WO2011102030A1 - アクティブマトリクス基板、ガラス基板、液晶パネル、および液晶表示装置 - Google Patents

アクティブマトリクス基板、ガラス基板、液晶パネル、および液晶表示装置 Download PDF

Info

Publication number
WO2011102030A1
WO2011102030A1 PCT/JP2010/070230 JP2010070230W WO2011102030A1 WO 2011102030 A1 WO2011102030 A1 WO 2011102030A1 JP 2010070230 W JP2010070230 W JP 2010070230W WO 2011102030 A1 WO2011102030 A1 WO 2011102030A1
Authority
WO
WIPO (PCT)
Prior art keywords
shielding film
active matrix
light shielding
matrix substrate
wiring
Prior art date
Application number
PCT/JP2010/070230
Other languages
English (en)
French (fr)
Inventor
広西 相地
山内 哲也
紀将 岩井
泰男 溝腰
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/578,963 priority Critical patent/US20120320307A1/en
Publication of WO2011102030A1 publication Critical patent/WO2011102030A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/14Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices
    • H01L31/147Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • H01L31/153Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the light source or sources being controlled by the semiconductor device sensitive to radiation, e.g. image converters, image amplifiers or image storage devices the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers formed in, or on, a common substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13318Circuits comprising a photodetector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • the present invention relates to an active matrix substrate, a glass substrate, a liquid crystal panel, and a liquid crystal display device with a built-in photosensor, and more particularly to a technique for reducing the occurrence of ESD breakdown in the vicinity of the photosensor.
  • Such a semiconductor device includes a photodiode as a light receiving element that performs photoelectric conversion, and is incorporated in an electronic device such as a mobile phone, a display device, or a digital camera.
  • an electronic apparatus for example, brightness of a display panel or camera exposure adjustment is performed by detecting ambient light using a semiconductor device.
  • ESD Electro-Static Discharge
  • a semiconductor device described in Patent Document 1 includes a photodiode, an amplifier circuit, a high-potential side connection electrode and a low-potential side connection electrode connected to a power supply, and a dummy pattern (a dummy electrode made of a conductive film).
  • the dummy pattern is provided in the same layer adjacent to the high potential side connection electrode and the low potential side connection electrode, and in a larger area than the high potential side connection electrode and the low potential side connection electrode. It has a configuration.
  • the dummy pattern is not electrically connected to the photodiode and the amplifier circuit, and the potential is in a floating state.
  • the probability of ESD breakdown occurring in the dummy pattern is higher than that of the high potential side connection electrode and the low potential side connection electrode, and even when ESD occurs in the dummy pattern, Can be prevented. Further, by electrically connecting the dummy pattern to a substrate such as a printed wiring board, when the charge is accumulated in the dummy pattern, the charge can be released to the substrate.
  • liquid crystal display devices having a photosensor function have been developed.
  • Such a liquid crystal display device includes a liquid crystal panel with a built-in optical sensor, and functions as a touch panel or a scanner by detecting a change in light when the screen is touched.
  • a photodiode is formed for each pixel as an optical sensor on an active matrix substrate.
  • a liquid crystal display including the semiconductor device is provided.
  • the apparatus is not suitable for applications such as a touch panel having a configuration in which a photodiode is formed in a pixel as described above. In a touch panel or the like, it is necessary to prevent light that directly enters the photodiode from the backlight from becoming noise.
  • Patent Document 2 An optical sensor type liquid crystal display device applicable to a touch panel or the like is described in Patent Document 2, for example.
  • a light-shielding film that shields irradiation light from the backlight from directly entering the photodiode is provided below the semiconductor layer serving as the photodiode in the active matrix substrate of the liquid crystal panel. It has been.
  • the light shielding film is provided for each photodiode, and the potential is in a floating state.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2008-182214 (published on August 7, 2008)” Japanese Patent Publication “Japanese Unexamined Patent Publication No. 2009-237286 (published on October 15, 2009)”
  • the liquid crystal display device of the optical sensor model described in Patent Document 2 has a problem that ESD breakdown occurs during the flow of the process in the manufacturing process of the liquid crystal panel. For this reason, the reliability is poor, and the panel yield is lowered.
  • the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide an active matrix substrate and glass capable of reducing the occurrence of ESD breakdown in a configuration in which a pixel includes a light receiving element and a light shielding film.
  • a substrate, a liquid crystal panel, and a liquid crystal display device are provided.
  • an active matrix substrate of the present invention is an active matrix substrate having an active area in which a plurality of pixels are arranged in a matrix, and each pixel includes a display unit for displaying an image. And a sensor unit for detecting light, and the sensor unit of each pixel regularly extracted from the plurality of pixels is provided with a light receiving element and a first light shielding film, and the first light shielding film The film is disposed below the light receiving element and overlaps with the light receiving element when viewed from a direction perpendicular to the active matrix substrate, and avoids the display unit. It is characterized in that a wiring for electrically connecting the light shielding film is provided.
  • all the first light shielding films have the same potential, so that it is possible to eliminate the ESD that has conventionally occurred between the light shielding film and the light shielding film. Therefore, occurrence of ESD breakdown can be reduced.
  • the glass substrate of the present invention is a glass substrate in which a plurality of the active matrix substrates are arranged in a matrix including cutting margins around the active matrix substrates.
  • the wiring of the active matrix substrate is drawn out into the cutting margin, and the cutting margin is provided with inter-substrate wiring for electrically connecting all the wirings of the respective active matrix substrates.
  • the glass substrate since the inter-substrate wiring is provided, all the light shielding film layers in the glass substrate have the same potential. Therefore, even when the charge amount of the glass substrate becomes larger, the glass substrate can prevent the ESD from occurring between the light shielding film and the light shielding film between the active matrix substrates. Therefore, occurrence of ESD breakdown can be reduced.
  • the liquid crystal panel of the present invention includes the active matrix substrate in order to solve the above problems.
  • the liquid crystal display device of the present invention includes the above-described liquid crystal panel and a light source device in order to solve the above problems.
  • the active matrix substrate of the present invention has a configuration in which wirings for electrically connecting all the first light shielding films are provided so as to avoid the display portion, all the first light shielding films are The potential becomes the same, and ESD that has conventionally occurred between the light shielding film and the light shielding film can be eliminated. Therefore, there is an effect that occurrence of ESD destruction can be reduced.
  • the wiring of each active matrix substrate is drawn into a cutting margin, and the cutting margin is provided with an inter-substrate wiring that electrically connects all the wirings of each of the active matrix substrates. Because of this configuration, all the light shielding film layers in the glass substrate have the same potential, and even if the amount of charge of the glass substrate is larger, in the glass substrate, the light shielding film between each active matrix substrate and the light shielding film It is possible to prevent the occurrence of ESD in between. Therefore, there is an effect that occurrence of ESD destruction can be reduced.
  • the liquid crystal panel of the present invention is configured to include the above active matrix substrate. Moreover, the liquid crystal display device of this invention is a structure provided with the said liquid crystal panel and a light source device. Therefore, both of them can reduce the occurrence of ESD breakdown, and have the effect of being able to be provided as a liquid crystal panel and a liquid crystal display device excellent in reliability.
  • FIG. 2 is an enlarged plan view of a region ⁇ in FIG. 1 showing a configuration of pixels in an active area of the liquid crystal panel. It is sectional drawing which shows the cross-section of the sensor part of one pixel in the active matrix substrate of the said liquid crystal panel. It is a top view which shows the structure of the layer in which the light shielding film in the active matrix substrate of the said liquid crystal panel is formed.
  • (A)-(d) is sectional drawing which shows the formation process until forming the amorphous silicon film used as a photodiode among the manufacturing processes of a sensor part. It is a top view which shows one Embodiment of the glass substrate in this invention. It is an enlarged view of the active matrix substrate in the said glass substrate.
  • FIG. 24 is a plan view showing another embodiment of the liquid crystal panel according to the present invention and showing a configuration of a layer in which a light shielding film is formed in an active matrix substrate.
  • the vertical direction in FIG. 1 is referred to as a vertical direction
  • the horizontal direction in FIG. 1 is referred to as a horizontal direction
  • the plan view of FIG. 1, that is, when viewed from a direction perpendicular to the liquid crystal panel (active matrix substrate) is referred to as a plan view.
  • FIG. 1 is a schematic plan view showing a configuration example of the liquid crystal panel 100 of the present embodiment.
  • FIG. 2 is an enlarged plan view of the region ⁇ in FIG. 1 showing the configuration of the pixel 105 in the active area 101.
  • the liquid crystal panel 100 is provided with an active area 101, a gate driver 102 (driver), a sensor driver 103 (driver), and a terminal unit 104.
  • the liquid crystal panel 100 uses an active matrix driving method.
  • the active area 101 is an area in which the pixels 105 are arranged in a matrix of n rows ⁇ k columns (n, k: integers of 2 or more).
  • Each pixel 105 has the same configuration, and includes a display unit 111 that displays an image and a sensor unit 112 that detects light, as shown in FIG.
  • the display unit 111 is disposed on the upper side of the pixel 105 in plan view.
  • the sensor unit 112 is disposed on the lower side of the pixel 105 in plan view. Accordingly, when viewed in the active area 101 as a whole, as shown in FIG. 1, the display unit 111 and the sensor unit 112 extending in the horizontal direction are alternately arranged in a striped pattern.
  • the arrangement of the display unit 111 and the sensor unit 112 in the pixel 105 may be reversed or left and right, and may not be arranged on the same side in all the pixels.
  • a layout in which the sensor unit 112 is arranged on the even rows and the sensor unit 112 is arranged on the odd rows may be arranged.
  • the display unit 111 includes, for example, a pixel circuit including at least a thin film transistor (TFT), a pixel electrode, and a common electrode (counter electrode), but may have a general configuration of an active matrix driving method.
  • a pixel circuit that applies a voltage to the pixel electrode according to the control of the gate driver 102 can include an auxiliary capacitor, a memory circuit, and the like.
  • the sensor unit 112 includes a photodiode 115 which is a light receiving element, a light shielding film 116 (first light shielding film), and the like.
  • the sensor unit 112 may appropriately include a capacitor, a readout TFT, and the like (none of which are shown).
  • the display units 111 of three pixels 105 arranged adjacent to each other in the horizontal direction are assigned to R (red), G (green), and B (blue) colors, respectively. It is composed.
  • one photodiode 115 is provided in each predetermined pixel 105. Specifically, in each horizontal pixel 105, the photodiode 115 is regularly arranged such that three pixels 105 (present), one pixel 105 (none), three pixels 105 (present),... Is provided. The regularity is not limited to that described above, and may be “2 (present), 2 (none), 2 (present)...”, Or the like, or may be provided for all the pixels 105.
  • the photodiode 115 may be provided in the sensor unit 112 of each pixel 105 regularly extracted in advance from the plurality of pixels 105. The number of pixels in one sensor pixel can be determined according to the sensor resolution. In addition, it is possible to improve sensitivity by arranging one photodiode 115 for each pixel 105 and using several pixels as one sensor pixel unit.
  • the gate line 113 is provided so as to extend in the horizontal direction and the source line 114 is provided so as to extend in the vertical direction corresponding to the display unit 111 of each pixel 105. ing. Note that the gate line 113 is disposed in the display unit 111. Further, the wiring 117 (first wiring, third wiring) is provided in the sensor unit 112 for each row so as to extend in the horizontal direction. Further, the bus line 118 (wiring, second wiring, fourth wiring) extends in the vertical direction between the active area 101 and the gate driver 102 and between the active area 101 and the sensor driver 103. Is provided.
  • the sensor unit 112 is drawn larger to clearly indicate the sensor unit 112, but the actual sensor unit 112 is displayed to the extent that it does not adversely affect the image display of the liquid crystal panel 100.
  • the width in the vertical direction is smaller than that of the portion 111.
  • the gate driver 102 is a driver that generates a scanning signal for selecting the pixel 105 to be driven and outputs the scanning signal to the corresponding gate line 113.
  • the sensor driver 103 is a driver that drives the optical sensor function by applying a power supply voltage to each photodiode 115.
  • the gate driver 102 and the sensor driver 103 are arranged facing each other in the horizontal direction so as to sandwich the active area 101.
  • the terminal portion 104 is a portion provided with a plurality of terminals that can be connected to the outside of the liquid crystal panel 100.
  • the terminal portion 104 is disposed around the active area 101 and at one end of the liquid crystal panel 100 in the vertical direction. Each terminal is electrically connected to the source line 114, the gate driver 102, and the sensor driver 103 in the active area 101, respectively.
  • the liquid crystal panel 100 has a configuration in which a liquid crystal layer is sandwiched between two substrates facing each other.
  • One substrate is a substrate on which a common electrode or the like is formed.
  • the other substrate is a substrate on which a gate line 113, a source line 114, a pixel circuit, a pixel electrode, a terminal portion 104, and the like are formed (hereinafter referred to as an active matrix substrate).
  • the gate driver 102 and the sensor driver 103 are monolithically formed on the active matrix substrate.
  • the liquid crystal panel 100 having the above configuration is provided in a liquid crystal display device as a display unit having an optical sensor function.
  • the so-called optical sensor type liquid crystal display device equipped with the optical sensor function as described above is realized with a conventional general configuration in addition to the liquid crystal panel 100.
  • a source driver that generates a data signal for driving the pixel 105 and outputs the data signal to the corresponding source line 114
  • a Vcom driver that supplies a common potential to the common electrode
  • a clock signal that is a base of timing
  • a display driver such as a timing generator for generating the backlight, a backlight (light source device) for irradiating the liquid crystal panel 100 from the rear, and the like (not shown).
  • the display driver other than the gate driver 102 and the sensor driver 103 is electrically connected to the liquid crystal panel 100 through the terminal portion 104.
  • the liquid crystal panel 100 can be monolithically formed on the active matrix substrate.
  • the gate driver 102 and the sensor driver 103 may be provided outside the liquid crystal panel 100.
  • the above-mentioned liquid crystal display device has various electronic devices such as a PC as a display device that performs a touch panel function for performing an input operation according to the position of an object in contact with the panel surface and a scanner function for capturing an image. Installed in equipment.
  • FIG. 3 is a cross-sectional view showing a cross-sectional structure of the sensor unit 112 of one pixel 105 in the active matrix substrate.
  • FIG. 4 is a plan view showing the configuration of the layer in which the light shielding film 116 is formed. In FIG. 4, members other than the light shielding film 116, the wiring 117, and the bus line 118 are not shown in order to clearly show the layout of the light shielding film 116.
  • the sensor unit 112 in the active matrix substrate, includes a light shielding film 116, a wiring 117, a base coat film 122, a photodiode 115, a gate oxide film 126, and an interlayer insulating film 127 on a glass substrate 121.
  • An anode electrode (Va) 128, and a cathode electrode (Vc) 129 are formed.
  • the glass substrate 121 is a transparent substrate mainly made of glass.
  • a light shielding film 116 is formed on the glass substrate 121.
  • the light shielding film 116 performs a light shielding function for preventing the light emitted from the backlight from entering the photodiode 115 and preventing the photodiode 115 from being always excited.
  • the light shielding film 116 has a rectangular shape in plan view, and is disposed so as to overlap the photodiode 115. Note that the light shielding film 116 may be disposed so as to overlap with the photodiode 115, and may be provided so as to overlap with a plurality of adjacent photodiodes 115, or may be provided for each photodiode 115.
  • the light shielding film 116 is made of a metal such as molybdenum (Mo), for example.
  • a wiring 117 is formed on the glass substrate 121. That is, the wiring 117 is formed in the same layer as the light shielding film 116. As shown in FIG. 4, the wiring 117 is provided so as to extend in the horizontal direction, and is electrically connected to each light shielding film 116 by being connected to each light shielding film 116 positioned in the horizontal direction.
  • the wiring 117 is preferably made of the same material as that of the light shielding film 116, so that the wiring 117 can be formed integrally with the light shielding film 116.
  • the bus line 118 described above is formed on the glass substrate 121 and in the same layer as the light shielding film 116 and the wiring 117 as shown in FIG.
  • the bus line 118 is provided so as to extend in the vertical direction, and is electrically connected to each wiring 117 by being connected to each wiring 117.
  • all the light shielding films 116 are at the same potential due to the wiring 117 and the bus line 118.
  • the bus line 118 is preferably made of the same material as that of the light shielding film 116 and the wiring 117, so that the bus line 118 can be formed integrally with the light shielding film 116 and the wiring 117.
  • a base coat film 122 is formed on the glass substrate 121 on which the light shielding film 116 and the wiring 117 are formed.
  • the base coat film 122 is a base film of the photodiode 115 located in the upper layer.
  • a photodiode 115 is formed on the base coat film 122.
  • the photodiode 115 is a PIN junction type photodiode, and a semiconductor in which a p-type semiconductor region (P layer) 123 and an n-type semiconductor region (N layer) 125 are formed with an intrinsic semiconductor region (I layer) 124 interposed therebetween. It is composed of layers.
  • the semiconductor layer is disposed so as to overlap the light shielding film 116 in a plan view.
  • a gate oxide film 126 and an interlayer insulating film 127 are laminated in this order.
  • An anode electrode 128 and a cathode electrode 129 are formed on the interlayer insulating film 127.
  • the anode electrode 128 and the cathode electrode 129 are electrically connected to the p-type semiconductor region 123 and the n-type semiconductor region 125 of the photodiode 115 through contact holes formed in the gate oxide film 126 and the interlayer insulating film 127, respectively. ing.
  • the anode electrode 128 and the cathode electrode 129 are electrically connected to the sensor driver 103.
  • the sensor unit 112 having the above configuration is realized as a visible light sensor, an infrared (IR) light sensor, or the like by forming a semiconductor layer serving as the photodiode 115 with a material corresponding to the wavelength of light to be detected. can do.
  • IR infrared
  • a light pen that emits infrared light may be used as the input means.
  • the base coat film 122, the gate oxide film 126, and the interlayer insulating film 127 are continuously formed in the pixel 105 sensor unit 112 in each row. Further, since the sensor unit 112 is formed on the glass substrate 121 together with the display unit 111, the base coat film 122, the gate oxide film 126, and the interlayer insulating film 127 may be shared in the display unit 111 as appropriate.
  • 5A to 5D are cross-sectional views showing the formation process until the amorphous silicon (a-Si) film 115 ′ to be the photodiode 115 is formed in the manufacturing process of the sensor unit 112.
  • the left side in the figure shows the infrared light sensor, and the right side in the figure shows the visible light sensor.
  • a light shielding film 116 is formed at a predetermined position on the glass substrate 121.
  • a light-shielding film 116 is formed at a position overlapping with a semiconductor layer formed in a later step by patterning a metal film deposited on the glass substrate 121 by a sputtering method by a photolithography method or the like.
  • the wiring 117 and the bus line 118 are also formed on the glass substrate 121 by the same method as the light shielding film 116.
  • the light shielding film 116, the wiring 117, and the bus line 118 are made of the same material, they can be integrated and manufactured simultaneously.
  • a first base coat film 122a is formed on the glass substrate 121 on which the light shielding film 116, the wiring 117, and the bus line 118 are formed.
  • the first base coat film 122a having a uniform thickness is grown on the glass substrate 121 on which the light shielding film 116, the wiring 117, and the bus line 118 are formed.
  • the first base coat film 122a is for blocking contamination from the glass substrate 121, and is made of, for example, a silicon nitride film.
  • a second base coat film 122b is formed on the first base coat film 122a.
  • the second base coat film 122b having a uniform thickness is grown on the first base coat film 122a.
  • the second base coat film 122b is for maintaining the stability of the interface with the semiconductor layer manufactured in the next step, and is made of, for example, a silicon oxide film.
  • a semiconductor layer to be the photodiode 115 is formed over the second base coat film 122b. Specifically, first, as shown in FIG. 5D, an amorphous silicon (a-Si) film 115 ′ having a uniform thickness is grown on the second base coat film 122b. After that, although not shown in the drawing, the semiconductor layer is formed by patterning after forming into polysilicon by laser annealing or the like.
  • a-Si amorphous silicon
  • the gate oxide film 126, the interlayer insulating film 127, and the like are sequentially formed by a conventional general manufacturing method, so that the sensor unit 112 is formed as shown in FIG. Complete.
  • the light shielding film 116 disposed below the semiconductor layer has the same potential due to the wiring 117 and the bus line 118 manufactured in the same layer as the light shielding film 116.
  • the liquid crystal panel 100 of this embodiment is provided with the wiring 117 and the bus line 118 that electrically connect all the light shielding films 116 so as to avoid the display portion 111. Provided.
  • each light shielding film 116 is arranged and shaped so as to overlap the photodiode 115, that is, the entire semiconductor layer in a plan view. As described above, the light shielding film 116 is disposed so that the photodiode 115 is positioned inside the light shielding film 116 in a plan view (so as to surround the semiconductor layer). By using a shield, the semiconductor layer can be further protected from ESD.
  • the planar view shape of the light shielding film 116 is not limited to a rectangular shape.
  • the wiring 117 and the bus line 118 may be provided so that the light shielding film 116 is in a one-stroke writing state.
  • the arrangement shown in FIG. 1 may be reversed.
  • the wiring 117 is provided for each column so as to extend in the vertical direction, and the active area between the active area 101 and the terminal portion 104 and on the opposite side so as to extend the bus line 118 in the horizontal direction. 101 can be provided around the periphery.
  • the wiring 117 may be arranged so as to avoid the display unit 111 according to the arrangement relationship between the display unit 111 and the sensor unit 112 in the pixel 105.
  • the bus line 118 may be arranged around the active area 101 so as to avoid the display unit 111.
  • a PIN junction type photodiode is used as the photodiode 115, but a PN junction type photodiode can also be used.
  • the light receiving element is not limited to the photodiode 115, and for example, a capacitor may be used.
  • FIG. 6 is a plan view showing a configuration example of the glass substrate 200 of the present embodiment.
  • FIG. 6 in order to clearly show the layout of the wiring 117, the bus line 118, and the wiring 203, illustration of members other than these is omitted as appropriate.
  • FIG. 7 is an enlarged view of the active matrix substrate 201 in the glass substrate 200 of FIG.
  • the glass substrate 200 has a configuration in which an active matrix substrate 201 is arranged in a matrix by forming an electric circuit such as a TFT on a single large glass (mother glass). ing.
  • a total of nine active matrix substrates 201 of 3 rows ⁇ 3 columns are arranged, but this is only an example.
  • the active matrix substrate 201 has a configuration in which the gate driver 102 and the sensor driver 103 are excluded from the configuration of the active matrix substrate of the first embodiment.
  • the glass substrate 200 is finally cut so as to cut out the individual active matrix substrates 201. Therefore, the active matrix substrate 201 is arranged including a cutting margin 202 around the active matrix substrate 201.
  • the glass substrate 200 is provided with wiring 203 (inter-substrate wiring).
  • the wiring 203 is electrically connected to the bus line 118 by being connected to the bus line 118 in each active matrix substrate 201.
  • the wiring 203 is disposed in the cutting margin 202 and in the same layer as the bus line 118.
  • the bus line 118 is drawn out to the outside of the active matrix substrate 201 (in the cutting margin 202 region) through the terminal portion 104.
  • the glass substrate 200 since the wiring 203 is provided, all the light shielding film layers in the glass substrate 200 have the same potential. Therefore, even when the charge amount of the glass substrate becomes larger, the glass substrate 200 can prevent ESD from occurring between the light shielding film and the light shielding film between the active matrix substrates 201. Therefore, occurrence of ESD breakdown can be reduced. In addition, it is possible to further improve the resistance to ESD as compared with the first embodiment.
  • the cutting margin 202 provided with the wiring 203 is cut off and discarded.
  • the active matrix substrate 201 described above includes only the active area 101, a peripheral driver may be included.
  • FIG. 8 shows an example of the configuration of the liquid crystal panel of the present embodiment, and is a plan view showing the configuration of the layer where the light shielding film 116 is formed in the active matrix substrate.
  • members other than the light shielding film 116, the wiring 117, and the bus line 118 are not shown in order to clearly show the layout of the light shielding film 116.
  • the liquid crystal panel of the present embodiment has the same configuration as the liquid crystal panel 100 of the first embodiment except for the configuration of the light shielding film 116 formation layer. That is, as shown in FIG. 8, in the liquid crystal panel of this embodiment, a light shielding film 119 (second light shielding film) is provided below the TFT in the gate driver 102 in the light shielding film 116 forming layer of the active matrix substrate. It has been. By disposing the light-shielding film 119 below the TFT, an increase in off-current due to backlight light can be reduced.
  • the light shielding film 119 is electrically connected to the bus line 118 by being connected to the bus line 118. As a result, the occurrence of ESD due to the arrangement of the light shielding film 119 can be reduced, and the semiconductor layer can be protected also for the driver TFTs arranged around the panel.
  • the light shielding film 119 is provided in the entire area within the gate driver 102.
  • the driver unit such as the gate driver 102 does not affect the display characteristics of the pixel 105
  • the layout of the light shielding film 119 is the driver unit.
  • the TFT semiconductor layer is included, any layout is possible.
  • the bus line 118 may be connected.
  • the sensor driver 103 is also composed of TFTs, similarly, it is desirable to electrically connect a light shielding film provided below the TFTs to the bus line 118.
  • the TFT has a top gate structure, a similar structure having a light shielding layer cannot be formed until the gate wiring is formed. Therefore, the light shielding film 119 and the wiring are formed as the ESD countermeasure wiring at the very beginning of the TFT manufacturing process. It is effective to do.
  • the potential of the light shielding film 119 changes depending on the operating state of the TFT, it is desirable that the light shielding film 119 has an appropriate fixed potential.
  • the voltage to the light shielding film 119 can be supplied from the source line 114 by forming a contact with the source line 114, for example.
  • the active matrix substrate of the present invention is an active matrix substrate having an active area in which a plurality of pixels are arranged in a matrix, and each of the pixels has a display unit for displaying an image and a light for detecting light.
  • a light receiving element and a first light-shielding film are provided in the sensor part of each pixel regularly extracted in advance from the plurality of pixels, the first light-shielding film being more than the light-receiving element. All the first light-shielding films are electrically connected so as to overlap with the light receiving element when viewed from a direction that is a lower layer and perpendicular to the active matrix substrate, so as to avoid the display unit.
  • the wiring is provided.
  • the active matrix substrate of the present invention is arranged such that the wiring is arranged in the same layer as the first light shielding film in the active area, and is provided in each pixel in each row. It is desirable to include a first wiring that connects the first light shielding films and a second wiring that is arranged in the same layer as the first light shielding film around the active area and connects the first wirings.
  • the wiring is arranged in the same layer as the first light shielding film in the active area, and connects the first light shielding film provided in each pixel in each column. It is also possible to include a wiring and a fourth wiring that is arranged in the same layer as the first light shielding film in the periphery of the active area and connects the third wirings.
  • the first light shielding film is disposed such that the light receiving element is located inside the first light shielding film when viewed from a direction perpendicular to the active matrix substrate. It is preferable. Accordingly, the semiconductor layer can be further protected from ESD by using the first light-shielding film as an electrical shield.
  • a driver for driving the plurality of pixels is monolithically formed around the active area, and the driver includes at least one thin film transistor.
  • a second light shielding film is provided, and the second light shielding film is disposed below the thin film transistor so as to overlap the thin film transistor when viewed from a direction perpendicular to the active matrix substrate. It is preferable to be electrically connected to the wiring.
  • the second light-shielding film is electrically connected to the wiring, the occurrence of ESD due to the arrangement of the second light shielding film is reduced, and the driver thin film transistor formed in the periphery of the active area is also a semiconductor layer. Can be protected.
  • the present invention can be suitably used not only in the field relating to an active matrix substrate of an optical sensor model having a light shielding film, but also in a field relating to a method for manufacturing an active matrix substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

 各画素(105)は、画像を表示するための表示部(111)と、光を検出するためのセンサー部(112)とを含み、複数の画素(105)から規則的に予め抽出された各画素(105)のセンサー部(112)には、フォトダイオード(115)および遮光膜(116)が設けられ、遮光膜(116)は、フォトダイオード(115)よりも下層であって、かつ、アクティブマトリクス基板に垂直な方向から見たときフォトダイオード(115)と重なるように配置され、表示部(111)を避けるように、全ての遮光膜(116)を電気的に接続する配線(117)およびバスライン(118)が設けられている。これにより、光センサー機能を果たすために受光素子および遮光膜を備えた構成において、ESD破壊の発生を低減することができるアクティブマトリクス基板、ガラス基板、液晶パネル、および液晶表示装置を提供する。

Description

アクティブマトリクス基板、ガラス基板、液晶パネル、および液晶表示装置
 本発明は、光センサーが内蔵されたアクティブマトリクス基板、ガラス基板、液晶パネル、および液晶表示装置に関するものであり、特に、光センサー付近におけるESD破壊の発生を低減する技術に関するものである。
 従来、光センサーとして機能する半導体装置が提案されている(例えば、特許文献1参照)。このような半導体装置は、光電変換を行う受光素子としてフォトダイオードが備えられており、携帯電話や表示装置、デジタルカメラなどの電子機器に組み込まれている。電子機器では、半導体装置により周囲の光を検出することによって、例えば表示パネルの輝度やカメラの露出調整などが行われている。
 ところが、上記半導体装置では、製造時や使用時に発生した静電気が放電することにより(静電気放電:ESD:Electro-Static Discharge)、フォトダイオード形成部における電極や半導体素子が破壊されたり、半導体素子の信頼性が低下するという問題があった。これに対し、特許文献1に記載の半導体装置では、フォトダイオード形成部において発生するESD対策として、ESDの発生しやすいダミーパターンを作成することで、主要装置部のESD破壊の防止が図られている。
 特許文献1に記載の半導体装置は、フォトダイオードと、増幅回路と、電源に接続される高電位側接続用電極および低電位側接続用電極と、ダミーパターン(導電膜からなるダミー電極)とを備え、ダミーパターンが、高電位側接続用電極および低電位側接続用電極に隣接して同じ層に、かつ、高電位側接続用電極および低電位側接続用電極よりも大きな面積で設けられた構成を有する。また、ダミーパターンは、フォトダイオードおよび増幅回路と電気的に接続されておらず、電位がフローティング状態となっている。この構成によれば、高電位側接続用電極および低電位側接続用電極よりもダミーパターンにおいてESD破壊が起こる確率が高くなり、ダミーパターンでESDが起こった場合でも、他の構成部材のESD破壊を防止することができる。また、プリント配線基板などの基板にダミーパターンを電気的に接続することによって、ダミーパターンに電荷が蓄積された場合は基板に電荷を逃がすことができる。
 ところで、近年、光センサー機能を有する液晶表示装置が開発されている。このような液晶表示装置は、光センサーが内蔵された液晶パネルを備え、画面に触れた際の光の変化を検出することで、タッチパネルやスキャナーとして機能する。液晶パネルでは、アクティブマトリクス基板に、光センサーとしてフォトダイオードが画素毎に形成されている。
 しかし、特許文献1に記載の半導体装置では、高電位側接続用電極および低電位側接続用電極と同層に、金属からなるダミーパターンが形成されているため、当該半導体装置を備えた液晶表示装置は、上述のような、画素内にフォトダイオードが形成される構成を持つタッチパネルなどの用途には不向きである。タッチパネルなどでは、フォトダイオードにバックライトから直接入射する光が、ノイズとなることを防止する必要がある。
 タッチパネルなどに適用可能な光センサー機種の液晶表示装置は、例えば特許文献2に記載されている。特許文献2に記載の液晶表示装置では、液晶パネルのアクティブマトリクス基板において、フォトダイオードとなる半導体層の下層に、バックライトからの照射光がフォトダイオードに直接入射しないように遮光する遮光膜が設けられている。遮光膜は、フォトダイオード毎に設けられており、電位がフローティング状態となっている。
日本国公開特許公報「特開2008-182214号公報(2008年8月7日公開)」 日本国公開特許公報「特開2009-237286号公報(2009年10月15日公開)」
 しかしながら、特許文献2に記載の光センサー機種の液晶表示装置では、液晶パネルの製造工程において、工程を流動している途中にESD破壊が発生するという問題点を有している。このため、信頼性に乏しく、また、パネル歩留まりを低下させていた。
 本発明は、上記従来の問題点に鑑みなされたものであって、その目的は、画素に受光素子および遮光膜を備えた構成において、ESD破壊の発生を低減することができるアクティブマトリクス基板、ガラス基板、液晶パネル、および液晶表示装置を提供することにある。
 本発明のアクティブマトリクス基板は、上記課題を解決するために、複数の画素がマトリクス状に配置されたアクティブエリアを備えるアクティブマトリクス基板であって、上記各画素は、画像を表示するための表示部と、光を検出するためのセンサー部とを含み、上記複数の画素から規則的に予め抽出された各画素の上記センサー部には、受光素子および第1遮光膜が設けられ、上記第1遮光膜は、上記受光素子よりも下層であって、かつ、上記アクティブマトリクス基板に垂直な方向から見たとき該受光素子と重なるように配置され、上記表示部を避けるように、全ての上記第1遮光膜を電気的に接続する配線が設けられていることを特徴としている。
 従来、画素に受光素子および遮光膜を備えた構成を有する液晶パネルの製造工程において、工程を流動している途中にESD破壊が発生するという問題点があった。そこで鋭意検証した結果、本発明者は、この原因は、受光素子の半導体層を形成するためのイオン注入工程においてガラス基板が帯電し、そのガラス基板を搬送する際に、搬送ロボットのピン位置において剥離帯電が発生するためと見出した。そして、解析状況からは、遮光膜上の半導体層およびゲート酸化膜がESD破壊されていることを確認した。遮光膜は、半導体層毎に設けられており、電位がフローティング状態となっている。ゆえに、遮光膜-遮光膜間においてESDが発生したと推測した。
 これに対し、上記の構成によれば、全ての第1遮光膜は同電位となるので、従来において遮光膜-遮光膜間で発生していたESDを無くすことが可能となる。したがって、ESD破壊の発生を低減することが可能となる。
 本発明のガラス基板は、上記課題を解決するために、複数の上記アクティブマトリクス基板が、該各アクティブマトリクス基板の周囲に切断しろを含んでマトリクス状に配置されたガラス基板であって、上記各アクティブマトリクス基板の配線は、上記切断しろ内に引き出され、上記切断しろには、上記各アクティブマトリクス基板の配線全てを電気的に接続する基板間配線が設けられていることを特徴としている。
 上記の構成によれば、基板間配線が設けられていることにより、ガラス基板内の全ての遮光膜層は同電位となる。よって、ガラス基板の帯電量がより大きくなった場合であっても、ガラス基板では、各アクティブマトリクス基板間の遮光膜-遮光膜間におけるESDの発生を防止することが可能となる。したがって、ESD破壊の発生を低減することが可能となる。
 本発明の液晶パネルは、上記課題を解決するために、上記アクティブマトリクス基板を備えることを特徴とする。
 上記の構成によれば、上記アクティブマトリクス基板を備えることにより、ESD破壊の発生を低減することができ、信頼性に優れた液晶パネルとして提供することが可能となる。
 本発明の液晶表示装置は、上記課題を解決するために、上記液晶パネルと光源装置とを備えることを特徴とする。
 上記の構成によれば、上記液晶パネルを備えることにより、ESD破壊の発生を低減することができ、信頼性に優れた液晶表示装置として提供することが可能となる。
 以上のように、本発明のアクティブマトリクス基板は、表示部を避けるように、全ての第1遮光膜を電気的に接続する配線が設けられている構成であるので、全ての第1遮光膜は同電位となり、従来において遮光膜-遮光膜間で発生していたESDを無くすことができる。したがって、ESD破壊の発生を低減することができるという効果を奏する。
 本発明のガラス基板は、各アクティブマトリクス基板の配線は、切断しろ内に引き出され、上記切断しろには、上記各アクティブマトリクス基板の配線全てを電気的に接続する基板間配線が設けられている構成であるので、ガラス基板内の全ての遮光膜層は同電位となり、ガラス基板の帯電量がより大きくなった場合であっても、ガラス基板では、各アクティブマトリクス基板間の遮光膜-遮光膜間におけるESDの発生を防止することができる。したがって、ESD破壊の発生を低減することができるという効果を奏する。
 本発明の液晶パネルは、上記アクティブマトリクス基板を備える構成である。また、本発明の液晶表示装置は、上記液晶パネルと光源装置とを備える構成である。それゆえ、両者は、ESD破壊の発生を低減することができ、信頼性に優れた液晶パネルおよび液晶表示装置として提供することができるという効果を奏する。
本発明における液晶パネルの実施の一形態を示す概略平面図である。 上記液晶パネルのアクティブエリアにおける画素の構成を示す、図1の領域αの拡大平面図である。 上記液晶パネルのアクティブマトリクス基板における、1つの画素のセンサー部の断面構造を示す断面図である。 上記液晶パネルのアクティブマトリクス基板における遮光膜が形成されている層の構成を示す平面図である。 (a)~(d)は、センサー部の製造工程のうち、フォトダイオードとなるアモルファスシリコン膜を形成するまでの形成工程を示す断面図である。 本発明におけるガラス基板の実施の一形態を示す平面図である。 上記ガラス基板におけるアクティブマトリクス基板の拡大図である。 本発明における液晶パネルの他の実施の形態を示すものであり、アクティブマトリクス基板における遮光膜が形成されている層の構成を示す平面図である。
 〔実施の形態1〕
 本発明の一実施形態について図面に基づいて説明すれば、以下の通りである。
 なお、以下の説明では、図1中の上下方向を垂直方向と称し、図1中の左右方向を水平方向と称する。また、図1の面視、すなわち液晶パネル(アクティブマトリクス基板)に垂直な方向から見たときを、平面視と呼ぶ。
 (全体構成)
 図1は、本実施の形態の液晶パネル100の一構成例を示す概略平面図である。図2は、アクティブエリア101における画素105の構成を示す、図1の領域αの拡大平面図である。
 図1に示すように、液晶パネル100には、アクティブエリア101、ゲートドライバ102(ドライバ)、センサードライバ103(ドライバ)、および端子部104が設けられている。なお、液晶パネル100には、アクティブマトリクス駆動方式が用いられている。
 アクティブエリア101は、画素105がn行×k列(n,k:2以上の整数)のマトリクス状に配置された領域である。各画素105は全て同じ構成を有しており、図2に示すように、画像を表示する表示部111と、光を検出するセンサー部112とを含む。表示部111は、画素105における平面視上側に配置されている。センサー部112は、画素105における平面視下側に配置されている。これにより、アクティブエリア101全体で見ると、図1に示すように、水平方向に延伸する表示部111とセンサー部112とは、縞状に交互に配置された構成となっている。
 なお、画素105における表示部111およびセンサー部112の配置は逆または左右配置でもよく、全ての画素において同じ側に配置されていなくてもよい。例えば、偶数行はセンサー部112が上配置とし、奇数行はセンサー部112が下配置とするなどのレイアウトとすることもできる。
 表示部111は、例えば、薄膜トランジスタ(TFT)を少なくとも含む画素回路、画素電極、および共通電極(対向電極)を備えているが、アクティブマトリクス駆動方式の一般的な構成を備えていればよい。例えば、ゲートドライバ102の制御に従って画素電極に電圧を印加させる画素回路には、補助容量やメモリ回路などを備えることもできる。センサー部112は、受光素子であるフォトダイオード115、および遮光膜116(第1遮光膜)などを備えている。例えば、センサー部112には、容量や読み出し用のTFTなどを適宜含んでいてもよい(いずれも図示せず)。
 アクティブエリア101では、水平方向に隣接して配置された3つの画素105の表示部111が、R(赤)・G(緑)・B(青)の色にそれぞれ割り当てられ、1つの表示画素を構成している。
 また、所定の各画素105において1つのフォトダイオード115がそれぞれ設けられている。具体的には、水平方向の各画素105において、3つの画素105(あり),1つの画素105(なし),3つの画素105(あり)・・・となるように、フォトダイオード115が規則的に設けられている。なお、規則性は上述したものに限らず、「2(あり),2(なし),2(あり)・・・」などでもよいし、全ての画素105にそれぞれ設けることもできる。フォトダイオード115は、複数の画素105から規則的に予め抽出された各画素105のセンサー部112に設けられていればよい。センサー1画素内の画素数は、センサー解像度に応じて決めることができる。また、全ての画素105に1個のフォトダイオード115をそれぞれ配置し、数画素を1つのセンサー画素単位として感度向上を図ることもできる。
 また、アクティブエリア101には、各画素105の表示部111に対応して、ゲートライン113が水平方向に延伸するように設けられているとともに、ソースライン114が垂直方向に延伸するように設けられている。なお、ゲートライン113は、表示部111内に配置されている。また、行毎のセンサー部112内に、配線117(第1配線、第3配線)が水平方向に延伸するように設けられている。さらに、アクティブエリア101とゲートドライバ102との間、および、アクティブエリア101とセンサードライバ103との間に、バスライン118(配線、第2配線、第4配線)が、垂直方向に延伸するように設けられている。
 なお、図1および図2では、センサー部112を明示するためにセンサー部112を大きめに描いているが、実際のセンサー部112は、液晶パネル100の画像表示に悪影響を与えない程度に、表示部111に比べて垂直方向の幅は小さい。
 ゲートドライバ102は、駆動する画素105を選択するための走査信号を生成し、該走査信号を対応するゲートライン113に出力するドライバである。センサードライバ103は、各フォトダイオード115に電源電圧を与えることで、光センサー機能を駆動するドライバである。ゲートドライバ102とセンサードライバ103とは、アクティブエリア101を挟むように、水平方向に対向して配置されている。
 端子部104は、液晶パネル100の外部と接続可能な端子が複数設けられた部分である。端子部104は、アクティブエリア101の周辺であって、かつ垂直方向における液晶パネル100の一方の端に配置されている。各端子はそれぞれ、アクティブエリア101のソースライン114、ゲートドライバ102、およびセンサードライバ103に電気的に接続されている。
 ここで図示はしないが、液晶パネル100は、互いに対向する2枚の基板に、液晶層が狭持された構成を有している。一方の基板は、共通電極などが形成された基板である。他方の基板は、ゲートライン113、ソースライン114、画素回路、画素電極、端子部104などが形成された基板(以下、アクティブマトリクス基板と呼ぶ)である。また、ゲートドライバ102およびセンサードライバ103は、アクティブマトリクス基板にモノリシックに作り込まれている。
 上記構成を有する液晶パネル100は、光センサー機能を有した表示部として、液晶表示装置に備えられる。このように光センサー機能が搭載された、いわゆる光センサー機種の液晶表示装置は、液晶パネル100の他に、従来の一般的な構成を備えて実現される。例えば、画素105を駆動するためのデータ信号を生成し、該データ信号を対応するソースライン114に出力するソースドライバ、共通電極に共通電位を供給するVcomドライバ、および、タイミングの基となるクロック信号を生成するタイミングジェネレータなどの表示ドライバや、液晶パネル100を後方から照射するバックライト(光源装置)などが備えられる(いずれも図示せず)。
 なお、上記液晶表示装置では、ゲートドライバ102およびセンサードライバ103以外の表示ドライバは、端子部104を介して液晶パネル100と電気的に接続される構成となっているが、これに限らず、ゲートドライバ102およびセンサードライバ103と同様に液晶パネル100のアクティブマトリクス基板にモノリシックに作り込むこともできる。また逆に、ゲートドライバ102およびセンサードライバ103は、液晶パネル100外に設けられていてもよい。
 上記液晶表示装置は、本来の画像表示機能に加えて、パネル表面に接触する物体の位置により入力操作を行うタッチパネル機能や、画像を取り込むスキャナー機能などを果たす表示装置として、PCなどの様々な電子機器へ搭載される。
 (センサー部の構成)
 次に、画素105のセンサー部112の構成、特にフォトダイオード115形成部付近の構造について説明する。
 図3は、アクティブマトリクス基板における、1つの画素105のセンサー部112の断面構造を示す断面図である。図4は、遮光膜116が形成されている層の構成を示す平面図である。なお、図4では、遮光膜116のレイアウトを明示するために、遮光膜116、配線117、およびバスライン118以外の部材の図示は省略している。
 図3および図4に示すように、アクティブマトリクス基板において、センサー部112は、ガラス基板121上に、遮光膜116、配線117、ベースコート膜122、フォトダイオード115、ゲート酸化膜126、層間絶縁膜127、アノード電極(Va)128、およびカソード電極(Vc)129が形成された構成を有している。
 ガラス基板121は、ガラスを主材料とする透明な基板である。ガラス基板121上には、遮光膜116が形成されている。遮光膜116は、バックライトから照射された光がフォトダイオード115に入射して、フォトダイオード115が常に励起状態となることを防止するための遮光機能を果たすものである。遮光膜116は、平面視において、矩形形状を有し、フォトダイオード115と重なるように配置される。なお、遮光膜116は、フォトダイオード115と重なるように配置されればよく、隣り合う複数のフォトダイオード115と重なるように設けられてもよいし、フォトダイオード115毎に設けられていてもよい。遮光膜116は、例えば、モリブデン(Mo)などの金属からなる。
 また、ガラス基板121上には、配線117が形成されている。すなわち、遮光膜116と同層に、配線117が形成されている。図4に示すように、配線117は、水平方向に延伸するように設けられ、水平方向に位置する各遮光膜116と連結することで、各遮光膜116と電気的に接続されている。配線117は、遮光膜116と同じ材料とすることが望ましく、これにより、配線117を遮光膜116と一体化して形成することが可能となる。
 ここで、上述したバスライン118は、図4に示すように、ガラス基板121上であって、遮光膜116および配線117と同層に形成されている。バスライン118は、垂直方向に延伸するように設けられ、各配線117と連結することで、各配線117と電気的に接続されている。これにより、全ての遮光膜116は、配線117およびバスライン118により同電位となっている。バスライン118は、遮光膜116および配線117と同じ材料とすることが望ましく、これにより、バスライン118を遮光膜116および配線117と一体化して形成することが可能となる。
 遮光膜116および配線117が形成されたガラス基板121上には、ベースコート膜122が形成されている。ベースコート膜122は、上層に位置するフォトダイオード115の下地膜である。
 ベースコート膜122上には、フォトダイオード115が形成されている。フォトダイオード115は、PIN接合型のフォトダイオードであり、真性半導体領域(I層)124を挟んでp型半導体領域(P層)123とn型半導体領域(N層)125とが形成された半導体層により構成されている。半導体層は、平面視において、遮光膜116と重なるように配置される。
 フォトダイオード115が形成されたベースコート膜122上には、ゲート酸化膜126および層間絶縁膜127が、この順に積層されている。層間絶縁膜127上には、アノード電極128およびカソード電極129が形成されている。アノード電極128およびカソード電極129は、ゲート酸化膜126および層間絶縁膜127に形成されたコンタクトホールを介して、フォトダイオード115のp型半導体領域123およびn型半導体領域125にそれぞれ電気的に接続されている。また、アノード電極128およびカソード電極129は、センサードライバ103に電気的に接続されている。
 上記の構成を有するセンサー部112は、フォトダイオード115となる半導体層を、検出させる光の波長に応じた材料で形成することによって、可視光用センサーや赤外(IR)光用センサーなどとして実現することができる。なお、赤外光用センサーとする場合は、入力手段として、赤外光を発するライトペンなどを用いればよい。
 なお、上記の構成において、ベースコート膜122、ゲート酸化膜126、および層間絶縁膜127は、各行の画素105センサー部112において連続して形成されている。また、センサー部112は、表示部111と一緒にガラス基板121上に形成されるので、ベースコート膜122、ゲート酸化膜126、および層間絶縁膜127は、適宜表示部111において共用してもよい。
 (センサー部の製造方法)
 次に、画素105のセンサー部112の製造方法について説明する。ここでは、赤外光用センサーおよび可視光用センサーを作製する場合について例示する。
 図5の(a)~(d)は、センサー部112の製造工程のうち、フォトダイオード115となるアモルファスシリコン(a-Si)膜115’を形成するまでの形成工程を示す断面図である。なお、図中左側が赤外光用センサーを示し、図中右側が可視光用センサーを示している。
  〈遮光膜116作製工程〉
 まず、図5の(a)に示すように、ガラス基板121上の所定の位置に、遮光膜116を作製する。具体的には、スパッタ法によってガラス基板121上に堆積形成された金属膜を、フォトグラフィー法などによってパターニングすることにより、後の工程で形成する半導体層と重なる位置に遮光膜116を作製する。また、この工程において遮光膜116と同様の方法で、ガラス基板121上に配線117およびバスライン118も作製する。遮光膜116、配線117およびバスライン118が同じ材料の場合は、一体化して同時に作製することができる。
  〈第1ベースコート膜122a作製工程〉
 続いて、図5の(b)に示すように、遮光膜116、配線117およびバスライン118が作製されたガラス基板121上に、第1ベースコート膜122aを作製する。具体的には、遮光膜116、配線117およびバスライン118が作製されたガラス基板121上に、均一な膜厚の第1ベースコート膜122aを成長させる。第1ベースコート膜122aは、ガラス基板121からの汚染をブロックするためのものであり、例えば窒化シリコン膜からなる。
  〈第2ベースコート膜122b作製工程〉
 続いて、図5の(c)に示すように、第1ベースコート膜122a上に、第2ベースコート膜122bを作製する。具体的には、第1ベースコート膜122a上に、均一な膜厚の第2ベースコート膜122bを成長させる。第2ベースコート膜122bは、次工程で作製する半導体層との界面の安定性を保つためのものであり、例えば酸化シリコン膜からなる。
  〈半導体層作製工程〉
 続いて、第2ベースコート膜122b上に、フォトダイオード115となる半導体層を作製する。具体的には、まず、図5の(d)に示すように、第2ベースコート膜122b上に、均一な膜厚のアモルファスシリコン(a-Si)膜115’を成長させる。そして、これ以後は図示はしないが、レーザアニールなどによってポリシリコン化した後、パターニングを行うなどして、半導体層を作製する。
 このように半導体層が作製された後は、従来の一般的な製造方法によってゲート酸化膜126や層間絶縁膜127などが順番に作製されることにより、図3に示すように、センサー部112が完成する。半導体層(フォトダイオード115)よりも下層に配置された遮光膜116は、遮光膜116と同層に作製された配線117およびバスライン118によって、全て同電位となっている。
 以上のように、本実施の形態の液晶パネル100、具体的にはアクティブマトリクス基板は、表示部111を避けるように、全ての遮光膜116を電気的に接続する配線117およびバスライン118が設けられた構成を備えている。
 従来、画素に受光素子および遮光膜を備えた構成を有する液晶パネルの製造工程において、工程を流動している途中にESD破壊が発生するという問題点があった。そこで鋭意検証した結果、本発明者は、この原因は、受光素子の半導体層を形成するためのイオン注入工程においてガラス基板が帯電し、そのガラス基板を搬送する際に、搬送ロボットのピン位置において剥離帯電が発生するためと見出した。そして、解析状況からは、遮光膜上の半導体層およびゲート酸化膜がESD破壊されていることを確認した。遮光膜は、半導体層毎に設けられており、電位がフローティング状態となっている。ゆえに、遮光膜-遮光膜間においてESDが発生したと推測した。
 よって、本実施形態では上記の構成とすることにより、全ての遮光膜116は同電位となるので、従来において遮光膜-遮光膜間で発生していたESDを無くすことが可能となる。したがって、ESD破壊の発生を低減することが可能となる。
 また、各遮光膜116は、図2に示すように、平面視でフォトダイオード115すなわち半導体層全体と重なるような配置および形状となっている。このように、遮光膜116は、平面視でフォトダイオード115が遮光膜116の内部に位置するように(半導体層を囲んでいるように)配置されていることにより、遮光膜116を電気的なシールドとすることで、半導体層をESDから一層保護する構造とすることが可能となる。
 なお、遮光膜116の平面視形状は、矩形形状に限らない。また、配線117およびバスライン118は、遮光膜116を一筆書きの状態とするように設けられていればよい。例えば、図1に示した配置とは逆の配置とすることもできる。この場合、配線117を垂直方向に延伸するように列毎に設けるとともに、バスライン118を水平方向に延伸するように、アクティブエリア101と端子部104との間、および、その反対側のアクティブエリア101の周辺に設けることができる。配線117は、画素105内の表示部111とセンサー部112との配置関係に応じて、表示部111を避けるように配置すればよい。また、バスライン118も、表示部111を避けるように、アクティブエリア101の周辺に配置すればよい。
 また、上記アクティブマトリクス基板では、フォトダイオード115として、PIN接合型のフォトダイオードを用いたが、PN接合型などのフォトダイオードを用いることもできる。さらには、受光素子(センサー用素子)としてはフォトダイオード115に限らず、例えば容量などを用いてもよい。
 〔実施の形態2〕
 前記実施の形態1では、液晶パネル100内部での各遮光膜116を同電位とすることで、ESDの発生を低減させる効果について説明した。しかし、ガラス基板の帯電量がより大きくなった場合、個片化前のガラスの大板に複数配置されているパネル間の遮光膜-遮光膜間において、ESDが発生することが考えられる。それゆえ、個片化前の液晶パネル100において、ESDの発生を低減させることができる構成が望まれる。
 本発明の他の実施の形態について図面に基づいて説明すれば、以下の通りである。なお、本実施の形態において説明すること以外の構成は、前記実施の形態1と同じである。また、説明の便宜上、前記の実施の形態1の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
 図6は、本実施の形態のガラス基板200の一構成例を示す平面図である。なお、図6では、配線117、バスライン118および配線203のレイアウトを明示するために、これら以外の部材の図示は適宜省略している。図7は、図6のガラス基板200におけるアクティブマトリクス基板201の拡大図である。
 図6に示すように、ガラス基板200は、1枚の大きな素ガラス(マザーガラス)にTFTなどの電気回路が形成されることにより、アクティブマトリクス基板201がマトリクス状に配置された構成を有している。ここでは、3行×3列の計9個のアクティブマトリクス基板201が配置されているが、あくまでも一例である。アクティブマトリクス基板201は、前記実施の形態1のアクティブマトリクス基板の構成のうちゲートドライバ102およびセンサードライバ103を除いた構成を有する。なお、ガラス基板200は、最終的に、個々のアクティブマトリクス基板201を切り出すように切断される。そのため、アクティブマトリクス基板201は、その周囲に切断しろ202を含んで配置されている。
 また、ガラス基板200には、配線203(基板間配線)が設けられている。配線203は、各アクティブマトリクス基板201におけるバスライン118と連結することで、バスライン118と電気的に接続されている。配線203は、切断しろ202内であって、かつバスライン118と同層に配置されている。一方、各アクティブマトリクス基板201では、バスライン118が、端子部104を通って、アクティブマトリクス基板201外まで(切断しろ202領域内に)引き出されている。
 よって、ガラス基板200では、配線203が設けられていることにより、ガラス基板200内の全ての遮光膜層は同電位となる。よって、ガラス基板の帯電量がより大きくなった場合であっても、ガラス基板200では、各アクティブマトリクス基板201間の遮光膜-遮光膜間におけるESDの発生を防止することが可能となる。したがって、ESD破壊の発生を低減することが可能となる。また、前記実施の形態1よりも、さらにESDに対する耐性を向上させることが可能となる。
 なお、ガラス基板200をパネル単位に分断する際に、配線203が設けられた切断しろ202は切り落とされ、廃棄される。また、上述したアクティブマトリクス基板201には、アクティブエリア101のみが備えられていたが、周辺のドライバが備えられていてもよい。
 〔実施の形態3〕
 本発明の他の実施の形態について図面に基づいて説明すれば、以下の通りである。なお、本実施の形態において説明すること以外の構成は、前記実施の形態1,2と同じである。また、説明の便宜上、前記の実施の形態1,2の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
 図8は、本実施の形態の液晶パネルの一構成例を示すものであり、アクティブマトリクス基板における遮光膜116が形成されている層の構成を示す平面図である。なお、図4では、遮光膜116のレイアウトを明示するために、遮光膜116、配線117、およびバスライン118以外の部材の図示は省略している。
 本実施の形態の液晶パネルは、前記実施の形態1の液晶パネル100と比較して、遮光膜116形成層の構成以外は同様の構成を有する。すなわち、図8に示すように、本実施の形態の液晶パネルでは、アクティブマトリクス基板の遮光膜116形成層において、ゲートドライバ102内のTFTの下部に、遮光膜119(第2遮光膜)が設けられている。遮光膜119をTFTの下部に配置することで、バックライト光によるオフ電流の増加を低減することができる。
 また、遮光膜119は、バスライン118と連結することで、バスライン118と電気的に接続されている。これにより、遮光膜119を配置したことによるESDの発生を低減し、パネル周辺に配置されているドライバのTFTについても半導体層の保護を行うことが可能となる。
 なお、図8では、遮光膜119はゲートドライバ102内全域に設けられているが、ゲートドライバ102などのドライバ部は、画素105の表示特性に影響しないので、遮光膜119のレイアウトは、ドライバ部のTFTの半導体層を含んでいれば、どのようなレイアウトでも可能である。例えば、個々に遮光膜119を配置させた場合は、適宜配線を設けて、バスライン118を接続すればよい。また、図示はしていないが、センサードライバ103においてもTFTで構成されている場合は、同様に、当該TFTの下部に設けた遮光膜をバスライン118に電気的に接続させることが望ましい。
 また、TFTがトップゲート構造の場合には、遮光層を持った同様の構造をゲート配線形成までは作成できないため、TFT作製工程の一番最初に、ESD対策配線として遮光膜119および配線を形成することが有効である。
 さらに、遮光膜119の電位がTFTの動作状態によって変化してしまうため、遮光膜119は適当な固定電位とすることが望ましい。遮光膜119への電圧は、例えば、ソースライン114との間にコンタクトを形成することで、ソースライン114から供給することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明のアクティブマトリクス基板は、複数の画素がマトリクス状に配置されたアクティブエリアを備えるアクティブマトリクス基板であって、上記各画素は、画像を表示するための表示部と、光を検出するためのセンサー部とを含み、上記複数の画素から規則的に予め抽出された各画素の上記センサー部には、受光素子および第1遮光膜が設けられ、上記第1遮光膜は、上記受光素子よりも下層であって、かつ、上記アクティブマトリクス基板に垂直な方向から見たとき該受光素子と重なるように配置され、上記表示部を避けるように、全ての上記第1遮光膜を電気的に接続する配線が設けられている構成を有する。
 また、配線を効果的に配置させるために、本発明のアクティブマトリクス基板は、上記配線は、上記アクティブエリア内における上記第1遮光膜と同層に配置され、各行における各画素に設けられた上記第1遮光膜を連結する第1配線と、上記アクティブエリアの周辺における上記第1遮光膜と同層に配置され、上記各第1配線を連結する第2配線とを含むことが望ましい。
 あるいは、本発明のアクティブマトリクス基板は、上記配線は、上記アクティブエリア内における上記第1遮光膜と同層に配置され、各列における各画素に設けられた上記第1遮光膜を連結する第3配線と、上記アクティブエリアの周辺における上記第1遮光膜と同層に配置され、上記各第3配線を連結する第4配線とを含む構成とすることもできる。
 また、本発明のアクティブマトリクス基板は、上記第1遮光膜は、上記アクティブマトリクス基板に垂直な方向から見たとき、上記受光素子が該第1遮光膜の内部に位置するように配置されていることが好ましい。これにより、第1遮光膜を電気的なシールドとすることで、半導体層をESDから一層保護する構造とすることが可能となる。
 また、本発明のアクティブマトリクス基板は、上記アクティブエリアの周辺に、上記複数の画素を駆動するドライバがモノリシックに形成され、上記ドライバは、少なくとも1つの薄膜トランジスタを含んで構成され、上記ドライバには、第2遮光膜が設けられ、上記第2遮光膜は、上記薄膜トランジスタよりも下層であって、かつ、上記アクティブマトリクス基板に垂直な方向から見たとき該薄膜トランジスタと重なるように配置されるとともに、上記配線と電気的に接続されていることが好ましい。
 上記の構成によれば、第2遮光膜を薄膜トランジスタの下部に配置することで、バックライト光によるオフ電流の増加を低減することが可能となる。また、第2遮光膜は配線と電気的に接続されているので、第2遮光膜を配置したことによるESDの発生を低減し、アクティブエリアの周辺に形成されているドライバの薄膜トランジスタについても半導体層の保護を行うことが可能となる。
 本発明は、遮光膜を備えた光センサー機種のアクティブマトリクス基板に関する分野に好適に用いることができるだけでなく、アクティブマトリクス基板の製造方法に関する分野に好適に用いることができ、さらには、アクティブマトリクス基板を備える液晶パネル、液晶パネルを備える液晶表示装置、液晶表示装置を備える電子機器、および、それらの製造方法などの分野にも広く用いることができる。
 100 液晶パネル
 101 アクティブエリア
 102 ゲートドライバ(ドライバ)
 103 センサードライバ(ドライバ)
 104 端子部
 105 画素
 111 表示部
 112 センサー部
 115 フォトダイオード(受光素子)
 116 遮光膜(第1遮光膜)
 117 配線(第1配線、第3配線)
 118 バスライン(配線、第2配線、第4配線)
 119 遮光膜(第2遮光膜)
 200 ガラス基板
 201 アクティブマトリクス基板
 202 切断しろ
 203 配線(基板間配線)

Claims (8)

  1.  複数の画素がマトリクス状に配置されたアクティブエリアを備えるアクティブマトリクス基板であって、
     上記各画素は、画像を表示するための表示部と、光を検出するためのセンサー部とを含み、
     上記複数の画素から規則的に予め抽出された各画素の上記センサー部には、受光素子および第1遮光膜が設けられ、
     上記第1遮光膜は、上記受光素子よりも下層であって、かつ、上記アクティブマトリクス基板に垂直な方向から見たとき該受光素子と重なるように配置され、
     上記表示部を避けるように、全ての上記第1遮光膜を電気的に接続する配線が設けられていることを特徴とするアクティブマトリクス基板。
  2.  上記配線は、
     上記アクティブエリア内において上記第1遮光膜と同層に配置され、各行における各画素に設けられた上記第1遮光膜を連結する第1配線と、
     上記アクティブエリアの周辺において上記第1遮光膜と同層に配置され、上記各第1配線を連結する第2配線とを含むことを特徴とする請求項1に記載のアクティブマトリクス基板。
  3.  上記配線は、
     上記アクティブエリア内において上記第1遮光膜と同層に配置され、各列における各画素に設けられた上記第1遮光膜を連結する第3配線と、
     上記アクティブエリアの周辺において上記第1遮光膜と同層に配置され、上記各第3配線を連結する第4配線とを含むことを特徴とする請求項1に記載のアクティブマトリクス基板。
  4.  上記第1遮光膜は、上記アクティブマトリクス基板に垂直な方向から見たとき、上記受光素子が該第1遮光膜の内部に位置するように配置されていることを特徴とする請求項1~3のいずれか1項に記載のアクティブマトリクス基板。
  5.  上記アクティブエリアの周辺に、上記複数の画素を駆動するドライバがモノリシックに形成され、
     上記ドライバは、少なくとも1つの薄膜トランジスタを含んで構成され、
     上記ドライバには、第2遮光膜が設けられ、
     上記第2遮光膜は、上記薄膜トランジスタよりも下層であって、かつ、上記アクティブマトリクス基板に垂直な方向から見たとき該薄膜トランジスタと重なるように配置されるとともに、上記配線と電気的に接続されていることを特徴とする請求項1~4のいずれか1項に記載のアクティブマトリクス基板。
  6.  複数のアクティブマトリクス基板が、該各アクティブマトリクス基板の周囲に切断しろを含んでマトリクス状に配置されたガラス基板であって、
     上記各アクティブマトリクス基板は、請求項1~5のいずれか1項に記載のアクティブマトリクス基板であり、
     上記各アクティブマトリクス基板の配線は、上記切断しろ内に引き出され、
     上記切断しろには、上記各アクティブマトリクス基板の配線全てを電気的に接続する基板間配線が設けられていることを特徴とするガラス基板。
  7.  請求項1~5のいずれか1項に記載のアクティブマトリクス基板を備えることを特徴とする液晶パネル。
  8.  請求項7に記載の液晶パネルと光源装置とを備えることを特徴とする液晶表示装置。
PCT/JP2010/070230 2010-02-18 2010-11-12 アクティブマトリクス基板、ガラス基板、液晶パネル、および液晶表示装置 WO2011102030A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/578,963 US20120320307A1 (en) 2010-02-18 2010-11-12 Active matrix substrate, glass substrate, liquid crystal panel and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010033319 2010-02-18
JP2010-033319 2010-02-18

Publications (1)

Publication Number Publication Date
WO2011102030A1 true WO2011102030A1 (ja) 2011-08-25

Family

ID=44482642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070230 WO2011102030A1 (ja) 2010-02-18 2010-11-12 アクティブマトリクス基板、ガラス基板、液晶パネル、および液晶表示装置

Country Status (2)

Country Link
US (1) US20120320307A1 (ja)
WO (1) WO2011102030A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014093065A1 (en) * 2012-12-10 2014-06-19 LuxVue Technology Corporation Active matrix display panel with ground tie lines
WO2014093064A1 (en) * 2012-12-10 2014-06-19 LuxVue Technology Corporation Active matrix emissive micro led display
US9111464B2 (en) 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
US9178123B2 (en) 2012-12-10 2015-11-03 LuxVue Technology Corporation Light emitting device reflective bank structure
US10381176B2 (en) 2013-06-12 2019-08-13 Rohinni, LLC Keyboard backlighting with deposited light-generating sources
US10629393B2 (en) 2016-01-15 2020-04-21 Rohinni, LLC Apparatus and method of backlighting through a cover on the apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9766754B2 (en) 2013-08-27 2017-09-19 Samsung Display Co., Ltd. Optical sensing array embedded in a display and method for operating the array
TWI656631B (zh) * 2014-03-28 2019-04-11 日商半導體能源研究所股份有限公司 攝像裝置
EP3151095B1 (en) * 2014-10-16 2020-08-12 Samsung Display Co., Ltd. An optical sensing array embedded in a display and method for operating the array
CN106373969B (zh) * 2016-12-01 2019-10-29 京东方科技集团股份有限公司 显示基板和显示装置
CN106898578B (zh) 2017-03-30 2019-08-06 合肥鑫晟光电科技有限公司 一种显示基板的制备方法、阵列基板及显示装置
CN111384085B (zh) * 2018-12-28 2022-08-05 武汉华星光电半导体显示技术有限公司 一种显示面板及其显示装置
CN110456943B (zh) * 2019-08-13 2023-11-03 京东方科技集团股份有限公司 触控基板及其制作方法、触控显示面板和触控显示装置
TWI720682B (zh) * 2019-11-08 2021-03-01 友達光電股份有限公司 畫素陣列基板
KR20210150903A (ko) * 2020-06-04 2021-12-13 삼성전자주식회사 디스플레이를 포함하는 전자 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177427A (ja) * 2001-10-04 2003-06-27 Seiko Epson Corp 電気光学装置及び電子機器
JP2003195356A (ja) * 1997-10-31 2003-07-09 Seiko Epson Corp 液晶装置及び電子機器並びに投射型表示装置
JP2003273361A (ja) * 2002-03-15 2003-09-26 Sharp Corp 半導体装置およびその製造方法
JP2008209563A (ja) * 2007-02-26 2008-09-11 Seiko Epson Corp 液晶装置及び電子機器
JP2009139565A (ja) * 2007-12-05 2009-06-25 Sony Corp 表示装置、および、その製造方法
JP2009205084A (ja) * 2008-02-29 2009-09-10 Hitachi Displays Ltd ガラス基板を用いた画像表示装置およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4044187B2 (ja) * 1997-10-20 2008-02-06 株式会社半導体エネルギー研究所 アクティブマトリクス型表示装置およびその作製方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003195356A (ja) * 1997-10-31 2003-07-09 Seiko Epson Corp 液晶装置及び電子機器並びに投射型表示装置
JP2003177427A (ja) * 2001-10-04 2003-06-27 Seiko Epson Corp 電気光学装置及び電子機器
JP2003273361A (ja) * 2002-03-15 2003-09-26 Sharp Corp 半導体装置およびその製造方法
JP2008209563A (ja) * 2007-02-26 2008-09-11 Seiko Epson Corp 液晶装置及び電子機器
JP2009139565A (ja) * 2007-12-05 2009-06-25 Sony Corp 表示装置、および、その製造方法
JP2009205084A (ja) * 2008-02-29 2009-09-10 Hitachi Displays Ltd ガラス基板を用いた画像表示装置およびその製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9559142B2 (en) 2012-12-10 2017-01-31 Apple Inc. Active matrix display panel with ground tie lines
US11916048B2 (en) 2012-12-10 2024-02-27 Apple Inc. Light emitting device reflective bank structure
WO2014093065A1 (en) * 2012-12-10 2014-06-19 LuxVue Technology Corporation Active matrix display panel with ground tie lines
US11373986B2 (en) 2012-12-10 2022-06-28 Apple Inc. Light emitting device reflective bank structure
US9159700B2 (en) 2012-12-10 2015-10-13 LuxVue Technology Corporation Active matrix emissive micro LED display
US9178123B2 (en) 2012-12-10 2015-11-03 LuxVue Technology Corporation Light emitting device reflective bank structure
US9214494B2 (en) 2012-12-10 2015-12-15 LuxVue Technology Corporation Active matrix display panel with ground tie lines
US9343448B2 (en) 2012-12-10 2016-05-17 LuxVue Technology Corporation Active matrix emissive micro LED display
US9029880B2 (en) 2012-12-10 2015-05-12 LuxVue Technology Corporation Active matrix display panel with ground tie lines
WO2014093064A1 (en) * 2012-12-10 2014-06-19 LuxVue Technology Corporation Active matrix emissive micro led display
US10784236B2 (en) 2012-12-10 2020-09-22 Apple Inc. Light emitting device reflective bank structure
US9620487B2 (en) 2012-12-10 2017-04-11 Apple Inc. Light emitting device reflective bank structure
US10043784B2 (en) 2012-12-10 2018-08-07 Apple Inc. Light emitting device reflective bank structure
US10381176B2 (en) 2013-06-12 2019-08-13 Rohinni, LLC Keyboard backlighting with deposited light-generating sources
US9865577B2 (en) 2013-06-18 2018-01-09 Apple Inc. LED display with wavelength conversion layer
US9111464B2 (en) 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
US9599857B2 (en) 2013-06-18 2017-03-21 Apple Inc. LED display with wavelength conversion layer
US10629393B2 (en) 2016-01-15 2020-04-21 Rohinni, LLC Apparatus and method of backlighting through a cover on the apparatus
US10818449B2 (en) 2016-01-15 2020-10-27 Rohinni, LLC Apparatus and method of backlighting through a cover on the apparatus

Also Published As

Publication number Publication date
US20120320307A1 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
WO2011102030A1 (ja) アクティブマトリクス基板、ガラス基板、液晶パネル、および液晶表示装置
US9293594B2 (en) Circuit board and display device
JP5080172B2 (ja) 画像検出装置
JP5940163B2 (ja) 半導体装置及び表示装置
JP2007251100A (ja) 電気光学装置、電子機器および半導体装置
US11758770B2 (en) Display panel and display device with pixel electrode overlapping transparent wires configured to reduce laser-etching damage
CN212461692U (zh) 半导体装置
JP3792749B2 (ja) 液晶表示装置
US8077275B2 (en) Display substrate and a method of manufacturing the same
JP2011039125A (ja) 表示装置
US8248395B2 (en) Image display device
JP5004892B2 (ja) 半導体装置
US8810762B2 (en) Display device equipped with touch sensor
US20210208760A1 (en) Touch control array substrate having a plurality of auxiliary conductive lines, and display apparatus thereof
JP5312442B2 (ja) 半導体装置、イメージセンサ及び撮影機器
JP5329938B2 (ja) センサ部内蔵画像表示装置
JP2006098641A (ja) 薄膜半導体装置、電気光学装置、および電子機器
CN115084196A (zh) 显示装置
US8466020B2 (en) Method of producing semiconductor device
WO2012060320A1 (ja) 半導体装置およびその製造方法
US12111992B2 (en) Touch panel with chip region having display pins and touch pins, preparation method therefor, and display apparatus
US20240334763A1 (en) Display panel and display device
JP2004140338A (ja) 光センサ素子、これを用いた平面表示装置、光センサ素子の製造方法、平面表示装置の製造方法
US20220068909A1 (en) Display device and method for manufacturing the same
US20240268178A1 (en) Display Device and Display Panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13578963

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10846161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP