WO2011096756A2 - 비정상적 세포 증식 억제용 약제학적 조성물 - Google Patents

비정상적 세포 증식 억제용 약제학적 조성물 Download PDF

Info

Publication number
WO2011096756A2
WO2011096756A2 PCT/KR2011/000768 KR2011000768W WO2011096756A2 WO 2011096756 A2 WO2011096756 A2 WO 2011096756A2 KR 2011000768 W KR2011000768 W KR 2011000768W WO 2011096756 A2 WO2011096756 A2 WO 2011096756A2
Authority
WO
WIPO (PCT)
Prior art keywords
hsp60
cytoplasmic
protein
ikk
cancer
Prior art date
Application number
PCT/KR2011/000768
Other languages
English (en)
French (fr)
Other versions
WO2011096756A9 (ko
WO2011096756A3 (ko
Inventor
강상원
이수영
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Priority to US13/577,231 priority Critical patent/US9102942B2/en
Publication of WO2011096756A2 publication Critical patent/WO2011096756A2/ko
Publication of WO2011096756A3 publication Critical patent/WO2011096756A3/ko
Publication of WO2011096756A9 publication Critical patent/WO2011096756A9/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1135Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense

Definitions

  • the present invention relates to a pharmaceutical composition for preventing or treating abnormal cell proliferation-related diseases comprising an inhibitor of cytoplasmic Hsp60, and to a method and kit for screening a therapeutic agent for abnormal cell proliferation-related diseases using cytoplasmic Hsp60.
  • NF- ⁇ B nuclear factor- ⁇ B
  • NF- ⁇ B-dependent survival genes include anti-apoptotic genes such as c-IAPs and c-FLIP, and mitochondrial protective genes such as manganese-superoxide dismutase (MnSOD) and Bcl-2 family genes. Include.
  • the central kinase in the NF- ⁇ B activation pathway is the kinase of the ⁇ B inhibitor (I ⁇ B kinase, IKK), which induces prodeosomal degradation by phosphorylating the serine residues at the amino terminus of the I ⁇ B protein, leading to ubiquitination.
  • IKK I ⁇ B kinase
  • kinases are known to be involved in phosphorylation activation: NF- ⁇ B-induced kinase (NIK), mitogen-activated protein kinase / ERK kinase kinase 1 (MEKK1), MEKK2 / 3, hematopoietic progenitor kinase-1 ( HPK1), MLK 3 (Mixed-lineage kinase 3), TAK1 (TGF- ⁇ activated kinase 1).
  • NIK NF- ⁇ B-induced kinase
  • MEKK1 mitogen-activated protein kinase / ERK kinase kinase 1
  • HPK1 mitogen-activated protein kinase / ERK kinase kinase 1
  • HPK1 hematopoietic progenitor kinase-1
  • MLK 3 Mated-lineage kinase 3
  • TAK1 T
  • IKK ⁇ or NEMO
  • RIP 1 receptor-interaction protein 1
  • Hsp27 is known to interact with TNF- ⁇ -dependently with IKK ⁇ (Park KJ et al., J Biol Chem 278: 35272-35278 (2003)). Hsp70 interacts with IKK ⁇ but inhibits IKK activation (Ran R et al., Genes Dev 18: 1466-1481 (2004)).
  • molecular chaperones such as heat shock protein 90 (Hsp90), Hsp60, heat shock 70 kDa protein 9 (HSPA9 / mortalin) are found at high levels in the mitochondria of cancer cells and the "mytochondrial-targeting" of the molecular chaperons "It has been known that used suppressors are used to treat diseases associated with unwanted cell proliferation [WO09 / 036092].
  • the present inventors made intensive studies to understand the mechanism of activation of the NF- ⁇ B pathway. As a result, the present inventors have released Hsp60, which acts as a heat shock protein in mitochondria, to the cytoplasm, which directly interacts with IKK ⁇ / ⁇ independently of chaperone activity to promote phosphorylation-dependent activation of kinases, thereby increasing It has been found that surviving genes derived through transcriptional activity of NF- ⁇ B reduced the level of reactive oxygen species (ROS) in the cell, thereby increasing cell survival against apoptosis-induced stress. Accordingly, the present invention has been completed by inhibiting the expression and / or activity of cytoplasmic Hsp60 to treat abnormal cell proliferation-related diseases.
  • ROS reactive oxygen species
  • An object of the present invention to provide a pharmaceutical composition for preventing or treating diseases related to abnormal cell proliferation.
  • Another object of the present invention is to provide a method and kit for screening a therapeutic agent for abnormal cell proliferation-related diseases.
  • the abnormal cell proliferation related disease may be cancer, inflammatory disease or dysplastic vascular disease.
  • the present invention relates to a pharmaceutical composition for treating abnormal cell proliferation-related diseases comprising an inhibitor of cytoplasmic Hsp60, and a screening method and kit using the same.
  • cytoplasmic Hsp60 interacts with the IKK complex directly to regulate IKK activation, through which the NF- ⁇ B pathway is activated to regulate cell survival.
  • IKK activation through which the NF- ⁇ B pathway is activated to regulate cell survival.
  • 1 to 6 show the results of identifying Hsp60 in the IKK complex.
  • 1 A silver-dyed polyacrylamide gel is shown that separates the affinity-purified IKK complex.
  • 2 MS / MS spectrum for [M + 2H] 2+ ions of peptides derived from the protein band corresponding to Hsp60.
  • 3 Results of immunoblot (IB) analysis of IKK subunits and Hsp60 in affinity-purified IKK complexes.
  • IKK complexes were immunoprecipitated (IP) from HeLa cell lysates (500 ⁇ g total protein) using IKK ⁇ , IKK ⁇ and IKK ⁇ -specific antibodies.
  • IKK ⁇ / ⁇ / ⁇ subunits, Hsp60 and Hsp90 were immunoblotted.
  • WCL means total cell lysate.
  • 5 TNF- ⁇ -dependent interaction of Hsp60 and IKK complex.
  • 6 Results of co-immunoprecipitation of Hsp60 and IKK complex in cytoplasmic fraction.
  • the top panel is the result of immunoblot of supernatant (PNS), cytoplasm (Cyto) and mitochondrial (Mito) fractions from which nuclei were removed from HeLa cells. COX4 and tubulin were used as mitochondrial and cytoplasmic markers, respectively.
  • HeLa cells were treated with primary antibody untreated ( A ), anti-Hsp60 ( B ) anti-IKK ⁇ ( C ), anti-IKK ⁇ ( D ), anti-Hsp60 / IKK ⁇ ( E ) and anti-Hsp60 / IKK ⁇ ( F ) antibodies After immunization with these, they were labeled with the corresponding secondary antibodies conjugated with 20 nm or 40 nm gold particles. Labels were identified using an immuno-gold electron microscope. Nuclei and mitochondria (M) are shown. Arrows indicate the direct attachment of Hsp60- and IKK-labeled gold particles. No immunoreactive signal was seen in sample A without primary antibody treatment. The experiment was repeated twice with the same results and representative results are presented.
  • Hsp60 interacts directly with the IKK complex. 8 .
  • the results show that they bind directly to Hsp60 and IKK subunits.
  • Hsp60c HA tag
  • each IKK subunit protein Flag tag
  • 9 Results show that Hsp60 binds in vitro with IKK ⁇ and IKK ⁇ .
  • GST-fused Hsp60 protein bound to glutathione Sepharose beads was reacted with Sf9 insect cell lysate expressing His 6 -tagged IKK protein.
  • Hsp60 and IKK proteins were detected in immunoblotting for GST and HA tags, respectively.
  • 10 It is a schematic diagram showing the structure of the deletion mutations of Hsp60.
  • 13 to 17 show the results of investigating the action of Hsp60-specific antisense oligodeoxynucleotides (AS-ODN).
  • 14 . Results show the expression of Hsp60 in ODN untreated (Mock) or ODN-transfected HeLa cells.
  • 15 . TNF- ⁇ -induced MAP kinase activation in HeLa cells transfected with ODN untreated (Mock) or ODNs. The degree of activation was analyzed using phospho-specific antibodies. Phosphor blots were reprobed with whole protein antibodies to confirm equal loadings. 16 .
  • Results show the activation of various transcription factors in ODN untreated (Mock) or ODN-transfected HeLa cells.
  • AP-1 and NF-AT transcriptional activation was induced by epidermal growth factor (EGF, 100 ng / ml).
  • CRE transcriptional activation was induced by forskolin (1 ⁇ M).
  • 17 TNF- ⁇ -induced NF- ⁇ B transcriptional activation in 293T and A549 cells transfected with ODN untreated (Mock) or ODNs.
  • the increased luciferase activity was measured using the increased luciferase assay kit (Promega) and normalized to ⁇ -galactosidase activity. Data is the average of four independent experiments ⁇ indicates the standard deviation (in FIG. 17, * P ⁇ 0.001 and ** P ⁇ 0.05 with respect to the design the S-ODN- transfected cell stimulation).
  • FIG. 18-23 show that loss of cytoplasmic Hsp60 in response to TNF- ⁇ decreases IKK / NF- ⁇ B activation.
  • Figure 18 Removal of cytoplasmic Hsp60 by antisense ODNs is shown. Cytoplasmic and mitochondrial fractions prepared from ODN untreated (Mock) or ODN-treated HeLa cells were immunoblotted: S, sense ODN; AS-1 and AS-2, antisense ODNs. The mitochondrial fraction was loaded at 1/5 dose of the corresponding cytoplasmic fraction. In particular, to monitor nonspecific mitochondrial destruction, the antioxidant enzyme Prx III present in the mitochondrial matrix was used as a mitochondrial marker.
  • Figure 19 the antioxidant enzyme Prx III present in the mitochondrial matrix was used as a mitochondrial marker.
  • Hsp60c protein (HA tag) over-expressed after inhibition of protein synthesis with cyclohexamide was measured. The intensity of the HA bands was measured and normalized to the amount of IKK ⁇ bands. The data in the graph were applied to the SigmaPlot 8.0 software with the mean ⁇ standard deviation of two independent experiments.
  • Figure 20 Results show proteasome-dependent turnover of cytoplasmic Hsp60c protein. Prior to cyclohexamide treatment, HeLa cells were either pretreated or untreated with MG132 (5 ⁇ M) for 30 minutes.
  • Figure 21 Results show TNF- ⁇ -induced IKK and JNK1 activation in ODN untreated (Mock) or ODN-transfected cells.
  • KA In vitro kinase activity
  • Relative luciferase activity was normalized to ⁇ -galactosidase activity and data represent mean ⁇ standard deviation of four independent experiments (* P ⁇ 0.01, ** for stimulated S-ODN-transfected cells). P ⁇ 0.005).
  • Hsp60-specific antibodies block IKK / NF- ⁇ B activation.
  • 24 Fluorescence photograph showing Hsp60-neutralizing antibody (Hsp60N) migrated into the cytoplasm of HeLa cells. Mitotracker red (Molecular Probes, USA) and DAPI represent mitochondria and nuclei, respectively.
  • 25 The delivered Hsp60N antibody binds to endogenous Hsp60. After antibody transfection, HeLa cell lysates were immunoprecipitated with protein-A Sepharose beads. Precipitated proteins were immunoblotted against Hsp60. 26 .
  • IKK and JNK1 activation was examined in response to TNF- ⁇ in control IgG or Hsp60N antibody-transfected HeLa cells.
  • In vitro kinase activity (KA) was determined with values derived from two independent experiments, which were expressed as a fold of increased activity compared to unstimulated and control IgG-transfected cells (lane 1). 27 . TNF- ⁇ -induced NF- ⁇ B transcriptional activation in antibody-transfected cells was measured (* P ⁇ 0.01 for stimulated IgG-transfected cells).
  • 32-35 show results showing the selective function of cytoplasmic Hsp60 (Hsp60c) in IKK / NF- ⁇ B signaling.
  • Results show TNF- ⁇ -induced JNK activation in HeLa cells expressing Hsp60c (HA tag).
  • 33 to 35 The results show the activation of various transcription factors in HeLa cells transfected with a control vector or Hsp60c (HA tag).
  • AP-1 FIG. 33
  • NF-AT FIG. 34 transcriptional activation were induced by epidermal growth factor (EGF, 100 ng / ml).
  • CRE FIG. 35 transcriptional activation was induced by forskolin (1 ⁇ M).
  • Relative luciferase activity was measured using an increased luciferase assay kit (Promega) and normalized to ⁇ -galactosidase activity. The data represent mean ⁇ standard deviation of four independent experiments.
  • 36 to 41 show that cytoplasmic Hsp60 regulates IKK phosphorylation independent of chaperone activity.
  • 36 It shows binding between IKK ⁇ and Hsp60c wild type (WT) and mutants.
  • the indicated proteins were co-expressed in 293T cells.
  • 37 and 38 Results showing IKK activation ( FIG. 37 ) and NF- ⁇ B transcriptional activation ( FIG. 38 ) in cells expressing Hsp60c wild type and chaperone-inactive mutations.
  • Results show the in vitro kinase activity of IKK in the presence of recombinant Hsp60 protein.
  • IKK complexes were immunoprecipitated from HeLa cell lysates and reacted for 10 minutes in the kinase reaction buffer with or without GST protein as indicated before the kinase reaction (20 ⁇ g each).
  • 50-55 show that cytoplasmic Hsp60 protects hepatocytes in vivo from stress-induced apoptosis through IKK activation.
  • 50 . A schematic of a transgenic vector comprising HA-tagged human Hsp60c is shown.
  • 51 . Results of identification of two transgenic mouse lines (T4 and T11). Genomic PCR was performed using two different sets of PCR primers specific for the Hsp60 trans gene. Transgenic vectors (V) and C57BL / 6j (B6) mouse genomic DNA were used as positive and negative controls, respectively.
  • 52 The expression of Hsp60c protein in various tissues of transgenic mice was examined. Tissue homogenates were immunoblotted using anti-HA antibodies. 53 .
  • IKK activation was measured in the livers of control B6 mice or HA-Hsp60c-expressing transgenic mice (T4 and T11) injected with TNF- ⁇ intravenously. 54 and 55 .
  • TUNEL assay As measured by the TUNEL assay, DEN-induced cell death was examined in the livers of control and transgenic mice with or without TNF- ⁇ . Representative images ( FIG. 54 ) are shown.
  • DEN induces apoptosis in hepatocytes.
  • 4-week-old male C57BL / 6j mice were injected intraperitoneally with DEN (10 mg / kg). After treatment with the DEN for the indicated times, tissue sections and images were prepared at the expense of the animals as described in the experimental method. TUNEL positive cells were counted in three tissue sections per mouse. Representative images ( FIG. 56 ) are shown. Quantitative data in the graph ( FIG. 57 ) show the number of TUNEL-positive cells per unit area in mean value ⁇ standard deviation.
  • cytoplasmic Hsp60 plays a very important role in survival in biological systems.
  • ODN-pretreated BMM cells were treated with RANKL ( FIG. 58 ) or TNF- ⁇ ( FIG. 59 ) for 5 days in the presence of M-CSF.
  • TRAP-positive multinucleated osteoclasts were counted.
  • the data represent the mean value ⁇ standard deviation of the triple experiment group of one of the two independent experiment sets, and the two independent experiment sets showed similar results (in FIG. 58 and 59 , the stimulated sense-ODN-transfect * P ⁇ 0.02 and * P ⁇ 0.001, respectively, for the harvested cells. Representative results are shown. 60 .
  • BMM cells were infected for 2 days with control or Hsp60c-expressing retrovirus. Expression of designated proteins was analyzed by immunoblotting. 61 . As described in the experimental method, BMM cells were infected with the indicated retroviruses and then treated with RANKL in the presence of M-CSF. The data represents the mean value ⁇ standard deviation of the triple experiment group of one of the two independent experiment sets, with two independent experimental sets showing similar results (* P ⁇ 0.02 for control retroviral treated cells). Representative results are shown.
  • 62-64 show that deletion of cytoplasmic Hsp60 results in apoptotic killing of smooth muscle cells in the neointimal layer of balloon-damaged vessel wall.
  • 62 The photo shows the results of transfection of FITC-conjugated AS-ODN (AS-1) in the damaged carotid artery wall. Arrowheads show FITC green fluorescence in neointimal layer. Elastic fibers in the vessel wall show self-fluorescence.
  • 63 As indicated, results show neovascular thickness changes in balloon-damaged carotid artery walls transfected with AS-ODN untreated groups or ODNs.
  • carotid artery vessels were excised and visualized by HE staining.
  • 64 Results show apoptotic killing of smooth muscle cells in the neointimal layer of damaged carotid artery.
  • Carotid artery vessels were excised and stained with ⁇ -smooth muscle actin and TUNEL. Sections were counter-stained with DAPI to detect cell nuclei.
  • the present invention provides a pharmaceutical composition for the prevention or treatment of abnormal cell proliferation-related diseases comprising an inhibitor of cytoplasmic Hsp60 (heat shock protein 60 kDa) as an active ingredient.
  • cytoplasmic Hsp60 heat shock protein 60 kDa
  • heat shock protein 60 is a mitochondrial chaperone involved in the refolding of proteins entering the mitochondrial matrix from the cytoplasm. That is, Hsp60 functions as chaperonin, which helps to fold linear amino acid chains into three-dimensional structures.
  • Hsp60 directly interacts with IKK ⁇ / ⁇ in the cytoplasm independently of chaperone activity to promote phosphorylation-dependent activation of kinases, thereby resulting in surviving genes induced through increased NF- ⁇ B transcriptional activity.
  • a new pro-survival function of cytoplasmic Hsp60 has been identified, whereby the level of intracellular ROS is reduced by increasing cell viability against apoptosis-induced stress.
  • Most mitochondrial heat shock proteins induce cell death when they come into the cytoplasm, but we have found that Hsp60, which comes out of the cytoplasm, promotes cell survival.
  • the present invention is the first report to characterize the function of the mitochondrial-derived cytoplasmic Hsp60 protein involved in IKK / NF- ⁇ B activation.
  • cytoplasmic Hsp60 interacts with the IKK complex directly to regulate IKK activation, through which the NF- ⁇ B pathway is activated to activate cell survival.
  • the present inventors have found that cytoplasmic Hsp60 in cardiomyocytes, hepatocytes, osteoclasts and the like interacts directly with IKK, which is known to perform survival signal function, thereby activating IKK to mitochondria It has been found to function as a survival factor to reduce derived ROS.
  • the present invention provides pharmaceutical compositions for treating abnormal cell proliferation related diseases using cytoplasmic Hsp60 inhibitors that inhibit the interaction of Hsp60 with IKK or reduce the level of cytoplasmic Hsp60. Since deficiency of Hsp60 is known to cause functional damage of mitochondria, the present invention uses cytoplasmic Hsp60 inhibitors that only modulate cytoplasmic levels without affecting mitochondrial levels of Hsp60. Since the cytoplasmic Hsp60 inhibitor of the present invention does not affect mitochondrial levels, it does not affect normal cells, and selectively affects only Hsp60 in the cytoplasm in abnormally proliferated cells, thereby making it abnormal without toxic side effects in normal cells. Proliferating cells can selectively induce cell death.
  • the cytoplasmic Hsp60 of the invention interacts with the IKK complex, more preferably with IKK ⁇ or IKK ⁇ .
  • the cytoplasmic Hsp60 of the present invention promotes serine-phosphorylation (Ser178 / 181) of IKK ⁇ / ⁇ T-loop to activate the IKK complex.
  • the cytoplasmic Hsp60 of the present invention activates the NF- ⁇ B pathway, which induces the expression of NF- ⁇ B-dependent surviving genes to increase cell survival against apoptosis-induced stress. Let's do it. More preferably, the stress is TNF- ⁇ or diethylnitrosamine (DEN).
  • DEN diethylnitrosamine
  • inhibition of the cytoplasmic Hsp60 of the present invention results in an increase in ROS triggered in cells by stress (eg, TNF- ⁇ , DEN) resulting in ASK-1 (Apoptosis signal-regulating kinase 1). Induces apoptosis by prolonged activation of c-Jun N-terminal kinase (JNK) / p38.
  • stress eg, TNF- ⁇ , DEN
  • ASK-1 Apoptosis signal-regulating kinase 1
  • JNK c-Jun N-terminal kinase
  • the term "inhibition of the cytosolic Hsp60” has the meaning encompassing both inhibition of expression of cytoplasmic Hsp60 gene or inhibition of cytoplasmic Hsp60 protein, preferably the activity of cytoplasmic Hsp60 protein, ie cytoplasmic It inhibits the interaction of Hsp60 protein with IKK. More specifically, inhibition of cytoplasmic Hsp60 inhibits interaction with the IKK complex, leading to a decrease in serine-phosphorylation (Ser178 / 181) of the IKK ⁇ / ⁇ T-loop, thereby inhibiting the activation of the IKK complex, thereby inhibiting NF. to inhibit or reduce - ⁇ B signaling.
  • antisense oligodeoxynucleotide-1 (AS-1 ODN, SEQ ID NO: 3) against cytoplasmic Hsp60 was used to inhibit the expression of cytoplasmic Hsp60 protein, and Hsp60 neutralizing antibody (Hsp60N) was used.
  • Hsp60N Hsp60 neutralizing antibody
  • inhibition of cytoplasmic Hsp60 inhibits NF- ⁇ B signaling mediated through interaction with the IKK complex, more preferably inhibits signaling mediated through interaction with IKK ⁇ or IKK ⁇ .
  • inhibition of the cytoplasmic Hsp60 of the present invention results in inhibition or reduction of intracellular NF- ⁇ B signaling, thereby reducing the expression or activity of downstream signaling molecules. Inhibition or reduction of such NF- ⁇ B signaling leads to inhibition of expression of mitochondrial protective genes, thereby reducing cell viability.
  • the cytoplasmic Hsp60 of the invention reduces mitochondrial-derived ROS levels through induction of expression of NF- ⁇ B-dependent surviving genes.
  • the removal of cytoplasmic Hsp60 results in an increase of intracellular ROS in response to TNF- ⁇ , which leads to the continuous activation of JNK / p38 through ASK-1, which in turn causes cell death.
  • inhibition of the cytoplasmic Hsp60 of the present invention inhibits IKK / NF- ⁇ B activation and reduces cell viability. Inhibition of IKK / NF- ⁇ B activation exerts a variety of pharmacological activities by reducing the expression of surviving genes regulated by NF- ⁇ B. More specifically, inhibition of the cytoplasmic Hsp60 of the present invention affects IKK activation, which inhibits NF- ⁇ B signaling, thereby reducing the expression of surviving genes such as MnSOD and Bfl-1 / A1 to increase intracellular ROS levels. By increasing, death of abnormally surviving cells can be induced.
  • Bfl-1 / A-1 acts as a tBid and Bak antagonist [Wang CY et al., Mol Cell Biol 19: 5923-5929 (1999)] and MnSOD removes superoxide anion inside mitochondria (Wong GH et al., Cell 58: 923-931 (1989)), both genes are very important for the regulation of mitochondrial-derived ROS.
  • Inhibitors of cytoplasmic Hsp60 included as an active ingredient in the composition of the present invention include, but are not limited to, antisense oligonucleotides, siRNA oligonucleotides, antibodies, single chain variable region fragments, peptides, aptamers, low molecular weight compounds or natural extracts It is not.
  • the inhibitor of expression of cytoplasmic Hsp60 protein is an antisense oligonucleotide or siRNA oligonucleotide that specifically binds Hsp60 mRNA, more preferably an antisense oligonucleotide, most preferably antisense oligodeoxynucleotides (ODNs).
  • ODNs antisense oligodeoxynucleotides
  • antisense oligonucleotide refers to DNA or RNA or derivatives thereof that contain oligonucleotide sequences complementary to the sequence of a particular mRNA, and binds to complementary sequences within the mRNA to translate the mRNA into a protein. It acts to inhibit.
  • Antisense sequence for Hsp60 refers to a DNA or RNA sequence that is complementary to Hsp60 mRNA and capable of binding to Hsp60 mRNA, and is responsible for the translation, translocation, maturation, or any other overall biological function of Hsp60 mRNA. May inhibit essential activity.
  • an antisense oligodeoxynucleotide is constructed that is complementary to the sequence (SEQ ID NO: 1 or SEQ ID NO: 2) of the human Hsp60 open reading frame (ORF). More preferably, a sequence including the start codon around the ORF is used, and if necessary, all regions in the ORF may be prepared including a sequence having a high T m value.
  • antisense oligonucleotides were designed and used evenly over the entire sequence from the start codon to the 3 'end of the ORF.
  • the antisense oligonucleotides are 6 to 100 bases in length, preferably 8 to 60 bases, more preferably 10 to 40 bases, even more preferably 10-25 bases, and most preferably 12-20 bases. to be.
  • the AS-1 ODN (SEQ ID NO: 3) used in the embodiments of the present invention targets the mitochondrial targeting signal (MTS) -coding region of the Hsp60 mRNA transcript.
  • the AS-2 ODN (SEQ ID NO: 4) used in another embodiment of the present invention is a region near the 5'-end located after the MTS sequence of the Hsp60 ORF (+95-+110 from the start codon) in order to rule off off targets. Site).
  • SEQ ID NO: 5 for the downstream sequence of the AS-2 ODN target sequence ODN
  • SEQ ID NO: 6 for the downstream sequence of the AS-2 ODN target sequence ODN
  • SEQ ID NO: 7 for the downstream sequence of the AS-5 ODN
  • Antisense oligodeoxynucleotides do not cause a decrease in total Hsp60 levels because they act as weak translation blockers, but Hsp60 located in the cytoplasm has a shorter half-life compared to when present in the mitochondria, resulting in faster turnover. In turn, the level of cytosolic Hsp60 is reduced by treatment of the antisense oligonucleotides according to the invention.
  • the antisense oligonucleotides can be modified at one or more base, sugar or backbone positions to enhance efficacy (De Mesmaeker et al., Curr Opin Struct Biol., 5 (3): 343-55 (1995). )). Oligonucleotide backbones can be modified with phosphorothioates, phosphoroesters, methyl phosphonates, short chain alkyls, cycloalkyls, short chain heteroatomics, heterocyclic intersaccharide bonds, and the like. In addition, antisense oligonucleotides may include one or more substituted sugar moieties. Antisense oligonucleotides may comprise modified bases.
  • Modified bases include hypoxanthine, 6-methyladenine, 5-me pyrimidine (particularly 5-methylcytosine), 5-hydroxymethylcytosine (HMC), glycosyl HMC, gentobiosil HMC, 2-aminoadenine, 2 Thiouracil, 2-thiothymine, 5-bromouracil, 5-hydroxymethyluracil, 8-azaguanine, 7-deazaguanine, N6 (6-aminohexyl) adenine, 2,6-diaminopurine, etc. There is this.
  • the antisense oligonucleotides of the present invention may be chemically bound to one or more moieties or conjugates that enhance the activity and cellular adsorption of the antisense oligonucleotides.
  • oligonucleotides comprising fat-soluble moieties are already well known in the art (US Pat. Nos. 5,138,045, 5,218,105 and 5,459,255).
  • the modified oligonucleotides can increase stability to nucleases and increase the binding affinity of the antisense oligonucleotides with the target mRNA.
  • Antisense oligonucleotides can be synthesized in vitro by conventional methods to be administered in vivo or to allow antisense oligonucleotides to be synthesized in vivo.
  • One example of synthesizing antisense oligonucleotides in vitro is using RNA polymerase I.
  • One example of synthesizing antisense RNA in vivo is to allow the antisense RNA to be transcribed using a vector whose origin of the recognition site (MCS) is in the opposite direction. Such antisense RNA is desirable to ensure that there is a translation stop codon in the sequence so that it is not translated into the peptide sequence.
  • antisense oligonucleotides that can be used in the present invention can be made with reference to the mRNA sequences of human Hsp60 known in the art.
  • Antisense oligonucleotides of the present invention can be designed with a typical sequence.
  • antisense oligonucleotides were designed and used evenly over the entire sequence from the start codon to the 3 'end of the ORF.
  • siRNA refers to an oligonucleotide molecule capable of mediating RNA interference or gene silencing (see WO 00/44895, WO 01/36646, WO 99/32619, WO 01/29058, WO 99). / 07409 and WO 00/44914). siRNA is provided as an efficient gene knockdown method or gene therapy method because it can inhibit the expression of the target gene. siRNA was first discovered in plants, worms, fruit flies, and parasites, but has recently been applied to mammalian cell research using siRNA.
  • a sense strand that is, a sequence corresponding to the Hsp60 mRNA sequence and a antisense strand, ie, a sequence complementary to the Hsp60 mRNA sequence
  • a sense strand may have a double stranded structure. Or may have a single chain structure with self-complementary sense and antisense strands.
  • siRNAs are not limited to the complete pairing of double-stranded RNA portions paired with RNA, but mismatches (the corresponding bases are not complementary), bulges (the bases that do not correspond to one chain), and the like. It may include parts that are not paired by.
  • siRNA is constructed that is complementary to the sequence around the start codon of human Hsp60 ORF. The total length is 10 to 100 bases, preferably 15 to 80 bases, more preferably 20 to 70 bases.
  • the siRNA terminal structure can be either blunt or cohesive, as long as the expression of the Hsp60 gene can be inhibited by RNA interference (RNAi) effects.
  • RNAi RNA interference
  • the cohesive end structure is possible for both 3'-end protrusion structures and 5'-end protrusion structures.
  • the siRNA molecule may have a form in which a short nucleotide sequence (eg, about 5-15 nt) is inserted between a self-complementary sense and an antisense strand, in which case it is formed by expression of a nucleotide sequence.
  • siRNA molecules form a hairpin structure by intramolecular hybridization, and form a stem-and-loop structure as a whole. This stem-and-loop structure is processed in vitro or in vivo to produce an active siRNA molecule capable of mediating RNAi.
  • Inhibitors of cytoplasmic Hsp60, particularly activity inhibitors, in the present invention are preferably antibodies, single chain variable region fragments, peptides, low molecular weight compounds or natural extracts that specifically bind to Hsp60.
  • Antibodies that specifically bind to and inhibit activity by the Hsp60 protein that can be used in the present invention are polyclonal or monoclonal antibodies.
  • Antibodies to the Hsp60 protein can be prepared by methods commonly practiced in the art, such as fusion methods (Kohler et al., European Journal of Immunology, 6: 511-519 (1976)), recombinant DNA methods (US Pat. 4,816,56) or phage antibody library methods (Clackson et al, Nature, 352: 624-628 (1991) and Marks et al., J. Mol. Biol., 222: 58, 1-597 (1991)). Can be prepared by General procedures for antibody preparation are described in Harlow, E.
  • Polyclonal antibodies can be obtained by injecting Hsp60 protein antigen into a suitable animal, collecting antisera from the animal, and then isolating the antibody from the antisera using known affinity techniques.
  • the cytoplasmic Hsp60 was inhibited from binding to IKK using a polyclonal neutralizing antibody that specifically binds to Hsp60 protein to form cytoplasmic Hsp60 aggregates.
  • the antibody may include a single chain variable region fragment (scFv).
  • the single chain variable region fragment may be composed of "variable region (VL) -linker-heavy chain variable region (VH) of light chain".
  • the linker means an amino acid sequence of a certain length that serves to artificially link the variable regions of the heavy and light chains.
  • peptide refers to a linear or cyclic, preferably linear, molecule formed by binding amino acid residues to each other by peptide bonds.
  • the peptides of the present invention are chemical synthesis methods known in the art, in particular solid phase synthesis. Solid-phase synthesis techniques (Merrifield, J. Amer. Chem. Soc. 85: 2149-54 (1963); Stewart, et al., Solid Phase Peptide Synthesis, 2nd. Ed., Pierce Chem. Co .: Rockford, 111 (1984)) Peptides capable of specifically binding to Hsp60 to inhibit Hsp60 activity can be obtained by conventional methods known in the art, such as phage display.
  • the peptide is 4-40, preferably 5-30, more preferably 5-20, most preferably 8-15 amino acid residue peptide (C) the peptides may be linear or cyclic.
  • the peptides of the present invention can further improve stability by modifying amino acid residues.
  • at least one amino acid in the amino acid sequence of the peptide preferably at the N-terminus Gly residue, acetyl group, fluorenyl methoxy carbonyl group, formyl group, palmitoyl group, myristyl group, Stearyl groups or polyethyleneglycol (PEG), most preferably Gly moieties, are attached to increase the stability of the peptide.
  • PEG polyethyleneglycol
  • the number of additional Gly residues is 1-8, preferably 2-6, more preferably 2-4, most preferably 3 Dog.
  • aptamer refers to an oligonucleotide molecule having binding activity to a given target molecule. Aptamers can inhibit the activity of a given target molecule by binding to the given target molecule.
  • the aptamers of the invention can be RNA, DNA, modified oligonucleotides or mixtures thereof.
  • the aptamers of the invention may also be in linear or cyclic form.
  • the length of the aptamer of the present invention is not particularly limited, and may usually be about 15 to about 200 nucleotides, but for example, about 100 nucleotides or less, preferably about 80 nucleotides or less, more preferably about 60 nucleotides or less, Most preferably about 45 nucleotides or less.
  • the length of the aptamers of the invention can also be, for example, at least about 18, 20 or 25 nucleotides. Smaller total numbers of nucleotides are advantageous for easier chemical synthesis, chemical formula and mass production, economical, high in vivo stability and low toxicity.
  • the aptamers of the present invention are the SELEX method and its modifications [see, eg, Ellington et al., Nature, 1990 346, 818-822; Tuerk et al., Science, 1990 249, 505-510.
  • the SELEX method is a method of selecting oligonucleotides that specifically bind to a target substance from a pool of oligonucleotides having about 10-14 different nucleotide sequences.
  • the oligonucleotide used has a structure in which a random sequence of about 40 residues is inserted as a primer sequence.
  • This oligonucleotide pool is associated with a target substance to recover only the oligonucleotides bound to the target substance using a filter or the like.
  • the recovered oligonucleotide is amplified by RT-PCR and used as a template for the next round. By repeating this operation about 10 times, it is possible to obtain an aptamer that specifically binds to the target substance.
  • SELEX method by increasing the number of rounds or by using a competitive substance, it is possible to concentrate and select aptamers having stronger binding to the target substance.
  • the SELEX method includes the amplification process by PCR, by providing a mutation by using manganese ions in the process, it becomes possible to perform a SELEX richer in diversity.
  • aptamers can be obtained using the Cell-SELEX technique for complex targets, ie, living cells and tissues, in addition to the conventional SELEX technique (Guo et al., Int. J. Mol. Sci., 9 (4): 668). , 2008), the Cell-SELEX technique has the advantage of enabling the development of aptamers for diseased cells even when surface marker targets are unknown. In addition, the Cell-SELEX technique has advantages over the conventional SELEX procedure because the isolated protein may not exhibit its original properties, since the target protein in the physiological state allows for a more functional approach in the selection process. have.
  • aptamers bind to the target substance by various binding modes such as ionic bonds using negative charges of phosphate groups, hydrophobic bonds and hydrogen bonds using ribose, and hydrogen bonds or stacking bonds using oligonucleotide bases.
  • ionic bonds using negative charges of phosphate groups present in the number of constituent nucleotides strongly bind positive charges of lysine or arginine on the surface of the protein.
  • oligonucleotide bases that are not involved in direct binding to the target substance can be substituted.
  • part of the stem structure is already made of base pairs and is directed inward of the double helix structure, the oligonucleotide base is difficult to bind directly with the target material.
  • the base can be substituted when the oligonucleotide base is not involved in the direct bond with the target molecule.
  • the hydroxy group may be a nucleotide in which it is substituted with any atom or group.
  • any atom or group for example, a hydrogen atom, a fluorine atom or an -O-alkyl group (eg -O-CH 3 ), -O-acyl group (eg -O-CHO), an amino group (eg -NH Nucleotides substituted with 2 ).
  • aptamers retain their activity unless they substitute or eliminate the functional groups involved in direct binding to the target molecule.
  • aptamers are easy to modify because they can be chemically synthesized.
  • aptamers can predict which nucleotides can be substituted or deleted, and where new nucleotides can be inserted, by predicting secondary structures or by predicting three-dimensional structures by X-ray or NMR analysis. .
  • the aptamer of the predicted new sequence can be easily chemically synthesized and can be confirmed by existing assay systems whether the aptamer is active.
  • sugar residues eg, ribose
  • sugar residues eg, ribose
  • the moiety modified in the sugar residue include those in which the oxygen atoms at the 2 ', 3' and / or 4 'positions of the sugar residue are substituted with other atoms.
  • modification for example, fluorination, O-alkylation (eg O-methylation, O-ethylation), O-allylation, S-alkylation (eg S-methylation, S-ethylation), S-allyl And amination (for example, -NH).
  • Modification of such sugar residues can be carried out by conventional methods known in the art (eg, Sproat et al., Nucle. Acid. Res. 1991 19, 733-738; Cotton et al., Nucl. Acid. Res. 1991 19, 2629-2635; Hobbs et al., Biochemistry 1973 12, 5138-5145).
  • the aptamers of the present invention may also be modified (eg, chemically substituted) with oligonucleotide bases (eg, purine, pyrimidine) in order to enhance binding.
  • oligonucleotide bases eg, purine, pyrimidine
  • modifications include, for example, 5th position pyrimidine modification, 6th and / or 8th position purine modification, modification in extrafoam amines, substitution with 4-thiouridines, 5-bromo or 5-iodine-urisyl Substitution is mentioned.
  • P (0) 0 group is P (0) S (thioate), P (S) S (dithioate), P (O) NR 2 (amidate), P (O) R, R (O) OR ', CO or CH 2 (formacetal) or 3'-amine (-NH-CH 2 -CH 2- ), wherein each R or R' is independently H or substituted Or unsubstituted alkyl (eg methyl, ethyl).
  • a linking group -O-, -N-, or -S- is illustrated, and can couple to adjacent nucleotides through these linking groups.
  • Modifications may also include 3 'and 5' modifications, such as capping. Modifications also include polyethylene glycol, amino acids, peptides, inverted dT, oligonucleotides, nucleosides, Myristoyl, Lithocolic-oleyl, Docosanyl, Lauroyl, Stearoyl, Palmitoyl, Oleoyl, Linoleoyl, other lipids, steroids, cholesterol, caffeine, vitamins , Dyes, fluorescent substances, anticancer agents, toxins, enzymes, radioactive substances, biotin and the like can be added to the terminal. For such modifications, see, for example, US Pat. No. 5,660,985 and US Pat. No. 5,756,703.
  • aptamers to the surfaces of liposomes and nanoparticles, anticancer agents, toxins, cancer growth inhibitory genes, siRNAs, etc. mounted inside the liposomes or nanoparticles can be selectively delivered to target cells.
  • the active ingredient used in the composition of the present invention is an antisense oligonucleotide for Hsp60.
  • the details of the antisense oligonucleotides are the same as described above.
  • antisense oligonucleotides When antisense oligonucleotides are used to treat a disease of interest, antisense oligonucleotides must be introduced into the cell.
  • the method of introducing the antisense oligonucleotide into the cell can be carried out through various methods known in the art.
  • antisense oligonucleotides can be entrapped in liposomes and introduced into cells using a variety of materials known in the art.
  • antisense oligonucleotides can be introduced into cells by linking them to suitable CPPs (cell penetration peptides).
  • CPPs that can be used include various CPPs known in the art and include, for example, penetratin peptides, Tat peptides of HIV-1, transportan peptides, Buforin II peptides , MAP (model amphipathic peptide), k-FGF peptide, prion peptide, pVEC peptide, pep-1 peptide, SynB1 peptide, pep-7 peptide, HN-1 peptide.
  • Peptides including arginine polymers, Antp (Antennapedia or penetratin) peptides, Mph-1 peptides, VP22 peptides of HSV-1 and HP4 peptides of herring protamine.
  • the composition of the present invention comprises (a) a pharmaceutically effective amount of the inhibitor of cytoplasmic Hsp60 of the present invention as described above; And (b) a pharmaceutically acceptable carrier.
  • the term “pharmaceutically effective amount” means an amount sufficient for the inhibitor described above to inhibit the expression or activity of cytoplasmic Hsp60.
  • the pharmaceutical composition of the present invention includes a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers included in the pharmaceutical compositions of the present invention are those commonly used in the preparation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, Calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, and the like It doesn't happen.
  • the pharmaceutical composition of the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, a preservative, and the like.
  • a lubricant e.g., talc, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, a kaolin, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mann
  • the present invention relates to a method for treating abnormal cell proliferation-related diseases comprising administering to a subject an inhibitor of cytoplasmic Hsp60, or a pharmaceutical composition comprising the same as an active ingredient.
  • administration may be oral or parenteral administration, in the case of parenteral administration may be intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, transdermal administration, mucosal administration, eye drop administration and the like.
  • Suitable dosages of the pharmaceutical compositions of the present invention may vary depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity, condition of food, time of administration, route of administration, rate of excretion and response to response of the patient. Can be. Preferably, the dosage of the pharmaceutical composition of the present invention is 0.001-100 mg / kg body weight.
  • compositions of the present invention may be prepared in unit dose form by formulating with a pharmaceutically acceptable carrier and / or excipient according to methods which can be easily carried out by those skilled in the art. Or may be prepared by incorporation into a multi-dose container.
  • the formulation may be in the form of solutions, suspensions, syrups or emulsions in oils or aqueous media, or in the form of extracts, powders, powders, granules, tablets or capsules, and may further comprise dispersants or stabilizers.
  • abnormal cell proliferation related disease refers to a disease caused by abnormal proliferation of cells, and examples of such diseases include cancer diseases, inflammatory diseases, and dysplastic vascular diseases.
  • 'cancer disease' of the present invention is a term that refers to a phenomenon in which cells multiply unlimitedly in living tissue to cause malignant tumors, and cancer which can be prevented or treated using the composition of the present invention.
  • the 'inflammatory disease' of the present invention is a concept including all of the diseases causing inflammation, inflammation occurs when the immune competent cells are activated in response to an external individual or antigenic protein.
  • Inflammatory processes may be beneficial, such as in the case of causing invading individuals to be phagocytized or neutralized, but may also be harmful, such as in the case of arthritis, which causes destruction of bone and cartilage and consequent limitations of joint function.
  • Inflammatory responses are usually induced by trauma or antigens, such as viral, bacterial, protozoan, or fungal antigens.
  • Inflammatory diseases suitable for the prophylaxis or treatment of the present invention include inflammation-induced bone disease, degenerative arthritis, diabetes mellitus, autoimmune myositis, arteriosclerosis, stroke, liver cirrhosis, meningitis, inflammatory gastric ulcer, gallbladder stones, kidney stones, sinusitis, rhinitis, conjunctivitis , Asthma, dermatitis, inflammatory bowel disease, inflammatory collagen vascular disease, glomerulonephritis, inflammatory skin disease, and sarcoidosis, and the like.
  • the inflammatory disease of the present invention is a) rheumatoid inflammatory disease (rheumatoid arthritis), systemic lupus erythematosus, Ankylosing spondylitis, Behcet's disease, autoimmune myositis ( inflammatroy mysitis, b) ulcerative colitis, intestinal inflammatory diseases, Crohn's disease, c) psoriasis, atopic dermatitis, contact dermatitis, eczema Dermatitis, seborrheic dermatitis, lichen planus, lichen simplex chronicus, pemphigus, bullus pemphigus, epidermolysis bullosa, urticaria, angioedema, vasculature Diseases of the sebaceous glands such as vasculitis, erythema or cutaneous eosinophilia, nummular dermatitis, systemic deprivation dermatitis, stagn
  • the 'inflammatory-induced bone disease' of the present invention is a bone development disease, bone fracture, senile loss of bone, chondrosis, hypercalcemia, hyperosteoporosis, incomplete osteoplasia, osteomalacia, osteomyelitis, Osteoporosis, Paget's disease, osteoarthritis or rickets.
  • 'hyperproliferative vascular disease' refers to a disease or condition caused by excessive proliferation of cells present in blood vessels, in particular vascular smooth muscle cells.
  • Aberrant proliferative vascular diseases include a variety of diseases including, for example, atherosclerosis, atherosclerosis, restenosis and stenosis, vascular malformations, vascular stenosis associated with hemodialysis, transplant arteriopathy, vasculitis, Vascular Inflammatory Disease, Digejji Syndrome, Hereditary Hemorrhagic Capillary Vasculature (HHT), Cavernous Hemangioma, Keloid Scar, Pyogenic Granulomas, Bullous Disease, Kaposi's Sarcoma, Hyperproliferative Vitreous Syndrome, Prematurity Retinopathy, Choroidal Neovascularization, Macular Degeneration, Diabetic Retinopathy, intraocular neovascularization, primary pulmonary hypertension, asthma, nasal polyps, inflammatory bowel and periodon
  • the hyperproliferative vascular disease of the present invention is atherosclerosis, atherosclerosis, restenosis or stenosis.
  • Atherosclerosis is a disease in which fatty substances are deposited or fibrosis in the inner layers of arteries.
  • Restenosis is a disease in which the vascular pathway is narrowed after traumatization.
  • Vascular restenosis occurring after atherosclerosis and stent implantation is known to be due to the proliferation, migration and secretion of extracellular matrix of vascular smooth muscle cells (Circulation, 1997, 95, 1998-2002; J. Clin Invest. 1997, 99, 2814-2816; Cardiovasc. Res. 2002, 54, 499-502). Accordingly, studies on drugs that inhibit the proliferation of vascular smooth muscle cells for the progression of atherosclerosis and prevention of vascular restenosis have been widely conducted (J. Am. Coll. Cardiol., 2002, 39, 183-193).
  • prevention refers to any action that inhibits or delays the onset of all diseases resulting from increased activity of the cytoplasmic Hsp60 protein due to administration of a pharmaceutical composition comprising a cytoplasmic Hsp60 inhibitor.
  • 'Treatment' refers to any action that improves or beneficially alters all diseases caused by increased activity of cytoplasmic Hsp60 protein by administration of the pharmaceutical composition.
  • Hsp60 AS-ODN as a cytoplasmic Hsp60 inhibitor increased TNF- ⁇ -induced cell death in colorectal cancer cell lines with increased levels of cytoplasmic Hsp60 (FIG. 49).
  • Hsp60 AS-ODN can inhibit NF-kB-dependent inflammatory responses in vivo. More specifically, it has recently been reported that the IKK complex mediates the survival pathway from RANKL to NF-kB during osteoclast formation. We have found that Hsp60 AS-ODN in osteoclast differentiation in association with inflammation-induced bone loss. The effect of was confirmed.
  • Osteoblasts produce RANKL and osteoprotegerin (OPG), its decoy receptor.
  • OPG osteoprotegerin
  • RANKL binds to the receptor activator of nuclear factor ( ⁇ NK), a receptor on the surface of osteoclast progenitor cells, osteoclast progenitors mature into osteoclasts, resulting in bone resorption.
  • ⁇ NK nuclear factor
  • OPG osteoprotegerin
  • cytoplasmic Hsp60 As a result, inhibition of the cytoplasmic Hsp60 of the present invention interacting with the IKK complex markedly reduced the formation of RANKL or TNF- ⁇ -induced multinuclear tartrate-resistant acid phosphatase-positive osteoclasts. In addition, aberrant expression of cytoplasmic Hsp60 markedly increased the formation of TRAP-positive osteoclasts in response to RANKL.
  • SOD2 superoxide dismutase 2
  • inhibition of cytoplasmic Hsp60 by the Hsp60 AS-ODN of the present invention reduced the neointimal thickness proliferation by proliferative smooth muscle cells in the injured carotid artery by about 50%. The decrease was caused by apoptotic cell death ( Figures 62-64). Therefore, it can be seen that the inhibitor of cytoplasmic Hsp60 of the present invention, which inhibits the proliferation of vascular smooth muscle cells very efficiently, is effective for the treatment of dysplastic vascular disease.
  • test substance if the test substance reduces the level of cytoplasmic Hsp60, provides a screening method for treating abnormal cell proliferation related diseases, comprising determining the abnormal cell proliferation related diseases.
  • the cell may be a cell extract.
  • any type of cytoplasmic Hsp60 protein may be used, such as the cytoplasmic Hsp60 protein in an isolated form or the cytoplasmic Hsp60 protein contained in the cell.
  • the screening methods of the present invention can be carried out in a variety of ways, in particular in a high throughput manner according to various binding assays known in the art.
  • the test substance or cytoplasmic Hsp60 protein may be labeled with a detectable label.
  • the detectable label may be a chemical label (eg biotin), an enzyme label (eg horseradish peroxidase, alkaline phosphatase, peroxidase, luciferase, ⁇ -galacto Sidase and ⁇ -glucosidase), radiolabels (eg C 14 , I 125 , P 32 and S 35 ), fluorescent labels [eg coumarin, fluorescein, fluoresein Isothiocyanate (FITC), rhodamine 6G (rhodamine) 6G), rhodamine B, 6-carboxy-tetramethyl-rhodamine, TAMRA, Cy-3, Cy-5, Texas Red, Alexa Fluor, DAPI (4,6-diamidino-2-phenylindole), HEX , TET, Dabsyl and
  • the binding between the cytoplasmic Hsp60 protein and the test substance may be analyzed by detecting a signal from the label.
  • a signal from the label For example, when alkaline phosphatase is used as a label, bromochloroindolyl phosphate (BCIP), nitro blue tetrazolium (NBT), naphthol-AS-B1-phosphate (naphthol-AS-B1-phosphate) Signal is detected using a chromogenic substrate such as) and enhanced chemifluorescence (ECF).
  • BCIP bromochloroindolyl phosphate
  • NBT nitro blue tetrazolium
  • naphthol-AS-B1-phosphate naphthol-AS-B1-phosphate
  • ECF enhanced chemifluorescence
  • hose radish peroxidase When hose radish peroxidase is used as a label, chloronaphthol, aminoethylcarbazole, diaminobenzidine, D-luciferin, lucigenin (bis-N-methylacridinium nitrate), resorupin benzyl ether, luminol, Amplex Red Reagent (10-acetyl-3,7-dihydroxyphenoxazine), p-phenylenediamine-HCl and pyrocatechol (HYR), tetramethylbenzidine (TMB), ABTS (2,2'-Azine-di [3-ethylbenzthiazoline sulfonate]), o-phenylenediamine (OPD) and substrates such as naphthol / pyronin to detect the signal.
  • Amplex Red Reagent (10-acetyl-3,7-dihydroxyphenoxazine), p-pheny
  • binding of the test substance to the cytoplasmic Hsp60 protein may be analyzed without labeling the interactants.
  • a microphysiometer can be used to analyze whether the test substance binds to the cytoplasmic Hsp60 protein.
  • Microphysiometers are analytical tools that measure the rate at which cells acidify their environment using a light-addressable potentiometric sensor (LAPS). The change in acidification rate can be used as an indicator for binding between test substance and cytoplasmic Hsp60 protein (McConnell et al., Science 257: 1906-1912 (1992)).
  • BIA bimolecular interaction analysis
  • the screening method of the present invention can be carried out according to a two-hybrid analysis or a three-hybrid analysis method (Zervos et al., Cell 72, 223-232, 1993; Madura et al., J. Biol. Chem 268, 12046-12054, 1993; Bartel et al., BioTechniques 14, 920-924, 1993; Iwabuchi et al., Oncogene 8, 1693-1696, 1993; and W0 94/10300).
  • cytoplasmic Hsp60 protein can be used as a bait protein. According to this method, it is possible to screen substances, in particular proteins that bind to cytoplasmic Hsp60 protein.
  • Two-hybrid systems are based on the modular nature of transcription factors composed of cleavable DNA-binding and activation domains.
  • this assay uses two DNA constructs.
  • the cytoplasmic Hsp60-encoding polynucleotide is fused to the DNA binding domain-encoding polynucleotide of a known transcription factor (eg, GAL-4).
  • a DNA sequence encoding a protein of interest (“prey” or “sample”) is fused to a polynucleotide encoding an activation domain of the known transcription factor.
  • the DNA-binding and activation domains of the transcription factors are contiguous, which triggers transcription of the reporter gene (eg, LacZ).
  • the reporter gene eg, LacZ
  • Expression of the reporter gene can be detected, which indicates that the protein of analysis can bind to the cytoplasmic Hsp60 protein, and consequently, it can be used as a substance for treating abnormal cell proliferation-related diseases.
  • the cytoplasmic Hsp60 protein is first contacted with a test substance to be analyzed.
  • test material refers to an unknown substance used in screening to test whether the expression of the cytoplasmic Hsp60 gene or the activity of the cytoplasmic Hsp60 protein is affected.
  • the sample includes, but is not limited to, chemicals, peptides and natural extracts.
  • the sample analyzed by the screening method of the present invention is a single compound or a mixture of compounds (eg, a natural extract or a cell or tissue culture). Samples can be obtained from libraries of synthetic or natural compounds. Methods of obtaining libraries of such compounds are known in the art.
  • Synthetic compound libraries are commercially available from Maybridge Chemical Co. (UK), Comgenex (USA), Brandon Associates (USA), Microsource (USA), and Sigma-Aldrich (USA), and libraries of natural compounds are available from Pan Laboratories (USA). ) And MycoSearch (USA).
  • Samples can be obtained by a variety of combinatorial library methods known in the art, for example biological libraries, spatially addressable parallel solid phase or solution phase libraries, deconvolution required By a synthetic library method, a "1-bead 1-compound” library method, and a synthetic library method using affinity chromatography screening. Methods of synthesizing molecular libraries are described in DeWitt et al., Proc. Natl. Acad. Sci. U.S.A.
  • the activity of the cytoplasmic Hsp60 protein treated with the test substance is then determined.
  • the test substance may be determined as a therapeutic agent for abnormal cell proliferation-related diseases.
  • the present invention can be used to screen for substances that inhibit binding between cytoplasmic Hsp60 protein and IKK protein. Screening of substances that inhibit binding between the two proteins described above can be performed by various methods known in the art, such as two-hybrid assay (Zervos et al., Cell 72, 223232, 1993), Fluorescence resonance energy transfer; et al., PNAS, 105: 151-156 (2008)), Protein Complementation Assay; PCA (Tarassov K., et al., Science, 320 (5882): 1465-1470 (2008)), PLA (Proximal Ligation Assay) Fredriksson S., et al., Nat Biotechnol., 20 (5): 473-7 (2002)) and the like.
  • two-hybrid assay Zervos et al., Cell 72, 223232, 1993
  • Fluorescence resonance energy transfer et al., PNAS, 105: 151-156 (2008)
  • Protein Complementation Assay PC
  • cytoplasmic Hsp60 can be constructed as a bait protein and IKK- ⁇ or IKK- ⁇ as a fried protein.
  • the interaction between the cytoplasmic Hsp60 protein and the IKK- ⁇ or IKK- ⁇ protein causes the transcriptional DNA-binding and activation domains to be contiguous, thereby facilitating transcription of the reporter gene (eg, LacZ). Accordingly, the interaction between the two proteins can be detected through the expression of the reporter gene.
  • a test substance is treated to cells containing the cytoplasmic Hsp60 protein (bait) and the IKK (I ⁇ B kinase) protein (prey) of the present invention. If expression of the reporter gene is inhibited after treatment compared to before treatment, it indicates that the test substance described above inhibits the interaction between the cytoplasmic Hsp60 protein and the IKK- ⁇ or IKK- ⁇ protein.
  • FRET is an assay method in which different fluorescent materials are fused to interacting protein pairs to measure the close or distance between donor and recipient.
  • the excited donor fluoropores transfer energy to the acceptor molecule.
  • the energy transfer efficiency means the fraction of the donor excited state leading to energy transfer to the acceptor.
  • FRET efficiency can be used as an indicator of protein-protein interactions.
  • cytoplasmic Hsp60 and IKK- ⁇ or IKK- ⁇ are prepared by fusion with different fluorescent materials, respectively.
  • the fusion construct of the cytoplasmic Hsp60 and fluoropores of the present invention e.g., GFP, RFP, CFP, YEP, etc.
  • the FRET efficiency can be measured through the interaction between the two constructs described above.
  • a test substance is treated to cells comprising cytoplasmic Hsp60 and KK- ⁇ or IKK- ⁇ constructs fused with fluoropores (eg, GFP, RFP, CFP, YEP, etc.). If FRET efficiency decreases after treatment compared to before treatment, it means that the test substance described above functions to inhibit the interaction between cytoplasmic Hsp60 protein and IKK- ⁇ or IKK- ⁇ protein.
  • fluoropores eg, GFP, RFP, CFP, YEP, etc.
  • a construct is constructed in which the N-terminal fragment and C-terminal fragment of the fluorescent substance are fused with cytoplasmic Hsp60 and IKK- ⁇ or IKK- ⁇ , respectively.
  • YEP which can be used as a fluorophore, is divided into N-terminal fragment (N-YEP) and C-terminal fragment (C-YEP) to construct a fused construct with cytoplasmic Hsp60 and IKK- ⁇ or IKK- ⁇ , respectively.
  • the cytoplasmic Hsp60 in these constructs interacts with IKK- ⁇ or IKK- ⁇ , the N-terminal and C-terminal fragments of the YEP bind to each other and form a complete YEP, which causes fluorescence between the two proteins. Interactions can be detected.
  • fluorescence is detected after treatment of a test substance to cells comprising cytoplasmic Hsp60 and IKK- ⁇ or IKK- ⁇ constructs fused with an N-terminal fragment or a C-terminal fragment of the fluorescent material.
  • the fluorescence is reduced compared to before the test material, it means that the test material described above has a function of inhibiting the interaction between the cytoplasmic Hsp60 protein and IKK- ⁇ or IKK- ⁇ protein.
  • the measurement of the expression level change of the cytoplasmic Hsp60 gene can be carried out through various methods known in the art. For example, RT-PCR (Sambrook et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press (2001)), Northern blotting (Peter B. Kaufma et al., Molecular and Cellular Methods in Biology and Medicine, 102 -108, CRC press), hybridization reaction using cDNA microarray (Sambrook et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press (2001)) or in situ hybridization reaction (Sambrook et al., Molecular Cloning.A Laboratory Manual, 3rd ed.Cold Spring Harbor Press (2001)).
  • the cytoplasmic fraction is separated from the cells treated with the test substance, total RNA is separated therefrom, and the first-chain cDNA is prepared using oligo dT primer and reverse transcriptase. Subsequently, the first chain cDNA is used as a template, and a PCR reaction is performed using a cytoplasmic Hsp60 gene-specific primer set. Then, PCR amplification products are electrophoresed and the formed bands are analyzed to measure changes in the expression level of the cytoplasmic Hsp60 gene.
  • Changes in the amount of cytoplasmic Hsp60 protein can be carried out through various immunoassay methods known in the art.
  • changes in the amount of cytoplasmic Hsp60 protein include, but are not limited to, radioimmunoassay, radioimmunoprecipitation, immunoprecipitation, enzyme-linked immunosorbent assay (ELISA), capture-ELISA, inhibition or competition assay, and sandwich assay. It doesn't happen.
  • cytoplasmic Hsp60 Expression of the cytoplasmic Hsp60, binding to the cytoplasmic Hsp60 protein or binding between the cytoplasmic Hsp60 protein and the IKK protein can be assayed either intracellularly or in vitro.
  • the present invention provides a therapeutic agent for abnormal cell proliferation-related diseases which are cytoplasmic Hsp60 expression inhibitors detected by the screening method, abnormal activity that is an inhibitor of cytoplasmic Hsp60 protein binding to the cytoplasmic Hsp60 protein detected by the screening method
  • a therapeutic agent for cell proliferation-related diseases or a therapeutic agent for abnormal cell proliferation-related diseases which is a cytoplasmic Hsp60 protein and an IKK protein binding inhibitor detected by the screening method.
  • the present invention provides a screening kit for performing the screening method. Specifically, it is a screening kit comprising a cytoplasmic Hsp60 protein, or a cell or cell extract comprising a cytoplasmic Hsp60 protein and an IKK (I ⁇ B kinase) protein, and a reaction buffer.
  • a screening kit comprising a cytoplasmic Hsp60 protein, or a cell or cell extract comprising a cytoplasmic Hsp60 protein and an IKK (I ⁇ B kinase) protein, and a reaction buffer.
  • IKK ⁇ (B-8), IKK ⁇ (FL-419), Hsp90 (H-114), Hsp60 (K-19 and N-20), I ⁇ B ⁇ (C-21), JNK1 (C-17), ASK-1 ( Antibodies against H-300 and F-9), glutathione S-transferase (B14) and goat IgG were purchased from Santa Cruz Biotechnology (Santa Crus, US).
  • Anti-Flag antibody (M2) was purchased from Sigma.
  • Anti-hexahistidine antibodies were purchased from Qiagen.
  • Antibodies to phospho-IKK, phospho-IKK ⁇ and phospho-IKK ⁇ were purchased from Cell Signaling Technology. Normal mouse and rabbit IgG were purchased from Amersharm Bioscience.
  • Anti-cytochrome c antibody was purchased from BD Pharmingen. Antibodies against peroxyredoxin III (Prx III), MnSOD (2AI), hemagglutinin epitope (HA) and GAPDH were purchased from AbFrontier (Seoul, Korea). Recombinant human TNF- ⁇ antibody was purchased from Invitrogen (Grand Island, USA). Phosphorothioate oligodeoxynucleotides (ODNs) comprising antisense and sense sequences were synthesized by Hokkaido System Sciences Co. (Hokkaido, Japan). Full length human I ⁇ B protein was provided by W.
  • ODNs Phosphorothioate oligodeoxynucleotides
  • Hsp60c a truncated form of Hsp60 that lacks the mitochondrial targeting sequence (MTS; 1-26 amino acid sequence based on human sequence), was amplified by PCR and provided by pCGN-HA from Dr. W. Herr of Cold Spring Harbor Lab. Cloned) and pGEX-4T1 (Amersham) vectors to construct HA-tagged Hsp60c expression vectors and GST-fused Hsp60c expression vectors, respectively.
  • MTS mitochondrial targeting sequence
  • Luciferase reporter plasmids comprising IFN ⁇ -derived NF- ⁇ B enhancer sequences [Fujita T, Nolan GP, Ghosh S, Baltimore D (1992) Independent modes of transcriptional activation by the p50 and p65 subunits of NF-kappa B. Genes Dev 6: 775-787 was provided by SY Lee (Ewha Womens University, Korea).
  • Human IKK ⁇ , ⁇ and ⁇ cDNAs were cloned into pCMV2-FLAG or baculovirus expression vector pFastBac-HTa (Invitrogen).
  • PFastBac constructs encoding IKK ⁇ , ⁇ and ⁇ , respectively, were used for the production of high-titer recombinant baculovirus stocks ( ⁇ 1 ⁇ 10 7 pfu / ml) according to the manufacturer's protocol.
  • PPuro plasmids encoding human Bcl-2 or Bcl-XL were provided from DY Shin (Dankook University, Korea) [Jung MS, Jin DH, Chae HD, Kang S, Kim SC, et al.
  • HeLa S3 cells (packed from 20 l suspension culture to 20 ml) were charged with 200 ml Lysis Buffer A (20 mM HEPES, pH 7.5), 150 mM NaCl, 1 mM EDTA, 2 mM EGTA, 1% Triton X-100, 10 % Glycerol, 1 mM AEBSF, 1 mM Na 3 VO 4 , 5 mM NaF, 10 ⁇ g / ml aprotinin and leupetin).
  • Lysis Buffer A (20 mM HEPES, pH 7.5
  • 150 mM NaCl 1 mM EDTA
  • 2 mM EGTA 1% Triton X-100
  • 10 % Glycerol 1 mM AEBSF
  • 1 mM Na 3 VO 4 5 mM NaF
  • 10 ⁇ g / ml aprotinin and leupetin 10 ⁇ g / ml aprot
  • Lysates (2 g total protein) were pre-cleaned with agarose beads only for 1 hour and then reacted with anti-IKK ⁇ -conjugated agarose beads (2 mg / ml IgG; Santa Cruz Biotechnology) overnight. .
  • beads were loaded onto the column and rinsed twice with phosphate buffer.
  • the precipitated protein was eluted twice with 1 ml 0.1 M glycine buffer (pH 2.5). Protein eluate was immediately neutralized with 1 M Tris-HCl buffer (pH 8.0) and then separated on a 10% denaturing gel.
  • gel spots were bleached with a surgical scalpel and washed with 15 mM K 4 Fe (CN) 6 and 50 mM sodium thiosulfate. Break the gel pieces and dehydrate by adding acetonitrile, then hydrate again by adding 10-20 ⁇ l of 25 mM ammonium bicarbonate containing 10 ng / ⁇ l of sequencing grade trypsin (Promega) and 15-17 hours at 37 ° C. Reaction.
  • Buffer B water / ACN / formic acid
  • Samples were desalted on a line prior to separation using a trap column (id 0.35 ⁇ 50 mm, OPTI-PAK TM C18, Waters) cartridge.
  • the flow rate before spraying was set to 200 nL / min by split / splitless inlet and capillary voltage (3.0 keV) was applied to the HPLC mobile phase.
  • Chromatography was performed online using the manufacturer's Q-TOF Ultima TM global control software MassLinx.
  • the mass spectrometer was programmed to record a scan cycle consisting of one MS scan and perform an MS / MS scan for the eight most abundant ions in each MS scan.
  • MS parameters for effective data-based acquisition are the intensity (> 10) and the number of components (3-4) switched from MS to MS / MS analysis.
  • HeLa cells (1 ⁇ 10 7 ) were obtained and fixed at room temperature in 0.1 M cacodylate buffer (pH 7.2) containing 0.5% glutaraldehyde for 1 hour. After rinsing with chilled distilled water, the cells were dehydrated by treating ethanol at different concentrations at 4 ° C. Cells were filtered with LR white resin (London Resin, Berkshire, England) at 4 ° C. and then embedded in LR white resin in gelatin capsules (Nisshin EM, Tokyo, Japan). Polymerization of the resin was carried out at 50 ° C. for 24 hours. 70 nm thick continuous sections (120-200 sections per sample) were attached to the formbar-coated nickel grid.
  • LR white resin London Resin, Berkshire, England
  • Sections were reacted with 50 mM glycine at room temperature for 5 minutes. After rinsing with PBS, the sections were reacted with 3% BSA at room temperature for 30 minutes. Subsequently, the sections were room temperature with primary antibody (goat anti-human Hsp60 (SC-1722), mouse anti-human IKK ⁇ (SC-7606) or mouse anti-IKK ⁇ (SC-8014); diluted 1: 100 in PBS). Reaction was carried out for 2 hours. After washing five times with Tween-PBS (PBS containing 0.5% Tween-20), sections were 20 nm- and 40 nm-diameter conjugated with anti-goat and anti-mouse IgG + IgM antibodies.
  • Intracellular fractions for immunoprecipitation experiments were obtained by fractional centrifugation. Briefly, HeLa cells (2 ⁇ 10 7 ) were obtained and rinsed twice with refrigerated PBS, followed by homogenization buffer containing 0.25 M sucrose (20 mM HEPES, pH 7.5), 0.5 mM EDTA, 0.5 mM EGTA. , 2 mM MgCl 2 , 25 mM KCl, 1 mM AEBSF, 1 mM Na 3 VO 4 , 5 mM NaF, 5 ⁇ g / ml aprotinin and 5 ⁇ g / ml leupetin).
  • homogenization buffer containing 0.25 M sucrose (20 mM HEPES, pH 7.5), 0.5 mM EDTA, 0.5 mM EGTA. , 2 mM MgCl 2 , 25 mM KCl, 1 mM AEBSF, 1 mM Na 3 VO 4 , 5
  • cytoplasmic marker cytoplasmic marker
  • ⁇ -tubulin Mitochondrial markers
  • cytochrome c oxidase 4 COX4
  • matrix protein peroxredoxin III Prx III
  • Sf9 insect cells were infected with recombinant baculovirus stocks with KK ⁇ -, IKK ⁇ - and IKK ⁇ -encoding backmids, respectively.
  • Insect lysates expressing (His) 6 -tagged IKKs were reacted with 1.0 ⁇ g of GST-Hsp60 protein pretreated with glutathione-Sepharose beads (Amersham Pharmacia Biotech) for 2 hours at 4 ° C. Beads were washed three times with cold lysis buffer A. Proteins bound to beads were boiled and eluted in SDS sample buffer, followed by immunoblot analysis as shown in FIG. 3.
  • ODNs (200 nM; otherwise indicated) were transformed for 24 hours using oligofectamine TM reagent (Invitrogen, USA). Plasmid transformation was performed using the Fuzin-6 reagent (Roche, USA). Antibodies were transformed with Chariot TM Protein Delivery Kit (Active Motif Co., USA) according to the manufacturer's instructions.
  • HeLa cells were rinsed once with cold PBS with or without TNF- ⁇ (10 ng / ml) at the indicated times and then lysed with Lysis Buffer A.
  • Cell lysates were prewashed with 10 ⁇ l Protein A / G Agarose Beads (Amersham Biosciences) for 1 hour.
  • the pre-washed lysates were reacted with 2 ⁇ g Hsp60, IKK ⁇ , IKK ⁇ or IKK ⁇ antibody for 3 hours and mixed with 20 ⁇ l protein A / G agarose beads.
  • the lysates were further reacted overnight at 4 ° C. Beads were washed three times with 1 ml Lysis Buffer A. Immunoblot analysis was performed with the final protein precipitate. Immune complexes were visualized using an enhanced chemiluminescence kit (Amersham Biosciences, USA).
  • IKK, JNK1 or ASK-1 were immunoprecipitated with anti-IKK ⁇ (FL-419), anti-JNK1 (C-17) or anti-ASK-1 (H-300), respectively.
  • Beads containing IKK complex or JNK1 were washed twice with lysis buffer and kinase buffer (20 mM HEPES pH 7.4, 5 mM MgCl 2 , 10 mM ⁇ -glycerolphosphate, 1 mM Na 3 VO 4 , 2 additional washes twice with 2 mM NaF and 1 mM dithiothreitol), followed by 10 ⁇ M ATP, 0.6 ⁇ Ci [ ⁇ - 32 P] ATP and 2 ⁇ g of GST-I ⁇ B (1-54) or GST-c Reaction with kinase buffer containing Jun or GST-SEK1 (K129R) at 30 ° C.
  • reaction was stopped by adding 20 ⁇ l of 3 ⁇ SDS sample buffer. After boiling, half of the reaction mixture was separated on a 10% denatured gel and radioactivity was detected by autoradiography. The other half of the reaction mixture was used for immunoblotting against immunoprecipitated kinase proteins (see Anti-ASK-1 Antibody (F-9) to detect ASK-1).
  • CM-H 2 DCFDA oxidation sensitive fluorescent dies 5,6-chloromethyl-2 ', 7'-dichlorodihydrofluorescein diacetate
  • ROS occurrence was assessed [Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, et al. (1998) Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem 273: 6297-6302. HeLa cells (3 ⁇ 10 5 ) were plated in 35-mm dishes and transformed with ODNs for 24 hours.
  • RNase Ribonuclease
  • RNA was extracted with Trizol (Invitrogen) from HeLa cells treated with TNF- ⁇ at the indicated times.
  • RNA 1.5 ⁇ g was reverse transcribed using the ImProm-II RT system (Promega).
  • Real-time PCR was performed using specific primers in the presence of SYBR Green (Applied Biosystems) in a fluorescence adocycler (ABI Prism 7000 sequence detection system, Applied Biosystems). Fluorescence signals were quantified by the method of comparing the cycle number (comparative cycle threshold method). Actin mRNA was used as an endogenous control.
  • HA-tagged human Hsp60c without a mitochondrial signal sequence was PCR-amplified and cloned using NheI and EcoRV into a pCAGGS transgenic (Tg) vector containing a chicken ⁇ -actin promoter.
  • Tg pCAGGS transgenic
  • HA-Hsp60c Tg construct was linearized with SalI and PstI and then microinjected into eggs derived from female C57BL / 6j.
  • Transgenic founders were genotyped as described below. Two of the six positive transformants (T4 and T11) were selected and tested in this study. Genotyping was performed using tail DNA. Briefly, mouse tail DNA was reacted overnight at 55 ° C.
  • Genome PCR was performed using the following primer sets: set 1, 5'-ATGGCTTCTAGCTATCCTTATG-3 '(forward, SEQ ID NO: 8) and 5'-GTAGCAACCTGTGCAATTTCTTC-3' (reverse, SEQ ID NO: 9); Set 2, 5'-CTGCTAACCATGTTCATGCC-3 '(forward, SEQ ID NO: 10) and 5'-ACAAGTTTAGCTCCAATGTTTTTGTA-3' (reverse, SEQ ID NO: 11). All experiments were conducted with 4-week old males.
  • mice Four-week-old male mice were injected intravenously via lateral tail vein 6 hours prior to intraperitoneal administration of DEN4 (10 mg / kg) with phosphate buffer (PBS, pH 7.4) or TNF- ⁇ (6 ⁇ g / kg). 48 hours after DEN treatment, animals were sacrificed, quickly perfused with PBS and treated with 4% paraformaldehyde. After livers were removed and frozen in OCT embedding medium, continuous tissue sections (thickness of 10 ⁇ m) were obtained using cryostat (Leica).
  • Sections were reacted with 50 ⁇ l of TUNEL (terminal deoxynucleotidyl transferase-mediate uridine 5'-triphosphate-biotin nick-end labeling) fluorescence reaction mixture (In situ Cell Death Detection Kit, Roche Diagnostics) for 60 minutes at 37 ° C under cancer conditions. After washing, the mixture was reacted with DAPI (4 ′, 6′-diamidino-2-phenylindole; 1 ⁇ g / ml, Sigma) for 30 minutes. Sections were mounted using Vectashield mounting medium and observed with LSM510 confocal laser scanning microscope (Carl Zeiss, Germany). TUNEL-positive cells were counted to calculate the mean value of three independent sections per mouse. All animal experiments were conducted in accordance with the institutional guidelines (Ewha Womens University, Korea) on the care and use of laboratory animals.
  • TUNEL terminal deoxynucleotidyl transferase-mediate uridine 5'-
  • Rats Sprague-Dawley rats (Charls River, USA) were used in this experiment. Rats were housed in an auto-system with water and feed ad libitum and similar to natural light-dark cycle conditions. Animal anesthesia was induced by adding 5% isoflurane to the mixture maintained at 70% nitrous oxide and oxygen balance, and 1-2% isoflurane was maintained during the experiment. As previously described, balloon damage was performed by filtration 2F pogati balloon catheter in normal rat left carotid artery (Usui et al., 2002). After anesthetizing 10-week old male rats and exposing the left external carotid artery, the branches were electro-aggregated.
  • the catheter was inserted about 1 cm through transarterial artery dissection of the external carotid artery, and endothelial cell denudation was performed three times along the total carotid artery.
  • the total carotid artery was perfused-filtered with heparinized saline containing 3.7% formaldehyde, and then dissected and paraffin-embedded.
  • Five consecutive tissue sections (100- ⁇ m spacing and 3- ⁇ m thickness) were obtained in the middle region of the total carotid artery.
  • sections from the middle region of the blood vessels were analyzed. For morphometric analysis, each slide with hematoxylin and eosin (H & E) staining was used.
  • Non-adherent bone marrow-derived monocytes / macrophages (BMM) lineage cells derived from C57BL / 6 mice were treated with 10% FBS and M-CSF (10 ng / ml, Cultured by dispensing in ⁇ -MEM (Invitrogen) containing R & D systems). After 2 days, non-adherent cells containing lymphocytes were used as BMMs. Differentiation into osteoclasts was induced by treatment of BMM with water-soluble RANKL (50 ng / ml, Peprotech) or TNF- ⁇ (20 ng / ml) in the presence of M-CSF.
  • BMMs were reacted with supernatants containing control or Hsp60c-expressing retroviruses in the presence of polybrene (10 ⁇ g / ml). After 2 days of exposure to the virus, cells were reacted with RANKL as described above. Five days after induction, cells were fixed and stained with tartrate-resistant acid phosphatase (TRAP; Sigma Co.). Cells were observed on a Zeiss Axiovert 200 microscope (Carl Zeiss) containing flan- neofluor objectives. Images were analyzed using AxioVision 3.1 software (Carl Zeiss). TRAP-positive multinuclear cells (> 3 nuclei) were counted as osteoclast-like cells.
  • TRAP tartrate-resistant acid phosphatase
  • Hsp60 interacts with the IKK complex in the cytoplasm.
  • IKK complexes were precipitated from lysates of unstimulated HeLa S3 cells using anti-IKK ⁇ antibody beads and co-precipitated proteins were sequenced by liquid chromatography-tandem mass spectrometry. Identification of the IKK subunit and Hsp90 showed that the immunoprecipitation of the IKK complex was performed correctly (FIG. 1), and the heat shock protein Hsp60 was identified from the precipitate (FIGS. 1-2). The presence of IKK subunit and Hsp90 in the precipitate was confirmed by immunoblotting (FIG. 3). The inventors then examined the biological significance of the IKK-Hsp60 interaction.
  • Hsp60 and IKKs were first validated.
  • heterologous IKK complexes were precipitated with antibodies against IKK ⁇ , IKK ⁇ and IKK ⁇ , each IKK subunit-specific antibodies precipitated Hsp60 similarly (FIG. 4).
  • Hsp90 was also co-immunoprecipitated with the IKK complex. This interaction was not affected by TNF- ⁇ treatment (FIG. 5), indicating that Hsp60 is a component protein of the heterologous IKK complex.
  • reverse immunoprecipitation was performed with cytoplasmic fractions.
  • IKK ⁇ - and IKK ⁇ -labeled gold particles were detected mainly in the cytoplasm (FIGS. 7C-7D).
  • IKK ⁇ -labeled gold particles were also detected in the nucleus, consistent with previous reports (Anest V et al., Nature 423: 659-663 (2003)).
  • the Hsp60-IKK ⁇ complex can migrate to the nucleus and participate in promoters of specific gene sets (eg, MnSOD and Bfl-1 / A1). have.
  • the data of the present invention showed that IKK labeled gold particles were observed more frequently in vesicle constructs than mitochondria (FIGS. 7C-7D).
  • Hsp60 interacts directly with IKK ⁇ / ⁇ but not with IKK ⁇ .
  • Hsp60c a Hsp60 form in which the mitochondrial targeting sequence was removed, was constructed to be targeted to the cytoplasm.
  • Hsp60c co-expressed with the IKK core subunits, respectively, Hsp60c interacts with IKK ⁇ and even with IKK ⁇ at low levels, but not with IKK ⁇ (FIG. 8).
  • GST pull-down assay In vitro binding experiments using recombinant proteins of glutathione-S-transferase (GST) -fused Hsp60 and (His) 6 -tagged IKK core subunits were performed with a GST pull-down assay. As a result, it was confirmed that Hsp60 binds directly to IKK ⁇ and IKK ⁇ except for IKK ⁇ (FIG. 9).
  • Hsp60 The molecular interaction of Hsp60 with IKKs was further elucidated through domain mapping experiments. Since C-terminal deficiency renders ectopic expression impossible, a series of Hsp60c N-terminal deletion mutations were co-expressed with Flag-tagged IKK ⁇ in HEK293 cells to test the IKK binding capacity of Hsp60c (FIG. 10). As a result, it was found that the N-terminal region (about 160 amino acid sequences from the N-terminus) of the Hsp60 protein is indispensable for interaction with IKK (FIG. 11). The same result was obtained when the endogenous IKK complex was immunoprecipitated from HeLa cells transformed with Hsp60c construct (FIG. 12). The above results clearly indicate that the core binding domain is present in the intermediate region of the Hsp60 protein.
  • Hsp60 is involved in IKK / NF- ⁇ B activation.
  • cytoplasmic Hsp60-IKK interaction was investigated in the TNF- ⁇ -mediated NF- ⁇ B pathway. To this end, it is an important step to regulate the level of cytoplasmic Hsp60 without affecting mitochondrial levels, since deficiency of Hsp60 is known to cause functional damage of mitochondria [Bozner P et al. , J Alzheimers Dis 4: 479-486 (2002); Briones P et al., J Inherit Metab Dis 20: 569-577 (1997); Huckriede A et al., Virchows Arch 427: 159-165 (1995).
  • AS-ODN antisense oligodeoxynucleotides
  • antisense ODN functions as a weak translation blocker, it did not cause a decrease in total Hsp60 levels (FIG. 14).
  • transfection of AS-ODNs significantly reduced the levels of cytoplasmic Hsp60 compared to untreated AS-ODN or control S-ODNs without changing mitochondrial Hsp60 levels (FIG. 18).
  • Hsp60c cytoplasmic-targeted Hsp60
  • TNF- ⁇ -induced IKK / NF- ⁇ B activation was investigated in AS-ODN-transfected cells.
  • In vitro kinase assays showed that transfection of AS-ODNs significantly reduced IKK activation by up to 60% compared to transfection of untreated AS-ODN or S-ODN in response to TNF- ⁇ . (Figure 21).
  • AS-ODNs had no effect on MAP kinase activation in response to TNF- ⁇ (FIGS. 21 and 15), indicating the specificity of the IKK activation effect of Hsp60 AS-ODNs.
  • AS-ODNs almost completely inhibited NF- ⁇ B transcriptional activation in response to TNF- ⁇ as compared to untreated AS-ODN, whereas S-ODN did not (FIG. 22, 23).
  • AS-1 which has a larger knock-down effect, was more potent than AS-2 to AS-5, and weaker than AS-1, but both AS-2 and AS-5 inhibited NF-kB transcriptional activity.
  • transfection of ODNs themselves did not cause basic NF- ⁇ B activation, indicating that there are no off-target effects of ODNs.
  • the decreasing effect on NF- ⁇ B transcriptional activity of AS-ODNs was evident in 293T and A549 cells (FIG. 17).
  • Hsp60N was bound to Hsp60 (FIG. 25).
  • the above results mean that the delivered antibody can function as a function blocker.
  • IKK / NF- ⁇ B activation was examined in antibody-transitioned cells.
  • Hsp60N antibody reduced by 50% of the IKK activation level obtained in control IgG in response to TNF- ⁇ (FIG. 26).
  • TNF- ⁇ -induced JNK activation which once again demonstrates that the function of Hsp60 is specific for IKK activation.
  • Hsp60N antibodies significantly reduced the transcriptional activity of NF- ⁇ B (FIG. 27). Taken together, the cytoplasmic Hsp60 promotes TNF- ⁇ -induced IKK / NF- ⁇ B signaling.
  • cytoplasmic Hsp60 in the IKK / NF- ⁇ B pathway was investigated with overexpression of cytoplasmic-targeted Hsp60c.
  • Ectopically-expressed Hsp60c was associated with the IKK complex (FIG. 28) and markedly increased IKK and NF- ⁇ B activation in response to TNF- ⁇ (FIGS. 29-30).
  • Abnormal-expression of Hsp60c weakly induced basic IKK and NF- ⁇ B activation.
  • the effect of Hsp60c expression on NF- ⁇ B activation was completely extinguished in IKK ⁇ -deficient cells (FIG. 31), indicating that the regulatory activity of cytoplasmic Hsp60 is IKK-dependent.
  • Hsp60c did not increase JNK activation or other transcription factor activation such as AP-1, CRE and NF-AT (FIGS. 32-35).
  • AP-1 a transcription factor activation
  • CRE a transcription factor activation
  • NF-AT NF-AT
  • Hsp60 regulates IKK phosphorylation in active T-loops.
  • Hsp60c mutants were prepared in which K28 and D423 were replaced with glutamate and alanine, respectively. Co-transfection experiments confirmed that the two mutants not only bind IKK ⁇ but also bind IKK ⁇ better than the wild type (FIG. 36).
  • IKK activation caused by TNF- ⁇ in Hsp60 mutant-expressing cells was similar to wild type (FIG. 37), in which the above-described loss-of-function mutations did not affect IKK-increasing activity of Hsp60. It means not. Furthermore, TNF- ⁇ -induced NF- ⁇ B transcription was increased about 4-6 fold higher in Hsp60-expressing cells than the control vector (FIG. 38). As tested in IKK ⁇ -deficient 3T3 cells, the augmentation effect of the mutations described above was IKK ⁇ -dependent. Thus, experimental results with loss-of-function mutants strongly suggest that cytoplasmic Hsp60 functions in IKK / NF- ⁇ B activation independently of chaperone activity.
  • ELKS one of the IKK-interacting proteins, is known to mediate the recruitment of I ⁇ B to the IKK complex.
  • Hsp60 protein was added to the IKK kinase reaction where the activated IKK complex reacts with full-length human I ⁇ B as a substrate.
  • Hsp60 protein In vitro kinase activity of activated IKK against I ⁇ B was not affected by the presence of Hsp60 protein (FIG. 39), which means that Hsp60 is not involved in the interaction of I ⁇ B with IKK as a substrate.
  • Cytoplasmic Hsp60 affects NF- ⁇ B target gene expression and cell survival.
  • MnSOD and Bfl-1 / A1 have the potential to inhibit mitochondrial-derived reactive oxygen species (ROS), ODN-transfected cells in CM-H 2 DCFDA, an oxidative-sensitive fluorescent die, Intracellular ROS levels were examined.
  • AS-ODN transfection induced a significant increase in intracellular ROS levels time-dependently following TNF- ⁇ treatment compared to the AS-ODN untreated group or S-ODN transfection (FIG. 45). Since increased ROS levels are associated with cell death through continuous JNK activation, we investigated the sustained activation of stress-activated protein kinases (JNK and p38 MAPK).
  • JNK and p38 MAPK stress-activated protein kinases
  • Cytoplasmic Hsp60 protects host cells under stress conditions.
  • cytoplasmic Hsp60 The survival promoting activity of cytoplasmic Hsp60 was investigated in vivo. To this end, transgenic mice expressing Hsp60c were produced (FIGS. 50-51). Hsp60c protein was successfully expressed in various tissues including liver, spleen and lung (FIG. 52). When intravenously injected with TNF- ⁇ , the degree of IKK activation was significantly increased in Hsp60c-expressing transgenic mice compared to control B6 mice (FIG. 53). These results indicate that cytoplasmic Hsp60 increased TNF- ⁇ -induced IKK activation in vivo. We then found an animal model showing IKK / NF- ⁇ B-dependent cell survival: diethylnitrosamine (DEN) -induced hepatocyte death.
  • DEN diethylnitrosamine
  • DEN-induced cell death was investigated in Hsp60c-expressing transgenic mice treated with or without TNF- ⁇ .
  • hepatocyte death was markedly reduced in Hsp60c-expressing transgenic mice compared to control mice (FIGS. 54-55).
  • the data described above indicate that cytoplasmic Hsp60c inhibits stress-induced cell death in vivo by promoting IKK / NF- ⁇ B activation.
  • Hsp60 AS-ODN inhibits inflammation-induced bone loss.
  • NF-kB is a key survival transcription factor for osteoclast differentiation induced in response to RANKL or TNF- ⁇ in the presence of macrophage-colony stimulating factor (M-CSF) (Boyle WJ et al. , Nature, 423 (6937): 337-342 (2003); Kobayashi K et al., J Exp Med., 191 (2): 275-286 (2000).
  • M-CSF macrophage-colony stimulating factor
  • Bone marrow-derived monocytes / macrophages that were not pretreated with ODNs were stimulated with RANKL or TNF- ⁇ in the presence of macrophage-colony stimulators.
  • Hsp60 AS-ODN significantly inhibited the formation of RANKL or TNF- ⁇ -induced multinuclear TRAP-positive osteoclasts compared to cells not treated with ODN or treated with S-ODNs (FIGS. 58-59). It means that AS-ODN reduces osteoclast survival.
  • the inventors repeated the same experiment in BMM cells infected with retrovirus encoding cytoplasmic targeted Hsp60 (Hsp60c).
  • Hsp60c expression increased SOD2 expression in RANKL-treated cells compared to control virus-infected cells (FIG. 60). Furthermore, Hsp60c expression markedly increased the formation of TRAP-positive osteoclasts in response to RANKL (FIG. 61). The above results indicate that cytoplasmic Hsp60 helps the survival of osteoclasts by inducing SOD2 expression through IKK / NF-kB signaling.
  • Hsp60 AS-ODN reduces neointimal thickness in balloon damaged vessels.
  • NF-kB activation also plays an important role in the proliferation and survival of SMCs in balloon-damaged vessel walls (Ohtani K et al., Circulation, 114 (25): 2773-9 (2006); Breuss JM et al., Circulation 105 (5): 633-8 (2002); Autieri MV et al., Biochem Biophys Res Commun., 213 (3): 827-36 (1995).
  • Hsp60 AS-ODN inhibits neointimal thickness proliferation by proliferative SMCs.
  • ODNs were successfully transported to the vessel wall in the presence of the transfection reagent oligofectamine TM (FIG. 62).
  • Hsp60 AS-ODN treatment significantly inhibited neointimal thickness proliferation compared to mock-treated, S-ODN treatment had no effect (FIG. 63).
  • TUNEL staining results indicated that AS-ODN treatment resulted in a significant increase in apoptotic cell killing in the neointimal layer (FIG. 64), which indicates that the suppressed neointimal thickness results from apoptotic cell killing of SMCs. Means that.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Diabetes (AREA)
  • Oncology (AREA)
  • Pulmonology (AREA)
  • Rheumatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Food Science & Technology (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)

Abstract

본 발명은 세포질 Hsp60(heat shock protein, 60 kDa)의 억제제를 유효성분으로 포함하는 비정상적 세포 증식 관련 질환의 예방 또는 치료용 약제학적 조성물, 이를 이용한 스크리닝 방법 및 키트에 관한 것이다. 본 발명에 따르면, 세포질 Hsp60 유전자의 발현을 억제하거나, 세포질 Hsp60 단백질의 활성을 억제하거나, 세포질 Hsp60 단백질과 IKK 단백질 사이의 결합을 억제하는 물질은 세포질 Hsp60과 IKK 복합체의 상호작용을 차단하여 NF-κB 경로를 불활성화시키고, 그로 인해 세포<u/>사멸을 유도함으로써 암, 염증성 질환 또는 이상증식 혈관 질환과 같은 비정상적 세포 증식 관련 질환을 예방 또는 치료하는데 유용하게 이용될 수 있다.

Description

비정상적 세포 증식 억제용 약제학적 조성물
본 발명은 세포질 Hsp60의 억제제를 포함하는 비정상적 세포 증식 관련 질환의 예방 또는 치료용 약제학적 조성물 및 세포질 Hsp60을 이용한 비정상적 세포 증식 관련 질환 치료제의 스크리닝 방법 및 키트에 관한 것이다.
포유동물 세포는 카스파제 활성화의 억제, 해로운 산소 라디칼의 제거, 마이토콘드리아 기능의 방어 및 세포주기의 조절(checking)을 담당하는 수많은 생존 유전자들을 발현한다. 생존 유전자의 유도를 책임지는 전사인자들 중에서, NF-κB(nuclear factor-κB)는 복잡한 세포 생존반응을 지휘하는 핵심 인자이다. 특히, NF-κB-의존적 생존 유전자들은 c-IAPs 및 c-FLIP 같은 항-아팝토시스성 유전자들, 그리고 MnSOD(manganese-superoxide dismutase) 및 Bcl-2 패밀리 유전자들 같은 마이토콘드리아 보호 유전자들을 포함한다.
NF-κB 활성화 경로에서의 중추적 키나제는 κB 억제인자의 키나제(IκB kinase, IKK)인데, 이 단백질은 IκB 단백질의 아미노 말단의 세린 잔기를 인산화시켜 유비퀴티네이션을 유도함으로써 프로데오좀 분해를 유발하여 NF-κB 단백질을 유리(liberation)시킨다[Karin M et al., Annu Rev Immunol 18: 621-663 (2000)]. NF-κB 경로를 활성화시키는 세포 외 자극들은 IKK로 전달된다[Hayden MS et al., Genes Dev 18: 2195-2224 (2004)]. 따라서, IKK 활성화의 조절을 이해하기 위한 수많은 노력들이 있었다.
구체적으로, 인산화-의존적 IKK 활성화의 조절이 규명되었다. 활성화된 T-루프에 존재하는 두 개의 세린 잔기(인간 IKKβ에서 Ser171/Ser181)의 인산화가 활성화에 중요한 반면에, C-말단 세린 클러스터의 자가인산화는 활성화를 억제한다. 많은 키나제들이 상기 인산화 활성화에 관련되는 것으로 알려져 있다: NF-κB-유도성 키나제(NIK), 마이토젠-활성 단백질 키나제/ERK 키나제 키나제 1(MEKK1), MEKK2/3, 조혈전구세포 키나제-1(HPK1), MLK 3(Mixed-lineage kinase 3), TAK1(TGF-β activated kinase 1). 그러나, TAK1을 제외한 다른 업스트림 키나제들이 IKK 복합체를 어떻게 활성화시키는 지에 대해서는 불확실하다.
또한, 유비퀴틴-의존적 IKK 활성화의 조절이 수년 동안 연구되었다. 최근에, IKK 복합체의 조절 서브유니트인 IKKγ (또는 NEMO)가 RIP 1(receptor-interaction protein 1)의 Lys63-연결된 폴리유비퀴티네이션 사슬을 인식할 뿐 아니라 유비퀴티네이션된다는 것이 알려졌다.
또한, 상호작용하는 단백질을 통한 IKK 활성화의 조절이 규명되었다. 가장 훌륭한 예가 열충격 단백질들이다. 예를 들어, Cdc37 및 Hsp90은 IKK 복합체의 추가적인 구성요소들로 작용하며 이들이 복합체를 안정화시킨다는 것이 보고되었다[Broemer M et al., Oncogene 23: 5378-5386 (2004)]. Hsp27은 TNF-α-의존적으로 IKKβ와 상호작용하는 것으로 알려져있다[Park KJ et al., J Biol Chem 278: 35272-35278 (2003)]. Hsp70은 IKKγ와 상호작용하지만 IKK 활성화를 저해한다[Ran R et al., Genes Dev 18: 1466-1481 (2004)]. 그 외, 단백질 포스파타제 2Cβ(PP2Cβ)와 IKK 복합체 간의 연관성이 확인되었으며, ELKs도 IκB의 복합체로의 합류(recruitment)를 매개하는 IKK 복합체의 신규한 조절 서브유니트로 동정되었다. 하지만, IKK/NF-κB 활성화에 관련된 마이토콘드리아 단백질은 동정된 바 없다.
한편, 열충격 단백질 90 (Hsp90), Hsp60, 열충격 70kDa 단백질 9 (HSPA9/모르탈린)와 같은 분자 샤페론이 암세포의 마이토콘드리아에서 높은 수준으로 발견되고, 상기 분자 샤페론의 "마이토콘드리아-표적화"된 억제자가 원치 않은 세포 증식과 연관된 질환 치료를 위해 사용된다는 것이 알려진 바 있다[WO09/036092].
본 발명자들은 NF-κB 경로의 활성화 기작을 이해하고자 예의 연구 노력하였다. 그 결과, 본 발명자들은 마이토콘드리아 내 열충격 단백질로 작용하는 Hsp60이 세포질로 방출되어서 샤페론 활성과는 독립적으로 IKKα/β와 직접적으로 상호결합하여 키나제의 인산화-의존적 활성화를 촉진시키고, 이로 인해 증가된 NF-κB의 전사 활성을 통해 유도된 생존 유전자들에 의해 세포 내 ROS(reactive oxygen species)의 레벨을 감소시키며, 그에 따라 아팝토시스-유도 스트레스에 대한 세포 생존을 증가시킨다는 것을 밝혀내었다. 이에, 세포질 Hsp60의 발현 및/또는 활성을 억제하면 비정상적 세포 증식 관련 질환을 치료할 수 있음을 밝히고 본 발명을 완성하였다.
본 발명의 목적은 비정상적 세포 증식 관련 질환 예방 또는 치료용 약제학적 조성물을 제공하는 데 있다.
본 발명의 다른 목적은 비정상적 세포 증식 관련 질환 치료제의 스크리닝 방법 및 키트를 제공하는 데 있다.
상기 비정상적 세포 증식 관련 질환은 암, 염증성 질환 또는 이상증식 혈관 질환일 수 있다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 이해된다.
본 발명은 세포질 Hsp60의 억제제를 유효성분으로 포함하는 비정상적 세포 증식 관련 질환 치료용 약제학적 조성물 및 이를 이용한 스크리닝 방법 및 키트에 관한 것이다. 본 발명에 따르면, 세포질 Hsp60은 IKK 복합체와 상호작용하여 IKK 활성화 조절에 직접적으로 관여하며, 이를 통해 NF-κB 경로가 활성화되어 세포 생존반응을 조절한다. 따라서, 세포질 Hsp60 유전자의 발현을 억제하거나 세포질 Hsp60 단백질과 IKK 단백질 사이의 결합을 억제하여 암, 염증성 질환 또는 이상증식 혈관 질환과 같은 비정상적 세포 증식 관련 질환을 효과적으로 예방 또는 치료할 수 있고, 비정상적 세포 증식 관련 질환에 대한 신규한 치료제를 스크리닝할 수 있다.
도 1 내지 6은 IKK 복합체에서 Hsp60을 동정한 결과이다. 도 1. 친화성-정제된 IKK 복합체를 분리한 실버-염색 폴리아크릴아마이드 젤을 나타낸다. 도 2. Hsp60에 상응하는 단백질 밴드로부터 유래된 펩타이드들의 [M + 2H]2+ 이온들에 대한 MS/MS 스펙트럼이다. 도 3. 친화성-정제된 IKK 복합체에서 IKK 서브유니트들 및 Hsp60의 면역블롯(IB) 분석 결과이다. 도 4. IKKα, IKKβ 및 IKKγ-특이적 항체들을 이용하여 HeLa 세포 용해물(500 ㎍의 총 단백질)로부터 IKK 복합체를 면역침전(IP)시켰다. IKKα/β/γ 서브유니트, Hsp60 및 Hsp90를 면역블롯하였다. WCL은 총 세포 용해물을 의미한다. 도 5. Hsp60과 IKK 복합체의 TNF-α-의존적 상호작용을 보여준다. 도 6. 세포질 분획에서 Hsp60과 IKK 복합체의 공동-면역침전 결과이다. 위쪽 패널은 HeLa 세포로부터 핵을 제거한 상층액(PNS), 세포질(Cyto) 및 마이토콘드리아(Mito) 분획들을 면역블롯한 결과이다. COX4 및 튜블린은 각각 마이토콘드리아 및 세포질 마커로 이용하였다. 아래쪽 패널은 대조군 염소 IgG 또는 항-Hsp60 항체(K-19 및 N-20)을 이용하여 세포질 분획으로부터 Hsp60을 면역침전시킨 결과이다. 대표적인 블롯이 보여진다(n = 3).
도 7은 단일-세포 레벨에서 Hsp60과 IKK 간의 상호작용을 시각화한 결과이다. HeLa 세포를 1차 항체 무처리(A), 항-Hsp60(B) 항-IKKα(C), 항-IKKβ(D), 항-Hsp60/IKKα(E) 및 항-Hsp60/IKKβ(F) 항체들과 면역반응시킨 후, 20 nm 또는 40 nm 골드 입자와 컨쥬게이션된 상응하는 2차 항체들로 표지하였다. 면역-골드 전자현미경을 이용하여 표지를 확인하였다. 핵(Nu) 및 마이토콘드리아(M)가 표시되어 있다. 화살표는 Hsp60- 및 IKK-표지된 골드 입자들의 직접적인 부착을 나타낸다. 1차 항체를 처리하지 않은 시료(A)에서는 어떠한 면역반응성 신호도 나타나지 않았다. 실험은 동일한 결과로 두 번에 걸쳐서 반복되었고 대표적인 결과들이 제시된다.
도 8 내지 12는 Hsp60이 IKK 복합체와 직접적으로 상호작용한다는 것을 보여주는 결과이다. 도 8. Hsp60과 IKK 서브유니트들과 직접 결합한다는 것을 보여주는 결과이다. Hsp60c(HA tag)와 각 IKK 서브유니트 단백질(Flag tag)을 293T 세포에 24시간 동안 공동-트랜스펙션시켰다. 도 9. Hsp60이 IKKα 및 IKKβ와 시험관 내에서 결합한다는 것을 나타내는 결과이다. 글루타티온 세파로오스 비드에 결합되어 있는 GST-융합된 Hsp60 단백질은 His6-태깅된 IKK 단백질을 발현하는 Sf9 곤충세포 용해물과 반응시켰다. Hsp60 및 IKK 단백질들은 각각 GST 및 HA 택에 대한 면역블롯팅에서 검출되었다. 도 10. Hsp60의 결실 돌연변이들의 구조를 보여주는 모식도이다. PKA/PKG(1) 및 PKC(2)를 포함하는 키나제들의 잠재적인 인산화 위치가 표시되어 있다. 도 11도 12. IKKα를 이상 발현하는 293T 세포(도 11)의 IKKα 또는 HeLa 세포의 내인성 IKK 복합체(도 12)와 Hsp60 야생형(WT) 및 결실 돌연변이들 간의 상호작용을 보여주는 결과이다. 대표적인 블롯 및 이미지들이 제시된다(n = 3). 약어: C, 대조군 벡터; n.s, 비특이적(nonspecific).
도 13 내지 17은 Hsp60-특이적 안티센스 올리고데옥시뉴클레오타이드(AS-ODN)의 작용을 조사한 결과이다. 도 13. 두 개의 서로 다른 Hsp60 AS-ODNs을 보여주는 모식도이다. 도 14. ODN 처리 되지 않은(Mock) 또는 ODN-트랜스펙션된 HeLa 세포에서 Hsp60의 발현을 나타내는 결과이다. 도 15. ODN 처리 되지 않은(Mock) 또는 ODNs으로 트랜스펙션된 HeLa 세포에서 TNF-α-유도된 MAP 키나제 활성화를 조사한 결과이다. 포스포-특이적 항체를 이용하여 활성화 정도를 분석하였다. 동일 로딩량을 확인하기 위해 포스포블롯을 전체 단백질 항체로 재프로빙하였다. 도 16. ODN 처리 되지 않은(Mock) 또는 ODN-트랜스펙션된 HeLa 세포에서 다양한 전사인자들의 활성화를 보여주는 결과이다. AP-1 및 NF-AT 전사 활성화는 상피세포 성장인자(EGF, 100 ng/ml)에 의해 유도되었다. CRE 전사 활성화는 포스콜린(1 μM)에 의해 유도되었다. 도 17. ODN 처리 되지 않은(Mock) 또는 ODNs으로 트랜스펙션된 293T 및 A549 세포에서 TNF-α-유도된 NF-κB 전사 활성화를 측정한 결과이다. 도 16 및 도 17 에서, 증가된 루시퍼라제 어세이 키트(Promega)를 이용하여 상대적인 루시퍼라제 활성을 측정하고 β-갈락토시다제 활성으로 표준화하였다. 데이터는 네 개의 독립적인 실험들의 평균값 ± 표준편차를 나타낸다(도 17에서, 자극된 S-ODN-트랜스펙션된 세포에 대하여 *P < 0.001 및 **P < 0.05).
도 18 내지 23은 TNF-α에 대한 반응에서 세포질 Hsp60의 손실은 IKK/NF-κB 활성화를 감소시킨다는 것을 보여주는 결과이다. 도 18. 안티센스 ODNs에 의한 세포질 Hsp60의 제거를 보여준다. ODN 처리 되지 않은(Mock) 또는 ODN-처리된 HeLa 세포로부터 제조된 세포질 및 마이토콘드리아 분획들을 면역블롯하였다: S, 센스 ODN; AS-1 및 AS-2, 안티센스 ODNs. 마이토콘드리아 분획은 상응하는 세포질 분획의 1/5 용량으로 로딩하였다. 특히, 비특이적 마이토콘드리아 파괴를 모니터링(watch)하기 위해, 마이토콘드리아 매트릭스에 존재하는 항산화 효소인 Prx III를 마이토콘드리아 마커로 이용하였다. 도 19. 사이클로헥사마이드로 단백질 합성을 억제한 후 이상-발현된 Hsp60c 단백질(HA tag)의 반감기를 측정한 결과이다. HA 밴드의 강도를 측정하고 IKKα 밴드의 양으로 표준화하였다. 그래프의 데이터는 두 개의 독립적인 실험의 평균값 ± 표준편차로 SigmaPlot 8.0 소프트웨어에 적용되었다. 도 20. 세포질 Hsp60c 단백질의 프로테아좀-의존적 턴오버를 보여주는 결과이다. 사이클로헥사마이드 처리 전, HeLa 세포가 MG132(5 μM)로 30분 동안 전처리되거나 또는 전처리되지 않았다. 도 21. ODN 처리 되지 않은(Mock) 또는 ODN-트랜스펙션된 세포에서 TNF-α-유도된 IKK 및 JNK1 활성화를 보여주는 결과이다. 시험관 내 키나제 활성(KA)은 두 개의 독립적인 실험으로부터 유래한 값들로 측정하였으며, 이는 자극되지 않고 ODN 처리 되지 않은(Mock) 세포(레인 1)와 비교하여 증가된 활성의 배수(fold increase)로서 표시되었다. 도 22. ODN 처리 되지 않은(Mock) 또는 ODN-트랜스펙션된 세포에서 NF-κB 전사 활성을 측정한 결과이다. AS-ODN의 농도 증가(100 nM 또는 200 nM)에 따라 테스트되었다. 도 23. ODN 처리 되지 않은(Mock) 또는 ODNs으로 트랜스펙션된 세포에서 NF-κB 전사 활성을 측정한 결과이다. 상대적인 루시퍼라제 활성을 β-갈락토시다제 활성으로 표준화하였으며 데이터는 네 개의 독립적인 실험들의 평균값 ± 표준편차를 나타낸다(자극된 S-ODN-트랜스펙션된 세포에 대하여 *P < 0.01, **P < 0.005).
도 24 내지 27은 Hsp60-특이적 항체가 IKK/NF-κB 활성화를 차단한다는 것을 보여주는 결과이다. 도 24. HeLa 세포의 세포질로 이동된 Hsp60-중화 항체(Hsp60N)를 나타내는 형광사진이다. 미토트랙커 레드(Molecular Probes, USA) 및 DAPI는 각각 마이토콘드리아 및 핵을 나타낸다. 도 25. 운반된 Hsp60N 항체는 내인성 Hsp60에 결합한다. 항체 트랜스펙션 후, HeLa 세포 용해물을 단백질-A 세파로오스 비드로 면역침전시켰다. 침전된 단백질을 Hsp60에 대하여 면역블롯팅하였다. 도 26. 대조군 IgG 또는 Hsp60N 항체-트랜스펙션된 HeLa 세포에서 TNF-α에 대한 반응으로 IKK및 JNK1 활성화를 조사한 결과이다. 시험관 내 키나제 활성(KA)은 두 개의 독립적인 실험으로부터 유래한 값들로 측정하였으며, 이는 자극되지 않고 대조군 IgG-트랜스펙션된 세포(레인 1)와 비교하여 증가된 활성의 배수로서 표시되었다. 도 27. 항체-트랜스펙션된 세포에서 TNF-α-유도된 NF-κB 전사 활성화를 측정한 결과이다(자극된 IgG-트랜스펙션된 세포에 대하여 *P < 0.01).
도 28 내지 31은 Hsp60의 세포질-타겟된 발현이 TNF-α-유도된 IKK/NF-κB 활성화를 촉진한다는 것을 보여주는 결과이다. 대조군(CGN) 또는 Hsp60c-인코딩 플라스미드(HA tag)를 세포에 24시간 동안 트랜스펙션시킨 후 TNF-α를 처리하였다. 도 28. IKK 복합체에서 발견되는 이상-발현된 Hsp60c(HA tag)를 보여주는 결과이다. 도 29. HeLa 세포에서 TNF-α-유도된 IKK 활성화를 보여준다. 도 30. HeLa 세포에서 TNF-α-유도된 NF-κB 활성화를 보여준다(n = 4; 자극되지 않은 대응자에 대하여 *P < 0.0001). 도 31. 트랜스펙션된 IKKβ-/- 3T3 세포에서 TNF-α-유도된 NF-κB 활성화를 보여준다(n = 4; 자극되지 않은 CGN-트랜스펙션된 세포에 대하여 *P < 0.0001; N.D, 검출되지 않음).
도 32 내지 35는 IKK/NF-κB 신호전달에서 세포질 Hsp60(Hsp60c)의 선택적 기능을 보여주는 결과이다. 도 32. Hsp60c(HA tag)을 발현하는 HeLa 세포에서 TNF-α-유도된 JNK 활성화를 보여주는 결과이다. 도 33 내지 35. 대조군 벡터 또는 Hsp60c(HA tag)으로 트랜스펙션된 HeLa 세포에서 다양한 전사인자들의 활성화를 보여주는 결과이다. AP-1(도 33) 및 NF-AT(도 34) 전사 활성화는 상피세포 성장인자(EGF, 100 ng/ml)에 의해 유도하였다. CRE(도 35) 전사 활성화는 포스콜린(1 μM)에 의해 유도되었다. 증가된 루시퍼라제 어세이 키트(Promega)를 이용하여 상대적인 루시퍼라제 활성을 측정하고 β-갈락토시다제 활성으로 표준화하였다. 데이터는 네 개의 독립적인 실험들의 평균값 ± 표준편차를 나타낸다.
도 36 내지 41은 세포질 Hsp60이 샤페론 활성과는 독립적으로 IKK 인산화를 조절한다는 것을 보여주는 결과이다. 도 36. IKKα와 Hsp60c 야생형(WT) 및 돌연변이체들 간의 결합을 보여준다. 도 8에서 볼 수 있듯이, 지시된 단백질들을 293T 세포에서 공동-발현시켰다. 도 37도 38. Hsp60c 야생형 및 샤페론-비활성 돌연변이들을 발현하는 세포에서 IKK 활성화(도 37) 및 NF-κB 전사 활성화(도 38)를 보여주는 결과이다. 도 13 내지 17에서 기술된 바와 같이, 키나제 및 리포터 활성을 측정하였다(리포터 어세이를 위해, 자극되지 않은 대응자에 대하여 *P < 0.0001; n = 6). 도 39. 재조합 Hsp60 단백질의 존재 하에서 IKK의 시험관 내 키나제 활성을 보여주는 결과이다. IKK 복합체를 HeLa 세포 용해물로부터 면역침전시키고 키나제 반응 전에 지시된 GST 단백질(각각 20 ㎍)과 함께 또는 GST 단백질 없는 상태로 키나제 반응 완충액에서 10분 동안 반응시켰다. 도 40. AS-1 ODN으로 트랜스펙션된 HeLa 세포에서 IKKα/β의 세린 인산화를 측정한 결과이다. 그래프의 데이터는 평균값 ± 표준편차를 의미한다(n = 3, *P < 0.02, **P < 0.001). 도 41. Hsp60c-발현 HeLa 세포에서 IKKα/β의 세린 인산화를 측정한 결과이다. 대표적인 블롯이 보여진다(n = 3).
도 42 내지 49는 세포질 Hsp60의 손실은 TNF-α에 대한 반응에서 ROS 및 ASK-1 활성화를 유도함으로써 세포 사멸을 유도한다는 것을 보여주는 결과이다. 도 42. ODN-트랜스펙션된 세포에서 항-아팝토틱 유전자들의 유도에 대한 RNase 보호 어세이 결과이다. 보여진 방사능 사진은 세 개의 독립적인 실험들의 대표적인 사진이다. 도 43도 44. ODN-트랜스펙션된 세포(도 43) 및 항체-트랜스펙션된 세포(도 44)에서 내인성 NF-κB 타겟 유전자들의 유도를 조사한 QPCR 결과이다(n = 3, *P < 0.01, **P < 0.001). 도 45. ODN-트랜스펙션된 세포에서 세포내 ROS의 TNF-α-매개된 생산을 보여주는 결과이다. 대표적인 이미지들이 보여진다. 데이터는 처리되지 않은(mock) 세포와 비교하여 상대적인 DCF 형광의 증가 배수를 평균값 ± 표준편차로 나타낸 것이다(n = 4, *P < 0.05, **P < 0.001). 도 46. ODN-트랜스펙션된 세포에서 JNK 및 p38 MAPK 활성화를 조사한 결과이다. 블롯들은 세 개의 독립적인 실험들의 대표적인 블롯이다. 도 47. ODN-트랜스펙션된 세포에서 ASK-1의 활성화를 나타내는 결과이다. 키나제 활성(KA)은 두 개의 독립적인 실험으로부터 유래한 값들로 측정하였으며, 이는 자극되지 않고 ODN 처리 되지 않은(Mock) 세포(레인 1)와 비교하여 증가된 활성의 배수로서 표시되었다. 도 48. ODN 처리 되지 않은(Mock) 또는 ODN-트랜스펙션된 HeLa 세포에서 TNF-α-유도된 세포 사멸을 보여주는 결과이다. 데이터는 평균값 ± 표준편차를 나타낸다(n = 3, *P < 0.01). 도 49. ODNs로 트랜스펙션된 대장암 세포에서 TNF-α-유도된 세포 사멸을 보여주는 결과이다. 세포내 분획들에서 Hsp60의 레벨이 측정되었다(위쪽 패널). 그래프 내의 데이터는 평균값 ± 표준편차를 나타낸다(n = 3, *P < 0.05, **P < 0.01). 아넥신 V-플루오레신 이소티오사이네이트 및 프로피디움 이오다이드로 염색한 후 FACS를 이용하여 세포 사멸을 분석하였다.
도 50 내지 55는 세포질 Hsp60은 IKK 활성화를 통해 스트레스-유도된 아팝토시스로부터 간세포를 생체 내에서 보호한다는 것을 보여주는 결과이다. 도 50. HA-태깅된 인간 Hsp60c를 포함하는 트랜스제닉 벡터의 도식을 나타낸다. 도 51. 두 개의 트랜스제닉 마우스 라인(T4 및 T11)의 동정 결과이다. Hsp60 트랜스 유전자에 특이적인 두 개의 다른 세트의 PCR 프라이머를 이용하여 게놈 PCR을 실시하였다. 트랜스제닉 벡터(V) 및 C57BL/6j(B6) 마우스 게놈 DNA를 각각 양성 및 음성 대조군으로 이용하였다. 도 52. 트랜스제닉 마우스의 다양한 조직에서 Hsp60c 단백질의 발현을 조사한 결과이다. 항-HA 항체를 이용하여 조직 균질물(homogenates)을 면역블롯하였다. 도 53. TNF-α가 정맥내 주입된 대조군 B6 마우스 또는 HA-Hsp60c-발현 트랜스제닉 마우스(T4 및 T11)의 간에서 IKK 활성화를 측정한 결과이다. 도 54도 55. TUNEL 어세이에 의해 측정된 것과 같이, TNF-α 처리하거나 또는 처리하지 않은 대조군 및 트랜스제닉 마우스의 간에서 DEN-유도된 세포 사멸을 조사한 결과이다. 대표적인 이미지들(도 54)이 보여진다. 그래프 내의 정량적인 데이터(도 55)는 단위 면적 당 TUNEL-양성 세포의 수를 평균값 ± 표준편차로 나타낸 것이다(n = 3, 쌍으로 자극된 시료에 대하여 *P < 0.01).
도 56 내지 57은 DEN이 간세포에서 아팝토시스를 유도한다는 것을 보여주는 결과이다. 4-주령 수컷 C57BL/6j 마우스에 DEN(10 mg/kg)을 복강내 주입하였다. 지시된 시간 동안 DEN을 처리한 후, 실험방법에 기술된 바와 같이 동물을 희생시켜 조직 절편 및 이미지들을 준비하였다. 마우스 당 세 개의 조직 절편들에서 TUNEL 양성 세포들을 카운팅하였다. 대표적인 이미지들(도 56)이 보여진다. 그래프 내의 정량적인 데이터(도 57)는 단위 면적 당 TUNEL-양성 세포의 수를 평균값 ± 표준편차로 나타낸 것이다.
도 58 내지 61은 세포질 Hsp60이 생물학적 시스템에서 생존에 매우 중요한 역할을 한다는 것을 보여주는 결과이다. 도 58도 59. ODN-전처리된 BMM 세포를 M-CSF의 존재 하에서 RANKL(도 58) 또는 TNF-α(도 59)로 5일 동안 처리하였다. 실험방법에 기술된 바와 같이, TRAP-양성 다핵성 파골세포들을 카운팅하였다. 데이터는 두 개의 독립적인 실험 세트들 중 하나의 3중 실험군의 평균값 ± 표준편차를 나타내며, 두 개의 독립적인 실험 세트들은 유사한 결과를 보였다(도 58도 59에서, 자극된 센스-ODN-트랜스펙션된 세포에 대하여 각각 *P < 0.02 및 *P < 0.001). 대표적인 결과가 보여진다. 도 60. BMM 세포를 대조군 또는 Hsp60c-발현 레트로바이러스로 2일 동안 감염시켰다. 지정된 단백질의 발현을 면역블롯팅으로 분석하였다. 도 61. 실험방법에 기술된 바와 같이, BMM 세포를 지시된 레트로바이러스로 감염시킨 후, M-CSF의 존재 하에서 RANKL로 처리하였다. 데이터는 두 개의 독립적인 실험 세트들 중 하나의 3중 실험군의 평균값 ± 표준편차를 나타내며, 두 개의 독립적인 실험 세트들은 유사한 결과를 보였다(대조군 레트로바이러스 처리 세포에 대하여 *P < 0.02). 대표적인 결과가 보여진다.
도 62 내지 64는 세포질 Hsp60의 결실은 풍선-손상된 혈관벽의 신생내막 층에서 평활근 세포의 아팝토틱 사멸을 초래한다는 것을 보여주는 결과이다. 도 62. 손상된 경동맥 혈관벽에서 FITC-컨쥬게이션된 AS-ODN(AS-1)의 트랜스펙션 결과를 보여주는 사진이다. 화살표 머리는 신생내막 층에서 FITC 녹색 형광을 나타낸다. 혈관벽에서 탄력섬유(elastic fibers)가 자가-형광을 나타낸다. 도 63. 지시된 바와 같이, AS-ODN 처리되지 않은 군 또는 ODNs로 트랜스펙션된 풍선-손상된 경동맥 혈관벽에서 신생내막 두께 변화를 보여주는 결과이다. 실험재료 및 실험방법에 기술된 바와 같이, 경동맥 혈관을 절제하여 HE 염색으로 시각화하였다. 약자: L, 루멘; M, 중막; Av, 외막. 화살표는 신생내막 층을 나타낸다. 하단 그래프의 데이터는 중막층 면적에 대한 신생내막 두께의 백분율을 나타낸다(평균값 ± 표준오차; n = 5; P < 0.01). 대표적인 결과가 보여진다. 도 64. 손상된 경동맥 혈관의 신생내막 층에서 평활근세포의 아팝토틱 사멸을 보여주는 결과이다. 경동맥 혈관을 절제하여 α-평활근 액틴 및 TUNEL로 염색하였다. 세포 핵을 검출하기 위해 절편들을 DAPI로 카운터-염색하였다. 하단 그래프의 데이터는 중막층 면적에 대한 신생내막 두께의 백분율을 나타낸다(평균값 ± 표준오차; n = 6; P < 0.0001). 대표적인 결과가 보여진다.
본 발명의 일 양태에 따르면, 본 발명은 세포질 Hsp60(heat shock protein 60 kDa)의 억제제를 유효성분으로 포함하는 비정상적 세포 증식 관련 질환의 예방 또는 치료용 약제학적 조성물을 제공한다.
일반적으로, 열충격 단백질 60(Hsp60)은 마이토콘드리아 샤페론으로서 세포질에서 마이토콘드리아 매트릭스로 들어오는 단백질의 리폴딩에 관여한다. 즉, Hsp60은 선형 아미노산 사슬을 3차원적 구조로 폴딩시키는 데 도움을 주는 샤페로닌으로서 기능한다.
본 발명자들은 Hsp60이 샤페론 활성과는 독립적으로 세포질 내에서 IKKα/β와 직접적으로 상호결합하여 키나제의 인산화-의존성 활성화를 촉진시키고, 이로 인해 증가된 NF-κB의 전사 활성을 통해 유도된 생존 유전자들에 의해 세포 내 ROS의 레벨이 감소됨에 따라 아팝토시스-유도 스트레스에 대한 세포 생존율이 증가되는 세포질 Hsp60의 신규한 생존 촉진(pro-survival) 기능을 확인하였다. 대부분의 마이토콘드리아 열충격 단백질은 세포질로 나오면 세포 사멸을 유도하나, 본 발명자들은 세포질로 나온 Hsp60이 세포 생존을 촉진시킴을 밝혀내었다.
본 발명은 IKK/NF-κB 활성화에 포함된 마이토콘드리아-유래 세포질 Hsp60 단백질의 기능을 규명한 최초의 보고이다. 본 발명에 따르면, 세포질 Hsp60은 IKK 복합체와 상호작용하여 IKK 활성화 조절에 직접적으로 관여하며, 이를 통해 NF-κB 경로가 활성화되어 세포 생존반응이 활성화된다. 본 발명의 구체예에서, 본 발명자들은 심근세포, 간세포, 파골세포 등에서 세포질 Hsp60은 생존신호 기능을 수행한다고 알려진 IKK와 직접 상호작용하여 IKK를 활성화시킴으로써 NF-κB 타겟 유전자 발현을 통해 마이토콘드리아-유래 ROS를 감소시키는 생존 인자로서 기능한다는 것을 밝혀내었다. 따라서, 본 발명은 Hsp60과 IKK의 상호작용을 억제하거나 또는 세포질 Hsp60의 레벨을 감소시키는 세포질 Hsp60 억제제를 이용하여 비정상적 세포 증식 관련 질환을 치료하는 약제학적 조성물을 제공한다. Hsp60의 결핍이 마이토콘드리아의 기능적 손상을 유발한다고 알려져 있기 때문에, 본 발명은 Hsp60의 마이토콘드리아 레벨에는 영향을 미치지 않고 세포질 레벨만을 조절하는 세포질 Hsp60 억제제를 사용한다. 본 발명의 세포질 Hsp60 억제제는 마이토콘드리아 레벨에는 영향을 미치지 않으므로 정상세포에는 영향을 미치지 않고, 비정상적으로 증식된 세포에서 세포질 내 Hsp60에만 선택적으로 영향을 미침으로써, 정상세포에서의 독성 부작용 없이 비정상적 증식 세포 선택적으로 세포 사멸을 유도할 수 있다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 세포질 Hsp60은 IKK 복합체와 상호작용하며, 보다 바람직하게는 IKKα 또는 IKKβ와 결합한다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 세포질 Hsp60은 IKKα/β T-루프의 세린-인산화(Ser178/181)를 촉진시켜 IKK 복합체를 활성화시킨다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 세포질 Hsp60은 NF-κB 경로를 활성화시키며, 이러한 활성화는 NF-κB-의존적 생존 유전자들의 발현을 유도하여 아팝토시스-유도 스트레스에 대한 세포 생존율을 증가시킨다. 보다 바람직하게는, 상기 스트레스는 TNF-α 또는 디에틸니트로사민(diethylnitrosamine, DEN)이다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 세포질 Hsp60의 억제는 스트레스(예컨대, TNF-α, DEN)에 의해 세포 내에서 촉발되는 ROS의 증가를 초래하여 ASK-1(Apoptosis signal-regulating kinase 1)을 통해 JNK(c-Jun N-terminal kinase)/p38의 지속적인 활성화를 야기시켜 세포사멸을 유발한다.
본 명세서에서 용어 "세포질 Hsp60의 억제(inhibition of the cytosolic Hsp60)"는 세포질 Hsp60 유전자의 발현 억제 또는 세포질 Hsp60 단백질의 활성 억제를 모두 포괄하는 의미를 가지며, 바람직하게는 세포질 Hsp60 단백질의 활성, 즉 세포질 Hsp60 단백질과 IKK와의 상호작용을 억제하는 것이다. 보다 상세하게는, 세포질 Hsp60의 억제는 IKK 복합체와의 상호작용을 억제하여 IKKα/β T-루프의 세린-인산화(Ser178/181)의 감소를 유발하고, 그로 인해 IKK 복합체의 활성화를 저해시켜 NF-κB 신호전달을 억제 또는 감소시키는 것이다. 본 발명의 바람직한 구현예에 따르면, 세포질 Hsp60에 대한 안티센스 올리고데옥시뉴클레오타이드-1(AS-1 ODN, 서열번호 3)을 사용하여 세포질 Hsp60 단백질의 발현을 억제하였고, Hsp60 중화항체(Hsp60N)를 사용하여 세포질 Hsp60 단백질의 IKK 복합체와의 상호작용을 억제하였다. 그 결과, IKK 활성화 및 NF-κB의 전사활성이 감소되고, JNK1이 활성화되었다(도 18 내지 27).
본 발명에 따르면, 세포질 Hsp60의 억제는 IKK 복합체와의 상호작용을 통해 매개되는 NF-κB 신호전달을 억제하고, 보다 바람직하게는 IKKα 또는 IKKβ와의 상호작용을 통해 매개되는 신호전달을 억제한다. 본 발명의 바람직한 구현예에 따르면, 본 발명의 세포질 Hsp60의 억제는 세포 내 NF-κB 신호전달의 억제 또는 감소를 유발하여 다운스트림 신호전달 분자들의 발현 또는 활성을 감소시킨다. 이러한 NF-κB 신호전달의 억제 또는 감소는 마이토콘드리아 보호 유전자들의 발현 억제를 유발하여 세포 생존율을 감소시킨다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 세포질 Hsp60은 NF-κB-의존적 생존 유전자들의 발현 유도를 통해 마이토콘드리아-유래된 ROS 레벨을 감소시킨다. 본 발명의 구체예에서, 세포질 Hsp60의 제거는 TNF-α에 대한 반응에서 세포 내 ROS의 증가를 초래하고 이는 ASK-1을 통한 JNK/p38의 지속적인 활성화로 이어져 결국 세포 사멸을 유발하였다.
상술한 바와 같이, 본 발명의 세포질 Hsp60의 억제는 IKK/NF-κB 활성화를 억제하여 세포 생존율을 감소시킨다. 이러한 IKK/NF-κB 활성화의 억제는 NF-κB에 의해 조절되는 생존 유전자들의 발현을 감소시킴으로써, 다양한 약리학적 활성을 발휘한다. 보다 상세하게는, 본 발명의 세포질 Hsp60의 억제는 IKK 활성화에 영향을 주어 NF-κB 신호전달을 저해하고, 이에 따라 MnSOD 및 Bfl-1/A1 같은 생존 유전자들의 발현을 감소시켜 세포 내 ROS 레벨을 증가시킴으로써 이상 생존하는 세포의 사멸을 유도할 수 있다. Bfl-1/A-1는 tBid 및 Bak 길항제로 작용[Wang CY et al., Mol Cell Biol 19: 5923-5929 (1999)]하고 MnSOD는 마이토콘드리아 내부의 과산화 음이온(superoxide anion)을 제거[Wong GH et al., Cell 58: 923-931(1989)]하기 때문에, 두 유전자는 마이토콘드리아-유래된 ROS의 조절에 매우 중요하다.
본 발명의 조성물에서 유효성분으로 포함되는 세포질 Hsp60의 억제제는 안티센스 올리고뉴클레오타이드, siRNA 올리고뉴클레오타이드, 항체, 단일사슬 가변영역 단편, 펩타이드, 앱타머, 저분자량의 화합물 또는 천연추출물을 포함하지만, 이에 한정되는 것은 아니다.
바람직하게는, 세포질 Hsp60 단백질의 발현 억제제는 Hsp60 mRNA에 특이적으로 결합하는 안티센스 올리고뉴클레오타이드 또는 siRNA 올리고뉴클레오타이드이고, 보다 바람직하게는 안티센스 올리고뉴클레오타이드, 가장 바람직하게는 안티센스 올리고데옥시뉴클레오타이드(ODNs)이다.
본 명세서에서 용어 "안티센스 올리고뉴클레오타이드"란 특정 mRNA의 서열에 상보적인 올리고뉴클레오타이드 서열을 함유하고 있는 DNA 또는 RNA 또는 이들의 유도체를 의미하고, mRNA 내의 상보적인 서열에 결합하여 mRNA의 단백질로의 번역을 저해하는 작용을 한다. Hsp60에 대한 안티센스 서열은 Hsp60 mRNA에 상보적이고 Hsp60 mRNA에 결합할 수 있는 DNA 또는 RNA 서열을 의미하고, Hsp60 mRNA의 번역, 세포질 내로의 전위(translocation), 성숙(maturation) 또는 다른 모든 전체적인 생물학적 기능에 대한 필수적인 활성을 저해할 수 있다. 바람직하게는, 인간 Hsp60 ORF(open reading frame)의 서열(서열번호 1 또는 서열번호 2)에 상보적인 안티센스 올리고데옥시뉴클레오타이드(AS-ODN)를 제작한다. 보다 바람직하게는 ORF의 출발코돈 주위를 포함하는 서열을 대상으로 하며, 필요에 따라서는 ORF 내의 모든 부위를 대상으로 Tm 값이 높은 서열을 포함하여 제작할 수 있다. 본 발명의 구체예에서는 ORF의 출발코돈에서부터 3' 말단까지 전 서열에 걸쳐 고르게 안티센스 올리고뉴클레오타이드를 디자인하여 사용하였다. 안티센스 올리고뉴클레오타이드의 길이는 6 내지 100 염기이고, 바람직하게는 8 내지 60 염기이고, 보다 바람직하게는 10 내지 40 염기이며, 보다 더 바람직하게는 10-25 염기이고, 가장 바람직하게는 12-20 염기이다. 본 발명의 구체예에서 사용된 AS-1 ODN(서열번호 3)은 Hsp60 mRNA 전사체의 MTS(mitochondrial targeting signal)-코딩 부위를 타겟한다. 본 발명의 다른 구체예에서 사용된 AS-2 ODN(서열번호 4)은 오프 타겟 가능성을 배제하기 위하여, Hsp60 ORF의 MTS 서열 이후에 위치한 5'-말단 근처 부위(개시 코돈으로부터 +95 - +110 부위)를 타겟한다. 또한, ORF 내의 모든 부위를 타겟으로 하는 안티센스 올리고뉴클레오타이드가 모두 본 발명의 목적을 달성할 수 있음을 추가로 확인하기 위하여, AS-2 ODN 타겟 서열의 다운스트림 서열에 대하여 서열번호 5 (AS-3 ODN), 서열번호 6(AS-4 ODN) 및 서열번호 7(AS-5 ODN)의 안티센스 올리고데옥시뉴클레오타이드를 제작하여 사용하였다.
안티센스 올리고데옥시뉴클레오타이드는 약한 번역 차단제로서 작용하기 때문에 총 Hsp60 레벨의 감소를 유발하지는 않지만, 세포질에 위치하는 Hsp60은 마이토콘드리아에 존재할 때와 비교하여 반감기가 짧아져, 더 빠른 턴오버를 나타내고, 결국 본 발명에 따른 안티센스 올리고뉴클레오타이드의 처리에 의해 세포질 Hsp60의 레벨이 감소된다.
상기 안티센스 올리고뉴클레오타이드는 효능을 증진시키기 위하여 하나 이상의 염기, 당 또는 골격(backbone)의 위치에서 변형될 수 있다(De Mesmaeker et al., Curr Opin Struct Biol., 5(3):343-55(1995)). 올리고뉴클레오타이드 골격은 포스포로티오에이트, 포스포트리에스테르, 메틸 포스포네이트, 단쇄 알킬, 시클로알킬, 단쇄 헤테로아토믹, 헤테로시클릭 당간 결합 등으로 변형될 수 있다. 또한, 안티센스 올리고뉴클레오타이드는 하나 이상의 치환된 당 모이어티(sugar moiety)를 포함할 수 있다. 안티센스 올리고뉴클레오타이드는 변형된 염기를 포함할 수 있다. 변형된 염기에는 하이포크잔틴, 6-메틸아데닌, 5-me 피리미딘(특히 5-메틸시토신), 5-하이드록시메틸시토신(HMC), 글리코실 HMC, 젠토비오실 HMC, 2-아미노아데닌, 2-티오우라실, 2-티오티민, 5-브로모우라실, 5-하이드록시메틸우라실, 8-아자구아닌, 7-데아자구아닌, N6 (6-아미노헥실)아데닌, 2,6-디아미노퓨린 등이 있다. 또한, 본 발명의 안티센스 올리고뉴클레오타이드는 상기 안티센스 올리고뉴클레오타이드의 활성 및 세포 흡착성을 향상시키는 하나 이상의 모이어티(moiety) 또는 컨쥬게이트(conjugate)와 화학적으로 결합될 수 있다. 콜레스테롤 모이어티, 콜레스테릴 모이어티, 콜릭산, 티오에테르, 티오콜레스테롤, 지방성 사슬, 인지질, 폴리아민, 폴리에틸렌 글리콜 사슬, 아다맨탄 아세트산, 팔미틸 모이어티, 옥타데실아민, 헥실아미노-카르보닐-옥시콜에스테롤 모이어티 등의 지용성 모이어티 등이 있고 이에 제한되지는 않는다. 지용성 모이어티를 포함하는 올리고뉴클레오타이드의 제조 방법은 본 발명의 기술 분야에서 이미 잘 알려져 있다(미국특허 제5,138,045호, 제5,218,105호 및 제5,459,255호). 상기 변형된 올리고뉴클레오타이드는 뉴클레아제에 대한 안정성을 증가시키고 안티센스 올리고뉴클레오타이드과 표적 mRNA와의 결합 친화력을 증가시킬 수 있다.
안티센스 올리고뉴클레오타이드의 경우 통상의 방법으로 시험관에서 합성되어 생체 내로 투여하거나 생체 내에서 안티센스 올리고뉴클레오타이드가 합성되도록 할 수 있다. 시험관에서 안티센스 올리고뉴클레오타이드를 합성하는 한 예는 RNA 중합효소 I를 이용하는 것이다. 생체 내에서 안티센스 RNA를 합성하는 한 예는 인식부위(MCS)의 기원이 반대 방향에 있는 벡터를 사용하여 안티센스 RNA가 전사되도록 하는 것이다. 이런 안티센스 RNA는 서열 내에 번역 중지 코돈이 존재하도록 하여 펩타이드 서열로 번역되지 않도록 하는 것이 바람직하다.
본 발명에서 이용될 수 있는 안티센스 올리고뉴클레오타이드의 디자인은 당업계에 공지된 인간 Hsp60의 mRNA 서열을 참조하여 할 수 있다. 예를 들어, 상술한 바와 같이, 인간 Hsp60 mRNA의 CDS(coding sequence)에 상보적인 서열, 출발코돈과 그 주위 서열에 대한 상보적인 서열, 5'-UTR에 상보적인 서열, 3'-UTR에 상보적인 서열 등으로 본 발명의 안티센스 올리고뉴클레오타이드를 디자인할 수 있다. 본 발명의 구체예에서는 ORF의 출발코돈에서부터 3' 말단까지 전 서열에 걸쳐 고르게 안티센스 올리고뉴클레오타이드를 디자인하여 사용하였다. 본 발명의 안티센스 올리고뉴클레오타이드의 디자인 및 합성에 대한 상세한 설명은 문헌 [Weiss, B. (ed.): Antisense Oligodeoxynucleotides and Antisense RNA: Novel Pharmacological and Therapeutic Agents, CRC Press, Boca Raton, FL, 1997; Weiss, B., et al., Cell. Mol. Life Sci., 55: 334-358 (1999)]에 개시되어 있으며, 이 문헌은 참조로서 본 명세서에 포함된다.
본 명세서에서 용어 "siRNA"는 RNA 방해 또는 유전자 사일런싱을 매개할 수 있는 올리고뉴클레오타이드 분자를 의미한다(참조: WO 00/44895, WO 01/36646, WO 99/32619, WO 01/29058, WO 99/07409 및 WO 00/44914). siRNA는 표적 유전자의 발현을 억제할 수 있기 때문에 효율적인 유전자 넉다운 방법으로서 또는 유전자치료 방법으로 제공된다. siRNA는 식물, 벌레, 초파리 및 기생충에서 처음으로 발견되었으나, 최근에 siRNA를 개발/이용하여 포유류 세포 연구에 응용되었다.
본 발명에서 siRNA 분자가 이용되는 경우, 센스 가닥, 즉 Hsp60 mRNA 서열에 상응하는(corresponding) 서열과 안티센스 가닥, 즉 Hsp60 mRNA 서열에 상보적인 서열이 서로 반대쪽에 위치하여 이중쇄를 이루는 구조를 가질 수 있으며, 또는 자기-상보성(self-complementary) 센스 및 안티센스 가닥을 가지는 단일쇄 구조를 가질 수 있다.
siRNA는 RNA끼리 짝을 이루는 이중사슬 RNA 부분이 완전히 쌍을 이루는 것에 한정되지 않고 미스매치(mismatch, 대응하는 염기가 상보적이지 않음), 벌지(bulge, 일방의 사슬에 대응하는 염기가 없음) 등에 의하여 쌍을 이루지 않는 부분이 포함될 수 있다. 바람직하게는, 인간 Hsp60 ORF의 시작 코돈 주위의 서열에 상보적인 siRNA를 제작한다. 전체 길이는 10 내지 100 염기, 바람직하게는 15 내지 80 염기, 더욱 바람직하게는 20 내지 70 염기이다.
siRNA 말단 구조는 Hsp60 유전자의 발현을 RNA 간섭(RNAi) 효과에 의하여 억제할 수 있는 것이면 평활(blunt) 말단 혹은 점착(cohesive) 말단 모두 가능하다. 점착 말단 구조는 3'-말단 돌출 구조와 5'-말단 돌출 구조 모두 가능하다.
본 발명에서 siRNA 분자는 자기-상보성(self-complementary) 센스 및 안티센스 가닥 사이에 짧은 뉴클레오타이드 서열(예컨대, 약 5-15 nt)이 삽입된 형태를 가질 수 있으며, 이 경우 뉴클레오타이드 서열의 발현에 의해 형성된 siRNA 분자는 분자내 혼성화에 의하여 헤어핀 구조를 형성하게 되며, 전체적으로는 스템-앤드-루프 구조를 형성하게 된다. 이 스템-앤드-루프 구조는 시험관 내 또는 생체 내에서 프로세싱되어 RNAi를 매개할 수 있는 활성의 siRNA 분자를 생성한다.
본 발명에서 세포질 Hsp60의 억제제, 특히 활성 억제제는 바람직하게는 Hsp60에 특이적으로 결합하는 항체, 단일사슬 가변영역 단편, 펩타이드, 저분자량의 화합물 또는 천연추출물이다.
본 발명에서 이용될 수 있는 Hsp60 단백질에 특이적으로 결합하여 활성을 억제하는 항체는 폴리클로날 또는 모노클로날 항체이다. Hsp60 단백질에 대한 항체는 당업계에서 통상적으로 실시되는 방법들, 예를 들어, 융합 방법(Kohler et al., European Journal of Immunology, 6:511-519(1976)), 재조합 DNA 방법(미국 특허 제4,816,56호) 또는 파아지 항체 라이브러리 방법(Clackson et al, Nature, 352:624-628(1991) 및 Marks et al., J. Mol. Biol., 222:58, 1-597(1991))에 의해 제조될 수 있다. 항체 제조에 대한 일반적인 과정은 문헌[Harlow, E. et al., Using Antibodies: A Laboratory Manual, Cold Spring Harbor Press, New York, 1999; Zola, H., Monoclonal Antibodies: A Manual of Techniques, CRC Press, Inc., Boca Raton, Florida, 1984; 및 Coligan , CURRENT PROTOCOLS IN IMMUNOLOGY, Wiley/Greene, NY, 1991]에 상세하게 기재되어 있으며, 상기 문헌들은 본 명세서에 참조로서 포함된다. 예를 들어, 모노클로날 항체를 생산하는 하이브리도마 세포의 제조는 불사멸화 세포주를 항체-생산 림프구와 융합시켜 이루어지며, 이 과정에 필요한 기술은 당업자에게 잘 알려져 있으며 용이하게 실시할 수 있다. 폴리클로날 항체는 Hsp60 단백질 항원을 적합한 동물에게 주사하고, 이 동물로부터 항혈청을 수집한 다음, 공지의 친화성(affinity) 기술을 이용하여 항혈청으로부터 항체를 분리하여 얻을 수 있다. 본 발명의 구현예에서는, Hsp60 단백질에 특이적으로 결합하여 세포질 Hsp60 응집체를 형성하는 폴리클로날 중화항체를 이용하여 세포질 Hsp60이 IKK와 결합하는 것을 억제하였다.
본 발명에서 항체는 단일사슬 가변영역 단편(scFv)을 포함할 수 있다. 상기 단일사슬 가변영역 단편은 "경사슬의 가변성 부위(VL)-링커-중사슬의 가변성 부위(VH)"로 구성될 수 있다. 상기 링커는 중사슬 및 경사슬의 가변성 부위를 인위적으로 연결하는 작용을 하는 일정 길이의 아미노산 서열을 의미한다.
본 명세서에서 용어 “펩타이드"는 펩타이드 결합에 의해 아미노산 잔기들이 서로 결합되어 형성된 선형 또는 환형, 바람직하게는 선형의 분자를 의미한다. 본 발명의 펩타이드는 당업계에 공지된 화학적 합성 방법, 특히 고상 합성 기술(solid-phase synthesis techniques)에 따라 제조될 수 있다(Merrifield, J. Amer. Chem. Soc. 85: 2149-54(1963); Stewart, et al., Solid Phase Peptide Synthesis, 2nd. ed., Pierce Chem. Co.: Rockford, 111(1984)). Hsp60에 특이적으로 결합하여 Hsp60의 활성을 억제할 수 있는 펩타이드는 당업계에 공지된 통상의 방법, 예를 들어 파아지 디스플레이 방식으로 얻을 수 있다(Smith GP, Science 228 (4705):1315-1317 (1985); Smith GP, Petrenko VA, Chem. Rev. 97(2):391-410 (1997)). 상기 펩타이드는 4-40, 바람직하게는 5-30, 보다 바람직하게는 5-20, 가장 바람직하게는 8-15 아미노산 잔기의 펩타이드일 수 있다. 상기 펩타이드는 선형 또는 환형일 수 있다.
본 발명의 펩타이드는 아미노산 잔기를 변형시킴으로써 더욱 더 안정성을 향상시킬 수 있다. 본 발명의 바람직한 구현예에 따르면, 펩타이드의 아미노산 서열에서 적어도 하나의 아미노산, 바람직하게는 N-말단에 Gly 잔기, 아세틸기, 플루오레닐 메톡시 카르보닐기, 포르밀기, 팔미토일기, 미리스틸기, 스테아릴기 또는 폴리에틸렌글리콜(PEG), 가장 바람직하게는 Gly 잔기가 결합되어, 펩타이드의 안정성을 증가시킨다.
본 발명의 펩타이드의 N-말단에 Gly 잔기가 추가적으로 결합되는 경우, 추가적 Gly 잔기의 개수는 1-8개, 바람직하게는 2-6개, 보다 바람직하게는 2-4개, 가장 바람직하게는 3개이다.
본 명세서에서 용어 "앱타머(aptamer)"는 소정의 표적 분자에 대한 결합 활성을 갖는 올리고뉴클레오타이드 분자를 말한다. 앱타머는, 소정의 표적 분자에 대하여 결합함으로써, 소정의 표적 분자의 활성을 저해할 수 있다. 본 발명의 앱타머는 RNA, DNA, 수식(modified) 올리고뉴클레오타이드 또는 이들의 혼합물일 수 있다. 본 발명의 앱타머는 또한, 직쇄상 또는 환상의 형태일 수 있다. 본 발명의 앱타머의 길이는 특별히 한정되지 않고, 통상 약 15∼약 200 뉴클레오타이드일 수 있지만, 예컨대 약 100 뉴클레오타이드 이하이고, 바람직하게는 약 80 뉴클레오타이드 이하이며, 보다 바람직하게는 약 60 뉴클레오타이드 이하이고, 가장 바람직하게는 약 45 뉴클레오타이드 이하일 수 있다. 본 발명의 앱타머의 길이는 또한, 예컨대 약 18, 20 또는 25 뉴클레오타이드 이상일 수 있다. 총 뉴클레오타이드 개수가 적으면 화학합성, 화학수식 및 대량 생산이 보다 용이하고, 경제적이며, 생체 내 안정성은 높으면서 독성은 낮아 유리하다.
본 발명의 앱타머는 SELEX법 및 그 개량법[예컨대 Ellington et al., Nature, 1990 346, 818-822; Tuerk et al., Science, 1990 249, 505-510]을 이용함으로써 제작할 수 있다. SELEX법이란, 10-14개 정도의 상이한 뉴클레오타이드 서열을 갖는 올리고뉴클레오타이드의 풀로부터, 표적 물질에 특이적으로 결합하는 올리고뉴클레오타이드를 선별해오는 방법이다. 사용되는 올리고뉴클레오타이드는 40잔기 정도의 랜덤 서열을 프라이머 서열로 끼운 구조를 하고 있다. 이 올리고뉴클레오타이드 풀을 표적 물질과 회합시켜, 필터 등을 이용하여 표적 물질에 결합한 올리고뉴클레오타이드만 회수한다. 회수한 올리고뉴클레오타이드를 RT-PCR로 증폭하고, 이것을 다음 라운드의 주형으로서 이용한다. 이 작업을 10회 정도 반복함으로써 표적 물질과 특이적으로 결합하는 앱타머를 취득할 수 있다. SELEX법으로는 라운드수를 늘리거나 경합 물질을 사용함으로써, 표적 물질에 대하여 보다 결합력이 강한 앱타머를 농축하고, 선별할 수 있다. 따라서, SELEX의 라운드수를 조절하고/하거나 경합 상태를 변화시킴으로써, 결합력이 상이한 앱타머, 결합 형태가 상이한 앱타머, 결합력이나 결합 형태는 동일하지만 염기 서열이 상이한 앱타머를 얻을 수 있다. 또한, SELEX법에는 PCR에 의한 증폭 과정이 포함되지만, 그 과정에서 망간 이온을 사용하는 등으로 변이를 부여함으로써, 보다 다양성이 풍부한 SELEX를 행하는 것이 가능해진다.
또한, 앱타머는 종래 SELEX 기법 이외에, 복합 타겟, 즉 살아있는 세포 및 조직에 대해 Cell-SELEX 기법을 이용하여 얻을 수 있는데(Guo et al., Int. J. Mol. Sci., 9(4): 668, 2008), Cell-SELEX 기법은 표면 마커 타겟이 알려져 있지 않을 때조차도, 질환 세포에 대한 앱타머를 개발할 수 있게 하는 장점이 있다. 게다가, 분리된 상태에서는 그 본래의 특성을 나타내지 않을 수도 있어, 생리적 상태에 있는 타겟 단백질은 선별과정에서 더 기능적인 접근을 가능하게 하기 때문에, Cell-SELEX 기법은 종래의 SELEX 과정에 비하여 장점을 가지고 있다.
한편, 앱타머는, 인산기의 음전하를 이용한 이온결합, 리보오스를 이용한 소수성 결합 및 수소결합, 올리고뉴클레오타이드염기를 이용한 수소결합이나 스태킹(stacking)결합 등 다양한 결합 양식에 의해 표적 물질과 결합한다. 특히, 구성 뉴클레오타이드의 수만큼 존재하는 인산기의 음전하를 이용한 이온결합은 강하게 단백질의 표면에 존재하는 라이신이나 아르기닌의 양전하와 결합한다. 이 때문에, 표적 물질과의 직접적인 결합에 관련되어 있지 않은 올리고뉴클레오타이드염기는 치환할 수 있다. 특히, 스템 구조의 부분은 이미 염기쌍이 만들어져 있고, 또한 이중 나선 구조의 내측을 향하고 있기 때문에, 올리고뉴클레오타이드 염기는 표적 물질과 직접 결합하기 어렵다. 따라서, 염기쌍을 다른 염기쌍으로 치환하여도 앱타머의 활성은 감소하지 않는 경우가 많다. 루프 구조 등 염기쌍을 만들지 않은 구조에서도 올리고뉴클레오타이드 염기가 표적 분자와의 직접적인 결합에 관여하지 않는 경우에, 염기의 치환이 가능하다. 예컨대, 리보오스의 2' 위치에 있어서, 히드록실기가 임의의 원자 또는 기로 치환되어 있는 뉴클레오타이드일 수 있다. 이러한 임의의 원자 또는 기로서는, 예컨대, 수소 원자, 불소 원자 또는 -O-알킬기 (예:-O-CH3), -O-아실기 (예, -O-CHO), 아미노기(예, -NH2)로 치환되어 있는 뉴클레오타이드를 들 수 있다. 이와 같이 앱타머는 표적 분자와의 직접적인 결합에 관련되어 있는 관능기를 치환 또는 제거하지 않는 한 그 활성을 유지한다.
또한, 앱타머는 화학 합성이 가능하기 때문에 개질이 용이하다. 앱타머는 MFOLD 프로그램을 이용하여 2차 구조를 예측하거나, X선 해석이나 NMR 해석에 의해 입체 구조를 예측함으로써, 어떤 뉴클레오타이드를 치환 또는 결손하는 것이 가능한지, 또한 어디에 새로운 뉴클레오타이드를 삽입 가능한지 어느 정도 예측할 수 있다. 예측된 새로운 서열의 앱타머는 용이하게 화학 합성할 수 있고, 그 앱타머가 활성을 유지하고 있는지의 여부를 기존의 분석계에 의해 확인할 수 있다.
본 발명의 앱타머는, 결합성, 안정성, 약물 전달능 등을 높이기 위해, 각 뉴클레오타이드의 당잔기(예, 리보오스)가 수식된 것일 수 있다. 당잔기에서 수식되는 부위로서는, 예컨대 당잔기의 2'위치, 3'위치 및/또는 4' 위치의 산소원자를 다른 원자로 치환한 것 등을 들 수 있다. 수식의 종류로서는, 예컨대 플루오로화, O-알킬화(예, O-메틸화, O-에틸화), O-알릴화, S-알킬화(예, S-메틸화, S-에틸화), S-알릴화, 아미노화(예, -NH)를 들 수 있다. 이러한 당잔기의 개질은, 당업계에 공지된 통상적인 방법에 의해 행할 수 있다(예컨대, Sproat et al., Nucle. Acid. Res. 1991 19, 733-738; Cotton et al., Nucl. Acid. Res. 1991 19, 2629-2635; Hobbs et al., Biochemistry 1973 12, 5138-5145 참조).
본 발명의 앱타머는 또한, 결합성 등을 높이기 위해, 올리고뉴클레오타이드염기(예, 푸린, 피리미딘)가 개질(예, 화학적 치환)된 것일 수 있다. 이러한 개질으로서는, 예컨대 5위 피리미딘 개질, 6 및/또는 8위 푸린 개질, 환외(環外) 아민에서의 개질, 4-티오우리딘으로의 치환, 5-브로모 또는 5-요오드-우리실으로의 치환을 들 수 있다.
또한 뉴클레아제 및 가수분해에 대하여 내성이도록, 본 발명의 앱타머에 포함되는 인산기가 개질될 수 있다. 예컨대 P(0)0기가, P(0)S(티오에이트), P(S)S(디티오에이트), P(O)NR2(아미데이트), P(O)R, R(O)OR', CO 또는 CH2(포름아세탈) 또는 3'-아민(-NH-CH2-CH2-)으로 치환될 수 있다〔여기서 각각의 R 또는 R'은 독립적으로, H이거나, 또는 치환되거나, 또는 치환되지 않은 알킬(예, 메틸, 에틸)이다〕. 연결기로서는, -O-, -N- 또는 -S-가 예시되고, 이들의 연결기를 통하여 인접하는 뉴클레오타이드에 결합할 수 있다.
개질은 또한, 캡핑과 같은 3' 및 5'의 개질을 포함할 수 있다. 개질은 또한, 폴리에틸렌글리콜, 아미노산, 펩티드, inverted dT, 올리고뉴클레오타이드, 뉴클레오시드, Myristoyl, Lithocolic-oleyl, Docosanyl, Lauroyl, Stearoyl, Palmitoyl, Oleoyl, Linoleoyl, 그 외 지질, 스테로이드, 콜레스테롤, 카페인, 비타민, 색소, 형광물질, 항암제, 독소, 효소, 방사성 물질, 비오틴 등을 말단에 부가함으로써 행해질 수 있다. 이러한 개질에 대해서는, 예컨대 미국특허 제5,660,985호, 미국특허 제5,756,703호를 참조한다.
또한, 앱타머를 리포좀이나 나노입자의 표면에 부착함으로써, 리포좀이나 나노입자 내부에 탑재된 항암제, 톡신, 암성장 저해 유전자, siRNA 등을 표적 세포로 선택적으로 전달할 수 있다.
Hsp60의 활성을 억제하는 저분자량의 화합물 또는 천연추출물은 후술하는 스크리닝 방법을 통하여 용이하게 얻을 수 있다.
가장 바람직하게는, 본 발명의 조성물에서 이용되는 유효성분은 Hsp60에 대한 안티센스 올리고뉴클레오타이드이다. 안티센스 올리고뉴클레오타이드에 대한 상세한 설명은 위에 기재된 것과 동일하다.
안티센스 올리고뉴클레오타이드를 이용하여 목적의 질환을 치료하는 경우, 안티센스 올리고뉴클레오타이드는 세포 내로 유입되어야 한다. 안티센스 올리고뉴클레오타이드를 세포 내로 유입시키는 방법은 당업계에 공지된 다양한 방법을 통하여 실시할 수 있다. 예를 들어, 당업계에 공지된 다양한 물질을 이용하여 안티센스 올리고뉴클레오타이드를 리포좀에 포집시켜 세포 내로 유입시킬 수 있다. 또한, 안티센스 올리고뉴클레오타이드를 적합한 CPP(cell penetration peptide)에 연결하여 세포 내로 유입시킬 수 있다. 예컨대, 사용 가능한 CPP는 당업계에 공지된 다양한 CPP를 포함하며, 예를 들어, 페네트라틴(penetratin) 펩타이드, HIV-1의 Tat 펩타이드, 트랜스포탄(transportan) 펩타이드, 부포린(Buforin) Ⅱ 펩타이드, MAP(모델 양친매성 펩타이드), k-FGF 펩타이드, 프라이온 펩타이드, pVEC 펩타이드, pep-1 펩타이드, SynB1 펩타이드, pep-7 펩타이드, HN-1 펩타이드. 아르기닌 폴리머를 포함하는 펩타이드, Antp(Antennapedia 또는 penetratin) 펩타이드, Mph-1 펩타이드, HSV-1의 VP22 펩타이드 및 청어 프로타민의 HP4 펩타이드를 포함하지만, 이에 한정되는 것은 아니다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 조성물은 (a) 상술한 본 발명의 세포질 Hsp60의 억제제의 약제학적 유효량; 및 (b) 약제학적으로 허용되는 담체를 포함하는 약제학적 조성물이다.
본 명세서에서 용어 “약제학적 유효량"은 상술한 억제제가 세포질 Hsp60의 발현 또는 활성을 억제하기에 충분한 양을 의미한다.
본 발명의 조성물이 약제학적 조성물로 제조되는 경우, 본 발명의 약제학적 조성물은 약제학적으로 허용되는 담체를 포함한다. 본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다.
본 발명의 다른 양태에 따르면, 본 발명은 세포질 Hsp60의 억제제, 또는 이를 유효성분으로 포함하는 약제학적 조성물을 대상에게 투여하는 단계를 포함하는 비정상적 세포 증식 관련 질환의 치료방법에 관한 것이다. 상기에서 투여는 경구 또는 비경구 투여일 수 있으며, 비경구 투여인 경우에는 정맥내 주입, 피하 주입, 근육 주입, 복강 주입, 경피 투여, 점막 투여, 점안 투여 등일 수 있다.
본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 바람직하게는, 본 발명의 약제학적 조성물의 투여량은 성인 기준으로 0.001-100 ㎎/kg(체중)이다.
본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액, 시럽제 또는 유화액 형태이거나 엑스제, 산제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다.
본 발명에서 '비정상적 세포 증식 관련 질환'이란 세포의 비정상적 증식으로 인해 야기되는 질환을 의미하며, 이러한 질환으로는 암 질환, 염증성 질환, 이상증식 혈관 질환 등을 예로 들 수 있다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 '암 질환'은 생체 조직 안에서 세포가 무제한으로 증식하여 악성 종양을 일으키는 현상을 일컫는 용어로서, 본 발명의 조성물을 사용하여 예방 또는 치료될 수 있는 암은 뇌암, 신경내분비 암, 위암, 폐암, 유방암, 난소암, 간암, 기관지암, 비인두암, 후두암, 췌장암, 신장암, 방광암, 부신암, 대장암, 결장암, 자궁경부암, 전립선암, 골암, 피부암, 갑상선암, 부갑상선암 또는 요관암 등을 포함하나 이에 제한되는 것은 아니다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 '염증성 질환'은 염증을 유발하는 질환을 모두 포함하는 개념이며, 염증은 면역 적격 세포가 외부 개체 또는 항원성 단백질에 대한 반응에서 활성화되는 경우 일어난다. 염증성 과정은 침입 개체가 식세포화 되거나 중화되도록 하는 경우에서와 같이 유리할 수 있지만, 또한 골 및 연골의 파괴 및 결과적인 관절 기능의 제한을 야기하는 때의 관절염의 경우에서와 같이 해로울 수도 있다. 염증성 반응은 통상 외상 또는 항원, 예컨대 바이러스성, 박테리아성, 원생동물성, 또는 진균성 항원에 의해 유도된다.
본 발명에 의한 예방 또는 치료에 적합한 염증성 질환에는 염증-유도 골질환, 퇴행성 관절염, 당뇨병, 자가면역 근육염, 동맥경화, 뇌졸증, 간경화, 뇌막염, 염증성 위궤양, 담낭 결석, 신장 결석, 부비강염, 비염, 결막염, 천식, 피부염, 염증성 장질환, 염증성 콜라겐 혈관 질환, 사구체신염, 염증성 피부 질환, 및 유육종증 등이 포함되지만, 이에 제한되는 것은 아니다. 보다 바람직하게 본 발명의 염증성 질환은 a) 류마티스 염증성 질환인 퇴행성 관절염(rheumatoid arthritis), 전신성 홍반성 루푸스(Systemic lupus erythematosus), 강직성 척추염(Ankylosing spondylitis), 베체트 병(Behcet's disease), 자가면역 근육염(inflammatroy mysitis), b) 장 염증성 질환인 궤양성대장염(ulcerative colitis), 크론병(Crohn disease), c) 피부염증성 질환인 건선(psoriasis), 아토피성 피부염(atopic dermatitis), 접촉성 피부염, 습진성 피부염, 지루성 피부염, 편평 태선(lichen planus), 만성 단순태선(lichen simplex chronicus), 천포창(pemphigus), 불러스 천포창, 표피 수포증(Epidermolysis Bullosa), 담마진(Urticaria), 혈관 부종(angioedema), 맥관염(vasculitis), 홍반 또는 피부 호산구증다증(Eosinophilia), 화폐상 피부염(nummular dermatitis), 전신성 박탈 피부염, 정체 피부염, 모낭 및 여드름과 같은 피지샘의 질환, 입 주위 피부염, 수염 가성모낭염 및 약물 발진, 다형 홍반(erythema multiforme), 결절홍반(Erythema nodosum), 및 환상 육아종(Granuloma annulare)과 같은 염증 반응, 및 d) 이외의 염증성 위궤양(celiac disease), 뇌막염(encephalitis), 골반염증성질환(PID: Pelvic Inflammatory Disease) 등일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 '염증-유도 골질환'은 골 발생 질환, 골 골절, 골의 노인성 손실, 연골이영양증, 고칼슘혈증, 과골화증, 불완전골형성증, 골연화증, 골수염, 골다공증, 파젯병, 골관절염 또는 구루병을 포함하지만, 이에 한정되는 것은 아니다.
본 발명의 바람직한 구현예에 따르면, 본 발명의 '이상증식 혈관 질환'은 혈관에 존재하는 세포, 특히 혈관 평활근 세포의 과도한 증식에 의해 야기되는 질환 또는 질병을 의미한다. 이상증식 혈관 질환은 다양한 질환을 포함하며, 예를 들어, 동맥경화증, 아테롬성 동맥경화증, 재발협착증 및 협착증, 혈관 기형, 혈액투석과 관련된 혈관 통로 협착, 이식 후 동맥병증(transplant arteriopathy), 맥관염, 혈관염증질환, 디죠지 증후군, 유전성 출혈성 모세혈관확장증(HHT), 해면상혈관종, 켈로이드성 반흔, 화농성 육아종, 수포질환, 카포시 육종, 과증식성 유리체 증후군, 미숙아 망막증, 맥락막 신생혈관, 황반변성, 당뇨병성 망막증, 안내 신생혈관증식, 원발성 폐고혈압증, 천식, 비폴립(nasal polyps), 염증성 장 및 치주 질환, 복수, 복막 유착, 피임, 자궁내막증, 자궁출혈, 난소낭, 난소과자극증후군, 관절염, 류마티스성 관절염, 만성 관절류마티즘, 윤활막염, 골관절염, 골수염, 골증식, 폐혈증, 혈관누출 증후군, 암, 감염성 질환 또는 자가면역질환을 포함한다. 바람직하게는, 본 발명의 이상증식 혈관 질환은 동맥경화증, 아테롬성 동맥경화증, 재발협착증 또는 협착증이다. 아테롬성 동맥경화증은 동맥의 내층에 지방 물질이 침착되거나 섬유화(fibrosis)되어 있는 질환이다. 한편, 재발협착증은 혈관벽이 손상(traumatization)된 후 혈관 통로가 좁혀지는 질환이다. 동맥경화 진행과 스탠트 삽입술 후에 발생하는 혈관 재발협착증은 혈관평활근 세포의 증식, 이동 그리고 세포외 기질(extracellular matrix)의 분비 등에 기인한다고 알려져 있다(Circulation, 1997, 95, 1998-2002; J. Clin. Invest. 1997, 99, 2814-2816; Cardiovasc. Res. 2002, 54, 499-502). 이에, 동맥경화의 진행과 혈관 재협착의 방지를 위해 혈관 평활근 세포의 증식을 억제하는 약물에 대한 연구가 널리 진행되고 있다(J. Am. Coll. Cardiol., 2002, 39, 183-193).
본 발명의 '예방 또는 치료'에서 '예방'이란 세포질 Hsp60 억제제를 포함하는 약제학적 조성물의 투여로 인한 세포질 Hsp60 단백질의 활성 증가에 따르는 모든 질환의 발병을 억제시키거나 발병을 지연하는 모든 행위를 말하며, '치료'란 상기 약제학적 조성물의 투여로 세포질 Hsp60 단백질의 활성 증가로 인한 모든 질병을 호전시키거나 이롭게 변경하는 모든 행위를 의미한다.
본 발명의 구체예에서, 세포질 Hsp60 억제제로서 Hsp60 AS-ODN은 세포질 Hsp60의 레벨이 증가된 대장암 세포주에서 TNF-α-유도된 세포 사멸을 증가시켰다(도 49).
또한, 본 발명의 구체예에서, 본 발명자들은 Hsp60 AS-ODN이 생체 내 NF-kB-의존적 염증 반응을 억제할 수 있는 지 여부를 실험하였다. 더욱 구체적으로, 최근에 IKK 복합체가 파골세포 형성과정 동안 RANKL로부터 NF-kB로의 생존 경로를 매개한다는 것이 보고되었는 바, 본 발명자들은 염증-유도 골 소실과 관련하여 파골세포 분화에서의 Hsp60 AS-ODN의 효과를 확인하였다.
골재형성에는 크게 두 종류의 세포가 관여하는데, 두 세포 중 하나는 뼈를 생성하는 조골세포(osteoblast)이고, 다른 하나는 뼈를 파괴하는 파골세포(osteoclast)이다. 조골세포는 RANKL과 이것의 유도 수용체(decoy receptor)인 OPG(osteoprotegerin)를 생성한다. RANKL이 파골 전구세포(osteoclast progenitor cells) 표면에 있는 수용체인 RANK(receptor activator of nuclear factor-κB)에 결합하면 파골 전구 세포가 파골세포로 성숙화(maturation)되어 골흡수(bone resorption)가 일어난다. 하지만, OPG가 RANKL과 결합하면 RANKL과 RANK간 결합이 차단되어 파골세포의 형성이 억제되고 필요 이상의 골 흡수가 일어나지 않게 된다(Theill LE. 외, Annu Rev Immunol., 20, pp.795-823, 2002; Wagner EF. 외, Curr Opin Genet Dev., 11, pp.527-532, 2001). 오래된 뼈의 흡수 또는 파괴는 혈액세포(조혈모세포)에서 생기는 파골세포에 의해 이루어지며 이는 뼈에 구멍을 내어 적은 양의 칼슘이 혈류로 방출되어 신체기능을 유지하는데 사용되도록 한다(William J. 외, Nature., 423, pp.337342, 2003).
그 결과, IKK 복합체와 상호작용하는 본 발명의 세포질 Hsp60의 억제는 RANKL 또는 TNF-α-유도된 다핵성 TRAP(tartrate-resistant acid phosphatase)-양성 파골세포의 형성을 현저하게 감소시켰다. 또한, 세포질 Hsp60의 이상 발현은 RANKL에 대한 반응에서 TRAP-양성 파골세포의 형성을 뚜렷하게 증가시켰다. 이러한 결과들은 세포질 Hsp60이 IKK/NF-kB 신호전달을 통해 SOD2(superoxide dismutase 2) 발현을 유도하여 파골세포의 생존을 촉진하므로, 세포질 Hsp60을 억제하여 염증-유도 골 소실을 비롯한 골질환을 치료할 수 있다는 것을 의미한다(도 58 내지 61).
또한, 본 발명의 구체예에서, 본 발명의 Hsp60 AS-ODN에 의한 세포질 Hsp60의 억제는 손상된 경동맥에서 증식성 평활근 세포에 의한 신생내막 두께 증식을 약 50% 정도 감소시켰으며, 이러한 신생내막 층의 감소는 아팝토틱 세포 사멸에 의해 유발되었다(도 62 내지 64). 따라서, 혈관 평활근 세포의 증식을 매우 효율적으로 억제하는 본 발명의 세포질 Hsp60의 억제제는 이상증식 혈관 질환의 치료에 유효하다는 것을 알 수 있다.
본 발명의 다른 양태에 따르면, 본 발명은
(a) 세포질 Hsp60 유전자를 포함하는 세포에 시험물질을 처리하는 단계;
(b) 상기 세포질 Hsp60의 발현을 분석하는 단계; 및
(c) 상기 시험물질이 세포질 Hsp60의 레벨을 감소시키면 비정상적 세포 증식 관련 질환 치료제로 판단하는 단계를 포함하는, 비정상적 세포 증식 관련 질환 치료제의 스크리닝 방법을 제공한다.
본 발명의 또다른 양태에 따르면, 본 발명은
(a) 세포질 Hsp60 단백질, 또는 세포질 Hsp60 단백질과 IKK(IκB 키나제) 단백질을 포함하는 세포 또는 세포 추출물(cell extract)에 시험물질을 처리하는 단계;
(b) 상기 시험물질이 세포질 Hsp60 단백질에 결합하는지 여부, 또는 상기 시험물질이 세포질 Hsp60 단백질과 IKK 단백질 사이의 결합을 억제하는지 여부를 분석하는 단계; 및
(c) 상기 시험물질이 세포질 Hsp60 단백질에 결합하거나 또는 세포질 Hsp60 단백질과 IKK 사이의 결합을 억제시키면 비정상적 세포 증식 관련 질환 치료제로 판단하는 단계를 포함하는, 비정상적 세포 증식 관련 질환 치료제의 스크리닝 방법을 제공한다. 상기 세포는 세포 추출물(cell extract)일 수 있다. 이 경우, 세포질 Hsp60 단백질로서, 분리된 형태의 세포질 Hsp60 또는 세포 내에 포함되어 있는 세포질 Hsp60 단백질 등 어떠한 형태의 것도 사용할 수 있다.
본 발명의 스크리닝 방법은 다양한 방식으로 실시할 수 있으며, 특히 당업계에 공지된 다양한 결합 분석(binding assay)에 따라 고속(high throughput) 방식으로 실시할 수 있다.
본 발명의 스크리닝 방법에 있어서, 시험물질 또는 세포질 Hsp60 단백질은 검출가능한 표지(detectable label)로 레이블링될 수 있다. 예를 들어, 상기 검출가능한 표지(detectable label)는, 화학적 표지(예컨대, 바이오틴), 효소 표지(예컨대, 호스래디쉬 퍼옥시다아제, 알칼린 포스파타아제, 퍼옥시다아제, 루시퍼라아제, β-갈락토시다아제 및 β-글루코시다아제), 방사능 표지(예컨대, C14, I125, P32 및 S35), 형광 표지[예컨대, 쿠마린, 플루오레세인, FITC(fluoresein Isothiocyanate), 로다민 6G(rhodamine 6G), 로다민 B(rhodamine B), TAMRA(6-carboxy-tetramethyl-rhodamine), Cy-3, Cy-5, Texas Red, Alexa Fluor, DAPI(4,6-diamidino-2-phenylindole), HEX, TET, Dabsyl 및 FAM], 발광 표지, 화학발광(chemiluminescent) 표지, FRET(fluorescence resonance energy transfer) 표지 또는 금속 표지(예컨대, 금 및 은)이다.
검출가능한 표지가 레이블링된 세포질 Hsp60 단백질 또는 시험물질을 이용하는 경우, 세포질 Hsp60 단백질과 시험물질 사이의 결합 발생 여부는 표지로부터 나오는 신호를 검출하여 분석할 수 있다. 예를 들어, 표지로서 알칼린 포스파타아제가 이용되는 경우에는, 브로모클로로인돌일 포스페이트(BCIP), 니트로 블루 테트라졸리움(NBT), 나프톨-AS-B1-포스페이트(naphthol-AS-B1-phosphate) 및 ECF(enhanced chemifluorescence)와 같은 발색반응 기질을 이용하여 신호를 검출한다. 표지로서 호스 래디쉬 퍼옥시다아제가 이용되는 경우에는 클로로나프톨, 아미노에틸카바졸, 디아미노벤지딘, D-루시페린, 루시게닌(비스-N-메틸아크리디늄 니트레이트), 레소루핀 벤질 에테르, 루미놀, 암플렉스 레드 시약(10-아세틸-3,7-디하이드록시페녹사진), HYR(p-phenylenediamine-HCl and pyrocatechol), TMB(tetramethylbenzidine), ABTS(2,2'-Azine-di[3-ethylbenzthiazoline sulfonate]), o-페닐렌디아민(OPD) 및 나프톨/파이로닌와 같은 기질을 이용하여 신호를 검출한다.
택일적으로, 시험물질의 세포질 Hsp60 단백질로의 결합 여부는 상호작용물(interactants)의 레이블링 없이 분석할 수도 있다. 예를 들어, 마이크로피지오미터(microphysiometer)를 이용하여 시험물질이 세포질 Hsp60 단백질에 결합하는지 여부를 분석할 수 있다. 마이크로피지오미터는 LAPS(light-addressable potentiometric sensor)를 이용하여 세포가 그의 환경을 산성화하는 속도를 측정하는 분석 도구이다. 산성화 속도의 변화는, 시험물질과 세포질 Hsp60 단백질 사이의 결합에 대한 지시자(indicator)로 이용될 수 있다(McConnell et al., Science 257:1906-1912 (1992)).
시험물질의 세포질 Hsp60 단백질과의 결합 능력은 실시간 이분자 상호작용 분석(BIA)를 이용하여 분석할 수 있다(Sjolander & Urbaniczky, Anal. Chem. 63:2338-2345 (1991), and Szabo et al., Curr. Opin. Struct. Biol. 5:699-705 (1995)). BIA는 실시간으로 특이적 상호작용을 분석하는 기술로서, 상호작용물(interactants)의 레이블링 없이 실시할 수 있다(예컨대, BIAcore™). 표면 플라즈몬 공명(SPR)에서의 변화는 분자들 사이의 실시간 반응에 대한 지시자(indicator)로 이용될 수 있다.
또한, 본 발명의 스크리닝 방법은, 투-하이브리드 분석 또는 쓰리-하이브리드 분석 방법에 따라 실시할 수 있다(Zervos et al., Cell 72, 223-232, 1993; Madura et al., J. Biol. Chem. 268, 12046-12054, 1993; Bartel et al., BioTechniques 14, 920-924, 1993; Iwabuchi et al., Oncogene 8, 1693-1696, 1993; 및 W0 94/10300). 이 경우, 세포질 Hsp60 단백질을 베이트(bait) 단백질로 이용할 수 있다. 이 방법에 따르면, 세포질 Hsp60 단백질에 결합하는 물질, 특히 단백질을 스크리닝 할 수 있다. 투-하이브리드 시스템은 분할 가능한 DNA-결합 및 활성화 도메인으로 구성된 전사인자의 모듈 특성에 기초한다. 간단하게는, 이 분석 방법은 두 가지 DNA 컨스트럭트를 이용한다. 예컨대, 하나의 컨스트럭트에서, 세포질 Hsp60-코딩 폴리뉴클레오타이드를 공지의 전사 인자(예컨대, GAL-4)의 DNA 결합 도메인-코딩 폴리뉴클레오타이드에 융합시킨다. 다른 컨스트럭트에서, 분석 대상의 단백질("프레이" 또는 "시료")을 코딩하는 DNA 서열을 상기 공지의 전사인자의 활성화 도메인을 코딩하는 폴리뉴클레오타이드에 융합시킨다. 만일, 베이트 및 프레이가 생체 내에서 상호작용하여 복합체를 형성하면, 전사인자의 DNA-결합 및 활성화 도메인이 인접하게 되며, 이는 리포터 유전자(예컨대, LacZ)의 전사를 촉발하게 된다. 리포터 유전자의 발현을 검출할 수 있으며, 이는 분석 대상의 단백질이 세포질 Hsp60 단백질과 결합할 수 있음을 나타내는 것이며, 결론적으로 비정상적 세포 증식 관련 질환 치료용 물질로 이용될 수 있음을 나타내는 것이다.
본 발명의 방법에 따르면, 우선 세포질 Hsp60 단백질에 분석하고자 하는 시험물질을 접촉시킨다. 본 발명의 스크리닝 방법을 언급하면서 사용되는 용어 "시험물질"은 세포질 Hsp60 유전자의 발현 또는 세포질 Hsp60 단백질의 활성에 영향을 미치는지 여부를 검사하기 위하여 스크리닝에서 이용되는 미지의 물질을 의미한다. 상기 시료는 화학물질, 펩타이드 및 천연 추출물을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 스크리닝 방법에 의해 분석되는 시료는 단일 화합물 또는 화합물들의 혼합물(예컨대, 천연 추출물 또는 세포 또는 조직 배양물)이다. 시료는 합성 또는 천연 화합물의 라이브러리로부터 얻을 수 있다. 이러한 화합물의 라이브러리를 얻는 방법은 당업계에 공지되어 있다. 합성 화합물 라이브러리는 Maybridge Chemical Co.(UK), Comgenex(USA), Brandon Associates(USA), Microsource(USA) 및 Sigma-Aldrich(USA)에서 상업적으로 구입 가능하며, 천연 화합물의 라이브러리는 Pan Laboratories(USA) 및 MycoSearch(USA)에서 상업적으로 구입 가능하다. 시료는 당업계에 공지된 다양한 조합 라이브러리 방법에 의해 얻을 수 있으며, 예를 들어, 생물학적 라이브러리, 공간 어드레서블 패러럴 고상 또는 액상 라이브러리(spatially addressable parallel solid phase or solution phase libraries), 디컨볼루션이 요구되는 합성 라이브러리 방법, "1-비드 1-화합물" 라이브러리 방법, 그리고 친화성 크로마토그래피 선별을 이용하는 합성 라이브러리 방법에 의해 얻을 수 있다. 분자 라이브러리의 합성 방법은, DeWitt 외, Proc. Natl. Acad. Sci. U.S.A. 90, 6909, 1993; Erb 외 Proc. Natl. Acad. Sci. U.S.A. 91, 11422, 1994; Zuckermann 외, J. Med. Chem. 37, 2678, 1994; Cho 외, Science 261, 1303, 1993; Carell 외, Angew. Chem. Int. Ed. Engl. 33, 2059, 1994; Carell 외, Angew. Chem. Int. Ed. Engl. 33, 2061; Gallop 외, J. Med. Chem. 37, 1233, 1994 등에 개시되어 있다.
이어, 시험물질이 처리된 세포질 Hsp60 단백질의 활성을 측정한다. 측정 결과, 세포질 Hsp60 단백질의 활성이 감소-조절(down-regulation)되는 것이 측정되면, 상기 시험물질은 비정상적 세포 증식 관련 질환 치료제로 판정될 수 있다.
또한, 본 발명을 이용하여 세포질 Hsp60 단백질과 IKK 단백질 사이의 결합을 억제하는 물질을 스크리닝할 수 있다. 상술한 두 단백질 간의 결합을 억제하는 물질의 스크리닝은 당업계에 공지된 다양한 방법, 예를 들어 투-하이브리드 분석(Zervos et al., Cell 72, 223232, 1993), FRET(Fluorescence resonance energy transfer; Shyu et al., PNAS, 105:151-156(2008)), PCA(Protein Complementation Assay; Tarassov K., et al., Science, 320(5882): 1465-1470(2008)), PLA(Proximal Ligation Assay; Fredriksson S., et al., Nat Biotechnol., 20(5): 473-7(2002)) 등을 이용하여 실시할 수 있다.
본 발명의 방법이 투-하이브리드 분석에 의해 실시되는 경우, 세포질 Hsp60을 베이트(bait) 단백질로, IKK-α 또는 IKK-β를 프레이(pray) 단백질로 제작될 수 있다. 세포질 Hsp60 단백질과 IKK-α 또는 IKK-β 단백질 간의 상호작용을 통해 전사인자의 DNA-결합 및 활성화 도메인이 인접하게 되어 리포터 유전자(예컨대, LacZ)의 전사가 촉진된다. 이에 따라, 리포터 유전자의 발현을 통해 두 단백질 간의 상호작용을 검출할 수 있다. 본 발명에 따르면, 본 발명의 세포질 Hsp60 단백질(베이트)과 IKK(IκB 키나제) 단백질(프레이)을 포함하는 세포에 시험물질을 처리한다. 시험물질을 처리하기 전과 비교하여 처리 후 리포터 유전자의 발현이 억제된다면, 상술한 시험물질이 세포질 Hsp60 단백질과 IKK-α 또는 IKK-β 단백질 간의 상호작용을 억제한다는 것을 나타낸다.
FRET은 상호작용하는 단백질 쌍에 서로 다른 형광물질이 융합되어 공여자와 수용자 간의 밀접 또는 거리를 측정할 수 있는 어세이 방법이다. 여기된 공여자 플루오로포어는 수용자 분자로 에너지를 전이시킨다. 이 때, 에너지 전이 효율(FRET 효율)은 수용자로 에너지 전이를 초래하는 공여자 여기 상태의 정도(fraction)를 의미한다. 따라서, FRET 효율은 단백질-단백질 상호작용의 지시자로서 이용될 수 있다.
본 발명의 방법이 FRET 분석에 의해 실시되는 경우, 세포질 Hsp60과 IKK-α 또는 IKK-β를 각각 서로 다른 형광물질과 융합시켜 제작한다. 본 발명의 세포질 Hsp60과 플루오로포어(예: GFP, RFP, CFP, YEP, 등)의 융합 컨스트럭트는 공여자로, IKK-α 또는 IKK-β와 플루오로포어의 융합 컨스트럭트는 수용자로 기능한다. 상술한 두 컨스트럭트 간의 상호작용을 통해 FRET 효율을 측정할 수 있다. 본 발명에 따르면, 플루오로포어(예: GFP, RFP, CFP, YEP, 등)가 융합된 세포질 Hsp60과 KK-α 또는 IKK-β 컨스트럭트들을 포함하는 세포에 시험물질을 처리한다. 시험물질을 처리하기 전과 비교하여 처리 후 FRET 효율이 감소한다면, 상술한 시험물질이 세포질 Hsp60 단백질과 IKK-α 또는 IKK-β 단백질 간의 상호작용을 억제하는 기능을 한다는 것을 의미한다.
본 발명의 방법이 PCA 분석에 의해 실시되는 경우, 형광물질의 N-말단 단편과 C-말단 단편을 각각 세포질 Hsp60과 IKK-α 또는 IKK-β과 융합시킨 컨스트럭트를 제작한다. 예를 들어, 형광물질로서 이용될 수 있는 YEP를 N-말단 단편(N-YEP)과 C-말단 단편(C-YEP)으로 나누어서 각각 세포질 Hsp60과 IKK-α 또는 IKK-β과 융합된 컨스트럭트(N-YEP-세포질 Hsp60 및 C-YEP-IKK-α 또는 C-YEP-IKK-β; 또 다른 컨스트럭트로 C-YEP-세포질 Hsp60 및 N-YEP-IKK-α 또는 N-YEP-IKK-β로 제작될 수도 있음)를 각각 제작한다. 이들 컨스트럭트 내의 세포질 Hsp60과 IKK-α 또는 IKK-β이 상호작용함에 따라 YEP의 N-말단 단편과 C-말단 단편이 서로 결합하고 완전한 YEP를 형성하여 형광을 나타내게 되며, 이를 통해 두 단백질 간의 상호작용을 검출할 수 있다. 본 발명에서, 형광물질의 N-말단 단편 또는 C-말단 단편과 융합된 세포질 Hsp60과 IKK-α 또는 IKK-β 컨스트럭트들을 포함하는 세포에 시험물질을 처리한 후 형광을 검출한다. 이때, 시험물질을 처리하기 전과 비교하여 형광이 감소한다면, 상술한 시험물질이 세포질 Hsp60 단백질과 IKK-α 또는 IKK-β 단백질 간의 상호작용을 억제하는 기능을 한다는 것을 의미한다.
세포질 Hsp60의 발현을 분석하여 본 발명의 스크리닝 방법을 실시하는 경우, 세포질 Hsp60 유전자의 발현량 변화의 측정은 당업계에 공지된 다양한 방법을 통해 실시될 수 있다. 예를 들어, RT-PCR(Sambrook 외, Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001)), 노던 블롯팅(Peter B. Kaufma 외, Molecular and Cellular Methods in Biology and Medicine, 102-108, CRC press), cDNA 마이크로어레이를 이용한 혼성화 반응(Sambrook 외, Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001)) 또는 인 시투(in situ) 혼성화 반응(Sambrook 등, Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001))을 이용하여 실시할 수 있다.
RT-PCR 프로토콜에 따라 실시하는 경우에는 우선, 시험물질을 처리한 세포에서 세포질 분획을 분리한 후 이로부터 총 RNA를 분리하고 올리고 dT 프라이머 및 역전사효소를 이용하여 제1쇄 cDNA를 제조한다. 이어, 제1쇄 cDNA를 주형으로 이용하고, 세포질 Hsp60 유전자-특이적 프라이머 세트를 이용하여 PCR 반응을 실시한다. 그런 다음, PCR 증폭 산물을 전기영동하고, 형성된 밴드를 분석하여 세포질 Hsp60 유전자의 발현량 변화를 측정한다.
세포질 Hsp60 단백질의 양의 변화는 당업계에 공지된 다양한 면역분석 방법을 통해 실시될 수 있다. 예를 들어, 세포질 Hsp60 단백질의 양의 변화는 방사능면역분석, 방사능면역침전, 면역침전, ELISA(enzyme-linked immunosorbent assay), 캡처-ELISA, 억제 또는 경쟁 분석, 그리고 샌드위치 분석을 포함하지만, 이에 한정되는 것은 아니다.
상기 세포질 Hsp60의 발현, 세포질 Hsp60 단백질에의 결합 또는 세포질 Hsp60 단백질과 IKK 단백질 사이의 결합은 세포 내에서 또는 시험관 내에서 분석될 수 있다.
본 발명의 또 다른 양태에 따르면, 본 발명은 상기 스크리닝 방법에 의하여 검색된 세포질 Hsp60 발현 억제제인 비정상적 세포 증식 관련 질환 치료제, 상기 스크리닝 방법에 의하여 검색된 세포질 Hsp60 단백질에 결합하는 세포질 Hsp60 단백질의 활성 억제제인 비정상적 세포 증식 관련 질환 치료제, 또는 상기 스크리닝 방법에 의하여 검색된 세포질 Hsp60 단백질과 IKK 단백질 결합 억제제인 비정상적 세포 증식 관련 질환 치료제를 제공한다.
본 발명의 다른 양태에 따르면, 본 발명은 상기 스크리닝 방법을 수행하기 위한 스크리닝 키트를 제공한다. 구체적으로, 세포질 Hsp60 단백질, 또는 세포질 Hsp60 단백질 및 IKK(IκB 키나제) 단백질을 포함하는 세포 또는 세포 추출물, 및 반응 완충액을 포함하는 스크리닝 키트이다.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
실험방법
시약
IKKα(B-8), IKKγ(FL-419), Hsp90(H-114), Hsp60(K-19 및 N-20), IκBα(C-21), JNK1(C-17), ASK-1(H-300 및 F-9), 글루타티온 S-트랜스퍼라제(B14) 및 염소 IgG에 대한 항체들은 Santa Cruz Biotechnology(Santa Crus, US)로부터 구입하였다. 항-Flag 항체(M2)는 Sigma로부터 구입하였다. 항-헥사히스티딘 항체는 Qiagen으로부터 구입하였다. 포스포-IKK, 포스포-IKKα 및 포스포-IKKβ에 대한 항체들은 Cell Signaling Technology로부터 구입하였다. 정상 마우스 및 래빗 IgG는 Amersharm Bioscience로부터 구입하였다. 항-사이토크롬 c 항체는 BD Pharmingen로부터 구입하였다. 페록시레독신 III(Prx III), MnSOD(2AI), 헤마글루티닌 에피토프(Hemagglutinin epitope, HA) 및 GAPDH에 대한 항체들은 AbFrontier(Seoul, Korea)로부터 구입하였다. 재조합 인간 TNF-α 항체는 Invitrogen(Grand Island, USA)으로부터 구입하였다. 안티센스 및 센스 서열을 포함하는 포스포로티오에이트 올리고데옥시뉴클레오타이드(ODNs)는 Hokkaido System Sciences Co.(Hokkaido, Japan)에서 합성하였다. 전장 인간 IκB 단백질은 W. Jeong(Ewha Womans University, Korea)으로부터 제공받았다[Jung Y, Kim H, Min SH, Rhee SG, Jeong W (2008) Dynein light chain LC8 negatively regulates NF-kappaB through the redox-dependent interaction with IkappaBalpha. J Biol Chem 283: 23863-23871].
플라스미드
인간 Hsp60의 전장 cDNA를 국가유전체정보센터(National Genome Information Center; Daejon, Korea)로부터 구입하였다. 마이토콘드리아 타겟팅 서열(MTS; 인간 서열에 기반된 1-26 아미노산 서열)이 결핍된 Hsp60의 절단된 형태인 Hsp60c를 PCR로 증폭하여 pCGN-HA(Cold Spring Harbor 연구실의 W. Herr 박사로부터 제공받음) 및 pGEX-4T1(Amersham) 벡터에 클로닝하여 각각 HA-태깅된 Hsp60c 발현벡터 및 GST-융합된 Hsp60c 발현벡터를 구축하였다.
CRE-, NF-AT- 및 AP1-의존적(pAP17x-Luc) 파이어플라이 루시퍼라제 리포터들은 Stratagene으로부터 구입하였다. IFNβ-유래된 NF-κB 인핸서 서열을 포함하는 루시퍼라제 리포터 플라스미드들[Fujita T, Nolan GP, Ghosh S, Baltimore D (1992) Independent modes of transcriptional activation by the p50 and p65 subunits of NF-kappa B. Genes Dev 6: 775-787]은 S. Y. Lee(Ewha Womans University, Korea)으로부터 제공받았다. 인간 IKKα, β 및 γ cDNA는 pCMV2-FLAG 또는 바큘로바이러스 발현벡터인 pFastBac-HTa(Invitrogen)로 클로닝하였다. IKKα, β 및 γ를 각각 인코딩하는 pFastBac 컨스트럭트들은 제조자의 프로토콜에 따라 고-역가 재조합 바큘로바이러스 스톡(~ 1×107 pfu/ml)의 생산에 이용하였다. 인간 Bcl-2 또는 Bcl-XL을 인코딩하는 pPuro 플라스미드들은 D.Y. Shin(Dankook University, Korea)으로부터 제공되었다[Jung MS, Jin DH, Chae HD, Kang S, Kim SC, et al. (2004) Bcl-xL and E1B-19K proteins inhibit p53-induced irreversible growth arrest and senescence by preventing reactive oxygen species-dependent p38 activation. J Biol Chem 279: 17765-17771]. pGEX-4T1-SEK1 (K129R) 플라스미드[Sanchez I, Hughes RT, Mayer BJ, Yee K, Woodgett JR, et al. (1994) Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature 372: 794-798]는 GST-SEK1(K129R) 재조합 단백질을 생산하기 위해 이용하였다. 위치-지정된 돌연변이 유발은 QuikChange 돌연변이유발 키트(Stratagene)를 이용하여 실시하였다.
IKK 복합체의 면역-친화성 정제 및 ESI-q-TOF 탠덤 질량분석법
HeLa S3 세포(20 l 현탁 배양액으로부터 20 ml로 패킹)를 200 ml의 용해 완충액 A(20 mM HEPES(pH 7.5), 150 mM NaCl, 1 mM EDTA, 2 mM EGTA, 1% 트라이톤 X-100, 10% 글라이세롤, 1 mM AEBSF, 1 mM Na3VO4, 5 mM NaF, 10 ㎍/ml 아프로티닌 및 류펩틴)에서 서서히 용해시켰다. 용해물(2 g의 총 단백질)을 아가로오스 비드만으로 1시간 동안 미리 깨끗하게 한 후, 항-IKKα-컨쥬게이션된 아가로오스 비드(2 mg/ml IgG; Santa Cruz Biotechnology)와 하룻밤 동안 반응시켰다. 용해 완충액으로 네 번에 걸쳐서 세척한 후, 비드들을 컬럼에 로딩하고 인산완충용액으로 두 번에 걸쳐서 린스하였다. 침전된 단백질을 1 ml의 0.1 M 글라이신 완충액(pH 2.5)으로 두 번에 걸쳐서 용출하였다. 단백질 용출액을 1 M Tris-HCl 완충액(pH 8.0)으로 즉시 중화시킨 후 10% 변성 젤 상에서 분리하였다. 이후, 젤을 실버 니트레이트로 염색하고 실버-염색된 점들을 다음과 같이 약간의 변형을 주어 인-젤 트립신 처리(digestion)를 하였다. 간략하게는, 젤 점들을 외과용 메스로 절단하고 15 mM K4Fe(CN)6 및 50 mM 소듐 티오설페이트로 세척하여 탈색하였다. 젤 조각들을 부수고 아세토니트릴을 첨가하여 탈수시킨 후, 10 ng/㎕의 시퀀싱 등급 트립신(Promega)을 포함하는 10-20 ㎕의 25 mM 암모늄 바이카보네이트를 첨가하여 다시 수화시키고 37℃에서 15-17시간 동안 반응하였다. 상층액의 펩타이드를 새로운 튜브로 옮겨 50 ㎕의 용액(60% 아세토니트릴 및 0.1% 트리플루오로아세트산)을 첨가하여 두 번에 걸쳐 추출하였다. 건조를 위해 추출된 용액을 풀링하여 고속 진공 원심분리기(SpeedVac vacuum centrifuge)를 이용하여 증발시켰다. 펩타이드 시퀀싱을 위해, 질량 분석기를 포함한 나노 플로우 역상(reversed-phased) HPLC/ESI/MS(Q-TOF UltimaTM global, Waters Co. UK)를 이용하여 탠덤 질량분석법을 실시하였다. 상술한 펩타이드들을 전기분무 이온화 SilicaTipTM(± 10 ㎛; New Objective, USA)과 통합된 C18 역상 75 ㎛ i.d. x 150 mm 분석 컬럼(3 ㎛ 입자 크기; AtlantisTM dC18, Waters)을 이용하여 분리하였다. 보다 상세하게는, 5 ㎕의 펩타이드 혼합물을 완충액 A(물/ACN/포름산 = 95:5:0.2, v/v)에 용해하고 컬럼에 주입한 후 5-80% 완충액 B(물/ACN/포름산 = 5:95:0.2, v/v)의 선형 농도 구배로 120분 동안 용출하였다. 트랩 컬럼(i.d. 0.35 x 50 mm, OPTI-PAKTM C18, Waters) 카트리지를 이용하여 분리하기 전에, 시료들을 동일하게(on a line) 탈염시켰다. 우선, 분무 전에 유량은 분리관 주입장치(split/splitless inlet)에 의해 200 nL/분으로 세팅되었으며 모세혈관 전압(3.0 keV)이 HPLC 이동상에 적용되었다. 크로마토그래피를 제조자의 Q-TOF UltimaTM global 조절 소프트웨어 MassLinx를 이용하여 온라인 상에서 실시하였다. 하나의 MS 스캔으로 구성된 스캔 사이클을 기록하고 각 MS 스캔에서 가장 풍부한 여덟 개의 이온에 대한 MS/MS 스캔을 실시하도록 질량분석기를 프로그래밍하였다. 효과적인 데이터-기반 결과획득을 위한 MS 파라이터들은 MS로부터 MS/MS 분석으로 스위치되는 강도(> 10) 및 구성성분들의 수(3-4)이다. 데이터베이스 분석(Mascot)으로부터 분리된 모든 펩타이들에 대한 양성 동정을 실시하여 다음 라운드 분석에서 제거함으로써 전체 서열 범위(coverage)를 획득하였다. Mascot(global search engine), Proteinlynx 2.1(Waters Co., UK) 및 MODi(Korea, http://modi.uos.ac.kr/modi/)을 포함하는 데이터베이스 조사 프로그램을 이용하여 실시한 데이터베이스 분석은 선택적 제외 모니터링을 통해 거의 전체 서열 범위를 제공하였다. MS/MS 스펙트럼은 SwissProt의 아미노산 서열들과 잘 매치되었다. 선구이온 질량 보정 및 0.2 Da의 조각이온 질량 내성을 효소가 잘라내지 못한 지점들(2 missed cleavages)로 고려하여 이용하였다.
면역전자현미경(Immunoelectron microscopy)
HeLa 세포(1×107)를 수득하여 상온에서 0.5% 글루타르알데하이드를 포함하는 0.1 M 카코딜레이트 완충액(pH 7.2)으로 1시간 동안 고정시켰다. 냉장 증류수로 린스한 후, 세포들을 4℃에서 에탄올을 농도 별로 처리하여 탈수시켰다. 세포들을 4℃에서 LR 백색 레진(London Resin, Berkshire, England)으로 여과한 후, 젤라틴 캡슐(Nisshin EM, Tokyo, Japan) 내 LR 백색 레진에 임배드시켰다. 레진의 폴리머라이제이션은 50℃에서 24시간 동안 실시하였다. 70 nm 두께의 연속 절편들(시료 당 120-200 절편들)을 포름바-코팅된 니켈 그리드에 부착시켰다. 절편들을 50 mM 글라이신과 상온에서 5분 동안 반응시켰다. PBS로 린스한 후, 절편들을 3% BSA와 상온에서 30분 동안 반응시켰다. 이후, 절편들을 1차 항체(염소 항-인간 Hsp60(SC-1722), 마우스 항-인간 IKKα(SC-7606) 또는 마우스 항-IKKβ(SC-8014); PBS에서 1:100으로 희석)와 상온에서 2시간 동안 반응시켰다. 트윈-PBS(0.5% 트윈-20을 포함하는 PBS)로 다섯 번에 걸쳐서 세척한 후, 절편들을 항-염소 및 항-마우스 IgG + IgM 항체들과 컨쥬게이션된 20 nm- 및 40 nm-직경의 콜로이달 골드(BB International, UK; PBS에서 1:20으로 희석)로 각각 상온에서 2시간 동안 처리하였다. 절편들을 트윈-PBS로 세 번에 걸쳐서 세척하고 증류수로 세 번에 걸쳐서 세척하였다. 절편들을 4% 우라닐 아세테이트로 5분 동안 염색하고 납으로 5분 동안 염색하였다. 1차 항체의 특이성을 조사하기 위해, 1차 항체의 처리 없는 절편을 상술한 과정과 동일하게 실시하였다. 이중 염색을 위해, 항체 반응을 1차 및 2차 항체의 두 번째 세트를 반복하였다. 마지막으로, 시료들을 Tecnai G2 Spirit Twin 투과전자현미경(FEI Co., USA) 및 JEM ARM 1300S 초고압 전자현미경(JEOL, Japan)으로 관찰하였다.
세포내 분획
면역침전 실험을 위한 세포내 분획을 분별 원심분리로 얻었다. 간략하게는, HeLa 세포(2×107)를 수득하여 냉장 PBS로 두 번에 걸쳐서 린스한 후, 0.25 M 수크로오스를 포함하는 균질화 완충액(20 mM HEPES(pH 7.5), 0.5 mM EDTA, 0.5 mM EGTA, 2 mM MgCl2, 25 mM KCl, 1 mM AEBSF, 1 mM Na3VO4, 5 mM NaF, 5 ㎍/ml 아프로티닌 및 5 ㎍/ml 류펩틴) 1 ml에 재현탁하였다. 세포를 글라스 다운스 균질기로 파괴시킨 후, 원심분리(750 g, 10분)를 통해 핵을 제거한 상층액(post-nuclear supernatants)을 균질액으로부터 얻었다. 상술한 상층액을 원심분리(15,000 g, 15분)로 펠릿(마이토콘드리아 분획) 및 상층액(세포질 분획)로 분리시켰다. ODN-형질전환된 세포들의 경우, 세포내 분획들을 ProteoExtract 세포내 프로테옴 추출 키트(Roche)를 이용하여 얻었다. 각 분획의 순도를 선택적 마커들을 이용하여 확인하였다: 세포질 마커, α-튜블린; 마이토콘드리아 마커들, 사이토크롬 c 옥시다제 4(COX4) 및 매트릭스 단백질 페록시레독신 III(Prx III)[Chang TS, Cho CS, Park S, Yu S, Kang SW, et al. (2004) Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J Biol Chem 279: 41975-41984]. 최상의 비교를 위해, 마이토콘드리아 분획을 상응하는 세포질 분획의 1/5 용량으로 로딩하였다.
재조합 단백질들을 이용한 시험관 내 결합 어세이
Sf9 곤충 세포를 KKα-, IKKβ- 및 IKKγ-인코딩 백미드를 가지는 재조합 바큘로바이러스 스톡으로 각각 감염시켰다. (His)6-태깅된 IKKs을 발현하는 곤충 용해물을 글루타티온-세파로오스 비드(Amersham Pharmacia Biotech)로 전처리된 1.0 ㎍의 GST-Hsp60 단백질과 4℃에서 2시간 동안 반응시켰다. 비드를 냉장 용해 완충액 A로 세 번에 걸쳐서 세척하였다. 비드에 결합된 단백질들을 SDS 샘플 완충액에서 끓여 용출한 후, 도 3에서와 같이 면역블롯 분석을 실시하였다.
형질전환(Transfection)
올리고펙타민TM 시약(Invitrogen, USA)을 이용하여 ODNs(200 nM; 다른 경우는 표기됨)를 24시간 동안 형질전환시켰다. 플라스미드 형질전환은 퓨진-6 시약(Roche, USA)을 이용하여 실시하였다. 항체는 제조자의 지시에 따라 ChariotTM 단백질 운반 키트(Active Motif Co., USA)로 형질전환시켰다.
면역침전 및 시험관 내 키나제 어세이
HeLa 세포를 지시된 시기에 TNF-α(10 ng/ml)로 처리하거나 또는 처리하지 않고 냉장 PBS로 한번 린스한 후, 용해 완충액 A로 용해시켰다. 세포 용해물을 10 ㎕ 단백질 A/G 아가로오스 비드(Amersham Biosciences)로 1시간 동안 전세척하였다. 전세척된 용해물을 2 ㎍의 Hsp60, IKKα, IKKβ 또는 IKKγ 항체와 3시간 동안 반응시키고 20 ㎕ 단백질 A/G 아가로오스 비드와 혼합하였다. 용해물을 4℃에서 하룻밤 동안 추가적으로 반응시켰다. 비드를 1 ml의 용해 완충액 A로 세 번에 걸쳐서 세척하였다. 최종 단백질 침전물로 면역블롯 분석을 실시하였다. 면역 복합체를 증진된 화학발광 키트(Amersham Biosciences, USA)를 이용하여 시각화하였다.
시험관 내 키나제 어세이를 위해, IKK, JNK1 또는 ASK-1가 각각 항-IKKγ(FL-419), 항-JNK1(C-17) 또는 항-ASK-1(H-300)으로 면역침전되었다. IKK 복합체 또는 JNK1을 포함하는 비드를 용해 완충액으로 두 번에 걸쳐서 세척하고 키나제 완충액(20 mM HEPES(pH 7.4), 5 mM MgCl2, 10 mM β-글라이세롤포스페이트, 1 mM Na3VO4, 2 mM NaF 및 1 mM 디티오트레이톨)으로 두 번에 걸쳐서 추가적으로 세척한 후, 10 μM ATP, 0.6 μCi[γ-32P] ATP 및 2 ㎍의 GST-IκB(1-54) 또는 GST-c-Jun 또는 GST-SEK1(K129R)을 포함하는 키나제 완충액과 30℃에서 30분 동안 반응시켰다. 반응을 20 ㎕의 3×SDS 샘플 완충액을 첨가하여 중지시켰다. 끓인 후, 반응 혼합물의 반을 10% 변성 젤에 분리하여 방사능을 자동방사능촬영으로 검출하였다. 반응 혼합물의 나머지 반을 면역침전된 키나제 단백질에 대한 면역블롯팅에 이용하였다(참고: ASK-1을 검출하기 위해 항-ASK-1 항체(F-9)를 이용).
세포 내 ROS 측정
이전에 기재된 바와 같이, 산화 민감성 형광다이인 5,6-클로로메틸-2', 7'-다이클로로다이하이드로플루오레신 다이아세테이트(CM-H2DCFDA, Molecular Probes, USA)을 이용하여 세포 내 ROS 발생을 평가하였다[Kang SW, Chae HZ, Seo MS, Kim K, Baines IC, et al. (1998) Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-alpha. J Biol Chem 273: 6297-6302]. HeLa 세포(3×105)를 35-mm 디쉬에 플레이팅하고 ODNs로 24시간 동안 형질전환시켰다. 세포를 6시간 동안 혈청 결핍시킨 후, 지시된 시간에 페놀 레드-부재 배지에서 TNF-α로 자극시켰다. 자극 후, 세포를 크랩스-링거(Krebs-Ringer) 용액으로 빠르게 린스하고 5 μM CM-H2DCFDA와 5분 동안 반응시켰다. DCF 형광을 도립(inverted) Axiovert200 형광현미경에서 10초 단위로 수집하였다. ImageQuantTM 소프트웨어(GE Healthcare)를 이용하여 각 이미지에서 60-80개 세포들의 형광 강도를 평균내어 상대적인 DCF 형광을 얻었다. 탈착된 라운드 세포들은 정량에서 제외시켰다.
RNase 보호 어세이
ODN-전처리된 HeLa 세포를 지시된 시기에 TNF-α(10 ng/ml)로 처리하거나 또는 처리하지 않았다. 총 RNA를 트라이졸(Invitrogen)로 추출하였다. 리보뉴클리아제(RNase) 보호 어세이를 제조자의 프로토콜(BD PharMingen)에 따라 실시하였다. 간략하게는, 인간 아팝토시스 템플레이트 세트인 hAPO-5를 [α-32P]-우리딘 트리포스페이트로 표지하였다. RNA(10 ㎍) 및 6×105 cpm의 표지된 프로브를 혼성화시켰다. RNase 처리 후, 보호된 프로브를 5% 우레아-폴리아크릴아마이드 젤에 전기영동하여 자동방사능촬영으로 검출하였다.
정량적 PCR(Quantitative PCR, qPCR)
지시된 시기에 TNF-α로 처리된 HeLa 세포로부터 총 RNA를 트라이졸(Invitrogen)로 추출하였다. RNA(1.5 ㎍)을 ImProm-II RT 시스템(Promega)을 이용하여 역전사하였다. 실시간 PCR을 형광오도사이클러(ABI Prism 7000 sequence detection system, Applied Biosystems)에서 SYBR 그린(Applied Biosystems)의 존재 하에 특이 프라이머들을 이용하여 실시하였다. 사이클 수를 비교하는 방법(comparative cycle threshold method)으로 형광 시그널을 정량화하였다. 액틴 mRNA를 내인성 대조군으로 이용하였다.
형질전환 마우스 제조
마이토콘드리아 시그널 서열이 없는 HA-태깅된 인간 Hsp60c를 PCR-증폭하여 치킨 β-액틴 프로모터를 포함하는 pCAGGS 트랜스제닉(Tg) 벡터에 NheI 및 EcoRV를 이용하여 클로닝하였다. HA-Hsp60c Tg 컨스트럭트를 SalI 및 PstI를 처리하여 선형화한 후, 암컷 C57BL/6j로부터 유래한 난자에 마이크로인젝션하였다. 형질전환된 마우스(transgenic founders)를 아래에 기재된 바와 같이 지노타이핑하였다. 여섯 개의 양성 형질전환체들 중 두 개(T4 및 T11)를 본 연구에서 선택하여 실험하였다. 꼬리 DNA를 이용하여 지노타이핑하였다. 간략하게는, 마우스 꼬리 DNA를 100 mM Tris(pH 8.0), 0.5 mM EDTA, 200 mM NaCl, 0.2 % SDS 및 100 ㎍ 프로티나제 K와 55℃에서 하룻밤 동안 반응시켰다. DNA를 페놀:클로로포름:이소아밀 알코올(25:24:1)로 추출하여 이소프로파놀로 침전시켰다. 다음의 프라이머 세트를 이용하여 지놈 PCR을 실시하였다: 세트 1, 5'-ATGGCTTCTAGCTATCCTTATG-3'(정방향, 서열번호 8) 및 5'-GTAGCAACCTGTGCAATTTCTTC-3'(역방향, 서열번호 9); 세트 2, 5'-CTGCTAACCATGTTCATGCC-3'(정방향, 서열번호 10) 및 5'-ACAAGTTTAGCTCCAATGTTTTTGTA-3'(역방향, 서열번호 11). 모든 실험들은 4-주령 수컷으로 실시하였다.
DEN-유도된 간 손상에서 아팝토틱 세포 분석
4-주령 수컷 마우스에 인산완충액(PBS, pH 7.4) 또는 TNF-α(6 ㎍/kg)를 DEN4(10 mg/kg)의 복강내 투여 6시간 전에 측면 꼬리 정맥을 통해 정맥내 주입하였다. DEN 처리 48시간 후, 동물을 희생시키고 PBS로 신속하게 관류하고 4% 파라포름알데하이드를 처리하였다. 간을 적출하여 OCT 임배딩 배지에서 동결시킨 후, cryostat(Leica)를 이용하여 연속적인 조직 절편들(10 ㎛의 두께)을 획득하였다. 절편들을 50 ㎕의 TUNEL(terminal deoxynucleotidyl transferase-mediate uridine 5'-triphosphate-biotin nick-end labeling) 형광 반응 혼합물(In situ Cell Death Detection Kit, Roche Diagnostics)과 37℃에서 60분 동안 암 조건에서 반응시킨 후 세척하고 DAPI(4',6'-diamidino-2-phenylindole; 1 ㎍/ml, Sigma)와 30분 동안 반응하였다. 절편들을 Vectashield 마운팅 배지를 이용하여 마운팅하고 LSM510 공초점 레이저 주사현미경(Carl Zeiss, Germany)으로 관찰하였다. TUNEL-양성 세포를 카운팅하여 마우스 당 세 개의 독립적인 절편들의 평균값을 계산하였다. 모든 동물 실험들을 실험실 동물의 보호 및 이용에 대한 임상시험위원회 지침서(institutional guidelines; Ewha Womans University, Korea)에 부합되도록 실시하였다.
래트 경동맥에서 풍선 손상
본 실험에서 270-290 g의 수컷 Sprague-Dawley 래트(Charls River, USA)를 이용하였다. 래트를 물과 사료를 자유급이(ad libitum)하고 천연 빛-암 사이클 조건과 유사한 자동-시스템에서 사육하였다. 70% 아산화질소 및 산소 밸런스가 유지된 혼합물에 5% 이소플루란를 첨가하여 동물 마취를 유도한 후, 실험진행 동안 1-2% 이소플루란이 유지되었다. 이전에 기술된 바와 같이, 풍선 손상이 정상 래트 좌측 경동맥에서 여과 2F 포가티 풍선 카테터에 의해 실시되었다(Usui et al., 2002). 10-주령된 수컷 래트를 마취시키고 좌측 외경동맥을 노출시킨 후, 그 가지들이 전기-응집되었다. 카테터를 외경동맥의 횡단 동맥절개술을 통해 1 cm 정도 삽입되었으며 내피세포 노출(denudation)이 총경동맥을 따라 세 번에 걸쳐서 실시되었다. 손상 후 0h, 18h, 3일 5일 및 7일 째에 총경동맥이 3.7% 포름알데하이드를 포함하는 헤파린이 첨가된 증류수(heparinized saline)로 경심 관류-여과된 후 절개하여 파라핀 임배드되었다. 다섯 개의 연속 조직 절편들(100-㎛ 간격 및 3-㎛ 두께)이 총경동맥의 중간 부위에서 얻어졌다. 이후 모든 연구에서, 혈관의 중간 부위로부터 유래한 절편들이 분석되었다. 형태계측학적 분석을 위해, 헤마톡실린 및 에오신(H&E) 염색된 각 슬라이드를 이용하였다.
시험관 내 파골세포 형성과정(osteoclastgenesis) 어세이
C57BL/6 마우스로부터 유래된 비-부착성(non-adherent) 골수-유래 단핵구/대식세포(bone marrow-derived monocytes/macrophages, BMM) 계통 세포들을 10% FBS 및 M-CSF(10 ng/ml, R&D systems)를 포함하는 α-MEM(Invitrogen)에 분주하여 배양하였다. 2일 후, 림프구를 포함하는 비부착성 세포를 BMMs로서 이용하였다. M-CSF의 존재 하에서 BMM에 수용성 RANKL(50 ng/ml, Peprotech) 또는 TNF-α(20 ng/ml)를 처리하여 파골세포로의 분화를 유도하였다. 레트로바이러스 감염을 위해, BMMs은 폴리브렌(10 ㎍/ml)의 존재 하에서 대조군 또는 Hsp60c-발현 레트로바이러스를 포함하는 상층액과 반응하였다. 바이러스에 2일 동안 노출된 후, 세포를 상술한 바와 같이 RANKL과 반응시켰다. 유도 5일 후에, 세포를 고정하고 타트레이트-저항성 산 포스파타제(tartrate-resistant acid phosphatase, TRAP; Sigma Co.)로 염색하였다. 세포를 플란-네오플루오르 대물렌즈를 포함하는 Zeiss Axiovert 200 현미경(Carl Zeiss)에서 관찰하였다. AxioVision 3.1 소프트웨어(Carl Zeiss)를 이용하여 이미지를 분석하였다. TRAP-양성 다핵성 세포(>3 핵)를 파골세포-유사 세포로 카운팅하였다.
통계
SigmaPlot 8.0 소프트웨어에서 Student's t 테스트로 데이터를 분석하였다. P 값은 통계적 유의성을 평가하기 위해 계산되었으며 각 도면의 패널에 기재되었다.
실험결과
Hsp60은 세포질에서 IKK 복합체와 상호작용한다.
본 발명자들은 면역-친화성 정제 및 질량분석법과 연계된 프로테오믹스 기법을 이용하여 잠재적인 IKK 복합체의 분자적 성분을 조사하였다. 간략하게는, IKK 복합체를 항-IKKα 항체 비드를 이용하여 자극되지 않은 HeLa S3 세포의 용해물로부터 침전시키고 공동-침전된 단백질들을 액체 크로마토그래피-탠덤 질량분석법으로 시퀀싱하였다. IKK 서브유니트 및 Hsp90의 동정을 통해 IKK 복합체의 면역침전이 올바르게 실시되었다는 것을 알 수 있었고(도 1), 침전물에서 열충격단백질 Hsp60을 동정하였다(도 1-2). 침전물에서 IKK 서브유니트 및 Hsp90의 존재는 면역블롯팅으로 확인하였다(도 3). 이후, 본 발명자들은 IKK-Hsp60 상호작용의 생물학적 의미를 조사하였다.
공동면역침전 실험을 통해, Hsp60과 IKKs의 내인성 상호작용을 먼저 검증하였다. 이종 IKK 복합체들을 IKKα, IKKβ 및 IKKγ에 대한 항체들로 침전시킨 경우, 각 IKK 서브유니트-특이적 항체들은 Hsp60을 유사하게 침전시켰다(도 4). 또한, Hsp90도 IKK 복합체와 공동-면역침전되었다. 이러한 상호작용은 TNF-α 처리에 의해 영향 받지 않았으며(도 5), 이는 Hsp60이 이종 IKK 복합체의 구성요소 단백질이라는 것을 나타낸다. 마이토콘드리아 오염을 방지하기 위해, 세포질 분획으로 역 면역침전을 실시하였다. 항-Hsp60 항체는 IKKγ와 Hsp60을 함께 침전시킨 반면에 대조군 염소 IgG는 그렇지 않았으며(도 6), 이는 IKK와 Hsp60의 세포질 내 상호작용을 확인시켜주는 결과이다. 세포질에서 IKK와 Hsp60의 실질적인 상호작용을 시각화하기 위해서, 전자현미경(EM) 과 결합된 면역골드 염색을 실시하였다. IKK와 Hsp60에 대한 특이 항체들과 결합된 그들의 면역 복합체를 20 nm- 및 40 nm-직경의 골드 입자로 표지된 2차 항체를 이용하여 각각 분별적으로 검출하였다. 그 결과, Hsp60-표지 골드 입자들은 매트릭스 및 마이토콘드리아의 막간 공간 뿐 아니라 세포질 및 세포막(도 7B)을 비롯한 세포 내 구조체 전반에 걸쳐 분포되었다. 이와 대조적으로, IKKα- 및 IKKβ-표지 골드 입자들은 주로 세포질에서 검출되었다(도 7C-7D). 한편, IKKα-표지 골드 입자는 핵에서도 검출되었는데 이는 이전 보고들과도 일치하는 결과이다[Anest V et al., Nature 423: 659-663 (2003)]. IKKα가 핵에서 NF-κB 전사 활성을 조절한다고 알려져 있다는 것을 고려해볼 때, Hsp60-IKKα 복합체는 핵으로 이동하여 특정 유전자 세트(예를 들어, MnSOD 및 Bfl-1/A1)의 프로모터에 관여할 수 있다. 본 발명의 데이터는 IKK 표지 골드 입자들이 마이토콘드리아보다는 오히려 소낭 구조체에서 더 자주 관찰된다는 것을 보여줬다(도 7C-7D). Hsp60 및 IKKs의 공동-염색을 통해, 20 nm 및 40 nm 골드 입자들의 직접적인 결합이 세포질에서 명확하게 확인되었다(도 7E-7F). 모든 IKKα 및 IKKβ가 Hsp60과 연관되어 있지 않았다. 상술한 결과들은 Hsp60이 세포질에서 IKK 복합체와 직접적으로 상호작용한다는 것을 총체적으로 나타낸다.
Hsp60은 IKKγ가 아니라 IKKα/β와 직접적으로 상호작용한다.
본 발명자들은 Hsp60과 IKKs의 분자적 상호작용을 분석하였다. 이를 위해, 세포질로 타겟팅되도록 마이토콘드리아 타겟팅 서열이 제거된 Hsp60 형태인 Hsp60c을 구축하였다. Hsp60c가 IKK 핵심 서브유니트들과 각각 공동-발현된 경우, Hsp60c는 IKKα와 상호작용하고 적은 양 일지라도 IKKβ와도 상호작용하지만, IKKγ와는 상호작용하지 않는다(도 8). 글루타티온-S-트랜스퍼라제(GST)-융합된 Hsp60 및 (His)6-태깅된 IKK 핵심 서브유니트의 재조합 단백질들을 이용한 시험관 내 결합 실험은 GST 풀-다운 어세이로 실시하였다. 그 결과, Hsp60이 IKKγ를 제외한 IKKα 및 IKKβ와 직접적으로 결합한다는 것을 확인하였다(도 9).
Hsp60과 IKKs의 분자적 상호작용은 도메인 맵핑 실험을 통해 추가적으로 규명되었다. C-말단 결핍은 이상(ectopic) 발현을 불가능하게 하기 때문에, 일련의 Hsp60c N-말단 소실 돌연변이들을 HEK293 세포에서 Flag-태깅된 IKKα와의 공동-발현시켜 Hsp60c의 IKK 결합능을 테스트하였다(도 10). 그 결과, Hsp60 단백질의 N-말단 부위(N-말단으로부터 약 160개의 아미노산 서열)이 IKK와의 상호작용에 필수불가결하다는 것을 알 수 있었다(도 11). Hsp60c 컨스트럭트로 형질전환된 HeLa 세포로부터 내인성 IKK 복합체가 면역침전된 경우에도 동일한 결과가 얻어졌다(도 12). 상술한 결과들은 핵심 결합 도메인이 Hsp60 단백질의 중간 부위에 존재한다는 것을 명백하게 나타낸다.
Hsp60는 IKK/NF-κB 활성화에 포함되어 있다.
세포질 Hsp60-IKK 상호작용의 생물학적 효과는 TNF-α-매개된 NF-κB 경로에서 조사되었다. 이를 위해, 마이토콘드리아 레벨에 영향을 미치지 않고 세포질 Hsp60의 레벨을 조절하는 것이 중요한 단계인데, 이는 Hsp60의 결핍이 마이토콘드리아의 기능적 손상을 유발한다고 알려져 있기 때문이다[Bozner P et al., J Alzheimers Dis 4: 479-486 (2002); Briones P et al., J Inherit Metab Dis 20: 569-577 (1997); Huckriede A et al., Virchows Arch 427: 159-165 (1995)]. 흥미롭게도, 이전의 많은 연구들은 인간 Hsp60 ORF(open reading frame)의 시작 코돈 주위의 서열에 상보적인 안티센스 올리고데옥시뉴클레오타이드(AS-ODN)가 세포질 Hsp60 레벨을 감소시킨다는 것을 보고하였다[Park SG et al., J Biol Chem 278: 39851-39857 (2003); Kirchhoff SR et al., Circulation 105: 2899-2904 (2002); Steinhoff U et al., Proc Natl Acad Sci U S A 91: 5085-5088 (1994)]. 따라서, 본 발명자들은 선택적 넉-다운 효과를 조사하기 위해 AS-ODN(AS-1으로 명명됨; 서열번호 3)을 테스트하였다. 특정 ODN 서열의 비-특이적 활성을 보일 가능성을 배제하기 위하여, 본 발명자들은 Hsp60 ORF의 마이토콘드리아 타겟팅 서열(MTS) 이후에 위치한 5'-말단 근처 부위(개시 코돈으로부터 +95 - +110 부위)에 상보적인 2차 AS-ODN(AS-2, 서열번호 4)을 제작하였다(도 13). 또한, ORF 내의 모든 부위를 타겟으로 하는 안티센스 올리고뉴클레오타이드가 모두 본 발명의 목적을 달성할 수 있음을 추가로 확인하기 위하여, AS-2 ODN 타겟 서열의 다운스트림 서열에 대하여 AS-3 ODN(서열번호 5), AS-4 ODN(서열번호 6) 및 AS-5 ODN(서열번호 7)을 제작하였다. AS-1에 상보적인 센스 ODN(S-ODN)은 대조군 ODN으로 이용하였다. 안티센스 ODN은 약한 번역 차단제로서 기능하기 때문에, 총 Hsp60 레벨의 감소를 유발하지는 않았다(도 14). 하지만, AS-ODNs의 트랜스펙션은 마이토콘드리아 Hsp60 레벨의 변화 없이 AS-ODN 처리되지 않은 군 또는 대조군 S-ODN과 비교하여 세포질 Hsp60의 레벨을 매우 선택적으로 감소시켰다(도 18). 이러한 현상을 이해하기 위해, 본 발명자들은 두 분획에서 Hsp60 단백질의 반감기(half-life)가 다를 수 있다는 가설을 세우고, 이를 증명하기 위해, 단백질 합성을 억제한 후 세포질-타겟된 Hsp60(Hsp60c)의 반감기를 측정하였다. 놀랍게도, 세포질 Hsp60 단백질의 레벨은 빠르게 감소(계산된 t½ = 3.2분)되는 반면에, 내인성 Hsp60 및 IKKα 단백질의 총 레벨은 변화가 없었다(도 19). 더 나아가, 이러한 감소는 프로테아좀 억제제인 MG132를 처리함으로써 완전히 차단되었다(도 20). 또한, MG132 처리는 Hsp60c 단백질의 기본 레벨의 현저한 증가를 초래한다. 따라서, 상술한 결과는 세포질 Hsp60의 레벨이 AS-ODN 처리에 더 민감한 이유를 적어도 부분적으로 설명해주며 세포질 Hsp60의 레벨이 프로테아좀에 의해 조절된다는 것을 추가적으로 제시해준다.
TNF-α-유도된 IKK/NF-κB 활성화를 AS-ODN-트랜스펙션된 세포에서 조사하였다. 시험관 내 키나제 어세이는 AS-ODNs의 트랜스펙션은 TNF-α에 대한 반응으로 IKK 활성화를 AS-ODN 처리되지 않은 군 또는 S-ODN의 트랜스펙션과 비교하여 60% 정도까지 현저하게 감소시켰다(도 21). 하지만, AS-ODNs는 TNF-α에 대한 반응으로 MAP 키나제 활성화에 어떠한 영향도 주지 않았는데(도 21 및 도 15), 이는 Hsp60 AS-ODNs의 IKK 활성화 효과의 특이성을 나타낸다. 더욱이, AS-ODNs는 AS-ODN 처리되지 않은 세포와 비교하여 TNF-α에 대한 반응으로 NF-κB 전사 활성화를 거의 완벽하게 억제하는 반면에, S-ODN는 그렇지 않았다(도 22, 23). 넉-다운 효과가 더 큰 AS-1은 AS-2 내지 AS-5보다 더욱 강력한 효능을 보이고, AS-1보다는 약하지만 AS-2 내지 AS-5 모두 NF-kB 전사활성을 억제하였다. 하지만, ODNs 자체의 트랜스펙션이 기본 NF-κB 활성화를 유발하지 않았으며, 이는 ODNs의 부작용(off-target effects)이 없음을 나타낸다. 또한, AS-ODNs의 NF-κB 전사 활성에 대한 감소 효과는 293T 및 A549 세포에서 명확하였다(도 17). 추가적인 대조군 실험은 AS-ODNs이 AP-1, NF-AT 및 CRE 같은 다른 전사인자 활성화에는 아무런 효과가 없다는 것을 나타냈다(도 16). Hsp60의 면역침전 및 면역염색을 위해 이용된 특이 항체(Hsp60N)를 이용하여 세포질 Hsp60을 차단함으로써 유사한 실험(study)을 실시하였다(도 1). 항체 운반은 펩타이드-매개 단백질 운반 시스템으로 달성하였다[Morris MC et al., Nat Biotechnol 19: 1173-1176 (2001)]. 대조군 염소 IgG 및 Hsp60N 항체가 성공적으로 세포질로 운반되었는데, 이는 미토트랙커와 신호가 일치하지 않는 것으로 확인하였고(도 24), 대조군 IgG와 달리 Hsp60N은 Hsp60에 결합되어 있었다(도 25). 상술한 결과는 운반된 항체가 기능 차단제로서 기능할 수 있다는 것을 의미한다. 이후, 항체-전이된 세포에서 IKK/NF-κB 활성화를 조사하였다. Hsp60N 항체는 TNF-α에 대한 반응으로 대조군 IgG에서 얻어진 IKK 활성화 레벨의 50%까지 감소시켰다(도 26). 이와 대조적으로, TNF-α-유도된 JNK 활성화에는 아무런 영향을 미치지 않았으며, 이는 Hsp60의 기능이 IKK 활성화에 특이적이라는 것을 다시 한번 증명한다. 같은 맥락으로, Hsp60N 항체는 NF-κB의 전사 활성을 현저하게 감소시켰다(도 27). 상술한 데이터를 종합하면, 세포질 Hsp60은 TNF-α-유도된 IKK/NF-κB 신호전달을 촉진시킨다.
세포질-타겟된 Hsp60의 이상 발현이 IKK/NF-κ 활성화를 충분히 촉진시킨다.
역으로, IKK/NF-κB 경로에서 세포질 Hsp60의 기능이 세포질-타겟된 Hsp60c의 과다발현으로 조사되었다. 이상-발현된(ectopically-expressed) Hsp60c는 IKK 복합체와 관련되어 있었으며(도 28) TNF-α에 대한 반응으로 IKK 및 NF-κB 활성화를 현저하게 증가시켰다(도 29-30). Hsp60c의 이상-발현은 기본적인 IKK 및 NF-κB 활성화를 약하게 유도하였다. NF-κB 활성화 상에 Hsp60c 발현의 효과는 IKKβ-결핍 세포에서 완전히 소멸되었는데(도 31), 이는 세포질 Hsp60의 조절 활성이 IKK-의존적이라는 것을 의미한다. 한편, Hsp60c의 이상-발현은 JNK 활성화 또는 AP-1, CRE 및 NF-AT 같은 다른 전사인자 활성화를 증가시키지 않았다(도 32 내지 35). 상술한 결과들은 세포질 Hsp60 레벨의 증가가 TNF-α-유도된 IKK/NF-κB 활성화를 증가시킨다는 것을 나타낸다.
Hsp60는 활성 T-루프에서 IKK 인산화를 조절한다.
Hsp60에 의한 IKK/NF-κB 활성화의 조절 기작을 이해하기 위하여, 여러 가지 실험적 접근방법들을 시도하였다. Hsp60의 샤페론 활성이 필요한 지 여부를 조사함에 있어, Hsp60의 샤페론 활성에 필수적이라고 알려진 두 개의 아미노산 잔기를 고려하였다. 하나는 Hsp60 단백질의 올리고머화(oligomerization)에 포함된 라이신 잔기(K28)이다. 다른 하나는 ATPase 활성의 활성 위치 잔기인 아스파테이트 잔기(D423)이다. 이에, K28 및 D423이 각각 글루타메이트 및 알라닌으로 대체된 Hsp60c 돌연변이체들을 제작하였다. 공동-트랜스펙션 실험을 통해, 두 개의 돌연변이체들이 IKKα와 결합할 뿐 아니라, 야생형에 비해 IKKα와 더 우수하게 결합하는 것을 확인하였다(도 36). Hsp60 돌연변이-발현하는 세포에서 TNF-α에 의해 야기된 IKK 활성화는 야생형과 유사하였는데(도 37), 이는 상술한 기능 상실(loss-of-function) 돌연변이가 Hsp60의 IKK-증가 활성에 영향을 미치지 않는다는 것을 의미한다. 더 나아가, 대조군 벡터보다 Hsp60-발현 세포에서 TNF-α-유도된 NF-κB 전사가 약 4-6배 정도 더 높게 증가하였다(도 38). IKKβ-결핍 3T3 세포에서 테스트된 것과 같이, 상술한 돌연변이들의 증대 효과는 IKKβ-의존적이었다. 따라서, 기능 상실 돌연변이체들을 이용한 실험 결과는 세포질 Hsp60은 샤페론 활성과 독립적으로 IKK/NF-κB 활성화에 기능한다는 것을 강력하게 제시한다.
IKK-상호작용 단백질 중 하나인 ELKS는 IKK 복합체로 IκB의 합류(recruitment)를 매개한다고 알려져 있다. 이러한 활동 모드를 테스트하기 위해, 재조합 Hsp60 단백질을 활성화된 IKK 복합체가 기질로 전장 인간 IκB와 반응하는 IKK 키나제 반응에 첨가하였다. IκB에 대한 활성화된 IKK의 시험관 내 키나제 활성은 Hsp60 단백질의 존재에 의해 영향 받지 않았으며(도 39), 이는 Hsp60이 IKK와 기질인 IκB의 상호작용에 관여하지 않는다는 것을 의미한다.
마지막으로, IKKα/β의 T-루프에서 활성화-의존적 세린 인산화를 조사하여 IKK 활성화 과정에 세포질 Hsp60의 직접적인 관여에 대해 조사하였다. AS-ODN 트랜스펙션은 IKK의 Ser178/181에서 TNF-α-유도된 인산화를 현저하게 감소시켰는데, 이는 인산화-의존적 IKK 활성화가 손상되었음을 의미한다(도 40). 역으로, Hsp60c의 이상 발현은 IKK 인산화의 증가를 초래하였다(도 41). 종합하면, 본 발명의 데이터는 세포질 Hsp60이 샤페론-의존적 IKK 복합체의 안정화보다는 인산화-의존적 IKK 활성화에 포함된다는 것을 나타낸다.
세포질 Hsp60은 NF-κB 타겟 유전자 발현 및 세포 생존에 영향을 미친다.
IKK/NF-κB 경로의 세포질 Hsp60-매개 조절의 중요성을 결정하기 위해, 본 발명자들은 ODN-트랜스펙션된 세포에서 NF-κB 타겟 유전자의 발현을 조사하였다. RNase 보호 어세이를 이용하여 항-아팝토틱 유전자들의 발현을 스크리닝하였을 때, AS-ODN 트랜스펙션은 TRAF1, c-IAP1 및 c-IAP2의 발현에 영향을 끼치지 않았다(도 42). 흥미롭게도, AS-ODN은 TNF-α에 대한 반응에서 MnSOD 및 Bfl-1/A1 발현의 유도만을 유의하게 감소시켰다(도 43). 또한, Hsp60N 항체는 이들 유전자의 유도를 현저하게 감소시켰다(도 44). 이에 반해, c-IAP2 발현 유도에는 아무런 영향이 없다. 따라서, 상술한 결과들은 세포질 Hsp60에 의한 IKK 활성화의 조절은 선택적 NF-κB 타겟 유전자들의 발현에 영향을 미친다는 것을 나타낸다.
다음으로, 본 발명자들은 선택 타겟 유전자의 조절이 세포 생존에 중요한 지 여부를 조사하였다. MnSOD 및 Bfl-1/A1은 마이토콘드리아-유래 활성산소종(ROS)을 억제할 가능성이 있기 때문에, 산화-민감성 형광다이인 CM-H2DCFDA를 이용하여 ODN-트랜스펙션된 세포에서 세포내 ROS 레벨을 조사하였다. AS-ODN 트랜스펙션은 AS-ODN 처리되지 않은 군 또는 S-ODN 트랜스펙션과 비교하여 TNF-α 처리에 따라 시간-의존적으로 세포내 ROS 레벨의 현저한 증가를 유도하였다(도 45). 증가된 ROS 레벨은 지속적인 JNK 활성화를 통해 세포 사멸과 연결되기 때문에, 스트레스-활성화된 단백질 키나제들(JNK 및 p38 MAPK)의 지속적인 활성화를 조사하였다. 뜻밖에도, AS-ODN-트랜스펙션된 세포에서 JNK 및 p38 MAPK의 활성화가 더 지속되는 것을 발견하였다(도 46). ASK-1 MAP3K는 ROS-매개된 세포 사멸에서 JNK 및 p38의 활성화를 지속시키는 역할을 하는 것으로 알려져 있다. 확인 결과, AS-ODN-트랜스펙션된 세포에서 ASK-1 활성화가 현저하게 유도되었다(도 47). ASK-1 활성화를 포함하는 신호전달 경로의 활성화 결과로, AS-ODN는 HeLa 세포에서 TNF-α-유도된 세포 사멸의 뚜렷한 증가를 초래한 반면에, AS-ODN 처리되지 않은 군 또는 S-ODN는 전혀 증가를 유발하지 않았다(도 48). 또한, AS-ODN는 세포질 Hsp60의 레벨이 증가된 대장암 세포주에서 TNF-α-유도된 세포 사멸을 증가시켰다(도 49). AS-ODN 트랜스펙션은 그 자체로 ROS ASK1 및 세포 사멸의 기본적 활성화를 초래하였다. Hsp60c 과다발현이 기본적 IKK/NF-κB 활성화를 유도시켰다는 증거와 함께(도 28 내지 31), 세포질 Hsp60이 휴지기 암 세포에서 세포 생존을 지시하는 것으로 생각된다. 종합해보면, 본 발명의 결과들은 세포질 Hsp60에 의한 MnSOD 및 Bfl-1/A1의 선택적 조절은 마이토콘드리아 ROS 방출(burst)을 억제함으로써 세포 생존에 뚜렷한 영향을 미친다는 것을 제시해 준다.
세포질 Hsp60은 스트레스 조건에서 숙주세포를 보호한다.
세포질 Hsp60의 생존 촉진 활성을 생체 내에서 조사하였다. 이를 위해, Hsp60c를 발현하는 트랜스제닉 마우스를 생산하였다(도 50-51). Hsp60c 단백질은 간, 비장 및 폐를 포함하는 다양한 조직에서 성공적으로 발현하였다(도 52). TNF-α가 정맥내 주입되었을 경우, 대조군 B6 마우스와 비교하여 Hsp60c-발현 트랜스제닉 마우스에서 IKK 활성화 정도가 현저하게 증가하였다(도 53). 이러한 결과는 세포질 Hsp60이 TNF-α-유도된 IKK 활성화를 생체 내에서 증가시켰다는 것을 나타낸다. 이후, 본 발명자들은 IKK/NF-κB-의존적 세포 생존을 보이는 동물 모델을 찾았다: 디에틸니트로사민(diethylnitrosamine, DEN)-유도 간세포 사멸. 4-주령 수컷 마우스에서 DEN 주입 후, 간세포의 아팝토틱 세포 사멸은 실질적으로 증가하였다(도 56 내지 57). 따라서, TNF-α로 처리되거나 또는 처리되지 않은 Hsp60c-발현 트랜스제닉 마우스에서 DEN-유도된 세포 사멸을 조사하였다. 간 조직 절편의 TUNEL 염색 결과, 간세포 사멸은 대조군 마우스와 비교하여 Hsp60c-발현 트랜스제닉 마우스에서 현저하게 감소하였다(도 54-55). 상술한 데이터는 세포질 Hsp60c가 IKK/NF-κB 활성화를 촉진시킴으로써 스트레스-유도된 세포 사멸을 생체 내에서 억제한다는 것을 나타낸다.
Hsp60 AS-ODN은 염증-유도 골 소실을 억제한다.
Hsp60 AS-ODN이 IKK/NF-kB 경로의 세포내 활성화에 음성적 효과가 명확하기 때문에, 본 발명자들은 AS-ODN이 생체 내 NF-kB-의존적 염증 반응을 억제할 수 있는 지 여부를 테스트하였다. NF-kB는 대식세포-콜로니 자극인자(macrophage-colony stimulating factor, M-CSF)의 존재 하에서 RANKL 또는 TNF-α에 대한 반응으로 유도되는 파골세포 분화에 대한 핵심 생존 전사인자이다(Boyle WJ et al., Nature, 423(6937): 337-342 (2003); Kobayashi K et al., J Exp Med., 191(2): 275-286 (2000)). 최근에, IKK 복합체가 파골세포 형성과정 동안 RANKL로부터 NF-kB로의 생존 경로를 매개한다는 것이 보고되었다(Chaisson ML et al., J Biol Chem., 279(52): 54841-8 (2004); Dai S, et al., J Biol Chem., 279(36): 37219-22 (2004); Ruocco MG et al., J Exp Med., 201(10): 1677-87 (2005)) 따라서, 본 발명자들은 파골세포 분화에서 Hsp60 AS-ODN의 효과를 테스트하였다. ODNs로 전처리되거나 되지 않은 골수-유래 단핵구/대식세포(BMM)를 대식세포-콜로니 자극인자의 존재 하에서 RANKL 또는 TNF-α로 자극하였다. Hsp60 AS-ODN은 ODN 처리 되지 않은 또는 S-ODNs로 처리된 세포에 비해 RANKL 또는 TNF-α로 유도된 다핵성 TRAP-양성 파골세포의 형성을 현저하게 억제하였는데(도 58-59), 이는 Hsp60 AS-ODN이 파골세포 생존을 감소시킨다는 것을 의미한다. 또한, 본 발명자들은 세포질 타겟된 Hsp60(Hsp60c)를 인코딩하는 레트로바이러스로 감염된 BMM 세포에서 동일한 실험을 반복하여 실시하였다. Hsp60c 발현은 대조군 바이러스-감염된 세포와 비교하여 RANKL-처리된 세포에서 SOD2 발현을 증가시켰다(도 60). 더 나아가, Hsp60c 발현은 RANKL에 대한 반응에서 TRAP-양성 파골세포의 형성을 뚜렷하게 증가시켰다(도 61). 상술한 결과들은 세포질 Hsp60이 IKK/NF-kB 신호전달을 통해 SOD2 발현을 유도함으로써 파골세포의 생존에 도움을 준다는 것을 나타낸다.
Hsp60 AS-ODN은 풍선 손상된 혈관에서 신생내막 두께를 감소시킨다.
혈관에 대한 풍선 손상은 내피세포의 노출을 야기하여 모집된 단핵구 및 혈소판으로부터 배출된 친-염증성 인자들에 의해 평활근의 활성화를 초래한다. 따라서, NF-kB 활성화도 풍선-손상된 혈관벽에서 SMCs의 증식 및 생존에서 중요한 역할을 한다(Ohtani K et al., Circulation, 114(25): 2773-9(2006); Breuss JM et al., Circulation, 105(5): 633-8(2002); Autieri MV et al., Biochem Biophys Res Commun., 213(3): 827-36(1995)). 이러한 측면에 대한 확인을 위해, 본 발명자들은 Hsp60 AS-ODN이 증식성 SMCs에 의한 신생내막 두께 증식을 억제하는 지 여부를 테스트하였다. 우선, 손상된 경동맥으로 ODNs의 운반을 FITC-컨쥬게이션된 ODN을 이용하여 테스트하였다. ODNs가 트랜스펙션 시약 올리고펙타민TM의 존재 하에서 혈관 벽에 성공적으로 운반되었다(도 62). 래트 경동맥 혈관의 풍선 카테터-손상된 루멘이 AS-ODN 처리되지 않은 군 또는 ODNs와 반응되었을 경우, mock-처리된 경우와 비교하여 Hsp60 AS-ODN 처리는 신생내막 두께 증식을 두드러지게 억제한 반면에, S-ODN 처리는 아무런 효과가 없었다(도 63). 결정적으로, TUNEL 염색 결과는 AS-ODN 처리가 신생내막 층에서 아팝토틱 세포 사멸의 현저한 증가를 초래한다는 것을 나타냈는데(도 64), 이는 억제된 신생내막 두께가 SMCs의 아팝토틱 세포 사멸로부터 기인한다는 것을 의미한다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.

Claims (26)

  1. 세포질 Hsp60(heat shock protein, 60 kDa) 유전자의 발현 억제제 또는 세포질 Hsp60 단백질의 활성 억제제를 유효성분으로 포함하는 비정상적 세포 증식 관련 질환의 예방 또는 치료용 약제학적 조성물.
  2. 제 1 항에 있어서, 상기 억제제는 세포질 Hsp60에 특이적인 안티센스 올리고뉴클레오타이드, siRNA, 앱타머, 항체 및 단일사슬 가변영역 단편으로 구성된 군으로부터 선택된 것인 조성물.
  3. 제 2 항에 있어서, 상기 억제제는 서열번호 3 내지 서열번호 7로 구성된 군으로부터 선택되는 안티센스 올리고뉴클레오타이드인 조성물.
  4. 제 2 항에 있어서, 상기 억제제는 Hsp60에 특이적인 폴리클로날 항체인 조성물.
  5. 제 1 항에 있어서, 상기 세포질 Hsp60 단백질은 IκB 키나제(IKK) 복합체와 상호작용하는 것인 조성물.
  6. 제 5 항에 있어서, 상기 IKK는 IKKα 또는 IKKβ인 조성물.
  7. 제 5 항에 있어서, 상기 IKK는 NF-κB 경로를 활성화시키는 것인 조성물.
  8. 제 7 항에 있어서, 상기 NF-κB 경로의 활성화는 아팝토시스-유도 스트레스에 대한 세포 생존율을 증가시키는 것인 조성물.
  9. 제 1 항에 있어서, 상기 세포질 Hsp60 단백질은 MnSOD(manganese-superoxide dismutase) 또는 Bfl-1/A1의 발현을 유도하는 것인 조성물.
  10. 제 1 항에 있어서, 상기 세포질 Hsp60 단백질은 마이토콘드리아-유래된 ROS(reactive oxygen species) 레벨을 감소시키는 것인 조성물.
  11. 제 1 항에 있어서, 상기 세포질 Hsp60 단백질은 IKKα/β T-루프의 세린-인산화를 촉진시키는 것인 조성물.
  12. 제 1 항에 있어서, 상기 비정상적 세포 증식 관련 질환은 암, 염증성 질환 또는 이상증식 혈관 질환인 조성물.
  13. 제 12 항에 있어서, 상기 암은 뇌암, 신경내분비 암, 위암, 폐암, 유방암, 난소암, 간암, 기관지암, 비인두암, 후두암, 췌장암, 방광암, 부신암, 대장암, 결장암, 자궁경부암, 전립선암, 골암, 피부암, 갑상선암, 부갑상선암 또는 요관암인 조성물.
  14. 제 12 항에 있어서, 상기 염증성 질환은 염증-유도 골질환, 퇴행성 관절염, 당뇨병, 자가면역 근육염, 동맥경화, 뇌졸증, 간경화, 뇌막염, 염증성 위궤양, 담낭 결석, 신장 결석, 부비강염, 비염, 결막염, 천식, 피부염, 염증성 장질환, 염증성 콜라겐 혈관 질환, 사구체신염, 염증성 피부 질환, 유육종증, 류마티스 관절염(rheumatoid arthritis), 전신성 홍반성 루푸스(Systemic lupus erythematosus), 강직성 척추염(Ankylosing spondylitis), 베체트 병(Behcet’s disease), 궤양성대장염(ulcerative colitis), 크론병(Crohn disease), 건선(psoriasis), 아토피성 피부염(atopic dermatitis), 접촉성 피부염, 습진성 피부염, 지루성 피부염, 편평 태선(lichen planus), 만성 단순태선(lichen simplex chronicus), 천포창(pemphigus), 불러스 천포창, 표피 수포증(Epidermolysis Bullosa), 담마진(Urticaria), 혈관 부종(angioedema), 맥관염(vasculitis), 홍반, 피부 호산구증다증(Eosinophilia), 화폐상 피부염(nummular dermatitis), 전신성 박탈 피부염, 정체 피부염, 피지샘의 질환, 입 주위 피부염, 수염 가성모낭염, 약물 발진, 다형 홍반(erythema multiforme), 결절홍반(Erythema nodosum), 환상 육아종(Granuloma annulare) 또는 골반염증성질환(PID: Pelvic Inflammatory Disease)인 조성물.
  15. 제 14 항에 있어서, 상기 염증-유도 골질환은 골 발생 질환, 골 골절, 골의 노인성 손실, 연골이영양증, 고칼슘혈증, 과골화증, 불완전골형성증, 골연화증, 골수염, 골다공증, 파젯병, 골관절염 또는 구루병인 조성물.
  16. 제 12 항에 있어서, 상기 이상증식 혈관 질환은 동맥경화증, 아테롬성 동맥경화증, 재발협착증 및 협착증, 혈관 기형, 혈액투석과 관련된 혈관 통로 협착, 이식 후 동맥병증(transplant arteriopathy), 맥관염, 혈관염증질환, 디죠지 증후군, 유전성 출혈성 모세혈관확장증(HHT), 해면상혈관종, 켈로이드성 반흔, 화농성 육아종, 수포질환, 카포시 육종, 과증식성 유리체 증후군, 미숙아 망막증, 맥락막 신생혈관, 황반변성, 당뇨병성 망막증, 안내 신생혈관증식, 원발성 폐고혈압증, 천식, 비폴립(nasal polyps), 염증성 장 및 치주 질환, 복수, 복막 유착, 피임, 자궁내막증, 자궁출혈, 난소낭, 난소과자극증후군, 관절염, 류마티스성 관절염, 만성 관절류마티즘, 윤활막염, 골관절염, 골수염, 골증식, 폐혈증, 혈관누출 증후군, 암, 감염성 질환 또는 자가면역질환인 조성물.
  17. (a) 세포질 Hsp60 유전자를 포함하는 세포에 시험물질을 처리하는 단계; (b) 상기 세포질 Hsp60의 발현을 분석하는 단계; 및 (c) 상기 시험물질이 세포질 Hsp60의 레벨을 감소시키면 비정상적 세포 증식 관련 질환 치료제로 판단하는 단계를 포함하는, 비정상적 세포 증식 관련 질환 치료제의 스크리닝 방법.
  18. (a) 세포질 Hsp60 단백질, 또는 세포질 Hsp60 단백질과 IKK(IκB 키나제) 단백질을 포함하는 세포 또는 세포 추출물(cell extract)에 시험물질을 처리하는 단계; (b) 상기 시험물질이 세포질 Hsp60 단백질에 결합하는지 여부, 또는 상기 시험물질이 세포질 Hsp60 단백질과 IKK 단백질 사이의 결합을 억제하는지 여부를 분석하는 단계; 및 (c) 상기 시험물질이 세포질 Hsp60 단백질에 결합하거나 또는 세포질 Hsp60 단백질과 IKK 사이의 결합을 억제시키면 비정상적 세포 증식 관련 질환 치료제로 판단하는 단계를 포함하는, 비정상적 세포 증식 관련 질환 치료제의 스크리닝 방법.
  19. 제 17 항 또는 제 18 항에 있어서, 상기 세포질 Hsp60의 발현, 세포질 Hsp60 단백질에의 결합 또는 세포질 Hsp60 단백질과 IKK 단백질 사이의 결합을 세포 내에서 또는 시험관 내에서 분석하는 것인 방법.
  20. 제19항에 있어서, 상기 분석은 RT-PCR(Reverse Transcription Polymerase Chain Reaction), 노던 블롯팅, cDNA 마이크로어레이 혼성화 반응, 인 시투 혼성화 반응, 방사능면역분석, 면역침전 또는 ELISA(enzyme-linked immunosorbent assay)방법을 이용하여 수행되는 것인 방법.
  21. 제17항의 스크리닝 방법에 의하여 검색된 세포질 Hsp60 발현 억제제인, 비정상적 세포 증식 관련 질환 치료제.
  22. 제18항의 스크리닝 방법에 의하여 검색된 세포질 Hsp60 단백질에 결합하는 세포질 Hsp60 단백질의 활성 억제제 또는 세포질 Hsp60 단백질과 IKK 단백질의 결합 억제제인, 비정상적 세포 증식 관련 질환 치료제.
  23. 세포질 Hsp60 단백질을 포함하는 세포 추출물, 및 반응 완충액을 포함하는, 비정상적 세포 증식 관련 질환 치료제의 스크리닝 키트.
  24. 제 23 항에 있어서, 상기 세포 추출물은 IKK(IκB 키나제) 단백질을 추가로 포함하는 것인 키트.
  25. 세포질 Hsp60 유전자의 발현 억제제 또는 세포질 Hsp60 단백질의 활성 억제제를 대상에게 투여하는 단계를 포함하는 비정상적 세포 증식 관련 질환의 치료방법.
  26. 비정상적 세포 증식 관련 질환의 치료용 의약의 제조에 있어서, 세포질 Hsp60 유전자의 발현 억제제 또는 세포질 Hsp60 단백질의 활성 억제제의 용도.
PCT/KR2011/000768 2010-02-04 2011-02-07 비정상적 세포 증식 억제용 약제학적 조성물 WO2011096756A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/577,231 US9102942B2 (en) 2010-02-04 2011-02-07 Pharmaceutical composition for inhibiting abnormal proliferation of cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100010623 2010-02-04
KR10-2010-0010623 2010-02-04

Publications (3)

Publication Number Publication Date
WO2011096756A2 true WO2011096756A2 (ko) 2011-08-11
WO2011096756A3 WO2011096756A3 (ko) 2011-12-15
WO2011096756A9 WO2011096756A9 (ko) 2012-03-08

Family

ID=44355995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000768 WO2011096756A2 (ko) 2010-02-04 2011-02-07 비정상적 세포 증식 억제용 약제학적 조성물

Country Status (3)

Country Link
US (1) US9102942B2 (ko)
KR (1) KR101307132B1 (ko)
WO (1) WO2011096756A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650639A (zh) * 2011-02-25 2012-08-29 株式会社芳珂 特应性皮炎的检查方法
WO2014178680A1 (ko) * 2013-05-03 2014-11-06 주식회사 카엘젬백스 Hsp 발현 억제 펩티드 및 이를 포함하는 조성물
CN105675572A (zh) * 2016-03-15 2016-06-15 四川大学华西医院 一种肺癌筛查试剂盒

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9746470B2 (en) * 2011-05-09 2017-08-29 Whitehead Institute For Biomedical Research Chaperone interaction assays and uses thereof
EP3164420A4 (en) * 2014-06-30 2018-05-23 Tarveda Therapeutics, Inc. Targeted conjugates and particles and formulations thereof
KR101665565B1 (ko) 2014-07-28 2016-10-14 전남대학교산학협력단 상피세포 성장인자 수용체 차단 치료제에 대해 저항성을 갖는 암을 치료할 수 있는 항암제의 스크리닝 방법
KR101900142B1 (ko) * 2016-01-26 2018-09-18 가천대학교 산학협력단 Hsp60 단백질을 이용한 암의 진단방법
US10548881B2 (en) 2016-02-23 2020-02-04 Tarveda Therapeutics, Inc. HSP90 targeted conjugates and particles and formulations thereof
CN109716138B (zh) 2016-09-16 2023-10-03 武田药品工业株式会社 用于接触活化系统相关的疾病的蛋白生物标记

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454554B1 (ko) * 1995-06-30 2005-04-06 예다 리서치 앤드 디벨럽먼트 캄파니 리미티드 당뇨병 치료를 위한 인간의 열쇼크 단백질60 유래의 신규펩티드들, 조성물들, 방법들 및 키트들
KR100565437B1 (ko) * 2003-07-31 2006-03-30 중앙대학교 산학협력단 신규한 스핑고마이엘리나제 효소, 그에 대한 항체, 안티센스 및 제조방법
KR20080031474A (ko) * 2005-07-27 2008-04-08 유니버시티 오브 플로리다 리서치 파운데이션, 아이엔씨. 안구 질환의 치료를 위한 열충격의 사용
KR20090048403A (ko) * 2006-06-01 2009-05-13 비롤로긱 게엠베하 단백질 폴딩 및 단백질 분해 저해에 의한 바이러스 감염 및/또는 암 치료용 약학적 조성물

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL150113A0 (en) * 1999-12-15 2002-12-01 Peptor Ltd Fragments and antagonists of heat shock protein 60
US20030100036A1 (en) * 2001-11-08 2003-05-29 Aristo Vojdani Saliva immunoassay for detection of antibodies for cardiovascular disease
EP1575479A4 (en) * 2002-01-31 2006-10-25 Develogen Israel Ltd HSP-PEPTIDES AND ANALOGUES FOR MODULATING IMMUNE RESPONSES ON ANY PRESENTING CELLS
KR20030065165A (ko) * 2002-01-31 2003-08-06 정구홍 인간 B형 간염 바이러스 폴리머라아제와 Hsp60의상호작용을 차단하는 방법
US20040127435A1 (en) * 2002-08-02 2004-07-01 Regents Of The University Of California Uses for inhibitors of inosine monophosphate dehydrogenase
WO2005012514A1 (en) * 2003-07-31 2005-02-10 Dae-Kyong Kim Novel sphinogmyelinase, the antibody against it, the antisense and the preparation method thereof
CA2595520A1 (en) * 2004-01-28 2005-08-11 Develogen Israel Ltd. Hsp therapy in conjunction with a low antigenicity diet
JP2011501731A (ja) * 2007-09-10 2011-01-13 ユニバーシティ オブ マサチューセッツ ミトコンドリア標的化抗腫瘍剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454554B1 (ko) * 1995-06-30 2005-04-06 예다 리서치 앤드 디벨럽먼트 캄파니 리미티드 당뇨병 치료를 위한 인간의 열쇼크 단백질60 유래의 신규펩티드들, 조성물들, 방법들 및 키트들
KR100565437B1 (ko) * 2003-07-31 2006-03-30 중앙대학교 산학협력단 신규한 스핑고마이엘리나제 효소, 그에 대한 항체, 안티센스 및 제조방법
KR20080031474A (ko) * 2005-07-27 2008-04-08 유니버시티 오브 플로리다 리서치 파운데이션, 아이엔씨. 안구 질환의 치료를 위한 열충격의 사용
KR20090048403A (ko) * 2006-06-01 2009-05-13 비롤로긱 게엠베하 단백질 폴딩 및 단백질 분해 저해에 의한 바이러스 감염 및/또는 암 치료용 약학적 조성물

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650639A (zh) * 2011-02-25 2012-08-29 株式会社芳珂 特应性皮炎的检查方法
WO2014178680A1 (ko) * 2013-05-03 2014-11-06 주식회사 카엘젬백스 Hsp 발현 억제 펩티드 및 이를 포함하는 조성물
KR20160009548A (ko) * 2013-05-03 2016-01-26 주식회사 젬백스앤카엘 Hsp 발현 억제 펩티드 및 이를 포함하는 조성물
KR102275912B1 (ko) 2013-05-03 2021-07-12 주식회사 젬백스앤카엘 Hsp 발현 억제 펩티드 및 이를 포함하는 조성물
CN105675572A (zh) * 2016-03-15 2016-06-15 四川大学华西医院 一种肺癌筛查试剂盒
CN105675572B (zh) * 2016-03-15 2018-09-14 四川大学华西医院 一种肺癌筛查试剂盒

Also Published As

Publication number Publication date
WO2011096756A9 (ko) 2012-03-08
KR101307132B1 (ko) 2013-09-10
US20120308568A1 (en) 2012-12-06
KR20110090842A (ko) 2011-08-10
WO2011096756A3 (ko) 2011-12-15
US9102942B2 (en) 2015-08-11

Similar Documents

Publication Publication Date Title
WO2011096756A2 (ko) 비정상적 세포 증식 억제용 약제학적 조성물
Kowaljow et al. The DUX4 gene at the FSHD1A locus encodes a pro-apoptotic protein
Cioce et al. UV-induced fragmentation of Cajal bodies
US8933043B2 (en) Methods for regulation of p53 translation and function
AU2015202068A1 (en) Sting (stimulator of interferon genes), a regulator of innate immune responses
CA2576293A1 (en) Agents capable of downregulating an msf-a-dependent hif-1alpha and use thereof in cancer treatment
US8609624B2 (en) Methods and compositions for the inhibition of Stat5 in prostate cancer cells
Kim et al. Cdc6 localizes to S-and G2-phase centrosomes in a cell cycle-dependent manner
KR20110076845A (ko) 혈관신생 억제용 약제학적 조성물
Zhang et al. Reciprocal positive regulation between BRD4 and YAP in GNAQ-mutant uveal melanoma cells confers sensitivity to BET inhibitors
JP2002532515A (ja) 蛋白質チロシンホスファターゼtc−ptpの治療的および診断的利用
US20070054259A1 (en) Modulation of hnRNP H and treatment of DM1
KR101367832B1 (ko) 종양 억제 타겟으로서 Hades의 용도
EP2493492A1 (en) Phosphorylated twist1 and cancer
WO2012010321A1 (en) Foetal haemoglobin inhibitor
JP2015515485A (ja) Rnaリガーゼ複合体メンバーとしてのアーキアーゼ
US20150065444A1 (en) Method for enhancing efficacy and selectivity of cancer cell killing by dna damaging agents
D'Agnano et al. Oligopeptides impairing the Myc‐Max heterodimerization inhibit lung cancer cell proliferation by reducing Myc transcriptional activity
JP4415145B2 (ja) p53タンパク質の活性化を調節する薬物のスクリーニング法
JP6653120B2 (ja) Ikaros阻害に基づく抗炎症薬
KR20190047489A (ko) 53bp1의 신규한 용도
US20100113557A1 (en) Method for prevention of tumor
US9107936B2 (en) Antagonists of GRASP55 for use as a medicament
Nepon-Sixt Cell Cycle Arrest by TGFß1 is Dependent on the Inhibition of CMG Helicase Assembly and Activation
KR20100085439A (ko) Rad 단백질 억제제를 포함하는 암 치료용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11740052

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13577231

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11740052

Country of ref document: EP

Kind code of ref document: A2