WO2011108025A1 - 組電池および電力貯蔵システム - Google Patents

組電池および電力貯蔵システム Download PDF

Info

Publication number
WO2011108025A1
WO2011108025A1 PCT/JP2010/001504 JP2010001504W WO2011108025A1 WO 2011108025 A1 WO2011108025 A1 WO 2011108025A1 JP 2010001504 W JP2010001504 W JP 2010001504W WO 2011108025 A1 WO2011108025 A1 WO 2011108025A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
storage battery
storage
assembled battery
assembled
Prior art date
Application number
PCT/JP2010/001504
Other languages
English (en)
French (fr)
Inventor
吉岡省二
畠中啓太
北中英俊
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2010/001504 priority Critical patent/WO2011108025A1/ja
Priority to CN201080065129.0A priority patent/CN102804477B/zh
Priority to KR1020127022028A priority patent/KR101348026B1/ko
Priority to JP2011512777A priority patent/JP4835808B2/ja
Priority to US13/582,204 priority patent/US9041404B2/en
Priority to EP10846936.2A priority patent/EP2544293B1/en
Priority to AU2010347489A priority patent/AU2010347489B2/en
Priority to BR112012021101A priority patent/BR112012021101A2/pt
Publication of WO2011108025A1 publication Critical patent/WO2011108025A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an assembled battery, and more particularly to an assembled battery used in an electric power storage system.
  • An assembled battery mounted on a device, a vehicle, or the like is configured by combining a plurality of storage batteries in series or in parallel in order to obtain a voltage or capacity required for the device.
  • a load such as a semiconductor or a motor is connected to the secondary side of the assembled battery via a voltage converter or the like.
  • the storage battery is connected in series to increase the voltage of the assembled battery.
  • the capacity is increased by increasing the number of parallel devices. In this way, the combination of series / parallel is determined depending on the specifications of the device that is the load.
  • Patent Document 1 describes that a battery having a minimum capacity is extracted and used as a representative storage battery for control in the process of forming a plurality of manufactured storage batteries into an assembled battery.
  • the device of the early detection of the overdischarged storage battery is made
  • One problem with assembled batteries is that when an external short circuit occurs in a device connected to the assembled battery, the storage battery is heated and damaged by the current.
  • a thermistor or a voltage sensing circuit that performs a current interruption function for ensuring safety is mounted in a power storage system using an assembled battery, and a current interruption function that interrupts the current circuit by a signal. was configured.
  • the switch that operates in the event of an abnormality is also small, and it is sufficiently possible to have the current interruption function as described above.
  • the above-described current interrupting function causes a significant increase in the size of the device.
  • the present invention has been made in consideration of such problems, and an object thereof is to provide an assembled battery for minimizing damage to a storage battery due to an external short circuit while suppressing an increase in size of the apparatus.
  • the first storage battery and the second storage battery are connected in series, and the starting point of the diffusion-controlled region of the first storage battery is the start of the diffusion-controlled region of the second storage battery. Make it smaller than the point.
  • a mechanism for minimizing damage due to an external short circuit can be constructed.
  • Embodiment 1 FIG.
  • FIG. 1 is a layout diagram in an assembled battery according to Embodiment 1 of the present invention.
  • an assembled battery according to Embodiment 1 of the present invention includes a positive terminal 3 of the assembled battery, a conductive metal plate 4 in which copper is nickel-plated, a negative terminal 5 of the assembled battery, and one first A storage battery 6 and a plurality of second storage batteries 7 are provided.
  • the storage batteries are connected in series by the conductive metal plate 4 and are stored in a line in the assembled battery case 8. Further, by arranging the positive terminals and the negative terminals of each storage battery so as to be alternately in the upper and lower directions in the figure, the current path by the conductive metal plate 4 that connects the adjacent storage batteries to the left and right in the figure is shortened.
  • the storage battery with the smallest capacity reaches the lower limit end voltage at the time of discharge first, so that the capacity of the storage battery becomes equivalent to the capacity of the assembled battery.
  • the assembled battery is composed of a storage battery having as much capacity and DC internal resistance as possible at the rated current.
  • the first storage battery 6 according to the first embodiment of the present invention has no capacity difference with the second storage battery 7 constituting the assembled battery at the rated current, and is DC only when discharging with a large current as in a short circuit.
  • the internal resistance becomes high resistance so that the capacitance becomes small. Further, the direct current internal resistance and capacity of the second storage battery 7 are not changed greatly by a change in current.
  • the plus terminal 3 and the minus terminal 5 are short-circuited with a low resistance in the assembled battery having the configuration shown in FIG. 1, only the first storage battery 6 is greatly polarized, and the voltage changes from plus to minus. To the extreme. As a result, the current is stopped, and the voltage between the positive terminal 3 and the negative terminal 5 is almost zero due to the external short circuit. Therefore, the second storage battery 7 exhibits a positive voltage and flows only a current equal to or lower than the rated value. The state is stable, and damage to the second storage battery 7 is minimized.
  • the first storage battery 6 was disposed at the end closest to the negative terminal 5 in the assembled battery case 8. In many cases, the recharged storage battery becomes unusable. Therefore, the first storage battery 6 to be reversed is disposed at the extreme end of the assembled battery case 8 so that the battery can be replaced even when the assembled battery is incorporated in the power storage system. It becomes easy. Even when the first storage battery 6 rarely generates heat, if the first storage battery 6 is disposed at the end, the influence on the second storage battery 7 is suppressed to the minimum.
  • the DC internal resistance of a storage battery does not change greatly even if the value of the current flowing through the storage battery changes, but it is possible to manufacture a battery that increases when an extremely large current flows through the storage battery (high rate discharge).
  • the extraction of the storage battery in which the DC internal resistance becomes high during high rate discharge includes a method of selecting from a plurality of manufactured storage batteries and a method of manufacturing a storage battery with high resistance during high rate discharge. Here, the latter will be described.
  • the total number of batteries in the assembled battery including one first storage battery 6 and (n ⁇ 1) second storage batteries 7 is n, and the rated currents of the first storage battery 6 and the second storage battery 7 are I
  • the resistance Rx when the first storage battery 6 is short-circuited is as follows: It is expressed by a formula.
  • the direct current internal resistance R at normal time is generally very small. Therefore, if the direct current internal resistance at the high rate discharge of the rechargeable storage battery is n ⁇ V / I or more, the first reversal is performed as described above. It is suitable as the storage battery 6 of. Therefore, for example, when a 6 series assembled battery has a unit storage battery voltage of 4 V and a rated current of 30 A, the DC internal resistance at the time of an external short circuit is 0.8 ⁇ or more, which is suitable as the first storage battery 6.
  • a lithium ion battery for the storage battery of the assembled battery which concerns on Embodiment 1 of this invention, This is a nickel hydride, an alkaline storage battery, a nickel cadmium battery, a lead storage battery, an electric double layer capacitor, a lithium ion It may be replaced with a capacitor.
  • the positive electrode of a lithium ion battery is coated with a slurry of lithium cobaltate, acetylene black and PVDF binder dissolved and dispersed in an aluminum plate (or aluminum foil), which is a positive electrode current collector, and then dried and press-molded.
  • the negative electrode is prepared by applying, drying, and press molding a slurry obtained by dissolving and dispersing graphite and SBR binder in a solvent on a copper plate (or copper foil) that is a negative electrode current collector.
  • a solvent in which a polyolefin microporous film is sandwiched between these two electrodes, and EC (ethylene carbonate) and DEC (diethyl carbonate) in which the salt of LiPF 6 is controlled to a water content of 10 ppm or less are mixed in a volume ratio of 4 to 6.
  • a battery element is produced by injecting the electrolyte solution dissolved in the battery. After this battery element is inserted into a stainless steel or aluminum container, it is precharged for gas generation at a current density of 3 A / cm 2 with respect to the electrode geometric area for 30 minutes, and then the container and the lid are sealed by laser welding in an inert gas. Is welded and sealed to produce a lithium ion battery.
  • the lithium ion having a capacity of 20 Ah manufactured as described above was charged at a current of 1 C rate for 3 hours in an environment controlled at around 25 ° C., measured for a capacity value by 30 A discharge after 10 minutes of rest, and this measured value was defined as the rated current discharge capacity.
  • the high-rate discharge capacity was measured under the same charging conditions, with the discharge current changed to 150A and 300A.
  • FIG. 2 is a graph showing an example of capacity characteristics of a lithium ion battery measured under the above conditions.
  • Curve 1 is a capacity characteristic of a lithium ion battery in which the capacity greatly decreases during a high rate discharge with a large current value, and this lithium ion battery is used as the first storage battery 6.
  • the other curve 2 is a capacity characteristic of a lithium ion battery in which a capacity can be obtained even at a high rate discharge, and these lithium ion batteries are used as the second storage battery 7.
  • the starting point of the diffusion-controlled region of the first storage battery 6 is smaller than the starting point of the diffusion-controlled region of the second storage battery 7, and the capacity of the first storage battery 6 indicated by the curve 1 If it becomes high, it will fall quickly from the capacity
  • the first storage battery 6 is reversed due to a large current flowing when an external short circuit occurs, but the second storage battery 7 changes near an open circuit voltage.
  • the capacity of the plurality of series assembled batteries is the capacity of the battery having the lowest capacity among them. Therefore, it is desirable to reduce only the capacity characteristics during high rate discharge without reducing the capacity characteristics at the rated current as much as possible.
  • the internal resistance should be increased. Furthermore, as will be described below, the internal resistance during high rate discharge mainly reflects the mass transfer resistance inside the battery, and therefore the mass transfer resistance inside the battery may be increased.
  • an electrode reaction and subsequent mass transfer proceed during charging or discharging.
  • the main mass transfer is the movement of lithium ions in the negative electrode or positive electrode active material crystal and the movement of positive and negative ions in the electrolyte. Since the driving force for mass transfer is mainly the difference in concentration, the diffusion rate cannot catch up when charging or discharging with a large current, and the mass transfer resistance, which is an apparent resistance, becomes high. This is remarkable at the end of discharge. The region of the current value where such a phenomenon occurs is called a diffusion-limited region. Therefore, the high rate discharge capacity can be reduced by increasing the mass transfer resistance inside the battery.
  • the first is a method of reducing the amount of electrolyte.
  • the amount of the electrolytic solution of the first storage battery 6 is set to be smaller than the average of the amount of the electrolytic solution of the second storage battery 7.
  • FIG. 3 is a table showing the capacity of the lithium ion battery with respect to the amount of electrolyte.
  • the rated current discharge capacity is the capacity value when the discharge current is 30 A
  • the high rate discharge capacity is the capacity value when the discharge current is 300 A.
  • FIG. 3 also shows the resistance at the end of discharge. If the amount of the electrolytic solution of the first storage battery 6 is reduced to 90% or less, for example, the high rate discharge capacity can be sufficiently reduced as shown in FIG.
  • the second method of increasing the mass transfer resistance inside the battery is a method of reducing the electrolyte concentration. That is, the electrolyte salt concentration of the first storage battery 6 is made lower than the electrolyte salt concentration of the second storage battery 7.
  • the electrolyte of a lithium ion battery usually contains about 1 mol / L of a salt LiPF 6 as a charge carrier in an organic solvent.
  • FIG. 4 is a table showing the capacity with respect to the salt concentration of the lithium ion battery.
  • the rated current discharge capacity is a capacity value when the discharge current is 30 A
  • the high rate discharge capacity is the capacity value when the discharge current is 300 A.
  • FIG. 4 also shows the resistance at the end of discharge.
  • the third way to increase the mass transfer resistance inside the battery is to increase the mass transfer rate by growing SEI (solid electrolyte interface layer) at the electrolyte interface in contact with the graphite negative electrode active material in addition to controlling the electrolyte characteristics. It can also be made.
  • SEI solid electrolyte interface layer
  • the manufactured battery is charged at a constant current to a charge level of 100%.
  • a thick SEI layer is formed on the graphite surface layer intercalated with lithium. This increases the mass transfer resistance when lithium ions move from the active material phase to the electrolyte solution by diffusing in the SEI layer during discharge.
  • the high rate discharge capacity of the first storage battery 6 can be reduced.
  • the assembled battery according to Embodiment 1 of the present invention includes the specific battery 6 having a relatively low capacity-current characteristic, and the first storage battery 6 is reversed due to a large current flowing when an external short circuit occurs. The damage of the 2nd storage battery 7 can be avoided.
  • the assembled battery cuts off the current independently, an external short circuit occurs when the poles at both ends of the assembled battery are short-circuited during the assembly process, when the system is assembled after assembly, when an external load is connected, or before the system is started. Even when the sensors do not function, for example, the storage battery can be prevented from being damaged or the connected device from being damaged due to self-heating due to the large current discharge.
  • the power storage system to which this assembled battery is applied can be reduced in size and weight.
  • first storage batteries 6 There may be a plurality of first storage batteries 6.
  • the plurality of first storage batteries 6 are sacrificed when an external short circuit occurs, but the other second storage batteries 7 can be protected.
  • FIG. FIG. 5 is a partial configuration diagram of a power storage system shown as a comparative example of the assembled battery according to Embodiment 2 of the present invention.
  • 10 is a battery
  • 15 is a voltmeter that measures the voltage of each battery
  • 9 is a polarity detection unit that detects the polarity of each battery from a change in voltage based on a voltage signal from the voltmeter
  • 17 Is a failure signal transmission / storage unit that transmits a failure signal and stores a failure history when a polarization signal sent from the polarization detection unit 9 is received.
  • the assembled battery is incorporated in the power storage system and the assembled battery is supplied with power from an external auxiliary power source and is in an operating state, when the external battery is short-circuited, as shown in FIG. Can be measured.
  • the voltmeter 15 sends a voltage signal corresponding to the measurement result to the inversion detector 9. Then, the reversal detection unit 9 can determine which storage battery has a reversal from the voltage signal.
  • the failure signal transmission storage unit 17 can receive a signal for informing the polarity change from the inversion detection unit 9, thereby transmitting a failure signal for notifying the external device of the failure and storing the history of the inversion.
  • power for monitoring the assembled battery such as transmission of a failure signal and storage of the history of reversal needs to be covered by the power of the assembled battery itself.
  • FIG. 6 is a block diagram of an assembled battery according to Embodiment 2 of the present invention.
  • the difference from the assembled battery according to the first embodiment is that a voltmeter 16, a reversal detection unit 19, a failure signal transmission / storage unit 17, and a power supply cable 18 are provided.
  • Other configurations are the same as those of the assembled battery according to the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • the battery that reverses polarity in this assembled battery is the storage battery 6 that is arranged at a specific position and has high resistance during high rate discharge. Therefore, if this single cell voltage is representatively monitored, the presence or absence of inversion, that is, the presence or absence of an external short circuit can be detected. Further, since the second storage battery 7 other than the specific battery 6 does not invert when it is short-circuited, it can be used as a drive power source for detecting inversion and transmitting / storing a failure signal. Therefore, in this assembled battery, even if the system is not operating, it is possible to detect and store a short circuit.
  • the voltmeter 16 that measures the voltage of the first storage battery 6 sends a voltage signal to the inversion detector 19 to notify the inversion.
  • the inversion detection unit 19 detects the inversion and sends the inversion signal to the failure signal transmission / storage unit 17.
  • the failure signal transmission / storage unit 17 transmits a failure signal for notifying the external device of the failure, and stores the reversal history.
  • the reversal detection unit 19, the failure signal transmission / storage unit 17, and the like can receive power supply from the second storage battery 7 that is not reversed via the power supply cable 18.
  • the assembled battery according to Embodiment 2 of the present invention can detect and store a short circuit even when the system is not operating.
  • FIG. 7 is a conceptual diagram of a regenerative energy storage system for an electric vehicle according to Embodiment 3 of the present invention, showing an application example thereof.
  • the regenerative energy storage system for an electric vehicle includes an overhead line 50 for supplying power from a substation, a ground power storage system 41 connected to the overhead line 50, a vehicle An electric vehicle 20 having an upper power storage system 21 and a pantograph 22, and an electric vehicle 30 having an on-vehicle power storage system 31 and a pantograph 32 are provided.
  • the assembled battery according to the second embodiment is mounted on the ground power storage system 41, the vehicle power storage system 21, and the vehicle power storage system 31.
  • the feature of the electric railway vehicle is that it is possible to save energy by reusing the regenerative electric power at the time of braking with another vehicle through an overhead line.
  • it is desirable that the regenerative power generated when the vehicle is braked is consumed by another powering electric vehicle through the overhead line.
  • the overhead line voltage increases. At this time, part of the braking energy is wasted as heat by the mechanical brake so that the overhead line voltage does not exceed a certain level.
  • the electric vehicle regenerative energy storage system according to the third embodiment, energy is not consumed wastefully, so the ground power storage system 41, the on-vehicle power storage system 21, and the on-vehicle power storage system.
  • the regenerative power is absorbed at 31 and stored.
  • the electric vehicle 20 when the electric vehicle 20 is braked, if the distance between the electric vehicle 20 and the electric vehicle 30 is far away, or if the regenerative power at the time of braking is large and cannot be consumed sufficiently by the electric vehicle 30, the regenerative power at the time of braking A part or the whole is absorbed by the electricity storage device 21 and stored. The stored power can be taken out and used when necessary.
  • regenerative power can be stored and effectively used.
  • the terrestrial power storage system 41, the on-vehicle power storage system 21, and the on-vehicle power storage system 31 provide a safety device or the like with a signal notifying the failure of the assembled battery when the installed assembled battery fails. However, it may be configured to output or store data. This improves the reliability and safety of the system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

課題 組電池の両端子間で継続的短絡が発生すると、加熱による故障、破壊、破裂の可能性があり、通電の早期停止が必要であった。また、瞬間的に短絡した場合でも、蓄電池の熱的、電位的ダメージに気付かず、信頼性を損なった状態で使用を継続するという課題があった。 解決手段 複数の蓄電池を直列に接続して構成する組電池において、他と比較して高率放電時の容量が低い蓄電池を少なくとも1個含ませ、外部短絡時に特定の蓄電池が転極することにより他の蓄電池の損傷を回避する。

Description

組電池および電力貯蔵システム
 本発明は、組電池、特に、電力貯蔵システムに用いられる組電池に関する。
 機器、車両等に搭載される組電池は、機器に必要な電圧または容量を得るために蓄電池を、直列に或いは並列に複数個組みあわせて構成される。組電池の2次側には、電圧変換器などを介して半導体やモータ等の負荷が接続される。負荷側の要求仕様に従って高電圧を必要とする場合や、必要な電力を低電流で得ようとする場合には、蓄電池を直列に接続して組電池の電圧を高くする。また、機器が長時間動作する必要がある場合は、並列数を増やして容量を増やす。このように、負荷である機器等の仕様等によって直列/並列の組合せが決まる。
 組電池については従来から多くの工夫がなされてきた。例えば、特許文献1においては、製造された複数の蓄電池を組電池化する過程で容量が最小の電池を抽出して制御用の代表蓄電池に用いることが記載されている。特許文献2においては、組電池の中で、過放電した蓄電池の早期検出の工夫がなされている。
 組電池における課題のひとつとして、組電池に接続する機器等における外部短絡が発生すると、電流により蓄電池が加熱してダメージを受けてしまうという課題がある。
 このための対策として、従来では、組電池を用いる電力貯蔵システムの中に安全性確保のための電流遮断機能を果たすサーミスタや電圧センシング回路等が搭載され、信号によって電流回路を遮断する電流遮断機能が構成されていた。
 例えば、携帯機器など小型組電池であれば電流も小さく、異常時に動作させるスイッチも小型で、上記のような電流遮断機能を持たせることが十分可能である。
特開2003-178808号公報(第3-5頁、第2図) 特開2000-150002号公報(第2-4頁、第1図)
 しかし、例えば、数百Aの電流で充放電させる電力貯蔵システムにおいては、上記のような電流遮断機能を持たせることは装置の大幅な大型化を招く。
 本発明はこのような問題を考慮してなされたもので、装置の大型化を抑制しつつ、外部短絡による蓄電池へのダメージを最小限に抑えるための組電池を提供することを目的とする。
 本発明における組電池においては、第1の蓄電池と、第2の蓄電池とを直列に接続して構成され、第1の蓄電池の拡散律速領域の開始点が第2の蓄電池の拡散律速領域の開始点より小さくなるようにする。
 本発明における組電池においては、外部短絡によるダメージを最小限に抑えるための機構を構築することができる。
本発明の実施の形態1に係る組電池内の配置図である。 本発明の実施の形態1に係る蓄電池の容量特性の例を示すグラフである。 リチウムイオン電池の電解液量に対する容量を示す表である。 リチウムイオン電池の塩濃度に対する容量を示す表である。 本発明の実施の形態2に係る組電池の比較例として示す電力貯蔵システムの一部の構成図である。 本発明の実施の形態2に係る組電池の構成図である。 本発明の実施の形態3に係る電気車の回生エネルギー貯蔵システムの概念図である。
実施の形態1.
 図1は本発明の実施の形態1に係る組電池内の配置図である。図1において、本発明の実施の形態1に係る組電池は、組電池のプラス端子3、銅にニッケルメッキを施した導電性金属板4、組電池のマイナス端子5、1個の第1の蓄電池6、複数の第2の蓄電池7を備えている。各蓄電池は導電性金属板4によって直列に接続されており、組電池ケース8に一列に並べて収納される。また、各蓄電池のプラス端子とマイナス端子を図中上下交互になるように配置することで、隣り合う蓄電池同士を図中左右に繋ぐ導電性金属板4による電流経路が短くなるようにしてある。
 容量が均一でない複数の蓄電池を組電池化すると、放電時の下限終止電圧に、容量が最小の蓄電池が最も早く到達するため、この蓄電池の容量が組電池の容量と等価になってしまう。また、直流内部抵抗が均一でない複数の蓄電池を組電池化すると、充電時に個々の電池電圧にばらつきが生じ、直流内部抵抗が大きい蓄電池は材料の耐久性を損なうことがある。したがって、蓄電池の性能を十分に発揮して組電池を長時間使用可能にするためには、定格電流において可能な限り容量及び直流内部抵抗が揃った蓄電池で組電池を構成することが好ましい。
 そこで、本発明の実施の形態1における第1の蓄電池6は、定格電流においては組電池を構成する第2の蓄電池7と容量差はなく、短絡時のような大電流で放電するときのみ直流内部抵抗が高抵抗になり容量が小さくなるようにする。また、第2の蓄電池7の直流内部抵抗と容量は、電流の変化によって大きく変わらないようにする。
 このようにすることで、図1の構成の組電池においてプラス端子3とマイナス端子5とが低抵抗で短絡した場合は、第1の蓄電池6だけが大きく分極し、電圧がプラスからマイナスに転極する。これにより電流が停止し、プラス端子3とマイナス端子5との間の電圧が外部短絡によりほぼ0になっているため、第2の蓄電池7はプラス電圧を示して定格値以下の電流しか流れない状態で安定し、第2の蓄電池7へのダメージは最小限に抑えられる。
 また、第1の蓄電池6を組電池ケース8内のマイナス端子5に最も近い端部に配置した。転極した蓄電池は多くの場合使用不可能になるため、転極する第1の蓄電池6を組電池ケース8の最端に配置することで、組電池を電力貯蔵システムに組み込んだ状態でも交換が容易になる。希に第1の蓄電池6が発熱した場合でも、第1の蓄電池6が端部に配置されていれば、第2の蓄電池7への影響が最小限に抑制される。
 次に、本発明の実施の形態1における蓄電池の製造方法について説明する。一般に、蓄電池の直流内部抵抗は蓄電池に流れる電流値が変わっても大きく変化しないが、蓄電池に極端に大きな電流が流れる(高率放電)と、高くなるものも製造可能である。直流内部抵抗が高率放電時に高くなる蓄電池の抽出は、製造された複数の蓄電池の中から選別する方法と、高率放電時の抵抗の高い蓄電池を製造する方法とがある。ここでは後者について説明する。
 1個の第1の蓄電池6と(n-1)個の第2の蓄電池7とを合わせた組電池の全蓄電池個数をn、第1の蓄電池6及び第2の蓄電池7の定格電流をI、定格電流が通電された時の第1の蓄電池6及び第2の蓄電池7の直流内部抵抗をR、単位蓄電池電圧をV、とすると、第1の蓄電池6の外部短絡時の抵抗Rxは以下式であらわされる。
