WO2011105269A1 - 超音波探触子とそれを用いた超音波撮像装置 - Google Patents

超音波探触子とそれを用いた超音波撮像装置 Download PDF

Info

Publication number
WO2011105269A1
WO2011105269A1 PCT/JP2011/053321 JP2011053321W WO2011105269A1 WO 2011105269 A1 WO2011105269 A1 WO 2011105269A1 JP 2011053321 W JP2011053321 W JP 2011053321W WO 2011105269 A1 WO2011105269 A1 WO 2011105269A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic probe
backing layer
ultrasonic
vibrator
acoustic impedance
Prior art date
Application number
PCT/JP2011/053321
Other languages
English (en)
French (fr)
Inventor
雅洋 佐藤
暁史 佐光
石田 一成
田中 宏樹
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to EP11747233A priority Critical patent/EP2540227A1/en
Priority to JP2012501753A priority patent/JPWO2011105269A1/ja
Priority to US13/581,441 priority patent/US9138203B2/en
Priority to CN201180010881XA priority patent/CN102770078A/zh
Publication of WO2011105269A1 publication Critical patent/WO2011105269A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/002Devices for damping, suppressing, obstructing or conducting sound in acoustic devices

Definitions

  • the present invention relates to an ultrasonic probe using a capacitive transducer CMUT chip (Capacitive Micromachined Ultrasound Transducer) chip as a vibrator, and more particularly to a technique for suppressing multiple reflections.
  • CMUT chip Capacitive Micromachined Ultrasound Transducer
  • a piezoelectric element is used as a material for a transducer of a conventional ultrasonic probe.
  • a CMUT chip in which a transducer of an ultrasonic probe is formed of a semiconductor element has been adopted.
  • the CMUT chip has a technical problem that it is easier to induce multiple reflections than the piezoelectric element because the acoustic-electric conversion efficiency of the vibrator is lower than that of the piezoelectric element.
  • Multiple reflection is a phenomenon in which the reflection of ultrasonic waves is repeated on the reflection surface using the boundary of the tissue in the subject as a reflection surface, and artifacts of structures that do not exist in the measurement range of the ultrasonic probe appear. The phenomenon that ends up.
  • Patent Document 1 in order to solve the problem of multiple reflection of a vibrator having a CMUT chip, multiple reflections per channel of the vibrator are achieved by satisfying both the following first condition and second condition. It is described to reduce.
  • the first condition is that when the absorption coefficient of the acoustic lens is ⁇ [dB / mm / MHz], the maximum thickness of the acoustic lens is d [mm], and the center frequency of the vibrator is fc [MHz] 6.5 The condition of 5 / fc ⁇ d.
  • the second condition is that the inductance value per channel of the vibrator is L [H], the capacitance per channel of the vibrator is C [pF], and the center frequency of the vibrator is fc [MHz]
  • the condition of L ⁇ 1 / ((3 ⁇ fc) 2 ⁇ C) is satisfied.
  • Patent Document 1 is a countermeasure technique for multiple reflection that occurs due to an action of retransmitting to a subject by a reflected wave caused by a mismatch in acoustic impedance between the acoustic lens and the vibrator at the boundary surface between the acoustic lens and the vibrator.
  • Patent Document 1 does not mention the multiple reflection that occurs when the reflected wave generated by the mismatch in acoustic impedance between the transducer and the backing layer reaches the subject at the boundary surface between the transducer and the backing layer.
  • an object of the present invention is to provide an ultrasonic probe capable of suppressing the influence of multiple reflection occurring at the interface between a transducer having a CMUT chip and a backing layer, and an ultrasonic diagnostic apparatus using the ultrasonic probe.
  • an ultrasonic probe of the present invention is an ultrasonic probe having a structure in which an acoustic lens, a vibrator, and a backing layer are stacked, and the vibrator has a CMUT chip,
  • the backing layer is formed of a material having substantially the same value as the acoustic impedance of the acoustic lens.
  • the direction from the transducer to the acoustic lens layer side (side where the subject exists) is the first direction
  • the direction from the transducer to the backing layer side (opposite side where the subject exists) is the second direction. Defined as direction.
  • the backing layer is formed of a material having substantially the same acoustic impedance as that of the acoustic lens is that the amount of change in acoustic impedance is the same in the first direction and the second direction, so that the acoustic energy of the reflected wave is the first. It is distributed in the same ratio in the first direction and the second direction.
  • the reflected wave since the reflected wave has a structure in which only the acoustic energy of the part of the distributed reflected wave propagates in the second direction at the interface between the transducer and the backing layer, it occurs at the interface between the transducer and the backing layer. The occurrence of multiple reflections can be suppressed.
  • FIG. 3 is a cross-sectional view of a CMUT chip 18 constituting the vibrator 11-1 and the like in FIG. Sectional drawing of a 1-channel ultrasonic probe.
  • FIG. 6 is a diagram for explaining the principle of multiple reflection using the model of FIG.
  • FIG. 5 is a diagram showing a frequency-ultrasonic reflectance characteristic curve from the boundary between the transducer 11-1 and the backing layer 12.
  • oscillator 11-1 is 50 micrometers.
  • oscillator 11-1 is 25 micrometers.
  • oscillator 11-1 is 10 micrometers.
  • FIG. 3 is a cross-sectional view of a 1-channel ultrasonic probe provided with an adhesive layer 131.
  • the figure which shows the example which calculated the reflectance with respect to a frequency continuously when thickness is set to 5 micrometers in the contact bonding layer 131.
  • FIG. 1 is a diagram showing a schematic configuration of an ultrasonic diagnostic apparatus employing the present invention.
  • the ultrasonic diagnostic apparatus includes an ultrasonic probe 1, a signal transmission unit 2, a signal reception unit 3, a phasing addition unit 4, an image processing unit 5, an image display unit 6, an input unit 7, and a control unit 8. Yes.
  • the ultrasonic probe 1 is configured so that the examiner makes contact with the surface where the imaging region of the subject is present, transmits the ultrasonic wave to the imaging region, receives the reflected wave from the transmitted imaging region, and receives the reflected echo signal. Is converted into an electrical signal.
  • the signal transmission unit 2 transmits to the subject an ultrasonic wave that focuses on the depth at which the imaging region exists at the timing of ultrasonic transmission to the ultrasonic probe 1 that is electrically connected.
  • the signal receiving unit 3 receives the reflected echo signal from the ultrasonic probe 1 at the timing of ultrasonic reception, and performs signal processing including signal amplification and analog-digital conversion.
  • the phasing addition unit 4 performs phasing addition of the reflected echo signal signal-processed by the signal receiving unit 3.
  • the image processing unit 5 converts the reflected echo signal phased and added by the phasing addition unit 4 into an ultrasonic image.
  • the image display unit 6 displays the converted ultrasound image in the image processing unit 5.
  • the input unit 7 inputs information on an imaging region necessary for the examiner to convert an ultrasound image and information on the ultrasound probe used.
  • the control unit 8 performs the following control based on the information input to the input unit 7. (1) Control for repeating transmission and reception timing of ultrasonic waves at predetermined intervals. (2) Control that causes the signal transmission unit 2 to transmit ultrasonic waves toward the subject at the transmission timing. (3) Control that causes the signal reception unit 3 to perform signal processing on the reflected echo signal at the reception timing. (4) Control for causing the phasing adder 4 to phasing and add the reflected echo signal. (5) Control for converting the reflected echo signal phased and added to the image processing unit 5 into an ultrasonic image. (6) Control for displaying an ultrasonic image on the image display unit 6.
  • Fig. 2 is a diagram showing an example of the structure of a linear ultrasonic probe using a plurality of CMUT chips for the transducer of the ultrasonic probe.
  • Fig. 3 is a top view of the transducers 11-1 to 11-m.
  • FIG. 4 is a cross-sectional view of the CMUT chip 18 constituting the vibrator 11-1 and the like of FIG.
  • the ultrasonic probe 1 has a one-dimensional array structure in which strip-shaped m transducers 11-1 to 11-m (m: natural numbers such as 64 and 192) are arranged, and the transducer 11 A backing layer 12 is arranged on the back of -1 to 11-m.
  • An acoustic lens 14 is disposed on the ultrasonic wave transmission side (upper side in FIG. 2) of the transducers 11-1 to 11-m.
  • the transducers 11-1 to 11-m convert the transmitted electric signal into an ultrasonic wave and send the ultrasonic wave into the living body, receive the ultrasonic wave reflected in the living body and convert it into an electric signal, A reflected signal is formed.
  • the backing layer 12 is disposed to absorb unnecessary ultrasonic waves sent to the back side of the transducers 11-1 to 11-m and to suppress unnecessary vibrations of the transducers 11-1 to 11-m. ing.
  • the acoustic lens 14 converges the ultrasonic beam in a so-called short axis direction orthogonal to the arrangement direction of the transducers 11-1 to 11-m.
  • each of the vibrators 11-1 to 11-m is composed of a plurality of, for example, hexagonal minute CMUT chips 18.
  • CMUT chip 18 is described later with reference to FIG. Although it can be considered as a capacitor electrically, in the group of CMUT chips 18 constituting the vibrators 11-1 to 11-m, the upper electrode 18a is connected to each other by the wiring 18g, and the lower electrode 18b is a common electrode. Therefore, it works the same electrically as multiple parallel capacitors.
  • the structure of one CMUT chip 18 will be described with reference to FIG.
  • the CMUT chip 18 is formed by a microfabrication technique of a semiconductor process, and includes a substrate 18c that is a semiconductor substrate such as silicon, a lower electrode 18b formed thereon, and an insulator film 18d that serves as a support portion.
  • the semiconductor thin film 18f disposed on the insulator film 18d and the upper electrode 18a disposed thereon are further provided.
  • a vacuum (or a predetermined gas pressure) hole 18e formed by etching the insulator film 18d is provided between the semiconductor thin film 18f and the lower electrode 18b.
  • the semiconductor thin film 18f made of a compound semiconductor or the like has a shape that is supported by an insulator film 18d and is suspended in a space just like a drum of a musical instrument.
  • a DC bias voltage is applied between the upper and lower electrodes 18a and 18b, a Coulomb force is generated, and an appropriate tension is generated in the semiconductor thin film 18f.
  • the ultrasonic wave is emitted from the CMUT chip 18 in the same way as the drum of the instrument is struck to emit sound. Will occur.
  • each of the transducers 11-1 to 11-m has a configuration in which a plurality of CMUT chips 18 are arranged in parallel, so that an ultrasonic signal is simultaneously generated from the plurality of CMUT chips 18.
  • a reflected signal can be formed by transmitting in vivo or receiving simultaneously by a plurality of CMUT chips 18 at the same time.
  • FIG. 5 is a cross-sectional view of the transducer 11-1 portion of the m transducers 11-1 to 11-m, that is, a 1-channel ultrasonic probe.
  • an acoustic lens 14 is formed above the drawing, and a backing layer 12 is formed below the drawing.
  • the flexible substrate 51 is provided from the upper surface periphery to the side surface of the backing layer 12, and applies a bias voltage and a drive voltage for driving the CMUT chip 18.
  • the metal wire 52 is connected to the flexible substrate 51 by the upper electrode and the lower electrode of the vibrator 11-1.
  • the probe cover 53 is provided on the side surface of the probe, and serves as a grasping portion of the examiner of the ultrasonic probe.
  • FIG. 6 is a diagram for explaining the principle of multiple reflection using the model of FIG.
  • the ultrasonic probe contacts the acoustic lens 14 with the subject and picks up an ultrasonic image.
  • FIG. 6 the illustration of the subject is omitted for simplification.
  • control unit 8 of the ultrasonic diagnostic apparatus causes the ultrasonic probe 1 to transmit ultrasonic waves to the subject.
  • the ultrasonic probe 1 receives the reflected echo signal 60 from the subject.
  • a part of the reflected echo signal 60 is converted into an electric signal by acoustic-electric conversion by the transducer 11, and the electric signal is further converted into an ultrasonic image through signal processing.
  • a part of the reflected echo 60 is retransmitted as a retransmitted wave 61 to the subject.
  • the retransmitted wave 61 is reflected again from the subject and reaches the surface of the acoustic lens 14 as a multiple reflection echo 62.
  • a part of the reflected echo signal 60 becomes a transmitted wave 63 toward the backing layer 12 and is absorbed by the backing layer 12. Further, a part of the multiple reflection echo 62 is reflected as a reflected wave 64 due to the mismatch of acoustic impedance between the transducer 11-1 and the backing layer 12. The reflected wave 64 is combined with the reflected wave 65 generated by the mismatch of the acoustic impedance between the acoustic lens 14 and the vibrator 11-1, and a retransmitted wave 61 is generated.
  • the hole 18e of the CMUT chip 18 acts as a transmission path of acoustic energy from the backing layer 12 to the acoustic lens 14. End up.
  • the reflected wave 64 from the boundary between the transducer 11-1 having the CMUT chip 18 and the backing layer 12 has a greater influence than the transducer having the piezoelectric element, so the CMUT chip 18 was used.
  • the transducer 11-1 it is necessary to take more measures against the reflected wave from the boundary between the transducer 11-1 and the backing layer 12.
  • the amplitude ratio of the multiple reflection echo 62 to the reflection echo 60 is expressed by the equation (1) as being less than or equal to the square of the reflectance R and the acoustic lens attenuation factor ⁇ .
  • the reflectance R is obtained by dividing the signal component of the reflected wave 64 by the sum of the component of the signal 63 absorbed by the backing layer 12 and the signal component of the reflected wave 64 at the boundary between the transducer 11-1 and the backing layer 12. Is.
  • equation (3) is obtained.
  • the attenuation rate of the acoustic lens 14 converted to the decibel value is ⁇ [dB ⁇ MHz / mm]
  • the thickness of the acoustic lens 14 is d [mm]
  • the center frequency of the probe is fc [MHz]
  • equation (5) is obtained.
  • Rmax can be expressed by equation (6) as follows.
  • the center frequency fc of the ultrasonic probe is set in the range of 2 to 11 MHz.
  • the thickness d of the acoustic lens is usually about 0.5 to 1.2 mm.
  • Silicone rubber is mainly used as the material of the acoustic lens, and the acoustic attenuation factor ⁇ is 1 dB ⁇ MHz / mm.
  • the maximum reflectance value Rmax that satisfies Equation (6) is calculated. Satisfying the expression (6) means that the reflectance is suppressed to be equal to or less than the maximum value Rmax of the reflectance in order not to affect the multiple reflection artifact.
  • the maximum value Rmax of the reflectance is calculated as shown in Table 1 depending on the center frequency [MHz] and the thickness of the acoustic lens.
  • the reflectance mr of the ultrasonic wave incident from the acoustic lens side is Z 1 , Z 2 , and Z 3
  • the propagation constants of the transducer 11 are the acoustic impedances of the transducer 11-1, the acoustic lens 14, and the backing layer 12, respectively. Is expressed by the following formula (7), where ⁇ 1 is the thickness of the vibrator 11 and d 1 is the thickness of the vibrator 11 (see the Electrical Circuit Theory of the Institute of Electrical Engineers of Japan (2nd edition, revised pages 298-303))
  • FIG. 7 is a diagram showing a frequency-ultrasonic reflectance characteristic curve from the boundary between the transducer 11-1 and the backing layer 12.
  • FIG. The characteristic curve of frequency-ultrasonic reflectance is calculated under the following conditions.
  • the vibrator 11-1 is made of silicon including the CMUT chip 18.
  • the representative values of the acoustic impedance and thickness of the vibrator 11-1 are 19.7 MRayl and 200 ⁇ m.
  • the reason why the thickness of the vibrator 11-1 is 200 ⁇ m or less is to obtain an ultrasonic image of the living body.
  • the center frequency of ultrasound necessary for obtaining an ultrasound image of a living body is 2 to 14 MHz.
  • the acoustic lens 14 is made of silicon rubber.
  • a representative value of the acoustic impedance of the acoustic lens 14 is 1.4 MRayl.
  • the backing layer 12 is formed of a kneaded material of metal and resin.
  • the representative value of the acoustic impedance of the backing layer 12 is 19.7 MRay, which is the same as the acoustic impedance of the transducer 11-1, as described in Patent Document 2 and Patent Document 3, considering the matching with the transducer 11-1. It is adjusted.
  • the characteristic curve of the frequency-ultrasonic reflectance reaches 0.90 at the center frequency 11 MHz, the center frequency 7.5 MHz, and 0.80 at the center frequency 2 MHz in Table 1.
  • all the center frequencies in Table 1 exceed the maximum reflectance Rmax, indicating that the influence of multiple reflection is large at all center frequencies.
  • the subject of the present invention is a structure that can suppress the multiple reflection of the reflected wave from the boundary between the transducer 11-1 and the backing layer 12, so that the acoustic impedance of the backing layer 12 and the acoustic lens 14 is substantially the same. It is what.
  • An ultrasonic probe having a structure in which an acoustic lens, a transducer, and a backing layer are stacked, wherein the transducer has a CMUT chip, and the backing layer substantially includes acoustic impedance of the acoustic lens.
  • the ultrasonic probe is made of a material having the same value.
  • the backing layer has an acoustic impedance of the acoustic lens.
  • An ultrasonic probe formed of a material with approximate values.
  • An ultrasonic probe that transmits and receives ultrasonic waves to a subject, an image creation unit that creates an image from a signal obtained by the ultrasonic probe, a display unit that displays the image, and a subject
  • An ultrasonic imaging apparatus comprising: a control unit that controls a focal point of the ultrasonic probe according to a depth of a measurement site of a specimen, wherein the ultrasonic probe is the one of (1) to (14)
  • An ultrasonic imaging apparatus which is the ultrasonic probe according to any one of the above items.
  • Example 1 describes a case where the thickness of the vibrator 11-1 is 50 ⁇ m, 25 ⁇ m, and 10 ⁇ m.
  • the thickness of the transducer 11-1 is such that the ultrasonic reflectance is less than the theoretical maximum value of reflectivity, so 50 ⁇ m is set as the reference value for the thickness of the transducer. Further, the thickness of the vibrator is set to 25 ⁇ m as a value of 50% with respect to the reference value, and similarly 10 ⁇ m as a value of 20% to the reference value.
  • FIG. 8 is a graph showing the calculation result of the ultrasonic reflectance when the thickness of the transducer 11-1 is 50 ⁇ m and the acoustic impedance value of the backing layer 12 is changed with respect to the frequency on the horizontal axis.
  • FIG. 9 is a graph when the thickness of the vibrator 11-1 in FIG. 8 is 25 ⁇ m
  • FIG. 10 is a graph when the thickness of the vibrator 11-1 in FIG. 8 is 10 ⁇ m.
  • the material of the vibrator 11-1 is silicon with an acoustic impedance of 19.7 MRayl
  • the material of the acoustic lens 14 is silicon rubber with an acoustic impedance of 1.4 Mrayl. Since the acoustic lens 14 is in contact with the subject, the acoustic impedance of the acoustic lens 14 is set so as to match the acoustic impedance of the subject.
  • the condition that satisfies the condition in Equation (6) for example, the reflectance is 0.76 or less at the center frequency of 11 MHz is when the thickness of the vibrator 11-1 is 25 ⁇ m or 10 ⁇ m, as shown in FIGS. is there.
  • the acoustic impedance of the backing layer 12 is in the range of 3.3 MRayl to 7.9 MRayl.
  • the condition of the formula (6) cannot be satisfied.
  • the reflectivity of 0.79 or less at the center frequency of 7.5 MHz is when the thickness of the transducer 11-1 is 50 ⁇ m and the acoustic impedance of the backing layer 12 is in the range of 3.7 MRayl to 9.4 MRayl.
  • the reflectance of 0.17 or less at the center frequency of 2 MHz is when the thickness of the transducer 11-1 is 10 ⁇ m and the acoustic impedance of the backing layer 12 is in the range of 1.1 MRayl to 1.8 MRayl.
  • FIG. 11 is a diagram showing an example of a result of continuously calculating the reflectance with respect to the frequency when the acoustic impedance of the backing layer 12 is 1.4 MRayl.
  • the calculation conditions are that the vibrator 11-1 is made of silicon, the vibrator 11-1 has a thickness of 10 ⁇ m, and the acoustic lens 14 and the backing layer 12 are made of silicon rubber.
  • the acoustic impedance of silicon and silicon rubber is 19.7 and 1.4, and the unit is MRayl.
  • the acoustic impedance of the backing layer 12 and the acoustic lens 14 can be defined as substantially the same as the equation (8).
  • the value obtained by dividing the absolute value of the difference between the acoustic impedance of the acoustic lens 14 and the acoustic impedance of the backing layer 12 by the acoustic impedance of the transducer 11-1 is much smaller than 1.
  • the backing layer is formed of a material having substantially the same acoustic impedance as that of the acoustic lens. The influence of multiple reflection occurring at the boundary surface of the backing layer can be suppressed.
  • the thickness of the vibrator 11-1 is desirable to make the thickness of the vibrator 11-1 as thin as possible, such as 25 ⁇ m rather than 50 ⁇ m, and further 10 ⁇ m.
  • FIG. 12 is a diagram showing a calculation result of the ultrasonic reflectance when the thickness of the transducer 11-1 is 5 ⁇ m and the acoustic impedance value of the backing layer 12 is changed with respect to the frequency on the horizontal axis.
  • the material of the vibrator 11-1 is silicon
  • the material of the acoustic lens 14 is silicon rubber
  • the material of the backing layer 12 is butyl rubber.
  • the acoustic impedance of silicon, silicon rubber, and butyl rubber is 19.7, 1.4, and 2.0, respectively, and the unit is MRayl.
  • Example 2 the thickness of the vibrator 11-1 was further reduced to 5 ⁇ m as compared with Example 1. Further, the acoustic impedance of the backing layer 12 was 1.4 times that of Example 1. However, by reducing the thickness of the transducer 11-1, even if the acoustic impedance of the backing layer 12 increases, the influence of multiple reflection that occurs at the interface between the transducer having the CMUT chip and the backing layer can be suppressed. it can.
  • the backing layer 12 can be formed of a material having a value approximate to the acoustic impedance of the acoustic lens 14.
  • Example 3 a case where an adhesive layer 131 is provided between the vibrator 11-1 and the backing layer 12 will be described.
  • FIG. 13 is a cross-sectional view of a one-channel ultrasonic probe provided with an adhesive layer 131.
  • the material of the adhesive layer 131 is, for example, a die attach film, a silicon adhesive, an epoxy resin, or the like.
  • the acoustic impedance of the adhesive layer 131 is Z 12
  • the propagation constant of the adhesive layer 131 is ⁇ 12
  • the thickness of the adhesive layer 131 is d 12
  • the reflectance mr of the ultrasonic wave incident from the acoustic lens 14 side is expressed by the following equation (9 ).
  • FIG. 14 shows the ultrasonic reflectivity mr at the transducer 11-1 when the thickness of the adhesive layer 131 between the transducer 11-1 and the backing layer 12 and the center frequency of the ultrasonic wave from the transducer 11-1 are changed.
  • the thickness of the adhesive layer 131 is changed to 10 ⁇ m, 20 ⁇ m, 50 ⁇ m, and 100 ⁇ m.
  • the material of the vibrator 11-1 is silicon
  • the thickness of the vibrator 11-1 is 10 ⁇ m
  • the material of the acoustic lens 14 and the backing layer 12 is silicon rubber
  • the adhesive layer 131 between the vibrator 11-1 and the backing layer 12 The material of this is a die attach film.
  • the acoustic impedances of silicon, silicon rubber and die attach film are 19.7, 1.4 and 2.5, respectively, and the unit is Mrayl.
  • the reflectance decreases locally at a specific frequency. In the example of FIG. 14, the reflectance is locally reduced near 16 Mz when the thickness of the adhesive layer 131 is 50 ⁇ m, and near 9 and 18 Mz when the thickness of the adhesive layer 131 is 100 ⁇ m.
  • the thickness of the adhesive layer 131 is 10 ⁇ m and 20 ⁇ m, no local decrease in reflectance is observed.
  • the cause of the local drop in reflectivity has been found to be due to resonance at the upper and lower interfaces of the die attach film.
  • the resonance causes ringing noise during ultrasonic transmission / reception, which affects the pulse characteristics. Therefore, it is desirable to reduce the thickness of the adhesive layer 131 to 50 ⁇ m, 20 ⁇ m, and 10 ⁇ m from 100 ⁇ m from the viewpoint of noise reduction.
  • FIG. 15 is a diagram showing an example in which the reflectance with respect to frequency is continuously calculated when the adhesive layer 131 has a thickness of 5 ⁇ m.
  • the calculation conditions are as follows.
  • the material of the vibrator 11-1 is silicon
  • the thickness of the vibrator 11-1 is 10um
  • the material of the acoustic lens 14 is silicon rubber
  • the material of the backing layer 12 is polyethylene
  • the adhesive between the vibrator 11-1 and the backing layer 12 The material of the layer 131 is a die attach film.
  • the acoustic impedance of silicon, silicon rubber, and polyethylene is 19.7, 1.4, and 1.8, and the unit is Mrayl.
  • the maximum reflectance Rmax is 0.56.
  • the reflectivity is 0.37 at 7.5 MHz, and the formula (6) which is a condition for reducing multiple reflections is satisfied.
  • the third embodiment similarly to the first embodiment, it is possible to suppress the influence of multiple reflection that occurs at the boundary surface between the vibrator having the CMUT chip and the backing layer.
  • the thickness of the adhesive layer 111 between the CMUT chip 21 and the backing layer 23 is suppressed, and the reflectance is improved while improving the pulse characteristics. Can be reduced.

Abstract

 CMUTチップを有する振動子とバッキング層の境界面で起こる多重反射の影響を抑制することが可能な超音波探触子を提供するために、本発明の超音波探触子は、音響レンズ14と振動子11-1~11-mとバッキング層12を積層する構造の超音波探触子であって、前記振動子11-1~11-mは、CMUTチップを有し、前記バッキング層12は、前記音響レンズ14の音響インピーダンスと実質的に同じ値の材料で形成される。

Description

超音波探触子とそれを用いた超音波撮像装置
 本発明は、振動子に静電容量型トランスデューサCMUTチップ(Capacitive Micromachined Ultrasound Transducer)チップを用いた超音波探触子に係り、特に多重反射の抑制技術に関する。
 従来の超音波探触子の振動子の材料には圧電素子が用いられている。近年は超音波探触子の振動子を半導体素子で形成されるCMUTチップが採用されている。
 CMUTチップは、圧電素子と比べて振動子の音響-電気変換効率が低いため、CMUTチップは圧電素子よりも多重反射を誘発しやすい技術課題を有している。
 多重反射とは、被検体中の組織の境界などを反射面として、反射面で超音波の反射が繰り返される現象で、超音波探触子の計測範囲で存在しない構造物のアーチファクトが出現してしまう現象をいう。
 そこで、特許文献1には、CMUTチップを有する振動子の多重反射の問題の解決のため、次の第1の条件と第2の条件の両方を満たすことで振動子1チャンネル当たりの多重反射を低減することが記載されている。
 まず、第1の条件は、音響レンズの吸収係数をα[dB/mm/MHz]、音響レンズの最大厚さをd[mm]、振動子の中心周波数をfc[MHz]としたときに、6.5/fc<αdの条件を満たすことである。
 次に、第2の条件は、振動子の1チャンネル当たりのインダクタンス値をL[H]、振動子の1チャンネル当たりの静電容量をC[pF]、振動子の中心周波数をfc[MHz]として、L<1/((3πfc)2×C)の条件を満たすことである。
国際公開WO2009/069281号公報 米国特許第6831394号公報 米国特許第6714484号公報
 上記特許文献1は、音響レンズと振動子の境界面において音響レンズと振動子の音響インピーダンスの不整合によって生じる反射波によって被検体に再送信する作用で起こる多重反射の対策技術である。
 よって、特許文献1では、振動子とバッキング層の境界面において振動子とバッキング層の音響インピーダンスの不整合によって生じる反射波が被検体に至ることで起こる多重反射について言及されていない。
 そこで、本発明の目的は、CMUTチップを有する振動子とバッキング層の境界面で起こる多重反射の影響を抑制することが可能な超音波探触子とそれを用いた超音波診断装置を提供することにある。
 上記目的を達成するため、本発明の超音波探触子は、音響レンズと振動子とバッキング層を積層する構造の超音波探触子であって、前記振動子は、CMUTチップを有し、前記バッキング層は、前記音響レンズの音響インピーダンスと実質的に同じ値の材料で形成されることを特徴とする。
 まず、振動子から音響レンズ層側(被検体が存在する側)への方向を第1の方向、振動子からバッキング層側(被検体が存在する側の反対側)への方向を第2の方向と定義する。
 バッキング層が、音響レンズと実質的に同じ音響インピーダンスの材料で形成されることは、音響インピーダンスの変化量が第1の方向と第2の方向で同じになるため、反射波の音響エネルギーは第1の方向と第2の方向で同じ比率に分配されることになる。
 したがって、反射波は振動子とバッキング層の境界面において、分配された一部の反射波の音響エネルギーのみが第2の方向に伝播する構造となるため、振動子とバッキング層の境界面で起こる多重反射の発生を抑制することができる。
 本発明によれば、CMUTチップを有する振動子とバッキング層の境界面で起こる多重反射の影響を抑制することが可能な超音波探触子とそれを用いた超音波診断装置を提供するという効果を奏する。
発明を採用する超音波診断装置の概略構成を示す図。 超音波探触子の振動子に複数のCMUTチップを用いたリニア型の超音波探触子の構造例を示す図。 振動子11-1~11-mの上面図。 図2の振動子11-1等を構成するCMUTチップ18の断面図。 1チャンネルの超音波探触子の断面図。 図5のモデルを用いて多重反射の原理を説明する図。 振動子11-1とバッキング層12の境界からの周波数―超音波反射率の特性曲線を示す図。 振動子11-1の厚さを50μmとしたときの周波数反射率特性曲線を示す図。 振動子11-1の厚さを25μmとしたときの周波数反射率特性曲線を示す図。 振動子11-1の厚さを10μmとしたときの周波数反射率特性曲線を示す図。 バッキング層12の音響インピーダンスを1.4MRaylにした場合に周波数に対する反射率を連続して計算した結果の一例を示す図。 振動子11-1の厚さを5μmとしたとき、横軸を周波数に対してバッキング層12の音響インピーダンス値を変化させたときの超音波反射率の計算結果を示す図。 接着層131を設けた1チャンネルの超音波探触子の断面図。 振動子11-1とバッキング層12間の接着層131の厚さと振動子11-1からの超音波の中心周波数を変化させた場合、振動子11-1での超音波反射率mrを示す図。 接着層131に厚さ5μmにした場合周波数に対する反射率を連続して計算した例を示す図。
 本発明の超音波探触子を採用する超音波診断装置について図面を用いて詳細に説明する。
 まず、超音波診断装置の概略構成について図1を用いて説明する。
 図1は本発明を採用する超音波診断装置の概略構成を示す図である。
 超音波診断装置は、超音波探触子1、信号送信部2、信号受信部3、整相加算部4、画像処理部5、画像表示部6、入力部7及び制御部8を有している。
 超音波探触子1は、検者が、被検体の撮像部位が存在する表面に当接させ、超音波を撮影部位に送信し、送信した撮影部位からの反射波を受信し、反射エコー信号と呼ばれる電気信号に変換する。
 信号送信部2は、電気接続される超音波探触子1に対し、超音波送信のタイミングにおいて撮影部位の存在する深度に焦点を合わせるような超音波を被検体に向けて送信する。
 信号受信部3は、超音波受信のタイミングにおいて反射エコー信号を超音波探触子1から受信し、信号増幅、アナログデジタル変換を含む信号処理を行う。
 整相加算部4は、信号受信部3によって信号処理された反射エコー信号を整相加算する。
 画像処理部5は、整相加算部4に整相加算された反射エコー信号から超音波画像へ変換する。
 画像表示部6は、画像処理部5に変換された超音波画像を表示する。
 入力部7は、検者が超音波画像を変換するために必要な撮像部位や使用している超音波探触子の情報を入力する。
 制御部8は、入力部7に入力された情報に基づき次の制御を行う。
 (1)超音波の送信と受信のタイミングを所定間隔で繰り返させる制御。
 (2)信号送信部2に送信タイミングで超音波が被検体に向けて送信させる制御。
 (3)信号受信部3に受信タイミングで反射エコー信号に信号処理を行わせる制御。
 (4)整相加算部4に反射エコー信号を整相加算させる制御。
 (5)画像処理部5に整相加算された反射エコー信号から超音波画像へ変換させる制御。
 (6)画像表示部6に超音波画像を表示させる制御。
 次に、超音波探触子1の構成の一例について図2乃至図4を用いて説明する。
 図2は超音波探触子の振動子に複数のCMUTチップを用いたリニア型の超音波探触子の構造例を示す図、図3は振動子11-1~11-mの上面図、図4は図2の振動子11-1等を構成するCMUTチップ18の断面図である。
 超音波探触子1は、短冊状のm個の振動子11-1から11-m(m:例えば64や192等の自然数)が配列された一次元アレイの構造を有し、振動子11-1~11-mの背面にはバッキング層12が配置されている。また、振動子11-1~11-mの超音波送出側(図2の上方)には音響レンズ14が配置されている。振動子11-1~11-mは、送波電気信号を超音波に変換して生体内に超音波を送出するとともに、生体内で反射された超音波を受信して電気信号に変換し、反射信号を形成する。
 バッキング層12は、振動子11-1~11-mの背面側に送出される不要な超音波を吸収するとともに、振動子11-1~11-mの不要な振動を抑制するために配置されている。
 音響レンズ14は、振動子11-1~11-mの配列方向と直交するいわゆる短軸方向に超音波ビームを収束するものである。
 ここで、振動子11-1~11-mは、図3に示すように、各々が複数個の、例えば六角形の微小なCMUTチップ18によって構成されている。(なお、図3においては、図示の都合上振動子11-3~11-5の3素子のみを記載している。)個々のCMUTチップ18は、図4を用いてこの後説明するように、電気的にはコンデンサとして見做せるが、振動子11-1~11-mをそれぞれ構成するCMUTチップ18の群は、上部電極18aが配線18gによって相互に接続され、下部電極18bは共通電極になっているため、複数の並列コンデンサと電気的には同一の働きをする。
 1つのCMUTチップ18の構造について図4を用いて説明する。CMUTチップ18は、半導体プロセスの微細加工技術で形成されたものであり、シリコン等の半導体基板である基板18cと、その上に形成された下部電極18bと、支持部となる絶縁体膜18dと、絶縁体膜18dの上部に配置された半導体薄膜18fと、さらにその上に配置された上部電極18aとを備えている。半導体薄膜18fと下部電極18bとの間には、絶縁体膜18dをエッチングすることによって形成された真空(または所定のガス圧)の空孔18eが設けられている。
 化合物半導体などで構成される半導体薄膜18fは、絶縁体膜18dにより縁を支持され、ちょうど楽器のドラムのように空間に浮いて張られた形状となっている。上部・下部電極18a、18b間にDCバイアス電圧を印加するとクーロン力が生じ、半導体薄膜18fには適度な張力が発生する。超音波送信時には、DCバイアス電圧に重畳して上・下部電極18a、18b間に駆動交流信号が印加されると、楽器のドラムが連打されて音を発するのと同様、CMUTチップ18から超音波が発生する。また、超音波受信時には、このCMUTチップ18に超音波が入射すると、その大きさと波形に比例して電極18a、18b間の距離が変化するから、両電極18a、18bが構成するコンデンサの静電容量が、それに対応して変化する。静電容量の変化を両電極18a、18bの電気信号から検出することにより超音波が受信できる。図3に示すように、振動子11-1~11-mはそれぞれ、複数個のCMUTチップ18を並列に配置した構成であるので、複数個のCMUTチップ18から同時に超音波信号を発生して生体内に送信し、あるいは同時に複数個のCMUTチップ18で同時に受信して反射信号を形成することができる。
 図5はm個ある振動子11-1~11-mのうち振動子11-1の部分、即ち1チャンネルの超音波探触子の断面図である。
 振動子11-1は図面上方に音響レンズ14が形成され、図面下方にバッキング層12が形成される。フレキシブル基板51はバッキング層12の上面周縁から側面に亘って設けられ、CMUTチップ18を駆動するバイアス電圧と駆動電圧を印加する。金属ワイヤ52は振動子11-1の上部電極及び下部電極によってフレキシブル基板51に接続される。探触子カバー53は探触子の側面に設けられるもので、超音波探触子の検者の把持部となっている。
 図6は図5のモデルを用いて多重反射の原理を説明する図である。
 超音波探触子は被検体に音響レンズ14に当接して超音波画像を撮像する。図6では簡略化のため、被検体の図示を省略している。
 まず、超音波診断装置の制御部8は超音波探触子1に被検体に超音波を送信させる。超音波探触子1は被検体からの反射エコー信号60を受信する。
 つぎに、反射エコー信号60の一部は、振動子11による音響-電気変換により電気信号に変換されさらに電気信号が信号処理を経て超音波画像へ変換される。しかし、反射エコー60の一部は再送信波61として被検体へ再送信される。再送信波61は被検体から再び反射し多重反射エコー62として音響レンズ14の表面に到達する。
 次に、多重反射エコー62について振動子11-1とバッキング層12で異なる音響インピーダンスの境界での現象を説明する。
 反射エコー信号60の一部はバッキング層12側への透過波63となり、バッキング層12に吸収される。さらに、多重反射エコー62の一部は振動子11-1とバッキング層12の音響インピーダンスの不整合によって反射波64として反射される。反射波64は音響レンズ14と振動子11-1の音響インピーダンスの不整合によって生じる反射波65と合成され再送信波61が生じる。
 さらに、振動子11-1のCMUTチップ18は空孔18eを有しているため、CMUTチップ18の空孔18eはバッキング層12から音響レンズ14までの音響エネルギーの伝送路のように作用してしまう。
 したがって、CMUTチップ18を有する振動子11-1とバッキング層12の境界からの反射波64が、圧電素子を有する振動子と比較して大きく影響するということができるため、CMUTチップ18を用いた振動子11-1では振動子11-1とバッキング層12の境界からの反射波についてより対策する必要がある。
 次に、図6の原理を数式で説明する。
 反射エコー60に対する多重反射エコー62の振幅比は、反射率Rと音響レンズの音響減衰率αの自乗以下となることが式(1)で表される。反射率Rは、バッキング層12に吸収される信号63の成分と振動子11-1とバッキング層12の境界での反射波64の信号の成分の和で反射波64の信号の成分を除したものである。
Figure JPOXMLDOC01-appb-M000001
 また、超音波診断装置での経験則によれば、一般に、超音波診断装置では、反射エコー60と多重反射エコー62の振幅比がデシベル値で-20dB以下になれば、超音波画像への影響が現れないとされる。よって、多重反射エコー62の軽減を考慮して式(1)を対数に変形すると式(2)のとおりとなる。
Figure JPOXMLDOC01-appb-M000002
 さらに、式(2)の対数を展開すれば式(3)のようになる。
Figure JPOXMLDOC01-appb-M000003
 ここで、デシベル値に変換した音響レンズ14の減衰率をβ[dB・MHz/mm]とし、音響レンズ14の厚みがd[mm]、探触子の中心周波数をfc[MHz]とすると、音響減衰率αのデシベル換算値20Log10αは-βdfcと表せることを利用して式(3)を変形すれば式(4)のとおりとなる。
Figure JPOXMLDOC01-appb-M000004
 さらにまた、式(4)を指数関数に変換すると式(5)のようになる。
Figure JPOXMLDOC01-appb-M000005
 よって、超音波探触子の音響レンズ14からの見かけ上の反射率Rは、式(5)を満たすように設定すれば多重反射アーチファクトの影響を軽減できることになる。
 また、反射率Rの最大値をRmaxとすると、Rmaxは以下のように式(6)で表せる。
Figure JPOXMLDOC01-appb-M000006
 また、超音波探触子の中心周波数fcは、2~11MHzの範囲で設定される。
音響レンズの厚さdは通常約0.5~1.2mmである、また、周波数が高い用途で用いられる超音波探触子では、音響レンズ減衰の影響を抑制する必要があるため、音響レンズの厚さを通常より0.5~0.8mmに薄くする。音響レンズの材料には主にシリコンゴムなどが用いられ、音響減衰率βは1dB・MHz/mmである。
 以上の数値範囲において式(6)を満たす反射率の最大値Rmaxを計算する。式(6)を満たすとは、多重反射アーチファクトを影響させないため、反射率の最大値Rmax以下に反射率を抑制することを意味する。
 例えば、反射率の最大値Rmaxは、中心周波数〔MHz〕及び音響レンズの厚さによって表1のように計算される。
Figure JPOXMLDOC01-appb-T000007
 また、音響レンズ側から入射する超音波の反射率mrは、振動子11-1、音響レンズ14、バッキング層12の音響インピーダンスをそれぞれZ1、Z2、Z3とし、振動子11の伝播定数をγ1、振動子11の厚さをd1として以下の式(7)で表される(電気学会大学講座 電気回路論(2版改訂298-303頁参照)
Figure JPOXMLDOC01-appb-M000008
 次に振動子11-1とバッキング層12の典型モデルの周波数―超音波反射率の特性について説明する。
 図7は、振動子11-1とバッキング層12の境界からの周波数―超音波反射率の特性曲線を示す図である。周波数―超音波反射率の特性曲線は次の条件で計算している。
 振動子11-1はCMUTチップ18を含むシリコンで形成されている。振動子11-1の音響インピーダンス、厚さの代表値は19.7MRayl、200μmとする。振動子11-1の厚さが200μm又はそれ以下とする理由は、生体の超音波画像を得るためである。生体の超音波画像を得るのに必要な超音波の中心周波数は2~14Mzである。また、音響レンズ14はシリコンゴムで形成されている。音響レンズ14の音響インピーダンスの代表値は1.4MRaylである。さらに、バッキング層12は金属と樹脂の混練物で形成されている。バッキング層12の音響インピーダンスの代表値は振動子11-1との整合を考慮して、特許文献2、特許文献3で説明されるように、振動子11-1の音響インピーダンスと同じ19.7MRayに調整している。
 図7で示すように、上記周波数―超音波反射率の特性曲線は、表1の中心周波数11MHz、中心周波数7.5MHz、で0.90、中心周波数2MHzで0.80に達している。つまり、表1の中心周波数の全てにおいて反射率の最大値Rmaxを超えているため、全ての中心周波数において多重反射の影響が大きいことを示している。
 そこで、本発明の主題は、振動子11-1とバッキング層12の境界からの反射波の多重反射を抑制し得る構造とするため、バッキング層12と音響レンズ14の音響インピーダンスが実質的に同じとするものである。
 また、本発明の主題は、次の各項に換言することができる。
 (1)音響レンズと振動子とバッキング層を積層する構造の超音波探触子であって、前記振動子は、CMUTチップを有し、前記バッキング層は、前記音響レンズの音響インピーダンスと実質的に同じ値の材料で形成されることを特徴とする超音波探触子。
 (2)上記(1)に記載の超音波探触子であって、前記バッキング層の音響インピーダンスが、超音波の多重反射を抑制するための値域となる超音波探触子。
 (3)上記(1)又は(2)に記載の超音波探触子であって、前記振動子の積層方向の厚さを200μmより薄くした場合、前記バッキング層は、前記音響レンズの音響インピーダンスと近似する値の材料で形成される超音波探触子。
 (4)(1)乃至(3)の何れか一項に記載の超音波探触子であって、前記バッキング層の音響インピーダンスが前記音響レンズで当接する被検体の音響インピーダンスである超音波探触子。
 (5)(1)乃至(3)の何れか一項に記載の超音波探触子であって、前記音響レンズの音響インピーダンスの代表値が1.4MRaylである超音波探触子。
 (6)(1)乃至(3)の何れか一項に記載の超音波探触子であって、前記バッキング層の音響インピーダンスが1.1~9.4MRaylである超音波探触子。
 (7)(1)乃至(3)の何れか一項に記載の超音波探触子であって、前記振動子の厚さが50μm以下である超音波探触子。
 (8)(7)の超音波探触子であって、前記バッキング層の音響インピーダンスが3.7MRayl~9.4MRaylである超音波探触子。
 (9)(1)乃至(3)の何れか一項に記載の超音波探触子であって、前記振動子の厚さは25μm以下であり、前記バッキング層の音響インピーダンスが3.3MRayl~7.9Mraylである超音波探触子。
 (10)(1)乃至(3)の何れか一項に記載の超音波探触子であって、前記振動子の厚さは10μm以下であり、前記バッキング層の音響インピーダンスが1.1MRayl~1.8MRaylである超音波探触子。
 (11)(1)乃至(3)の何れか一項に記載の超音波探触子であって、前記振動子の厚さは5μm以下であり、前記バッキング層の音響インピーダンスが2.0MRayl~9.4MRaylである超音波探触子。
 (12)(1)乃至(3)の何れか一項に記載の超音波探触子であって、前記振動子の材質はシリコン、前記音響レンズの材質はシリコンゴム、前記バッキング層の材質はブチルゴムである超音波探触子。
 (13)(1)乃至(3)の何れか一項に記載の超音波探触子であって、前記振動子の厚さは5μm以下で、前記振動子とバッキング層間の接着層厚みが10μm以下である超音波探触子。
 (14)(13)の超音波探触子であって、前記接着層がダイアタッチフィルムである超音波探触子。
 (15)被検体に超音波を送受波する超音波探触子と、前記超音波探触子によって得られた信号から画像を作成する画像作成部と、前記画像を表示する表示部と、被検体の測定部位の深さに応じて前記超音波探触子の焦点を制御する制御部とを備える超音波撮像装置であって、前記超音波探触子は、(1)乃至(14)の何れか一項に記載の超音波探触子であることを特徴とする超音波撮像装置。
 以下に、複数の実施例を説明する。
 実施例1では、振動子11-1の厚さが50μm、25μm、10μm、である場合を説明する。振動子11-1の厚さは超音波反射率が理論上の反射率の最大値を下回る厚さとなったため、50μmを振動子の厚さの基準値とする。また、基準値に対して50%の値として25μm、同様に基準値に対して20%の値として10μmの振動子の厚さを設定している。
 図8は振動子11-1の厚さを50μmとしたとき、横軸を周波数に対してバッキング層12の音響インピーダンス値を変化させたときの超音波反射率の計算結果を示すグラフである。図9は図8の振動子11-1の厚さを25μmとしたときのグラフ、図10は図8の振動子11-1の厚さを10μmとしたときのグラフである。
 振動子11-1の材質は音響インピーダンスが19.7MRaylのシリコン、音響レンズ14の材質は音響インピーダンスが1.4Mraylのシリコンゴムとする。音響レンズ14は被検体に当接する部分であるので、被検体の音響インピーダンスと整合させるように、音響レンズ14の音響インピーダンスが設定されることになる。
 まず、バッキング層12の音響インピーダンスを19.7MRaylとした場合、図8に示されるように、反射率は0.84を大きく超える、つまり、反射率の最大値Rmaxを超えてしまうことが判る。また、図9、図10においても同様の傾向が示される。
 次に、バッキング層12の音響インピーダンスを、音響レンズ14の音響インピーダンスと同じ1.4MRaylとした場合、図8に示されるように反射率は低くなることが判る。また、図9、図10においても同様の傾向が示される。
 さらに、式(6)で条件を満たす、例えば、中心周波数11MHzで反射率0.76以下となるのは、図9及び図10に示すように、振動子11-1の厚さ25μm又は10μmの場合である。図9では、バッキング層12の音響インピーダンスが3.3MRayl~7.9MRaylの範囲である。また、図8に示すように振動子11-1の厚さ50μmでは、式(6)の条件を満たせない。
 また、中心周波数7.5MHzで反射率0.79以下となるのは、振動子11-1の厚さ50μmの場合でバッキング層12の音響インピーダンスが3.7MRayl~9.4MRaylの範囲である。
 また、中心周波数2MHzで反射率0.17以下となるのは、振動子11-1の厚さ10μmの場合でバッキング層12の音響インピーダンスが1.1MRayl~1.8MRaylの範囲である。
 また、バッキング層12の音響インピーダンスを、音響レンズ14の音響インピーダンスと実質的に同じ1.4MRaylにした場合、周波数に対する反射率を連続して計算した結果を説明する。図11はバッキング層12の音響インピーダンスを1.4MRaylにした場合に周波数に対する反射率を連続して計算した結果の一例を示す図である。
 計算の条件は、振動子11-1をシリコン、振動子11-1の厚さを10μm、音響レンズ14とバッキング層12をシリコンゴムとする。また、シリコン及びシリコンゴムの音響インピーダンスは19.7及び1.4で、単位はMRaylである。
 ここで、超音波探触子の音響レンズの厚さ0.7mmで中心周波数11MHzとした場合、反射率の最大値Rmax=0.50である。計算では11MHzで反射率の最大値が0.48であり、多重反射軽減の条件である式(6)を満たすことが判る。
 また、バッキング層12と音響レンズ14が実質的に同じ音響インピーダンスを式(8)のように定義することもできる。
Figure JPOXMLDOC01-appb-M000009
 式(8)を換言すれば、音響レンズ14の音響インピーダンスとバッキング層12の音響インピーダンスの差の絶対値を振動子11-1の音響インピーダンスで除した値は1より非常に小さい。
 以上説明したように、実施例1では、超音波の多重反射を抑制するために、バッキング層を音響レンズと実質的に同じ音響インピーダンスの材料で形成されることで、CMUTチップを有する振動子とバッキング層の境界面で起こる多重反射の影響を抑制することができる。
 また、バッキング層12と振動子11-1の境界の反射率を低くするためには、振動子11-1の厚さを50μmよりは25μm、さらに10μmのように、極力薄くすることが望ましい。
 実施例2では、振動子11-1の厚さが5μmで、バッキング層12をブチルゴムとする場合を説明する。 
 図12は振動子11-1の厚さを5μmとしたとき、横軸を周波数に対してバッキング層12の音響インピーダンス値を変化させたときの超音波反射率の計算結果を示す図である。振動子11-1の材質はシリコン、音響レンズ14の材質はシリコンゴム、バッキング層12の材質はブチルゴムである。シリコン、シリコンゴム及びブチルゴムの音響インピーダンスは、それぞれ19.7、1.4、2.0で単位はMRaylである。
 音響レンズの厚さ1.2mmで探触子の中心周波数3MHzとした場合、反射率の最大値Rmaxは0.23である。図12における計算では3MHzで反射率0.19であり、多重反射軽減の条件である式(6)を満たすことが判る。
 以上説明したように、実施例2では、実施例1と同様に、CMUTチップを有する振動子とバッキング層の境界面で起こる多重反射の影響を抑制することができる。
 また、実施例2では、振動子11-1の厚さを実施例1と比較してさらに5μmと薄くした。さらに、バッキング層12の音響インピーダンスを実施例1の1.4倍とした。しかし、振動子11-1の厚さを薄くすることで、バッキング層12の音響インピーダンスが増加してもCMUTチップを有する振動子とバッキング層の境界面で起こる多重反射の影響を抑制することができる。
 よって、振動子11-1の厚さを薄くすれば、バッキング層12の音響インピーダンスの許容範囲を有した材質を選択することができる。換言すれば、振動子11-1の積層方向の厚さをより薄くした場合、バッキング層12は、音響レンズ14の音響インピーダンスと近似する値の材料で形成できる。
 実施例3では、振動子11-1とバッキング層12の間に接着層131を設けた場合を説明する。
 図13は接着層131を設けた1チャンネルの超音波探触子の断面図である。
 接着層131の材質はたとえばダイアタッチフィルムやシリコン接着剤、エポキシ樹脂等である。接着層131の音響インピーダンスをZ12,接着層131の伝播定数をγ12、接着層131の厚さをd12とすると音響レンズ14側から入射する超音波の反射率mrは以下の式(9)で表される。
Figure JPOXMLDOC01-appb-M000010
 図14は振動子11-1とバッキング層12間の接着層131の厚さと振動子11-1からの超音波の中心周波数を変化させた場合、振動子11-1での超音波反射率mrを示す図である。図14の例では接着層131の厚さを10μm、20μm、50μm及び100μmに変化させている。また、振動子11-1の材質はシリコン、振動子11-1の厚さは10μm、音響レンズ14とバッキング層12の材質はシリコンゴム、振動子11-1とバッキング層12間の接着層131の材質はダイアタッチフィルムとする。シリコン、シリコンゴム及びダイアタッチフィルムの音響インピーダンスは、それぞれ19.7、1.4及び2.5で、単位はMraylである。接着層131の厚さが厚く変化するに従い、反射率が特定の周波数において局所的に低下するようになる。図14の例では、接着層131の厚さが50μmで16Mz付近、接着層131の厚さが100μmで9、18Mz付近で反射率が局所的に低下する。
 また、接着層131の厚さが10μm及び20μmでは反射率の局所的低下は見られない。反射率の局所的低下の原因はダイアタッチフィルム上下界面での共振によるものと判明している。前記共振は超音波送受信時にリンギングノイズを生じるため、パルス特性に影響を与える。よって、接着層131の厚さは100μmより50μm、20μmさらに10μmと薄くする方がノイズ低減から望ましい。
 また、接着層131に厚さ5μmにした場合、周波数に対する反射率を連続して計算した結果を説明する。図15は接着層131に厚さ5μmにした場合周波数に対する反射率を連続して計算した例を示す図である。
 計算の条件は、次のとおりとする。 
 振動子11-1の材質はシリコン、振動子11-1の厚さは10um、音響レンズ14の材質はシリコンゴム、バッキング層12の材質はポリエチレン、振動子11-1とバッキング層12間の接着層131の材質はダイアタッチフィルムである。シリコン、シリコンゴム及びポリエチレンの音響インピーダンスは、19.7、1.4及び1.8で、単位はMraylである。
 音響レンズの厚さ1.0mmで探触子の中心周波数7.5MHzとした場合、反射率の最大値Rmaxは0.56である。図15に示す計算では7.5MHzで反射率0.37であり、多重反射軽減の条件である式(6)を満たすことが判る。
 以上説明したように、実施例3では、実施例1と同様に、CMUTチップを有する振動子とバッキング層の境界面で起こる多重反射の影響を抑制することができる。
 さらに、第3の実施例ではCMUTチップ21とバッキング層23間の接着層111の厚さを薄くすることで超音波送受信時の音響特性への影響を抑制し、パルス特性を向上させつつ反射率を軽減することができる。
 11-1~11-m 振動子、12 バッキング層、14 音響レンズ、18 CMUTチップ

Claims (15)

  1.  音響レンズと振動子とバッキング層を積層する構造の超音波探触子であって、
     前記振動子は、CMUTチップを有し、
     前記バッキング層は、前記音響レンズの音響インピーダンスと実質的に同じ値の材料で形成されることを特徴とする超音波探触子。
  2.  請求項1に記載の超音波探触子であって、
     前記バッキング層の音響インピーダンスが、超音波の多重反射を抑制するための値域となる超音波探触子。
  3.  請求項1に記載の超音波探触子であって、
     前記振動子の積層方向の厚さを200μmより薄くし、
     前記バッキング層は、前記音響レンズの音響インピーダンスと近似する値の材料で形成される超音波探触子。
  4.  請求項1乃至3の何れか一項に記載の超音波探触子であって、
     前記バッキング層の音響インピーダンスが前記音響レンズで当接する被検体の音響インピーダンスである超音波探触子。 
  5.  請求項1乃至3の何れか一項に記載の超音波探触子であって、
     前記音響レンズの音響インピーダンスの代表値が1.4MRaylである超音波探触子。
  6.  請求項1乃至3の何れか一項に記載の超音波探触子であって、
     前記バッキング層の音響インピーダンスが1.1MRayl~9.4MRaylである超音波探触子。
  7.  請求項1乃至3の何れか一項に記載の超音波探触子であって、
     前記振動子の厚さが50μm以下である超音波探触子。
  8.  請求項7の超音波探触子であって、
     前記バッキング層の音響インピーダンスが3.7MRayl~9.4MRaylである超音波探触子。
  9.  請求項1乃至3の何れか一項に記載の超音波探触子であって、
     前記振動子の厚さは25μm以下であり、前記バッキング層の音響インピーダンスが3.3MRayl~7.9Mraylである超音波探触子。
  10.  請求項1乃至3の何れか一項に記載の超音波探触子であって、
     前記振動子の厚さは10μm以下であり、前記バッキング層の音響インピーダンスが1.1MRayl~1.8MRaylである超音波探触子。
  11.  請求項1乃至3の何れか一項に記載の超音波探触子であって、
     前記振動子の厚さは5μm以下であり、前記バッキング層の音響インピーダンスが2.0MRayl~9.4MRaylである超音波探触子。
  12.  請求項1乃至3の何れか一項に記載の超音波探触子であって、
     前記振動子の材質はシリコン、前記音響レンズの材質はシリコンゴム、前記バッキング層の材質はブチルゴムである超音波探触子。
  13.  請求項1乃至3の何れか一項に記載の超音波探触子であって、
     前記振動子の厚さは5μm以下で、前記振動子とバッキング層間の接着層厚みが10μm以下である超音波探触子。
  14.  請求項13に記載の超音波探触子であって、
     前記接着層がダイアタッチフィルムである超音波探触子。
  15.  被検体に超音波を送受波する超音波探触子と、
     前記超音波探触子によって得られた信号から画像を作成する画像作成部と、
     前記画像を表示する表示部と、
     被検体の測定部位の深さに応じて前記超音波探触子の焦点を制御する制御部とを備える超音波撮像装置であって、
     前記超音波探触子は、請求項1乃至3の何れか一項に記載の超音波探触子であることを特徴とする超音波撮像装置。
PCT/JP2011/053321 2010-02-26 2011-02-17 超音波探触子とそれを用いた超音波撮像装置 WO2011105269A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11747233A EP2540227A1 (en) 2010-02-26 2011-02-17 Ultrasonic probe and ultrasonic image pickup device using same
JP2012501753A JPWO2011105269A1 (ja) 2010-02-26 2011-02-17 超音波探触子とそれを用いた超音波撮像装置
US13/581,441 US9138203B2 (en) 2010-02-26 2011-02-17 Ultrasonic probe and ultrasonic imaging apparatus using the same
CN201180010881XA CN102770078A (zh) 2010-02-26 2011-02-17 超声波探针和使用超声波探针的超声波摄像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010041838 2010-02-26
JP2010-041838 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011105269A1 true WO2011105269A1 (ja) 2011-09-01

Family

ID=44506682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053321 WO2011105269A1 (ja) 2010-02-26 2011-02-17 超音波探触子とそれを用いた超音波撮像装置

Country Status (5)

Country Link
US (1) US9138203B2 (ja)
EP (1) EP2540227A1 (ja)
JP (1) JPWO2011105269A1 (ja)
CN (1) CN102770078A (ja)
WO (1) WO2011105269A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120320710A1 (en) * 2010-02-26 2012-12-20 Hitachi Medical Corporation Ultrasonic probe and ultrasonic imaging apparatus using the same
JPWO2015075863A1 (ja) * 2013-11-20 2017-03-16 株式会社アルバック 超音波プローブ及びこの超音波プローブを用いた生体の血管径の測定方法
WO2023140166A1 (ja) * 2022-01-19 2023-07-27 株式会社Cast 超音波プローブおよび超音波プローブの製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013226389A (ja) * 2012-03-31 2013-11-07 Canon Inc 探触子及びその製造方法、及びそれを用いた被検体情報取得装置
US10024956B2 (en) * 2013-02-28 2018-07-17 General Electric Company Ultrasound probe diagnosing system and method for diagnosing ultrasound probe
CN105658343A (zh) * 2013-08-30 2016-06-08 皇家飞利浦有限公司 电容性微机械超声换能器单元
CA2935288C (en) 2014-01-08 2022-05-10 Smilesonica Inc. Apparatuses and methods for measuring and characterizing ultrasound
JP6478570B2 (ja) * 2014-11-12 2019-03-06 キヤノン株式会社 プローブ及び被検体情報取得装置
WO2017186796A1 (en) * 2016-04-26 2017-11-02 Koninklijke Philips N.V. Cmut transducer array with impedance matching lens
EP4021650A4 (en) * 2019-08-28 2023-09-06 SCR Engineers Ltd FLUID ANALYSIS DEVICES

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6714484B2 (en) 2000-10-19 2004-03-30 Sensant Corporation Microfabricated acoustic transducer with suppressed substrate modes
US6831394B2 (en) 2002-12-11 2004-12-14 General Electric Company Backing material for micromachined ultrasonic transducer devices
JP2005295553A (ja) * 2004-03-31 2005-10-20 General Electric Co <Ge> センサ・アレイの素子を絶縁する方法及び手段
JP2008119318A (ja) * 2006-11-14 2008-05-29 Hitachi Medical Corp 超音波探触子及び超音波診断装置
JP2009112379A (ja) * 2007-11-02 2009-05-28 Fujifilm Corp 超音波探触子
WO2009069281A1 (ja) 2007-11-28 2009-06-04 Hitachi, Ltd. 超音波探触子、超音波撮影装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4004396B2 (ja) * 2002-12-19 2007-11-07 オリンパス株式会社 超音波振動子
US7678054B2 (en) 2003-01-23 2010-03-16 Hitachi Medical Corporation Ultrasonic probe and ultrasonic diagnosing device
JP4349651B2 (ja) * 2003-02-27 2009-10-21 株式会社日立メディコ 超音波探触子
US6865140B2 (en) 2003-03-06 2005-03-08 General Electric Company Mosaic arrays using micromachined ultrasound transducers
JP4256309B2 (ja) * 2003-09-29 2009-04-22 株式会社東芝 超音波プローブおよび超音波診断装置
JP3781028B2 (ja) 2003-10-01 2006-05-31 松下電器産業株式会社 目画像撮像装置
JP2007007262A (ja) * 2005-07-01 2007-01-18 Toshiba Corp コンベックス型超音波プローブおよび超音波診断装置
JP4776344B2 (ja) 2005-11-04 2011-09-21 株式会社日立メディコ 超音波探触子、超音波撮像装置
JP4171038B2 (ja) 2006-10-31 2008-10-22 株式会社東芝 超音波プローブおよび超音波診断装置
WO2009008282A1 (ja) * 2007-07-11 2009-01-15 Hitachi Medical Corporation 超音波探触子及び超音波診断装置
CN102026581A (zh) * 2008-05-15 2011-04-20 株式会社日立医疗器械 超声波探头及其制造方法和超声波诊断装置
CN201261009Y (zh) 2008-08-07 2009-06-24 上海爱培克电子科技有限公司 声阻抗连续变化的超声换能器
JP2010042093A (ja) 2008-08-11 2010-02-25 Konica Minolta Medical & Graphic Inc 超音波探触子およびそれを用いる超音波診断装置
WO2011105269A1 (ja) * 2010-02-26 2011-09-01 株式会社 日立メディコ 超音波探触子とそれを用いた超音波撮像装置
CN103298410B (zh) * 2011-01-06 2015-07-15 株式会社日立医疗器械 超声波探头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6714484B2 (en) 2000-10-19 2004-03-30 Sensant Corporation Microfabricated acoustic transducer with suppressed substrate modes
US6831394B2 (en) 2002-12-11 2004-12-14 General Electric Company Backing material for micromachined ultrasonic transducer devices
JP2005295553A (ja) * 2004-03-31 2005-10-20 General Electric Co <Ge> センサ・アレイの素子を絶縁する方法及び手段
JP2008119318A (ja) * 2006-11-14 2008-05-29 Hitachi Medical Corp 超音波探触子及び超音波診断装置
JP2009112379A (ja) * 2007-11-02 2009-05-28 Fujifilm Corp 超音波探触子
WO2009069281A1 (ja) 2007-11-28 2009-06-04 Hitachi, Ltd. 超音波探触子、超音波撮影装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120320710A1 (en) * 2010-02-26 2012-12-20 Hitachi Medical Corporation Ultrasonic probe and ultrasonic imaging apparatus using the same
US9138203B2 (en) * 2010-02-26 2015-09-22 Hitachi Medical Corporation Ultrasonic probe and ultrasonic imaging apparatus using the same
JPWO2015075863A1 (ja) * 2013-11-20 2017-03-16 株式会社アルバック 超音波プローブ及びこの超音波プローブを用いた生体の血管径の測定方法
WO2023140166A1 (ja) * 2022-01-19 2023-07-27 株式会社Cast 超音波プローブおよび超音波プローブの製造方法

Also Published As

Publication number Publication date
JPWO2011105269A1 (ja) 2013-06-20
US9138203B2 (en) 2015-09-22
US20120320710A1 (en) 2012-12-20
CN102770078A (zh) 2012-11-07
EP2540227A1 (en) 2013-01-02

Similar Documents

Publication Publication Date Title
WO2011105269A1 (ja) 超音波探触子とそれを用いた超音波撮像装置
JP3556582B2 (ja) 超音波診断装置
US8207652B2 (en) Ultrasound transducer with improved acoustic performance
CN102577436B (zh) 超声波探头及超声波摄像装置
JP2758199B2 (ja) 超音波探触子
JP5303472B2 (ja) 超音波診断装置と超音波探触子
JP5789618B2 (ja) 超音波探触子
KR101477544B1 (ko) 초음파 트랜스듀서, 초음파 프로브, 및 초음파 진단장치
JP5643191B2 (ja) 超音波探触子及び超音波撮像装置
WO2008056643A1 (en) Ultrasonic probe and ultrasonographic device using the same
JP2012015680A (ja) 超音波プローブ及び超音波診断装置
JP5026770B2 (ja) 超音波探触子及び超音波診断装置
JP5406374B2 (ja) 超音波探触子およびそれを用いた超音波診断装置
KR20170117462A (ko) 복합 구조의 정합층을 가진 초음파 트랜스듀서 및 그 제조방법
JP5208126B2 (ja) 超音波探触子、超音波撮影装置
CN106413563B (zh) 超声换能器
KR20130123347A (ko) 초음파 트랜스듀서, 초음파 프로브, 및 초음파 진단장치
JP5269307B2 (ja) 超音波探触子及び超音波診断装置
JP5917718B2 (ja) 超音波診断装置
JP2012096033A (ja) 互いに異なる厚さのセラミック素子で形成されたセラミック層を備える超音波プローブおよびそれを用いた超音波システム
TWM610272U (zh) 超聲波感測器
JP2007288396A (ja) 超音波用探触子
JP2012011024A (ja) 超音波探触子、および超音波診断装置
Vos et al. A 20-40 MHz ultrasound transducer for intravascular harmonic imaging
JP2009201053A (ja) 超音波探触子、その製造方法およびその超音波探触子を用いた超音波診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010881.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747233

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501753

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011747233

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13581441

Country of ref document: US