WO2011099419A1 - 非対称自己循環ケーシングトリートメントを有する遠心圧縮機 - Google Patents

非対称自己循環ケーシングトリートメントを有する遠心圧縮機 Download PDF

Info

Publication number
WO2011099419A1
WO2011099419A1 PCT/JP2011/052274 JP2011052274W WO2011099419A1 WO 2011099419 A1 WO2011099419 A1 WO 2011099419A1 JP 2011052274 W JP2011052274 W JP 2011052274W WO 2011099419 A1 WO2011099419 A1 WO 2011099419A1
Authority
WO
WIPO (PCT)
Prior art keywords
centrifugal compressor
ring groove
impeller
casing
circumferential direction
Prior art date
Application number
PCT/JP2011/052274
Other languages
English (en)
French (fr)
Inventor
シンチェン ゼン
ルィン リン
ヤンジウィン ザン
ミンヤン ヤン
隆弘 馬場
秀明 玉木
Original Assignee
株式会社Ihi
清華大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201010110299A external-priority patent/CN101749278A/zh
Priority claimed from CN201010110311A external-priority patent/CN101749279A/zh
Application filed by 株式会社Ihi, 清華大学 filed Critical 株式会社Ihi
Priority to US13/578,188 priority Critical patent/US9816522B2/en
Priority to JP2011553815A priority patent/JP5583701B2/ja
Priority to EP11742163.6A priority patent/EP2535598B1/en
Publication of WO2011099419A1 publication Critical patent/WO2011099419A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface

Definitions

  • the present invention relates to a centrifugal compressor having an asymmetric self-circulating casing treatment.
  • Centrifugal compressors are used in various types of turbomachines such as superchargers for vehicles and ships, industrial compressors, and aero engines.
  • a turbo compressor using a centrifugal compressor has advantages such as higher efficiency, light weight, and stable operation compared to a reciprocating compressor, but its allowable operating range (ie, centrifugal compression).
  • the range of flow values to the machine is limited.
  • a phenomenon such as a large fluid separation occurs in the internal flow field, and an unstable operation phenomenon occurs, resulting in stall and surge. Bring.
  • the efficiency and pressure ratio of the compressor are rapidly reduced, the life is shortened, and as a result, it is damaged within a short time. Therefore, by adopting various methods, the occurrence of unstable phenomena such as stalling of the compressor is delayed, and the stable operating range is expanded.
  • the centrifugal compressor is provided with a casing treatment.
  • a suction ring groove downstream from the front edge of the impeller and a reflux ring groove upstream from the front edge of the impeller are formed on the inner peripheral surface of the casing surrounding the impeller of the centrifugal compressor. ing.
  • the fluid in the flow path defined on the inner peripheral surface of the casing is caused to flow from the suction ring groove into the casing, and the fluid is supplied from the reflux ring groove. Return to the flow path upstream from the leading edge of the impeller.
  • the flow rate to the impeller is increased and the operation of the centrifugal compressor is stabilized. In this way, the stable operating range is expanded.
  • Patent No. 3001902 JP 2007-127109 A Japanese Patent No. 4100030 Japanese Patent No. 4107823 US Pat. No. 4,930,979
  • the uneven pressure distribution in the circumferential direction has not been considered. That is, since the scroll flow path, which is the flow path of the fluid sent from the impeller in the centrifugal compressor, has an asymmetric shape with respect to the rotation axis, a nonuniform pressure distribution in the circumferential direction occurs in the fluid on the centrifugal compressor outlet side. . As a result, the upstream flow field is also affected, and the circumferential flow field at the inlet of the centrifugal compressor becomes asymmetric with respect to the rotation axis. In the conventional casing treatment, a suction ring groove that is symmetrical with respect to the rotation axis is formed, so that the asymmetry of the flow field inside the centrifugal compressor cannot be considered. That is, the casing treatment cannot be optimized over the entire circumference. This limits the expansion of the stable operating range of the centrifugal compressor.
  • an object of the present invention is to further expand a stable operating range without reducing efficiency in a centrifugal compressor having a casing treatment.
  • a rotary shaft (3) that is rotationally driven and an impeller (5) that is fixed to the rotary shaft are provided, and the impeller sends out suction fluid radially outward of the rotary shaft.
  • a centrifugal compressor that compresses A casing (7) having an inner peripheral surface surrounding the impeller;
  • a reflux path (9) for returning fluid from a position downstream from the impeller full blade leading edge (6a) to a position upstream from the impeller full blade leading edge is formed inside the casing,
  • the reflux path opens to the downstream position on the inner peripheral surface and opens to the upstream position on the inner peripheral surface, and the suction ring groove (9a) formed in the circumferential direction around the rotation axis.
  • a centrifugal compressor having an asymmetric self-circulating casing treatment, characterized in that an axial position or width distribution of the suction ring groove in the circumferential direction is asymmetric with respect to the rotation axis.
  • asymmetric self-circulating casing treatment self-circulating means that the fluid circulates through the above-described reflux path
  • asymmetric casing treatment means the axial position or width of the suction ring groove.
  • the distribution in the circumferential direction is asymmetric with respect to the rotation axis.
  • the fluid pressure distribution in the circumferential direction becomes non-uniform upstream from the leading edge of all impeller blades,
  • the axial position or the axial width of the suction ring groove is changed according to the circumferential position so as to reduce the non-uniformity of the fluid pressure distribution.
  • the distribution in the circumferential direction of the axial position or width of the suction ring groove is asymmetric with respect to the rotation axis, so that the stable operating range is further expanded without reducing the efficiency. be able to.
  • FIG. 3A An example of the distribution of the circumferential direction of the fluid pressure in a casing internal peripheral surface is shown.
  • the axial distance Sr distribution of the suction ring groove with respect to the impeller front blade front edge is shown.
  • the optimum axial distance Sr distribution of the suction ring groove with respect to the leading edge of the impeller blades is shown.
  • FIG. 1 is a longitudinal sectional view of a centrifugal compressor 10 having an asymmetric self-circulating casing treatment according to a first embodiment of the present invention.
  • the centrifugal compressor 10 includes a rotating shaft 3 that is rotationally driven and an impeller 5 that is fixed to the rotating shaft 3, and the impeller 5 supplies suction fluid to the scroll flow path 4 that is radially outward of the rotating shaft 3.
  • the impeller 5 has an impeller full blade 6 and an impeller half blade 8.
  • reference numeral 6 a indicates the impeller full blade leading edge
  • reference numeral 6 b indicates the impeller full blade trailing edge
  • reference numeral 8 a indicates the impeller half blade leading edge
  • reference numeral 8 b indicates the impeller half blade trailing edge.
  • the leading edge means the upstream end
  • the trailing edge means the downstream end.
  • the circumferential direction around the rotating shaft 3 is simply referred to as the circumferential direction
  • the direction parallel to the rotating shaft 3 is simply referred to as the axial direction
  • the radial direction with respect to the rotating shaft 3 is simply referred to as the radial direction.
  • a position in the circumferential direction is simply referred to as a circumferential position
  • a position in the axial direction is simply referred to as an axial position.
  • the centrifugal compressor 10 further includes a casing 7 having an inner peripheral surface 7 a extending in the circumferential direction so as to surround the impeller full blades 6. Inside the casing 7, a reflux path 9 is formed for returning fluid from a position downstream from the impeller full blade leading edge 6 a to a position upstream from the impeller full blade leading edge 6 a.
  • the downstream side position is between the impeller all blades leading edge 6a (the most upstream position in the axial direction) and the impeller all blades trailing edge 6b (the most downstream position in the axial direction).
  • the reflux path 9 includes a suction ring groove 9a, a reflux ring groove 9b, and a ring guide path (ring guide groove) 9c.
  • the suction ring groove 9a opens to the downstream position on the inner peripheral surface 7a and extends in the circumferential direction.
  • the suction ring groove 9a extends from the opening position in the casing 7 in the radial direction.
  • the reflux ring groove 9b opens in the upstream position on the inner peripheral surface 7a and extends in the circumferential direction.
  • the reflux ring groove 9b extends radially from the opening position into the casing 7.
  • the ring guide path 9c extends in the axial direction and connects the suction ring groove 9a and the return ring groove 9b.
  • the ring guide path 9c is closed by the closing member 11 in FIG.
  • the “ring” of the suction ring groove 9a, the reflux ring groove 9b, and the ring guide path 9c means that they are ring-shaped when viewed from the axial direction.
  • FIG. 2 due to the asymmetry of the scroll flow path 4 shown in FIG. 2, the flow field in the suction ring groove 9 a does not have symmetry with respect to the rotation axis 3.
  • FIG. 1 only one side (the upper side in FIG. 1) is shown with the rotary shaft 3 as a boundary. However, in FIG. 2, the rotary shaft 3, the scroll flow path 4, and the entire impeller blades 6 are viewed from the axial direction. Is shown.
  • the suction fluid that has flowed into the impeller full blades 6 is sent out by the impeller full blades 6 to the scroll flow path 4 located radially outward, and flows in the scroll flow path 4 in the circumferential direction. It flows outward in the radial direction.
  • FIG. 1 the suction fluid that has flowed into the impeller full blades 6 is sent out by the impeller full blades 6 to the scroll flow path 4 located radially outward, and flows in the scroll flow path 4 in the circumferential direction. It flows outward in the radial direction.
  • the fluid flow field (fluid pressure and flow rate) does not have symmetry in the scroll flow path 4.
  • Such flow field asymmetry also affects the flow field upstream of the scroll flow path 4.
  • the flow field also has no symmetry in the suction ring groove 9a.
  • the circumferential fluid pressure distribution is non-uniform.
  • the reflux path 9 is formed symmetrically with respect to the rotating shaft 3, that is, the axial position of the suction ring groove 9a of the reflux path 9 is between the circumferential positions. If it is made constant, the fluid pressure distribution in the circumferential direction becomes non-uniform downstream from the impeller full blade leading edge 6a.
  • the distribution in the circumferential direction of the axial position of the suction ring groove 9 a is asymmetric with respect to the rotating shaft 3.
  • each circumference is reduced so as to reduce the non-uniformity of the fluid pressure distribution in the vicinity of the leading edge 6a upstream of the impeller full blade leading edge 6a (hereinafter referred to as a pressure distribution correction axial position).
  • the axial position of the suction ring groove 9a at the directional position is changed according to the circumferential position.
  • the axial position of the reflux ring groove 9b is the same as the pressure distribution correction axial direction position or upstream of the pressure distribution correction axial position.
  • FIG. 3A shows each parameter of the reflux path 9.
  • FIG. 3B shows the reflux path of FIG. 3A.
  • S r corresponds to the axial position of the suction ring groove 9a, is the axial distance from the impeller full blade leading edge 6a to the suction ring groove 9a.
  • br is the axial width of the suction ring groove 9a.
  • S f corresponds to the axial position of the return ring grooves 9b, is the axial distance from the impeller full blade leading edge 6a up to the reflux ring groove 9b.
  • b f is the axial width of the reflux ring groove 9b.
  • b b is the radial width of the ring guideway 9c.
  • h b is the depth of the suction ring groove 9a or the reflux ring groove 9b.
  • S r or b r has the greatest influence on the stable operating range of the centrifugal compressor 10. That is, among the above dimensions, S r or b r has the largest influence on the pressure difference between the suction ring groove 9 a and the return ring groove 9 b and the fluid flow rate in the return path 9. Therefore, in the first embodiment, the S r, are adjusted for each circumferential position so as to reduce the non-uniformity of the fluid pressure distribution in the pressure distribution corrected axial position.
  • FIG. 4 shows an example of the fluid pressure distribution in the circumferential direction at the pressure distribution correction axial position.
  • the horizontal axis indicates the phase angle around the rotation axis 3 (that is, the circumferential position), and the vertical axis indicates the fluid pressure normalized.
  • the white square mark in FIG. 4 shows the fluid pressure measured by experiment. Of the phase angles in FIG. 4, 0 ° is shown in FIG.
  • FIG. 5A shows the axial position of the suction ring groove 9a at each circumferential position (that is, the above-mentioned S r ) for reducing the non-uniformity of the fluid pressure distribution shown in FIG.
  • the horizontal axis represents the phase angle around the rotating shaft 3 (i.e., the circumferential direction position)
  • the vertical axis represents the axial distance S r from the impeller full blade leading edge 6a to the suction ring groove 9a.
  • FIG. 2 shows a position of 0 ° and a position of ⁇ .
  • FIG. 5B shows the optimal Sr distribution obtained by numerical simulation.
  • FIG. 6A shows the pressure ratio of the centrifugal compressor to the flow rate.
  • the horizontal axis indicates a value obtained by normalizing the flow rate to the centrifugal compressor, and the vertical axis indicates the pressure ratio of the centrifugal compressor as a ratio.
  • FIG. 6B shows the efficiency of the centrifugal compressor with respect to the flow rate.
  • the horizontal axis indicates a value obtained by normalizing the flow rate to the centrifugal compressor
  • the vertical axis indicates the efficiency of the centrifugal compressor as a ratio.
  • C P is specific heat at constant pressure
  • T 1t is the temperature at the inlet side of a centrifugal compressor
  • T 2t is the temperature at the outlet side of the centrifugal compressor
  • P 1t is of the centrifugal compressor inlet side
  • P 2t is the pressure on the outlet side of the centrifugal compressor
  • is the specific heat ratio
  • a black square mark and a curve with a solid line passing over the square mark indicate the case of the example of the first embodiment (that is, a centrifugal compressor having an asymmetric casing treatment).
  • the casing treatment is abbreviated as CT.
  • a white square mark and a curve by a one-dot chain line passing over the square mark indicate a conventional centrifugal filter having a reflux path in which the axial position of the suction ring groove 9a is constant at each circumferential position.
  • the case of a compressor ie a centrifugal compressor with an axisymmetric casing treatment
  • a white circle and a curved line by a broken line passing over the circle indicate a case of a centrifugal compressor having no reflux path (that is, a centrifugal compressor having no casing treatment).
  • Pa indicates the limit operating point on the small flow rate side where the embodiment of the present invention does not generate a surge
  • Pb indicates the small flow rate side where the centrifugal compressor having an axisymmetric casing treatment does not generate a surge
  • Pc indicates the limit operating point on the small flow rate side where the centrifugal compressor having no casing treatment does not generate a surge.
  • the efficiency is not lowered as compared with the centrifugal compressor having the axisymmetric casing treatment.
  • the distribution in the circumferential direction of the axial position of the suction ring groove 9a is the rotation axis. To be asymmetric.
  • FIG. 7A shows the width of the suction ring groove 9a at each circumferential position (that is, b r described above) for reducing the non-uniformity of the fluid pressure distribution shown in FIG. 7A
  • the horizontal axis indicates the phase angle around the rotating shaft 3 (i.e., the circumferential direction position) and the vertical axis shows the width b r of the suction ring groove 9a.
  • FIG. 2 shows a position of 0 ° and a position of ⁇ .
  • the suction ring groove 9a having a b r as shown in FIG. 7A since reducing the non-uniformity in the circumferential direction of the fluid pressure distribution in the pressure distribution corrected axial position, Fluid separation, stall, surge, etc. can be more effectively suppressed. As a result, the stable operating range of the centrifugal compressor 10 can be further expanded.
  • FIG. 7B shows the optimum distribution of br obtained by numerical simulation.
  • FIG. 8A shows the pressure ratio of the centrifugal compressor to the flow rate.
  • the horizontal axis indicates a value obtained by normalizing the flow rate to the centrifugal compressor, and the vertical axis indicates the pressure ratio of the centrifugal compressor as a ratio.
  • FIG. 8B shows the efficiency of the centrifugal compressor with respect to the flow rate.
  • the horizontal axis indicates a value obtained by normalizing the flow rate to the centrifugal compressor
  • the vertical axis indicates the efficiency of the centrifugal compressor as a ratio.
  • a black square mark and a curve with a solid line passing over the square mark indicate the case of the example of the second embodiment (that is, a centrifugal compressor having an asymmetric casing treatment).
  • the casing treatment is abbreviated as CT.
  • a black triangular mark and a curve by a solid line passing over the triangular mark indicate the conventional centrifugal compression in which the axial position of the suction ring groove 9a is constant at each circumferential position.
  • Shows the case of a machine ie a centrifugal compressor with an axisymmetric casing treatment.
  • a white circle and a curve with a broken line passing over the circle indicate a case of a centrifugal compressor having no reflux path (that is, a centrifugal compressor having no casing treatment).
  • the asymmetric casing treatment according to the embodiment of the present invention is provided in the centrifugal compressor, so that it is compared with the case where the axisymmetric casing treatment is provided and the case where the casing treatment is not provided.
  • a stable operating range can be expanded while maintaining basically the same efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 遠心圧縮機において、ケーシング7の内部には、インペラ全羽根前縁6aより下流側位置からインペラ全羽根前縁6aより上流側位置へ流体を戻す還流路9が形成される。還流路9は、ケーシング7の内周面7aにおける下流側位置に開口して周方向に延びる吸引リング溝9aと、内周面7aにおける上流側位置に開口して周方向に延びる還流リング溝9bと、を有する。吸引リング溝9aの軸方向位置または幅の周方向における分布が、回転軸に関して非対称になっている。

Description

非対称自己循環ケーシングトリートメントを有する遠心圧縮機
 本発明は、非対称自己循環ケーシングトリートメントを有する遠心圧縮機に関する。遠心圧縮機は、車両や船舶用過給機、産業用圧縮機、航空エンジンなど、各種用途のターボ機械に用いられる。
 遠心圧縮機を用いたターボ式圧縮機は、往復動式圧縮機に対し、効率が高く、重量が軽く、運転が安定している等の長所があるものの、その許容作動範囲(すなわち、遠心圧縮機への流量値の範囲)は限られている。遠心圧縮機の小流量作動点(すなわち、圧縮機への流量が小さい場合)では、内部の流れ場において大幅な流体剥離などの現象が生じ、不安定な動作の現象が生じて、失速ひいてはサージをもたらす。その結果、圧縮機の効率と圧力比の急速な低下を招き、寿命が短縮し、ひいては、短時間内に損傷してしまう。そのため、様々な方法を採用することで、圧縮機の失速等の不安定な現象の発生を遅延して、その安定した作動範囲を拡大させている。
 安定した作動範囲を拡大させるために、遠心圧縮機にケーシングトリートメントを設けている。例えば、特許文献1~5のように、遠心圧縮機のインペラを囲むケーシングの内周面において、インペラの前縁より下流の吸引リング溝と、インペラの前縁より上流の還流リング溝を形成している。この構成で、遠心圧縮機への流量が少なくなった場合、ケーシング内周面に区画される流路内の流体を、吸引リング溝からケーシング内部へ流入させ、この流体を、還流リング溝から、インペラの前縁より上流にて前記流路に戻す。その結果、インペラへの流量が増加し、遠心圧縮機の動作が安定する。このようにして、安定した作動範囲を拡大させている。
特許第3001902号 特開2007-127109号公報 特許第4100030号 特許第4107823号 米国特許第4930979号
 しかし、従来においては、周方向の不均一圧力分布は考慮されていなかった。すなわち、遠心圧縮機におけるインペラから送出される流体の流路となるスクロール流路が回転軸に関して非対称の形状を有するため、遠心圧縮機出口側の流体に周方向の不均一圧力分布が生じてしまう。その結果、上流の流れ場にも影響を及ぼして、遠心圧縮機の入口の周方向流れ場が回転軸に関して非対称となることを招いてしまう。従来のケーシングトリートメントでは、回転軸に関して対称の吸引リング溝を形成するので、遠心圧縮機の内部の流れ場の非対称性を考慮できていない。すなわち、ケーシングトリートメントが全周にわたって最適化できていない。そのため、遠心圧縮機の安定した作動範囲の拡大に限界が生じている。
 そこで、本発明の目的は、ケーシングトリートメントを有する遠心圧縮機において、効率を下げることなく、安定した作動範囲をさらに拡大することにある。
 上記目的を達成するため、回転駆動される回転軸(3)と、該回転軸に固定されるインペラ(5)とを備え、該インペラにより、前記回転軸の半径方向外側に吸入流体を送出して圧縮する遠心圧縮機であって、
 前記インペラを囲む内周面を有するケーシング(7)を備え、
 前記ケーシングの内部には、インペラ全羽根前縁(6a)より下流側位置からインペラ全羽根前縁より上流側位置へ流体を戻す還流路(9)が形成され、
 該還流路は、前記内周面における前記下流側位置に開口して前記回転軸回りの周方向に形成される吸引リング溝(9a)と、前記内周面における前記上流側位置に開口して前記周方向に形成される還流リング溝(9b)と、を有し、
 前記回転軸の軸方向における位置を軸方向位置とし、
 前記吸引リング溝の軸方向位置または幅の前記周方向における分布が、前記回転軸に関して非対称になっている、ことを特徴とする非対称自己循環ケーシングトリートメントを有する遠心圧縮機が提供される。
 なお、「非対称自己循環ケーシングトリートメント」について、「自己循環」とは、上述の還流路により流体が循環することをいい、「非対称ケーシングトリートメント」とは、吸引リング溝において、その軸方向位置または幅の周方向分布が、前記回転軸に関して非対称になっている構成をいう。
 すなわち、前記還流路が無い場合には、インペラ全羽根前縁より上流において前記周方向の流体圧力分布が不均一となり、
 前記流体圧力分布の不均一を低減するように、吸引リング溝の軸方向位置または軸方向幅を周方向位置に応じて変化させている。
 上述した本発明によると、前記吸引リング溝の軸方向位置または幅の前記周方向における分布が、前記回転軸に関して非対称になっているので、効率を下げることなく、安定した作動範囲をさらに拡大することができる。
本発明の第1実施形態または第2実施形態による遠心圧縮機の縦断面図である。 図1の遠心圧縮機をその軸方向から見た模式図である。 第1実施形態または第2実施形態による還流路の各パラメータを示す模式図である。 図3Aの還流路を示す。 ケーシング内周面における流体圧力の周方向の分布の一例を示す。 インペラ全羽根前縁に対する、吸引リング溝の軸方向距離S分布を示す。 インペラ全羽根前縁に対する、吸引リング溝の最適な軸方向距離S分布を示す。 第1実施形態による非対称ケーシングトリートメントを設けた場合と、従来の軸対称ケーシングトリートメントを設けた場合と、ケーシングトリートメントを設けない場合との間で、圧力比を比較したグラフである。 第1実施形態による非対称ケーシングトリートメントを設けた場合と、従来の軸対称ケーシングトリートメントを設けた場合と、ケーシングトリートメントを設けない場合との間で、効率を比較したグラフである。 吸引リング溝の幅b分布を示す。 吸引リング溝の最適な幅b分布を示す。 第2実施形態による非対称ケーシングトリートメントを設けた場合と、従来の軸対称ケーシングトリートメントを設けた場合と、ケーシングトリートメントを設けない場合との間で、圧力比を比較したグラフである。 第2実施形態による非対称ケーシングトリートメントを設けた場合と、従来の軸対称ケーシングトリートメントを設けた場合と、ケーシングトリートメントを設けない場合との間で、効率を比較したグラフである。
 本発明を実施するための形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
[第1実施形態]
 図1は、本発明の第1実施形態による、非対称自己循環ケーシングトリートメントを有する遠心圧縮機10の縦断面図である。遠心圧縮機10は、回転駆動される回転軸3と、該回転軸3に固定されるインペラ5とを備え、該インペラ5により、回転軸3の半径方向外側のスクロール流路4に吸入流体を送出して圧縮する。インペラ5は、インペラ全羽根6とインペラ半羽根8とを有する。図1において、符号6aは、インペラ全羽根前縁を示し、符号6bは、インペラ全羽根後縁を示し、符号8aは、インペラ半羽根前縁を示し、符号8bは、インペラ半羽根後縁を示す。前縁は、上流端を意味し、後端は下流端を意味する。
 なお、第1実施形態において、回転軸3回りの周方向を単に周方向といい、回転軸3と平行な方向を単に軸方向といい、回転軸3に対する半径方向を単に半径方向といい、前記周方向における位置を単に周方向位置といい、前記軸方向における位置を単に軸方向位置という。
 遠心圧縮機10は、さらに、インペラ全羽根6を囲むように周方向に延びる内周面7aを有するケーシング7を備える。ケーシング7の内部には、インペラ全羽根前縁6aより下流側位置からインペラ全羽根前縁6aより上流側位置へ流体を戻す還流路9が形成される。前記下流側位置は、図1の例では、インペラ全羽根前縁6a(軸方向における最上流位置)と、インペラ全羽根後縁6b(軸方向における最下流位置)との間にある。
 還流路9は、吸引リング溝9aと還流リング溝9bとリング案内路(リング案内溝)9cとを有する。吸引リング溝9aは、内周面7aにおける前記下流側位置に開口して周方向に延びる。吸引リング溝9aは、その開口位置からケーシング7内ヘ半径方向に延びている。還流リング溝9bは、内周面7aにおける前記上流側位置に開口して周方向に延びる。還流リング溝9bは、その開口位置からケーシング7内ヘ半径方向に延びている。リング案内路9cは、軸方向に延びて、吸引リング溝9aと還流リング溝9bを連通させている。リング案内路9cは、図1において、閉塞部材11により閉じられている。
 なお、第1実施形態において、吸引リング溝9a、還流リング溝9b、およびリング案内路9cの「リング」とは、これらが軸方向から見てリング状であることを意味する。
 図2に示すスクロール流路4の非対称性により、吸引リング溝9aにおける流れ場は、回転軸3に関して対称性を有しなくなる。図1では、回転軸3を境界として、一方側(図1の上側)のみを示しているが、図2では、軸方向から見た回転軸3とスクロール流路4とインペラ全羽根6の全体を示している。図2のように、インペラ全羽根6へ流入した吸入流体は、インペラ全羽根6により、半径方向外側に位置するスクロール流路4へ送出され、該スクロール流路4内を周方向に流れながら、半径方向外側へ流れていく。図2のように、スクロール流路4の形状は、対称性を有しないので、スクロール流路4において流体の流れ場(流体の圧力や流量)も対称性を有しない。このような流れ場の非対称性は、スクロール流路4よりも上流側の流れ場にも影響を与える。その結果、吸引リング溝9aにおいても流れ場は、対称性を有しなくなる。
 そのため、第1実施形態と違って、還流路9が無い場合には、インペラ全羽根前縁6aより下流において(例えば、吸引リング溝9aの軸方向位置、インペラ全羽根6の軸方向中間部またはスクロール流路4において)、周方向の流体圧力分布は、不均一となる。
 また、第1実施形態と違って、還流路9を、回転軸3に関し対称に形成した場合には、すなわち、還流路9の吸引リング溝9aの軸方向位置を、各周方向位置の間で一定にした場合には、インペラ全羽根前縁6aより下流において周方向の流体圧力分布は、不均一となる。
 また、インペラ全羽根前縁6aより下流で圧力が低い周方向位置では、インペラ全羽根前縁6aより上流でも圧力が低くなる。従って、インペラ全羽根前縁6aより下流における周方向の流体圧力分布と、インペラ全羽根前縁6aより上流における周方向の流体圧力分布とは、同様の分布となる場合が多い。
 第1実施形態によると、吸引リング溝9aの軸方向位置の前記周方向における分布が、回転軸3に関して非対称になっている。
 すなわち、第1実施形態によると、インペラ全羽根前縁6aより上流における前縁6a付近(以下、圧力分布修正軸方向位置という)での前記流体圧力分布の不均一を低減するように、各周方向位置における吸引リング溝9aの軸方向位置を、周方向位置に応じて変化させている。なお、還流リング溝9bの軸方向位置は、圧力分布修正軸方向位置と同じか、または、圧力分布修正軸方向位置より上流側である。
 本発明の実施形態についてより詳しく説明する。
 図3Aは、還流路9の各パラメータを示す。図3Bは、図3Aの還流路を示す。Sは、吸引リング溝9aの軸方向位置に相当し、インペラ全羽根前縁6aから吸引リング溝9aまでの軸方向距離である。bは、吸引リング溝9aの軸方向幅である。Sは、還流リング溝9bの軸方向位置に相当し、インペラ全羽根前縁6aから還流リング溝9bまでの軸方向距離である。bは、還流リング溝9bの軸方向幅である。bは、リング案内路9cの半径方向幅である。hは、吸引リング溝9aまたは還流リング溝9bの深さである。
 上述の各寸法のうち、Sまたはbが、遠心圧縮機10の安定した作動範囲に最も影響を与える。すなわち、上述の各寸法のうち、Sまたはbは、吸引リング溝9aと還流リング溝9bとの圧力差、および、還流路9における流体の流量に与える影響が最も大きい。
 そこで、第1実施形態では、Sを、圧力分布修正軸方向位置での流体圧力分布の不均一さを低減するように各周方向位置毎に調整している。
 図4は、圧力分布修正軸方向位置での周方向における前記流体圧力分布の一例を示す。図4において、横軸は、回転軸3回りの位相角(すなわち周方向位置)を示し、縦軸は、流体の圧力を正規化して示している。図4の例では、図4における白い四角印は、実験により計測した流体圧力を示す。図4の位相角のうち、0°を図2に示している。
 図5Aは、図4に示す流体圧力分布の不均一を低減するための、各周方向位置における吸引リング溝9aの軸方向位置(すなわち、上記のS)を示す。図5Aにおいて、横軸は、回転軸3回りの位相角(すなわち、周方向位置)を示し、縦軸は、インペラ全羽根前縁6aから吸引リング溝9aまでの軸方向距離Sを示す。図5Aの位相角に関して、図2において、0°の位置、及び、θの位置を示している。
 遠心圧縮機10への流量が小さい作動時において、還流路9により、インペラ全羽根前縁6aより下流側から上流側へ一部の流体が戻される。これにより、インペラ全羽根6へ吸い込まれる流量を増加させる。従って、流体に対するインペラ全羽根6の迎角を小さくすることができ、流体剥離、失速、サージなどを防止できる。その結果、遠心圧縮機10の安定した作動範囲が拡大する。
 第1実施形態では、さらに、図5AのようなSを有する吸引リング溝9aにより、圧力分布修正軸方向位置における周方向の流体圧力分布の不均一を低減するので、流体剥離、失速、サージなどを一層効果的に抑制できる。その結果、遠心圧縮機10の安定した作動範囲をさらに拡大することができる。
 図5Bは、数値シミュレーションにより得た最適なSの分布を示す。この数値シミュレーションにおいては、還流路9の構造を示す各パラメータを、b=4.8mm、S=15.0mm、b=10.0mm、b=13.0mm、h=8.0mm、開始位相角θ=0°としている。
 図6Aは、流量に対する遠心圧縮機の圧力比を示す。図6Aにおいて、横軸は、遠心圧縮機への流量を正規化した値で示し、縦軸は、遠心圧縮機の圧力比を比率で示している。
 図6Bは、流量に対する遠心圧縮機の効率を示す。図6Bにおいて、横軸は、遠心圧縮機への流量を正規化した値で示し、縦軸は、遠心圧縮機の効率を比率で示す。
 なお、遠心圧縮機の効率は、次の[数1]で表わされる。
Figure JPOXMLDOC01-appb-M000001
 
 この式において、Cは定圧比熱であり、T1tは遠心圧縮機の入口側の温度であり、T2tは遠心圧縮機の出口側の温度であり、P1tは遠心圧縮機の入口側の圧力であり、P2tは遠心圧縮機の出口側の圧力であり、γは比熱比である。
 また、図6A、図6Bにおいて、黒い四角印と、この四角印上を通過する実線による曲線は、第1実施形態の実施例(すなわち、非対称ケーシングトリートメントを有する遠心圧縮機)の場合を示す。なお、図6A、図6Bにおいて、ケーシングトリートメントをCTと略して表示している。図6A、図6Bにおいて、白い四角印と、この四角印上を通過する1点鎖線よる曲線は、吸引リング溝9aの軸方向位置が各周方向位置において一定である還流路を有する従来の遠心圧縮機(すなわち、軸対称ケーシングトリートメントを有する遠心圧縮機)の場合を示す。図6A、図6Bにおいて、白丸印と、この丸印上を通過する破線による曲線は、還流路を有しない遠心圧縮機(すなわち、ケーシングトリートメントを有しない遠心圧縮機)の場合を示す。
 図6A、図6Bにおいて、Paは、本発明の実施例がサージを発生しない小流量側の限界作動点を示し、Pbは、軸対称ケーシングトリートメントを有する遠心圧縮機がサージを発生しない小流量側の限界作動点を示し、Pcは、ケーシングトリートメントを有しない遠心圧縮機がサージを発生しない小流量側の限界作動点を示す。これら限界作動点Pa、Pb、Pcは、本発明の実施例により、安定した作動範囲が一層拡大することを示している。すなわち、軸対称ケーシングトリートメントを有する遠心圧縮機では、サージが発生しない安定作動範囲(流量範囲)が、ケーシングトリートメントを有しない遠心圧縮機よりも7.7%だけ拡大しており、本発明の実施例では、サージが発生しない安定作動範囲(流量範囲)が、軸対称ケーシングトリートメントを有する遠心圧縮機よりも3.3%だけさらに拡大している。
 図6Bから分かるように、本発明の実施例では、軸対称ケーシングトリートメントを有する遠心圧縮機と比較して、効率が低下していない。
[第2実施形態]
 本発明の第2実施形態による遠心圧縮機10を説明する。第2実施形態において、以下で説明しない点は、上述の第1実施形態と同じである。
 吸引リング溝9aの軸方向位置の周方向における分布が、前記回転軸に関して非対称となるようにする代わりに、第2実施形態では、吸引リング溝9aの幅の周方向における分布が、前記回転軸に関して非対称となるようにする。
 図7Aは、図4に示す流体圧力分布の不均一を低減するための、各周方向位置における吸引リング溝9aの幅(すなわち、上記のb)を示す。図7Aにおいて、横軸は、回転軸3回りの位相角(すなわち、周方向位置)を示し、縦軸は、吸引リング溝9aの幅bを示す。図7Aの位相角に関して、図2において、0°の位置、及び、θの位置を示している。
 第2実施形態では、第1実施形態と同様に、図7Aのようなbを有する吸引リング溝9aにより、圧力分布修正軸方向位置における周方向の流体圧力分布の不均一を低減するので、流体剥離、失速、サージなどを一層効果的に抑制できる。その結果、遠心圧縮機10の安定した作動範囲をさらに拡大することができる。
 図7Bは、数値シミュレーションにより得た最適なbの分布を示す。この数値シミュレーションにおいては、還流路の構造を示す各パラメータを、S=5mm、S=15.0mm、b=10.0mm、b=13.0mm、h=8.0mm、開始位相角θ=0°としている。
 図8Aは、流量に対する遠心圧縮機の圧力比を示す。図8Aにおいて、横軸は、遠心圧縮機への流量を正規化した値で示し、縦軸は、遠心圧縮機の圧力比を比率で示している。
 図8Bは、流量に対する遠心圧縮機の効率を示す。図8Bにおいて、横軸は、遠心圧縮機への流量を正規化した値で示し、縦軸は、遠心圧縮機の効率を比率で示す。
 また、図8A、図8Bにおいて、黒い四角印と、この四角印上を通過する実線による曲線は、第2実施形態の実施例(すなわち、非対称ケーシングトリートメントを有する遠心圧縮機)の場合を示す。なお、図8A、図8Bにおいて、ケーシングトリートメントをCTと略して表示している。図8A、図8Bにおいて、黒い三角印と、この三角印上を通過するに実線よる曲線は、吸引リング溝9aの軸方向位置が各周方向位置において一定である還流路を有する従来の遠心圧縮機(すなわち、軸対称ケーシングトリートメントを有する遠心圧縮機)の場合を示す。図8A、図8Bにおいて、白丸印と、この丸印上を通過する破線による曲線は、還流路を有しない遠心圧縮機(すなわち、ケーシングトリートメントを有しない遠心圧縮機)の場合を示す。
 図8A、図8Bから分かるように、本発明の実施例に基づいた非対称ケーシングトリートメントを遠心圧縮機に備えることにより、軸対称ケーシングトリートメントを備えた場合、および、ケーシングトリートメントを備えない場合と比較して、基本的に同じ効率を維持しつつ、安定した作動範囲を拡大することができる。
 本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更を加え得ることは勿論である。
3 回転軸、4 スクロール流路、5 インペラ、6 インペラ全羽根、
6a インペラ全羽根前縁、6b インペラ全羽根後縁、7 ケーシング、
7a ケーシングの内周面、8 インペラ半羽根、8a インペラ半羽根前縁、
8b インペラ半羽根後縁、9 還流路、9a 吸引リング溝、
9b 還流リング溝、9c リング案内路、10 遠心圧縮機、11 閉塞部材
 
 

Claims (1)

  1.  回転駆動される回転軸(3)と、該回転軸に固定されるインペラ(5)とを備え、該インペラにより、前記回転軸の半径方向外側に吸入流体を送出して圧縮する遠心圧縮機であって、
     前記インペラを囲む内周面を有するケーシング(7)を備え、
     前記ケーシングの内部には、インペラ全羽根前縁(6a)より下流側位置からインペラ全羽根前縁より上流側位置へ流体を戻す還流路(9)が形成され、
     該還流路は、前記内周面における前記下流側位置に開口して前記回転軸回りの周方向に形成される吸引リング溝(9a)と、前記内周面における前記上流側位置に開口して前記周方向に形成される還流リング溝(9b)と、を有し、
     前記回転軸の軸方向における位置を軸方向位置とし、
     前記吸引リング溝の軸方向位置または幅の前記周方向における分布が、前記回転軸に関して非対称になっている、ことを特徴とする非対称自己循環ケーシングトリートメントを有する遠心圧縮機。
PCT/JP2011/052274 2010-02-09 2011-02-03 非対称自己循環ケーシングトリートメントを有する遠心圧縮機 WO2011099419A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/578,188 US9816522B2 (en) 2010-02-09 2011-02-03 Centrifugal compressor having an asymmetric self-recirculating casing treatment
JP2011553815A JP5583701B2 (ja) 2010-02-09 2011-02-03 非対称自己循環ケーシングトリートメントを有する遠心圧縮機と、遠心圧縮機に非対称自己循環ケーシングトリートメントを設ける方法
EP11742163.6A EP2535598B1 (en) 2010-02-09 2011-02-03 Centrifugal compressor using an asymmetric self-recirculating casing treatment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010110299A CN101749278A (zh) 2010-02-09 2010-02-09 基于变开槽宽度的离心压气机非对称自循环处理机匣
CN201010110311A CN101749279A (zh) 2010-02-09 2010-02-09 基于变开槽位置的离心压气机非对称自循环处理机匣
CN201010110311.5 2010-02-09
CN201010110299.8 2010-02-09

Publications (1)

Publication Number Publication Date
WO2011099419A1 true WO2011099419A1 (ja) 2011-08-18

Family

ID=44367694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052274 WO2011099419A1 (ja) 2010-02-09 2011-02-03 非対称自己循環ケーシングトリートメントを有する遠心圧縮機

Country Status (4)

Country Link
US (1) US9816522B2 (ja)
EP (1) EP2535598B1 (ja)
JP (1) JP5583701B2 (ja)
WO (1) WO2011099419A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10364818B2 (en) 2013-09-27 2019-07-30 Ihi Corporation Centrifugal compressor and turbocharger
WO2019150415A1 (ja) * 2018-01-30 2019-08-08 三菱重工エンジン&ターボチャージャ株式会社 コンプレッサケーシング、これを備えたコンプレッサ、およびコンプレッサケーシングの加工方法
EP3862575A1 (en) 2020-02-06 2021-08-11 Mitsubishi Heavy Industries, Ltd. Compressor housing with a recirculation structure, compressor including said compressor housing, and turbocharger including said compressor
DE112020006937T5 (de) 2020-05-21 2023-02-09 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Verdichtergehäuse und zentrifugalverdichter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2535597B1 (en) * 2010-02-09 2018-06-20 IHI Corporation Centrifugal compressor using an asymmetric self-recirculating casing treatment
DE102014200588B4 (de) 2013-12-20 2015-08-27 Aktiebolaget Skf Lageranordnung
JP6497183B2 (ja) * 2014-07-16 2019-04-10 トヨタ自動車株式会社 遠心圧縮機
JP7298703B2 (ja) * 2019-10-09 2023-06-27 株式会社Ihi 遠心圧縮機

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4930979A (en) 1985-12-24 1990-06-05 Cummins Engine Company, Inc. Compressors
JPH031902B2 (ja) 1979-05-23 1991-01-11 Bosch Gmbh Robert
JP2001263296A (ja) * 2000-03-17 2001-09-26 Hitachi Ltd ターボ機械
JP2004332734A (ja) * 2003-04-30 2004-11-25 Holset Eng Co Ltd 圧縮機
JP2007127109A (ja) 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd 排気ターボ過給機のコンプレッサ
JP2007224789A (ja) * 2006-02-22 2007-09-06 Toyota Motor Corp 遠心圧縮機
JP4100030B2 (ja) 2002-04-18 2008-06-11 株式会社Ihi 遠心圧縮機
JP4107823B2 (ja) 2001-09-28 2008-06-25 三菱重工業株式会社 流体機械

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH675279A5 (ja) * 1988-06-29 1990-09-14 Asea Brown Boveri
DE4027174A1 (de) * 1990-08-28 1992-03-05 Kuehnle Kopp Kausch Ag Kennfeldstabilisierung bei einem radialverdichter
US6290458B1 (en) * 1999-09-20 2001-09-18 Hitachi, Ltd. Turbo machines
DE10355240A1 (de) * 2003-11-26 2005-07-07 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine mit Fluidentnahme
US7604457B2 (en) * 2005-09-13 2009-10-20 Ingersoll-Rand Company Volute for a centrifugal compressor
GB0600532D0 (en) * 2006-01-12 2006-02-22 Rolls Royce Plc A blade and rotor arrangement
EP1862641A1 (de) 2006-06-02 2007-12-05 Siemens Aktiengesellschaft Ringförmiger Strömungskanal für eine in Axialrichtung von einem Hauptstrom durchströmbare Strömungsmaschine
US20080044273A1 (en) * 2006-08-15 2008-02-21 Syed Arif Khalid Turbomachine with reduced leakage penalties in pressure change and efficiency
FR2912789B1 (fr) * 2007-02-21 2009-10-02 Snecma Sa Carter avec traitement de carter, compresseur et turbomachine comportant un tel carter.
DE102008031982A1 (de) * 2008-07-07 2010-01-14 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine mit Nut an einem Laufspalt eines Schaufelendes
DE102008047506A1 (de) * 2008-09-17 2010-04-15 Daimler Ag Radialverdichter, insbesondere für einen Abgasturbolader einer Brennkraftmaschine
JP5948892B2 (ja) 2012-01-23 2016-07-06 株式会社Ihi 遠心圧縮機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031902B2 (ja) 1979-05-23 1991-01-11 Bosch Gmbh Robert
US4930979A (en) 1985-12-24 1990-06-05 Cummins Engine Company, Inc. Compressors
JP2001263296A (ja) * 2000-03-17 2001-09-26 Hitachi Ltd ターボ機械
JP4107823B2 (ja) 2001-09-28 2008-06-25 三菱重工業株式会社 流体機械
JP4100030B2 (ja) 2002-04-18 2008-06-11 株式会社Ihi 遠心圧縮機
JP2004332734A (ja) * 2003-04-30 2004-11-25 Holset Eng Co Ltd 圧縮機
JP2007127109A (ja) 2005-11-07 2007-05-24 Mitsubishi Heavy Ind Ltd 排気ターボ過給機のコンプレッサ
JP2007224789A (ja) * 2006-02-22 2007-09-06 Toyota Motor Corp 遠心圧縮機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10364818B2 (en) 2013-09-27 2019-07-30 Ihi Corporation Centrifugal compressor and turbocharger
WO2019150415A1 (ja) * 2018-01-30 2019-08-08 三菱重工エンジン&ターボチャージャ株式会社 コンプレッサケーシング、これを備えたコンプレッサ、およびコンプレッサケーシングの加工方法
EP3862575A1 (en) 2020-02-06 2021-08-11 Mitsubishi Heavy Industries, Ltd. Compressor housing with a recirculation structure, compressor including said compressor housing, and turbocharger including said compressor
US11530708B2 (en) 2020-02-06 2022-12-20 Mitsubishi Heavy Industries, Ltd. Compressor housing, compressor including the compressor housing, and turbocharger including the compressor
DE112020006937T5 (de) 2020-05-21 2023-02-09 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Verdichtergehäuse und zentrifugalverdichter
JP7361214B2 (ja) 2020-05-21 2023-10-13 三菱重工エンジン&ターボチャージャ株式会社 コンプレッサハウジングおよび遠心圧縮機

Also Published As

Publication number Publication date
EP2535598B1 (en) 2018-06-06
US20120315127A1 (en) 2012-12-13
JP5583701B2 (ja) 2014-09-03
EP2535598A4 (en) 2017-09-20
US9816522B2 (en) 2017-11-14
JPWO2011099419A1 (ja) 2013-06-13
EP2535598A1 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5583701B2 (ja) 非対称自己循環ケーシングトリートメントを有する遠心圧縮機と、遠心圧縮機に非対称自己循環ケーシングトリートメントを設ける方法
EP2535597B1 (en) Centrifugal compressor using an asymmetric self-recirculating casing treatment
US8915699B2 (en) Circulation structure for a turbo compressor
US9494160B2 (en) Centrifugal compressor impeller
JP5870083B2 (ja) タービン
EP3412892B1 (en) Rotary machine blade, supercharger, and method for forming flow field of same
JP2017519154A (ja) 遠心圧縮機用のディフューザ
EP2535596B1 (en) Centrifugal compressor using an asymmetric self-recirculating casing treatment
JP2009133267A (ja) 圧縮機のインペラ
US10309413B2 (en) Impeller and rotating machine provided with same
US20150118061A1 (en) Radial Compressor
US11136900B2 (en) Turbine and turbocharger
EP2535595B1 (en) Centrifugal compressor using an asymmetric self-recirculating casing treatment
JP2019015229A (ja) 遠心圧縮機インペラ及び遠心圧縮機
US20230123100A1 (en) Impeller and centrifugal compressor
JP6757461B2 (ja) 遠心圧縮機のインペラ及び遠心圧縮機
JP6745976B2 (ja) 排気ターボ過給機用タービンのケーシング、排気ターボ過給機用タービン、及び製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742163

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011553815

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011742163

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201003995

Country of ref document: TH

Ref document number: 13578188

Country of ref document: US