WO2011097895A1 - 一种示波器及其信号波形采集及显示的方法及系统 - Google Patents

一种示波器及其信号波形采集及显示的方法及系统 Download PDF

Info

Publication number
WO2011097895A1
WO2011097895A1 PCT/CN2010/077923 CN2010077923W WO2011097895A1 WO 2011097895 A1 WO2011097895 A1 WO 2011097895A1 CN 2010077923 W CN2010077923 W CN 2010077923W WO 2011097895 A1 WO2011097895 A1 WO 2011097895A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
unit
waveform data
probe
control
Prior art date
Application number
PCT/CN2010/077923
Other languages
English (en)
French (fr)
Inventor
马光明
王振英
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/499,938 priority Critical patent/US9128126B2/en
Priority to JP2012532448A priority patent/JP5395272B2/ja
Priority to EP10845565.0A priority patent/EP2472271A4/en
Publication of WO2011097895A1 publication Critical patent/WO2011097895A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R13/00Arrangements for displaying electric variables or waveforms
    • G01R13/02Arrangements for displaying electric variables or waveforms for displaying measured electric variables in digital form
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2836Fault-finding or characterising

Definitions

  • the invention relates to the field of signal collection and testing of electronic products, in particular to a method and a system for collecting and displaying an oscilloscope and a signal waveform. Background technique
  • the oscilloscopes used in the hardware testing field of current electronic products whether they are mid-range, high-end or low-end oscilloscopes, are manually collected by the traditional handheld probes.
  • PCBs printed circuit boards
  • the technical problem to be solved by the present invention is to provide an oscilloscope and a method and system for collecting and displaying the signal waveform thereof, which can automatically control the positioning, signal waveform collection and display of the object to be measured.
  • the present invention provides a method for collecting and displaying signal waveforms, relating to a control measurement unit and an automatic collection unit, the method comprising:
  • the control measurement unit determines the corresponding test command and test parameters according to the selection of the test points on the object to be tested, calculates the position coordinates of each test point, and issues test commands and test parameters to the automatic collection unit;
  • the automatic collecting unit returns the test signals of the respective test points of the collected probes to the control measuring unit according to the test command and the test parameters;
  • the control measurement unit generates corresponding waveform data according to the test signal returned by the automatic collection unit, and stores and displays the waveform data.
  • the control measurement unit determines the corresponding test command and the test parameter according to the selection of the test point on the object to be tested, and includes: the control measurement unit selects the corresponding type of the probe according to the type, frequency and amplitude of each test point signal of the object to be tested. And setting the vertical and/or horizontal of each data channel and the test parameters triggered;
  • the step of the control measurement unit calculating the position coordinates of each test point includes: calculating coordinates of each test point position according to the detected original position coordinates of the measured object;
  • the step of the control measurement unit issuing the test command and the test parameter to the automatic collection unit includes: releasing, to the automatic collection unit, a position coordinate including at least a test point and a test command and a test parameter of the selected probe;
  • the step of returning, by the automatic collecting unit, the test signals of the respective test points of the collected probes to the control measuring unit according to the test command and the test parameters comprises: automatically collecting the position coordinates of the test points according to the test points in the test command
  • the selected probe is delivered to the designated position, and the probe is carried to the designated position coordinate by the multi-coordinate motion trajectory, and the test signal collected by the probe is returned to the control measurement unit;
  • the control measurement unit generates corresponding waveform data according to the test signal returned by the automatic collection unit, and the storing and displaying the waveform data includes: controlling the measurement unit to pass the setting One or more data channels receive test signals of one or more test points returned by the automatic collection unit, generate corresponding waveform data, and store and display.
  • the step of the control measurement unit calculating the position coordinates of each test point further includes: controlling the measurement unit to detect the original position coordinates of the test object by optical positioning;
  • the multi-coordinate motion trajectory formed by the automatic ⁇ unit includes a right-angled three-coordinate or polar-coordinate motion trajectory of the space, or any one of a rectangular coordinate or a polar coordinate trajectory of the plane;
  • the step of controlling the measurement unit to display the waveform data comprises: controlling the waveform data of the corresponding channel according to the human-computer interaction command, and/or implementing the association display with the design file of the object to be tested according to the waveform data.
  • the present invention provides an oscilloscope including a control measurement unit and an automatic concentrating unit, wherein:
  • the control measurement unit is set to: determine corresponding test commands and test parameters according to selection of test points on the object to be tested, calculate position coordinates of the test points, and issue test commands and test parameters to the automatic collection unit; and according to the automatic collection unit
  • the returned test signal generates corresponding waveform data, and stores and displays the waveform data;
  • the automatic collection unit is set to: return the test signals of the test points of the collection to the control measurement unit according to the test command and the test parameters.
  • the control measurement unit includes an integrated control unit and a signal measurement and waveform data generation unit
  • the automatic collection unit includes a collection probe servo unit and one or more collection probes, wherein:
  • the integrated control unit is set to: select a test point of the measured object, calculate the position coordinate of the test point according to the original position coordinate of the measured object, and transmit the corresponding test command and its test parameter; ⁇ Set the probe servo unit setting As follows: According to the corresponding test command and its test parameters, the support probe is carried to the specified position coordinates to contact the corresponding test point, and the test signal returned by the clamp probe is transmitted to the signal measurement and waveform data generation.
  • the set probe is set to: collect the test signal of the test point under the servo control of the set probe servo unit, and return to the set probe servo unit;
  • the signal measurement and waveform data generation unit is set to: according to the corresponding test command and its test parameters
  • the test configuration is completed, and the test signal of the test point transmitted by the probe servo unit is received through one or more channels, and the waveform data of the corresponding channel is generated.
  • the control measurement unit further includes a measured object positioning unit, wherein:
  • the object positioning unit of the measured object is set to: collect the original position coordinates of the measured object according to the corresponding test command and its test parameters, and return to the integrated control unit.
  • the integrated control unit is further configured to: select a corresponding type of collection probe according to one or more attributes of the type, frequency and amplitude of each test point signal of the measured object;
  • the set probe servo unit is configured to carry the support probe carried by the support to the corresponding test point under the specified position coordinates in the following manner: under the control of the integrated control unit, the formed multi-coordinate motion track will be The selected probes selected by the integrated control unit are carried to the position coordinates and ensure good contact; the multi-coordinate motion trajectory includes a right-angled three-coordinate motion trajectory or a polar species of the space.
  • the integrated control unit is further configured to: set the vertical and/or horizontal and/or horizontal test of the signal measurement and the waveform data generating unit according to one or more of the types, frequencies and amplitudes of the test point signals of the object to be tested. Parameter; receiving and storing waveform data transmitted from the signal measurement and waveform data generating unit;
  • the signal measurement and waveform data generating unit is further configured to: transmit the generated waveform data of each channel to the integrated control unit.
  • the control measurement unit further includes a human interaction unit, wherein:
  • the human-computer interaction unit is configured to: provide information about the type of the probe and the object to be tested and its test points under the control of the integrated control unit, and transmit the human-computer interaction command to the integrated control unit; display under the control of the integrated control unit Waveform data of the corresponding channel;
  • the integrated control unit is further configured to: control the human-computer interaction unit to display the waveform data according to the human-computer interaction command; and/or implement the association display with the test object design file according to the waveform data.
  • the present invention provides a system for signal waveform collection and display, including a calculation and control device, a signal measurement and waveform data generation device, and a collection probe servo device. And one or more collection probes, wherein:
  • the calculation and control device is set to: select a test point of the test object and calculate a position coordinate of the test point, and download the corresponding test command and its test parameters;
  • the set probe servo device is set to: according to the corresponding test command and its test parameters, carry the support probe carried to the specified position coordinates to contact the corresponding test point, and transmit the test signal returned by the set probe to Signal measurement and waveform data generating device;
  • the set probe is set to: collect the test signal of the test point under the servo control of the set probe servo unit, and return to the set probe servo device;
  • the signal measurement and waveform data generating means is configured to: complete the test configuration according to the corresponding test command and its test parameters, receive the test signal of the test probe transmitted by the collection probe servo device through one or more channels, and generate waveform data.
  • the measured object positioning device is set to: collect the original position coordinates of the measured object according to the corresponding test command and its test parameters, and return to the calculation and control device;
  • the calculation and control means is arranged to calculate the position coordinates of the test point in the following manner: The position coordinates of the selected test point are calculated based on the original position coordinates of the measured object returned by the object positioning device to be measured.
  • the calculation and control device is further configured to: select a corresponding type of collection probe according to one or more attributes of the type, frequency and amplitude of each test point signal of the object to be tested;
  • the set probe servo device is configured to carry the support probe carried by the support to the corresponding test point in the specified position coordinates in the following manner: under the control of the integrated control unit, the formed multi-coordinate motion track will be Calculating and controlling the selected probe of the control device to be carried to the position coordinates, and ensuring good contact by applying an appropriate force to the collection probe; the multi-coordinate motion trajectory includes a right-angled three-coordinate motion trajectory of space or A polar coordinate motion trajectory, or any one of a rectangular coordinate motion trajectory or a polar coordinate motion trajectory.
  • the calculation and control device is further configured to: set the vertical direction of each channel of the signal measurement and waveform data generating unit according to one or more attributes of the type, frequency and amplitude of each test point signal of the measured object Level and trigger test parameters; and receiving and storing measurements from the signal Waveform data transmitted by the waveform data generating device;
  • the signal measurement and waveform data generating means are further arranged to: transmit the generated waveform data of each channel to the calculation and control means.
  • the computing and control device includes a human-machine interaction device, wherein:
  • the human-machine interaction device is configured to: provide information about the type of the probe and the measured object and the test point thereof, and transmit a human-computer interaction command to display waveform data of the corresponding channel;
  • the calculation and control device is further configured to: control the human-machine interaction device to display the waveform data according to the human-computer interaction command; and/or implement the association display with the test object design file according to the waveform data.
  • the system further includes a subject fixing device, and the subject fixing device is configured to: fix or unfix the object to be measured under the control of the calculation and control device.
  • the invention overcomes the problems and deficiencies of the above conventional oscilloscope, and provides an oscilloscope and a corresponding system and method thereof, which automatically control the precise positioning and contact of the test points of the object to be tested by automatically controlling one or more collection probes.
  • the signal waveforms of the test points are collected, stored and displayed.
  • the test results can be directly displayed on the corresponding PCB.
  • the invention is particularly suitable for comprehensive testing of high-density complex PCBs and batch conformance testing, and can save a large amount of test manpower, greatly improve test efficiency and test accuracy and reliability, and greatly shorten the hardware development cycle.
  • FIG. 1 is a schematic structural view of an embodiment of an oscilloscope device according to the present invention.
  • FIG. 2 is a flow chart of an embodiment of a signal waveform collection and display method of the present invention
  • FIG. 3 is a schematic structural view of an embodiment of a signal waveform collection and display system of the present invention.
  • the structure of an oscilloscope device capable of automatically locating, collecting, and displaying a test point signal waveform includes a control measurement unit and an automatic collection unit, wherein:
  • the control measurement unit is configured to determine a corresponding test command and a test parameter according to the selection of the test point on the object to be tested; calculate the position coordinate of each test point on the object to be tested according to the original position coordinate of the object to be tested, and automatically collect the position
  • the unit issues test commands and test parameters, and generates corresponding waveform data according to the test signals collected by the automatic collection unit, and stores and displays the waveform data;
  • the automatic collecting unit is configured to return the test signals of the collected test points to the control measuring unit according to the test command and the test parameter issued by the control measuring unit.
  • the control measurement unit also implements an association display with the test object design file based on the generated waveform data.
  • control measurement unit further includes an integrated control unit, a measured object positioning unit, a signal measurement and waveform data generating unit, and the automatic collecting unit further includes a collecting probe servo unit and one or more collecting probes, wherein:
  • the integrated control unit is configured to set test parameters such as vertical and/or horizontal and triggering of each channel of the signal measurement and waveform data generating unit according to the type, frequency and amplitude of each test point signal of the object to be tested, and respectively perform positioning test parameters on the object to be tested.
  • the signal measurement and waveform data generating unit and the set probe servo unit issue test commands and pass test parameters;
  • the integrated control unit calculates the position coordinates of the target test point on the measured object according to the position coordinates of the measured object transmitted by the measured object positioning unit, and selects the corresponding type of probe; according to the calculated position coordinates of the test point and the selected
  • the probes respectively issue corresponding test commands and test parameters to the signal measurement and waveform data generation unit and the collection probe servo unit.
  • the integrated control unit also receives and stores test data from the signal measurement and waveform data generation unit, and records the test data on the PCB of the corresponding object to be tested (such as a circuit board, an electronic product or a semi-finished product, etc.).
  • the measured object positioning unit is configured to collect the original position coordinates of the measured object according to the test command and the test parameter thereof, and transmit the coordinates to the integrated control unit;
  • the measured object positioning unit collects the original position coordinates of the measured object by, for example, optical scanning.
  • the signal measurement and waveform data generating unit is configured to complete the test configuration according to the test instruction and the test parameter thereof, and receive the test point detection by the one or more collection probes transmitted by the collection probe servo unit through one or more channels. Signal, according to which waveform data is generated, and the generated test data of each channel is transmitted to the integrated control unit;
  • the probe servo unit is configured to support one or more collection probes, and a multi-coordinate motion trajectory is formed under the control of the integrated control unit, and the collection probe is carried under the test point of the specified position coordinates to contact the point, and Transmitting the test signal of the test point collected by the set probe to the signal measurement and waveform data generating unit;
  • the ⁇ probe servo unit also applies the appropriate force to the ⁇ probe to ensure good contact between the probe and the test point.
  • the multi-coordinate motion trajectory formed by the probe servo unit is a right-angled three-coordinate (X, y, z) or polar coordinate (r, ⁇ , ⁇ ) motion trajectory of the space; or a rectangular coordinate (X, y) or pole of the plane Coordinate (r, ⁇ ) motion trajectory.
  • One or more sets of probes for precise positioning and contact with the test object (PCB) test points under the control of multi-coordinate motion track control of the probe probe unit, and testing of the test points
  • the signal is output to the set probe servo unit.
  • the oscilloscope device further includes a human-machine interaction unit, configured to provide the collection probe type and the measured object and the test point information under the control of the integrated control unit, and transmit the human-computer interaction command to the integrated control unit; the integrated control unit is based on the human-machine The interactive command controls the human-machine interaction unit to display the waveform of the corresponding channel.
  • a human-machine interaction unit configured to provide the collection probe type and the measured object and the test point information under the control of the integrated control unit, and transmit the human-computer interaction command to the integrated control unit; the integrated control unit is based on the human-machine The interactive command controls the human-machine interaction unit to display the waveform of the corresponding channel.
  • the one or more collection probes of the present invention can adapt to the needs of various test point signals of different frequencies, different amplitudes and different grounding conditions, and each of the collection probes achieves signal contact with the test points after reaching the specified coordinates. Tests can be performed in sequence or in parallel to improve test efficiency.
  • FIG. 2 it is a flow of a method for performing signal waveform collection and display by using the oscilloscope provided by the present invention, which includes the following steps: 110: The control measurement unit selects each test point on the object to be tested, and determines corresponding test commands and test parameters;
  • the control measurement unit first fixes the respective positions of the test object and the collection probe servo device.
  • the object to be tested is such as a printed circuit board (PCB), an electronic product machine or a semi-finished product.
  • PCB printed circuit board
  • the control measurement unit detects the initial position coordinates of the object to be tested, selects the test point on the object to be tested, acquires the signal parameters of the test point, and thereby sets the waveform to display the vertical or horizontal and trigger test parameters of each channel, and selects corresponding Type of probe.
  • the detection of the initial position coordinates of the object to be tested is to detect the initial position coordinates of the object to be tested by the optical positioning of the object to be measured.
  • the signal parameters of the test point include one or more of the signal type, frequency and amplitude parameters, which are obtained through the design file of the test object (such as PCB map) or through the human-machine interface.
  • the automatic gathering unit sends the selected probe to the designated position according to the test point position coordinate in the test command, and returns the test signal collected by the probe to the control measuring unit;
  • the automatic gathering unit forms a multi-coordinate motion trajectory under the control of the control unit to deliver the selected probe to a specified position, such as a right-angled three-coordinate (X, y, z) or polar (r, ⁇ , ⁇ ) motion of the space.
  • a specified position such as a right-angled three-coordinate (X, y, z) or polar (r, ⁇ , ⁇ ) motion of the space.
  • the automatic collection unit allows the probe to make good electrical contact with the test point.
  • the control measurement unit generates corresponding waveform data according to the test signal returned by the automatic collection unit, and stores the data on the corresponding data channel;
  • the control measurement unit realizes the association display with the test object design file according to the generated waveform data.
  • the control measurement unit for example, records the index of the received waveform data on the corresponding PCB of the object under test.
  • Step 120 150 If you need to perform a signal set for the next test point, you can select the next test point and repeat Step 120 150 is sufficient.
  • the method further includes the steps of: providing, by the human-machine interaction unit of the control measurement unit, the type of the probe and the measured object and the test point information thereof, and transmitting the human-computer interaction command to the control measurement unit; and controlling the measurement unit to control according to the human-computer interaction command
  • the human-machine interaction unit displays the waveform of the corresponding channel.
  • FIG. 3 it is a structure of a system embodiment capable of automatically locating, collecting, and displaying test point signal waveforms, and the system includes: a calculation and control device, a signal measurement and waveform data generation device, and a test object.
  • a positioning device, a collection probe servo device, and one or more collection probes wherein:
  • the calculation and control device is configured to set a vertical or horizontal level and a triggering test parameter of each channel of the signal measurement and the waveform data generating device according to the type, frequency and amplitude of each test point signal of the object to be tested, respectively, and respectively, to the object to be measured,
  • the signal measurement and waveform data generating device and the collection probe servo device issue test commands and transmit test parameters;
  • the calculation and control device selects the test point of the measured object by the test point positioning calculation device according to the original position coordinate of the measured object transmitted by the measured object positioning unit, calculates the position coordinate of the measured object, and selects the corresponding type of probe;
  • the position coordinates of the test point and the selected probe respectively issue corresponding test commands and test parameters to the signal measurement and waveform data generating device and the set probe servo device.
  • the calculation and control device also receives and stores test data from the signal measurement and waveform data generating device through the test result storage and recording device, and records the test data in the corresponding measured object (such as a circuit board, an electronic product machine or a semi-finished product, etc.) ) on the PCB diagram.
  • test data such as a circuit board, an electronic product machine or a semi-finished product, etc.
  • the object positioning device is configured to transmit the original position coordinates of the detected object to the calculation and control device according to the test command and the test parameter thereof;
  • the measured object positioning device collects the original position coordinates of the measured object by, for example, optical scanning.
  • the signal measurement and waveform data generating device is configured to complete the test configuration according to the test instruction and the test parameter thereof, and receive and display the test point detected by the one or more collection probes transmitted by the collection probe servo device through one or more channels.
  • the test signal generates waveform data, and the generated test data of each channel is transmitted to the calculation and control device.
  • a probe servo device for supporting one or more collection probes, forming a multi-coordinate motion trajectory according to the test command and its test parameters, and carrying the ⁇ probe to the test point under the coordinates of the specified position, and contacting the point, and Transmitting a test signal of the test point to which the set probe is collected to the signal measurement and waveform data generating device;
  • the ⁇ probe servo also applies the appropriate force to the ⁇ probe to ensure good contact between the probe and the test point.
  • the ⁇ probe servo unit forms a multi-coordinate motion trajectory through a servo control unit, such as a right-angled three-coordinate (X, y, z) or polar coordinate (r, ⁇ , ⁇ ) motion trajectory of space, or a rectangular coordinate of a plane ( X, y) or polar coordinate (r, ⁇ ) motion trajectory.
  • a servo control unit such as a right-angled three-coordinate (X, y, z) or polar coordinate (r, ⁇ , ⁇ ) motion trajectory of space, or a rectangular coordinate of a plane ( X, y) or polar coordinate (r, ⁇ ) motion trajectory.
  • One or more collection probes are used to accurately position and contact the test points of the test object under the control of the multi-coordinate motion track control of the collection probe servo device, and output the test signals of the test points Collect probe servos.
  • the above system provides the collected probe type and the measured object and its test point information through the human-machine interaction device (not shown in the figure, such as an input keyboard, an output display screen, etc.) in the calculation and control device, and simultaneously transmits the human-computer interaction command;
  • the calculation and control device controls the human-machine interaction device to display the waveform of the corresponding channel according to the human-computer interaction command.
  • the system shown in FIG. 3 further includes an object fixing device for fixing or unfixing the object under the control of the calculation and control device, for example, clamping or unfolding the object to be measured by the clamp, or passing Press the lock to lock or unlock the object to be tested, and so on.
  • object fixing device for fixing or unfixing the object under the control of the calculation and control device, for example, clamping or unfolding the object to be measured by the clamp, or passing Press the lock to lock or unlock the object to be tested, and so on.
  • the calculation and control device can pre-select each test point in batches on the design file such as the PCB diagram of the object to be tested, and automatically and accurately locate the probe set to the test point through the program control set probe servo device.
  • the invention replaces the traditional oscilloscope to realize the collection and display method of the signal waveform of the test point of the object to be tested by the artificial hand-held probe, so that the signal to be tested can be controlled in advance by batch selection on the design file such as the PCB drawing.
  • the coordinate set probe automatically inputs and stores the collected signal waveform to the oscilloscope, and directly records the test result on the PCB. Therefore, the present invention is particularly applicable to High-density products with high-density and complex PCB comprehensive testing and batch conformance testing, and can save a lot of test manpower, greatly improve test efficiency and test accuracy and reliability, thus effectively shortening the hardware development cycle.
  • the invention overcomes the problems and deficiencies of the above conventional oscilloscope, and provides an oscilloscope and a corresponding system and method thereof, which automatically control the precise positioning and contact of the test points of the object to be tested by automatically controlling one or more collection probes.
  • the signal waveforms of the test points are collected, stored and displayed.
  • the test results can be directly displayed on the corresponding PCB.
  • the invention is particularly suitable for comprehensive testing of high-density complex PCBs and batch conformance testing, and can save a large amount of test manpower, greatly improve test efficiency and test accuracy and reliability, and greatly shorten the hardware development cycle.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

一种示波器及其信号波形采集及显示的方法及系统
技术领域
本发明涉及电子产品信号釆集及测试领域, 尤其涉及示波器和信号波形 釆集及显示的方法及系统。 背景技术
当前电子产品的硬件测试领域所釆用的示波器, 无论是中端、 高端还是 低端示波器, 对被测信号都是釆用传统的手持探头人工方式进行釆集。
随着技术的发展, 电子产品内的印刷电路板(PCB, Print Circuit Board ) 的密度及其复杂度越来越高, 工作速度越来越快, 信号完整性、 时序以及电 源完整性的裕度越来越小。 为了保证产品的质量, 往往在产品的设计和开发 阶段就需要对电源时钟以及关键信号进行全面的测试。
对于连有几千甚至上万个网络(Net, 其数目表示了电路板的复杂度)的 电路板, 如果用手工和人眼来完成测试信号的甄别、 探头接触和测试, 不仅 工作量及其浩大, 而且会因为手工操作探头的不可靠接触而 ^ I入测试错误或 者误差, 甚至测试探头会由于手工操作按压力不当而导致损坏。 另一方面, 由于手工测试效率低下, 如果测试所有的关键信号, 在测试时间上往往让人 不可忍受, 故只能在关键信号中选择一部分有代表性的信号进行测试, 这样 容易导致遗漏关键测试。 由于测试数据繁多, 整理测试报告也是一项非常繁 重的工作, 这是因为报告往往无法与 PCB图对应, 因此人们在看测试报告的 时候不得不经常查阅 PCB图和原理图, 由此使得报告的可读性也比较差。
由此可见, 釆用传统的手持探头人工方式的示波器及其波形釆集方法, 已经远远不能适用于高端产品电路板上的信号波形釆集了, 必须针对性地提 供一种能够适用于高端产品全面测试的高可靠性、 高速以及高效的示波器及 其信号波形釆集及显示的方法。
发明内容 本发明所要解决的技术问题是提供一种示波器及其信号波形釆集及显示 的方法及系统, 能够自动控制被测对象待测点的定位、信号波形釆集及显示。
为了解决上述技术问题,本发明提供了一种信号波形釆集及显示的方法, 涉及控制测量单元及自动釆集单元, 该方法包括:
控制测量单元根据被测对象上测试点的选取确定相应的测试命令和测试 参数, 计算各测试点的位置坐标, 并向自动釆集单元下达测试命令和测试参 数;
自动釆集单元根据测试命令和测试参数将釆集探头釆集的各个测试点的 测试信号返回给控制测量单元;
控制测量单元根据自动釆集单元返回的测试信号生成相应的波形数据, 并存储和显示波形数据。
所述控制测量单元根据被测对象上测试点的选取确定相应的测试命令和 测试参数包括: 控制测量单元根据被测对象各测试点信号的种类、 频率及幅 度, 选定相应类型的釆集探头, 并设定各数据通道的垂直和 /或水平以及触发 的测试参数;
所述控制测量单元计算各测试点的位置坐标的步骤包括: 根据检测到的 被测对象的原始位置坐标计算出各测试点位置坐标;
所述控制测量单元向所述自动釆集单元下达测试命令和测试参数的步骤 包括: 向自动釆集单元下达至少包含测试点的位置坐标和选定探头的测试命 令和测试参数;
所述自动釆集单元根据测试命令和测试参数将釆集探头釆集的各个测试 点的测试信号返回给所述控制测量单元的步骤包括: 自动釆集单元根据测试 命令中的测试点的位置坐标将选定探头送达指定位置, 通过形成多坐标运动 轨迹将探头运载到指定位置坐标下与相应的测试点接触, 并将探头釆集的测 试信号返回给控制测量单元;
所述控制测量单元根据所述自动釆集单元返回的测试信号生成相应的波 形数据, 并存储和显示所述波形数据的步骤包括: 控制测量单元通过设定的 一个或多个数据通道接收自动釆集单元返回的一个或多个测试点的测试信 号, 生成相应的波形数据并存储及显示。
所述控制测量单元计算各测试点的位置坐标的步骤还包括: 控制测量单 元通过光学定位检测被测试对象的原始位置坐标;
自动釆集单元形成的多坐标运动轨迹包括空间的直角三坐标或极坐标运 动轨迹, 或者平面的直角坐标或极坐标运动轨迹中的任意一种;
控制测量单元显示波形数据的步骤包括: 根据人机交互命令控制显示相 应通道的波形数据, 和 /或根据所述波形数据实现与被测试对象设计文件的关 联显示。
为了解决上述技术问题, 本发明提供了一种示波器, 包括控制测量单元 和自动釆集单元, 其中:
控制测量单元设置为: 根据被测对象上测试点的选取确定相应的测试命 令和测试参数, 计算测试点的位置坐标, 并向自动釆集单元下达测试命令和 测试参数; 以及根据自动釆集单元返回的测试信号生成相应的波形数据, 并 存储和显示波形数据;
自动釆集单元设置为: 根据测试命令和测试参数将釆集的各测试点的测 试信号返回给控制测量单元。
控制测量单元包括综合控制单元以及信号测量与波形数据生成单元, 自 动釆集单元包括釆集探头伺服单元以及一个或多个釆集探头, 其中:
综合控制单元设置为: 选定被测对象的测试点, 根据被测对象的原始位 置坐标计算所述测试点的位置坐标, 并下传相应的测试命令及其测试参数; 釆集探头伺服单元设置为: 根据相应的测试命令及其测试参数, 将支撑 承载的釆集探头运载到指定的位置坐标下与相应的测试点接触, 并将釆集探 头返回的测试信号传送给信号测量与波形数据生成单元;
釆集探头设置为: 在釆集探头伺服单元的伺服控制下釆集测试点的测试 信号, 并返回给釆集探头伺服单元;
信号测量与波形数据生成单元设置为: 根据相应的测试命令及其测试参 数完成测试配置, 通过一个或多个通道接收釆集探头伺服单元传送的测试点 的测试信号, 并生成相应通道的波形数据。
控制测量单元还包括被测对象定位单元, 其中:
被测对象定位单元设置为: 根据相应的测试命令及其测试参数釆集到被 测对象的原始位置坐标, 并返回给综合控制单元。
综合控制单元还设置为: 根据所述被测对象各测试点信号的种类、 频率 及幅度中的一种或多种属性选定相应类型的釆集探头;
釆集探头伺服单元是设置为以如下方式将支撑承载的所述釆集探头运载 到指定的位置坐标下与相应的测试点接触: 在综合控制单元的控制下, 通过 形成的多坐标运动轨迹将综合控制单元选定的釆集探头运载到位置坐标下, 并保证接触良好; 所述多坐标运动轨迹包括空间的直角三坐标运动轨迹或极 种。
综合控制单元还设置为: 根据被测对象各测试点信号的种类、 频率及幅 度中的一种或多种属性设定信号测量与波形数据生成单元各通道的垂直和 / 或水平以及触发的测试参数; 接收及存储来自信号测量与波形数据生成单元 传送的波形数据;
信号测量与波形数据生成单元还设置为: 将生成的各通道的波形数据传 送给综合控制单元。
控制测量单元还包括人机交互单元, 其中:
人机交互单元设置为: 在综合控制单元的控制下提供釆集探头的种类和 被测对象及其测试点的信息, 并向综合控制单元传递人机交互命令; 在综合 控制单元的控制下显示相应通道的波形数据;
综合控制单元还设置为: 根据人机交互命令控制人机交互单元显示波形 数据; 和 /或根据波形数据实现与被测对象设计文件的关联显示。
为了解决上述技术问题,本发明提供了一种信号波形釆集及显示的系统, 包括计算与控制装置、 信号测量与波形数据生成装置、 釆集探头伺服装置以 及一个或多个釆集探头, 其中:
计算与控制装置设置为: 选定被测对象的测试点并计算测试点的位置坐 标 , 以及下传相应的测试命令及其测试参数;
釆集探头伺服装置设置为: 根据相应的测试命令及其测试参数, 将支撑 承载的釆集探头运载到指定的位置坐标下与相应的测试点接触, 并将釆集探 头返回的测试信号传送给信号测量与波形数据生成装置;
釆集探头设置为: 在釆集探头伺服单元的伺服控制下釆集测试点的测试 信号, 并返回给釆集探头伺服装置;
信号测量与波形数据生成装置设置为: 根据相应的测试命令及其测试参 数完成测试配置, 通过一个或多个通道接收所述釆集探头伺服装置传送的测 试点的测试信号, 并生成波形数据。
还包括被测对象定位装置, 其中:
被测对象定位装置设置为: 根据相应的测试命令及其测试参数釆集到被 测对象的原始位置坐标, 并返回给计算与控制装置;
计算与控制装置是设置为以如下方式计算所述测试点的位置坐标: 根据 被测对象定位装置返回的被测对象的原始位置坐标计算选定的测试点的位置 坐标。
计算与控制装置还设置为: 根据被测对象各测试点信号的种类、 频率及 幅度中的一种或多种属性选定相应类型的釆集探头;
釆集探头伺服装置是设置为以如下方式将支撑承载的所述釆集探头运载 到指定的位置坐标下与相应的测试点接触: 在综合控制单元的控制下, 通过 形成的多坐标运动轨迹将计算与控制装置选定的所述釆集探头运载到所述位 置坐标下, 并通过向该釆集探头施加适当的力保证接触良好; 所述多坐标运 动轨迹包括空间的直角三坐标运动轨迹或极坐标运动轨迹, 或者平面的直角 坐标运动轨迹或极坐标运动轨迹中的任意一种。
计算与控制装置还设置为: 根据所述被测对象各测试点信号的种类、 频 率及幅度中的一种或多种属性设定所述信号测量与波形数据生成单元各通道 的垂直和 /或水平以及触发的测试参数; 以及接收、 存储来自所述信号测量与 波形数据生成装置传送的波形数据;
信号测量与波形数据生成装置还设置为: 将生成的各通道的波形数据传 送给计算与控制装置。 计算与控制装置含有人机交互装置, 其中:
人机交互装置设置为: 提供集探头的种类和所述被测对象及其测试点的 信息, 并传递人机交互命令, 显示相应通道的波形数据;
计算与控制装置还设置为: 根据人机交互命令控制人机交互装置显示波 形数据; 和 /或根据波形数据实现与被测对象设计文件的关联显示。
该系统还包括被测对象固定装置, 所述被测对象固定装置设置为: 在计 算与控制装置的控制下固定或解固定被测对象。
本发明克服了上述传统示波器所存在的问题和不足, 提供了一种示波器 及相应的系统和方法, 通过自动控制一个或多个釆集探头对被测对象测试点 的精准定位和接触, 来自动釆集、 存储和显示测试点的信号波形; 同时, 还 可以将测试结果直接显示在相应的 PCB图上。 本发明尤其适用于高密度复杂 的 PCB的全面测试以及批量一致性测试, 并且能够节省大量的测试人力, 大 幅提高测试效率和测试的精准性及可靠性, 大大缩短硬件的开发周期。 附图概述
图 1为本发明的示波器装置实施例结构示意图;
图 2为本发明的信号波形釆集及显示方法实施例的流程图;
图 3为本发明的信号波形釆集及显示系统实施例的结构示意图。
本发明的较佳实施方式
以下结合附图和优选实施例对本发明的技术方案进行详细地阐述。 以下 例举的实施例仅仅用于说明和解释本发明, 并不构成对本发明技术方案的限 制。
如图 1所示, 是本发明提供的能够自动定位、 釆集及显示测试点信号波 形的示波器装置实施例的结构, 该示波器装置包括控制测量单元和自动釆集 单元, 其中:
控制测量单元, 用于根据被测试对象上测试点的选取确定相应的测试命 令和测试参数; 依据被测试对象的原始位置坐标计算各测试点在被测试对象 上的位置坐标, 并向自动釆集单元下达测试命令和测试参数, 才艮据自动釆集 单元釆集的测试信号生成相应的波形数据, 并存储和显示波形数据;
自动釆集单元, 用于根据控制测量单元下达的测试命令和测试参数将釆 集的各个测试点的测试信号返回给控制测量单元。
控制测量单元还根据生成的波形数据实现与被测试对象设计文件的关联 显示。
在图 1中, 控制测量单元进一步包括综合控制单元、被测对象定位单元、 信号测量与波形数据生成单元, 自动釆集单元进一步包括釆集探头伺服单元 以及一个或多个釆集探头, 其中:
综合控制单元, 用于根据被测对象各测试点信号的种类、 频率及幅度设 定信号测量与波形数据生成单元各通道的垂直和 /或水平以及触发等测试参 数, 分别向被测对象定位单元、 信号测量与波形数据生成单元以及釆集探头 伺服单元下达测试命令并传递测试参数;
综合控制单元根据被测对象定位单元传递的被测对象位置坐标, 计算被 测对象上目标测试点的位置坐标, 并选定相应类型的探头; 根据计算出的测 试点的位置坐标和选定的探头分别向信号测量与波形数据生成单元和釆集探 头伺服单元下达相应的测试命令及其测试参数。
综合控制单元还接收及存储来自信号测量与波形数据生成单元的测试数 据, 并将测试数据记录在相应的被测对象(比如电路板、 电子产品棵机或半 成品等) 的 PCB图上。
被测对象定位单元, 用于根据测试命令及其测试参数釆集被测对象的原 始位置坐标, 并传送给综合控制单元; 被测对象定位单元譬如通过光扫描方式釆集被测对象的原始位置坐标。 信号测量与波形数据生成单元, 用于根据测试指令及其测试参数完成测 试配置, 通过一个或多个通道接收釆集探头伺服单元传递过来的一个或多个 釆集探头探测到的测试点的测试信号, 据此生成波形数据, 同时将生成的各 通道的测试数据传递给综合控制单元;
釆集探头伺服单元, 用于支撑承载一个或多个釆集探头, 在综合控制单 元的控制下形成多坐标运动轨迹, 将釆集探头运载到指定位置坐标的测试点 下与该点接触, 并将釆集探头釆集到的测试点的测试信号传送给信号测量与 波形数据生成单元;
釆集探头伺服单元还向釆集探头施加适当的力以保证探头与测试点的良 好接触。
釆集探头伺服单元形成的多坐标运动轨迹为空间的直角三坐标( X, y, z ) 或极坐标(r, α, β )运动轨迹; 或为平面的直角坐标(X, y )或极坐标(r, α ) 运动轨迹。
一个或多个釆集探头, 用于在釆集探头伺服单元的多坐标运动轨迹控制 支配下, 实现与被测对象(PCB ) 测试点的精准定位和接触, 并将对测试点 釆集的测试信号输出给釆集探头伺服单元。
上述示波器装置还包括人机交互单元, 用于在综合控制单元的控制下提 供釆集探头种类和被测对象及其测试点信息, 向综合控制单元传递人机交互 命令; 综合控制单元根据人机交互命令控制人机交互单元显示相应通道的波 形。
本发明的一个或多个釆集探头, 可以适应不同频率、 不同幅度和不同接 地条件的各类测试点信号的需要, 各个釆集探头在到达指定的坐标后实现与 测试点的信号接触后, 可以依次进行测试, 也可以并行进行测试, 以提高测 试效率。
如图 2所示, 是运用本发明提供的示波器进行信号波形釆集及显示的方 法实施例流程, 包括如下步骤: 110: 控制测量单元选取被测试对象上各测试点, 并确定相应的测试命令 及测试参数;
控制测量单元首先将被测试对象与釆集探头伺服装置各自的位置相对固 定。
被测试对象比如印刷电路板(PCB ) 、 电子产品棵机或半成品等。
120:根据确定的被测试对象的初始位置坐标计算获取测试点在被测试对 象上的位置坐标, 并向自动釆集单元下达含有测试点位置坐标及选定探头等 其它测试参数的测试命令;
控制测量单元检测被测试对象的初始位置坐标, 选取被测试对象上的测 试点; 获取测试点的信号参数, 由此设定波形显示各通道的垂直或水平以及 触发等测试参数, 并选定相应类型的探头。
在此, 检测被测试对象的初始位置坐标是通过被测对象定位装置的光学 定位检测被测试对象的初始位置坐标。 测试点的信号参数包括信号种类、 频 率及幅度参数中的一种或多种,是通过被测试对象的设计文件(比如 PCB图 ) 或者通过人机界面获取。
130: 自动釆集单元根据该测试命令中的测试点位置坐标将选定探头送达 指定位置, 并将探头釆集的测试信号返回给控制测量单元;
自动釆集单元在控制测量单元的控制下形成多坐标运动轨迹将选定探头 送达指定位置, 譬如为空间的直角三坐标(X, y, z )或极坐标(r, α, β )运动 轨迹, 或者为平面的直角坐标(χ, y )或极坐标(r, α )运动轨迹。 自动釆集 单元使得探头与测试点良好地电气接触。
140:控制测量单元根据自动釆集单元返回的测试信号生成相应的波形数 据并存储, 同时显示在相应的数据通道上;
150:控制测量单元根据生成的波形数据实现与被测试对象设计文件的关 联显示。
控制测量单元譬如将接收的波形数据的索引记录在相应的被测试对象的 PCB图上。
如果还需要进行下一测试点的信号釆集, 可选定下一测试点, 并重复上 述步骤 120 150即可。
上述方法还包括步骤: 由控制测量单元的人机交互单元提供釆集探头种 类和被测对象及其测试点信息, 并向控制测量单元传递人机交互命令; 控制 测量单元根据人机交互命令控制人机交互单元显示相应通道的波形。
如图 3所示, 是本发明提供的能够自动定位、 釆集及显示测试点信号波 形的系统实施例的结构, 该系统包括: 计算与控制装置、 信号测量与波形数 据生成装置、 被测对象定位装置、 釆集探头伺服装置以及一个或多个釆集探 头, 其中:
计算与控制装置, 用于根据被测对象各测试点信号的种类、 频率及幅度 设定信号测量与波形数据生成装置各通道的垂直或水平以及触发等测试参 数, 分别向被测对象定位装置、 信号测量与波形数据生成装置以及釆集探头 伺服装置下达测试命令并传递测试参数;
计算与控制装置根据被测对象定位单元传递的被测对象的原始位置坐 标, 通过测试点定位计算装置选取被测对象的测试点并计算其位置坐标, 并 选定相应类型的探头; 根据计算出的测试点的位置坐标和选定的探头分别向 信号测量与波形数据生成装置和釆集探头伺服装置下达相应的测试命令及其 测试参数。
计算与控制装置还通过测试结果存储与记录装置接收及存储来自信号测 量与波形数据生成装置的测试数据,并将测试数据记录在相应的被测对象(比 如电路板、 电子产品棵机或半成品等) 的 PCB图上。
被测对象定位装置, 用于根据测试命令及其测试参数将釆集到的被测对 象的原始位置坐标传递给计算与控制装置;
被测对象定位装置譬如通过光扫描方式釆集被测对象的原始位置坐标。 信号测量与波形数据生成装置, 用于根据测试指令及其测试参数完成测 试配置, 通过一个或多个通道接收及显示釆集探头伺服装置传递过来的一个 或多个釆集探头探测到的测试点的测试信号, 生成波形数据, 同时将生成的 各通道的测试数据传递给计算与控制装置。 釆集探头伺服装置, 用于支撑承载一个或多个釆集探头, 根据测试命令 及其测试参数形成多坐标运动轨迹, 将釆集探头运载到指定位置坐标的测试 点下与该点接触, 并将釆集探头釆集到的测试点的测试信号传送给信号测量 与波形数据生成装置;
釆集探头伺服装置还向釆集探头施加适当的力以保证探头与测试点的良 好接触。
釆集探头伺服单元通过一伺服控制单元形成多坐标运动轨迹, 譬如为空 间的直角三坐标(X, y, z )或极坐标(r, α, β )运动轨迹, 或者为平面的直角 坐标(X, y )或极坐标 ( r, α )运动轨迹。
一个或多个釆集探头, 用于在釆集探头伺服装置的多坐标运动轨迹控制 支配下, 实现与被测对象测试点的精准定位和接触, 并将对测试点釆集的测 试信号输出给釆集探头伺服装置。
上述系统通过计算与控制装置内的人机交互装置 (图中未示, 譬如输入 键盘、 输出显示屏等)提供釆集探头种类和被测对象及其测试点信息, 同时 传递人机交互命令; 计算与控制装置根据人机交互命令控制人机交互装置显 示相应通道的波形。
图 3所示的系统还包括被测对象固定装置, 用于在计算与控制装置的控 制下将被测对象进行固定或解固定, 譬如通过钳形夹夹紧或解夹被测对象, 或通过按压锁锁紧或解锁被测对象, 等等。
在本实施例里,计算与控制装置可以在被测对象的 PCB图等设计文件上 预先批量选定各个测试点, 并通过程序控制釆集探头伺服装置将釆集探头自 动精准定位到测试点, 输入并存储信号测量与波形数据生成装置生成的测试 点的波形数据, 并直接将测试结果记录在 PCB图上。
本发明替代了传统示波器靠人工手持探头实现被测对象测试点信号波形 的釆集和显示方法,使被测信号能够以在 PCB图等设计文件上预先批量选定 的方式, 通过程序控制的多坐标釆集探头自动将釆集到的信号波形输入及存 储到示波器, 并将测试结果直接记录在 PCB图上。 因此, 本发明尤其适用于 高端产品的高密度及复杂的 PCB的全面测试以及批量一致性测试, 并且能够 节省大量的测试人力, 大幅提高测试效率和测试的精准性及可靠性, 从而有 效地缩短了硬件的开发周期。
尽管为示例目的, 已经公开了本发明的优选实施例, 本领域的技术人员 将意识到各种改进、 增加和取代也是可能的, 因此, 本发明的范围应当不限 于上述实施例。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 所述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。
工业实用性
本发明克服了上述传统示波器所存在的问题和不足, 提供了一种示波器 及相应的系统和方法, 通过自动控制一个或多个釆集探头对被测对象测试点 的精准定位和接触, 来自动釆集、 存储和显示测试点的信号波形; 同时, 还 可以将测试结果直接显示在相应的 PCB图上。 本发明尤其适用于高密度复杂 的 PCB的全面测试以及批量一致性测试, 并且能够节省大量的测试人力, 大 幅提高测试效率和测试的精准性及可靠性, 大大缩短硬件的开发周期。

Claims

权 利 要 求 书
1、 一种信号波形釆集及显示的方法,涉及控制测量单元及自动釆集单 元, 该方法包括:
所述控制测量单元根据被测对象上测试点的选取确定相应的测试命令和 测试参数, 计算各测试点的位置坐标, 并向所述自动釆集单元下达测试命令 和测试参数;
所述自动釆集单元根据测试命令和测试参数将釆集探头釆集的各个测试 点的测试信号返回给所述控制测量单元; 以及
所述控制测量单元根据所述自动釆集单元返回的测试信号生成相应的波 形数据, 并存储和显示所述波形数据。
2、 按照权利要求 1所述的方法, 其中,
所述控制测量单元根据被测对象上测试点的选取确定相应的测试命令和 测试参数包括: 所述控制测量单元根据被测对象各测试点信号的种类、 频率 及幅度, 选定相应类型的釆集探头, 并设定各数据通道的垂直和 /或水平以及 触发的测试参数;
所述控制测量单元计算各测试点的位置坐标的步骤包括: 根据检测到的 所述被测对象的原始位置坐标计算出各测试点位置坐标;
所述控制测量单元向所述自动釆集单元下达测试命令和测试参数的步骤 包括: 向自动釆集单元下达至少包含测试点的位置坐标和选定探头的测试命 令和测试参数;
所述自动釆集单元根据测试命令和测试参数将釆集探头釆集的各个测试 点的测试信号返回给所述控制测量单元的步骤包括: 所述自动釆集单元根据 所述测试命令中的测试点的位置坐标将选定探头送达指定位置, 通过形成多 坐标运动轨迹将所述探头运载到指定位置坐标下与相应的测试点接触, 并将 所述探头釆集的测试信号返回给所述控制测量单元;
所述控制测量单元根据所述自动釆集单元返回的测试信号生成相应的波 形数据, 并存储和显示所述波形数据的步骤包括: 所述控制测量单元通过设 定的一个或多个数据通道接收所述自动釆集单元返回的一个或多个所述测试 点的测试信号, 生成相应的波形数据并存储及显示。
3、 按照权利要求 2所述的方法, 其中,
所述控制测量单元计算各测试点的位置坐标的步骤还包括: 所述控制测 量单元通过光学定位检测所述被测试对象的原始位置坐标;
所述自动釆集单元形成的所述多坐标运动轨迹包括空间的直角三坐标或 极坐标运动轨迹, 或者平面的直角坐标或极坐标运动轨迹中的任意一种; 所述控制测量单元显示波形数据的步骤包括: 根据人机交互命令控制显 示相应通道的波形数据, 和 /或根据所述波形数据实现与被测试对象设计文件 的关联显示。
4、 一种示波器, 其包括控制测量单元和自动釆集单元, 其中: 所述控制测量单元设置为: 根据被测对象上测试点的选取确定相应的测 试命令和测试参数, 计算所述测试点的位置坐标, 并向所述自动釆集单元下 达测试命令和测试参数; 以及根据所述自动釆集单元返回的测试信号生成相 应的波形数据, 并存储和显示波形数据;
所述自动釆集单元设置为: 根据所述测试命令和测试参数将釆集的各测 试点的所述测试信号返回给所述控制测量单元。
5、 按照权利要求 4所述的示波器,其中, 所述控制测量单元包括综合 控制单元以及信号测量与波形数据生成单元, 所述自动釆集单元包括釆集探 头伺服单元以及一个或多个釆集探头,
所述综合控制单元设置为: 选定被测对象的测试点, 根据所述被测对象 的原始位置坐标计算所述测试点的位置坐标, 并下传相应的测试命令及其测 试参数;
所述釆集探头伺服单元设置为: 根据相应的测试命令及其测试参数, 将 支撑承载的所述釆集探头运载到指定的位置坐标下与相应的测试点接触, 并 将所述釆集探头返回的测试信号传送给所述信号测量与波形数据生成单元; 所述釆集探头设置为: 在所述釆集探头伺服单元的伺服控制下釆集所述 测试点的测试信号, 并返回给所述釆集探头伺服单元;
所述信号测量与波形数据生成单元设置为: 根据相应的测试命令及其测 试参数完成测试配置, 通过一个或多个通道接收所述釆集探头伺服单元传送 的所述测试点的测试信号, 并生成相应通道的波形数据。
6、 按照权利要求 5所述的示波器,其中, 所述控制测量单元还包括被 测对象定位单元,
所述被测对象定位单元设置为: 根据相应的测试命令及其测试参数釆集 到所述被测对象的原始位置坐标, 并返回给所述综合控制单元。
7、 按照权利要求 5所述的示波器, 其中,
所述综合控制单元还设置为: 根据所述被测对象各测试点信号的种类、 频率及幅度中的一种或多种属性选定相应类型的釆集探头;
所述釆集探头伺服单元是设置为以如下方式将支撑承载的所述釆集探头 运载到指定的位置坐标下与相应的测试点接触: 在所述综合控制单元的控制 下, 通过形成的多坐标运动轨迹将所述综合控制单元选定的所述釆集探头运 载到所述位置坐标下, 并保证接触良好; 所述多坐标运动轨迹包括空间的直 角三坐标运动轨迹或极坐标运动轨迹, 或者平面的直角坐标运动轨迹或极坐 标运动轨迹中的任意一种。
8、 按照权利要求 5至 7任一项所述的示波器, 其中,
所述综合控制单元还设置为: 根据所述被测对象各测试点信号的种类、 频率及幅度中的一种或多种属性设定所述信号测量与波形数据生成单元各通 道的垂直和 /或水平以及触发的测试参数; 接收及存储来自所述信号测量与波 形数据生成单元传送的波形数据;
所述信号测量与波形数据生成单元还设置为: 将生成的所述各通道的波 形数据传送给所述综合控制单元。
9、 按照权利要求 5至 7任一项所述的示波器,其中, 所述控制测量单 元还包括人机交互单元,
所述人机交互单元设置为: 在所述综合控制单元的控制下提供所述釆集 探头的种类和被测对象及其测试点的信息, 并向所述综合控制单元传递人机 交互命令; 在所述综合控制单元的控制下显示相应通道的波形数据;
所述综合控制单元还设置为: 根据所述人机交互命令控制所述人机交互 单元显示所述波形数据; 和 /或根据所述波形数据实现与所述被测对象设计文 件的关联显示。
10、 一种信号波形釆集及显示的系统,其包括计算与控制装置、信号测 量与波形数据生成装置、 釆集探头伺服装置以及一个或多个釆集探头, 其中: 所述计算与控制装置设置为: 选定被测对象的测试点并计算所述测试点 的位置坐标, 以及下传相应的测试命令及其测试参数;
所述釆集探头伺服装置设置为: 根据相应的测试命令及其测试参数, 将 支撑承载的所述釆集探头运载到指定的位置坐标下与相应的测试点接触, 并 将所述釆集探头返回的测试信号传送给所述信号测量与波形数据生成装置; 所述釆集探头设置为: 在所述釆集探头伺服单元的伺服控制下釆集所述 测试点的测试信号, 并返回给所述釆集探头伺服装置;
所述信号测量与波形数据生成装置设置为: 根据相应的测试命令及其测 试参数完成测试配置, 通过一个或多个通道接收所述釆集探头伺服装置传送 的所述测试点的测试信号, 并生成波形数据。
11、 按照权利要求 10所述的系统, 该系统还包括被测对象定位装置, 其中:
所述被测对象定位装置设置为: 根据相应的测试命令及其测试参数釆集 到所述被测对象的原始位置坐标, 并返回给所述计算与控制装置;
所述计算与控制装置是设置为以如下方式计算所述测试点的位置坐标: 根据所述被测对象定位装置返回的所述被测对象的原始位置坐标计算选定的 所述测试点的位置坐标。
12、 按照权利要求 10所述的系统, 其中,
所述计算与控制装置还设置为:根据所述被测对象各测试点信号的种类、 频率及幅度中的一种或多种属性选定相应类型的釆集探头;
所述釆集探头伺服装置是设置为以如下方式将支撑承载的所述釆集探头 运载到指定的位置坐标下与相应的测试点接触: 在所述综合控制单元的控制 下, 通过形成的多坐标运动轨迹将所述计算与控制装置选定的所述釆集探头 运载到所述位置坐标下, 并通过向该釆集探头施加适当的力保证接触良好; 所述多坐标运动轨迹包括空间的直角三坐标运动轨迹或极坐标运动轨迹 , 或
13、 按照权利要求 10至 12任一项所述的系统, 其中,
所述计算与控制装置还设置为:根据所述被测对象各测试点信号的种类、 频率及幅度中的一种或多种属性设定所述信号测量与波形数据生成单元各通 道的垂直和 /或水平以及触发的测试参数; 以及接收、 存储来自所述信号测量 与波形数据生成装置传送的波形数据;
所述信号测量与波形数据生成装置还设置为: 将生成的所述各通道的波 形数据传送给所述计算与控制装置。
14、 按照权利要求 10至 12任一项所述的系统,其中所述计算与控制装 置含有人机交互装置, 其中: 所述人机交互装置设置为: 提供所述釆集探头的种类和所述被测对象及 其测试点的信息, 并传递人机交互命令, 显示相应通道的波形数据;
所述计算与控制装置还设置为: 根据所述人机交互命令控制所述人机交 互装置显示所述波形数据; 和 /或根据所述波形数据实现与所述被测对象设计 文件的关联显示。
15、 按照权利要求 10至 12任一项所述的系统,该系统还包括被测对象 固定装置, 所述被测对象固定装置设置为: 在所述计算与控制装置的控制下 固定或解固定所述被测对象。
PCT/CN2010/077923 2010-02-09 2010-10-20 一种示波器及其信号波形采集及显示的方法及系统 WO2011097895A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/499,938 US9128126B2 (en) 2010-02-09 2010-10-20 Oscilloscope and method, system thereof for collecting and displaying signal waveform
JP2012532448A JP5395272B2 (ja) 2010-02-09 2010-10-20 オシロスコープ及びその信号波形収集と表示の方法及びシステム
EP10845565.0A EP2472271A4 (en) 2010-02-09 2010-10-20 Oscilloscope and method, system thereof for collecting and displaying signal waveform

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010125723.6 2010-02-09
CN2010101257236A CN101788579B (zh) 2010-02-09 2010-02-09 一种示波器及其信号波形采集及显示的方法及系统

Publications (1)

Publication Number Publication Date
WO2011097895A1 true WO2011097895A1 (zh) 2011-08-18

Family

ID=42531867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077923 WO2011097895A1 (zh) 2010-02-09 2010-10-20 一种示波器及其信号波形采集及显示的方法及系统

Country Status (5)

Country Link
US (1) US9128126B2 (zh)
EP (1) EP2472271A4 (zh)
JP (1) JP5395272B2 (zh)
CN (1) CN101788579B (zh)
WO (1) WO2011097895A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114740401A (zh) * 2022-03-24 2022-07-12 深圳市三一联光智能设备股份有限公司 一种新型的测试方法及系统

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788579B (zh) 2010-02-09 2013-06-05 中兴通讯股份有限公司 一种示波器及其信号波形采集及显示的方法及系统
CN102565478A (zh) * 2010-12-30 2012-07-11 鸿富锦精密工业(深圳)有限公司 示波器数据处理系统及方法
CN102175902B (zh) * 2011-01-04 2013-11-06 苏州瀚瑞微电子有限公司 示波器处理数字波形的系统及方法
WO2013051204A1 (ja) * 2011-10-03 2013-04-11 パナソニック株式会社 動作確認支援装置および動作確認支援方法
CN103176008B (zh) * 2011-12-22 2017-08-25 北京普源精电科技有限公司 一种具有可控测量功能的示波器及其实现方法
CN104049118B (zh) * 2013-03-14 2017-03-01 固纬电子实业股份有限公司 以趋势图显示波形测量参数的示波器
CN104251966A (zh) * 2013-06-25 2014-12-31 鸿富锦精密工业(深圳)有限公司 自动化测量系统及方法
CN104345260A (zh) * 2013-08-01 2015-02-11 鸿富锦精密工业(深圳)有限公司 信号完整性自动化测试系统及方法
CN104680963A (zh) * 2015-03-26 2015-06-03 京东方科技集团股份有限公司 一种显示面板goa电路的检测装置和检测方法
CN107038395B (zh) * 2017-04-13 2023-04-28 杨军 一种地铁专用读卡器综合测试台及测试方法
CN108303577B (zh) * 2018-01-03 2020-07-24 威创集团股份有限公司 示波器测试方法、装置以及示波器
CN109195172A (zh) * 2018-07-27 2019-01-11 闻泰通讯股份有限公司 射频测试方法、装置、测试设备及存储介质
CN109581017B (zh) * 2018-11-28 2021-06-29 北京宏动科技有限公司 多功能数字式瞬态响应测试仪
CN110850269A (zh) * 2019-10-11 2020-02-28 深圳市元征科技股份有限公司 测试系统、测试方法、控制设备和存储介质
CN110850136A (zh) * 2019-11-12 2020-02-28 深圳宝龙达信创科技股份有限公司 示波器的测试方法、终端设备及计算机可读存储介质
CN111476986B (zh) * 2020-03-10 2021-05-25 上海卫星工程研究所 遥控指令脉冲波形测试方法
CN113777464A (zh) * 2020-06-10 2021-12-10 深南电路股份有限公司 一种电路板功能测试装置、系统及方法
CN116522878B (zh) * 2023-07-04 2023-10-24 成都领目科技有限公司 示波器测试数据保持一致性导入报告的方法、装置及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1614676A (zh) * 2004-11-25 2005-05-11 上海交通大学 Co2短路过渡过程参数波形的动态显示系统
JP2007199019A (ja) * 2006-01-30 2007-08-09 Hioki Ee Corp 表示制御装置
US20090024341A1 (en) * 2007-07-17 2009-01-22 Hon Hai Precision Industry Co., Ltd. System and method for analyzing a signal displaying a non-monotonic transition
CN101413968A (zh) * 2008-09-30 2009-04-22 中国电子科技集团公司第四十一研究所 一种数字示波器及其操纵显示波形的方法
CN101788579A (zh) * 2010-02-09 2010-07-28 中兴通讯股份有限公司 一种示波器及其信号波形采集及显示的方法及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212369A (ja) * 1988-02-19 1989-08-25 Nec Home Electron Ltd 信号波形検査方法
JPH07113658B2 (ja) 1990-11-19 1995-12-06 グラフテック株式会社 回路試験装置
CN1074539A (zh) * 1992-12-29 1993-07-21 马越 多通道数字式示波卡
JPH0850163A (ja) * 1994-08-05 1996-02-20 Mitsubishi Electric Corp プロービング装置
US5550483A (en) * 1994-11-18 1996-08-27 International Business Machines High speed test probe positioning system
US5994909A (en) * 1997-08-25 1999-11-30 Lucas; Brian K. Robotic twin probe for measurement on printed circuit boards and electrical and electronic assemblies
US6975956B2 (en) * 2002-09-19 2005-12-13 Rambus Inc. Multiple sweep point testing of circuit devices
US20060047449A1 (en) * 2004-08-27 2006-03-02 Broadcom Corporation Graphical test development tool for use with automated test equipment
JP2007121183A (ja) * 2005-10-31 2007-05-17 Hioki Ee Corp 回路基板検査装置
US7681091B2 (en) * 2006-07-14 2010-03-16 Dft Microsystems, Inc. Signal integrity measurement systems and methods using a predominantly digital time-base generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1614676A (zh) * 2004-11-25 2005-05-11 上海交通大学 Co2短路过渡过程参数波形的动态显示系统
JP2007199019A (ja) * 2006-01-30 2007-08-09 Hioki Ee Corp 表示制御装置
US20090024341A1 (en) * 2007-07-17 2009-01-22 Hon Hai Precision Industry Co., Ltd. System and method for analyzing a signal displaying a non-monotonic transition
CN101413968A (zh) * 2008-09-30 2009-04-22 中国电子科技集团公司第四十一研究所 一种数字示波器及其操纵显示波形的方法
CN101788579A (zh) * 2010-02-09 2010-07-28 中兴通讯股份有限公司 一种示波器及其信号波形采集及显示的方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114740401A (zh) * 2022-03-24 2022-07-12 深圳市三一联光智能设备股份有限公司 一种新型的测试方法及系统

Also Published As

Publication number Publication date
CN101788579A (zh) 2010-07-28
JP2013506853A (ja) 2013-02-28
US9128126B2 (en) 2015-09-08
JP5395272B2 (ja) 2014-01-22
EP2472271A1 (en) 2012-07-04
CN101788579B (zh) 2013-06-05
US20120203500A1 (en) 2012-08-09
EP2472271A4 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
WO2011097895A1 (zh) 一种示波器及其信号波形采集及显示的方法及系统
US11221349B2 (en) Robot-assisted hardware testing
CN103822970B (zh) 一种便携式电阻点焊全自动超声波检测仪及检测方法
CN101876674B (zh) 特性阻抗测试系统及方法
CN102621481B (zh) 一种电路板故障自动诊断系统及自动诊断方法
CN101900787A (zh) 电路板测试系统及方法
CN110187299B (zh) 一种航空保障装备电学参数通用校准系统
CN101221210A (zh) 一种成品线路板自动测试校正系统及其自动测试校正方法
TW201500747A (zh) 自動化測量系統及方法
CN106556811B (zh) 一种高精度磁测试方法
TWI416141B (zh) 電路板測試系統及方法
CN105699788A (zh) 一种供电时序的测量方法、示波器和系统
CN203178431U (zh) 一种电路板全自动测试系统
CN103995202A (zh) 一种自动信号测试方法、装置及系统
CN113945743B (zh) 脉冲电流注入实验的多通道测试自动化管理系统及方法
CN104297664A (zh) 主板时序测量装置及方法
JPS61262671A (ja) フアンクシヨンテスト方法とフアンクシヨンテスタ
CN108986608A (zh) 电子电路实验自动指导系统
CN103983935A (zh) 一种指示仪表检测系统及方法
CN116506007A (zh) 光模块固件测试系统及方法
TWI412754B (zh) 特性阻抗測試系統及方法
CN201199265Y (zh) 电压监测仪全自动检定装置
CN111856163B (zh) 一种非接触式单杆异步核相方法
CN104346982B (zh) 可靠性试验教学装置
CN106770416A (zh) 一种基于LabVIEW的129Xe核子弛豫时间测量系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10845565

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010845565

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13499938

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012532448

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE