1~4-4)
 遷移金属錯体として下記Willkinson錯体、ペンタメチルシクロペンタジエニルイリジウムジクロリドダイマー又は三塩化イリジウムn水和物を、共触媒(光学活性環状含窒素化合物)として(R)-(+)-2-(Diphenylmethyl)pyrroridineを用いた例を以下に記す。
Willkinson錯体
Figure JPOXMLDOC01-appb-C000053
ペンタメチルシクロペンタジエニルイリジウムジクロリドダイマー
Figure JPOXMLDOC01-appb-C000054
(実施例4-1)
 10ml反応フラスコに、シトラール1g(6.57mmol、試薬中のネラール・ゲラニアール比は1:1)、Willkinson錯体62.8mg(1mol%)、(R)-(+)-2-(Diphenylmethyl)pyrroridine 31mg(2mol%)、トリフルオロ酢酸15mg(2mol%)、エタノール2mlを入れて攪拌し、水素雰囲気とした。室温にて21時間攪拌した後、ガスクロマトグラフィ-で分析したところ、シトラールからシトロネラールへの転化率は28.7%で、得られたシトロネラールはd体であり、その光学純度は5.0%e.e.であった。
(実施例4-2)
 10ml反応フラスコに、シトラール1g(6.57mmol、試薬中のネラール・ゲラニアール比は1:1)、Willkinson錯体62.8mg(1mol%)、(R)-(+)-2-(Diphenylmethyl)pyrroridine 31mg(2mol%)、エタノール2mlを入れて攪拌し、水素雰囲気とした。室温にて21時間攪拌した後、ガスクロマトグラフィ-で分析したところ、シトラールからシトロネラールへの転化率は65.7%で、得られたシトロネラールはd体であり、その光学純度は1.5%e.e.であった。
(実施例4-3)
 10ml反応フラスコに、シトラール1g(6.57mmol、試薬中のネラール・ゲラニアール比は1:1)、三塩化イリジウムn水和物19.5mg(2mol%)、(R)-(+)-2-(Diphenylmethyl)pyrroridine 31mg(2mol%)、トリフルオロ酢酸15mg(2mol%)、THF2mlを入れて攪拌し、水素雰囲気とした。室温にて21時間攪拌した後、ガスクロマトグラフィ-で分析したところ、シトラールからシトロネラールへの転化率は9.02%で、得られたシトロネラールはd体であり、その光学純度は20.8%e.e.であった。
(実施例4-4)
 10ml反応フラスコに、シトラール1g(6.57mmol、試薬中のネラール・ゲラニアール比は1:1)、ペンタメチルシクロペンタジエニルイリジウムジクロリドダイマー19.6mg(1mol%)、(R)-(+)-2-(Diphenylmethyl)pyrroridine 31mg(2mol%)、トリフルオロ酢酸15mg(2mol%)、THF2mlを入れて攪拌し、水素雰囲気とした。室温にて21時間攪拌した後、ガスクロマトグラフィ-で分析したところ、シトラールからシトロネラールへの転化率は11.2%で、得られたシトロネラールはd体であり、その光学純度は3.9%e.e.であった。
(実施例5-1~5-3)
 遷移金属錯体としてヘキサロジウムヘキサデカカルボニル錯体を、配位子として(+)-2,3-O-Isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane(以下(+)-DIOP)を、共触媒(光学活性環状含窒素化合物)として(S)-(+)-2-(tert-Butyl)-3-methyl-4-imidazolidinone trifluoroaceticacid saltを用いた例を以下に記す。
(+)-DIOP
Figure JPOXMLDOC01-appb-C000055
(実施例5-1)
 10ml反応フラスコに、ゲラニアール550mg(3.6mmol)、ヘキサロジウムヘキサデカカルボニル錯体5.4mg(0.83mol%)、(S)-(+)-2-(tert-Butyl)-3-methyl-4-imidazolidinone trifluoroaceticacid salt 19.5mg(2mol%)、(+)-DIOP 37.6mg(2.1mol%)、トルエン2mlを入れて攪拌し、水素雰囲気とした。室温にて21時間攪拌した後、ガスクロマトグラフィ-で分析したところ、ゲラニアールからシトロネラールへの転化率は29.8%で、得られたシトロネラールはd体であり、その光学純度は4.5%e.e.であった。
(実施例5-2)
 10ml反応フラスコに、ネラール550mg(3.6mmol)、ヘキサロジウムヘキサデカカルボニル錯体5.4mg(0.83mol%)、(S)-(+)-2-(tert-Butyl)-3-methyl-4-imidazolidinone trifluoroaceticacid salt 19.5mg(2mol%)、(+)-DIOP 37.6mg(2.1mol%)、トルエン2mlを入れて攪拌し、水素雰囲気とした。室温にて21時間攪拌した後、ガスクロマトグラフィ-で分析したところ、ネラールからシトロネラールへの転化率は32.6%で、得られたシトロネラールはd体であり、その光学純度は4.3%e.e.であった。
(実施例5-3)
 10ml反応フラスコに、シトラール550mg(3.6mmol、試薬中のネラール・ゲラニアール比は1:1)、ヘキサロジウムヘキサデカカルボニル錯体5.4mg(0.83mol%)、(S)-(+)-2-(tert-Butyl)-3-methyl-4-imidazolidinone trifluoroaceticacid salt 19.5mg(2mol%)、(+)-DIOP 37.6mg(2.1mol%)、トルエン2mlを入れて攪拌し、水素雰囲気とした。室温にて21時間攪拌した後、ガスクロマトグラフィ-で分析したところ、シトラールからシトロネラールへの転化率は34.9%で、得られたシトロネラールはd体であり、その光学純度は4.8%e.e.であった。
(比較例1-1~1-2)
 遷移金属錯体としてヘキサロジウムヘキサデカカルボニル錯体を、配位子として(+)-2,3-O-Isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane(以下(+)-DIOP)とし、共触媒(光学活性環状含窒素化合物)を使用せずに反応を行った例を以下に記す。
(比較例1-1)
 10ml反応フラスコに、ゲラニアール550mg(3.6mmol)、ヘキサロジウムヘキサデカカルボニル錯体5.4mg(0.83mol%)、(+)-DIOP 37.6mg(2.1mol%)、トルエン2mlを入れて攪拌し、水素雰囲気とした。室温にて21時間攪拌した後、ガスクロマトグラフィ-で分析したところ、ゲラニアールからシトロネラールへの転化率は95.5%で、得られたシトロネラールはl体であり、その光学純度は48.6%e.e.であった。
(比較例1-2)
 10ml反応フラスコに、ネラール550mg(3.6mmol)、ヘキサロジウムヘキサデカカルボニル錯体5.4mg(0.83mol%)、(+)-DIOP 37.6mg(2.1mol%)、トルエン2mlを入れて攪拌し、水素雰囲気とした。室温にて21時間攪拌した後、ガスクロマトグラフィ-で分析したところ、ネラールからシトロネラールへの転化率は97.1%で、得られたシトロネラールはd体であり、その光学純度は47.1%e.e.であった。
 比較例1-1~1-2より明らかなように、共触媒(光学活性環状含窒素化合物)を使用せずに反応を行なうと、原料基質のZ配置、E配置により、得られる生成物の立体配置が依存されることが明らかである。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2010年3月4日出願の日本特許出願(特願2010-047741)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明において用いられる不斉水素化用触媒は、特定の金属錯体、光学活性環状含窒素化合物または、特定の金属錯体、光学活性環状含窒素化合物、及び酸を単に混合するだけで、基質であるα、β-不飽和カルボニル化合物の炭素-炭素二重結合を選択的にかつ簡便に不斉水素化し、光学活性α、β-カルボニル化合物を製造することができる。特に、シトラール(ゲラニアールとネラールとの混合物)、ゲラニアール、又はネラールのα、β-炭素-炭素二重結合を選択的に不斉水素化することにより、光学活性シトロネラールを得ることができる。光学活性シトロネラールはそれ自体が香料として有用であるばかりでなく、光学活性シトロネロール、光学活性イソプレゴール、光学活性メントールの重要な原料である。

Claims (17)

  1.  周期表における第8~10族の遷移金属より選ばれる少なくとも一種の遷移金属の錯体と光学活性環状含窒素化合物とを含む均一系不斉水素化触媒。
  2.  周期表における第8~10族の遷移金属より選ばれる少なくとも一種の遷移金属に光学活性環状含窒素化合物が配位してなる請求項1に記載の均一系不斉水素化触媒。
  3.  周期表における第8~10族の遷移金属より選ばれる少なくとも一種の遷移金属の錯体と光学活性環状含窒素化合物と酸とを含む均一系不斉水素化触媒。
  4.  光学活性環状含窒素化合物が、一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、環Aは3~7員環で、置換基を有していてもよく、炭素、窒素、硫黄、酸素、及び燐からなる群より選ばれる少なくとも一種の原子を含む。
     R及びRは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいカルボキシル基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアミド基、置換基を有してもよいカルバモイル基、又は置換基を有していてもよいシロキシ基を表す。ただしRとRは同じ置換基になることはない。また、R又はRの一方が環Aと結合しさらに環を形成していてもよい。*は不斉炭素原子を表す。)
    で表される化合物である請求項1~3のいずれか一項に記載の均一系不斉水素化触媒。
  5.  遷移金属錯体が、ニッケル、ルテニウム、ロジウム、イリジウム、パラジウム及び白金から選ばれる何れかの遷移金属錯体である請求項1~4のいずれか一項に記載の均一系不斉水素化触媒。
  6.  α,β-不飽和カルボニル化合物を、請求項1~5のいずれか一項に記載の均一系不斉水素化触媒の存在下、水素または水素を供与する化合物と反応させて光学活性カルボニル化合物を製造する光学活性カルボニル化合物の製造方法。
  7.  α,β-不飽和カルボニル化合物が、一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、R、R及びRは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、又は置換基を有していてもよいアラルキル基を表す。また、RとRとで環を形成してもよい。ただし、Rが水素原子でないときはR及びRは互いに同じでもよく、Rが水素原子のときはR及びRは水素原子以外であり互いに異なる。)
    で表わされるα,β-不飽和カルボニル化合物であり、生成する光学活性カルボニル化合物が、一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R、R、R及びRは、式(2)の定義と同じである。2つの*は、一方又は両方が不斉炭素原子を表す。)
    で表される光学活性カルボニル化合物である請求項6に記載の製造方法。
  8.  α、β-不飽和カルボニル化合物が、ゲラニアール、ネラール又はシトラールである請求項7に記載の製造方法。
  9.  α、β-不飽和カルボニル化合物が、5~16員環の環状ケトン類である請求項7に記載の製造方法。
  10.  α、β-不飽和カルボニル化合物を、周期表における第8~10族の遷移金属より選ばれる少なくとも一種の遷移金属の錯体と光学活性環状含窒素化合物の存在下に水素または水素を供与する化合物と反応させて光学活性カルボニル化合物を製造する光学活性カルボニル化合物の製造方法。
  11.  α、β-不飽和カルボニル化合物を、周期表における第8~10族の遷移金属より選ばれる少なくとも一種の遷移金属の錯体と光学活性環状含窒素化合物および酸の存在下に水素または水素を供与する化合物と反応させて光学活性カルボニル化合物を製造する光学活性カルボニル化合物の製造方法。
  12.  光学活性環状含窒素化合物が、一般式(1)
    Figure JPOXMLDOC01-appb-C000004
    (式(1)中、環Aは3~7員環で、置換基を有していてもよく、炭素、窒素、硫黄、酸素、及び燐からなる群より選ばれる少なくとも一種の原子を含む。
     R及びRは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいカルボキシル基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアミド基、置換基を有してもよいカルバモイル基、又は置換基を有していてもよいシロキシ基を表す。ただしRとRは同じ置換基になることはない。また、R又はRの一方が環Aと結合しさらに環を形成していてもよい。*は不斉炭素原子を表す。)
    で表される化合物である請求項10又は11に記載の方法。
  13.  光学活性環状含窒素化合物が、一般式(1)
    Figure JPOXMLDOC01-appb-C000005
    (式(1)中、環Aは3~7員環で、置換基を有していてもよく、炭素、窒素、硫黄、酸素、及び燐からなる群より選ばれる少なくとも一種の原子を含む。
     R及びRは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルコキシ基、置換基を有していてもよいカルボキシル基、置換基を有していてもよいアルコキシカルボニル基、置換基を有していてもよいアミド基、置換基を有してもよいカルバモイル基、又は置換基を有していてもよいシロキシ基を表す。ただしRとRは同じ置換基になることはない。また、R又はRの一方が環Aと結合しさらに環を形成していてもよい。*は不斉炭素原子を表す。)
    で表される化合物である請求項10~12のいずれか一項に記載の製造方法。
  14.  遷移金属錯体が、ニッケル、ルテニウム、ロジウム、イリジウム、パラジウム及び白金から選ばれる何れかの遷移金属錯体である請求項10~13のいずれか一項に記載の製造方法。
  15.  α,β-不飽和カルボニル化合物が、一般式(2)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R、R、R及びRは、それぞれ独立して、水素原子、置換基を有してもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、又は置換基を有していてもよいアラルキル基を表す。また、RとRとで環を形成してもよい。ただし、Rが水素原子でないときはR及びRは互いに同じでもよく、Rが水素原子のときはR及びRは水素原子以外であり互いに異なる。)
    で表わされるα,β-不飽和カルボニル化合物であり、生成する光学活性カルボニル化合物が、一般式(3)
    Figure JPOXMLDOC01-appb-C000007
    (式(3)中、R、R、R及びRは、式(2)の定義と同じである。2つの*は、一方又は両方が不斉炭素原子を表す。)
    で表される光学活性カルボニル化合物である請求項10~14のいずれか一項に記載の製造方法。
  16.  α、β-不飽和カルボニル化合物が、ゲラニアール、ネラール又はシトラールである請求項15に記載の製造方法。
  17.  α、β-不飽和カルボニル化合物が、5~16員環の環状ケトン類である請求項15に記載の製造方法。
PCT/JP2011/054980 2010-03-04 2011-03-03 均一系不斉水素化触媒 WO2011108672A2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11750781.4A EP2543437A4 (en) 2010-03-04 2011-03-03 HOMOGENEOUS ASYMMETRIC HYDROGENATION CATALYST
JP2012503268A JP5711209B2 (ja) 2010-03-04 2011-03-03 均一系不斉水素化触媒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010047741 2010-03-04
JP2010-047741 2010-03-04

Publications (2)

Publication Number Publication Date
WO2011108672A2 true WO2011108672A2 (ja) 2011-09-09
WO2011108672A3 WO2011108672A3 (ja) 2011-12-01

Family

ID=44542674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054980 WO2011108672A2 (ja) 2010-03-04 2011-03-03 均一系不斉水素化触媒

Country Status (3)

Country Link
EP (1) EP2543437A4 (ja)
JP (1) JP5711209B2 (ja)
WO (1) WO2011108672A2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074128A1 (en) * 2010-11-29 2012-06-07 Takasago International Corporation Catalyst for asymmetric hydrogenation and method for manufacturing optically active carbonyl compound using the same
JP2015537055A (ja) * 2012-12-18 2015-12-24 ディーエスエム アイピー アセッツ ビー.ブイ. 組み合わされた不斉水素化によって特定の生成物を定量的に得るためのe/z異性体の混合物の使用
JP2016505571A (ja) * 2012-12-18 2016-02-25 ディーエスエム アイピー アセッツ ビー.ブイ. 添加剤を用いた効率的な不飽和ケトンの不斉水素化方法
JP2016505568A (ja) * 2012-12-18 2016-02-25 ディーエスエム アイピー アセッツ ビー.ブイ. 不斉水素化および異性化を組み合わせることによって特定の生成物を定量的に得るためのe/z異性体の混合物の使用
JP2017537965A (ja) * 2014-12-19 2017-12-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 光学活性カルボニル化合物を合成する方法
WO2018207888A1 (ja) * 2017-05-10 2018-11-15 株式会社カネカ ラメルテオンの製造法
CN116174037A (zh) * 2021-11-26 2023-05-30 沈阳化工研究院有限公司 一种选择性部分氢化共轭二烯聚合物的催化剂及制备方法
CN117884186A (zh) * 2024-03-13 2024-04-16 山东新和成药业有限公司 一种用于制备光学活性香茅醛的催化剂及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123775B2 (ja) 1977-07-04 1986-06-07 Rhone Poulenc Ind
JPH09502459A (ja) 1994-06-23 1997-03-11 フイルメニツヒ ソシエテ アノニム (+)−(1r)−シス−3−オキソ−2−ペンチル−1−シクロペンタン酢酸の製造法
US20060161024A1 (en) 2004-11-19 2006-07-20 California Institute Of Technology Hydride reduction of alpha, beta-unsaturated carbonyl compounds using chiral organic catalysts
JP2008515843A (ja) 2004-10-11 2008-05-15 ビーエーエスエフ ソシエタス・ヨーロピア 光学活性カルボニル化合物の製造方法
JP2010047741A (ja) 2008-07-22 2010-03-04 Hitachi Chem Co Ltd 熱硬化性樹脂組成物、これを用いた光半導体素子搭載用基板及びその製造方法並びに光半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008115154A1 (en) * 2007-03-22 2008-09-25 Agency For Science, Technology And Research Catalyst immobilization on siliceous mesocellular foam via click chemistry
EP2225192B1 (de) * 2007-11-30 2017-05-03 Basf Se Verfahren zur herstellung von optisch aktivem und racemischem menthol
WO2010061909A1 (ja) * 2008-11-27 2010-06-03 高砂香料工業株式会社 不斉水素化触媒
US8217204B2 (en) * 2009-06-03 2012-07-10 Takasago International Corporation Catalyst for asymmetric hydrogenation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123775B2 (ja) 1977-07-04 1986-06-07 Rhone Poulenc Ind
JPH09502459A (ja) 1994-06-23 1997-03-11 フイルメニツヒ ソシエテ アノニム (+)−(1r)−シス−3−オキソ−2−ペンチル−1−シクロペンタン酢酸の製造法
JP2008515843A (ja) 2004-10-11 2008-05-15 ビーエーエスエフ ソシエタス・ヨーロピア 光学活性カルボニル化合物の製造方法
US20060161024A1 (en) 2004-11-19 2006-07-20 California Institute Of Technology Hydride reduction of alpha, beta-unsaturated carbonyl compounds using chiral organic catalysts
JP2010047741A (ja) 2008-07-22 2010-03-04 Hitachi Chem Co Ltd 熱硬化性樹脂組成物、これを用いた光半導体素子搭載用基板及びその製造方法並びに光半導体装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ACC. CHEM. RES., vol. 40, 2007, pages 1327 - 1339
J. ORG. CHEM., vol. 60, 1995, pages 357
See also references of EP2543437A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074128A1 (en) * 2010-11-29 2012-06-07 Takasago International Corporation Catalyst for asymmetric hydrogenation and method for manufacturing optically active carbonyl compound using the same
US9000192B2 (en) 2010-11-29 2015-04-07 Takasago International Corporation Catalyst for asymmetric hydrogenation and method for manufacturing optically active carbonyl compound using the same
JP2015537055A (ja) * 2012-12-18 2015-12-24 ディーエスエム アイピー アセッツ ビー.ブイ. 組み合わされた不斉水素化によって特定の生成物を定量的に得るためのe/z異性体の混合物の使用
JP2016505571A (ja) * 2012-12-18 2016-02-25 ディーエスエム アイピー アセッツ ビー.ブイ. 添加剤を用いた効率的な不飽和ケトンの不斉水素化方法
JP2016505568A (ja) * 2012-12-18 2016-02-25 ディーエスエム アイピー アセッツ ビー.ブイ. 不斉水素化および異性化を組み合わせることによって特定の生成物を定量的に得るためのe/z異性体の混合物の使用
JP2017537965A (ja) * 2014-12-19 2017-12-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 光学活性カルボニル化合物を合成する方法
WO2018207888A1 (ja) * 2017-05-10 2018-11-15 株式会社カネカ ラメルテオンの製造法
CN116174037A (zh) * 2021-11-26 2023-05-30 沈阳化工研究院有限公司 一种选择性部分氢化共轭二烯聚合物的催化剂及制备方法
CN117884186A (zh) * 2024-03-13 2024-04-16 山东新和成药业有限公司 一种用于制备光学活性香茅醛的催化剂及其制备方法与应用
CN117884186B (zh) * 2024-03-13 2024-05-31 山东新和成药业有限公司 一种用于制备光学活性香茅醛的催化剂及其制备方法与应用

Also Published As

Publication number Publication date
EP2543437A2 (en) 2013-01-09
EP2543437A4 (en) 2014-09-03
JPWO2011108672A1 (ja) 2013-06-27
WO2011108672A3 (ja) 2011-12-01
JP5711209B2 (ja) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5711209B2 (ja) 均一系不斉水素化触媒
JP5663791B2 (ja) 不斉水素化触媒
JP5913352B2 (ja) 不斉水素化触媒、およびそれを用いた光学活性カルボニル化合物の製造方法
Drusan et al. Enantioselective C–C and C–heteroatom bond forming reactions using chiral ferrocene catalysts
JP5091485B2 (ja) 触媒及びこれを用いるtert−アルキルアルコールの製造方法
EP2647616A1 (en) Method for manufacturing optically active menthol
WO2012039098A1 (en) Method for producing alcohol and/or amine from amide compound
JP4633047B2 (ja) 均一系水素化触媒のための配位子としての置換フェロセニルジホスフィン
WO2010061909A1 (ja) 不斉水素化触媒
JP4590353B2 (ja) 新規な遷移金属錯体、及び該錯体を用いた光学活性アルコールの製造法
JP2010519272A (ja) 不斉水素化反応で使用されるビス(フェロセニルホスフィノ)フェロセン配位子
JP2009541451A (ja) ジホスフィン配位子
JP5560464B2 (ja) 不斉水素化触媒
CN111269148B (zh) 一种沙库比曲中间体的制备方法
JP7339244B2 (ja) アルコールの水酸基の変換方法
Dai et al. Efficient P, N, N-type ligands for Ru (II)-catalyzed asymmetric cyclopropanations
JP3517591B2 (ja) 光学活性アミンの製造法
張德良 Catalytic Hydrogenation and Dehydrogenation of Heterocyclic Compounds through sp3-CH Bond Activation
Brüning Dinuclear Rhodium (III) Complexes with Josiphos Ligands: Versatile Catalysts for Asymmetric Hydrogenation and Beyond
US7351849B2 (en) Process for producing optically active β-amino acid derivatives
Scheil Iridium-Catalyzed asymmetric hydrogenation: A: Studies on the synthesis of pyrazine-based P, N Ligands, B: Diastereoselective hydrogenation of chiral cyclohexenes
Fu Rhodium (I)-Catalyzed Asymmetric Isomerization of Olefins In light of the fact that this topic was reviewed in 1999 [1], in this chapter I shall sim-ply highlight a few of the particularly noteworthy early achievements, and then de-scribe recent progress, including efforts from our laboratory at MIT. 4.1.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750781

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012503268

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011750781

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE