WO2011099229A1 - 熱収縮チューブ、その製造方法および製造装置 - Google Patents

熱収縮チューブ、その製造方法および製造装置 Download PDF

Info

Publication number
WO2011099229A1
WO2011099229A1 PCT/JP2010/073098 JP2010073098W WO2011099229A1 WO 2011099229 A1 WO2011099229 A1 WO 2011099229A1 JP 2010073098 W JP2010073098 W JP 2010073098W WO 2011099229 A1 WO2011099229 A1 WO 2011099229A1
Authority
WO
WIPO (PCT)
Prior art keywords
pinch roller
tube
heat
pinch
closed
Prior art date
Application number
PCT/JP2010/073098
Other languages
English (en)
French (fr)
Inventor
泰博 福本
ホン フク グェン
一秋 池田
昌亘 井上
Original Assignee
住友電工ファインポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ファインポリマー株式会社 filed Critical 住友電工ファインポリマー株式会社
Priority to CN201080063024.1A priority Critical patent/CN102741037B/zh
Priority to US13/576,160 priority patent/US20120298250A1/en
Publication of WO2011099229A1 publication Critical patent/WO2011099229A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/06Making preforms having internal stresses, e.g. plastic memory
    • B29C61/08Making preforms having internal stresses, e.g. plastic memory by stretching tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/007Using fluid under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92085Velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92123Diameter or circumference
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92428Calibration, after-treatment, or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92571Position, e.g. linear or angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92619Diameter or circumference
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92923Calibration, after-treatment or cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/901Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/9125Cooling of hollow articles of tubular films internally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/913Cooling of hollow articles of tubular films externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0049Heat shrinkable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/005Oriented
    • B29K2995/0051Oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/005Oriented
    • B29K2995/0053Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/001Tubular films, sleeves

Definitions

  • the present invention relates to a heat-shrinkable tube to which heat-shrinkability is imparted by expanding a plastic tube, a manufacturing method thereof, and a manufacturing apparatus.
  • Patent Document 1 describes that an unstretched tube is expanded by applying an internal pressure to regulate the diameter with the stretched tube. For example, drawing at a constant speed while applying pressure by compressed gas from one end of an unstretched tube to the inside of the tube, then preheating with warm water or an infrared heater, etc., and stretching at a stretching temperature to regulate the stretching ratio in the radial direction Place in a tube and do biaxial stretching. It cools after extending
  • Patent Document 2 describes a thermoplastic resin film manufacturing system using a tubular method.
  • air is enclosed in a cylindrical thermoplastic resin film, the film is stretched at least in the lateral direction, and introduced into a guide composed of two guide plates inclined so that the distance gradually decreases. It is pinched by a roll and taken out.
  • the diameter and average thickness of the portion from the bubble frost line to the guide plate are made constant.
  • the present invention provides a heat-shrinkable tube manufacturing method and a manufacturing apparatus capable of obtaining a heat-shrinkable tube having a stable quality without bringing a member into contact with the outer peripheral surface of the expanded tube. As well as its heat shrink tubing.
  • the manufacturing method of the heat-shrinkable tube provided by the present invention includes a pair of first pinch rollers disposed so as to sandwich a plastic tube, and a pair of members disposed so as to sandwich the tube at a location different from the first pinch roller. By closing each of the second pinch rollers, the step of sealing the air supplied into the tube between the first pinch roller and the second pinch roller, and keeping the first pinch roller and the second pinch roller closed, respectively. A step of adjusting the expansion of the tube by changing the distance between the first pinch roller and the second pinch roller.
  • the first pinch roller and the second pinch roller are closed, respectively, Change the distance between the two pinch rollers. If the first pinch roller and the second pinch roller are brought close to each other, the internal pressure of the tube rises between the first pinch roller and the second pinch roller and the tube expands. By changing the distance, the outer diameter and thickness of the expanded tube can be adjusted. For this reason, a regulating member such as a drawing tube is not required to regulate the expansion diameter of the tube, and a thin heat-shrinkable tube can be manufactured relatively easily.
  • the tube is fed by a pinch roller, a guide plate or the like is unnecessary, and it is difficult to scratch the tube throughout the manufacturing process of the heat-shrinkable tube. Therefore, the occurrence of cracking and tearing of the tube is also suppressed.
  • the step of enclosing the air supplied into the tube is to draw air from the end of the tube on the second pinch roller side with the first pinch roller closed and the second pinch roller open. And a step of closing the second pinch roller while the first pinch roller is closed.
  • the internal pressure of the tube on the air supply side from the second pinch roller is changed after the second pinch roller is closed and before the distance between the first pinch roller and the second pinch roller is changed.
  • a step of adjusting to a constant pressure may be further provided.
  • the distance between the first pinch roller and the second pinch roller can be changed by moving the first pinch roller. If the position of the second pinch roller closer to the air supply side than the first pinch roller is fixed, it is easy to stabilize the outer diameter and wall thickness before expansion even when the extruded tube is expanded. As a result, it is possible to further ensure the stability of subsequent expansion.
  • the method further comprises a step of detecting the outer diameter of the continuously fed tube between the first pinch roller and the second pinch roller, and the step of adjusting the expansion of the tube moves the first pinch roller at a constant initial speed. Then, the moving speed of the first pinch roller may be changed based on the detected outer diameter.
  • the position of the first pinch roller is temporarily held in a state where the continuously fed tube is expanded to the desired outer diameter, and only when the outer diameter changes due to various causes from the first pinch position. If the roller is moved, the outer diameter of the expanded tube may become unstable. This is because sudden internal pressure fluctuations occur, which makes the expansion rate unstable. If a change in the outer diameter is detected while moving the first pinch roller at a constant initial speed, the expansion rate can be stabilized by increasing or decreasing the moving speed.
  • the tube may be heated between the first pinch roller and the second pinch roller. In that case, the tube can be heated at a temperature above the glass transition point. It becomes easy to expand
  • the expanded tube has a thickness (average thickness) of, for example, 100 ⁇ m or less, preferably 5 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 20 ⁇ m or less. Even in the case of manufacturing such a thin tube, since a regulating member such as a drawn tube is not used, the tube can be expanded without being broken.
  • a heat shrinkable tube manufactured by the above-described manufacturing method is provided.
  • This heat-shrinkable tube has almost no scratch on the surface, and the occurrence of cracks and tears caused by it is suppressed even during use.
  • a pair of first pinch rollers provided so as to be movable along the feed path of the plastic tube and openable / closable across the feed path, and air from one end of the plastic tube into the tube.
  • An air supply unit that supplies air
  • a pair of second pinch rollers that are disposed closer to the air supply unit than the first pinch roller and that can be opened and closed across the feed path, and the first pinch roller is closed to close the second pinch roller
  • the second pinch roller is closed, and the first pinch roller and the second pinch roller are closed while the first pinch roller and the second pinch roller are closed.
  • a heat-shrinkable tube having a stable quality can be obtained without bringing a member into contact with the outer peripheral surface of the expanded tube.
  • FIG. 1 is a diagram showing a main configuration of a heat shrinkable tube manufacturing apparatus according to an embodiment of the present invention.
  • the manufacturing apparatus 100 expands the plastic tube 101 extruded and molded upward while continuously feeding it upward and downward 102 to impart heat shrinkability, and then winds the tube 101. take.
  • An annular die 103 that pushes the molten resin upward is disposed below the manufacturing apparatus 100.
  • the annular die 103 continuously extrudes the molten resin kneaded by an extruder (not shown) upward. Thereby, the cylindrical plastic tube 101 is molded.
  • the resin fluorine resin, ionomer resin, polyethylene terephthalate (PET) resin, nylon resin, polyolefin resin such as polyethylene, and other various resins can be used, and the type of resin is not particularly limited.
  • PET polyethylene terephthalate
  • nylon resin nylon resin
  • polyolefin resin such as polyethylene
  • the type of resin is not particularly limited.
  • fluororesin for example, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) is used. In PFA, it is easy to obtain a continuous long tube stably by extrusion.
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • PTFE polytetrafluoroethylene
  • ETFE ethylene / tetrafluoroethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • ECTFE ethylene copolymer
  • PVDF polyvinylidene fluoride
  • Conductivity can be imparted to the resin by blending carbon or the like.
  • An air vent 104 is provided at the center of the annular die 103. Air is fed into the air vent hole 104 by a compressor (not shown), and air is supplied into the tube 101 from one end of the tube 101 through the air vent hole 104. The pressure can be adjusted by a regulator. By applying an internal pressure to the tube 101 by the air supply, the tube 101 expands. Two pairs of pinch rollers 105 and 106 are used to adjust the expansion.
  • the pinch rollers 105 and 106 are arranged at different height positions above the annular die 103.
  • the expansion of the tube 101 is adjusted by changing the distance 107 between the pinch roller 105 and the pinch roller 106.
  • the pinch roller 105 is provided so as to be displaceable within a movable range 108 in the vertical direction 102, and the pinch roller 106 is provided with a fixed position in the vertical direction 102. That is, the distance 107 between the pinch roller 105 and the pinch roller 106 is changed by moving the pinch roller 105.
  • the tube 101 is stretched in the radial direction. If the rotation ratio between the pinch roller 105 and the pinch roller 106 is adjusted, the tube 101 can be extended in the axial direction.
  • the pair of pinch rollers 105 are disposed with the feed path (pass line) of the tube 101 interposed therebetween, and the pair of pinch rollers 106 are also disposed with the feed path interposed therebetween.
  • the pinch rollers 105 and 106 are both openable and closable, and each pinch roller holds the tube 101 in the closed state.
  • Each pinch roller is driven by a motor and can feed the tube 101 upward in the vertical direction 102.
  • the tube 101 sent by the pinch roller is sent to a take-up roller (drive roller) (not shown) by a guide roller 109 which is a driven roller, and taken up by the take-up roller.
  • An air ring 110 can be provided upstream of the pinch roller 106 (between the annular die 103 and the pinch roller 106) as a resin cooling mechanism.
  • the air ring 110 ejects cold air and cools the tube 101 pushed out from the annular die 103.
  • a heating device 111, an air ring 112, and various sensors 113 are arranged between the pinch roller 105 and the pinch roller 106.
  • the heating device 111 heats the tube 101 to a temperature equal to or higher than the glass transition point of the resin, for example.
  • a far infrared heater or the like can be used for the heating device 111.
  • the air ring 112 cools the tube 101 heated by the heating device 111 by ejecting cold air.
  • the air ring 112 is disposed between the heating device 111 and the sensor 113, but may be disposed between the heating device 111 and the pinch roller 105.
  • the sensor 113 measures the outer diameter and film thickness of the tube 101.
  • a transmissive or reflective optical sensor can be used as the sensor 113.
  • the sensor 113 outputs a detection signal to the control device 114.
  • the control device 114 manufactures the heat-shrinkable tube by controlling the manufacturing apparatus 100 according to a user instruction from the operation panel or a detection signal of the sensor 113. More specifically, the control device 114 supplies air into the tube 101 through the air vent 104 with the pinch roller 105 closed and the pinch roller 106 opened, and then closes the pinch roller 106 and the pinch roller 105 and the pinch roller 105. The expansion of the tube is adjusted by changing the distance between the pinch roller 105 and the pinch roller 106 with the roller 106 closed.
  • FIG. 2 shows a state in which only the upper pinch roller is closed in the heat shrinkable tube manufacturing apparatus.
  • the control device 114 sets the pinch rollers 105 and 106 (such as their height positions and open / closed states) to an initial state. In this state, the pinch roller 105 is closed at the top of the movable range 108, and the pinch roller 106 is open.
  • the control device 114 drives the pinch rollers 105 and 106 to supply air into the tube 101 from the air vent 104 while continuously feeding the tube 101 upward in the vertical direction 102.
  • the control device 114 expands the tube 101 to a desired outer diameter by adjusting the resin discharge amount and the internal pressure.
  • the desired outer diameter can be made substantially the same as the final outer diameter of the tube 101 (final outer diameter as a heat-shrinkable tube). Accordingly, the entire movable range 108 of the pinch roller 105 can be used for manufacturing the heat-shrinkable tube, and a longer product can be obtained, which is advantageous in terms of cost.
  • the pinch roller 106 is closed.
  • FIG. 3 shows a state where the upper and lower pinch rollers are closed in the heat shrinkable tube manufacturing apparatus.
  • the control device 114 adjusts the internal pressure between the annular die 103 of the tube 101 and the pinch roller 106 to a constant pressure (depressurization) with the regulator while the pinch roller 106 is also closed, thereby obtaining a desired extrusion diameter.
  • a pinch roller 106 having a fixed height position is provided closer to the air vent hole 104 than the pinch roller 105, and the outer diameter (extrusion diameter) of the extruded tube 101 is adjusted by closing the pinch roller 106 and adjusting the extrusion diameter. And its wall thickness is more easily stabilized. As a result, the stability of subsequent expansion is further ensured.
  • the height position of the pinch roller 105 may be fixed and the height of the pinch roller 106 may be displaceable, or the height of both the pinch rollers 105 and 106 may be displaceable. In this case, since the distance from the annular die 103 to the pinch roller 106 changes, the internal pressure and the resin discharge amount are adjusted with higher accuracy.
  • the control device 114 obtains a desired extrusion diameter by adjusting the internal pressure of the tube 101, the control device 114 moves the pinch roller 105 downward while keeping the pinch rollers 105 and 106 closed.
  • the air supplied into the tube 101 is enclosed between the pinch roller 105 and the pinch roller 106 by closing the pinch rollers 105 and 106 respectively. As shown in FIG. 1, when the pinch roller 105 descends in this state, the internal pressure of the tube 101 rises between the pinch roller 105 and the pinch roller 106, and the tube 101 expands.
  • the control device 114 increases or decreases the moving speed according to the detected outer diameter while moving the pinch roller 105 at a predetermined initial speed.
  • the air is not completely sealed by the pinch roller, and the air leaks from the gap between the rollers, the internal pressure may drop, and the expansion rate may decrease.
  • the height position of the pinch roller 105 is temporarily held and the height position of the pinch roller 105 is changed only when there is a change in the outer diameter, sudden internal pressure fluctuations occur and the expansion rate becomes unstable. turn into. For this reason, it is preferable to adjust the moving speed according to the outer diameter detected by the sensor 113 while moving the pinch roller 105.
  • the moving speed of the pinch roller 105 is, for example, the following equation (1) and It can be increased or decreased according to (2).
  • the adjusted speed Vb can be determined by the following equation (1).
  • Vb Va + A ⁇ Va (1)
  • A is an acceleration rate [%] set in advance with respect to the outer diameter that changes due to movement.
  • the adjusted speed Vb is given by the following equation (2).
  • Vb Va ⁇ B ⁇ Va (2)
  • B is a deceleration rate [%] set in advance for the outer diameter that changes due to movement.
  • the adjustment of the moving speed of the pinch roller 105 is not limited to this example.
  • the speed increase C [m / min] and the speed reduction D [m / min] may be set in advance for the outer diameter that changes due to movement.
  • the adjusted speed Vb can be calculated by the following equation (3), and the detected outer diameter is the predetermined upper limit. Can be calculated by the following equation (4).
  • Vb Va + C (3)
  • Vb Va ⁇ D (4)
  • acceleration / deceleration may be fed back on the basis of a predetermined speed curve (such as a parabola).
  • a predetermined speed curve such as a parabola
  • the moving speed may be held at 0 [m / min].
  • the control device 114 starts control again with the preset moving speed as an initial value. Thereby, instability of the expansion coefficient can be avoided.
  • the outer diameter is increased due to a decrease in the resin thickness or the like (when the strength is reduced due to the decrease in the strength against the internal pressure and the expansion rate is increased), the movement of the pinch roller 105 is reversed, and the same It is also possible to perform control.
  • the feedback interval need not be the time interval T, and may be determined by the production length, for example.
  • the control device 114 controls increase / decrease in speed for each fixed production length.
  • the elapse of the time interval T can be detected by a timer provided in the control device 114 or by counting the number of samplings.
  • a certain production length can be detected by a rotary encoder or the like.
  • the control device 114 adjusts the expansion of the tube 101 between the pinch roller 105 and the pinch roller 106 by lowering the pinch roller 105 in this way. Thereby, a heat-shrinkable tube having a desired expansion diameter and a desired thickness is obtained.
  • a regulating member such as a drawn tube to regulate the expansion diameter of the tube 101.
  • it is 100 ⁇ m or less, specifically 5 ⁇ m or more and 50 ⁇ m or less, more specifically.
  • the thin heat-shrinkable tube having a thickness of 5 ⁇ m or more and 20 ⁇ m or less can be relatively easily manufactured without breaking.
  • the tube is fed by a pinch roller, a guide plate or the like is unnecessary, and it is difficult to scratch the tube.
  • only the driving roller and the driven roller are used for feeding the tube 101, so that it is difficult to scratch the tube throughout the heat shrink tube manufacturing process. Therefore, it is possible to suppress the occurrence of cracking or tearing of the tube.
  • the tube 101 is sent upward, but the present invention is not limited to this.
  • it may be sent in the downward direction, or may be sent in the horizontal direction (horizontal direction) or other directions.
  • the feeding direction may be varied by 90 ° with respect to the extrusion direction.
  • a step of injecting air into the tube 101 between the pinch roller 105 and the pinch roller 106 is further provided. You may do it.
  • the injection can be performed by, for example, injecting air from the pinch roller 105 side with the pinch roller 105 opened and the pinch roller 106 closed, and then closing the pinch roller 105.
  • no restriction device is provided between the pinch roller 105 and the pinch roller 106.
  • a regulating device may be additionally provided for the purpose of suppressing the deflection and vibration of the tube.
  • the temperature of the roller used for regulation and the temperature of the air ejected from the air ring may be close to the expansion temperature, may be a temperature that can be cooled, and may be appropriately selected so as to obtain a stable expansion state. .
  • an extruder is directly connected to the heat shrinkable tube manufacturing apparatus 100, and the extruded tube 101 is continuously fed as it is.
  • the step of holding after extrusion can be omitted, which is advantageous in terms of cost.
  • a tube manufactured in another line may be input to the manufacturing apparatus 100.
  • an electron beam irradiation device may be disposed between the annular die 103 and the pinch roller 106.
  • By modifying the resin by applying electron beam irradiation it is possible to impart desired characteristics such as a shape memory effect and an improvement in heat-resistant temperature.
  • Electron beam irradiation is particularly effective for resins that are easily plastically deformed by expansion, such as polyethylene and polyolefin resins.
  • the electron beam irradiation device can also be incorporated in the heating device 111.
  • a surface modification such as etching can be applied to the inner and outer surfaces of a resin having poor adhesion such as a fluororesin.
  • the present invention is also applicable when adjusting the expansion of the tube 101 using three or more pairs of pinch rollers.
  • the present invention can be widely used for the production of heat-shrinkable tubes for various uses using fluororesins, ionomer resins, PET resins, nylon resins, polyolefin resins, and other resins, and the provision of the heat-shrinkable tubes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

膨張したチューブの外周面に部材を接触させなくても、安定した品質の熱収縮チューブを得ることができる熱収縮チューブの製造方法および製造装置を提供する。 制御装置100は、チューブ101の送り路に沿って移動可能に、かつ送り路を挟んで開閉可能に設けられた一対のピンチローラ105と、チューブ101の一端からチューブ内にエアを供給するエア通気孔104と、ピンチローラ105よりもエア通気孔104側に配置され、送り路を挟んで開閉可能に設けられた一対のピンチローラ106と、ピンチローラ105を閉じピンチローラ106を開いた状態でチューブ内にエアを供給してからピンチローラ106を閉じ、ピンチローラ105とピンチローラ106との距離を変更することでチューブの膨張を調整する制御部114とを備える。

Description

熱収縮チューブ、その製造方法および製造装置
 本発明は、プラスチックチューブを膨張させて熱収縮性が付与される熱収縮チューブ、その製造方法および製造装置に関する。
 熱収縮チューブの製造方法について、特許文献1は、未延伸チューブに内圧をかけて膨張させ延伸管で径を規制することを記載している。例えば未延伸チューブの一方の端から圧縮気体による圧力を管の内側に加えつつ一定速度で送り出し、次いで温水または赤外線ヒーター等により予熱し、径方向の延伸倍率を規制する、延伸温度に加熱した延伸管の中に入れ二軸延伸を行う。延伸後冷却し、一対のニップロールにより挟んで延伸圧力を保持しながら延伸チューブとして引き取り巻き取られる。
 特許文献2は、チューブラー法による熱可塑性樹脂フィルムの製造システムを記載している。この製造システムは、筒状熱可塑性樹脂フィルム内に空気を封入して該フィルムを少なくとも横方向に延伸し、間隔が次第に狭くなるように傾斜した2枚の案内板からなるガイドに導入し、ピンチロールにより挟圧し、引き取る。案内板間の角度を増減し、バブルのフロストラインからガイドに至る距離を増減することによりバブルのフロストラインから案内板に至る部分の口径及び平均厚さを一定にする。
特開平11-80387号公報 特開平10-315322号公報
 特許文献1及び特許文献2に記載されているような熱収縮チューブの製造方法では、膨張したプラスチックチューブの外周面に延伸管や案内板が接触する。特許文献1のようにチューブの径を規制するために延伸管を接触させる場合、チューブが薄肉になると、延伸管の内面にチューブが貼り付いてしまい、内面から離れ難くなる。その結果、チューブが破れるなどして歩留りが低下してしまう。特許文献2のように案内板でチューブをガイドすると、チューブが案内板で擦れ、チューブの表面に傷がつき易くなる。その擦り傷によりチューブの割れや裂けが発生してしまう。
 本発明は、このような問題を解決するために、膨張したチューブの外周面に部材を接触させなくても、安定した品質の熱収縮チューブを得ることができる熱収縮チューブの製造方法および製造装置、ならびにその熱収縮チューブを提供する。
 本発明の提供する熱収縮チューブの製造方法は、プラスチックチューブを挟むように配置された一対の第一ピンチローラ、および該第一ピンチローラとは異なる箇所でチューブを挟むように配置された一対の第二ピンチローラをそれぞれ閉じることで、チューブ内に供給されたエアを第一ピンチローラと第二ピンチローラとの間で封入する工程と、第一ピンチローラおよび第二ピンチローラをそれぞれ閉じたまま第一ピンチローラと第二ピンチローラとの距離を変更することで、チューブの膨張を調整する工程とを備える。
 この製造方法では、チューブ内に供給されたエアを第一ピンチローラと第二ピンチローラとの間で封入するために第一ピンチローラと第二ピンチローラとをそれぞれ閉じ、第一ピンチローラと第二ピンチローラとの距離を変更する。第一ピンチローラと第二ピンチローラとを近づければ、第一ピンチローラと第二ピンチローラとの間でチューブの内圧が上昇しチューブが膨張するので、第一ピンチローラと第二ピンチローラとの距離を変更することで、膨張したチューブの外径や肉厚などを調整することができる。このため、チューブの膨張径を規制するのに延伸管のような規制部材が不要で、薄肉の熱収縮チューブも比較的容易に製造することが可能となる。さらに、ピンチローラによりチューブが送られるため、案内板なども不要で、熱収縮チューブの製造工程全体にわたって、チューブに擦り傷を付け難い。したがって、チューブの割れや裂けの発生も抑制される。
 この熱収縮チューブの製造方法において、チューブ内に供給されたエアを封入する工程は、第一ピンチローラを閉じ第二ピンチローラを開いた状態で、チューブの第二ピンチローラ側の端からエアを供給する工程と、第一ピンチローラを閉じたまま第二ピンチローラを閉じる工程とを含む。
 この熱収縮チューブの製造方法は、第二ピンチローラを閉じた後、第一ピンチローラと第二ピンチローラとの距離を変更する前に、第二ピンチローラからのエア供給側のチューブの内圧を一定圧に調整する工程を更に備えるようにしてもよい。これによって、押し出されたチューブを膨張させる場合でも、チューブの膨張後の外径や肉厚に加えて、膨張前の外径や肉厚を調整することが可能となる。
 第一ピンチローラと第二ピンチローラとの距離は、第一ピンチローラを移動することで変更することができる。第一ピンチローラよりもエア供給側に近い第二ピンチローラの位置を固定すれば、押し出されたチューブを膨張させる場合でも、その膨張前の外径や肉厚を安定化させ易い。その結果、その後の膨張の安定性をさらに確保することが可能となる。
 連続的に送られるチューブの外径を第一ピンチローラと第二ピンチローラとの間で検出する工程を更に備え、チューブの膨張を調整する工程が、第一ピンチローラを一定の初期速度で移動させてから、検出された外径に基づいて第一ピンチローラの移動速度を変更するようにしてもよい。連続的に送られるチューブを所望の外径に膨張させた状態で第一ピンチローラの位置を一時的に保持し、その状態から種々の原因で外径に変化が生じたときにだけ第一ピンチローラを移動させると、膨張したチューブの外径が不安定になる可能性がある。急激な内圧変動が生じ、それによって膨張率が不安定になるためである。第一ピンチローラを一定の初期速度で移動させつつ、外径の変動が検出されれば、その移動速度を増減させることで、膨張率を安定させることができる。
 第一ピンチローラと第二ピンチローラとの間でチューブを加熱するようにしてもよい。その場合、ガラス転移点以上の温度でチューブを加熱することができる。チューブを加熱することによって膨張し易くなる。また、膨張したチューブの厚み(平均厚み)は例えば100μm以下であり、好ましくは5μm以上50μm以下、より好ましくは5μm以上20μm以下である。このような薄肉のチューブを製造する場合でも、延伸管のような規制部材を用いないので、破れ等を生じずに膨張させることができる。
 本発明の他の観点によれば、上述の製造方法により製造された熱収縮チューブが提供される。この熱収縮チューブは表面にほとんど擦り傷がなく、使用時も含めそれに起因する割れや裂けの発生が抑制される。
 本発明の他の観点によれば、プラスチックチューブの送り路に沿って移動可能、かつ送り路を挟んで開閉可能に設けられた一対の第一ピンチローラと、プラスチックチューブの一端からチューブ内にエアを供給するエア供給部と、第一ピンチローラよりもエア供給部側に配置され、送り路を挟んで開閉可能に設けられた一対の第二ピンチローラと、第一ピンチローラを閉じ第二ピンチローラを開いた状態でエア供給部によりチューブ内にエアを供給してから第二ピンチローラを閉じ、第一ピンチローラおよび第二ピンチローラを閉じたまま第一ピンチローラと第二ピンチローラとの距離を変更することで、チューブの膨張を制御する制御部とを備える熱収縮チューブの製造装置が提供される。
 本発明によれば、上述のように、膨張したチューブの外周面に部材を接触させなくても、安定した品質の熱収縮チューブを得ることができる。
本発明の実施の形態における熱収縮チューブの製造装置の要部構成を示す図である。 熱収縮チューブの製造装置において上方のピンチローラのみを閉じた状態を示す図である。 熱収縮チューブの製造装置において上方及び下方のピンチローラをそれぞれ閉じた状態を示す図である。
 図1は本発明の実施の形態における熱収縮チューブの製造装置の要部構成を示す図である。本実施の形態における製造装置100は、上方へ押し出されて成形されたプラスチックチューブ101を上下方向102の上方向に連続的に送りながら膨張させて熱収縮性を付与し、その後、チューブ101を巻き取る。この製造装置100の下側には、溶融樹脂を上方へ押し出す環状ダイ103が配置されている。
 環状ダイ103は、図示しない押出機で混練された溶融樹脂を連続的に上方へ押し出す。これによって、円筒状のプラスチックチューブ101が成形される。その樹脂には、フッ素樹脂やアイオノマー樹脂、ポリエチレンテレフタレート(PET)樹脂、ナイロン樹脂、ポリエチレン等のポリオレフィン系樹脂、その他の各種樹脂を用いることができ、樹脂の種類は特に限定されるものではない。フッ素樹脂としては、例えばテトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)を用いる。PFAでは押出成形によって、連続的に長尺なチューブを安定して得易い。その他、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、ポリテトラフルオロエチレン(PTFE)、エチレン/テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン/クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニリデン(PVDF)等の種々のフッ素樹脂を1種あるいは複数種の組み合わせ等により用いることができる。さらに複数層の多重押出であってもよい。樹脂にはカーボン等を配合することで導電性を付与することもできる。
 環状ダイ103の中央には、エア通気孔104が設けられている。このエア通気孔104には、図示しないコンプレッサによってエアが送り込まれ、そのエア通気孔104を通してチューブ101の一端からチューブ101内にエアが供給される。レギュレータによって圧力は調整可能である。そのエア供給によりチューブ101に内圧をかけることで、チューブ101が膨張する。その膨張の調整には、2対のピンチローラ105および106が用いられる。
 ピンチローラ105および106は、環状ダイ103の上方の異なる高さ位置に配置されている。そのピンチローラ105とピンチローラ106との距離107を変更することでチューブ101の膨張が調整される。この実施の形態において、ピンチローラ105は、上下方向102の可動域108内で変位可能に設けられており、ピンチローラ106は上下方向102の位置が固定して設けられている。すなわち、ピンチローラ105を移動させることで、ピンチローラ105とピンチローラ106との距離107が変更される。これによりチューブ101が径方向に延伸される。ピンチローラ105とピンチローラ106の回転比を調整すれば、チューブ101を軸方向へ延伸することも可能である。
 一対のピンチローラ105はチューブ101の送り路(パスライン)を挟んで配置されており、一対のピンチローラ106もその送り路を挟んで配置されている。ピンチローラ105および106はいずれも開閉可能に設けられており、閉じた状態では、各ピンチローラはチューブ101を挟み持つ。各ピンチローラはモータにより駆動され、チューブ101を上下方向102の上方向に送ることができる。ピンチローラにより送られたチューブ101は、従動ローラであるガイドローラ109により、図示しない巻取りローラ(駆動ローラ)へ送られ、その巻取りローラによって巻き取られる。
 ピンチローラ106の上流側(環状ダイ103とピンチローラ106との間)には、樹脂の冷却機構としてエアリング110を設けることができる。エアリング110は冷風を噴出し、環状ダイ103から押し出されたチューブ101を冷却する。ピンチローラ105とピンチローラ106との間には、加熱装置111、エアリング112、および各種センサ113が配置されている。加熱装置111は、例えば樹脂のガラス転移点以上の温度にチューブ101を加熱する。この加熱装置111には、遠赤外線ヒーター等を利用することができる。エアリング112は、加熱装置111により加熱されたチューブ101に冷風を噴出し冷却する。この例では、エアリング112を加熱装置111とセンサ113との間に配置しているが、加熱装置111とピンチローラ105との間に配置すればよい。センサ113は、チューブ101の外径や膜厚を測定する。センサ113には、透過型や反射型の光学センサを用いることができる。センサ113は検出信号を制御装置114に出力する。
 制御装置114は、操作パネルからのユーザ指示や、センサ113の検出信号にしたがい、製造装置100を制御して熱収縮チューブを製造する。より具体的には、制御装置114は、ピンチローラ105を閉じピンチローラ106を開いた状態でエア通気孔104を通してチューブ101内にエアを供給してからピンチローラ106を閉じ、ピンチローラ105およびピンチローラ106を閉じたままピンチローラ105とピンチローラ106との距離を変更することで、チューブの膨張を調整する。
 図2は熱収縮チューブの製造装置において上方のピンチローラのみを閉じた状態を示す。制御装置114は、操作パネルから開始指示を受け付けると、ピンチローラ105および106(の高さ位置や開閉状態など)を初期状態に設定する。この状態では、ピンチローラ105は可動域108の最上部にあって閉じており、ピンチローラ106は開いている。制御装置114は、ピンチローラ105および106を駆動してチューブ101を上下方向102の上方向に連続的に送りながら、エア通気孔104からチューブ101内にエアを供給する。制御装置114は、樹脂の吐出量や内圧を調整することでチューブ101を所望の外径に膨張させる。
 この所望の外径は、チューブ101の最終の外径(熱収縮チューブとしての最終の外径)とほぼ同一にすることができる。それによって、ピンチローラ105の可動域108全体を熱収縮チューブの製造に利用することが可能となり、より長尺の製品が得られるため、コスト的に有利となる。チューブ101を所望の外径に膨張させると、ピンチローラ106を閉じる。
 図3は熱収縮チューブの製造装置において上方及び下方のピンチローラをそれぞれ閉じた状態を示す。制御装置114は、ピンチローラ106も閉じた状態で、チューブ101の環状ダイ103とピンチローラ106との間の内圧をレギュレータにより一定圧に調整(減圧)することで、所望の押出径を得る。高さ位置を固定したピンチローラ106をピンチローラ105よりエア通気孔104の近くに設け、そのピンチローラ106を閉じて押出径を調整することで、押し出されたチューブ101の外径(押出径)やその肉厚がより容易に安定する。その結果、後の膨張の安定性もより確保される。しかしながら、ピンチローラ105の高さ位置を固定し、ピンチローラ106の高さを変位可能にしてもよく、ピンチローラ105および106の両方の高さを変位可能にしてもよい。この場合、環状ダイ103からピンチローラ106までの距離が変化するので、内圧や樹脂の吐出量をより高精度に調整する。制御装置114は、チューブ101の内圧を調整することにより所望の押出径を得ると、ピンチローラ105および106をそれぞれ閉じたまま、ピンチローラ105を下方に移動させる。
 ピンチローラ105および106をそれぞれ閉じることで、ピンチローラ105とピンチローラ106との間でチューブ101内に供給されたエアが封入される。図1に示すように、その状態でピンチローラ105が下降することにより、ピンチローラ105とピンチローラ106との間でチューブ101の内圧が上昇しチューブ101が膨張する。
 制御装置114は、この実施の形態において、ピンチローラ105を所定の初期速度で移動させながら、検出される外径に応じて移動速度を増減する。ピンチローラによるエアの封入は完全なものとは限らず、ローラの隙間からエアが漏れて内圧が下がり膨張率が落ちる場合がある。またピンチローラ105の高さ位置を一時的に保持し、外径の変化があったときにだけピンチローラ105の高さ位置を変化させると、急激な内圧変動が生じ、膨張率が不安定になってしまう。このため、ピンチローラ105を移動させながら、センサ113により検出される外径に応じてその移動速度を調整するのが好ましい。
 ピンチローラ105の初期速度をVa[m/min]とし、外径の検出結果がフィードバックされる時間間隔をT[秒]とするとき、ピンチローラ105の移動速度は、例えば次式(1)および(2)にしたがって増減することができる。
 時間間隔Tが経過したとき、検出された外径が所定の下限を下回っていた場合、調整後の速度Vbは次式(1)によって決定できる。
 Vb=Va+A×Va        …(1)
 ただし、Aは、移動により変化する外径に対し予め設定した増速度率[%]である。
 時間間隔Tが経過したとき、検出された外径が所定の上限を上回っていた場合、調整後の速度Vbは次式(2)によって与えられる。
 Vb=Va-B×Va        …(2)
 ただし、Bは、移動により変化する外径に対し予め設定した減速度率[%]である。
 ピンチローラ105の移動速度の調整はこの例に限られるものではない。例えば初期速度Vaにかかわらず、移動により変化する外径に対して予め増速度C[m/min]、減速度D[m/min]を設定しておくようにしてもよい。この場合、時間間隔Tが経過したとき、検出された外径が所定の下限を下回っていれば、調整後の速度Vbは次式(3)によって計算でき、検出された外径が所定の上限を上回っていれば、次式(4)によって計算できる。
 Vb=Va+C           …(3)
 Vb=Va-D           …(4)
 さらに、初期速度Vaについて、予め定めた速度曲線(放物線等)を基準にして、増減速をフィードバックするようにしてもよい。ピンチローラ105とピンチローラ106との距離107が100cmの場合に10cm縮めるのと、その距離107が20cmの場合に10cm縮めるのとでは、内圧の上昇(外径の変動度合)が異なるためである。ピンチローラ105とピンチローラ106が最も離れているとき(膨張開始時)と最も近づいているときとでは速度の調整が異なることになる。
 外径の変化がない場合に、移動速度を0[m/min]で保持するようにしてもよい。その場合、制御装置114は、次に外径の変動が生じると、予め設定した移動速度を初期値として改めて制御を開始する。それによって、膨張率の不安定性を回避できる。また、例えば樹脂厚さが薄くなるなどして外径が大きくなってしまった場合(薄くなることで内圧に対する強度が低下し膨張率が上昇した場合)、ピンチローラ105の移動を反転させ、同様の制御を行うことも可能である。
 なお、フィードバックする間隔は時間間隔Tである必要はなく、例えば生産長によって定めてもよい。その場合、制御装置114は、一定の生産長ごとに速度の増減を制御する。時間間隔Tの経過は、制御装置114の有するタイマや、サンプリング数のカウントによって検出することができる。一定の生産長はロータリエンコーダ等によって検出することが可能である。
 制御装置114は、このようにしてピンチローラ105を下降させることで、ピンチローラ105とピンチローラ106との間でチューブ101の膨張を調整する。それによって、所望の膨張径で所望の肉厚の熱収縮チューブが得られる。この熱収縮チューブの製造装置100では、チューブ101の膨張径を規制するのに延伸管のような規制部材がなくてもよく、例えば100μm以下、具体的には5μm以上50μm以下、さらに具体的には5μm以上20μm以下の薄肉の熱収縮チューブも破れ等を生じることなく比較的容易に製造することが可能である。さらにピンチローラによりチューブが送られるため、案内版なども不要で、チューブに擦り傷が付け難い。本実施の形態においてチューブ101の送りには駆動ローラや従動ローラのみを用いているため、熱収縮チューブの製造工程全体にわたっても、チューブに擦り傷を付け難い。したがって、チューブの割れや裂けが生じるのを抑制することが可能となる。
 本実施の形態において、チューブ101は上方向に送られていたが、これに限られるものではない。例えば下方向に送るようにしてもよいし、横方向(水平方向)やその他の方向に送るようにしてもよい。さらに押出方向と送り方向を一致させずに、押出方向に対して送り方向を90°曲げるなど異ならせるようにしてもよい。チューブ101のパスラインに折り返し部が発生し、膨張開始時の内圧の確保が難しいような場合には、ピンチローラ105とピンチローラ106との間でチューブ101内にエアを注入する工程をさらに設けるようにしてもよい。その注入は、例えばピンチローラ105を開き、ピンチローラ106を閉じた状態で、ピンチローラ105側からエアを注入し、その後ピンチローラ105を閉じることで行うことができる。
 本実施の形態における熱収縮チューブの製造装置100では、ピンチローラ105とピンチローラ106との間に規制装置を設けていない。しかしながら、チューブのたわみや振動を抑える目的で規制装置を付加的に設けるようにしてもよい。その場合、平板や管状の固定物よりも、従動するローラやエアリングを用いるのが望ましい。擦り傷の発生を抑制するためである。規制に用いるローラの温度や、エアリングから噴出するエアの温度は膨張温度近傍であってもよいし、冷却できる温度であってもよく、安定した膨張状態が得られるように適宜選択すればよい。
 さらに上述した実施の形態では、熱収縮チューブの製造装置100に押出機が直結されており、押し出されたチューブ101がそのまま連続的に投入される。この場合、押出後の取り置きの工程が省略できるので、コスト的に有利である。しかしながら、別ラインにて製造されたチューブを製造装置100に投入するようにしてもよい。
 さらに環状ダイ103とピンチローラ106との間には、電子線の照射装置を配置するようにしてもよい。電子線照射を施して樹脂の改質を行うことにより形状記憶効果や耐熱温度の向上等、所望の特性を付与することが可能となる。電子線照射は、ポリエチレンやポリオレフィン樹脂のように膨張により容易に塑性変形してしまう樹脂には特に有効である。電子線照射装置は加熱装置111の中に組み込むこともできる。さらにフッ素樹脂のように接着性に乏しい樹脂には内外面にエッチング等表面改質を施すこともできる。
 以上説明した実施の形態は本発明の技術的範囲を制限するものではなく、本発明の範囲内で種々の変形や応用が可能である。例えば3対以上のピンチローラを用いてチューブ101の膨張を調整する場合にも本発明は適用可能である。
 本発明は、フッ素樹脂やアイオノマー樹脂、PET樹脂、ナイロン樹脂、ポリオレフィン系樹脂、その他樹脂を用いた各種用途の熱収縮性チューブの製造、およびその熱収縮チューブの提供に広く利用することができる。
 100 熱収縮チューブの製造装置
 101 プラスチックチューブ
 102 上下方向
 103 環状ダイ
 104 エア通気孔
 105、106 ピンチローラ
 107 ピンチローラ間の距離
 108 ピンチローラの可動域
 109 ガイドローラ
 110、112 エアリング
 111 加熱装置
 113 センサ
 114 制御装置

Claims (10)

  1.  プラスチックチューブを挟むように配置された一対の第一ピンチローラ、および該第一ピンチローラとは異なる箇所で前記チューブを挟むように配置された一対の第二ピンチローラをそれぞれ閉じることで、前記チューブ内に供給されたエアを前記第一ピンチローラと前記第二ピンチローラとの間で封入する工程と、
     前記第一ピンチローラおよび前記第二ピンチローラをそれぞれ閉じたまま前記第一ピンチローラと前記第二ピンチローラとの距離を変更することで、前記チューブの膨張を調整する工程と
     を備える熱収縮チューブの製造方法。
  2.  前記チューブ内に供給されたエアを封入する工程が、
     前記第一ピンチローラを閉じ前記第二ピンチローラを開いた状態で、前記チューブの前記第二ピンチローラ側の端からエアを供給する工程と、
     前記第一ピンチローラを閉じたまま前記第二ピンチローラを閉じる工程とを含む請求項1記載の熱収縮チューブの製造方法。
  3.  前記第二ピンチローラを閉じた後、前記第一ピンチローラと前記第二ピンチローラとの距離を変更する前に、前記第二ピンチローラからのエア供給側の前記チューブの内圧を一定圧に調整する工程を更に備える請求項2記載の熱収縮チューブの製造方法。
  4.  前記チューブの膨張を調整する工程が、
     前記第一ピンチローラを移動することで前記第一ピンチローラと前記第二ピンチローラとの距離を変更する請求項3記載の熱収縮チューブの製造方法。
  5.  連続的に送られるチューブの外径を前記第一ピンチローラと前記第二ピンチローラとの間で検出する工程を更に備え、
     前記チューブの膨張を調整する工程が、
     前記第一ピンチローラを一定の初期速度で移動させてから、検出された外径に基づいて前記第一ピンチローラの移動速度を変更する請求項4記載の熱収縮チューブの製造方法。
  6.  前記第一ピンチローラと前記第二ピンチローラとの間で前記チューブを加熱する請求項1~5のいずれか1項に記載の熱収縮チューブの製造方法。
  7.  ガラス転移点以上の温度で前記チューブを加熱する請求項6記載の熱収縮チューブの製造方法。
  8.  膨張した前記チューブの厚みが100μm以下である請求項1~7のいずれか1項に記載の熱収縮チューブの製造方法。
  9.  請求項1~8のいずれか1項に記載の熱収縮チューブの製造方法により製造された熱収縮チューブ。
  10.  プラスチックチューブの送り路に沿って移動可能に、かつ前記送り路を挟んで開閉可能に設けられた一対の第一ピンチローラと、
     前記プラスチックチューブの一端から前記チューブ内にエアを供給するエア供給部と、
     前記第一ピンチローラよりも前記エア供給部側に配置され、前記送り路を挟んで開閉可能に設けられた一対の第二ピンチローラと、
     前記第一ピンチローラを閉じ前記第二ピンチローラを開いた状態で前記エア供給部により前記チューブ内にエアを供給してから前記第二ピンチローラを閉じ、前記第一ピンチローラおよび前記第二ピンチローラを閉じたまま前記第一ピンチローラと前記第二ピンチローラとの距離を変更することで、前記チューブの膨張を調整する制御部と
     を備える熱収縮チューブの製造装置。
PCT/JP2010/073098 2010-02-10 2010-12-22 熱収縮チューブ、その製造方法および製造装置 WO2011099229A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080063024.1A CN102741037B (zh) 2010-02-10 2010-12-22 热收缩管以及制造热收缩管的装置和方法
US13/576,160 US20120298250A1 (en) 2010-02-10 2010-12-22 Heat-shrinkable tube, and production method and production apparatus thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-027741 2010-02-10
JP2010027741 2010-02-10

Publications (1)

Publication Number Publication Date
WO2011099229A1 true WO2011099229A1 (ja) 2011-08-18

Family

ID=44367520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073098 WO2011099229A1 (ja) 2010-02-10 2010-12-22 熱収縮チューブ、その製造方法および製造装置

Country Status (4)

Country Link
US (1) US20120298250A1 (ja)
JP (1) JP5467391B2 (ja)
CN (1) CN102741037B (ja)
WO (1) WO2011099229A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3717528B1 (en) * 2017-11-27 2022-05-25 Chemours-Mitsui Fluoroproducts Co., Ltd. Tfe/pave-copolymer for shape memory molded article and shape memory molded article

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9296165B1 (en) 2013-01-04 2016-03-29 Dale L. Henson Apparatuses for expanding tubing and methods of use
FR3022825B1 (fr) * 2014-06-30 2017-05-19 Michel Cottet Procede et un dispositif d’extension homogene d’une gaine thermoretractable
KR101690776B1 (ko) * 2016-04-11 2016-12-28 에스에스켐텍 주식회사 저밀도 폴리에틸렌 중포대 제조방법
KR101859583B1 (ko) * 2016-07-07 2018-06-27 주식회사 동희산업 플라스틱 연료탱크의 제조방법
KR101862239B1 (ko) * 2016-07-07 2018-05-30 주식회사 동희산업 플라스틱 연료탱크의 제조방법
CN106827479A (zh) * 2017-02-24 2017-06-13 长园电子(东莞)有限公司 一种pet热缩管扩张折径检测闭环控制装置
TWI695797B (zh) * 2017-11-17 2020-06-11 洪子欽 包裝膠膜的吹、拉裝置及方法
CN107972284B (zh) * 2017-12-22 2023-10-24 上海长园电子材料有限公司 一种热缩管的轴向拉伸度的控制系统及方法
CN110625918A (zh) * 2018-06-21 2019-12-31 江苏沃杰高分子材料有限公司 一种新式扩张机
CN110039758B (zh) * 2019-05-23 2023-12-26 江苏鼎尚电子材料股份有限公司 热缩管生产补气机构
CN110370609A (zh) * 2019-06-28 2019-10-25 大连联合高分子材料有限公司 一种高收缩倍率耐高温全氟乙烯丙烯热缩套管的制备方法
US20220349500A1 (en) * 2019-08-30 2022-11-03 Nissei Electric Co., Ltd. Heat Shrink Tube and Method for Forming Same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834969A (ja) * 1971-08-31 1973-05-23
FR2205401A1 (en) * 1972-11-08 1974-05-31 Flax V Orientation of small bore tubular film - by local constriction of trapped bubble to cause radial dilation
JPH1180387A (ja) * 1997-09-09 1999-03-26 Teijin Chem Ltd 熱収縮性芳香族ポリエステルチューブ、その製造方法およびその利用

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL104107C (ja) * 1956-08-31 1900-01-01
BE731488A (ja) * 1968-04-18 1969-09-15
US3960997A (en) * 1971-08-31 1976-06-01 Horsens Plastic A/S Method of manufacturing biaxially stretched shrink foils and an apparatus for carrying the method into effect
JPS529224B2 (ja) * 1973-02-26 1977-03-15
US5082616A (en) * 1990-10-25 1992-01-21 Edison Polymer Innovation Corp. Film blowing process
JPH089194B2 (ja) * 1991-02-15 1996-01-31 株式会社マルヤス インフレーション成形方法及びその装置
JPH05220839A (ja) * 1992-02-13 1993-08-31 Maruyasu:Kk インフレーション成形法簡易立上制御システム
JP2786082B2 (ja) * 1993-08-10 1998-08-13 積水化学工業株式会社 インフレーション成形ラインにおける自動サイズ変更制御システム
JP4864177B2 (ja) * 1998-07-24 2012-02-01 株式会社クレハ 延伸多層フィルムケーシング
JP3702465B2 (ja) * 2002-06-28 2005-10-05 横河電機株式会社 インフレーション装置
US20050245162A1 (en) * 2004-04-30 2005-11-03 Kimberly-Clark Worldwide, Inc. Multi-capable elastic laminate process
US20090130351A1 (en) * 2005-09-14 2009-05-21 Asahi Kasei Chemicals Corporation Block copolymer and process for production of heat shrinkable film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834969A (ja) * 1971-08-31 1973-05-23
FR2205401A1 (en) * 1972-11-08 1974-05-31 Flax V Orientation of small bore tubular film - by local constriction of trapped bubble to cause radial dilation
JPH1180387A (ja) * 1997-09-09 1999-03-26 Teijin Chem Ltd 熱収縮性芳香族ポリエステルチューブ、その製造方法およびその利用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3717528B1 (en) * 2017-11-27 2022-05-25 Chemours-Mitsui Fluoroproducts Co., Ltd. Tfe/pave-copolymer for shape memory molded article and shape memory molded article

Also Published As

Publication number Publication date
CN102741037A (zh) 2012-10-17
JP5467391B2 (ja) 2014-04-09
CN102741037B (zh) 2014-10-29
JP2011183800A (ja) 2011-09-22
US20120298250A1 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5467391B2 (ja) 熱収縮チューブの製造方法および製造装置
JP4689133B2 (ja) 二軸延伸でプラスチックチューブを連続的に製造する方法および製造ラインと、得られたプラスチックチューブ
CA2927418C (en) Method for manufacturing a blown film web as well as a blown film line
US2922194A (en) Process for the manufacture of selfsupporting tubes of thermoplastic material
JP4420438B2 (ja) チューブ状熱可塑性フィルムの縦方向延伸
US20210370570A1 (en) Device for blowing and stretching plastic packaging film and method thereof
US3412189A (en) Apparatus and process for use in the expansion of tubular film
US3235632A (en) Process for producing biaxially oriented thermoplastic tubular film
AU2002351812A1 (en) Longitudinal orientation of a tubular thermoplastic film
CN117681429B (zh) 一种自动检测调节厚度的吹膜装置及吹膜方法
US4443399A (en) Method of producing biaxially oriented sheet or film and apparatus therefor
US9902102B2 (en) Process for forming film
CN101733926A (zh) 用定容式锥形容器拉伸装置生产收缩薄膜的方法及设备
US11130302B2 (en) Bead core coating method and bead core coating apparatus
US3302241A (en) Apparatus for preparation of plastic tubes
JP6181064B2 (ja) 巻回体の製造方法及び巻回体製造装置
JP4264313B2 (ja) インフレーションフィルムの製造方法
KR101405835B1 (ko) 댄서롤러가 적용된 필름 제조장치
JPH10315322A (ja) 熱可塑性樹脂フィルムの製造システム
JP2002096372A (ja) ライナー管およびその製造方法
US6139306A (en) Apparatus for expanding polymeric tubing
CN201309258Y (zh) 定容式管膜锥形容器拉伸装置
WO2024075632A1 (ja) インフレーションフィルムの製造装置
EP1436138B1 (en) Longitudinal orientation of a tubular thermoplastic film
JPS5936573B2 (ja) 熱可塑性樹脂延伸フイルムの製造方法及びその装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063024.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13576160

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10845819

Country of ref document: EP

Kind code of ref document: A1