Figure JPOXMLDOC01-appb-M000001
 この場合、正常時の直流内部抵抗Rは一般に非常に小さいため、転極する蓄電池の高率放電時の直流内部抵抗はn・V/I以上であれば、上記のような転極させる第1の蓄電池6として好適である。したがって、例えば、6直列組電池で、単位蓄電池電圧が4V、定格電流30Aのとき、外部短絡時の直流内部抵抗が0.8Ω以上で第1の蓄電池6として好適である。
 以下では、本発明の実施の形態1に係る組電池の蓄電池にリチウムイオン電池を用いることとして説明するが、これをニッケル水素、アルカリ蓄電池、ニッケルカドミウム電池、鉛蓄電池、電気二重層キャパシター、リチウムイオンキャパシターなどに置き換えてもかまわない。
 本発明の実施の形態1に係る組電池に用いるリチウムイオン電池の製造方法について説明する。リチウムイオン電池の正極は、正極集電体であるアルミニウム板(またはアルミニウム箔)に、コバルト酸リチウムとアセチレンブラックとPVDFバインダーとを溶剤に溶解、分散させたスラリーを塗布し、乾燥、プレス成形して作製する。負極は、負極集電体である銅板(または銅箔)に、グラファイトとSBRバインダーとを溶剤に溶解、分散させたスラリーを塗布、乾燥、プレス成形して作製する。
 これら両電極の間にポリオレフィン系微多孔膜を挟み、LiPFの塩を水分が10ppm以下に制御されたEC(エチレンカーボネート)とDEC(ジエチルカーボネート)とを体積比で4対6に混合した溶媒に溶解させた電解液を注入して電池エレメントを作製する。この電池エレメントをステンレスまたはアルミニウム容器に挿入後、電極幾何面積に対し3A/cmの電流密度で30分間、ガス発生のため予備充電を行い、その後、不活性ガス中、レーザー溶接で容器とフタを溶接、封入してリチウムイオン電池を製造する。
 このようにしてを製造した容量20Ahのリチウムイオンについて、25℃前後に制御した環境で、1Cレートの電流で3時間充電し、10分休止後、30A放電による容量値を測定し、この測定値を定格電流放電容量とした。高率放電容量は、充電条件は同じで、放電電流を150A、300Aと変化させて容量を測定した。
 図2は、上記のような条件下で測定したリチウムイオン電池の容量特性の例を示すグラフである。曲線1は、電流値が大きい高率放電時に容量が大きく低下するリチウムイオン電池の容量特性であり、このリチウムイオン電池は第1の蓄電池6として使用する。その他の曲線2は、高率放電でも容量が得られるリチウムイオン電池の容量特性であり、これらのリチウムイオン電池は第2の蓄電池7として使用する。
 図2において、第1の蓄電池6の拡散律速領域の開始点は第2の蓄電池7の拡散律速領域の開始点より小さくなっており、曲線1が示す第1の蓄電池6の容量は、電流が高くなると曲線2が示す第2の蓄電池7の容量より素早く低下する。
 これにより、本発明の実施の形態1に係る組電池においては、外部短絡時に流れる大電流によって第1の蓄電池6は転極するが、第2の蓄電池7は開回路電圧近くで推移する。
 次に、定格電流における容量特性を変化させずに高率放電時の容量特性だけを低下させる蓄電池の作成方法について説明する。先に述べたように、複数個の直列組電池の容量は、その中で最も容量の低い電池の容量が組電池の容量となる。そのため、定格電流における容量特性はできるだけ低下させずに、高率放電時の容量特性だけを低下させることが望ましい。
 容量を低下させるためには、内部抵抗を増大させればよい。さらに、次に説明するように、高率放電時の内部抵抗は主に電池内部の物質移動抵抗を反映したものであるから、電池内部の物質移動抵抗を増大させればよい。
 電池内部では、充電時または放電時に、電極反応とそれに続く物質移動が進行する。主な物質移動は、負極または正極活物質結晶中のリチウムイオンの移動と、電解液中の正負イオンの移動である。これらの物質移動の駆動力は濃度差が主であるため、大電流の充電時または放電時には拡散速度が追いつかず、見かけの抵抗である物質移動抵抗が高くなる。これは放電末期に顕著である。このような現象が起こる電流値の領域を拡散律速領域という。したがって、電池内部の物質移動抵抗を増大させることで、高率放電容量を低下させることができる。
 第1の蓄電池と同種の第2の蓄電池とが同種(リチウムイオン電池)である場合において、電池内部の物質移動抵抗を増大させる方法は3つある。以下、これらの方法を説明する。1つ目は電解液量を減らす方法である。例えば、第1の蓄電池6の電解液量を第2の蓄電池7の電解液量の平均より少量にする。
 電解液は、通常、電池エレメントの空孔部に含浸され、電解液量100%は完全に液が満たされた状態である。図3はリチウムイオン電池の電解液量に対する容量を示す表である。図3において、定格電流放電容量は、放電電流を30Aとしたときの容量値であり、高率放電容量は、放電電流を300Aとしたときの容量値である。また、図3には放電末期の抵抗も示した。第1の蓄電池6の電解液量を例えば90%以下に減らせば、図3に示すように、高率放電容量を十分に低下させることができる。
 電池内部の物質移動抵抗を増大させる2つめの方法は、電解液濃度を低下させる方法である。つまり、第1の蓄電池6の電解液塩濃度が第2の蓄電池7の電解液塩濃度より低くなるようにする。
 リチウムイオン電池の電解液は、通常、有機溶媒中に電荷担体である塩LiPF6を1mol/L 程度含んでいる。図4はリチウムイオン電池の塩濃度に対する容量を示す表である。図4において、定格電流放電容量は、放電電流を30Aとしたときの容量値であり、高率放電容量は、放電電流を300Aとしたときの容量値である。また、図4には放電末期の抵抗も示した。第1の蓄電池6の塩濃度を、例えば0.9以下に下げることで、図4に示すように、高率放電容量を十分に低下させることができる。
 電池内部の物質移動抵抗を増大させる3つめの方法として、電解液特性の制御以外にグラファイト負極活物質と接する電解液界面にあるSEI(固体電解質界面層)を成長させることによって物質移動速度を増大させることもできる。
 SEIの成長促進方法について説明する。製造した電池を一定電流で、100%の充電レベルまで充電する。この状態の電池を60℃の恒温槽内で24時間保持(エージング)することで、リチウムがインターカレーションしたグラファイト表面層に、厚くSEI層が生成する。これにより、放電時にSEI層中を拡散して活物質相間から電解液にリチウムイオンが移動するときの物質移動抵抗が上昇する。この方法により、第1の蓄電池6の高率放電容量を低下させることができる。
 以上、本発明の実施の形態1に係る組電池においては、容量-電流特性の相対的に低い特定の電池6を含み、外部短絡時に流れる大電流によってその第1の蓄電池6が転極することを特徴としており、第2の蓄電池7のダメージを回避することができる。
 また、組電池が自立的に電流を遮断するので、組電池の両端の極が組み立て工程で短絡した場合や、組み立て後のシステム組み込み時、外部負荷接続時、システム起動前などに外部短絡が発生した場合など、センサ類が機能しない場合であっても、大電流放電による自己加熱によって蓄電池がダメージを受けたり、接続機器が故障することを防ぐことができる。
 また、従来の電流遮断機能を果たす回路等と異なり、短時間の短絡によって電池が高温化してダメージが与えられたもののすぐに電圧が復帰した場合でも、電池のダメージに気付かず使用し続けるということがなくなる。
 また、組電池の外部に設ける電流遮断機能を果たすサーミスタや電圧センシング回路等が不要になるため、この組電池を適用する電力貯蔵システムの小型、軽量化が図れる。
 なお、第1の蓄電池6は複数あってもよい。外部短絡時にはこれら複数の第1の蓄電池6は犠牲になるが、それ以外の第2の蓄電池7を保護することができる。
実施の形態2.
 図5に本発明の実施の形態2に係る組電池の比較例として示す電力貯蔵システムの一部の構成図である。図5において、10は電池、15は各電池の電圧をそれぞれ測定する電圧計、9は電圧計からの電圧信号に基いて電圧の変化から各電池の転極を検出する転極検出部、17は転極検出部9から送られる転極信号を受けた場合に故障信号を発信及び故障履歴の記憶を行う故障信号発信・記憶部である。
 組電池が電力貯蔵システムに組み込まれ、組電池が外部の補助電源から電力を供給されて稼働状態にあれば、外部短絡したときに、図5に示すように、各蓄電池電圧を電圧計15によって測定することができる。電圧計15は測定結果に応じた電圧信号を転極検出部9に送る。そして転極検出部9は、電圧信号からどの蓄電池が転極したかを判断することができる。
 故障信号発信記憶部17は、転極検出部9から転極を知らせる信号を受けることで、外部装置に故障を知らせるための故障信号を発信し、転極の履歴を記憶することもできる。しかし、組電池を電力貯蔵システムに組み込む前の状態では、故障信号の発信、転極の履歴の記憶など組電池の監視のための電力は、組電池自身の電力で賄う必要がある。
 一方、図6は本発明の実施の形態2に係る組電池の構成図である。電圧計16、転極検出部19、故障信号発信・記憶部17、電力供給ケーブル18を備えた点が、実施の形態1に係る組電池との相違点である。他の構成は実施の形態1に係る組電池と同様であり、同一の構成には同一の符号を付して説明を省略する。
 この組電池の中で転極する電池は、特定の位置に配置した高率放電時に抵抗の高い蓄電池6である。従って、この単電池電圧を代表して監視しておけば、転極の有無、つまり外部短絡の有無を検出できる。また、この特定の電池6以外の第2の蓄電池7は短絡時に転極しないので、転極検出、故障信号の発信・記憶のための駆動電源として利用できる。そのため、この組電池においては、システムが稼働していなくても、短絡を検知、記憶することが可能となる。
 次に動作を説明する。第1の蓄電池6が転極すると、第1の蓄電池6の電圧を測定する電圧計16が電圧信号を転極検出部19へ送り、転極を知らせる。転極検出部19はこれにより、転極を検出し、転極信号を故障信号発信・記憶部17へ送る。転極信号を受けた故障信号発信・記憶部17は、外部装置に故障を知らせるための故障信号を発信し、転極の履歴を記憶する。なお、転極検出部19及び故障信号発信・記憶部17等は、転極していない第2の蓄電池7から電力供給ケーブル18を介して電力供給を受けることができる。
 以上、本発明の実施の形態2に係る組電池においては、システムが稼働していなくても、短絡を検知、記憶することができる。
実施の形態3.
 実施の形態1及び2で説明した組電池は、電気車の回生エネルギー貯蔵システムに適用することができる。図7は、その適用例を示す、本発明の実施の形態3に係る電気車の回生エネルギー貯蔵システムの概念図である。
 本実施の形態3に係る電気車の回生エネルギー貯蔵システムは、図7に示すように、変電所からの電力を供給するための架線50、架線50に接続された地上用電力貯蔵システム41、車上用電力貯蔵システム21及びパンタグラフ22を有する電気車20、車上用電力貯蔵システム31及びパンタグラフ32を有する電気車30を備える。地上用電力貯蔵システム41、車上用電力貯蔵システム21、車上用電力貯蔵システム31には実施の形態2に係る組電池が搭載されている。
 電気鉄道車両の特長は、ブレーキ時の回生電力を、架線を通して他の車両で再使用することで省エネルギー化が可能なことである。この利点を最大限に生かすには、車両のブレーキ時に発生する回生電力が架線を通して別の力行電気車両で消費されることが望ましい。しかし、回生車両と別の力行車両の距離が遠く離れていたり、回生電力が大きく別の力行車両で十分に消費できない場合は、架線電圧が上昇する。この際、架線電圧が一定以上とならないように、機械ブレーキによって制動エネルギーの一部は熱として無駄に消費させていた。
 そこで、実施の形態3に係る電気車の回生エネルギー貯蔵システムにおいては、エネルギーを無駄に消費させてないため、地上用電力貯蔵システム41、車上用電力貯蔵システム21、及び車上用電力貯蔵システム31で回生電力を吸収して、貯蔵しておくものである。
 次に動作を説明する。通常、電気車20がブレーキをかけた時に発生する回生電力は、架線50を介して電気車30へ供給され、電気車30で消費される。
 一方、電気車20がブレーキをかけた時に、電気車20と電気車30の距離が遠く離れていたり、ブレーキ時の回生電力が大きく電気車30で十分に消費できない場合は、ブレーキ時の回生電力一部又は全部を蓄電デバイス21で吸収して貯蔵する。貯蔵した電力は必要な際に取り出して使用することができる。
 以上、本実施の形態3に係る電気車の回生エネルギー貯蔵システムでは、回生電力を貯蔵し、有効活用することができる。
 なお、地上用電力貯蔵システム41、車上用電力貯蔵システム21、及び車上用電力貯蔵システム31は、搭載されている組電池が故障した時に、組電池の故障を知らせる信号を安全装置などに対して出力したり、記憶したりするように構成してもよい。これにより、システムの信頼性と安全性が向上する。
 3 組電池のプラス端子
 4 導電性金属
 5 組電池のマイナス端子
 6 第1の蓄電池
 7 第2の蓄電池
 8 組電池ケース
 17 故障信号発信・記憶部
 18 電力供給ケーブル
 19 転極検出部
 20 電気車
 21 車上用電力貯蔵システム
 22 パンタグラフ
 30 電気車
 31 車上用電力貯蔵システム
 32 パンタグラフ
 41 地上用電力貯蔵システム
 50 架線

Claims (7)

  1.  少なくとも1個以上の充放電可能な第1の蓄電池と、
    少なくとも1個以上の充放電可能な第2の蓄電池とを直列に接続して構成する組電池において、
    前記第1の蓄電池の拡散律速領域の開始点は前記第2の蓄電池の拡散律速領域の開始点より小さいことを特徴とする組電池。
  2.  1個の、充放電可能で、定格電流がI、定格電流通電時の電圧がVの第1の蓄電池と、
    (n-1)個の、充放電可能で、定格電流がI、定格電流通電時の電圧がVの第2の蓄電池とを直列に接続して構成する組電池において、
     前記第1の蓄電池に短絡時の電流が流れたときの前記第1の蓄電池の直流内部抵抗Rxが、
    Rx≧n・V/I
    であることを特徴とする組電池。
  3.  第1の蓄電池の電解液量が第2の蓄電池の電解液量の平均より少量であることを特徴とする請求項1に記載の組電池。
  4.  第1の蓄電池の電解液塩濃度が第2の蓄電池の電解液塩濃度より低いことを特徴とする請求項1に記載の組電池。
  5.  第1の蓄電池及び第2の蓄電池は、リチウムイオン電池であることを特徴とする請求項1乃至4のいずれか1項に記載の組電池。
  6.  請求項1乃至4のいずれか1項に記載の組電池と、
    第1の蓄電池の電圧を検出する検出手段と、
    前記検出手段が検出する電圧が反転したときに故障信号を出力する故障信号出力手段を備えたことを特徴とする電力貯蔵システム。
  7.  請求項1乃至4のいずれか1項に記載の組電池と、
    第1の蓄電池の電圧を検出する検出手段と、
    前記検出手段が検出する電圧が反転したときに故障信号を記憶する故障信号記憶手段を備えたことを特徴とする電力貯蔵システム。
PCT/JP2010/001504 2010-03-04 2010-03-04 組電池および電力貯蔵システム WO2011108025A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2010/001504 WO2011108025A1 (ja) 2010-03-04 2010-03-04 組電池および電力貯蔵システム
CN201080065129.0A CN102804477B (zh) 2010-03-04 2010-03-04 蓄电系统
KR1020127022028A KR101348026B1 (ko) 2010-03-04 2010-03-04 전력 저장 시스템
JP2011512777A JP4835808B2 (ja) 2010-03-04 2010-03-04 電力貯蔵システム
US13/582,204 US9041404B2 (en) 2010-03-04 2010-03-04 Electric power storage system
EP10846936.2A EP2544293B1 (en) 2010-03-04 2010-03-04 Electric power storage system
AU2010347489A AU2010347489B2 (en) 2010-03-04 2010-03-04 Electric power storage system
BR112012021101A BR112012021101A2 (pt) 2010-03-04 2010-03-04 pacote de baterias, e, sistema de armazenamento de energia elétrica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/001504 WO2011108025A1 (ja) 2010-03-04 2010-03-04 組電池および電力貯蔵システム

Publications (1)

Publication Number Publication Date
WO2011108025A1 true WO2011108025A1 (ja) 2011-09-09

Family

ID=44541716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001504 WO2011108025A1 (ja) 2010-03-04 2010-03-04 組電池および電力貯蔵システム

Country Status (8)

Country Link
US (1) US9041404B2 (ja)
EP (1) EP2544293B1 (ja)
JP (1) JP4835808B2 (ja)
KR (1) KR101348026B1 (ja)
CN (1) CN102804477B (ja)
AU (1) AU2010347489B2 (ja)
BR (1) BR112012021101A2 (ja)
WO (1) WO2011108025A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156171A1 (ja) * 2018-02-07 2019-08-15 パナソニックIpマネジメント株式会社 リチウムイオン二次電池の制御装置及びその制御方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102392380B1 (ko) * 2015-08-19 2022-04-29 삼성에스디아이 주식회사 이차전지

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267078A (ja) * 1991-02-20 1992-09-22 Hitachi Maxell Ltd 組電池の充電方法
JPH0778639A (ja) * 1993-09-10 1995-03-20 Toshiba Battery Co Ltd 組電池
JP2000150002A (ja) 1998-11-06 2000-05-30 Toyota Motor Corp 組電池における過放電セル検出装置
JP2001346339A (ja) * 2000-05-31 2001-12-14 Toshiba Corp 蓄電池を用いた電源装置
JP2003178808A (ja) 2002-11-28 2003-06-27 Toshiba Battery Co Ltd 組電池の製造方法
JP2004095400A (ja) * 2002-08-30 2004-03-25 Nissan Motor Co Ltd バイポーラ電池とその制御方法
JP2008289296A (ja) * 2007-05-18 2008-11-27 Panasonic Corp 電源装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4303877A (en) * 1978-05-05 1981-12-01 Brown, Boveri & Cie Aktiengesellschaft Circuit for protecting storage cells
US4333119A (en) * 1980-04-28 1982-06-01 Purex Corporation Power monitor system
US5683827A (en) * 1995-11-20 1997-11-04 Mobius Green Energy, Inc. Protective device for protecting individual battery cells in a batterypack from damages and hazards caused by reverse polarity during discharge cycles
JPH1079472A (ja) * 1996-09-05 1998-03-24 Mitsubishi Electric Corp 半導体集積回路
JP3416461B2 (ja) * 1997-05-30 2003-06-16 キヤノン株式会社 太陽電池充電制御装置
DE10125828A1 (de) * 2001-05-26 2002-12-05 Bosch Gmbh Robert Verpolschutz für Energiequellen
US6822423B2 (en) * 2001-09-03 2004-11-23 Gpe International Limited Intelligent serial battery charger and charging block
US6822425B2 (en) * 2002-01-25 2004-11-23 Vector Products, Inc. High frequency battery charger and method of operating same
US7009406B2 (en) * 2003-04-24 2006-03-07 Delphi Technologies, Inc. Arc fault detector and method
DE102004033836B3 (de) * 2004-07-13 2005-09-29 Siemens Ag Vorrichtung und Verfahren zur Ermittlung von Betriebsparametern einer Batterie
US7768236B2 (en) * 2006-07-28 2010-08-03 Panasonic Corporation Electrical device and battery pack for preventing polarity reversal of battery
KR100823507B1 (ko) * 2006-08-29 2008-04-21 삼성에스디아이 주식회사 배터리 관리 시스템 및 그 구동방법
DE102008054532A1 (de) 2008-04-08 2009-10-15 Robert Bosch Gmbh Batteriemodul

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267078A (ja) * 1991-02-20 1992-09-22 Hitachi Maxell Ltd 組電池の充電方法
JPH0778639A (ja) * 1993-09-10 1995-03-20 Toshiba Battery Co Ltd 組電池
JP2000150002A (ja) 1998-11-06 2000-05-30 Toyota Motor Corp 組電池における過放電セル検出装置
JP2001346339A (ja) * 2000-05-31 2001-12-14 Toshiba Corp 蓄電池を用いた電源装置
JP2004095400A (ja) * 2002-08-30 2004-03-25 Nissan Motor Co Ltd バイポーラ電池とその制御方法
JP2003178808A (ja) 2002-11-28 2003-06-27 Toshiba Battery Co Ltd 組電池の製造方法
JP2008289296A (ja) * 2007-05-18 2008-11-27 Panasonic Corp 電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2544293A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156171A1 (ja) * 2018-02-07 2019-08-15 パナソニックIpマネジメント株式会社 リチウムイオン二次電池の制御装置及びその制御方法
CN111837290A (zh) * 2018-02-07 2020-10-27 松下知识产权经营株式会社 锂离子二次电池的控制装置以及其控制方法
JPWO2019156171A1 (ja) * 2018-02-07 2021-03-04 パナソニックIpマネジメント株式会社 リチウムイオン二次電池の制御装置及びその制御方法

Also Published As

Publication number Publication date
EP2544293A4 (en) 2013-11-13
CN102804477B (zh) 2015-04-29
US9041404B2 (en) 2015-05-26
JPWO2011108025A1 (ja) 2013-06-20
KR101348026B1 (ko) 2014-01-10
EP2544293B1 (en) 2019-01-16
KR20120123466A (ko) 2012-11-08
AU2010347489A1 (en) 2012-09-27
JP4835808B2 (ja) 2011-12-14
BR112012021101A2 (pt) 2016-05-17
AU2010347489B2 (en) 2013-09-12
CN102804477A (zh) 2012-11-28
US20120319693A1 (en) 2012-12-20
EP2544293A1 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP6076944B2 (ja) 高効率操作ハイブリッド型電池パック
US20140335387A1 (en) Electric storage system
JP4771180B2 (ja) 組電池および組電池の制御システム
KR20140003325A (ko) 배터리 팩 및 배터리 팩에 적용되는 soc 알고리즘
JPWO2011007805A1 (ja) リチウムイオン二次電池監視システム及びリチウムイオン二次電池監視方法
JP2008234903A (ja) 電池及び電池システム
KR20180028022A (ko) 이차 전지의 회복 방법 및 재이용 방법
JP2011086530A (ja) 組電池および電源装置
JP2013254664A (ja) 二次電池の制御装置
JP5537674B2 (ja) 非水系二次電池及び二次電池システム
JP2005267886A (ja) 二次電池
JP4835808B2 (ja) 電力貯蔵システム
JP2018142525A (ja) 蓄電素子及び蓄電素子の制御方法
JP2013037863A (ja) 組電池
CN116724440A (zh) 非水电解质二次电池的充电方法及充放电方法、以及非水电解质二次电池的充电系统
JP2016144367A (ja) 組電池の制御装置
JP4618025B2 (ja) 組電池及びその充電制御方法
JP2013120680A (ja) 水電解型ハイブリッド蓄電池
JP5758222B2 (ja) 蓄電体の過放電警報回路
JP2011216685A (ja) 複合蓄電デバイス
JP5678879B2 (ja) 蓄電システムおよび異常判定方法
JP2018120758A (ja) リチウムイオン電池及びリチウムイオン電池システム
JP2012003870A (ja) 蓄電システム
Barsukov Battery selection, safety, and monitoring in mobile applications
CN116830418A (zh) 非水电解质二次电池的充电方法及充放电方法、以及非水电解质二次电池的充电系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065129.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011512777

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127022028

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 7321/CHENP/2012

Country of ref document: IN

Ref document number: 2010846936

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13582204

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010347489

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010347489

Country of ref document: AU

Date of ref document: 20100304

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012021101

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012021101

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120822