WO2011099174A1 - 内燃機関の排ガス再循環制御装置 - Google Patents
内燃機関の排ガス再循環制御装置 Download PDFInfo
- Publication number
- WO2011099174A1 WO2011099174A1 PCT/JP2010/059942 JP2010059942W WO2011099174A1 WO 2011099174 A1 WO2011099174 A1 WO 2011099174A1 JP 2010059942 W JP2010059942 W JP 2010059942W WO 2011099174 A1 WO2011099174 A1 WO 2011099174A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control
- egr
- valve
- command value
- opening
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D21/00—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
- F02D21/06—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
- F02D21/08—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/005—Controlling exhaust gas recirculation [EGR] according to engine operating conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/10—Introducing corrections for particular operating conditions for acceleration
- F02D41/107—Introducing corrections for particular operating conditions for acceleration and deceleration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
- F02D41/1458—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D2041/0017—Controlling intake air by simultaneous control of throttle and exhaust gas recirculation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1409—Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/141—Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0406—Intake manifold pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0414—Air temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/06—Fuel or fuel supply system parameters
- F02D2200/0614—Actual fuel mass or fuel injection amount
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/101—Engine speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/05—High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to an exhaust gas recirculation device for an internal combustion engine.
- an EGR exhaust gas recirculation device
- an EGR gas control valve that controls the amount of EGR gas is provided in an EGR gas passage that connects the exhaust gas passage and the intake passage to each other, and the target determined according to the operating state of the internal combustion engine with respect to the EGR control valve.
- the valve opening amount is controlled by feedback correction means so that the opening degree is reached.
- Patent Document 1 Patent No. 2832422
- Patent Document 2 Patent No. 2832423
- Patent Document 1 in the state where the rate of change of the target valve opening amount relative to the EGR control valve is large, or in the state where the deviation between the target valve opening amount and the actual valve opening amount is large, the integration of the PI controller for feedback control is described. It is shown that the operation is not performed (the integral value is zero) to prevent overshoot of the EGR control valve opening.
- Patent Document 2 also discloses feedback correction means for performing feedback correction so that the opening amount of the EGR gas control valve becomes the target valve opening amount, and feedforward correction for performing feedforward correction so as to become the target valve opening amount.
- Patent Document 2 only discloses that the feedback correction means and the feedforward correction means are selectively used, and the feedback correction means and the feedforward correction means are simultaneously performed and the respective correction coefficients are added. Control to a target valve opening amount with higher followability as a correction coefficient is not disclosed.
- the present invention has been made in view of these problems, and control that improves overshooting and undershooting with respect to the target valve opening of the EGR gas control valve to improve followability and reliability to the target valve opening. It is an object of the present invention to provide an exhaust gas recirculation control device for an internal combustion engine that can be achieved by a simple control logic.
- the present invention provides an EGR control valve that is provided in an EGR gas passage that connects an exhaust passage and an intake passage and controls the amount of EGR gas, and an EGR control that responds to the operating state of the internal combustion engine.
- an exhaust gas recirculation control device for an internal combustion engine comprising: feedback control means for outputting a feedback control command value for valve opening control; and feedforward control means for outputting a feedforward control command value.
- An addition means for adding the control command value of the EGR control valve and the control command value from the feedback control means, and comparing the addition value obtained by the addition means with a limit signal for the maximum opening of the EGR control valve.
- Selection means that adopts the command value on the close side, and the command value on the open side is output to the EGR control valve from the limit signal of the maximum opening degree. Characterized by being configured so as not to.
- the selection means among the addition values of the limit signal of the maximum opening of the EGR control valve, the control command value from the feedforward control means, and the control command value from the feedback control means, Feedback control is performed during transient operation by adopting the command value with the valve opening being closed, so that the command value on the opening side is not output from the valve opening by the limit signal of the maximum opening of the EGR control valve. Due to the transient response of the means, the EGR control valve opens more than necessary, and smoke can be prevented from being generated due to excessive recirculation of the exhaust gas.
- the opening degree is limited by the limit signal of the maximum opening degree of the EGR control valve, even if the feedback control command value transits excessively and exceeds the feedback control target value, the valve opening degree of the maximum opening degree limiting signal Since the control to the more open side is prohibited, the EGR control valve is largely opened and the exhaust gas is recirculated more than necessary, so that it can be prevented from going in the direction A in the characteristic graph shown in FIG. 11, and the occurrence of smoke can be prevented. .
- control command value from the feedforward control means may be input to the selection means as a limit signal for the maximum opening of the EGR control valve.
- control command value from the feedforward control means is input to the selection means as a limit signal for the maximum opening of the EGR control valve, the control by the added value of the feedforward control command value and the feedback control command value Thus, it is possible to easily switch to the control based on the feedforward control command value.
- the feedback control target value map is a desired value (a value suitable for the driving state) in the low-load operating range.
- the excess air ratio is high and smoke does not easily occur, so there is no need to feedback control the EGR control valve, and feedforward control is sufficient. Furthermore, in the low load region, since the fuel injection amount is small and the variation range of the oxygen excess rate with respect to the condition change is large, if feedback control is performed, there is a problem in the reproducibility of the EGR control valve, and feedback control is not suitable. On the other hand, in a high load region where the excess air ratio decreases, the EGR control valve is highly accurate and highly responsive so as to achieve the feedback control target value (the target value of the excess air ratio as the EGR feedback control target value). Since control is required, feedback control is required in this high-load operation region.
- the feedback control target value is intentionally changed for each operation load region as described above, and feedforward control is selected in the low load operation region, and feedforward control and feedback are performed in the high load operation region. It is possible to switch between the two controls with a simple control logic so that the control is added to the control.
- the limit signal of the maximum opening of the EGR control valve may be a value calculated using an EGR valve maximum opening map set according to the engine operating state and the environmental state.
- the control command value from the feedforward control means is used as the limit signal as in the above invention
- an appropriate limit cannot be performed when the environmental state changes greatly.
- the control command value from the feedforward control means is set as a value in the standard atmospheric condition, the response to such a change in the environmental condition is not sufficient.
- the feedback control command value is calculated based on a PID (proportional, integral, integral) based on a calculated excess air ratio of the internal combustion engine and a target excess air ratio as a feedback control target value set in advance according to the operating state. It is preferable to calculate the amount of opening of the EGR appropriately by using the excess air ratio as the target value as the EGR feedback control target value according to the operating state.
- PID proportional, integral, integral
- a valve opening limiter for the EGR control valve is provided, and an automatic blending PID means is provided in the feedback control means based on the deviation between the output signal of the valve opening limiter and the output signal of the adding means. It is good to be provided.
- the automatic blending PID as a windup countermeasure (input saturation countermeasure) of the feedback control means, while the feedforward control command value is selected by the selection means, the PID integrator of the feedback control means. It is prevented that the integral value continues to accumulate. This improves the followability when the feedback control target value changes, and prevents the exhaust gas purification effect from being impaired during transient operation.
- the integral value is prevented from continuously accumulating in the PID integrator. . This improves the followability when the feedback control target value changes, and prevents the exhaust gas purification effect from being impaired during transient operation.
- a transient control means for controlling the EGR control valve to a minimum opening or a fully closed state for a certain period during the transient operation, and an output signal of the transient control means and an output signal of the selection means It is preferable to provide a transition selection means for selecting one of the above and outputting to the valve opening limiter.
- the feedback control command value and the feedforward control command value are calculated according to the operating state of the internal combustion engine, by intentionally changing and setting the feedback control target value for calculating the feedback control command value, For example, by setting a value that is intentionally changed from the desired value in the feedback control target value map in the low-load operation range, it is set so that only the feedforward control command value is adopted by the selection means during low-load operation.
- FIG. 1 is a schematic configuration diagram of a first embodiment in which an exhaust gas recirculation control device of the present invention is applied to a diesel engine. It is a control flowchart of a 1st embodiment.
- A It is a block diagram of the configuration of the first embodiment,
- (b) is an explanatory diagram of signal conversion. It is explanatory drawing of the simulation confirmation in 1st Embodiment, (a) shows the state by which an overshoot is prevented, (b) shows the switching state of two control means. It is a general
- a diesel engine (hereinafter referred to as an engine) 1 includes an exhaust turbocharger 7 having an exhaust turbine 3 and a compressor 5 driven coaxially with the exhaust turbine 3.
- the air discharged from the compressor 5 passes through the air supply passage 9 and enters the intercooler 11, where the air supply is cooled, and then the intake air flow rate is controlled by the intake throttle valve 13.
- the intake port 17 is provided to flow into the combustion chamber via the intake valve of the engine 1.
- the engine 1 is provided with a fuel injection control device 19 that controls the fuel injection timing, the injection amount, and the injection pressure, and injects fuel into the combustion chamber.
- a fuel controlled to a predetermined fuel pressure is supplied to the fuel injection valve 21 at a predetermined fuel injection timing.
- an EGR (exhaust gas recirculation) passage 25 is branched from the middle of the exhaust passage 23, and a part of the exhaust gas is cooled by the EGR cooler 27, and an EGR valve (EGR control valve) 29 is provided downstream of the intake throttle valve 13. It comes to be inserted through.
- the intake throttle valve 13 is provided with a throttle valve control device path 31 to control opening and closing, and the EGR valve 29 is provided with an EGR control device (exhaust gas recirculation control device) 33 to control opening and closing.
- the combustion gas that is, the exhaust gas 35 combusted in the combustion chamber of the engine 1 passes through the exhaust manifold 39 and the exhaust passage 23 in which exhaust ports 37 provided for each cylinder are gathered, and the exhaust turbine 3 of the exhaust turbo supercharger 7. Is used as a power source for the compressor 5 and then flows into the exhaust gas after-treatment device (not shown) through the exhaust passage 23.
- the control unit (ECU) 41 receives an engine speed signal from a pulse counter 43 connected to an engine speed sensor 42, receives a fuel injection amount signal from the fuel injection control device 19, and is provided in the intake manifold 15.
- the detected detection signal from the intake manifold temperature sensor 44 is converted by the A / D converter 45
- the detection signal from the intake manifold pressure sensor 46 is converted by the A / D converter 47
- the detection signal from the air flow meter 48 is converted to A / D.
- the signals are converted by the D converter 49 and input respectively.
- Feedback control means 51 for outputting a feedback control command value and feedforward control means 53 for outputting a feedforward control command value are provided.
- the feedforward control means 53 performs feedforward control using a feedforward control map 55 in which the target valve opening of the EGR valve 29 is set based on the engine speed and the fuel injection amount (engine load) as the engine operating state.
- a command value 57 is calculated.
- the feedback control means 51 is a feedback control in which a feedback control target value (target excess air ratio) corresponding to the operating state is set based on the engine speed and the fuel injection amount (engine load) that are the operating state of the engine.
- a feedback control target value target excess air ratio
- the PID calculation unit 63 uses the map 61 to calculate a feedback control command value 65.
- the feedback control command value 65 is calculated as follows.
- the excess air ratio estimation calculation unit 67 calculates the actual excess air ratio from detection signals of the air flow rate, the intake manifold pressure, the intake manifold temperature, the engine speed, and the fuel injection amount.
- the actual excess air ratio and the target excess air ratio are input to the adder / subtractor 69, and based on the deviation, the PID calculator 63 calculates the proportional element (P), the differential element (D), and the integral element (I). These calculations are performed, and the calculation results are input to the adder 71 to calculate the feedback control command value 65.
- the feedforward control command value 57 and the feedback control command value 65 are input to the adder (adding means) 73 and an addition command value 75 is output.
- the maximum value selection function unit (selection means) 77 When the feedforward control command value 57 and the addition command value 75 are input to the maximum value selection function unit (selection means) 77, the larger one is selected by the maximum value selection function unit 77. If the larger one is selected at the time of selection, the command value on the side where the valve opening of the EGR valve 29 is closed is selected. Accordingly, if the feedforward control command value 57 is closer to the addition command value 75, the feedforward control command value 57 is selected. Conversely, if the addition command value 75 is the close side, the addition command value 75 is selected.
- the addition command value 75 is on the closed side, the result is that it is on the closed side with respect to the feedforward control command value 57, so that the command value on the opening side from the valve opening by the feedforward control command value 57 is EGR control valve. Is selected so that it will not be output.
- the output signal adopted in this way is then input to the valve opening limiter 79 which is an EGR valve control command saturation element, and the output signal is limited to protect the EGR valve 29. Then, the signal ⁇ that has passed through the valve opening limiter 79 is converted into valve control command signals for the EGR valve 29 and the intake throttle valve 13 as EGR valve control command values and intake throttle valve control command values, respectively, and output. Conversion is performed based on the relational expression or relational graph of FIG.
- a target signal is calculated in step S2.
- the target valve opening of the EGR valve 29 is calculated using the feedforward control map 55 based on the engine speed and the fuel injection amount (engine load).
- the target excess air ratio is calculated using the feedback control map 61 based on the engine speed and the fuel injection amount (engine load).
- step S3 the actual excess air ratio is calculated by the excess air ratio estimation calculation unit 67 from the detection signals of the air flow rate, the intake manifold pressure, the intake manifold temperature, the engine speed, and the fuel injection amount.
- step S4 the PID calculation unit 63 performs PID calculation, and in step S5, the adder 73 adds control command values.
- step S6 the maximum value selection function unit 77 selects a command value on the side where the valve opening of the EGR valve 29 is closed.
- step S7 the valve opening limiter 79 performs saturation processing of the EGR control command value to limit it, and in step 8, the output signal ⁇ of the valve opening limiter 79 is used as a control command for the EGR valve 29 and the intake throttle valve 13. The value is converted into a value and output, and the process ends in step S9.
- the maximum value selection function unit 77 serving as a selection unit converts the feedforward control command value 57 from the feedforward control unit 53 and the feedback control command value 57 to the feedforward control command value 57.
- the command value on the valve closing side is adopted so that the command value on the opening side from the feedforward control command value 57 is not output, and feedforward control is performed.
- the command value 57 becomes a limit value to the opening side, and during transient operation, the EGR valve 29 opens more than necessary due to the transient response of the feedback control means 51, and the exhaust gas is recirculated excessively, resulting in smoke. Can be prevented.
- the feedforward control command value 57 becomes a limit value, even if the feedback control command value 65 goes transiently and exceeds the feedback control target value, the control to the side that opens from the valve opening by the feedforward control command value Therefore, the exhaust gas is recirculated more than necessary by opening the EGR control valve greatly, and it is possible to prevent the occurrence of smoke by preventing it from moving in the direction A in the characteristic graph shown in FIG.
- FIG. A simulation of this overshoot prevention state is shown in FIG.
- a change state of the valve opening when there is an opening change signal of the EGR valve 29 at the time of 5 seconds is shown.
- the feedforward control command value 57 is the valve opening X% of the EGR valve 29. Therefore, it was confirmed that overshooting as in the prior art was prevented without opening further.
- the addition command value 75 obtained by adding the feedforward control command value 57 and the feedback control command value 65 is adopted in the maximum value selection function unit 77, not only the feedback control command value 65 but also the steady state.
- the switching of the two control means can be controlled according to the engine speed and the fuel injection amount (engine load), and the feedforward control map
- the set value 55 By changing the set value 55, the limit value of the opening degree of the EGR valve 29 can be changed according to the engine speed and the fuel injection amount (engine load). Of course, it may be set as a constant value without being changed.
- Fig. 4 (b) shows a simulation of the switching state of the two control means. For example, it shows the time of 5 seconds, shows a case where the feedforward control command value 57 is set to be equivalent to X%, and it has been confirmed that it does not open further.
- the feedforward control command value 57 and the feedback control command value 65 are input to the adder (adding means) 73 and the addition command value.
- the addition command value 75 and the feedforward control command value 57 are input to the maximum value selection function unit (selection means) 77, and the larger value is selected by the maximum value selection function unit 77.
- the command value with the valve opening of the EGR valve 29 closer to the closed side is selected.
- This EGR valve maximum opening degree map 80 is a map in which the EGR valve maximum opening degree is set with the engine operating state and the atmospheric state as parameters.
- the feedforward control command value 57 is used as the limit signal as in the first embodiment, there may be a case where appropriate limitation cannot be performed when the environmental state changes greatly. For example, when the atmospheric temperature changes to the high temperature side, the combustion temperature rises accordingly and the NOx emission amount increases, so it is necessary to set the limit value of the maximum opening of the EGR control valve to the opening side. Since the control command value from the feedforward control means 53 is set as a value in the standard atmospheric condition, the response to the change in the environmental condition is not sufficient.
- the second embodiment by setting a limit value using the EGR valve maximum opening map 80 set according to the engine operating state and the environmental state, there is a large environmental change, for example, a change in atmospheric pressure or atmospheric temperature. However, it is possible to reliably prevent overshoot while appropriately suppressing the NOx emission amount.
- the third embodiment is based on the deviation obtained by inputting the output signal of the valve opening limiter 79 and the output signal of the adder 73 to the adder / subtractor 81 in the configuration block diagram of the first embodiment of FIG.
- an automatic blending PID 83 for automatically blending the feedback control means 51 is provided.
- the output signal of the calculation element 85 of the automatic blending PID 83 is input to the adder / subtractor 87 and input to the integral calculation unit.
- Other configurations are the same as those in the first embodiment.
- Fig. 7 shows the results confirmed by simulation. Since the feedforward control command value 57 is the valve opening X% of the EGR valve 29, when the EGR control target value changes at the time of 5 seconds, for example, when the EGR control target value is not opened any further, In the case of the embodiment, it changes at the same time, but in the case of the prior art, it has been confirmed that it changes with a delay.
- the automatic blending PID 83 as a windup countermeasure (input saturation countermeasure) of the feedback control means 51, while the feedforward control command value 57 is selected by the maximum value selection function unit 77. Further, it is possible to prevent the integral value from being continuously accumulated in the integrator of the PID calculation unit 63 of the feedback control means 51. This improves the followability when the feedback control target value changes, and prevents the exhaust gas purification effect from being impaired during transient operation.
- a transient control unit 91 as an additional EGR control function is added to the configuration block diagram of the third embodiment of FIG.
- a transition time selection unit 93 is provided between the valve opening limiter 79 and the maximum value selection function unit 77, and the maximum value of the output signal from the transient control unit 91 and the output signal of the maximum value selection function unit 77 or One of the minimum values is selected and output to the valve opening limiter 79.
- Other configurations are the same as in the first embodiment.
- This transient control means 91 controls the EGR valve 29 to be fully closed or to a minimum opening degree for a certain period when the engine speed or load increases in order to suppress the occurrence of smoke during transient operation.
- Steps S11 to S13 are the same as steps S1 to S3 of the first embodiment.
- step S14 performs an anti-windup calculation.
- the output signal of the valve opening limiter 79 and the output signal of the adder 73 are input to the adder / subtractor 81, the deviation is calculated by the calculation element 85 of the automatic blending PID 83, and the adder / subtractor 87 calculates the input signal of the integral calculation unit.
- steps S15 to S17 are the same as steps S4 to S6 of the first embodiment.
- step S18 a signal from the transient control means 91 is calculated, and in step S19, the transient control means 91 One of the maximum value and the minimum value of the calculation result of the signal and the output signal of the maximum value selection function unit 77 is selected.
- Steps S15 to S17 are the same as steps S7 to S9 in the first embodiment.
- the third embodiment will be described when the state in which the EGR valve 29 is controlled by the transient control unit 91 is released. Since automatic blending PID83 is provided as a countermeasure against windup (input saturation countermeasure), the occurrence of windup (input saturation) is prevented, so an optional logic such as the transient control means 91 is added. However, adverse effects are prevented.
- the transition control means 91 is provided, and the logic for fully closing the EGR control valve for a predetermined time in order to suppress the occurrence of smoke during transient operation, or the logic for holding the EGR control valve at the minimum opening degree, etc.
- the automatic blending PID 83 prevents the EGR control valve from following adverse effects even during a transient change when the control of the transient control means 91 is released. Reliability is improved.
- Figure 10 shows the results confirmed by simulation.
- the state of the valve opening of the EGR valve 29 when the transient control means 91 that forcibly closes the EGR valve for 5 to 6 seconds is operated and then the control of the transient control means 91 is released is displayed. Show. Since no windup occurred, it was confirmed that the operation started immediately and increased to the limit value of the valve opening X% of the feedforward control command value, and then returned to the initial state.
- the present invention it is possible to prevent overshooting of the EGR gas control valve, etc., to prevent the occurrence of smoke due to excessive opening of the EGR control valve, and to improve the followability and reliability of the EGR control valve.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
そして、従来から排ガス通路と吸気通路とを互いに連結するEGRガス通路内にEGRガス量を制御するEGRガス制御弁を設け、該EGR制御弁に対して、内燃機関の運転状態に応じて定まる目標開度になるようにフィードバック補正手段によって開弁量を制御している。
逆に、目標開度が急激に減少した場合には、目標開度で定まる要求EGR量よりも閉じ側に減少するアンダーシュートが生じ、この場合にはEGRガス量が要求されるガス量に対して不足することとなる。
従って、EGR制御弁の目標弁開度が与えられた後に、いかにして、オーバーシュート
およびアンダーシュートなく目標弁開度に追従させるかの技術が重要である。
特許文献1には、EGR制御弁に対しての目標弁開量の変化率が大きい状態や、目標弁開量と実弁開量との偏差が大きい状態では、フィードバック制御のPI制御器の積分動作を行わない(積分値をゼロ)ようにしEGR制御弁開度のオーバーシュートを防止することが示されている。
しかし、特許文献2に示される技術においては、フィードフォワード補正手段による補正を行うべきか否かを判別するために、特別の制御フローを必要として予め設定された時間毎の割り込みによって実行されるようになっているため、処理制御フローが複雑化する問題がある。
さらに、この特許文献2にはフィードバック補正手段と、フィードフォワード補正手段とを使い分けることが開示されているのみであり、フィードバック補正手段と、フィードフォワード補正手段とを同時に行いそれぞれの補正係数を加算した補正係数としてより追従性の高い目標開弁量への制御は開示されていない。
すなわち、EGR制御弁の最大開度の制限信号によって開度が制限されるため、フィードバック制御指令値が過渡的に行き過ぎてフィードバック制御目標値を超えても前記最大開度の制限信号の弁開度より開く側への制御を禁止するので、EGR制御弁を大きく開いて必要以上に排ガスを再循環して、図11に示す特性グラフでA方向へ向かうことを防止でき、スモークの発生を防止できる。
このように、フィードフォワード制御手段からの制御指令値がEGR制御弁の最大開度の制限値となるため、簡単な構成によってオーバーシュートの防止を確実に行える。
一方、空気過剰率が低下する高負荷領域においては、フィードバック制御目標値(EGRのフィードバック制御目標値として空気過剰率の目標値)を実現するように、EGR制御弁を高精度、高応答性で制御することが求められるため、この高負荷運転領域においては、フィードバック制御が必要となる。
すなわち、過渡制御手段が設けられて、過渡運転時のスモーク発生を抑制するために、一定時間だけEGR制御弁を全閉とするロジック、またはEGR制御弁の最小開度で保持するロジック等をオプション的に追加しても、自動調合PIDによって、これら制御が解除された際においても、悪影響をおよぼすことが防止される。
図1を参照して、本発明の第1実施形態に係る内燃機関の排ガス再循環制御装置について説明する。
図1に示すように、ディーゼルエンジン(以下エンジンという)1は、排気タービン3とこれに同軸駆動されるコンプレッサ5を有する排気ターボ過給機7を備えており、該排気ターボ過給機7のコンプレッサ5から吐出された空気は給気通路9を通って、インタークーラ11に入り給気が冷却された後、吸気スロットルバルブ13で給気流量が制御され、その後、インテークマニホールド15からシリンダ毎に設けられた吸気ポート17からエンジン1の吸気弁を介して燃焼室内に流入するようになっている。
フィードバック制御指令値を出力するフィードバック制御手段51と、フィードフォワード制御指令値を出力するフィードフォワード制御手段53とを備えている。
フィードフォワード制御手段53は、エンジンの運転状態であるエンジン回転数と燃料噴射量(エンジン負荷)を基にEGRバルブ29の目標弁開度が設定されたフィードフォワード制御マップ55を用いてフィードフォワード制御指令値57を算出する。
空気過剰率推定演算部67によって実空気過剰率を、空気流量、インマニ圧、インマニ温度、エンジン回転数、燃料噴射量の検出信号から算出する。この実空気過剰率と目標空気過剰率とが加減算器69に入力されてその偏差を基にPID演算部63で比例要素(P)の演算、微分要素(D)の演算、積分要素(I)の演算が行われて、それぞれの演算結果が、加算器71に入力されて、フィードバック制御指令値65が算出される。
従って、フィードフォワード制御指令値57が加算指令値75より閉側であればフィードフォワード制御指令値57が選択され、逆に、加算指令値75が閉側であれば加算指令値75が選択されるが、この加算指令値75が閉側であれば、結果的にはフィードフォワード制御指令値57より閉側にあるためフィードフォワード制御指令値57による弁開度より開き側の指令値がEGR制御弁には出力されないように選択される。
まず、スタートするとステップS2で、目標信号を演算する。この目標信号の演算は、エンジン回転数と燃料噴射量(エンジン負荷)を基に、フィードフォワード制御マップ55を用いてEGRバルブ29の目標弁開度を算出する。同様に、エンジン回転数と燃料噴射量(エンジン負荷)を基に、フィードバック制御マップ61を用いて、目標空気過剰率を算出することである。
次にステップS6で、最大値選択関数部77でEGRバルブ29の弁開度が閉側の方の指令値を選択する。次にS7で、弁開度リミッタ79でEGR制御指令値の飽和処理を行って制限を掛け、ステップ8で弁開度リミッタ79の出力信号θを、EGRバルブ29および吸気スロットルバルブ13の制御指令値に換算して出力してステップS9で終了する。
次に、図5を参照して第2実施形態について説明する。
図3(a)の第1実施形態の構成ブロック図においては、既に説明したようにフィードフォワード制御指令値57とフィードバック制御指令値65とが加算器(加算手段)73に入力されて加算指令値75が出力され、この加算指令値75とフィードフォワード制御指令値57とが最大値選択関数部(選択手段)77に入力されて、最大値選択関数部77にて大きい方が選択されると、EGRバルブ29の弁開度が閉側の方の指令値が選択される構成であった。
このEGR弁最大開度マップ80は、エンジン運転状態および大気状態をパラメータとしてEGR弁最大開度が設定されているマップである。
第2実施形態では、エンジン運転状態および環境状態に応じて設定されたEGR弁最大開度マップ80を用いて制限値を設定することによって、大きな環境変化、例えば大気圧や大気温度の変化があってもより適切にNOx排出量を抑えつつ、オーバーシュートの防止を確実に行うことができる。
次に、図6、図7を参照して第3実施形態について説明する。
第3実施形態は、図3(a)の第1実施形態の構成ブロック図において、弁開度リミッタ79の出力信号と加算器73の出力信号とを加減算器81に入力してその偏差に基づいてフィードバック制御手段51に対して自動調合を行う自動調合PID83が設けられていることが異なる。自動調合PID83の演算要素85の出力信号は加減算器87に入力されて積分演算部に入力される。その他の構成については第1実施形態と同様である。
これによって、フィードバック制御目標値が変化した際の追従性が向上し、過渡運転時における排ガス浄化効果を損ねることが防止される。
次に、図8~図10を参照して第4実施形態について説明する。
第4実施形態は、図6の第3実施形態の構成ブロック図に対して付加的なEGR制御機能としての過渡時制御手段91を付加するものである。
弁開度リミッタ79と最大値選択関数部77との間に、過渡時選択手段93を設けて、過渡時制御手段91からの出力信号と最大値選択関数部77の出力信号との最大値または最小値の一方を選択して、弁開度リミッタ79に出力する。その他の構成については第1実施形態と同様である
ステップS11~S13までは、第1実施形態のステップS1~S3と同様であり、ステップS14では、ステップS14は、アンチワインドアップ演算を行う。弁開度リミッタ79の出力信号と加算器73の出力信号とを加減算器81に入力してその偏差を自動調合PID83の演算要素85で演算して加減算器87で積分演算部の入力信号に対して減算してPID演算部63の積分器に積分値が溜まり続けることを防止する。
Claims (6)
- 排気通路と吸気通路とを連結するEGRガス通路に設けられてEGRガス量を制御するEGR制御弁と、内燃機関の運転状態に応じたEGR制御弁の開度制御にフィードバック制御指令値を出力するフィードバック制御手段と、フィードフォワード制御指令値を出力するフィードフォワード制御手段とを備えた内燃機関の排ガス再循環制御装置において、
前記フィードフォワード制御手段からの制御指令値と前記フィードバック制御手段からの制御指令値とを加算する加算手段と、該加算手段による加算値とEGR制御弁の最大開度の制限信号とを比較してEGR制御弁の弁開度が閉側の方の指令値を採用する選択手段とを備え、前記最大開度の制限信号より開き側の指令値がEGR制御弁に出力されないように構成したことを特徴とする内燃機関の排ガス再循環制御装置。 - 前記フィードフォワード制御手段からの制御指令値が前記EGR制御弁の最大開度の制限信号として前記選択手段に入力されることを特徴とする請求項1記載の内燃機関の排ガス再循環制御装置。
- 前記EGR制御弁の最大開度の制限信号がエンジン運転状態および環境状態に応じて設定されたEGR弁最大開度マップを用いて算出される値であることを特徴とする請求項1記載の内燃機関の排ガス再循環制御装置。
- 前記フィードバック制御指令値は内燃機関の空気過剰率算出値と運転状態に応じて予め設定されたフィードバック制御目標値としての目標空気過剰率とを基にPID(比例、積分、微分)演算によって算出されることを特徴とする請求項1記載の内燃機関の排ガス再循環制御装置。
- EGR制御弁の弁開度リミッタが設けられるとともに、該弁開度リミッタの出力信号と前記加算手段の出力信号との偏差に基づいて前記フィードバック制御手段に自動調合PIDが設けられることを特徴とする請求項4記載の内燃機関の排ガス再循環制御装置。
- 過渡運転時に一定期間だけ前記EGR制御弁を最小開度または全閉に制御する過渡時制御手段が設けられるとともに、該過渡時制御手段の出力信号と前記選択手段の出力信号との一方を選択して前記弁開度リミッタに出力する過渡時選択手段を備えたことを特徴とする請求項5記載の内燃機関の排ガス再循環制御装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10845766.4A EP2450555B1 (en) | 2010-02-09 | 2010-06-11 | Exhaust gas recirculation control device for internal combustion engine |
KR1020127000907A KR101291420B1 (ko) | 2010-02-09 | 2010-06-11 | 내연 기관의 배기 가스 재순환 제어 장치 |
US13/388,106 US8897994B2 (en) | 2010-02-09 | 2010-06-11 | Exhaust gas recirculation control device of internal combustion engine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-026472 | 2010-02-09 | ||
JP2010026472A JP5364610B2 (ja) | 2010-02-09 | 2010-02-09 | 内燃機関の排ガス再循環制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011099174A1 true WO2011099174A1 (ja) | 2011-08-18 |
Family
ID=44367471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/059942 WO2011099174A1 (ja) | 2010-02-09 | 2010-06-11 | 内燃機関の排ガス再循環制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8897994B2 (ja) |
EP (1) | EP2450555B1 (ja) |
JP (1) | JP5364610B2 (ja) |
KR (1) | KR101291420B1 (ja) |
WO (1) | WO2011099174A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013076816A1 (ja) * | 2011-11-22 | 2013-05-30 | トヨタ自動車株式会社 | フィードバック制御システム |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5936369B2 (ja) | 2012-01-24 | 2016-06-22 | 三菱重工業株式会社 | 内燃機関の制御装置 |
JP5972597B2 (ja) * | 2012-02-21 | 2016-08-17 | 三菱重工業株式会社 | Egr制御装置およびegr制御装置を備えたエンジン |
US8944036B2 (en) * | 2012-02-29 | 2015-02-03 | General Electric Company | Exhaust gas recirculation in a reciprocating engine with continuously regenerating particulate trap |
EP2642103B1 (en) * | 2012-03-21 | 2014-11-19 | Ford Global Technologies, LLC | Exhaust-gas recirculation system and method for exhaust-gas recirculation |
US9062577B2 (en) * | 2012-05-14 | 2015-06-23 | Southwest Research Institute | Diesel engine operation for fast transient response and low emissions |
JP6147564B2 (ja) * | 2013-05-14 | 2017-06-14 | 住友重機械工業株式会社 | 建設機械用油圧システム |
US9683505B2 (en) * | 2014-06-09 | 2017-06-20 | Ford Global Technologies, Llc | Identification and rejection of asymmetric faults |
CN104074639B (zh) * | 2014-07-16 | 2016-04-27 | 无锡隆盛科技股份有限公司 | 一种直流电机egr阀控制器 |
DE102015202180A1 (de) * | 2015-02-06 | 2016-08-11 | Robert Bosch Gmbh | Verfahren zur Regelung |
CN114233486B (zh) * | 2021-11-12 | 2023-08-18 | 潍柴动力股份有限公司 | 一种egr阀的控制方法、装置及ecu |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2832422B2 (ja) | 1995-05-02 | 1998-12-09 | トヨタ自動車株式会社 | 内燃機関の排気ガス再循環装置 |
JP2832423B2 (ja) * | 1995-06-21 | 1998-12-09 | トヨタ自動車株式会社 | 内燃機関の排気ガス再循環装置 |
JP2009150331A (ja) * | 2007-12-21 | 2009-07-09 | Mitsubishi Fuso Truck & Bus Corp | エンジンのegr弁制御装置 |
JP2009281261A (ja) * | 2008-05-21 | 2009-12-03 | Toyota Motor Corp | 内燃機関の制御システム |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100205512B1 (ko) * | 1995-06-02 | 1999-07-01 | 나까무라히로까즈 | 엔진의 공기과잉률 검출장치 및 공기과잉률 제어장치 |
JP3656518B2 (ja) * | 2000-05-18 | 2005-06-08 | 日産自動車株式会社 | ディーゼルエンジンの制御装置 |
DE10039428B4 (de) * | 2000-08-11 | 2004-07-15 | Siemens Ag | Treiberschaltung |
US7267100B2 (en) | 2001-04-03 | 2007-09-11 | Hitachi, Ltd. | Controller of internal combustion engine |
JP4015889B2 (ja) * | 2002-06-28 | 2007-11-28 | 株式会社豊田自動織機 | 内燃機関のegr制御装置 |
JP4292895B2 (ja) * | 2003-07-02 | 2009-07-08 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
US7206688B2 (en) | 2004-11-01 | 2007-04-17 | Southwest Research Institute | Control system for engines having multiple combustion modes |
US20080078176A1 (en) * | 2006-10-02 | 2008-04-03 | International Engine Intellectual Property Company | Strategy for control of recirculated exhaust gas to null turbocharger boost error |
JP2008138537A (ja) | 2006-11-30 | 2008-06-19 | Mitsubishi Motors Corp | 内燃機関の排気浄化装置 |
US8150601B2 (en) * | 2006-12-28 | 2012-04-03 | Mitsubishi Electric Corporation | EGR valve control system |
JP2008215112A (ja) * | 2007-02-28 | 2008-09-18 | Mitsubishi Heavy Ind Ltd | ディーゼルエンジンシステム及びその制御方法 |
CN103470407B (zh) * | 2008-06-02 | 2016-08-10 | 博格华纳公司 | 通过涡轮增压的发动机系统中的多通道来控制排气再循环 |
JP5249898B2 (ja) * | 2009-09-29 | 2013-07-31 | 富士通株式会社 | エンジン制御プログラム、方法及び装置 |
US8463531B2 (en) * | 2010-06-01 | 2013-06-11 | GM Global Technology Operations LLC | System and method for controlling exhaust gas recirculation systems |
-
2010
- 2010-02-09 JP JP2010026472A patent/JP5364610B2/ja active Active
- 2010-06-11 US US13/388,106 patent/US8897994B2/en active Active
- 2010-06-11 EP EP10845766.4A patent/EP2450555B1/en active Active
- 2010-06-11 KR KR1020127000907A patent/KR101291420B1/ko active IP Right Grant
- 2010-06-11 WO PCT/JP2010/059942 patent/WO2011099174A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2832422B2 (ja) | 1995-05-02 | 1998-12-09 | トヨタ自動車株式会社 | 内燃機関の排気ガス再循環装置 |
JP2832423B2 (ja) * | 1995-06-21 | 1998-12-09 | トヨタ自動車株式会社 | 内燃機関の排気ガス再循環装置 |
JP2009150331A (ja) * | 2007-12-21 | 2009-07-09 | Mitsubishi Fuso Truck & Bus Corp | エンジンのegr弁制御装置 |
JP2009281261A (ja) * | 2008-05-21 | 2009-12-03 | Toyota Motor Corp | 内燃機関の制御システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2450555A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013076816A1 (ja) * | 2011-11-22 | 2013-05-30 | トヨタ自動車株式会社 | フィードバック制御システム |
JP5655957B2 (ja) * | 2011-11-22 | 2015-01-21 | トヨタ自動車株式会社 | フィードバック制御システム |
US9228528B2 (en) | 2011-11-22 | 2016-01-05 | Toyota Jidosha Kabushiki Kaisha | Feedback control system |
Also Published As
Publication number | Publication date |
---|---|
KR20120028379A (ko) | 2012-03-22 |
US8897994B2 (en) | 2014-11-25 |
EP2450555A4 (en) | 2015-11-18 |
EP2450555A1 (en) | 2012-05-09 |
US20120125301A1 (en) | 2012-05-24 |
KR101291420B1 (ko) | 2013-07-30 |
JP5364610B2 (ja) | 2013-12-11 |
EP2450555B1 (en) | 2018-09-05 |
JP2011163200A (ja) | 2011-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5364610B2 (ja) | 内燃機関の排ガス再循環制御装置 | |
JP4301295B2 (ja) | 内燃機関のegrシステム | |
JP4534514B2 (ja) | ディーゼル機関の制御装置 | |
EP3078832A1 (en) | Control device for supercharging system | |
US7219002B2 (en) | Control apparatus for internal combustion engine | |
US10309298B2 (en) | Control device of an engine | |
CA2997893C (en) | Exhaust gas recirculation control method and exhaust gas recirculation control device | |
JP5936369B2 (ja) | 内燃機関の制御装置 | |
US20150089938A1 (en) | Exhaust gas recirculation control device of engine | |
KR102518657B1 (ko) | 밸브 듀티 차등화 방식 egr 제어 방법 및 egr 시스템 | |
JP4186734B2 (ja) | フィードバック制御装置 | |
JP2006299892A (ja) | 過給機付き内燃機関 | |
JP2005320937A (ja) | 内燃機関の過給圧制御装置 | |
JP2005264805A (ja) | 内燃機関の制御装置 | |
JP6575562B2 (ja) | エンジンの排気浄化装置 | |
JP6589939B2 (ja) | エンジンの排気浄化装置 | |
JP2010138829A (ja) | ディーゼルエンジンの燃焼制御装置 | |
JP2009013872A (ja) | 内燃機関の吸気制御装置 | |
JP2005299570A (ja) | 圧縮着火内燃機関の予混合燃焼制御システム | |
JP2019152122A (ja) | 内燃機関システム | |
JP5206514B2 (ja) | 内燃機関の排気還流装置 | |
JP2013253532A (ja) | 過給エンジンのegr装置 | |
JP2010190054A (ja) | 内燃機関の制御装置 | |
JP2018184901A (ja) | 内燃機関の制御装置 | |
JP2011012556A (ja) | 吸気圧制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10845766 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127000907 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010845766 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13388106 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |