WO2011102249A1 - 有機電子デバイスの製造方法および有機電子デバイス - Google Patents

有機電子デバイスの製造方法および有機電子デバイス Download PDF

Info

Publication number
WO2011102249A1
WO2011102249A1 PCT/JP2011/052483 JP2011052483W WO2011102249A1 WO 2011102249 A1 WO2011102249 A1 WO 2011102249A1 JP 2011052483 W JP2011052483 W JP 2011052483W WO 2011102249 A1 WO2011102249 A1 WO 2011102249A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
electronic device
compound
ring
Prior art date
Application number
PCT/JP2011/052483
Other languages
English (en)
French (fr)
Inventor
隼 古川
宏 石代
中山 知是
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2012500555A priority Critical patent/JPWO2011102249A1/ja
Priority to US13/578,671 priority patent/US8796674B2/en
Publication of WO2011102249A1 publication Critical patent/WO2011102249A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes

Definitions

  • the present invention relates to an organic electronic device manufacturing method and an organic electronic device.
  • ELD electroluminescence device
  • an inorganic electroluminescence element hereinafter also referred to as an inorganic EL element
  • an organic electroluminescence element hereinafter also referred to as an organic EL element
  • Inorganic EL elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
  • an organic electroluminescence device has a structure in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and excitons (excitons) by injecting electrons and holes into the light emitting layer and recombining them.
  • a device that emits light using the emission of light (fluorescence / phosphorescence) when this exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts. Since it is a type, it has a wide viewing angle, high visibility, and since it is a thin-film type completely solid element, it has attracted attention from the viewpoints of space saving, portability, and the like.
  • the organic electroluminescence element is a major feature because it is a surface light source, unlike the main light sources conventionally used in practice, such as light emitting diodes and cold cathode tubes. Applications that can effectively utilize this characteristic include illumination light sources and various display backlights. In particular, it is also suitable to be used as a backlight of a liquid crystal full color display whose demand has been increasing in recent years.
  • Improvement of luminous efficiency is mentioned as a problem for putting an organic electroluminescence element into practical use as such a light source for illumination or a backlight of a display.
  • a method for producing an organic electroluminescence element there are a vapor deposition method and a wet process (spin coating method, casting method, die coating method, ink jet method, spray method, printing method, etc.) (hereinafter also referred to as a coating method), but a vacuum process.
  • spin coating method spin coating method, casting method, die coating method, ink jet method, spray method, printing method, etc.
  • a vacuum process a manufacturing method in a wet process has been attracting attention because continuous production is simple and does not require.
  • the coating method has a limitation particularly when laminating the same compound, such as scraping or washing out the lower layer, as compared with the case of manufacturing using a so-called vapor deposition method. . Therefore, when manufacturing an organic electronic device such as an organic electroluminescence element by a coating method, there is a possibility that the function separation is not as good as the vapor deposition method.
  • organic electroluminescent devices as a means of improving the performance of organic EL devices, an electron transporting hole blocking layer is produced between the electron transporting layer and the light emitting layer, thereby producing an effect of confining holes in the light emitting layer.
  • an electron transporting hole blocking layer is produced between the electron transporting layer and the light emitting layer, thereby producing an effect of confining holes in the light emitting layer.
  • the device is designed to reduce the device power consumption and increase the lifetime by mixing the electron injecting material and the electron transporting material, forming a concentration gradient in the film thickness direction, and increasing the carrier injectability between the layers.
  • the device is designed to reduce the device power consumption and increase the lifetime by mixing the electron injecting material and the electron transporting material, forming a concentration gradient in the film thickness direction, and increasing the carrier injectability between the layers.
  • At least two separate functional layers of the organic layer have a mixed region between the layers, and the concentration distribution of at least one component of the functional layer in the mixed region is continuous.
  • the application method has been devised to produce a device with high luminous efficiency, low voltage drive and long light emission lifetime by having a typical concentration gradient (see, for example, Patent Documents 3 and 4).
  • the present invention has been made in view of the above problems, and the object of the present invention is to laminate an organic material layer containing a charge transporting organic compound of the same compound when an organic electronic device is produced by a coating method.
  • An object of the present invention is to provide an organic electronic device manufacturing method for manufacturing an organic electronic device in which the injection and mobility of carriers in an organic charge transport layer are controlled, and an organic electronic device.
  • the substrate has a pair of electrodes, and at least an organic functional layer and an organic charge transport layer between the electrodes, and the organic charge transport layer has at least a first organic layer and a second organic layer.
  • the content of the metal compound contained in the second organic material layer coating solution is the content of the charge transporting organic compound contained in the second organic material layer coating solution and the content of the metal compound. 20 to 40% by mass with respect to the total amount, and 5)
  • the step of applying the second organic layer coating solution to form the second organic layer is performed at a temperature of 15 ° C. to 5 ° C. higher than the melting point of the solvent used in the second organic layer coating solution.
  • an organic electronic device when an organic electronic device is manufactured by a coating method, the injection and mobility of carriers in the organic charge transport layer are controlled by laminating an organic material layer containing a charge transporting organic compound of the same compound.
  • An organic electronic device manufacturing method for manufacturing an organic electronic device and an organic electronic device can be provided.
  • FIG. 1 It is a schematic diagram which shows an example of the coating device applied to the manufacturing method of the organic electronic device of this invention. It is a side surface enlarged view of the coating device shown in FIG. It is a schematic plan view which shows an example of the installation arrangement
  • the structure defined in any one of claims 1 to 12 controls carrier injection and mobility that could not be realized by a coating method until now, and organic functions of metal compounds.
  • diffusion to a layer, and the organic electronic device were able to be provided.
  • the method for producing the organic electronic device of the present invention comprises: In a method for producing an organic electronic device having a pair of electrodes on a substrate, and at least an organic functional layer and an organic charge transport layer between the electrodes,
  • the organic charge transport layer comprises 1) A step of forming a first organic layer by applying a first organic layer coating solution containing a charge transporting organic compound on the organic functional layer; 2) Forming the second organic layer by applying a second organic layer coating solution containing the charge transporting organic compound and the metal compound on the first organic layer to form a second organic layer.
  • the organic charge transport layer comprises at least the first organic material layer and the second organic material layer, and each of the charge transporting organic compounds of the first organic material layer and the second organic material layer.
  • the content of the metal compound contained in the second organic material layer coating solution is the content of the charge transporting organic compound contained in the second organic material layer coating solution and the content of the metal compound.
  • the step of applying the second organic layer coating solution to form the second organic layer is used for the second organic layer coating solution. It is carried out at a temperature of 15 ° C. to 5 ° C. higher than the melting point of the solvent.
  • Organic functional layer refers to a layer that is the minimum necessary for the function expression in an organic electronic device.
  • an organic electroluminescence element hereinafter also referred to as an organic EL element
  • fluorescence or phosphorescence is emitted.
  • It is a light emitting layer (organic electroluminescence layer) that is generated, and is a power generation layer that generates charges in the organic solar cell element.
  • the organic functional layer in the present invention is a material that can be insolubilized by forming a polymerized group such as a vinyl group or an epoxy group and polymerizing after film formation, whether it is a low molecular material or a high molecular material as long as it is a compound that exhibits a function.
  • a plurality of materials may be mixed and function-separated, or one material may have a plurality of functions like a copolymer.
  • a vapor deposition method or a coating method may be used.
  • the organic charge transport layer according to the present invention is a layer that transports charge carriers such as holes or electrons from an electrode to an organic functional layer in an organic electronic device. Alternatively, it may be a layer that transports charge carriers from the organic functional layer.
  • a layer that mainly transports holes from the electrode to the organic functional layer is also referred to as a hole transport layer, and a layer that mainly transports electrons is also referred to as an electron transport layer.
  • the present invention may be used at the time of laminating either the hole transport layer or the electron transport layer, but is preferably an electron transport layer.
  • the organic charge transport layer comprises at least the first organic material layer and the second organic material layer, and the charge transporting organic layers of the first organic material layer and the second organic material layer, respectively.
  • One of the characteristics is that 80% by mass or more of the compounds are the same compound, and preferably 90% by mass or more are the same compound.
  • the amount of the metal compound contained in the second organic layer coating solution for forming the second organic layer is contained in the second organic layer coating solution.
  • One of the characteristics is that the second organic layer coating solution is carried out at a temperature of 5 ° C. to 15 ° C. higher than the melting point of the solvent used.
  • Secondary ion mass spectrometry is possible because the amount of elements in the film can be analyzed with high sensitivity and the concentration of elements in the depth direction can be tracked. Can be used.
  • Secondary ion mass spectrometry for example, Japanese Society for Surface Science “Secondary ion mass spectrometry (Surface Science and Technology Selection)” (Maruzen) can be referred to.
  • sputtering is performed by irradiating a sample surface with an ion beam called primary ions under a high vacuum of about 10 ⁇ 8 Pa.
  • This is a method of analyzing elements present on the surface by mass spectrometry of secondary ions in the constituent particles released thereby.
  • the surface is sputtered and scraped off, it is possible to analyze the change in element concentration from the surface to a depth of ⁇ m or more, although it is a destructive analysis.
  • metal ion species such as Cs + , In + , Ga + , and O 2 + are preferable. Which ion species is preferably used depends on the element to be measured.
  • ADEPT 1010 manufactured by Physical Electronics is used, the primary ion species is O 2 + , and the acceleration voltage of the primary ion is 3 kV. The amount of element distribution was measured.
  • the coating process is performed under conditions that reduce the solubility of the first organic layer or reduce the diffusibility of the metal compound contained in the second organic layer coating solution.
  • the step of applying the second organic layer coating solution to form the second organic layer is performed at a temperature of 15 ° C. to 5 ° C. higher than the melting point of the solvent used in the second organic layer coating solution. This is achieved by implementing within the scope.
  • the metal compound contained in the second organic layer coating liquid is the first by keeping the environment when the second organic layer is applied at a low temperature. It is presumed that the rate of penetration and diffusion into the organic layer is reduced, the rate at which the first organic layer is redissolved in the second organic layer coating solution is suppressed, and the like. Moreover, about the temperature at the time of application
  • the step of forming the second organic layer by applying the second organic layer coating solution is performed at a temperature of 15 ° C. to 5 ° C. higher than the melting point of the solvent used for the second organic layer coating solution. More preferably, the reaction is carried out at a temperature 5 to 10 ° C. higher than the melting point.
  • the same effect can be obtained by including a drying step after forming the first organic layer.
  • any drying method such as hot plate or oven, heat drying with infrared rays, air drying with a dryer, or vacuum drying under vacuum may be used. Or a combination of the above.
  • the Tg of the charge transporting organic compound used in the organic charge transport layer specifically, preferably from a temperature 20 ° C. lower than Tg to a temperature 5 ° C. lower than Tg, more preferably The step of heating at a temperature within a range from a temperature 10 ° C. lower than Tg to a temperature 5 ° C. lower than Tg is performed.
  • the charge transporting organic compound used in the present invention may have any structure as long as it has charge transporting properties, but the structure represented by the general formula (1) may be used.
  • a charge transporting organic compound is preferred. It is presumed that this is because the oxygen atom portion of the dibenzofuran skeleton interacts with the metal ion of the metal compound separated in the solvent, and diffusion is further suppressed.
  • the metal compound used in the present invention is not particularly limited as long as it can be dissolved in a coating solvent, but is preferably an alkali metal salt such as lithium, sodium, potassium, rubidium, cesium, and beryllium, magnesium, calcium, strontium. , Alkaline earth metal salts such as barium, and more preferably alkali metal salts.
  • the salt may be either an inorganic salt or an organic salt. It is particularly preferred that the metal compound is a potassium salt.
  • the solvent used in the present invention may be any solvent as long as it does not cause contamination with the organic functional layer.
  • pure water methanol, ethanol , Normal propanol, isopropanol, normal butanol, tertiary butanol, 2,2,3,3-tetrafluoropropanol, 2,2,3,3,3-pentafluoropropanol, 1,1,1,3,3,3 Alcoholic solvents such as hexafluoroisopropanol and 2,2,3,3,4,4,5,5-octafluoropentanol are preferred, more preferably 2,2,3,3-tetrafluoropropanol, 2, 2,3,3,3-pentafluoropropanol, 1,1,1,3,3,3-hexafluoroisopropyl Nord, fluorinated alcohols such as 2,2,3,3,4,4,5,5-octafluoro pentanol.
  • dissolution of the solid is an equilibrium phenomenon.
  • the lower the temperature of the solution system the higher the dissolution.
  • the coating speed may be slow, and the coating solution is preferably a dilute solution.
  • the coating solution concentration is too low, the wet film thickness that is formed at the time of coating will be very large compared to the dry film thickness after the coating film has dried, and uneven drying tends to occur.
  • the total concentration of the compound and the metal compound is preferably 0.1 to 5% by mass, and more preferably a 0.1 to 3% by mass solution.
  • the organic charge transport layer of the present invention it is possible to produce a simple laminate of the first organic material layer and the second organic material layer, or to produce a layer appropriately mixed so as not to be homogeneous, Either is possible, but rather than creating a simple laminate, the first layer and the second layer are mixed appropriately and the metal compound content has a gradient in the film thickness direction. Is preferable from the viewpoint of controlling carrier injection and transportability.
  • the manufacturing method of the organic electronic device of the present invention is a manufacturing method based on the finding of a manufacturing method that cannot be produced by a conventionally known coating method and can be laminated with layers containing the same compound.
  • the present invention is not limited to the manufacturing method of the organic EL element, and an organic solar cell element and the like. You may apply at the time of manufacture of the laminated body of the organic compound at the time of organic electronic device preparation.
  • a coating method (also referred to as a coating film forming method) is used as a method for forming a charge transport layer that is a constituent layer.
  • Method, spray method, printing method, slot type coater method, etc. but from the point that a homogeneous film is easily obtained and pinholes are not easily generated, spin coating method, ink jet method, spray method, printing method Film formation by a coating method such as a slot type coater method can be preferably used.
  • spin drying hot air drying, far infrared drying, vacuum drying, reduced pressure drying, etc. can be applied as the drying method after coating film formation.
  • the light-emitting layer is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer. And an interface between adjacent layers.
  • the film thickness of the light emitting layer is not particularly limited, but it is 2 from the viewpoint of the uniformity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color with respect to the drive current. It is preferable to adjust to a range of ⁇ 200 nm, and more preferably to a range of 5 nm or more and 100 nm or less.
  • the light emitting layer of the organic electroluminescence element preferably contains a light emitting host and at least one kind of light emitting dopant.
  • the light emitting host is a compound having a phosphorescence quantum yield of phosphorescence emission of less than 0.1 at room temperature (25 ° C.) among the compounds contained in the light emitting layer.
  • the phosphorescence quantum yield is preferably less than 0.01.
  • the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
  • the light-emitting host that can be used in the present invention is not particularly limited, and a compound conventionally used in an organic EL device can be used, and it has a hole-transporting ability and an electron-transporting ability, and has a large excited triplet.
  • a compound having energy and a high Tg (glass transition temperature) is preferred.
  • multiple types of hosts may be used in combination.
  • a plurality of types of host compounds it is possible to adjust the movement of charges, and the efficiency of the organic EL element can be further increased.
  • the light emitting host may be a polymer compound or a low molecular compound, and among the low molecular compounds, a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (polymerizable light emitting host) may be used. Moreover, you may use 1 type or multiple types of such a compound.
  • Examples of the light emitting host are given below, but are not limited thereto.
  • the light emitting host a known light emitting host may be used alone, or a plurality of kinds may be used in combination.
  • the movement of charges can be adjusted, and the efficiency of the organic electroluminescence element can be improved.
  • a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of longer wavelengths, and has a high Tg (glass transition temperature) is preferable.
  • the luminescent dopant-luminescent host type There are two emission principles of the luminescent dopant-luminescent host type. One is the recombination of carriers on the luminescent host on which carriers are transported to generate an excited state of the luminescent host compound, and this energy is used as the luminescent dopant. It is an energy transfer type in which light emission from the light emitting dopant is obtained by moving to. The other is a carrier trap type in which the light-emitting dopant becomes a carrier trap, and recombination of carriers occurs on the light-emitting dopant compound, and light emission from the light-emitting dopant is obtained.
  • the energy transfer type as a condition for easy energy transfer, it is preferable that the overlap integral between the emission of the light emitting host and the absorption of the light emitting dopant is large.
  • the carrier trap type needs to have an energy relationship that facilitates carrier trapping.
  • the electron carrier trap needs to have a higher electron affinity (LUMO) of the luminescent dopant than the host electron affinity (LUMO level).
  • the hole carrier trap preferably has a lower ionization potential (HOMO) of the luminescent dopant than the ionization potential (HOMO) of the luminescent dopant.
  • the light emitting dopant can be selected from the light emitting color including the color purity and the light emitting efficiency, and the light emitting dopant compound is selected from those having good carrier transportability and satisfying the above energy relationship. .
  • the light emitting dopant of the light emitting layer can be selected from any known ones used as the light emitting dopant of the organic EL device, and is preferably an organic compound or complex that emits fluorescence or phosphorescence. .
  • luminescent dopants that emit fluorescence include compounds with high fluorescence quantum yields such as laser dyes, coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracenes
  • examples thereof include dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • the light-emitting dopant that emits phosphorescence is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield of 25
  • the compound has a phosphorescence quantum yield of 0.1 or more, although it is a compound of 0.01 or more at ° C.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
  • the phosphorescent dopant according to the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, a europium complex, or a platinum compound (platinum complex system). Compound) and rare earth complexes, and most preferred is an iridium compound.
  • a compound represented by the general formula (1) is more preferable. Specific examples include compounds described in the following patent publications.
  • WO 00/70655 pamphlet JP 2002-280178, JP 2001-181616, JP 2002-280179, JP 2001-181617, JP 2002-280180, JP 2001-247859, JP 2002-299060, JP 2001-313178, JP 2002-302671, JP 2001-345183, JP 2002-324679, International Publication No. 02/15645 pamphlet, JP 2002-332291 A, JP 2002-50484 A, JP 2002-332292 A, JP 2002-83684 A, JP 2002-540572 A, JP 2002-2002 A. No.
  • luminescent dopants examples include luminescent dopants, but are not limited thereto.
  • the triplet energy of the light emitting host is preferably larger than the triplet energy of the light emitting dopant.
  • Injection layer electron injection layer, hole injection layer
  • the injection layer can be provided as necessary, and may exist between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • the organic layer means a layer containing an organic substance other than the charge transporting organic compound according to the present invention.
  • anode buffer layer hole injection layer
  • copper phthalocyanine is used.
  • examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • ferrocene compounds described in JP-A-6-025658 starburst type compounds described in JP-A-10-233287, JP-A-2000-068058, JP-A-2004-6321 Triarylamine type compounds described in the publication, sulfur-containing ring-containing compounds described in JP-A No. 2002-1171979, US Patent Application Publication No. 2002/158242, US Patent Application Publication No. 2006 / Examples of the hole injection layer include hexaazatriphenylene compounds described in Japanese Patent No. 251922, Japanese Patent Application Laid-Open No. 2006-49393, and the like.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
  • Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. .
  • the buffer layer is preferably a very thin film, and although it depends on the material, the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m.
  • Blocking layer hole blocking layer, electron blocking layer>
  • the blocking layer is provided as necessary as a constituent layer of the organic compound thin film.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
  • the hole blocking layer of the organic EL device of the present invention is provided adjacent to the light emitting layer, it is preferably formed by a wet process. Further, it is particularly preferably formed by a coating method such as an ink jet method, a printing method, a slot type coater method, etc., and among them, it is further preferable to form by a slot type coater method.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer concerning this invention as needed.
  • the first organic layer is the hole blocking layer, Or it can behave like an electron blocking layer.
  • the thickness of the first organic layer is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, the hole injection layer and the electron blocking layer also have the function of a hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl, 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-tolylaminoph
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • JP-A-11-251067 J. Org. Huang et. al.
  • a so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used.
  • these materials are preferably used because a light-emitting element with higher efficiency can be obtained.
  • the hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, a spray method, or a slot coater method.
  • a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, a spray method, or a slot coater method.
  • it is preferably formed by a wet process.
  • it is particularly preferably formed by a coating method such as an ink jet method, a printing method, a slot type coater method, etc., and among them, it is further preferable to form by a slot type coater method.
  • the film thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure composed of two or more of the above materials.
  • a hole transport layer having a high p property doped with impurities examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • a hole transport layer having such a high p property because a device with lower power consumption can be produced.
  • the organic charge transport layer of the present invention can be preferably used as a hole transport layer in the present invention.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, the electron injection layer and the hole blocking layer also have a function of the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material
  • it has a function of transmitting electrons injected from the cathode to the light emitting layer.
  • any one of conventionally known compounds can be selected and used. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives , Anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
  • the electron transport layer is formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, a spray method, a slot type coater method, or the like.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, a spray method, a slot type coater method, or the like.
  • it is preferably formed by a wet process.
  • it is particularly preferably formed by a coating method such as an ink jet method, a printing method, a slot type coater method, etc., and among them, it is further preferable to form by a slot type coater method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the electron transport layer may have a single-layer structure composed of two or more of the above materials, but a two-layer structure composed of the structure of the present invention is particularly preferable.
  • the organic charge transport layer of the present invention can be preferably used as an electron transport layer in the present invention.
  • the charge transporting organic compound used in the organic charge transporting layer of the present invention may be any structure as long as it has charge transporting properties. ) Is preferred. It is presumed that this is because the oxygen atom part of such a dibenzofuran skeleton interacts with a metal ion dissociated in the solvent to further suppress diffusion.
  • Ar and Ar ′ each independently represent an aromatic ring, and n represents an integer of 0 to 8.
  • examples of the aromatic ring represented by Ar and Ar ′ include an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the aromatic ring may be a single ring or a condensed ring, and may be unsubstituted or may have a substituent.
  • examples of the aromatic hydrocarbon ring represented by Ar and Ar ′ include a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, Triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, Examples include a pyrene ring, a pyrantolen ring, and anthraanthrene ring.
  • examples of the aromatic heterocycle represented by Ar and Ar ′ include a furan ring, a dibenzofuran ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, and a pyrazine ring.
  • the aromatic ring represented by Ar and Ar ′ is preferably a carbazole ring, carboline ring, dibenzofuran ring, benzene ring or pyridine ring, and more preferably used.
  • a carbazole ring, carboline ring, benzene ring or pyridine ring more preferably a benzene ring having a substituent, and particularly preferably a benzene ring having a carbazolyl group.
  • the aromatic ring represented by Ar is preferably a condensed ring of three or more rings, and the aromatic hydrocarbon condensed ring condensed with three or more rings is specifically exemplified.
  • aromatic heterocycle condensed with three or more rings include an acridine ring, a benzoquinoline ring, a carbazole ring, a carboline ring, a phenazine ring, a phenanthridine ring, a phenanthroline ring, a carboline ring, a cyclazine ring, Quindrine ring, tepenidine ring, quinindrin ring, triphenodithiazine ring, triphenodioxazine ring, phenanthrazine ring, anthrazine ring, perimidine ring, diazacarbazole ring (any one of the carbon atoms constituting the carboline ring is a nitrogen atom) Phenanthroline ring, dibenzofuran ring, dibenzothiophene ring, naphthofuran ring, naphthothiophene ring, benzodifuran ring, benzodif
  • n represents an integer of 0 to 8, preferably 0 to 2, and more preferably 1 to 2.
  • the paired electrodes are an anode and a cathode.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 ⁇ m or more)
  • a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance is greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness of 1 to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
  • a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyether ketone imide, polyamide, fluorine resin, nylon, polymethyl methacrylate, acrylic or polyarylates, and cycloolefin resins such as ARTON (manufactured by J
  • An inorganic or organic film or a hybrid film of both may be formed on the surface of the resin film, and a barrier film having a water vapor permeability of 0.01 g / m 2 / day ⁇ atm or less is preferable. Further, a high barrier film having an oxygen permeability of 10 ⁇ 3 g / m 2 / day or less and a water vapor permeability of 10 ⁇ 5 g / m 2 / day or less is preferable.
  • the material for forming the barrier film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction quantum efficiency at room temperature of light emission of the organic electroluminescence device of the present invention is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • ⁇ Sealing> As a sealing means used for this invention, the method of adhere
  • the sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the element can be thinned.
  • the polymer film oxygen permeability measured by the method based on JIS K 7126-1987 is 1 ⁇ 10 -3 ml / m 2 / 24h or less, as measured by the method based on JIS K 7129-1992, water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH is preferably intended 1 ⁇ 10 -3 g / (m 2 / 24h) or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic electroluminescent element may deteriorate by heat processing, what can be adhesive-hardened from room temperature to 80 degreeC is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be a material having a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • the method for forming these films is not particularly limited.
  • vacuum deposition method sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma
  • a polymerization method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • a vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used. It is preferable to use a film.
  • the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
  • a method of improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate and preventing total reflection at the transparent substrate and the air interface (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of an element (Japanese Patent Laid-Open No. 1-220394), and light emission from the substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction.
  • Light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating in any layer or medium (in a transparent substrate or transparent electrode), and the light is removed. I want to take it out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL device of the present invention is processed on the light extraction side of the substrate so as to provide, for example, a microlens array structure, or combined with a so-called condensing sheet, for example, with respect to a specific direction, for example, the device light emitting surface.
  • a specific direction for example, the device light emitting surface.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 ⁇ m to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
  • a sheet for example, Sumitomo 3M brightness enhancement film (BEF) can be used.
  • BEF Sumitomo 3M brightness enhancement film
  • the base material may be formed by forming a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • an anode is manufactured by forming a thin film made of a desired electrode material, for example, an anode material on a suitable substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably 10 to 200 nm.
  • a cleaning surface modification treatment step and a charge removal treatment step may be performed.
  • a low-pressure mercury lamp, an excimer lamp, a plasma cleaning device, etc. can be used as the cleaning surface modification treatment.
  • surface modification for removing organic contaminants and improving wettability is performed.
  • the charge removal treatment is roughly classified into a light irradiation method and a corona discharge method, and the light irradiation method generates weak ions and the corona discharge method generates air ions by corona discharge.
  • the air ions are attracted to the charged object to compensate for the opposite polarity charge and neutralize static electricity.
  • a static eliminator using corona discharge or a static eliminator using soft X-rays can be used.
  • the organic layer of the organic EL device of the present invention is formed by a vacuum deposition method and a wet process (spin coating method, casting method, ink jet method, spray method, printing method, slot type coater method). From the point that a film is easily obtained and pinholes are difficult to be generated, in the present invention, a part or all of the organic layer is subjected to a spin coating method, an ink jet method, a spray method, a printing method, a slot type coater method, etc. Film formation by a wet process is preferable, and among these, a slot type coater method or an ink jet coating method is more preferable.
  • liquid medium for dissolving or dispersing the organic compound material according to the present invention examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate and butyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, Aromatic hydrocarbons such as xylene, mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used.
  • the alcohols mentioned above are preferable, and fluorinated alcohols are more preferable.
  • a dispersion method it can disperse
  • the solvent may be removed in a drying process.
  • a drying furnace can be used. In the drying furnace, it is possible to change the temperature condition, change the wind speed, etc. by appropriately setting several zones according to the material of the organic compound layer.
  • heat treatment may be performed.
  • the substrate may be housed under reduced pressure (10 ⁇ 6 to 10 ⁇ 2 Pa), and a temperature may be appropriately applied.
  • the storage period is preferably 1 to 200 hours. As a result, oxygen and trace moisture due to device deterioration are removed.
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm, and a cathode is provided.
  • a desired organic EL element can be obtained.
  • the layer corresponding to the organic charge transport layer according to the present invention is a hole transport layer.
  • a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • a slot type coater coating method or an inkjet coating method is used as an effective method for forming a very thin and highly smooth single layer coating film required for the organic layer of the organic electroluminescence device. Is preferred. The slot type coater coating method or the ink jet coating method will be described in detail below.
  • the uniformity of coating is further improved by installing a decompression chamber upstream of the coater and maintaining the bead portion in a decompressed state. This is because, by reducing the pressure at the lower part of the bead, even if the surface property and wettability of the support are changed, the liquid contact position of the coating liquid hardly fluctuates and a coating film having a uniform film thickness can be obtained.
  • the coating solution supplied from the coating solution supply device spreads across the coater die pocket, flows out from the slit at a uniform flow rate, and is spread evenly on the support. It is applied with a uniform coating thickness.
  • the ink jet head is not particularly limited.
  • it may be a thermal type head that has a heating element and discharges the coating liquid from the nozzle by a rapid volume change due to film boiling of the coating liquid by the heat energy from the heating element.
  • a shear mode type (piezo type) head that has a vibration plate including a piezoelectric element in the ink pressure chamber and discharges the coating liquid by a pressure change of the ink pressure chamber by the vibration plate may be used.
  • FIG. 1 is a schematic diagram showing an example of a coating apparatus applied to the method for producing an organic EL element of the present invention.
  • FIG. 1 shows an example in which three types of coating solutions are applied in layers to form a three-layer coating film.
  • a two-layer coating is performed using a slot coater (hereinafter also abbreviated as a coater), and one layer is an inkjet. It is an example.
  • FIG. 2 is an enlarged side view of the coating apparatus shown in FIG. 1 viewed from the direction of arrow Z1.
  • the coaters 11 and 21 are sectional views.
  • the long support 1 wound in a roll shape is fed out in the direction of arrow B from the unwinding roll (not shown) by a driving means (not shown) and conveyed.
  • An elongate support 1 is conveyed while being supported by a backup roll 2, and an inkjet head disposed in a coater 11 of a coating unit 10, a coater 21 of a coating unit 20, and an inkjet unit 31 of a coating unit 30 as coating means.
  • the coating solution is applied one layer at a time to form a three-layer multilayer coating film.
  • the formed multilayer coating film is dried in a drying section (not shown) and taken up on a take-up roll (not shown).
  • the coating unit 10 includes a coater 11, a liquid feed pump 12, a coating liquid tank 13, and a coating liquid supply pipe 14.
  • the liquid feed pump 12 supplies the coating liquid stored in the coating liquid tank 13 to the coater 11 via the coating liquid supply pipe 14.
  • the coater 11 has a slit 111 corresponding to the coating width in the support width direction, and is disposed at a position facing the backup roll 2 with the support 1 interposed therebetween.
  • the coater 11 performs coating by discharging a coating solution from the slit 111 onto the support 1.
  • the coating unit 10 also has a function of uniformly discharging the coating liquid from the slit 111 across the width direction of the support 1.
  • the coating unit 20 includes a coater 21, a liquid feed pump 22, a coating liquid tank 23, and a coating liquid supply pipe 24.
  • the function is the same as that of the coating unit 10.
  • the coating unit 30 includes an inkjet unit 31, an inkjet head 311 disposed in the inkjet unit 31, a coating solution tank 33, and a coating solution supply pipe 34.
  • the inkjet head 311 is disposed at a position facing the backup roll 2 with the support 1 interposed therebetween.
  • the coating liquid stored in the coating liquid tank 33 is supplied to the inkjet head 311 through the coating liquid supply pipe 34 and is ejected from the nozzles of the inkjet head 311 to the support 1. As a result, the coating liquid is applied to the support 1.
  • the coating liquid is ejected from the nozzles of the ink jet head 311 toward the rotation center of the backup roll 2.
  • the inkjet unit 31 is provided with an arbitrary number and arrangement of inkjet heads 311.
  • the number and arrangement are appropriately set according to the coating liquid to be used and the coating conditions, such as the ejection width of the inkjet head 311 and the coating width of the support 1.
  • the coating unit 30 supplies a coating liquid to the inkjet head 311 and also has a function of keeping the coating liquid pressure in the inkjet head 311 constant.
  • the inkjet head 311 is not particularly limited.
  • a thermal type head that has a heating element and discharges the coating liquid from the nozzle by a rapid volume change due to film boiling of the coating liquid by the heat energy from the heating element may be used.
  • a shear mode type (piezo type) head that has a vibration plate including a piezoelectric element in the ink pressure chamber and discharges the coating liquid by a pressure change of the ink pressure chamber by the vibration plate may be used.
  • FIG. 3 is a schematic plan view showing an example of an installation arrangement of the inkjet heads 311 used in the coating apparatus shown in FIG.
  • reference numerals 311-1 to 311-5 denote ink jet heads arranged.
  • Ink-jet heads 311-1 to 311-5 are arranged such that the surfaces of the heads 311-1 to 311-5 having the nozzle discharge ports and the coating film surface of the support 1 are parallel to each other and maintain a constant distance.
  • the angle formed by the line connecting the centers of the nozzle outlets arranged in the width direction orthogonal to the direction and the moving direction of the support 1 is 90 °.
  • the end portions of the heads 311-1 to 311-5 are arranged in a staggered manner so as to overlap each other.
  • the coaters 11 and 21 and the ink jet head 311 are arranged at predetermined intervals along the circumference of the backup roll 2.
  • the coating film thickness after drying of one coating layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, more preferably 5 nm to 200 nm.
  • the coating speed by this method is preferably 1 m / min to 10 m / min, more preferably 1 m / min to 5 m / min. Since the film thickness after coating and drying is thin, when the coating speed is 10 m / min or less, coating can be performed stably and quality defects can be suppressed. In addition, since the upper layer is applied after sufficiently drying, mixing between layers hardly occurs, and this also leads to prevention of quality defects.
  • a combination of a coater and an ink jet is used, such as two coaters and one ink jet.
  • all coaters may be used, or all may be configured as an ink jet.
  • the organic EL element according to the present invention may be used as a projection device for projecting an image, a display device (display) for directly viewing a still image or a moving image, or as an illumination or exposure light source. It may be used as a kind of lamp.
  • Example 1 Production of Organic EL Element 101 >> A transparent gas barrier film was prepared on a polyethersulfone (Sumitomo Bakelite film, hereinafter abbreviated as PES) having a thickness of 200 ⁇ m as an anode using an atmospheric pressure plasma polymerization method.
  • PES Polyethersulfone
  • an ITO (indium tin oxide) film having a thickness of 120 nm was formed on the gas barrier film substrate.
  • the roll-shaped strip-shaped flexible sheet on which the anode was formed was fed out and wound into a roll through a cleaning surface modification treatment step and a charge removal treatment step.
  • the cleaning surface modification treatment was performed as a dry cleaning surface modification treatment apparatus at a low pressure mercury lamp wavelength of 184.9 nm, an irradiation intensity of 15 mW / cm 2 , and an irradiation distance of 10 mm.
  • a backup roll having a diameter of 3 m was prepared by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% by mass with pure water.
  • the film was formed at a coating rate of 4 m / min by a slot type coater method and then dried at 200 ° C. for 1 hour to provide a hole injection layer having a thickness of 30 nm.
  • a coating solution for the hole transport layer is prepared as follows, using a backup roll having a diameter of 3 m, using a slot type coater, a coating speed of 4 m / min, and the film thickness after drying becomes a hole transport layer of 20 nm. It was applied as follows.
  • This substrate was heated at 150 ° C. for 30 minutes to provide a hole transport layer.
  • a coating solution for a hole transport layer was prepared by dissolving ADS254BE manufactured by American Dye Source in toluene so as to be 0.5% by mass.
  • a light emitting layer coating solution was prepared as follows, and a coating roll of 4 m / min and a film thickness after drying of 50 nm were applied using a slot type coater using a backup roll having a diameter of 3 m. .
  • a luminescent layer coating solution was prepared by dissolving H-27 in butyl acetate at 1% by mass and D-1 at 0.1% by mass.
  • the solvent was removed immediately by a drying process using a heated air stream. It was carried out at a height of 100 mm from the slit nozzle type ejection port toward the film formation surface, an ejection wind speed of 1 m / second, a width distribution of 5%, and a drying temperature of 100 ° C.
  • the coating liquid for electron carrying layers was prepared and apply
  • First organic layer In normal butanol, ET-1 (Tg: 109 ° C.) was dissolved at 1.0 mass% to prepare a coating solution for an electron transport layer. Using a backup roll having a diameter of 3 m and using a slot type coater, coating was performed at a coating speed of 4 m / min and a target film thickness of 20 nm.
  • the solvent was removed in a drying process using a heated air stream. It was carried out at a height of 100 mm from the slit nozzle type ejection port toward the film formation surface, an ejection wind speed of 1 m / second, a width distribution of 5%, and a drying temperature of 100 ° C. (Second organic layer)
  • the environment of the coating apparatus is adjusted to 0 ° C., and ET-1 is dissolved in normal butanol to 0.9 mass% and calcium fluoride to 0.1 mass% for use in the electron transport layer.
  • the coating solution was adjusted, a 3 m diameter backup roll was used, a slot type coater was used, and the coating speed was 4 m / min and the target film thickness after drying was 20 nm.
  • the film thickness of the electron transport layer was measured with a spectroscopic ellipsometer until the solvent was removed in the drying process using a heated air stream after coating.
  • the substrate was sucked and transported by sucking heat rolls having a temperature of 150 ° C. from closely arranged rolls, and heat treatment was performed by heating by back surface heat transfer.
  • the wound roll was stored in a storage box and stored under reduced pressure (10 ⁇ 6 to 10 ⁇ 2 Pa).
  • the obtained roll-shaped film was transferred to a vapor deposition machine, and the pressure of the substrate provided up to the electron transport layer was reduced to 4 ⁇ 10 ⁇ 4 Pa.
  • cesium fluoride and aluminum were each placed in a tantalum resistance heating boat and attached to a vapor deposition machine.
  • an aluminum layer having a thickness of 100 nm was also vapor-deposited in a region including the organic EL layer region and the electrode lead region, and a cathode was provided.
  • a substrate provided up to the cathode is formed by winding an inorganic film such as SiOx, SiNx or a composite film as a 300 nm sealing film using a sputtering method, a plasma CVD method, an ion plating method, etc. in a region other than an electrode region, An EL element 101 was obtained.
  • an inorganic film such as SiOx, SiNx or a composite film as a 300 nm sealing film using a sputtering method, a plasma CVD method, an ion plating method, etc.
  • Organic EL elements 201 to 206 were prepared in the same manner as in the production of the organic EL element 105 except that the environmental temperature during application of the second organic layer coating solution was changed as shown in Table 2 below.
  • Organic EL elements 207 to 212 are manufactured in the same manner except that the drying temperature was 1 m / sec, the width distribution was 5%, and the drying temperature was the temperature shown in Table 2 below.
  • Organic EL elements 301 to 304 were manufactured in the same manner as in the manufacture of the organic EL element 105 except that the type of the organic compound having a charge transporting property was changed as shown in Table 3 below.
  • Organic EL elements 401 to 409 were manufactured in the same manner except that the type of metal compound was changed as shown in Table 4 below in the preparation of the organic EL element 105.
  • Organic EL elements 501 to 508 were manufactured in the same manner except that the type of solvent used was changed as shown in Table 5 in the preparation of the organic EL element 105.
  • the luminance of the central part and the four corners of the 1 cm ⁇ 1 cm light emitting part was measured, and evaluated as A to C as follows according to the difference between the highest luminance and the lowest luminance.
  • a spectral radiance meter CS-1000 manufactured by Konica Minolta Sensing
  • the difference between the maximum brightness and the minimum brightness is within 5%.
  • the difference between the maximum luminance and the minimum luminance is higher than 5% and within 10%.
  • an organic compound having a charge transport property is abbreviated as an organic compound.
  • the solvent TFPO represents 2,2,3,3-tetrafluoro-1-propanol
  • HFIP represents 1,1,1,3,3,3-hexafluoroisopropanol.
  • the amount of the metal compound contained in the second organic layer coating liquid is 40% by mass or less based on the total amount of the charge transporting organic compound and the metal compound.
  • the laminating property and the film formability are maintained, but when the metal compound is contained in an amount of less than 20% by mass, or when it is contained in excess of 40% by mass, the film formability is large. It turns out that it gets worse.
  • organic EL elements 105 and 107 to 109 if 80% by mass or more of the respective organic compounds in the first organic layer and the second organic layer satisfy the same compound, sufficient performance is satisfied, but 80% by mass. It can be seen that the film forming property and the driving stability are greatly deteriorated when the temperature is lower than that. It has been found that by satisfying all the requirements of the present invention, an organic EL element satisfying various performances such as laminating properties, film forming properties, and drive stability can be produced.
  • the temperature (environment) when applying the second organic layer from the organic EL elements 105 and 201 to 206 is 5 ° C. higher than the melting point of the solvent used for the second organic layer coating solution. It can be seen that a high temperature and a temperature of 15 ° C. or less are preferable because an element having good lamination properties and film forming properties can be obtained. Outside this range, it can be seen that the laminateability is poor at high temperatures (note that in a temperature environment lower than 5 ° C. above the melting point, the coating solution may be solidified, which is not preferable).
  • the laminating property and the driving stability are improved by carrying out a drying process (heat treatment) after the first organic layer is formed by coating. It can be seen that various performances are improved by carrying out the drying step within a range from a temperature 5 ° C. lower than Tg to a temperature 20 ° C. lower than Tg.

Abstract

 本発明の目的は、有機電子デバイスを塗布法で製造する際に同一化合物の電荷輸送性の有機化合物を含む有機物層を積層することで、有機電荷輸送層のキャリアの注入および移動度を制御した有機電子デバイスを製造する有機電子デバイスの製造方法を提供する事である。この製造方法は基板上に対となる電極、該電極間に少なくとも有機機能層と有機電荷輸送層とを有する有機電子デバイスの製造方法において、該有機電荷輸送層は、1)該有機機能層上に、電荷輸送性の有機化合物を含有する第一の有機物層塗布液を塗布し第一の有機物層を形成する工程、2)該第一の有機物層の上に、該電荷輸送性の有機化合物と金属化合物とを含有する第二の有機物層塗布液を塗布し第二の有機物層を形成する工程、の順によって形成され、更に、3)、4)、5)で特定されることを特徴とする。

Description

有機電子デバイスの製造方法および有機電子デバイス
 本発明は有機電子デバイスの製造方法および有機電子デバイスに関する。
 発光型の電子デバイスとして、エレクトロルミネッセンスデバイス(以下、ELDと略記する)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子(以下、無機EL素子とも言う)や有機エレクトロルミネッセンス素子(以下、有機EL素子とも言う)が挙げられる。無機EL素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。
 一方、有機エレクトロルミネッセンス素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用して発光する素子であり、数V~数十V程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
 また、有機エレクトロルミネッセンス素子は、従来実用に供されてきた主要な光源、例えば、発光ダイオードや冷陰極管と異なり、面光源であることからも大きな特徴である。この特性を有効に活用できる用途として、照明用光源や様々なディスプレイのバックライトがある。特に近年、需要の増加が著しい液晶フルカラーディスプレイのバックライトとして用いることも好適である。
 有機エレクトロルミネッセンス素子をこのような照明用光源、あるいはディスプレイのバックライトとして実用するための課題として発光効率の向上が挙げられる。発光効率の向上のためには、有機エレクトロルミネッセンス素子を構成する有機機能層をそれぞれ別個の機能を有する材料を複数層積層した構成で用いる、あるいは混合した構成で用いる等、機能分離することが一般的となりつつある。
 有機エレクトロルミネッセンス素子の製造方法としては、蒸着法やウェットプロセス(スピンコート法、キャスト法、ダイコート法、インクジェット法、スプレー法、印刷法等)(以下、塗布法とも言う)があるが、真空プロセスを必要とせず連続生産が簡便であるという理由で、近年はウェットプロセスにおける製造方法が注目されている。
 しかしながら、ウェットプロセスで作製した有機エレクトロルミネッセンス素子の場合には、所謂蒸着法を用いて製造した場合と比べ、塗布法では下層の掻き取りや洗い流し等、特に同一化合物を積層する際に制限がある。ゆえに有機エレクトロルミネッセンス素子を始め、有機電子デバイスを塗布法で製造する場合に蒸着法ほどは機能分離ができていない可能性がある。
 有機エレクトロルミネッセンス素子では有機EL素子の性能向上の手段として、電子輸送層と発光層の間に電子輸送性の正孔ブロッキング層を作製することで、正孔を発光層内へ閉じ込める効果が発現し、その結果として正孔と電子の再結合確率を改善し、発光効率を高めるといった工夫がなされている(例えば、特許文献1参照)。
 また、電子注入性材料と電子輸送性材料を混合し、膜厚方向の濃度勾配を形成し、層間のキャリア注入性を高めることでデバイスの消費電力を低減し、かつ寿命が長いといった工夫がなされている(たとえば、特許文献2参照)。
 しかしながら、これらは蒸着法でならば容易に作製できる構成ではあるが、塗布法では下層を溶解してしまうため、同一化合物を含有する複数層を同一溶媒で積層することはできない。また、複数の材料の混合比を膜厚方向で勾配をつけるといった制御をすることは困難である。
 このような問題を解決するため、有機層のうち、少なくとも二層である別個の機能層が層間に、混合領域を有し、混合領域中の機能層の少なくとも一つの構成成分の濃度分布が連続的な濃度勾配を有することで高発光効率、低電圧駆動さらには長発光寿命の素子を作製するといった工夫が塗布法でなされている(例えば、特許文献3、4参照)。
 しかしながら、これらの場合隣接する二層の材料の溶解性の差を利用しており、同一化合物を用いて積層させる手段としては適用できないという問題がある。また、隣接する二層間の成分を連続的に混合させることで界面の障壁を緩和させることはできるが、反面キャリアや励起子のブロックの機能を低下することとなり、この技術のみで蒸着法同等の性能到達は困難である。
特開2001-237079号公報 特開2002-313583号公報 特開平11-74083号公報 特開2007-42314号公報
 本発明は、上記課題に鑑みなされたものであり、本発明の目的は、有機電子デバイスを塗布法で製造する際に同一化合物の電荷輸送性の有機化合物を含む有機物層を積層することで、有機電荷輸送層のキャリアの注入および移動度を制御した有機電子デバイスを製造する有機電子デバイスの製造方法、および、有機電子デバイスを提供することにある。
 本発明の上記目的は、下記の構成により達成される。
 1.基板上に対となる電極、該電極間に少なくとも有機機能層と有機電荷輸送層とを有し、該有機電荷輸送層は、少なくとも第一の有機物層と第二の有機物層を有して成る有機電子デバイスの製造方法において、
 1)該有機機能層上に、電荷輸送性の有機化合物を含有する第一の有機物層塗布液を塗布し第一の有機物層を形成する工程、
 2)該第一の有機物層の上に、該電荷輸送性の有機化合物と金属化合物とを含有する第二の有機物層塗布液を塗布し第二の有機物層を形成する工程、の順によって形成され、
 3)該第一の有機物層と該第二の有機物層のそれぞれの該電荷輸送性の有機化合物の80質量%以上が同一化合物であり、
 4)該第二の有機物層塗布液に含有される、該金属化合物の含有量が該第二の有機物層塗布液に含有される該電荷輸送性の有機化合物の含有量と該金属化合物の含有量との合計に対して20~40質量%であり、且つ、
 5)前記第二の有機物層塗布液を塗布し第二の有機物層を形成する工程が、該第二の有機物層塗布液に使用する溶媒の融点より5℃高い温度~15℃で実施される、ことを特徴とする有機電子デバイスの製造方法。
 2.前記第一の有機物層塗布液を塗布し第一の有機物層を形成した後に、乾燥する工程が実施されることを特徴とする前記1に記載の有機電子デバイスの製造方法。
 3.前記乾燥する工程が、該電荷輸送性の有機化合物のTg-10℃~Tg-5℃に加熱する工程であることを特徴とする前記2に記載の有機電子デバイスの製造方法。
 4.前記電荷輸送性の有機化合物が、下記一般式(1)で表される化合物であることを特徴とする前記1~3のいずれか1項に記載の有機電子デバイスの製造方法。
Figure JPOXMLDOC01-appb-C000002
 (式中、ArおよびAr′はそれぞれ独立に、芳香環を表し、nは0~8の整数を表す。)
 5.前記金属化合物が、アルカリ金属塩であることを特徴とする前記1~4のいずれか1項に記載の有機電子デバイスの製造方法。
 6.前記金属化合物が、カリウム塩であることを特徴とする前記1~5のいずれか1項に記載の有機電子デバイスの製造方法。
 7.前記第一の有機物層塗布液または第二の有機物層塗布液の溶剤が、フッ素化アルコールであることを特徴とする前記1~6のいずれか1項に記載の有機電子デバイスの製造方法。
 8.前記第二の有機物層塗布液中の有機化合物と金属化合物を合計した濃度が0.1~3.0質量%であることを特徴とする前記1~7のいずれか1項に記載の有機電子デバイスの製造方法。
 9.前記有機電荷輸送層が、厚さ方向において前記金属化合物の濃度勾配を形成していることを特徴とする前記1~8のいずれか1項に記載の有機電子デバイスの製造方法。
 10.前記有機電荷輸送層が、電子輸送層であることを特徴とする前記1~9のいずれか1項に記載の有機電子デバイスの製造方法。
 11.前記有機機能層が、有機エレクトロルミネッセンス層であることを特徴とする前記1~10のいずれか1項に記載の有機電子デバイスの製造方法。
 12.前記1~11のいずれか1項に記載の有機電子デバイスの製造方法で作製されたことを特徴とする有機電子デバイス。
 本発明によれば、有機電子デバイスを塗布法で製造する際に同一化合物の電荷輸送性の有機化合物を含む有機物層を積層することで、有機電荷輸送層のキャリアの注入および移動度を制御した有機電子デバイスを製造する有機電子デバイスの製造方法、および、有機電子デバイスを提供することができる。
本発明の有機電子デバイスの製造方法に適用される塗布装置の一例を示す概略模式図である。 図1に示す塗布装置の側面拡大図である。 図2に示す塗布装置に用いられるインクジェットヘッド311の設置配列の一例を示す概略平面図である。
 以下、本発明を実施するための形態について説明するが、本発明はこれらに限定されない。
 本発明の有機電子デバイスにおいては、請求項1~12のいずれか1項に規定される構成により、今まで塗布法では実現できなかったキャリア注入や移動度を制御し、かつ金属化合物の有機機能層への拡散を抑制した有機電子デバイスを製造する有機電子デバイスの製造方法、および、有機電子デバイスを提供することができた。
 以下、本発明に係る各構成要素の詳細について、順次説明する。
 本発明の有機電子デバイスの製造方法は、
 基板上に対となる電極、該電極間に少なくとも有機機能層と有機電荷輸送層とを有する有機電子デバイスの製造方法において、
 該有機電荷輸送層は、
 1)該有機機能層上に、電荷輸送性の有機化合物を含有する第一の有機物層塗布液を塗布し第一の有機物層を形成する工程、
 2)該第一の有機物層の上に、該電荷輸送性の有機化合物と金属化合物とを含有する第二の有機物層塗布液を塗布し第二の有機物層を形成する工程、の順によって形成され、
 3)該有機電荷輸送層は、少なくとも該第一の有機物層と該第二の有機物層から成り、該第一の有機物層と該第二の有機物層のそれぞれの該電荷輸送性の有機化合物の80質量%以上が同一化合物であり、
 4)該第二の有機物層塗布液に含有される、該金属化合物の含有量が該第二の有機物層塗布液に含有される該電荷輸送性の有機化合物の含有量と該金属化合物の含有量との合計に対して20~40質量%であり、且つ
 5)前記第二の有機物層塗布液を塗布し第二の有機物層を形成する工程が、該第二の有機物層塗布液に使用する溶媒の融点より5℃高い温度~15℃で実施される、ことを特徴とする。
 《有機機能層》
 本発明に係る有機機能層とは、有機電子デバイスにおいて、その機能発現に最低限必要な層を示しており、例えば、有機エレクトロルミネッセンス素子(以下、有機EL素子とも言う)においては蛍光あるいは燐光を発生する発光層(有機エレクトロルミネッセンス層)であり、有機太陽電池素子においては電荷を発生する発電層である。本発明における有機機能層は機能発現する化合物ならば低分子材料でも高分子材料でも、ビニル基やエポキシ基等の重合性基を持たせ、成膜後に重合することで不溶化させることが可能な材料でも良く、また、性能向上するため複数の材料を混合し機能分離しても良く、あるいは共重合ポリマーのように一つの材料に複数の機能を持たせても構わない。また、有機機能層の形成に関して、蒸着法でも塗布法でも良いが、生産適正の観点から塗布法で作製する方が好ましい。
 《有機電荷輸送層》
 本発明に係る有機電荷輸送層とは、有機電子デバイスにおいて電極から有機機能層へと正孔あるいは電子等の電荷キャリアを輸送する層である。あるいは有機機能層から電荷キャリアを輸送する層であっても良い。電極から有機機能層間を主として正孔を輸送する層を正孔輸送層ともいい、主として電子を輸送する層を電子輸送層ともいう。本発明は正孔輸送層、電子輸送層のどちらの積層時に用いても構わないが、電子輸送層である方が好ましい。
 本発明においては、有機電荷輸送層は、少なくとも該第一の有機物層と該第二の有機物層から成り、該第一の有機物層と該第二の有機物層のそれぞれの該電荷輸送性の有機化合物の80質量%以上が同一化合物であることが特徴の1つであり、好ましくは90質量%以上が同一化合物であることである。
 本発明においては有機電荷輸送層を形成する際に、第二の有機物層を形成するための第二の有機物層塗布液に含有される金属化合物の量が第二の有機物層塗布液に含有される電荷輸送性の有機化合物の量と金属化合物の量との合計に対して20~40質量%であり、かつ第二の有機物層塗布液を塗布し第二の有機物層を形成する工程が、第二の有機物層塗布液に使用する溶媒の融点より5℃高い温度~15℃で実施されることが特徴の1つである。
 また、有機電荷輸送層を形成後に、第一の有機物層中に含有される(二次イオン質量分析法で検出される)該金属化合物の含有量が電荷輸送性の有機化合物の含有量と金属化合物の含有量との合計に対して、(金属化合物/(電荷輸送性の有機化合物+金属化合物))×100=0.1~10質量%であることが好ましい。
 上記金属化合物の測定方法としてはいくつか方法があるが、膜内の元素の量を高感度で分析可能でかつ深さ方向の元素の濃度変化を追えることから二次イオン質量分析法(SIMS)を用いて行うことができる。二次イオン質量分析法については、例えば、日本表面科学会「二次イオン質量分析法(表面科学技術選書)」(丸善)等を参考にすることができる。
 二次イオン質量分析法は、10-8Pa程度の高真空下で一次イオンと呼ばれるイオンビームを試料表面に照射しスパッタリングを行う。それにより放出された構成粒子の中で二次イオンを質量分析することにより表面に存在する元素を分析する方法である。表面をスパッタし、削り取っていくので破壊分析ではあるが、表面からμm以上の深さまでの元素の濃度変化を分析することが可能である。
 一次イオンとしては、例えばCs、In、Ga、O の金属イオン種が好ましいが、どのイオン種を用いるのが好ましいかは測定対象元素によって使い分けられる。
 本発明では、具体的にはPhysical Electronics社製のADEPT1010を使用して、一次イオン種はO 、一次イオンの加速電圧は3kVの正イオン検出条件で有機電子デバイス内の深さ方向における金属元素の分布量を測定した。
 上記構成を達成するために、鋭意検討を重ねた結果、第一の有機物層の溶解性を低減する、あるいは第二の有機物層塗布液に含まれる金属化合物の拡散性を低減する条件で塗布工程を実施することで、第一の有機物層と第二の有機物層が均質にならずに積層できることを見出した。本発明においては、第二の有機物層塗布液を塗布し第二の有機物層を形成する工程が、第二の有機物層塗布液に使用している溶剤の融点より5℃高い温度~15℃の範囲内で実施することで達成される。
 これにより積層性が制御される理由は定かではないが、第二の有機物層が塗工される際の環境を低温に保つことで、第二の有機物層塗布液に含まれる金属化合物が第一の有機物層へ浸透、拡散する速度が低下する、第一の有機物層が第二の有機物層塗布液へ再溶解する速度を抑制する等のことが推定される。また、塗布時の温度については、15℃を超えると第一の有機物層が第二の有機物層塗布液へと溶解してしまうため、好ましくない。また、該融点より5℃高い温度より低い温度環境では、塗布溶液の凝固が起こる可能性があるため、好ましくない。
 第二の有機物層塗布液を塗布して第二の有機物層を形成する工程としては、第二の有機物層塗布液に使用する溶媒の融点より5℃高い温度~15℃で実施される。該融点より5℃高い温度~10℃で実施されることがより好ましい。
 上記構成を達成するために、第一の有機物層を形成した後に、乾燥工程を含むことでも同様の効果が得られ好ましい。この際の乾燥方法は層内の溶剤が除去される条件であれば、ホットプレートやオーブン、あるいは赤外線による加熱乾燥、ドライヤーによる送風乾燥、あるいは真空下での減圧乾燥等のいずれの乾燥方法を用いても良く、上記の組み合わせでも構わない。また、より好ましくは有機電荷輸送層に用いられる電荷輸送性の有機化合物のTg近傍、具体的には、好ましくは、Tgより20℃低い温度から、Tgより5℃低い温度まで、より好ましくは、Tgより10℃低い温度から、Tgより5℃低い温度まで、の範囲内の温度で加熱する工程を実施することである。この工程を実施することで性能向上する理由は定かではないが、電荷輸送性の有機化合物のTg近傍で加熱する事で、層内の電荷輸送性の有機化合物が再配列を起こし、膜密度が向上することで第一の有機物層の溶解性の低減や金属化合物の拡散を抑制すると推測している。
 また、本発明で使用される電荷輸送性の有機化合物は電荷輸送性があればあらゆる構造の電荷輸送性の有機化合物を使用しても構わないが、一般式(1)で表される構造をもつ電荷輸送性の有機化合物の方が好ましい。これはこのようなジベンゾフラン骨格の酸素原子部位と、溶媒中で乖離した金属化合物の金属イオンが相互作用し、拡散がより抑制されるためと推定している。
 本発明で使用される金属化合物は、塗布溶剤に溶解可能なものならば特に制限は無いが、好ましくはリチウム、ナトリウム、カリウム、ルビシウム、セシウム等のアルカリ金属の塩およびベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等のアルカリ土類金属の塩であり、さらに好ましくはアルカリ金属の塩である。また、塩は無機塩でも有機塩でもどちらを使用しても良い。金属化合物がカリウム塩であることが特に好ましい。
 本発明で使用される溶剤は、有機機能層とコンタミネーションを起こす溶剤でなければあらゆる溶剤を使用して構わないが、金属化合物が比較的溶解しやすいものが多いため、純水やメタノール、エタノール、ノルマルプロパノール、イソプロパノール、ノルマルブタノール、ターシャリーブタノール、2,2,3,3-テトラフルオロプロパノール、2,2,3,3,3-ペンタフルオロプロパノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、2,2,3,3,4,4,5,5-オクタフルオロペンタノール等のアルコール系溶剤が好ましく、さらに好ましくは2,2,3,3-テトラフルオロプロパノール、2,2,3,3,3-ペンタフルオロプロパノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、2,2,3,3,4,4,5,5-オクタフルオロペンタノール等のフッ素化アルコール類である。
 また、第一の有機物層塗布液や第二の有機物層塗布液の塗布液濃度については、固体の溶解が平衡現象であり、一般的には希薄溶液においては溶液系の温度が低い方が溶解する速度は遅いこともあり、塗布液は希薄溶液である方が好ましい。また、あまりに塗布液濃度が薄すぎる場合は塗膜が乾いた後のドライ膜厚に対して塗布時に形成されるウェット膜厚が非常に大きくなり、乾燥ムラが起きやすくなるため塗布液濃度は有機化合物と金属化合物を合計した濃度が0.1~5質量%であることが好ましく、0.1~3質量%溶液がさらに好ましい。
 本発明の有機電荷輸送層を作製することにより、第一の有機物層と第二の有機物層の単純な積層を作製することも、均質にならない程度に適度に混合した層を作製することも、いずれも可能であるが、単純積層を作製することよりも、第一の層と第二の層が適度に混合し、金属化合物の含有量が膜厚方向で勾配がついた層を作製することの方がキャリアの注入や輸送性を制御する観点から好ましい。
 本発明の有機電子デバイスの製造方法は、従来公知の塗布法では作製が出来ない、同一化合物を含む層を積層できる製造方法を見出し得たことによる製造方法である。
 以下、本発明の有機電子デバイスの製造方法の一例として、有機EL素子の各構成要素の詳細について、順次説明するが、本発明は有機EL素子の製造方法に限定されず、有機太陽電池素子等の有機電子デバイス作製時の有機化合物の積層体製造時に適用しても良い。
 《有機EL素子の層構成》
 以下に、本発明の有機電子デバイスの製造方法で作製される本発明の有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
(i)陽極/発光層/電子輸送層/電子輸送層/陰極
(ii)陽極/正孔輸送層/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/正孔輸送層/発光層/電子輸送層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子輸送層/陰極
(v)陽極/正孔輸送層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子輸送層/陰極
(vi)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子輸送層/陰極バッファー層/陰極
(vii)陽極/正孔輸送層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子輸送層/陰極バッファー層/陰極
(viii)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子輸送層/陰極バッファー層/陰極
(ix)陽極/陽極バッファー層/正孔輸送層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子輸送層/陰極バッファー層/陰極
 《上記の各層の形成法》
 本発明の一例である有機EL素子は、構成層である電荷輸送層(電子輸送層ともいう。あるいは正孔輸送層としても好ましく用いることができる。電子輸送層であることが好ましい。)が塗布法で成膜形成されていればよく、その他の層の形成方法は特に塗布成膜方法に限定されず、必要に応じて、蒸着法等を用いて成膜することもできる。
 しかしながら、本発明の有機EL素子の製造方法においては、構成層である電荷輸送層の形成方法として、塗布法(塗布成膜方法ともいう)が用いられ、中でも、スピンコート法、キャスト法、インクジェット法、スプレー法、印刷法、スロット型コータ法等が挙げられるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、スピンコート法、インクジェット法、スプレー法、印刷法、スロット型コータ法等の塗布法による成膜が好ましく用いられることができる。
 もちろん、本発明の有機EL素子の電荷輸送層以外の構成層についても、上記の塗布法(塗布成膜方法)を適用することが好ましい。
 また、塗布成膜後の乾燥方法には、スピン乾燥、熱風乾燥、遠赤外乾燥、真空乾燥、減圧乾燥などが適用できる。
 また、本発明の一例である有機EL素子の有機電荷輸送層以外のその他の構成層の形成方法については、後述する有機EL素子の作製方法のところでも、詳細に説明する。
 《発光層》
 発光層とは、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
 発光層の膜厚は特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、且つ駆動電流に対する発光色の安定性向上の観点から、2~200nmの範囲に調整することが好ましく、更に好ましくは5nm以上、100nm以下の範囲に調整される。
 また発光効率向上の点から、有機エレクトロルミネッセンス素子の発光層には、発光ホストと発光ドーパントの少なくとも一種とを含有することが好ましい。
 以下、発光層に含まれる発光ドーパント、発光ホストについて説明する。
 (発光ホスト)
 ここで、本発明において発光ホストとは、発光層に含有される化合物の内で室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物である。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。
 本発明に用いることができる発光ホストとしては特に制限はなく、従来有機EL素子で用いられる化合物を用いることができるが、正孔輸送能、電子輸送能を有しつつ、且つ大きい励起3重項エネルギーを有し、なお且つ高Tg(ガラス転移温度)である化合物が好ましい。
 更にホストは複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を更に高効率化することができる。また、後述の発光ドーパントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
 また、発光ホストとしては、高分子化合物でも、低分子化合物でもよく、低分子化合物の中でも、ビニル基やエポキシ基のような重合性基を有する低分子化合物(重合性発光ホスト)でもよい。また、このような化合物を1種または複数種用いてもよい。
 以下に発光ホストの例を挙げるがこれらに限定されない。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 発光ホストとしては公知の発光ホスト単独で用いてもよく、または複数種併用して用いてもよい。発光ホストを複数種用いることで電荷の移動を調整することが可能であり、有機エレクトロルミネッセンス素子を高効率化することができる。また、後述する発光ドーパントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
 併用してもよい公知の発光ホストとしては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なお且つ高Tg(ガラス転移温度)である化合物が好ましい。
 公知の発光ホストの具体例としては、以下の文献に記載の化合物が挙げられる。
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等。
 《発光ドーパント》
 次に発光ドーパントについて説明する。
 発光ドーパント-発光ホスト型の発光原理としては2つ挙げられ、1つはキャリアが輸送される発光ホスト上でキャリアの再結合が起こって発光ホスト化合物の励起状態が生成し、このエネルギーを発光ドーパントに移動させることで発光ドーパントからの発光を得るというエネルギー移動型である。もう1つは発光ドーパントがキャリアトラップとなり、発光ドーパント化合物上でキャリアの再結合が起こり発光ドーパントからの発光が得られるというキャリアトラップ型である。
 また、エネルギー移動型ではエネルギー移動をしやすい条件として、発光ホストの発光と発光ドーパントの吸収の重なり積分が大きい方が良い。キャリアトラップ型ではキャリアトラップしやすいエネルギー関係であることが必要である。例えば、電子のキャリアトラップはホストの電子親和力(LUMOレベル)よりも発光ドーパントの電子親和力(LUMO)の方が大きい必要がある。
 逆に正孔のキャリアトラップは発光ドーパントのイオン化ポテンシャル(HOMO)よりも発光ドーパントのイオン化ポテンシャル(HOMO)が小さいことが好ましい。
 これらのことから、発光ドーパントには色純度を含めた発光色と発光効率から発光ドーパント化合物の選択が可能で、発光ホスト化合物はキャリア輸送性が良く、更に上記のエネルギー関係を満たすものから選ばれる。
 発光層の発光ドーパントは有機EL素子の発光ドーパントとして使用される公知のものの中から任意のものを選択して用いることができるが、蛍光発光またはリン光発光する有機化合物または錯体であることが好ましい。
 蛍光を発する発光ドーパントの代表例としては、レーザー色素に代表される蛍光量子収率が高い化合物や、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。
 リン光発光する発光ドーパントとしては、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であるが、好ましいリン光量子収率は0.1以上である。
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
 本発明に係るリン光ドーパントは、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、ユーロピウム錯体、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
 本発明に係るリン光ドーパントとして、更に好ましくは前記一般式(1)で表される化合物が挙げられる。具体的には以下の特許公報に記載されている化合物等が挙げられる。
 国際公開第00/70655号パンフレット、特開2002-280178号公報、特開2001-181616号公報、特開2002-280179号公報、特開2001-181617号公報、特開2002-280180号公報、特開2001-247859号公報、特開2002-299060号公報、特開2001-313178号公報、特開2002-302671号公報、特開2001-345183号公報、特開2002-324679号公報、国際公開第02/15645号パンフレット、特開2002-332291号公報、特開2002-50484号公報、特開2002-332292号公報、特開2002-83684号公報、特表2002-540572号公報、特開2002-117978号公報、特開2002-338588号公報、特開2002-170684号公報、特開2002-352960号公報、国際公開第01/93642号パンフレット、特開2002-50483号公報、特開2002-100476号公報、特開2002-173674号公報、特開2002-359082号公報、特開2002-175884号公報、特開2002-363552号公報、特開2002-184582号公報、特開2003-7469号公報、特表2002-525808号公報、特開2003-7471号公報、特表2002-525833号公報、特開2003-31366号公報、特開2002-226495号公報、特開2002-234894号公報、特開2002-235076号公報、特開2002-241751号公報、特開2001-319779号公報、特開2001-319780号公報、特開2002-62824号公報、特開2002-100474号公報、特開2002-203679号公報、特開2002-343572号公報、特開2002-203678号公報等。
 以下に発光ドーパントの例を挙げるがこれらに限定されない。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 特に、本発明の有機EL素子でリン光ドーパントを用いる場合、発光ホストの3重項エネルギーは、発光ドーパントの3重項エネルギーより大きいことが好ましい。これにより、輝度、及び外部取り出し効率を高くすることができ、品質をより高めることができる。
 次に、本発明の有機EL素子の構成層として用いられる、注入層、阻止層、電子輸送層等について説明する。
 《注入層:電子注入層、正孔注入層》
 注入層は必要に応じて設けることができ、陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。なお、有機層とは本発明に係る電荷輸送性の有機化合物以外の有機物を含む層をいう。
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
 また、特開平6-025658号公報に記載されているフェロセン化合物、特開平10-233287号公報等に記載されているスターバースト型の化合物、特開2000-068058号公報、特開2004-6321号公報に記載されているトリアリールアミン型の化合物、特開2002-117979号公報に記載されている含硫黄環含有化合物、米国特許出願公開第2002/158242号明細書、米国特許出願公開第2006/251922号明細書、特開2006-49393号公報等に記載されているヘキサアザトリフェニレン化合物等も正孔注入層として挙げられる。
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。
 上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm~5μmの範囲が好ましい。
 《阻止層:正孔阻止層、電子阻止層》
 阻止層は、有機化合物薄膜の構成層として必要に応じて設けられるものである。
 例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。
 本発明の有機EL素子の正孔阻止層が発光層に隣接して設けられる場合は、ウェットプロセスにより形成されることが好ましい。更に、特に好ましくはインクジェット法、印刷法、スロット型コータ法等の塗布法で形成されることであり、その中でもスロット型コータ法で形成されることがさらに好ましい。
 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて、本発明に係わる電子阻止層として用いることができる。
 本発明に係る正孔阻止層、電子阻止層の膜厚としては、金属化合物が第一の有機物層への拡散を抑制する塗布条件で行う場合は、第一の有機物層が正孔阻止層、あるいは電子阻止層のように振舞うことができる。このような場合は第一の有機物層の膜厚は好ましくは3~100nmであり、更に好ましくは5~30nmである。
 《正孔輸送層》
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層の機能を有する。正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル、N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル、4,4′-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ(2-ジフェニルビニル)ベンゼン、3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、スプレー法、スロット型コータ法等の公知の方法により、薄膜化することにより形成することができるが、発光層に隣接して設けられる場合は、ウェットプロセスにより形成されることが好ましい。更に、特に好ましくはインクジェット法、印刷法、スロット型コータ法等の塗布法で形成されることであり、その中でもスロット型コータ法で形成されることがさらに好ましい。
 正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層は上記材料の2種以上からなる一層構造であってもよい。
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
 本発明の有機電荷輸送層は、本発明における正孔輸送層としても好ましく用いることができる。
 《電子輸送層》
 電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層の機能を有する。電子輸送層は単層または複数層設けることができる。
 従来、発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
 その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、スプレー法、スロット型コータ法等の公知の方法により、薄膜化することにより形成することができるが、発光層に隣接して設けられる場合は、ウェットプロセスにより形成されることが好ましい。更に、特に好ましくはインクジェット法、印刷法、スロット型コータ法等の塗布法で形成されることであり、その中でもスロット型コータ法で形成されることがさらに好ましい。
 電子輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。電子輸送層は上記材料の2種以上からなる一層構造であってもよいが、本発明の構成からなる二層構造であることが特に好ましい。
 本発明の有機電荷輸送層は、本発明における電子輸送層としても好ましく用いることができる。
 本発明の有機電荷輸送層で使用される電荷輸送性の有機化合物は電荷輸送性があればあらゆる構造の電荷輸送性の有機化合物を使用しても構わないが、本発明の前記一般式(1)で表される化合物が好ましい。これはこのようなジベンゾフラン骨格の酸素原子部位と、溶媒中で乖離した金属イオンが相互作用し、拡散をより抑制されるためと推定している。
 本発明の前記一般式(1)で表される化合物(電荷輸送性の有機化合物)について説明する。
 前記一般式(1)において、ArおよびAr′はそれぞれ独立に、芳香環を表し、nは0~8の整数を表す。
 一般式(1)において、ArおよびAr’により表される芳香環としては、芳香族炭化水素環または芳香族複素環が挙げられる。また、該芳香環は単環でもよく、縮合環でもよく、更に未置換でも置換基を有してもよい。
 一般式(1)において、ArおよびAr’により表される芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。
 一般式(1)において、ArおよびAr’により表される芳香族複素環としては、例えば、フラン環、ジベンゾフラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げられる。
 上記の中でも、一般式(1)において、ArおよびAr’により表される芳香環として、好ましく用いられるのは、カルバゾール環、カルボリン環、ジベンゾフラン環、ベンゼン環、ピリジン環であり、更に好ましく用いられるのは、カルバゾール環、カルボリン環、ベンゼン環、ピリジン環であり、より好ましくは置換基を有するベンゼン環であり、特に好ましくはカルバゾリル基を有するベンゼン環が挙げられる。
 また、一般式(1)において、Arにより表される芳香環としては、各々3環以上の縮合環が好ましい一態様であり、3環以上が縮合した芳香族炭化水素縮合環としては、具体的には、ナフタセン環、アントラセン環、テトラセン環、ペンタセン環、ヘキサセン環、フェナントレン環、ピレン環、ベンゾピレン環、ベンゾアズレン環、クリセン環、ベンゾクリセン環、アセナフテン環、アセナフチレン環、トリフェニレン環、コロネン環、ベンゾコロネン環、ヘキサベンゾコロネン環、フルオレン環、ベンゾフルオレン環、フルオランテン環、ペリレン環、ナフトペリレン環、ペンタベンゾペリレン環、ベンゾペリレン環、ペンタフェン環、ピセン環、ピラントレン環、コロネン環、ナフトコロネン環、オバレン環、アンスラアントレン環等が挙げられる。
 なお、これらの環は、更に上記の置換基を有していてもよい。
 また、3環以上が縮合した芳香族複素環としては、具体的には、アクリジン環、ベンゾキノリン環、カルバゾール環、カルボリン環、フェナジン環、フェナントリジン環、フェナントロリン環、カルボリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の任意の一つが窒素原子で置き換わったものを表す)、フェナントロリン環、ジベンゾフラン環、ジベンゾチオフェン環、ナフトフラン環、ナフトチオフェン環、ベンゾジフラン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、チオファントレン環(ナフトチオフェン環)等が挙げられる。なお、これらの環は更に置換基を有していてもよい。
 また、一般式(1)において、nは0~8の整数を表すが、0~2であることが好ましく、特に1~2であることが好ましい。
 本発明において対となる電極は陽極と陰極である。
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。
 この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10nm~1000nm、好ましくは10nm~200nmの範囲で選ばれる。
 《陰極》
 一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50nm~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。
 また、陰極に上記金属を1~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
 《支持基板》
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(JSR製)あるいはアペル(三井化学製)といったシクロオレフィン系樹脂等を挙げられる。
 樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、水蒸気透過度が0.01g/m/日・atm以下のバリア性フィルムであることが好ましく、更には酸素透過度10-3g/m/日以下、水蒸気透過度10-5g/m/日以下の高バリア性フィルムであることが好ましい。
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
 本発明の有機エレクトロルミネッセンス素子の発光の室温における外部取り出し量子効率は、1%以上であることが好ましく、より好ましくは5%以上である。ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
 《封止》
 本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
 封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。
 本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。
 更には、ポリマーフィルムはJIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/m/24h以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RHが、1×10-3g/(m/24h)以下のものであることが好ましい。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、有機エレクトロルミネッセンス素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。
 更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩
素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
 《保護膜、保護板》
 有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量、且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
 《光取り出し》
 有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)等がある。
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
 本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。
 また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
 全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
 回折格子を導入する位置としては前述の通り、いずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
 このとき、回折格子の周期は媒質中の光の波長の約1/2~3倍程度が好ましい。
 回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
 《集光シート》
 本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10μm~100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
 また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
 《有機EL素子の作製方法》
 本発明の一例である有機EL素子の作製方法として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法を説明するが、本発明はこの実施例のみに限定されるものではない。
 まず適当な基板上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ陽極を作製する。
 作製後、洗浄表面改質処理工程、帯電除去処理工程を行ってもよい。
 洗浄表面改質処理としては、低圧水銀ランプ、エキシマランプ、プラズマ洗浄装置、などが利用可能である。この洗浄表面改質処理により、有機汚染物除去と濡れ性向上の表面改質が行われる。
 帯電除去処理としては、大別して光照射方式とコロナ放電式があり、光照射式は微弱X線、コロナ放電式はコロナ放電により空気イオンを生成する。この空気イオンは、帯電物体に引き寄せられて反対極性の電荷を補い、静電気を中和する。コロナ放電による除電器、軟X線による除電器が利用可能である。この帯電除去処理により、基板の帯電除去が図られるため、ゴミの付着や絶縁破壊が防止されるため、素子の歩留まりの向上が図られる。
 次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層の有機化合物薄膜を形成させる。
 本発明の有機EL素子の有機層は前述の通り、真空蒸着法及びウェットプロセス(スピンコート法、キャスト法、インクジェット法、スプレー法、印刷法、スロット型コータ法)で形成されるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、本発明においては有機層の一部もしくは全部について、スピンコート法、インクジェット法、スプレー法、印刷法、スロット型コータ法等のウェットプロセスによる成膜が好ましく、その中でもスロット型コータ法、またはインクジェット塗布方法がさらに好ましい。
 本発明に係る有機化合物材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができるが、特に有機電荷輸送層の材料を溶解させる際は前述したアルコール類が好ましく、フッ化アルコール類がさらに好ましい。また分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
 塗布後、乾燥処理工程にて溶媒の除去を行ってもよい。乾燥処理工程では乾燥炉を用いることができ、乾燥炉では有機化合物層の材料に応じて、適宜数ゾーンにして温度条件の変更や風速の変更等を行うことが可能である。
 溶媒除去後、加熱処理を行ってもよい。
 加熱処理後、基板を減圧下(10-6~10-2Pa)に収納させてもよく、適宜、温度をかけてもよい。収納期間は1~200時間が好ましい。これにより、素子劣化に起因する酸素や微量水分が取り除かれる。
 これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50~200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。
 また、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。この際は本発明に係る有機電荷輸送層にあたる層は正孔輸送層となる。このようにして得られた多色の表示装置に、直流電圧を印加する場合には陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
 《ウェットプロセス》
 本発明においては、有機エレクトロルミネッセンス素子の有機層に要求される非常に薄く、且つ高平滑性の単層塗布膜を形成するために効果的な方法として、スロット型コータ塗布方法、またはインクジェット塗布方法が好ましい。下記に、スロット型コータ塗布方法、またはインクジェット塗布方法について詳細に説明する。
 スロット型塗布コータを使用する場合、コータの上流に減圧チャンバーを設置し、ビード部を減圧状態に保持することで塗布の均一性が更に向上する。ビード下部を減圧することで支持体の表面性や濡れ性の変化があっても、塗布液の接液位置がほとんど変動せず、均一な膜厚の塗布膜が得ることができるからである。
 スロット型コータ塗布方式とは、塗布液供給装置から供給された塗布液はコータダイのポケット部で巾手に広がり、スリット部から巾手に均一な流量で流出し、そのまま支持体に巾手に均一な塗布膜厚で塗布される。前述のように、コータダイ上流部に減圧チャンバー装置を設置するのが、更に好ましい実施形態である。
 インクジェットヘッドとしては特に限定はなく、例えば、発熱素子を有し、この発熱素子からの熱エネルギーにより塗布液の膜沸騰による急激な体積変化によりノズルから塗布液を吐出させるサーマルタイプのヘッドでもよいし、インク圧力室に圧電素子を備えた振動板を有しており、この振動板によるインク圧力室の圧力変化で塗布液を吐出させる剪断モード型(ピエゾ型)のヘッドであってもよい。
 図1は、本発明の有機EL素子の製造方法に適用される塗布装置の一例を示す概略模式図である。図1は3種類の塗布液を重ねて塗布し、3層の塗布膜を形成する例で、2層の塗布はスロット型コータ(以下、コータとも略す)を用い、1層はインクジェットを用いた例である。図2は、図1に示す塗布装置を矢印Z1方向から見た側面拡大図である。コータ11、21は断面図としている。
 ロール状に巻かれた長尺状の支持体1は、駆動手段(図示していません)により巻き出しロール(図示していません)から矢印B方向に繰り出され搬送される。
 長尺状の支持体1はバックアップロール2に支持されながら搬送され、塗布手段である塗布ユニット10のコータ11、塗布ユニット20のコータ21、塗布ユニット30のインクジェットユニット31に配設されたインクジェットヘッド311により、順次1層ずつ塗布液を塗布され、3層の重層塗布膜を形成される。形成された重層塗布膜は乾燥部(図示していません)で乾燥され巻き取りロール(図示していません)に巻き取られる。
 塗布ユニット10は、コータ11、送液ポンプ12、塗布液タンク13及び塗布液供給管14を含み構成される。送液ポンプ12は、塗布液タンク13に貯留されている塗布液を塗布液供給管14を介してコータ11に供給する。コータ11は、支持体幅方向に塗布幅に対応するスリット111を有し、支持体1を挟みバックアップロール2に対向する位置に配設される。コータ11は、スリット111より支持体1に塗布液を吐出して塗布を行う。塗布ユニット10は、支持体1の幅方向に渡り塗布液をスリット111より均一に吐出する機能も有する。
 塗布ユニット20は、コータ21、送液ポンプ22、塗布液タンク23及び塗布液供給管24を含み構成される。機能は塗布ユニット10と同様である。
 塗布ユニット30は、インクジェットユニット31、インクジェットユニット31に配設されたインクジェットヘッド311、塗布液タンク33、塗布液供給管34を含み構成される。インクジェットヘッド311は支持体1を挟みバックアップロール2に対向する位置に配設される。塗布液タンク33に貯留されている塗布液は、塗布液供給管34を介しインクジェットヘッド311に供給され、インクジェットヘッド311のノズルから支持体1に射出される。これにより、塗布液が支持体1に塗布される。塗布液は、インクジェットヘッド311のノズルよりバックアップロール2の略回転中心方向に射出される。
 インクジェットユニット31にはインクジェットヘッド311が任意の個数、配列で設置されている。個数及び配列は、使用する塗布液、塗布条件、例えばインクジェットヘッド311の射出幅及び支持体1の塗布幅等、により適宜設定される。
 塗布ユニット30は、塗布液をインクジェットヘッド311に供給するとともに、インクジェットヘッド311内の塗布液圧力を一定に保つ機能も有する。
 インクジェットヘッド311としては特に限定はなく、例えば発熱素子を有し、この発熱素子からの熱エネルギーにより塗布液の膜沸騰による急激な体積変化によりノズルから塗布液を吐出させるサーマルタイプのヘッドでもよいし、インク圧力室に圧電素子を備えた振動板を有しており、この振動板によるインク圧力室の圧力変化で塗布液を吐出させる剪断モード型(ピエゾ型)のヘッドであってもよい。
 図3は、図2に示す塗布装置に用いられるインクジェットヘッド311の設置配列の一例を示す概略平面図である。
 図3において、311-1~311-5は配置されたインクジェットヘッドを示す。インクジェットヘッド311-1~311-5は、各ヘッド311-1~311-5のノズル吐出口を有する面と支持体1の塗布膜面とが平行で一定間隔を保持し、支持体1の移動方向と直交方向である幅方向に配設されたノズル吐出口の中心を結ぶ線と支持体1の移動方向とのなす角度を90°に配置されている。また、隣り合うヘッドの間に未塗布部をなくすために、各ヘッド311-1~311-5の端部は互いに重なり合うように千鳥状に配設されている。このように複数のヘッドを使用し、本図に示す様に配設することで支持体1の幅に対する対応が容易となり、且つ、各ヘッド間で未塗布部分がなくなり安定した塗布膜が得られる。
 コータ11、21及びインクジェットヘッド311はバックアップロール2の円周に沿って所定の間隔で配設される。
 また、塗布1層の乾燥後塗布膜厚は特に制限はないが、通常は5nm~5μm程度、更には5nm~200nmであることが好ましい。
 この方式による塗布速度は1m/分~10m/分が好ましく、1m/分~5m/分が更に好ましい。塗布乾燥後膜厚が薄いため、塗布速度を10m/min以下とすると、安定に塗布でき、品質欠陥を抑えることが可能である。また、十分に乾燥した後に上層が塗布されるので、層間の混合が発生しにくくなり、これも品質欠陥を防ぐことにつながる。
 本実施の形態では、2つのコータと1つのインクジェットというようにコータとインクジェットの組合せの構成としたが、全てコータでも、また全てインクジェットの構成としてもよい。
 《表示装置、照明装置》
 本発明に係る有機EL素子を適用した表示装置、照明装置について説明する。本発明に係る有機EL素子は、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよいし、照明用や露光光源のような一種のランプとして使用してもよい。
 以下、実施例により本発明を説明するが、本発明はこれらに限定されない。尚、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。また、実施例において用いられる本発明に係る電荷輸送性の有機化合物の構造を下記に示す。
Figure JPOXMLDOC01-appb-C000013
 実施例1
 《有機EL素子101の作製》
 陽極として厚さ200μmのポリエーテルサルフォン(住友ベークライト製フィルム、以下、PESと略記する)上に、大気圧プラズマ重合法を用い透明ガスバリア性フィルムを作製した。
 次いで、このガスバリア性フィルム基板上にITO(インジウムチンオキシド)を120nm成膜した。陽極が形成されているロール状帯状可撓性シートを繰り出し、洗浄表面改質処理工程、帯電除去処理工程を経て、ロール状に巻き取った。
 洗浄表面改質処理としては、ドライ洗浄表面改質処理装置として低圧水銀ランプ波長184.9nm、照射強度15mW/cm、照射距離10mmにて実施した。
 帯電除去処理としては、微弱X線による除電器を利用した。
 この基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer製、Baytron P Al 4083)を純水で70質量%に希釈した溶液を直径3mのバックアップロールを利用し、スロット型コータ法により塗布速度4m/分で成膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔注入層を設けた。
 正孔輸送層用塗布液を下記のように調製し、直径3mのバックアップロールを利用し、スロット型コータを利用して、塗布速度4m/分、乾燥後膜厚を正孔輸送層20nmになるように塗布した。
 この基板を、150℃で30分間加熱し正孔輸送層を設けた。
 (正孔輸送層用塗布液)
 トルエン中に、American Dye Source社製ADS254BEを0.5質量%になるように溶解させ正孔輸送層用塗布液を調製した。
 次いで、発光層用塗布液を下記のように調製し、直径3mのバックアップロールを利用し、スロット型コータを利用して、塗布速度4m/分、乾燥後膜厚を50nmとなるように塗布した。
 (発光層用塗布液)
 酢酸ブチル中に、H-27を1質量%、D-1を0.1質量%になるように溶解させ、発光層用塗布液を調製した。
 発光層の塗布後、すぐに加熱された気流による乾燥処理工程にて溶媒を除去した。スリットノズル形式の噴出し口から成膜面に向け高さ100mm、噴出し風速1m/秒、幅手分布5%、乾燥温度100℃で実施した。
 (電子輸送層用塗布液)
 次いで、電子輸送層用塗布液を下記のように調製、塗布を行って、第一の有機物層、第二の有機物層、を作製した。
(第一の有機物層)
 ノルマルブタノール中に、ET-1(Tg:109℃)を1.0質量%になるように溶解させ、電子輸送層用塗布液を調製した。直径3mのバックアップロールを利用し、スロット型コータを利用して、塗布速度4m/分、狙い膜厚を20nmとなるように塗布した。
 塗布後、加熱された気流による乾燥処理工程にて溶媒を除去した。スリットノズル形式の噴出し口から成膜面に向け高さ100mm、噴出し風速1m/秒、幅手分布5%、乾燥温度100℃で実施した。
(第二の有機物層)
 溶媒除去後、塗工装置の環境を0℃に調整し、ノルマルブタノール中にET-1を0.9質量%、フッ化カルシウムを0.1質量%になるように溶解させ、電子輸送層用塗布液を調整し、直径3mのバックアップロールを利用し、スロット型コータを利用して、塗布速度4m/分、乾燥後狙い膜厚を20nmとなるように塗布した。
 塗布後から加熱された気流による乾燥処理工程における溶媒除去まで電子輸送層の膜厚は分光エリプソメータで測定した。
 温度150℃のヒートロールを密に並べたロール間から吸引することにより基板が吸着搬送され、裏面伝熱による加熱で熱処理を行った。
 巻き取られたロールは収納箱に保管され、減圧下(10-6~10-2Pa)に収納された。電子輸送層まで設けた基板を、得られたロール状の上記フィルムを蒸着機に移動し、4×10-4Paまで減圧した。なお、フッ化セシウム及びアルミニウムをそれぞれタンタル製抵抗加熱ボートに入れ、蒸着機に取り付けておいた。
 電子輸送層上に蒸着ヘッドを用いて、電子注入層として厚さ3nmのフッ化セシウムを蒸着した。
 続いて、有機EL層領域及び電極出し領域を含めた領域に厚さ100nmのアルミ層も同様に蒸着を行い、陰極を設けた。
 陰極まで設けた基板を、電極となる領域以外にスパッタリング法、プラズマCVD法、イオンプレーティング法などを用いSiOxやSiNxもしくは複合膜などの無機膜を300nmの封止膜として形成し巻き取り、有機EL素子101を得た。
 《有機EL素子102~106の作製》
 有機EL素子101の作製において、第二の有機物層のET-1の溶解量とフッ化カルシウム物の溶解量を下記表1のように変更した以外は同様にして、有機EL素子102~106を作製した。
 《有機EL素子107~109の作製》
 有機EL素子101の作製において、第二の有機物層の塗布溶液中の有機物全体の含有量は変更せず、ET-1に加えてET-2を下記表1の比率で混合した塗布溶液を用いた以外は同様にして、有機EL素子107~109を作製した。
 《有機EL素子201~206の作製》
 有機EL素子105の作製において、第二の有機物層の塗布溶液塗布時の環境温度下記表2のように変更した以外は同様にして、有機EL素子201~206を作製した。
 《有機EL素子207~212の作製》
 有機EL素子105の作製において、第一の有機物層の形成後、すぐに加熱された気流による乾燥処理工程にて溶媒を除去し、スリットノズル形式の噴出し口から成膜面に向け高さ100mm、噴出し風速1m/秒、幅手分布5%で乾燥温度を下記表2に示した温度で乾燥した以外は同様にして、有機EL素子207~212を作製した。
 《有機EL素子301~304の作製》
 有機EL素子105の作製において、電荷輸送性の有機化合物の種類を下記表3の通りに変更した以外は同様にして、有機EL素子301~304を作製した。
 《有機EL素子401~409の作製》
 有機EL素子105の作製において、金属化合物の種類を下記表4の通りに変更した以外は同様にして、有機EL素子401~409を作製した。
 《有機EL素子501~508の作製》
 有機EL素子105の作製において、使用溶剤の種類を下記表5の通りに変更した以外は同様にして、有機EL素子501~508を作製した。
 《有機EL素子601~607の作製》
 有機EL素子105の作製において、第二の有機物層の塗布溶液について、有機化合物と金属化合物の含有比率を保ったまま、表5の通り固形分濃度を変更した以外は同様にして、有機EL素子601~607を作製した。
(第一の有機物層中の「金属化合物」の、「電荷輸送性の有機化合物」と「金属化合物」との合計に対する含有率)
 作製した有機EL素子について、ADEPT1010(Physical Electronics社製)を用いて、一次イオン種はO 、一次イオンの加速電圧は3kVの正イオン検出条件でカルシウムイオンを測定し、第二の有機物層で検出される強度と第一の有機物層で検出される強度とを比較して、第一の有機物層中で検出される「金属化合物」の、「電荷輸送性の有機化合物」と「金属化合物」との合計に対する含有率(質量比)、即ち、((金属化合物/(金属化合物+電荷輸送性の有機化合物))×100(質量%)を求めた。
 得られた結果を表1~6に示す。
 《有機エレクトロルミネッセンス素子の評価》
 作製した有機エレクトロルミネッセンス素子について、下記のようにして成膜性及び積層性および駆動安定性を評価した。
 《成膜性》
 作製した有機エレクトロルミネッセンス素子に対し、2.5mA/cm定電流を印加したときの輝度ムラを測定した。1cm×1cmの発光部分のうち中央部と四隅の輝度を測定し、最も高い輝度と最も低い輝度の差によって下記の通りA~Cと評価した。なお、測定には分光放射輝度計CS-1000(コニカミノルタセンシング製)を用いた。
A.最高輝度と最低輝度の差が5%以内
B.最高輝度と最低輝度の差が5%より高く10%以内
C.最高輝度と最低輝度の差が10%より高い
 《積層性》
 第一の有機物層のみ成膜した場合のドライ膜厚と、第二の有機物層のみ成膜した場合のドライ膜厚を足し合わせたものに対して、第一の有機物層と第二の有機物層を積層した場合のドライ膜厚を比較して、その差によって下記の通りA~Cと評価した。なお、それぞれの膜厚の測定には分光エリプソメータを用いた。
A.膜厚差が10%以内
B.膜厚差が10%より高く20%以内
C.膜厚差が20%より高い
 《駆動安定性》
 作製した有機エレクトロルミネッセンス素子に対し、2.5mA/cm定電流を100hr印加したときの駆動電圧と印加直後の駆動電圧を比較し、その差によって下記の通りA~Cと評価した。
A.電圧上昇が1.0V以内
B.電圧上昇が1.0Vよりも高く、2.0V以内
C.電圧上昇が2.0Vより高い
 得られた結果を表1~6に示す。
 なお、以下の表においては電荷輸送性の有機化合物を有機化合物と略記した。また表5で用いた溶媒のTFPOは2,2,3,3-テトラフルオロ-1-プロパノール、HFIPは1,1,1,3,3,3-ヘキサフルオロイソプロパノールを表す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 表1から明らかなように、本発明の請求項1の構成の場合には、製膜性、積層性、駆動安定性に優れていることがわかる。
 有機EL素子101~106から、第二の有機物層塗布液に含有される、金属化合物の量が電荷輸送性の有機化合物の量と金属化合物の含有量との合計に対して、40質量%以下含有している場合は積層性と成膜性が保たれているが、金属化合物が20質量%未満含有している場合や、40質量%を超えて含有してしまうと、成膜性が大きく悪化することがわかる。
 また、有機EL素子105、107~109から、第一の有機物層と第二の有機物層のそれぞれの有機化合物の80質量%以上が同一化合物ならば充分な性能を満たしているが、80質量%より下回った場合には成膜性と駆動安定性が大きく劣化することがわかる。本発明の要件を全て満たすことで、積層性、成膜性、さらには駆動安定性の諸性能を満たした有機EL素子が製造できることがわかった。
 表2から明らかなように、有機EL素子105、201~206から、第二の有機物層を塗布する際の温度(環境)が、第二の有機物層塗布液に使用する溶媒の融点より5℃高い温度以上、15℃以下では積層性と成膜性が良い素子が得られて好ましいことがわかる。その範囲外では高温時は積層性が悪いことがわかる(尚、該融点より5℃高い温度より低い温度環境では、塗布溶液の凝固が起こる可能性があるため、好ましくない。)。
 また、有機EL素子206、207~212から、第一の有機物層を塗布形成後に乾燥する工程(加熱処理)を実施することで積層性と駆動安定性が改善していることがわかり、さらにはTgよりも5℃低い温度からTgよりも20℃低い温度の範囲内で乾燥工程を実施することでより諸性能が改善していることがわかる。
 表3から、電子輸送材料としてET-1の他にET-2、ET-3を使用した場合でも同等の性能が発現していることがわかる。さらに、一般式(1)を含む部分構造を持つET-4、ET-5を電子輸送材料として用いることで積層性をさらに増す結果となったことがわかる。
 表4から、金属化合物として表3に示す種々の本発明の金属化合物を用いた場合でも、いずれの素子でも実施例105(本発明)同等の性能が発現している。そして、アルカリ土類金属をアルカリ金属塩にすることで特に優れることがわかる。それ以外の金属化合物を使用した場合もアルカリ金属やアルカリ土類金属の金属化合物を使用した場合ほどではないものの目的の効果は得られることがわかる。
 表5から、いずれの溶剤を使用した場合についても所望の効果を得られるが、アルコール溶剤、フッ素化アルコール溶剤を用いた方がそれ以外の溶剤を使用するよりも高い効果が得られることがわかる。さらにその中でもフッ素化アルコール溶剤の効果が顕著であることが明らかである。
 表6から、第二の有機物層塗布液の固形分濃度に寄らず、目的の効果を達成しているが、第二の有機物層塗布液の濃度が0.1~3質量%の範囲内で調整した溶液の方がより高い効果が得られていることがわかる。
 これらの結果より、本発明で製造した有機電子デバイスでは、蒸着法ならば容易に作製できる同一化合物含む層の積層を塗布型で達成できた。さらに有機EL素子においては駆動時の経時安定性を改善した製造方法が提供できた。
 1 支持体
 2 バックアップロール
 10、20、30 塗布ユニット
 11、21 コータ
 12、22 送液ポンプ
 13、23、33 塗布液タンク
 111、211 スリット
 31 インクジェットユニット
 311 インクジェットヘッド

Claims (12)

  1.  基板上に対となる電極、該電極間に少なくとも有機機能層と有機電荷輸送層とを有し、該有機電荷輸送層は、少なくとも第一の有機物層と第二の有機物層を有して成る有機電子デバイスの製造方法において、
     1)該有機機能層上に、電荷輸送性の有機化合物を含有する第一の有機物層塗布液を塗布し第一の有機物層を形成する工程、
     2)該第一の有機物層の上に、該電荷輸送性の有機化合物と金属化合物とを含有する第二の有機物層塗布液を塗布し第二の有機物層を形成する工程、の順によって形成され、
     3)該第一の有機物層と該第二の有機物層のそれぞれの該電荷輸送性の有機化合物の80質量%以上が同一化合物であり、
     4)該第二の有機物層塗布液に含有される、該金属化合物の含有量が該第二の有機物層塗布液に含有される該電荷輸送性の有機化合物の含有量と該金属化合物の含有量との合計に対して20~40質量%であり、且つ、
     5)前記第二の有機物層塗布液を塗布し第二の有機物層を形成する工程が、該第二の有機物層塗布液に使用する溶媒の融点より5℃高い温度~15℃で実施される、ことを特徴とする有機電子デバイスの製造方法。
  2.  前記第一の有機物層塗布液を塗布し第一の有機物層を形成した後に、乾燥する工程が実施されることを特徴とする請求項1に記載の有機電子デバイスの製造方法。
  3.  前記乾燥する工程が、該電荷輸送性の有機化合物のTg-10℃~Tg-5℃に加熱する工程であることを特徴とする請求項2に記載の有機電子デバイスの製造方法。
  4.  前記電荷輸送性の有機化合物が、下記一般式(1)で表される化合物であることを特徴とする請求項1~3のいずれか1項に記載の有機電子デバイスの製造方法。
    Figure JPOXMLDOC01-appb-C000001

     (式中、ArおよびAr′はそれぞれ独立に、芳香環を表し、nは0~8の整数を表す。)
  5.  前記金属化合物が、アルカリ金属塩であることを特徴とする請求項1~4のいずれか1項に記載の有機電子デバイスの製造方法。
  6.  前記金属化合物が、カリウム塩であることを特徴とする請求項1~5のいずれか1項に記載の有機電子デバイスの製造方法。
  7.  前記第一の有機物層塗布液または第二の有機物層塗布液の溶剤が、フッ素化アルコールであることを特徴とする請求項1~6のいずれか1項に記載の有機電子デバイスの製造方法。
  8.  前記第二の有機物層塗布液中の有機化合物と金属化合物を合計した濃度が0.1~3.0質量%であることを特徴とする請求項1~7のいずれか1項に記載の有機電子デバイスの製造方法。
  9.  前記有機電荷輸送層が、厚さ方向において前記金属化合物の濃度勾配を形成していることを特徴とする請求項1~8のいずれか1項に記載の有機電子デバイスの製造方法。
  10.  前記有機電荷輸送層が、電子輸送層であることを特徴とする請求項1~9のいずれか1項に記載の有機電子デバイスの製造方法。
  11.  前記有機機能層が、有機エレクトロルミネッセンス層であることを特徴とする請求項1~10のいずれか1項に記載の有機電子デバイスの製造方法。
  12.  請求項1~11のいずれか1項に記載の有機電子デバイスの製造方法で作製されたことを特徴とする有機電子デバイス。
PCT/JP2011/052483 2010-02-17 2011-02-07 有機電子デバイスの製造方法および有機電子デバイス WO2011102249A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012500555A JPWO2011102249A1 (ja) 2010-02-17 2011-02-07 有機電子デバイスの製造方法および有機電子デバイス
US13/578,671 US8796674B2 (en) 2010-02-17 2011-02-07 Method of manufacturing organic electronic device, and organic electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010032261 2010-02-17
JP2010-032261 2010-02-17

Publications (1)

Publication Number Publication Date
WO2011102249A1 true WO2011102249A1 (ja) 2011-08-25

Family

ID=44482836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052483 WO2011102249A1 (ja) 2010-02-17 2011-02-07 有機電子デバイスの製造方法および有機電子デバイス

Country Status (3)

Country Link
US (1) US8796674B2 (ja)
JP (1) JPWO2011102249A1 (ja)
WO (1) WO2011102249A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099366A (ja) * 2012-11-15 2014-05-29 Denso Corp 有機el素子の製造方法
JP2015082537A (ja) * 2013-10-22 2015-04-27 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、その製造方法及び有機エレクトロルミネッセンスデバイス

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10211413B2 (en) * 2012-01-17 2019-02-19 Universal Display Corporation Organic electroluminescent materials and devices
US9299960B2 (en) * 2012-04-27 2016-03-29 Konica Minolta, Inc. Electronic device manufacturing apparatus
KR102059827B1 (ko) * 2013-05-14 2020-02-12 삼성디스플레이 주식회사 기판 분리 장치 및 기판 분리 방법
US9559327B2 (en) * 2013-09-13 2017-01-31 Joled Inc. Organic light emitting device and method for manufacturing same
EP4199125A1 (en) * 2021-12-14 2023-06-21 Novaled GmbH Organic light emitting diode, method for preparing the same and device comprising the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196140A (ja) * 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP2005072012A (ja) * 2003-08-27 2005-03-17 Novaled Gmbh 発光素子とその製造方法
JP2005510034A (ja) * 2001-11-22 2005-04-14 キヤノン株式会社 発光素子及びその製造方法及び発光装置
WO2008028611A2 (de) * 2006-09-04 2008-03-13 Novaled Ag Organisches lichtemittierendes bauteil und verfahren zum herstellen
JP2009043612A (ja) * 2007-08-09 2009-02-26 Sharp Corp 有機el素子
JP2009076241A (ja) * 2007-09-19 2009-04-09 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法
WO2009060780A1 (ja) * 2007-11-08 2009-05-14 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2009152033A (ja) * 2007-12-20 2009-07-09 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3861400B2 (ja) 1997-09-01 2006-12-20 セイコーエプソン株式会社 電界発光素子およびその製造方法
JP4068279B2 (ja) 2000-02-23 2008-03-26 パイオニア株式会社 有機エレクトロルミネッセンス素子
JP4076769B2 (ja) 2000-12-28 2008-04-16 株式会社半導体エネルギー研究所 発光装置及び電気器具
JP4839717B2 (ja) 2005-08-01 2011-12-21 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000196140A (ja) * 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP2005510034A (ja) * 2001-11-22 2005-04-14 キヤノン株式会社 発光素子及びその製造方法及び発光装置
JP2005072012A (ja) * 2003-08-27 2005-03-17 Novaled Gmbh 発光素子とその製造方法
WO2008028611A2 (de) * 2006-09-04 2008-03-13 Novaled Ag Organisches lichtemittierendes bauteil und verfahren zum herstellen
JP2009043612A (ja) * 2007-08-09 2009-02-26 Sharp Corp 有機el素子
JP2009076241A (ja) * 2007-09-19 2009-04-09 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法
WO2009060780A1 (ja) * 2007-11-08 2009-05-14 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2009152033A (ja) * 2007-12-20 2009-07-09 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法、有機エレクトロルミネッセンス素子、表示装置及び照明装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014099366A (ja) * 2012-11-15 2014-05-29 Denso Corp 有機el素子の製造方法
JP2015082537A (ja) * 2013-10-22 2015-04-27 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、その製造方法及び有機エレクトロルミネッセンスデバイス

Also Published As

Publication number Publication date
US8796674B2 (en) 2014-08-05
JPWO2011102249A1 (ja) 2013-06-17
US20120319094A1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
JP5472121B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置、ならびに有機エレクトロルミネッセンス素子の製造方法
JP5810529B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5413459B2 (ja) 白色発光有機エレクトロルミネッセンス素子
WO2011102249A1 (ja) 有機電子デバイスの製造方法および有機電子デバイス
WO2012029750A1 (ja) 有機エレクトロルミネッセンス素子、その製造方法、表示装置及び照明装置
JP5182225B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5180429B2 (ja) 有機エレクトロルミネッセンス素子
WO2011132550A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5181920B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5862665B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JPWO2009116414A1 (ja) 有機エレクトロルミネッセンス素子
WO2010084815A1 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP5879737B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5472107B2 (ja) 有機エレクトロルミネセンス素子の製造方法
JP2010272286A (ja) 白色発光有機エレクトロルミネッセンス素子の製造方法
JP2008305613A (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2010177338A (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP5152331B2 (ja) 有機エレクトロルミネセンス素子およびその製造方法
WO2010084816A1 (ja) 有機エレクトロルミネッセンス素子及びその製造方法
JP2012084415A (ja) 有機エレクトロルミネッセンス素子の製造方法および有機エレクトロルミネッセンス素子
JP2013246950A (ja) 有機エレクトロニクスデバイスおよびその製造方法
JP2012234972A (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
JP2012169199A (ja) 有機エレクトロルミネッセンス素子
JP2010199021A (ja) 有機エレクトロルミネセンス素子の製造方法
JP2011222385A (ja) 有機エレクトロルミネッセンス素子の製造方法及び有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744536

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500555

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13578671

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744536

Country of ref document: EP

Kind code of ref document: A1