WO2011096448A1 - アニオン性含フッ素乳化剤の回収方法 - Google Patents

アニオン性含フッ素乳化剤の回収方法 Download PDF

Info

Publication number
WO2011096448A1
WO2011096448A1 PCT/JP2011/052175 JP2011052175W WO2011096448A1 WO 2011096448 A1 WO2011096448 A1 WO 2011096448A1 JP 2011052175 W JP2011052175 W JP 2011052175W WO 2011096448 A1 WO2011096448 A1 WO 2011096448A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
anionic
water
emulsifier
ion exchange
Prior art date
Application number
PCT/JP2011/052175
Other languages
English (en)
French (fr)
Inventor
順子 芳賀
松岡 康彦
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2011552806A priority Critical patent/JP5720580B2/ja
Priority to EP11739796.8A priority patent/EP2532423B1/en
Priority to CN2011800074599A priority patent/CN102740974A/zh
Priority to RU2012137193/05A priority patent/RU2012137193A/ru
Publication of WO2011096448A1 publication Critical patent/WO2011096448A1/ja
Priority to US13/539,664 priority patent/US8492585B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/05Processes using organic exchangers in the strongly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/50Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents
    • B01J49/57Regeneration or reactivation of ion-exchangers; Apparatus therefor characterised by the regeneration reagents for anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/301Detergents, surfactants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/325Emulsions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the present invention relates to a method for recovering an anionic fluorinated emulsifier, wherein the anionic fluorinated emulsifier is eluted from a basic ion exchange resin adsorbed with the anionic fluorinated emulsifier and recovered as an acid of the anionic fluorinated emulsifier.
  • fluoropolymers such as polytetrafluoroethylene (hereinafter referred to as PTFE), melt-moldable fluororesins, and fluoroelastomers by emulsion polymerization
  • PTFE polytetrafluoroethylene
  • melt-moldable fluororesins melt-moldable fluororesins
  • fluoroelastomers by emulsion polymerization
  • a fluorine-containing emulsifier is generally used.
  • a fluoropolymer powder is obtained by agglomerating and drying an aqueous emulsion of a fluoropolymer obtained by emulsion polymerization (hereinafter referred to as an aqueous fluoropolymer emulsion).
  • the fluorine-containing polymer powder is used for various purposes after being molded by a method such as paste extrusion molding.
  • a non-ionic surfactant or the like is added to the fluoropolymer aqueous emulsion as necessary, followed by a stabilization treatment, and then a concentration treatment to obtain a fluoropolymer aqueous dispersion containing a high concentration of the fluoropolymer. can get.
  • This fluoropolymer aqueous dispersion is used for various coating applications, impregnation applications and the like by adding various compounding agents as required.
  • the anionic fluorine-containing emulsifier used for emulsion polymerization of a fluorine-containing polymer is a substance that is not easily decomposed in nature. For this reason, in recent years, it has been desired to reduce the anionic fluorine-containing emulsifier contained in products such as a fluorine-containing polymer aqueous emulsion and a fluorine-containing polymer aqueous dispersion as well as industrial wastewater.
  • the treatment liquid containing the anionic fluorinated emulsifier is brought into contact with the basic ion exchange resin, and the anionic fluorinated emulsifier in the treated liquid is adsorbed on the basic ion exchange resin.
  • the anionic fluorinated emulsifier in the treated liquid is adsorbed on the basic ion exchange resin.
  • anionic fluorine-containing emulsifiers are expensive, attempts have been made to recover and reuse the anionic fluorine-containing emulsifiers adsorbed by the base ion exchange resin.
  • Patent Document 1 discloses that a base ion exchange resin adsorbing an anionic fluorinated emulsifier is treated with a mixture of a dilute mineral acid and an organic solvent and recovered as an acid of an anionic fluorinated emulsifier. ing. It is described that the organic solvent is preferably a solvent that can be mixed in the same amount as water and mixed at least 40% or infinitely.
  • Patent Document 2 discloses a basic ion exchange resin adsorbing an anionic fluorine-containing emulsifier, water, a solvent such as methanol and / or dimethyl monoglycol ether or dimethyl diglycol ether, and alkali metal hydroxide ammonia. It is disclosed that an anionic fluorine-containing emulsifier bound to a basic ion exchange resin is eluted by contacting with a mixture with a solution.
  • Patent Document 3 discloses that a basic ion exchange resin adsorbing an anionic fluorine-containing emulsifier is treated with an aqueous alkali solution containing water and an organic solvent. It is described that the organic solvent dissolves water or dissolves in water, and is preferably capable of dissolving at least 10 vol% of water.
  • Patent Document 4 discloses that a basic ion exchange resin adsorbing an anionic fluorine-containing emulsifier is treated with a water-miscible organic solvent containing at least one ammonia and having a boiling point of less than 150 ° C. Yes. Specifically, a mixture of ammonia and methanol is used.
  • alcohol is a flammable and water-soluble organic solvent
  • COD chemical oxygen demand
  • an object of the present invention is to provide a method for recovering an anionic fluorinated emulsifier that can easily and efficiently recover an anionic fluorinated emulsifier adsorbed by a base ion exchange resin.
  • the present invention has the following gist.
  • a method for recovering an anionic fluorinated emulsifier by eluting the anionic fluorinated emulsifier from the basic ion exchange resin adsorbed with the anionic fluorinated emulsifier, and recovering it as an acid of the anionic fluorinated emulsifier, After bringing the mixed solution of the inorganic acid aqueous solution and the water-insoluble fluorine-containing medium into contact with the basic ion exchange resin, the phase of the water-insoluble fluorine-containing medium is recovered, and the anionic property is recovered from the phase of the water-insoluble fluorine-containing medium.
  • a method for recovering an anionic fluorinated emulsifier comprising recovering an acid of the fluorinated emulsifier.
  • a method for recovering an anionic fluorinated emulsifier by eluting the anionic fluorinated emulsifier from the basic ion exchange resin adsorbed with the anionic fluorinated emulsifier and recovering it as an acid of the anionic fluorinated emulsifier, An inorganic acid aqueous solution is contacted with the basic ion exchange resin, and then a water-insoluble fluorine-containing medium is contacted, and then the phase of the water-insoluble fluorine-containing medium is recovered, and an anion is recovered from the phase of the water-insoluble fluorine-containing medium.
  • a method for recovering an anionic fluorinated emulsifier comprising recovering an acid of a fluorinated emulsifier.
  • Emulsifier recovery method comprising recovering an acid of a fluorinated emulsifier.
  • a base type ion exchange resin adsorbed with an anionic fluorine-containing emulsifier is contacted with a mixed solution of an inorganic acid aqueous solution and a non-water-soluble fluorine-containing medium, or an inorganic acid aqueous solution is contacted,
  • the anionic fluorine-containing emulsifier adsorbed on the basic ion exchange resin is acidified by the aqueous inorganic acid solution and eluted into the water-insoluble fluorine-containing medium.
  • the water-insoluble fluorine-containing medium contains a large amount of an anionic fluorine-containing emulsifier eluted from the basic ion exchange resin as an acid of the anionic fluorine-containing emulsifier.
  • the acid of the anionic fluorine-containing emulsifier can be efficiently recovered by a known method such as a distillation method.
  • the acid of the anionic fluorinated emulsifier can be efficiently recovered without using a flammable and water-soluble organic solvent.
  • the water-insoluble fluorine-containing medium after recovering the acid of the anionic fluorine-containing emulsifier can be reused, and the labor for wastewater treatment can be reduced.
  • the recovered acid of the anionic fluorine-containing emulsifier can be used as it is or after neutralization as an ammonium salt or an alkali metal salt for emulsion polymerization of the fluorine-containing polymer.
  • the acid of the anionic fluorinated emulsifier refers to an acid type anionic fluorinated emulsifier.
  • the water-insoluble fluorine-containing medium refers to a fluorine-containing medium having a solubility in water at 25 ° C. of less than 0.1%.
  • examples of the base ion exchange resin used for adsorbing the anionic fluorine-containing emulsifier include strong base ion exchange resins and weak base ion exchange resins. Strong base type ion exchange resins are preferred. The strong base type ion exchange resin is hardly affected by the pH of the liquid to be treated containing the anionic fluorine-containing emulsifier, and can maintain high adsorption efficiency.
  • the base type ion exchange resin examples include granular resins made of styrene-divinylbenzene crosslinked resin, acrylic-divinylbenzene crosslinked resin, cellulose resin, etc. having amino groups and / or quaternary ammonium bases as ion exchange groups. Can be mentioned. Of these, a granular resin made of a styrene-divinylbenzene crosslinked resin having a quaternary ammonium base as an ion exchange group is preferable.
  • the average particle size of the basic ion exchange resin is preferably 0.1 to 2 mm, more preferably 0.2 to 1.3 mm, and particularly preferably 0.3 to 0.8 mm. If the average particle size of the basic ion exchange resin is within the above range, for example, an anionic fluorinated emulsifier is obtained by passing a liquid to be treated containing an anionic fluorinated emulsifier through a column packed with the basic ion exchange resin. When the operation of adsorbing the liquid is performed, it becomes difficult to block the flow path of the liquid to be processed.
  • the ion exchange capacity of the basic ion exchange resin is preferably 0.5 to 2.5 (eq / L (liter)), more preferably 0.8 to 1.7 (eq / L).
  • the anionic fluorinated emulsifier in the liquid to be treated can be adsorbed efficiently.
  • Examples of commercially available base type ion exchange resins include Lewatit (registered trademark) MP800OH, Lewatit (registered trademark) M800KR, Lewatit (registered trademark) MP600, and Purolite (registered trademark) A200MBOH manufactured by LANXESS.
  • the anionic fluorinated emulsifier to be adsorbed on the basic ion exchange resin is not particularly limited.
  • examples thereof include a fluorinated carboxylic acid and a salt thereof which may have an etheric oxygen atom, a fluorinated sulfonic acid and a salt thereof, and the like.
  • the salt include ammonium salts and alkali metal salts (Li, Na, K, etc.), and ammonium salts are preferable.
  • a fluorine-containing carboxylic acid which may have an etheric oxygen atom and a salt thereof are preferable, and a fluorine-containing carboxylic acid having 5 to 7 carbon atoms which may contain 1 to 3 etheric oxygen atoms and the salt thereof.
  • a salt is more preferred.
  • fluorine-containing carboxylic acid examples include perfluorocarboxylic acid, perfluorocarboxylic acid having an etheric oxygen atom, and fluorine-containing carboxylic acid having a hydrogen atom.
  • perfluorocarboxylic acid examples include perfluorohexanoic acid, perfluoroheptanoic acid, perfluorooctanoic acid, and perfluorononanoic acid.
  • fluorine-containing carboxylic acid having a hydrogen atom examples include ⁇ -hydroperfluorooctanoic acid, C 3 F 7 OCF (CF 3 ) CF 2 OCHFCOOH, CF 3 CFHO (CF 2 ) 5 COOH, CF 3 O (CF 2 ) 3 OCFCCF 2 COOH, CF 3 O (CF 2 ) 3 OCHFCOOH, C 3 F 7 OCHFCF 2 COOH, CF 3 CFHO (CF 2 ) 3 COOH, and the like can be given.
  • fluorine-containing sulfonic acid examples include perfluorooctane sulfonic acid and C 6 F 13 CH 2 CH 2 SO 3 H.
  • the basic ion exchange resin adsorbed with the anionic fluorinated emulsifier can be obtained by bringing a liquid to be treated containing the anionic fluorinated emulsifier into contact with the basic ion exchange resin. That is, by bringing the liquid to be treated into contact with the base type ion exchange resin, the anionic fluorinated emulsifier in the liquid to be treated is adsorbed on the base type ion exchange resin.
  • Examples of the liquid to be treated containing an anionic fluorinated emulsifier include (1) emulsion polymerization of a fluorinated monomer in the presence of an anionic fluorinated emulsifier, and the resulting fluorinated polymer aqueous emulsion contains nonionic surface activity. (2) wastewater containing an anionic fluorinated emulsifier discharged after agglomerating the fluorinated polymer aqueous emulsion, 3) An aqueous solution in which an anionic fluorinated emulsifier contained in the air discharged in the process of drying the fluorinated polymer aggregate obtained by agglomerating the fluoropolymer aqueous emulsion is absorbed.
  • the aqueous fluoropolymer dispersion is preferably an aqueous fluoropolymer dispersion obtained by stabilizing an aqueous fluoropolymer emulsion with a nonionic surfactant.
  • a nonionic surfactant include a surfactant represented by the general formula (A) and / or the general formula (B).
  • R 1 -OAH (In the formula (A), R 1 is an alkyl group having 8 to 18 carbon atoms, and A is a polyoxyalkylene chain composed of 5 to 20 oxyethylene groups and 0 to 2 oxypropylene groups.) R 2 —C 6 H 4 —O—B—H (B) (In the formula (B), R 2 is an alkyl group having 4 to 12 carbon atoms, and B is a polyoxyethylene chain composed of 5 to 20 oxyethylene groups.) In the general formula (A), the alkyl group of R 1 has 8 to 18 carbon atoms, preferably 10 to 16 and more preferably 12 to 16.
  • R 1 may be linear or branched, but is preferably linear.
  • the alkyl group of R 2 has 4 to 12 carbon atoms, preferably 6 to 10, more preferably 8 to 9.
  • R 2 may be linear or branched, but is preferably linear.
  • nonionic surfactant of the general formula (A) include, for example, C 13 H 27 — (OC 2 H 4 ) 10 —OH, C 12 H 25 — (OC 2 H 4 ) 10 —OH, C 10 H 21 CH (CH 3 ) CH 2 — (OC 2 H 4 ) 9 —OH, C 13 H 27 — (OC 2 H 4 ) 8 —OCH (CH 3 ) CH 2 —OH, C 16 H 33 —
  • Nonionic surfactants having a molecular structure such as (OC 2 H 4 ) 10 —OH, CH (C 5 H 11 ) (C 7 H 15 ) — (OC 2 H 4 ) 9 —OH, and the like can be mentioned.
  • nonionic surfactant represented by the general formula (B) examples include C 8 H 17 —C 6 H 4 — (OC 2 H 4 ) 10 —OH, C 9 H 19 —C 6 H 4 —.
  • Nonionic surfactants having a molecular structure such as (OC 2 H 4 ) 10 —OH can be mentioned.
  • Examples of commercially available products include Dow Triton (registered trademark) X series, Nikko Chemical Nikkor (registered trademark) OP series, and NP series.
  • the content of the nonionic surfactant represented by the general formula (A) and / or the general formula (B) in the fluoropolymer aqueous dispersion is preferably 1 to 20% by mass with respect to the mass of the fluoropolymer. 1 to 10% by mass is more preferable, and 2 to 8% by mass is particularly preferable.
  • the method for contacting the liquid to be treated containing the anionic fluorine-containing emulsifier and the base type ion exchange resin is not particularly limited, and conventionally known methods can be mentioned.
  • a method in which a base type ion exchange resin is put into the liquid to be treated and stirred or shaken a method in which the liquid to be treated is passed through a column packed with the base type ion exchange resin, and the like can be mentioned.
  • the liquid to be treated is preferably filtered using a single-stage or multi-stage filter group having a pore size of 100 to 300 ⁇ m.
  • the contact temperature when the liquid to be treated containing the anionic fluorine-containing emulsifier is brought into contact with the basic ion exchange resin is not particularly limited and may be appropriately selected.
  • the contact time is not particularly limited and may be appropriately selected.
  • the range of 10 minutes to 200 hours is preferable.
  • the atmospheric pressure is preferable, the pressure at the time of contact may be a reduced pressure state or a pressurized state.
  • the basic ion exchange resin is separated.
  • an inorganic acid aqueous solution and a water-insoluble fluorine-containing medium are applied to the basic ion exchange resin adsorbing the anionic fluorine-containing emulsifier separated above.
  • an eluent a mixed solution of an inorganic acid aqueous solution and a non-water-soluble fluorine-containing medium is referred to as an eluent.
  • the anionic fluorine-containing emulsifier adsorbed on the base type ion exchange resin is acidified by the aqueous inorganic acid solution and becomes easy to elute.
  • the anionic fluorinated emulsifier has good compatibility with the non-water-soluble fluorinated medium, the anionic fluorinated emulsifier adsorbed on the basic ion exchange resin elutes as an acid of the anionic fluorinated emulsifier, Elutes in a non-water-soluble fluorine-containing medium.
  • the method for contacting the basic ion exchange resin and the eluent is not particularly limited.
  • mechanical stirring with a stirrer or the like, shaking or the like can be mentioned.
  • the stirring intensity is higher as long as the particles of the base ion exchange resin are not destroyed.
  • the particles of the basic ion exchange resin are not destroyed, it is preferable because they can be easily reused for adsorption of the anionic fluorinated emulsifier.
  • the basic ion exchange resin adsorbed with the anionic fluorine-containing emulsifier is brought into contact with the base type ion exchange resin and the liquid to be treated containing the anionic fluorine-containing emulsifier, so that the anionic After adsorbing the fluorine emulsifier, it may be used in a wet state without performing a drying treatment or the like, or may be used in a dry state after being subjected to a drying treatment. Industrially, it is preferable to use it in a wet state because the process can be simplified.
  • the inorganic acid aqueous solution at least one selected from the group consisting of a hydrochloric acid aqueous solution, a nitric acid aqueous solution, a sulfuric acid aqueous solution and a phosphoric acid aqueous solution is preferably used.
  • a hydrochloric acid aqueous solution a nitric acid aqueous solution, a sulfuric acid aqueous solution and a phosphoric acid aqueous solution
  • Two or more kinds of the inorganic acid aqueous solutions may be mixed and used.
  • an aqueous hydrochloric acid solution is particularly preferred because it is industrially easy to use.
  • the water-insoluble fluorine-containing medium is preferably at least one selected from the group consisting of hydrofluorocarbons and hydrofluoroethers.
  • hydrofluoroethers are particularly preferred because of their low global warming potential and ozone depletion potential.
  • hydrofluoroether examples include CF 3 CH 2 OCF 2 CF 2 H, CF 3 CH 2 OCF 2 CFHCF 3 , (CF 3 ) 2 CHOCF 2 CF 2 H, CF 3 CH 2 OCHFCHF 2 , and CF 3 (CF 2 ) 3.
  • Hydrofluorocarbons include CHF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CH 2 CH 3 , CF 3 CF 2 CF 2 CF 2 CF 2 CH 2 CH 3 , CF 3 CF 2 CHFCHFCF 3, CF 3 CH 2 CF 2 CH 3, CF 3 CF 2 CF 2 CFHCH 3 , and the like.
  • hydrofluorocarbons and hydrofluoroethers both have a solubility in water of less than 0.1%. Moreover, it is a nonflammable medium and has excellent handling properties.
  • the ratio of the base type ion exchange resin adsorbing the anionic fluorinated emulsifier, the inorganic acid aqueous solution, and the water-insoluble fluorine-containing medium is, as a mass ratio, the base type ion exchange resin / (the inorganic acid aqueous solution and the water-insoluble
  • the total amount with the fluorine medium) 60/40 to 1/99 is preferable, 55/45 to 10/90 is more preferable, and 50/50 to 30/70 is particularly preferable.
  • the contact efficiency is lowered and the acid recovery rate of the anionic fluorine-containing emulsifier is lowered.
  • the amount is too small, the miscibility is lowered and the acid recovery rate of the anionic fluorinated emulsifier is lowered. Within the above range, the miscibility is good and the acid recovery rate of the anionic fluorine-containing emulsifier is high.
  • the phase of the water-insoluble fluorine-containing medium is separated and recovered from the mixture of the base type ion exchange resin adsorbing the anionic fluorine-containing emulsifier and the eluent.
  • the mixture Since the compatibility between the inorganic acid aqueous solution and the water-insoluble fluorine-containing medium is extremely low, the mixture is separated into an inorganic acid aqueous solution phase and a water-insoluble fluorine-containing medium phase simply by, for example, standing. Therefore, according to the present invention, a large amount of anionic fluorinated emulsifier acid is contained in a very simple operation such as collecting the phase-separated supernatant without using a particularly complicated collecting device. The phase of the water-insoluble fluorine-containing medium can be separated and recovered.
  • the acid of the anionic fluorine-containing emulsifier can be recovered by performing a distillation operation on the phase of the water-insoluble fluorine-containing medium thus separated and recovered.
  • the recovered acid of the anionic fluorine-containing emulsifier may be used as it is as an anionic fluorine-containing emulsifier, or may be neutralized to be used as an ammonium salt, an alkali metal salt or the like.
  • a water-insoluble fluorine-containing medium is newly added to the remainder of the separation of the phase of the water-insoluble fluorine-containing medium from the mixture of the basic ion exchange resin and the eluent, mixed, allowed to stand,
  • the operation of separating and recovering the phase of the water-insoluble fluorine-containing medium and recovering the acid of the anionic fluorine-containing emulsifier from the phase of the water-insoluble fluorine-containing medium may be repeated one or more times.
  • the acid recovery rate of the anionic fluorine-containing emulsifier by repeating the above operation, that is, by increasing the number of times of contact between the basic ion exchange resin and the eluent.
  • the acid of 45 mass% or more of an anionic fluorine-containing emulsifier can be eluted by bringing the eluent into contact with a basic ion exchange resin (first contact). Then, by adding a water-insoluble fluorine-containing medium to the remaining part from which the phase of the water-insoluble fluorine-containing medium has been separated, and mixing them (for example, the second contact), a total of 70 masses.
  • an anionic fluorine-containing emulsifier acid can be eluted. Further, by performing the same operation and increasing the number of times of contact between the base type ion exchange resin and the eluent, the anionic fluorine-containing emulsifier can be finally eluted by almost 100%. Since the process becomes complicated as the number of contacts is increased, the number of contacts is preferably 5 or less.
  • the water-insoluble fluorine-containing medium obtained by removing the eluted anionic fluorine-containing emulsifier from the water-insoluble fluorine-containing medium once contacted with the basic ion exchange resin is reused. However, it is preferable to use a new water-insoluble fluorine-containing medium.
  • an inorganic acid aqueous solution is brought into contact with a basic ion exchange resin adsorbed with an anionic fluorine-containing emulsifier, and then a water-insoluble fluorine-containing medium is brought into contact therewith.
  • the anionic fluorinated emulsifier adsorbed on the base ion exchange resin is converted into an acid form by contacting the base ion exchange resin with an inorganic acid aqueous solution, and the base ion exchange resin is easily eluted. To be adsorbed. Since an anionic fluorine-containing emulsifier has low compatibility with an inorganic acid aqueous solution, it hardly dissolves into the inorganic acid aqueous solution even if it is acidified.
  • the water-insoluble fluorine-containing medium has good compatibility with the anionic fluorine-containing emulsifier
  • by bringing the water-insoluble fluorine-containing medium into contact with the basic ion exchange resin in contact with the inorganic acid aqueous solution The anionic fluorine-containing emulsifier adsorbed on the base type ion exchange resin elutes as an acid of the anionic fluorine-containing emulsifier and elutes in the water-insoluble fluorine-containing medium.
  • phase of the water-insoluble fluorine-containing medium containing a large amount of the acid of the anionic fluorine-containing emulsifier can be recovered and recovered.
  • the acid of the anionic fluorine-containing emulsifier can be recovered by subjecting the phase of the water-insoluble fluorine-containing medium to a distillation operation or the like.
  • the basic ion exchange resin is separated and recovered from the mixture, and the water-insoluble fluorine-containing resin is separated into the separated basic ion exchange resin. It is preferable to contact the medium.
  • the base-type ion exchange resin is filtered off from the mixture of the base-type ion exchange resin and the water-insoluble fluorine-containing medium.
  • the phase of the water-insoluble fluorine-containing medium can be recovered by a simple operation.
  • the ratio of the basic ion exchange resin adsorbed with the anionic fluorine-containing emulsifier and the aqueous inorganic acid solution is preferably 80/20 to 2/98, and preferably 75/25 to 20 / 80 is more preferable.
  • the ratio of the base type ion exchange resin to the water-insoluble fluorine-containing medium is preferably 80/20 to 2/98, more preferably 75/25 to 20/80 in terms of mass ratio. If it is in the said range, the recovery rate of the acid of an anionic fluorine-containing emulsifier will be high.
  • an anionic fluorinated emulsifier using an inorganic acid aqueous solution and a water-insoluble fluorinated medium with respect to the remainder obtained by separating the phase of the water-insoluble fluorinated medium. This recovery operation may be repeated one or more times.
  • the “remaining part from which the phase of the fluorine medium is separated” is mainly composed of a basic ion exchange resin.
  • (A) inorganic acid A mixed liquid of an aqueous solution and a water-insoluble fluorine-containing medium is contacted, or (B) an inorganic acid aqueous solution is contacted, and then a water-insoluble fluorine-containing medium is contacted. It is preferable to recover the phase and recover the anionic fluorine-containing emulsifier from the phase of the water-insoluble fluorine-containing medium.
  • A Average primary particle diameter (unit: ⁇ m) of PTFE (polytetrafluoroethylene): measured using a laser scattering particle size distribution analyzer (trade name “LA-920” manufactured by Horiba, Ltd.).
  • Standard specific gravity (hereinafter also referred to as SSG): Measured according to ASTM D1457-91a and D4895-91a. 12.0 g of PTFE was weighed and held at 34.5 MPa for 2 minutes in a cylindrical mold having an inner diameter of 28.6 mm. This was put into a 290 ° C. oven and heated at 120 ° C./hr. Next, after maintaining at 380 ° C. for 30 minutes, the temperature was decreased at 60 ° C./hr and maintained at 294 ° C. for 24 minutes. Then, after hold
  • (C) Acid concentration of anionic fluorine-containing emulsifier and anionic fluorine-containing emulsifier Methylene blue solution (12 g of sulfuric acid is gradually added to about 500 mL of water in a glass bottle, and after cooling, 0.03 g of methylene blue and sulfuric anhydride are added thereto. 50 mL of sodium was dissolved and water was added to make 1 L (liter) 4 mL, and chloroform 5 mL was added, and 0.1 g of a 1000 to 3000-fold diluted solution of the sample to be measured was added and shaken vigorously. After placement, the lower chloroform phase was collected.
  • the collected chloroform phase was filtered with a filter having a pore size of 0.2 ⁇ m, and the absorbance at 630 nm was measured with a spectrophotometer.
  • the chloroform phase is blue depending on the amount of the anionic fluorine-containing emulsifier.
  • the absorbance is measured in the same manner to prepare a calibration curve, and using the calibration curve, the concentration of the anionic fluorine-containing emulsifier in the measurement sample Asked.
  • the acid concentration of the anionic fluorine-containing emulsifier in the measurement sample was determined.
  • Example 1 A non-ionic system using a tube pump is applied to a column (internal volume 51 cc) with a length of 80 cm and an inner diameter of 0.9 cm packed with a strong base type ion exchange resin (trade name: “PUROLITE (registered trademark) A200MBOH”, manufactured by Purolite).
  • a strong base type ion exchange resin trade name: “PUROLITE (registered trademark) A200MBOH”, manufactured by Purolite.
  • a surfactant trade name: “Newcol (registered trademark) 1308FA”, manufactured by Nippon Emulsifier Co., Ltd.
  • an anionic fluorine-containing emulsifier (CF 3 CF 2 OCF 2 23.0 kg of PTFE aqueous dispersion containing 0.471% by mass of CF 2 OCF 2 COO ⁇ (NH 4 ) + ) with respect to the mass of PTFE (PTFE concentration 29.4%, average primary particle diameter of PTFE is 300 nm, The standard specific gravity of PTFE was 2.20) at 120 cc / h for about 195 hours.
  • the anionic fluorine-containing emulsifier in the PTFE aqueous dispersion after passing through was reduced to 0.0471% by mass relative to the PTFE mass.
  • the PTFE aqueous dispersion before passing through it contained 31.9 g of an anionic fluorinated emulsifier by calculation. Further, 3.18 g of an anionic fluorine-containing emulsifier was contained in the PTFE aqueous dispersion after passing through. From this, 28.7 g of an anionic fluorine-containing emulsifier was adsorbed to the strongly basic ion exchange resin after passing through. This strong base type ion exchange resin was dried in an oven at 50 to 60 ° C. for about 12 hours until the mass became constant.
  • the strong base ion exchange resin thus obtained is 44.6 g, and 0.643 g of an anionic fluorinated emulsifier per 1 g is adsorbed.
  • a 30 cc glass bottle containing a stirrer 1.01 g of the strongly basic ion exchange resin subjected to the above drying treatment, 0.300 g of 11N hydrochloric acid aqueous solution, and CF 3 CH 2 OCFCHF 2 as a water-insoluble fluorine-containing medium.
  • AE-3000 trade name: “Asahi Klin (registered trademark) AE-3000”, manufactured by Asahi Glass Co., Ltd.
  • the mixture was allowed to stand, and the separated phase of AE-3000 was recovered, and the concentration of the acid (CF 3 CF 2 OCF 2 CF 2 OCF 2 COOH) of the anionic fluorinated emulsifier in the phase was measured.
  • the recovered AE-3000 phase contained 0.310 g of an anionic fluorinated emulsifier acid.
  • the acid recovery rate of the anionic fluorinated emulsifier was 47.8%.
  • Example 2 (Examples 2 to 6) In Example 1, except that the amount of 11N hydrochloric acid aqueous solution and AE-3000 used was changed to the amount shown in Table 1, the phase of AE-3000 was recovered and the anionic property in the phase was recovered in the same manner as in Example 1. The acid concentration of the fluorine-containing emulsifier was measured. The results are shown in Table 1.
  • Example 7 Strong base type ion exchange resin (trade name: “PUROLITE (registered trademark) A200MBOH”, manufactured by Purolite), anionic fluorine-containing emulsifier (CF 3 CF 2 OCF 2 CF 2 OCF 2 COO ⁇ (NH 4 ) + )
  • PUROLITE registered trademark
  • A200MBOH anionic fluorine-containing emulsifier
  • the solution was placed in 8.96 kg of an aqueous solution containing 29.9% by mass and stirred for 110 hours, and then an aqueous solution of a strongly basic ion exchange resin and an anionic fluorinated emulsifier was separated.
  • the concentration of the anionic fluorinated emulsifier was reduced to 13.0% by mass.
  • the mixture was shaken with a shaker (trade name: “SHAKER S-31”, manufactured by Yamato) for 60 minutes. Next, the mixture was allowed to stand, and the separated AE-3000 phase was recovered, and the acid concentration of the anionic fluorinated emulsifier in the phase was measured.
  • the recovered AE-3000 phase contained 2.67 g of an anionic fluorinated emulsifier acid. The acid recovery rate of the anionic fluorinated emulsifier was 57.2%.
  • Example 8 In Example 7, after separating the AE-3000 phase, 25.1 g of AE-3000 was newly added to the remaining mixture of strong base ion exchange resin and aqueous hydrochloric acid, and shaken for 60 minutes with a shaker. did. Next, the mixture was allowed to stand, and the separated AE-3000 phase was recovered, and the acid concentration of the anionic fluorinated emulsifier in the phase was measured.
  • the recovered AE-3000 phase contained 1.16 g of an anionic fluorinated emulsifier acid.
  • the acid recovery rate of the anionic fluorine-containing emulsifier was 24.9%.
  • the acid recovery rate of the anionic fluorine-containing emulsifier was 82.1% in total.
  • Example 9 In a 600 cc beaker, 20.0 g of strong base type ion exchange resin obtained by adsorbing the anionic fluorine-containing emulsifier obtained in Example 7, 50.0 g of 11N hydrochloric acid aqueous solution, and 50.0 g of AE-3000 were obtained. And stirred for 60 minutes. Next, the mixture was allowed to stand, and the separated AE-3000 phase was recovered, and the acid concentration of the anionic fluorinated emulsifier in the phase was measured. The recovered AE-3000 phase contained 4.99 g of an anionic fluorinated emulsifier acid. The acid recovery rate of the anionic fluorine-containing emulsifier was 54.0%.
  • Example 10 In a 600 cc beaker, 20.0 g of strong base type ion exchange resin in which the anionic fluorine-containing emulsifier obtained in Example 7 was adsorbed, 50.0 g of 3N hydrochloric acid aqueous solution, and 50.0 g of AE-3000 were added. And stirred for 60 minutes. Next, the mixture was allowed to stand, and the separated AE-3000 phase was recovered, and the acid concentration of the anionic fluorinated emulsifier in the phase was measured. The recovered AE-3000 phase contained 3.23 g of an anionic fluorinated emulsifier acid. The acid recovery rate of the anionic fluorine-containing emulsifier was 34.9%.
  • Example 11 In a 500 ml three-necked flask, 20.4 g of strong base type ion exchange resin adsorbed with the anionic fluorine-containing emulsifier obtained in Example 7 and 24.0 g of 11N hydrochloric acid aqueous solution were added and stirred for 60 minutes. Next, the hydrochloric acid aqueous solution was removed, and strong base type ion exchange resin and 24.0 g of AE-3000 were stirred for 60 minutes.
  • the concentration of the acid of the anionic fluorinated emulsifier in the AE-3000 phase was measured, it contained 3.92 g of the acid of the anionic fluorinated emulsifier, and the acid recovery rate of the anionic fluorinated emulsifier was 42. 4%.
  • the anionic fluorinated emulsifier can be recovered from the basic ion exchange resin adsorbed with the anionic fluorinated emulsifier in a high yield. Further, the water-insoluble fluorine-containing medium used for the recovery of the anionic fluorine-containing emulsifier can be reused, and the labor required for waste liquid treatment can be reduced.
  • the recovered anionic fluorine-containing emulsifier can be used as it is or neutralized as an alkali metal salt or ammonium salt for emulsion polymerization of a fluorine-containing polymer aqueous emulsion.

Abstract

 塩基型イオン交換樹脂が吸着したアニオン性含フッ素乳化剤を、簡便で効率よく回収することが可能なアニオン性含フッ素乳化剤の回収方法を提供する。 塩基型イオン交換樹脂に無機酸水溶液と非水溶性含フッ素媒体との混合液を接触させるか、あるいは、塩基型イオン交換樹脂に無機酸水溶液を接触させ、次いで、非水溶性含フッ素媒体を接触させた後、非水溶性含フッ素媒体の相を回収し、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤の酸を回収する。

Description

アニオン性含フッ素乳化剤の回収方法
 本発明は、アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂から、アニオン性含フッ素乳化剤を溶離して、アニオン性含フッ素乳化剤の酸として回収するアニオン性含フッ素乳化剤の回収方法に関する。
 ポリテトラフルオロエチレン(以下、PTFEという)、溶融成形性フッ素樹脂、フルオロエラストマー等の含フッ素ポリマーを乳化重合により製造する際、水性媒体中で連鎖移動によって重合反応を妨げることのないようなアニオン性含フッ素乳化剤を一般的に用いる。
 乳化重合により得られる含フッ素ポリマーの水性乳化液(以下、含フッ素ポリマー水性乳化液という)を凝集及び乾燥することで、含フッ素ポリマーのパウダーが得られる。含フッ素ポリマーのパウダーは、ペースト押出し成形等の方法で成形した後、種々の用途に用いられる。また、含フッ素ポリマー水性乳化液に必要に応じてノニオン界面活性剤等を添加して安定化処理し、その後、濃縮処理することで含フッ素ポリマーを高濃度に含有する含フッ素ポリマー水性分散液が得られる。このフッ素ポリマー水性分散液は、必要に応じて各種配合剤等を加えて、様々なコーティング用途、含浸用途等に用いられる。
 ところで、含フッ素ポリマーの乳化重合に使用するアニオン性含フッ素乳化剤は、自然界で容易に分解されない物質である。このため、近年、工場排水のみならず、含フッ素ポリマー水性乳化液や含フッ素ポリマー水性分散液等の製品中に含まれるアニオン性含フッ素乳化剤を削減することが望まれている。
 アニオン性含フッ素乳化剤の低減方法としては、アニオン性含フッ素乳化剤を含む被処理液を塩基型イオン交換樹脂に接触させ、該被処理液中のアニオン性含フッ素乳化剤を塩基型イオン交換樹脂に吸着させる方法がある。また、アニオン性含フッ素乳化剤は高価であることから、塩基型イオン交換樹脂が吸着したアニオン性含フッ素乳化剤を回収して再利用する試みが行われている。
 例えば、特許文献1には、アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂を、希鉱酸と有機溶剤との混合物で処理し、アニオン性含フッ素乳化剤の酸として回収することが開示されている。有機溶剤としては、水と同量を混和して少なくとも40%、又は無限に混合しうるような溶剤が好ましいことが記載されている。
 また、特許文献2には、アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂を、水と、メタノールおよび/またはジメチルモノグリコールエーテルまたはジメチルジグリコールエーテル等の溶剤と、アルカリ金属水酸化物アンモニア溶液との混合物と接触させて、塩基型イオン交換樹脂に結合したアニオン性含フッ素乳化剤を溶出することが開示されている。
 また、特許文献3には、アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂を、水及び有機溶媒を含むアルカリ水溶液で処理することが開示されている。有機溶媒としては、水を溶解し、または水に溶解するものであり、少なくとも10vol%の水を溶解し得るものであることが好ましいことが記載されている。
 また、特許文献4には、アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂を、少なくとも1つのアンモニアを含有し150℃未満の沸点を有する水混和性有機溶剤で処理することが開示されている。具体的にはアンモニアとメタノールの混合物を用いている。
特公昭63-2656号公報 特開2001-62313号公報 特開2002-59160号公報 特表2003-512931号公報
 これらの従来技術では、塩基型イオン交換樹脂が吸着したアニオン性含フッ素乳化剤を回収するに際し、酸またはアルカリ水溶液と、基本的にアルコールを代表とする水溶性有機溶剤を用いることが技術の根幹となっている。
 しかしながら、アルコールは引火性で、水溶性の有機溶剤であることから、その取り扱いに対する安全装置や、アルコールに溶出したアニオン性含フッ素乳化剤の回収技術への対応が必要である。さらに、排水のCOD(化学的酸素要求量)負荷に対する処置を考慮すると、より簡便で効率の良い、安価な回収技術が望まれる。
 したがって、本発明の目的は、塩基型イオン交換樹脂が吸着したアニオン性含フッ素乳化剤を、簡便で効率よく回収することが可能なアニオン性含フッ素乳化剤の回収方法を提供することにある。
 本発明は、以下の要旨を有するものである。
 [1]アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂から、アニオン性含フッ素乳化剤を溶離して、アニオン性含フッ素乳化剤の酸として回収するアニオン性含フッ素乳化剤の回収方法であって、前記塩基型イオン交換樹脂に無機酸水溶液と非水溶性含フッ素媒体との混合液を接触させた後、非水溶性含フッ素媒体の相を回収し、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤の酸を回収することを特徴とするアニオン性含フッ素乳化剤の回収方法。
 [2]アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂から、アニオン性含フッ素乳化剤を溶離して、アニオン性含フッ素乳化剤の酸として回収するアニオン性含フッ素乳化剤の回収方法であって、前記塩基型イオン交換樹脂に無機酸水溶液を接触させ、次いで、非水溶性含フッ素媒体を接触させた後、非水溶性含フッ素媒体の相を回収し、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤の酸を回収することを特徴とするアニオン性含フッ素乳化剤の回収方法。
 [3]前記塩基型イオン交換樹脂に無機酸水溶液を接触させた後、塩基型イオン交換樹脂を分離回収して非水溶性含フッ素媒体を接触させる、上記[2]に記載のアニオン性含フッ素乳化剤の回収方法。
 [4]前記無機酸水溶液と、前記非水溶性含フッ素媒体との割合が、質量比で、無機酸水溶液/非水溶性含フッ素媒体=5/95~95/5である上記[1]~[3]のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
 [5]前記塩基型イオン交換樹脂と、前記無機酸水溶液と、前記非水溶性含フッ素媒体との割合が、質量比で、塩基型イオン交換樹脂/(無機酸水溶液と非水溶性含フッ素媒体との合計量)=60/40~1/99である上記[1]~[4]のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
 [6]前記アニオン性含フッ素乳化剤の酸が、含フッ素カルボン酸である上記[1]~[5]のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
 [7]前記アニオン性含フッ素乳化剤の酸が、エーテル性酸素原子を1~3個含有してもよい、炭素数5~7の含フッ素カルボン酸である上記[6]に記載のアニオン性含フッ素乳化剤の回収方法。
 [8]前記非水溶性含フッ素媒体が、ヒドロフルオロカーボン及びヒドロフルオロエーテルからなる群から選ばれる少なくとも1種である上記[1]~[7]のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
 [9]前記非水溶性含フッ素媒体が、CFCHOCFCFH、CFCHOCFCFHCF、(CFCHOCFCFH、CFCHOCHFCHF、CF(CF3OCH、CF(CFOCH、CF(CFOCHCH、CF(CFOCHCH、(CFCFCFOCHCH、CHFCFCFCFCFCF、CFCFCFCFCHCH、CFCFCFCFCFCFCHCH、CFCFCHFCHFCF、CFCHCFCH及びCFCFCFCFHCHからなる群から選ばれる少なくとも1種である上記[8]に記載のアニオン性含フッ素乳化剤の回収方法。
 [10]前記無機酸水溶液が、塩酸水溶液、硫酸水溶液、硝酸水溶液及びリン酸水溶液からなる群から選ばれる少なくとも1種である上記[1]~[9]のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
 [11]前記前記無機酸水溶液の濃度が、0.1N~13Nである上記[1]~[10]のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
 [12]前記塩基型イオン交換樹脂が、強塩基型イオン交換樹脂である上記[1]~[11]のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
 [13]非水溶性含フッ素媒体の相を分離した残部に非水溶性含フッ素媒体を接触させた後、非水溶性含フッ素媒体の相を分離回収し、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤の酸を回収する、上記[1]又は[2]に記載のアニオン性含フッ素乳化剤の回収方法。
 [14]非水溶性含フッ素媒体の相を分離した残部に、(A)無機酸水溶液と非水溶性含フッ素媒体との混合液を接触させるか、あるいは、(B)無機酸水溶液を接触させ、次いで、非水溶性含フッ素媒体を接触させた後、非水溶性含フッ素媒体の相を分離回収し、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤の酸を回収する、上記[3]に記載のアニオン性含フッ素乳化剤の回収方法。
 本発明によれば、アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂に、無機酸水溶液と非水溶性含フッ素媒体との混合液を接触させるか、あるいは、無機酸水溶液を接触させ、次いで、非水溶性含フッ素媒体を接触させることで、塩基型イオン交換樹脂に吸着されたアニオン性含フッ素乳化剤が、無機酸水溶液によって酸型化されて非水溶性含フッ素媒体に溶出する。このため、非水溶性含フッ素媒体には、塩基型イオン交換樹脂から溶離したアニオン性含フッ素乳化剤が、アニオン性含フッ素乳化剤の酸として大量に含まれており、非水溶性含フッ素媒体の相を回収して蒸留法等の公知の方法により、アニオン性含フッ素乳化剤の酸を効率よく回収することができる。
 このように、本発明によれば、引火性で水溶性の有機溶剤を使用しなくても、効率よくアニオン性含フッ素乳化剤の酸を回収できる。また、アニオン性含フッ素乳化剤の酸を回収した後の非水溶性含フッ素媒体は再利用することができ、排水処理にかかる手間を低減できる。そして、回収したアニオン性含フッ素乳化剤の酸は、そのまま、または、中和してアンモニウム塩やアルカリ金属塩等として含フッ素ポリマーの乳化重合に使用できる。
 本明細書において、アニオン性含フッ素乳化剤の酸とは、酸型のアニオン性含フッ素乳化剤をいう。また、非水溶性含フッ素媒体とは、25℃での水への溶解度が、0.1%未満である含フッ素媒体をいう。
 本発明において、アニオン性含フッ素乳化剤を吸着させるために用いる塩基型イオン交換樹脂としては、強塩基型イオン交換樹脂、弱塩基型イオン交換樹脂が挙げられる。好ましくは強塩基型イオン交換樹脂である。強塩基型イオン交換樹脂は、アニオン性含フッ素乳化剤を含む被処理液のpHによる影響を受けにくく、高い吸着効率を維持することができる。
 塩基型イオン交換樹脂としては、例えば、アミノ基および/または第四級アンモニウム塩基をイオン交換基として有する、スチレン-ジビニルベンゼン架橋樹脂、アクリル-ジビニルベンゼン架橋樹脂、またはセルロース樹脂等からなる粒状樹脂が挙げられる。これらのうち、第四級アンモニウム塩基をイオン交換基として有するスチレン-ジビニルベンゼン架橋樹脂からなる粒状樹脂が好ましい。
 塩基型イオン交換樹脂の平均粒径は、0.1~2mmが好ましく、0.2~1.3mmがより好ましく、0.3~0.8mmが特に好ましい。塩基型イオン交換樹脂の平均粒径が上記範囲内であれば、例えば、塩基型イオン交換樹脂を充填したカラムにアニオン性含フッ素乳化剤を含有する被処理液を通液してアニオン性含フッ素乳化剤を吸着させる操作を行った際、被処理液の流路を閉塞し難くなる。
 塩基型イオン交換樹脂のイオン交換容量は、0.5~2.5(eq/L(リットル))が好ましく、0.8~1.7(eq/L)がより好ましい。塩基型イオン交換樹脂のイオン交換容量が上記範囲内であれば、被処理液中のアニオン性含フッ素乳化剤を効率よく吸着できる。
 塩基型イオン交換樹脂の市販品としては、ランクセス社製Lewatit(登録商標)MP800OH、Lewatit(登録商標)M800KR、Lewatit(登録商標)MP600、ピュロライト社製PUROLITE(登録商標)A200MBOH等が挙げられる。
 本発明において、塩基型イオン交換樹脂に吸着させるアニオン性含フッ素乳化剤としては特に限定はない。例えば、エーテル性酸素原子を有していてもよい含フッ素カルボン酸及びその塩、含フッ素スルホン酸及びその塩等が挙げられる。塩としては、アンモニウム塩、アルカリ金属塩(Li、Na、K等)等が挙げられ、アンモニウム塩が好ましい。なかでも、エーテル性酸素原子を有していてもよい含フッ素カルボン酸及びその塩が好ましく、エーテル性酸素原子を1~3個含有してもよい炭素数5~7の含フッ素カルボン酸及びその塩がより好ましい。
 含フッ素カルボン酸の具体例としては、パーフルオロカルボン酸、エーテル性酸素原子を有するパーフルオロカルボン酸、水素原子を有する含フッ素カルボン酸等が挙げられる。
 パーフルオロカルボン酸としては、パーフルオロヘキサン酸、パーフルオロヘプタン酸、パーフルオロオクタン酸、パーフルオロノナン酸等が挙げられる。
 エーテル性酸素原子を有するパーフルオロカルボン酸としては、COCF(CF)CFOCF(CF)COOH、COCOCFCOOH、COCOCFCOOH、COCOCFCOOH、COCFCFOCFCFOCFCOOH、CO(CFCOOH、CFOCOCFCOOH、CFOCFOCFOCFCOOH、CFOCFOCFOCFOCFCOOH、CFO(CFCFO)CFCOOH、CFOCFCFCFOCFCOOH、COCFCOOH、COCFCFCOOH、CFOCF(CF)CFOCF(CF)COOH、COCF(CF)COOH等が挙げられる。
 水素原子を有する含フッ素カルボン酸としては、ω-ハイドロパーフルオロオクタン酸、COCF(CF)CFOCHFCOOH、CFCFHO(CFCOOH、CFO(CFOCHFCFCOOH、CFO(CFOCHFCOOH、COCHFCFCOOH、CFCFHO(CFCOOH等が挙げられる。
 含フッ素スルホン酸としては、パーフルオロオクタンスルホン酸、C13CHCHSOH等が挙げられる。
 本発明において、アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂は、アニオン性含フッ素乳化剤を含む被処理液を塩基型イオン交換樹脂に接触させることで得られる。すなわち、被処理液を塩基型イオン交換樹脂に接触させることで、被処理液中のアニオン性含フッ素乳化剤が塩基型イオン交換樹脂に吸着される。例えば、アニオン性含フッ素乳化剤として、CFCFOCFCFOCFCOO(NHを含む被処理液を塩基型イオン交換樹脂に接触させた場合、CFCFOCFCFOCFCOOのイオンが、塩基型イオン交換樹脂に塩基に結合して吸着されると考えられる。
 アニオン性含フッ素乳化剤を含む被処理液としては、例えば、(1)含フッ素モノマーをアニオン性含フッ素乳化剤の存在下で乳化重合し、得られた含フッ素ポリマー水性乳化液に非イオン系界面活性剤を添加して安定化し、必要に応じて濃縮した含フッ素ポリマー水性分散液、(2)前記含フッ素ポリマー水性乳化液を凝集させた後に排出されるアニオン性含フッ素乳化剤を含有する排水、(3)前記含フッ素ポリマー水性乳化液を凝集して得た含フッ素ポリマー凝集物を乾燥する過程で排出される空気中に含まれるアニオン性含フッ素乳化剤を吸収した水溶液等が挙げられる。
 上記含フッ素ポリマー水性分散液は、含フッ素ポリマー水性乳化液を非イオン系界面活性剤で安定化した含フッ素ポリマー水性分散液が好ましい。非イオン系界面活性剤としては、一般式(A)および/または一般式(B)で示される界面活性剤等が挙げられる。
  R-O-A-H   ・・・(A)
 (式(A)中、Rは炭素数8~18のアルキル基であり、Aはオキシエチレン基数5~20及びオキシプロピレン基数0~2より構成されるポリオキシアルキレン鎖である。)
  R-C-O-B-H   ・・・(B)
 (式(B)中、Rは炭素数4~12のアルキル基であり、Bはオキシエチレン基数5~20より構成されるポリオキシエチレン鎖である。)
 一般式(A)において、Rのアルキル基の炭素数は8~18であり、10~16が好ましく、12~16がより好ましい。アルキル基の炭素数がこの範囲より多いと、界面活性剤の流動温度が高いために取扱いにくい。また、PTFE水性分散液を長期間放置した場合、PTFE微粒子が沈降し易く、保存安定性が損なわれやすい。また、炭素数がこの範囲より少ないと、PTFE水性分散液の表面張力が高くなり、コーティング時のぬれ性が低下しやすい。
 なお、Rは直鎖状でも、分岐状でもよいが、直鎖状が好ましい。
 一般式(B)において、Rのアルキル基の炭素数は4~12であり、6~10が好ましく、8~9がより好ましい。アルキル基の炭素数が、この範囲よりも少ないと、PTFE水性分散液の表面張力が高くなり、コーティング時のぬれ性が低下する。また、炭素数がこの範囲より多いと、PTFE水性分散液を長時間放置した場合、PTFE微粒子が沈降しやすく、保存安定性が損なわれる。
 なお、Rは直鎖状でも、分岐状でもよいが、直鎖状が好ましい。
 一般式(A)の非イオン系界面活性剤の具体例としては、例えば、C1327-(OC10-OH、C1225-(OC10-OH、C1021CH(CH)CH-(OC-OH、C1327-(OC-OCH(CH)CH-OH、C1633-(OC10-OH、CH(C11)(C15)-(OC-OH、等の分子構造をもつ非イオン系界面活性剤が挙げられる。市販品では、ダウ社製タージトール(登録商標)15Sシリーズ、日本乳化剤社製ニューコール(登録商標)シリーズ、ライオン社製ライオノール(登録商標)TDシリーズ等が挙げられる。
 一般式(B)の非イオン系界面活性剤の具体例としては、例えば、C17-C-(OC10-OH、C19-C-(OC10-OH等の分子構造をもつ非イオン系界面活性剤が挙げられる。市販品では、ダウ社製トライトン(登録商標)Xシリーズ、日光ケミカル社製ニッコール(登録商標)OPシリーズまたはNPシリーズ等が挙げられる。
 含フッ素ポリマー水性分散液中における一般式(A)および/または一般式(B)で示される非イオン系界面活性剤の含有量は、含フッ素ポリマーの質量に対して1~20質量%が好ましく、1~10質量%がより好ましく、2~8質量%が特に好ましい。
 アニオン性含フッ素乳化剤を含む被処理液と塩基型イオン交換樹脂との接触方法は、特に限定はなく、従来公知の方法が挙げられる。例えば、被処理液中に塩基型イオン交換樹脂を投入し、攪拌または揺動する方法、塩基型イオン交換樹脂を充填したカラムに被処理液を通す方法等が挙げられる。また、被処理液を塩基型イオン交換樹脂に接触させるに先立ち、該被処理液を濾過して凝固物等の浮遊する固体等を除去することが好ましい。これにより、塩基型イオン交換樹脂の目詰まりなどを抑制できる。被処理液の濾過は、100~300μmの孔径を有する1段または複数段のフィルター群を用いて行うことが好ましい。
 塩基型イオン交換樹脂にアニオン性含フッ素乳化剤を含む被処理液を接触させる際の接触温度は特に限定はない。適宜選定すればよいが、10~40℃の室温付近が好ましい。また、接触時間は特に限定はなく、適宜選定すればよい。例えば、攪拌方式で接触させる場合には、10分~200時間の範囲が好ましい。また、接触時の圧力は、大気圧が好ましいが、減圧状態であってもよいし、加圧状態であってもよい。
 こうして、塩基型イオン交換樹脂に、被処理液中のアニオン性含フッ素乳化剤を吸着させた後、塩基型イオン交換樹脂を分離する。
 本発明のアニオン性含フッ素乳化剤の回収方法の第一の実施形態では、まず、上記で分離したアニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂に、無機酸水溶液と非水溶性含フッ素媒体との混合液(以下、無機酸水溶液と非水溶性含フッ素媒体との混合液を溶離液という)を接触させる。
 塩基型イオン交換樹脂に溶離液を接触させることで、塩基型イオン交換樹脂に吸着されたアニオン性含フッ素乳化剤が無機酸水溶液によって酸型化されて溶離し易くなる。そして、アニオン性含フッ素乳化剤は、非水溶性含フッ素媒体との相溶性が良好なので、塩基型イオン交換樹脂に吸着されたアニオン性含フッ素乳化剤は、アニオン性含フッ素乳化剤の酸として溶離し、非水溶性含フッ素媒体に溶出する。
 なお、塩基型イオン交換樹脂に無機酸水溶液を接触させても、アニオン性含フッ素乳化剤の酸は、無機酸水溶液中にはほとんど溶出せず、塩基型イオン交換樹脂の表面に付着していると考えられる。このため、後述する比較例1に示すように、塩基型イオン交換樹脂に無機酸水溶液を接触させた後、塩基型イオン交換樹脂を濾別して回収した無機酸水溶液の相に非水溶性含フッ素媒体を添加して、これらを混合しても、アニオン性含フッ素乳化剤の酸をほとんど回収することができない。
 本発明において、塩基型イオン交換樹脂と溶離液との接触方法は特に限定はない。例えば、攪拌子等による機械攪拌や、振とう等が挙げられる。また、塩基型イオン交換樹脂と溶離液の接触効率を良くするために、塩基型イオン交換樹脂の粒子が破壊されない範囲で、攪拌強度はより高いほうが好ましい。塩基型イオン交換樹脂の粒子が破壊されない場合、アニオン性含フッ素乳化剤の吸着に再使用することが容易であり好ましい。
 本発明において、アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂は、塩基型イオン交換樹脂とアニオン性含フッ素乳化剤を含む被処理液とを接触させて、該被処理液中のアニオン性含フッ素乳化剤を吸着させた後、乾燥処理等を行わず湿潤状態のまま使用してもよく、乾燥処理を行って乾燥状態で使用してもよい。工業的には、湿潤状態のまま使用することが、工程を簡略化できるので好ましい。
 本発明において、無機酸水溶液としては、塩酸水溶液、硝酸水溶液、硫酸水溶液及びリン酸水溶液からなる群から選ばれる少なくとも1種が好ましく用いられる。前記無機酸水溶液を2種類以上混合して用いてもよい。これらのうち、塩酸水溶液が工業上、使用が容易であり特に好ましい。
 無機酸水溶液の濃度は、一般的に高い程、塩基型イオン交換樹脂から溶離するアニオン性含フッ素乳化剤の酸が増加する傾向にあるので好ましい。好ましくは0.1N~13Nであり、より好ましくは3N~13Nであり、特に好ましくは10N~13Nである。
 本発明において、非水溶性含フッ素媒体としては、ヒドロフルオロカーボン及びヒドロフルオロエーテルからなる群から選ばれる少なくとも1種類が好ましく用いられる。これらのうち、ヒドロフルオロエーテルが地球温暖化係数及びオゾン破壊係数が小さく特に好ましい。
 ヒドロフルオロエーテルとしては、CFCHOCFCFH、CFCHOCFCFHCF、(CFCHOCFCFH、CFCHOCHFCHF、CF(CFOCH、CF(CFOCH、CF(CFOCHCH、CF(CFOCHCH、(CFCFCFOCHCH等が挙げられる。
 ヒドロフルオロカーボンとしては、CHFCFCFCFCFCF、CFCFCFCFCHCH、CFCFCFCFCFCFCHCH、CFCFCHFCHFCF、CFCHCFCH、CFCFCFCFHCH等が挙げられる。
 上記したヒドロフルオロカーボン及びヒドロフルオロエーテルは、いずれも水への溶解性が0.1%未満である。また、不燃性の媒体であり、取り扱い性に優れている。
 無機酸水溶液と非水溶性含フッ素媒体との割合は、質量比で、無機酸水溶液/非水溶性含フッ素媒体=5/95~95/5が好ましく、20/80~80/20がより好ましく、30/70~70/30が特に好ましい。無機酸水溶液と非水溶性含フッ素媒体との質量比が上記範囲であれば、アニオン性含フッ素乳化剤の酸の回収率が高い。特に、50/50に近づくほど混合性が良くなり、アニオン性含フッ素乳化剤の酸の回収率がより高くなる。
 アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂と、無機酸水溶液と、非水溶性含フッ素媒体との割合は、質量比で、塩基型イオン交換樹脂/(無機酸水溶液と非水溶性含フッ素媒体との合計量)=60/40~1/99が好ましく、55/45~10/90がより好ましく、50/50~30/70が特に好ましい。塩基型イオン交換樹脂に対する無機酸水溶液と非水溶性含フッ素媒体との合計量が多すぎると、接触効率が下がり、アニオン性含フッ素乳化剤の酸の回収率が低下する。また少なすぎると、混和性が低下し、アニオン性含フッ素乳化剤の酸の回収率が低下する。上記範囲内であれば、混和性が良好で、更にはアニオン性含フッ素乳化剤の酸の回収率が高い。
 次に、本発明では、アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂と、溶離液との混合物から非水溶性含フッ素媒体の相を分離回収する。
 無機酸水溶液と非水溶性含フッ素媒体との相溶性は極めて低いため、上記混合物を例えば静置するだけで、無機酸水溶液の相と非水溶性含フッ素媒体の相とに分離する。このため、本発明によれば、特に複雑な回収装置等を使用しなくても、相分離した上澄液を回収するなどの極めて簡単な操作で、アニオン性含フッ素乳化剤の酸を大量に含む非水溶性含フッ素媒体の相を分離回収できる。
 そして、分離回収した非水溶性含フッ素媒体の相を蒸留操作など行うことで、アニオン性含フッ素乳化剤の酸を回収することができる。回収したアニオン性含フッ素乳化剤の酸は、そのままアニオン性含フッ素乳化剤として使用してもよく、中和してアンモニウム塩、アルカリ金属塩等にして用いてもよい。
 本発明では、塩基型イオン交換樹脂と溶離液との混合物から非水溶性含フッ素媒体の相を分離した残部に、新たに非水溶性含フッ素媒体を添加し、混合し、静置し、次いで、非水溶性含フッ素媒体の相を分離回収して、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤の酸を回収する操作を1回以上繰り返してもよい。
 上記操作を繰り返すこと、すなわち塩基型イオン交換樹脂と溶離液との接触回数を増やすことで、アニオン性含フッ素乳化剤の酸の回収率を高めることができる。例えば、塩基型イオン交換樹脂に溶離液を接触させることで、45質量%以上のアニオン性含フッ素乳化剤の酸を溶離させることができる(接触回数1回目)。そして、非水溶性含フッ素媒体の相を分離した残部に、新たに非水溶性含フッ素媒体を添加し、これらを混合するなどして接触させることで(接触回数2回目)、合計で70質量%以上のアニオン性含フッ素乳化剤の酸を溶離させることができる。さらに同様の操作を行い、塩基型イオン交換樹脂と溶離液との接触回数を増やすことで、最終的にはほぼ100%、アニオン性含フッ素乳化剤の溶離ができる。接触回数を増加させるに伴い工程が煩雑化するので、接触回数は5回以下が好ましい。なお、2回目以降の接触の際には、一度塩基型イオン交換樹脂と接触させた非水溶性含フッ素媒体から、溶離したアニオン性含フッ素乳化剤を取り除いた非水溶性含フッ素媒体を再利用してもよいが、新しい非水溶性含フッ素媒体を使用することが好ましい。
 次に、本発明のアニオン性含フッ素乳化剤の回収方法の第二の実施形態について説明する。
 第二の実施形態では、アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂に無機酸水溶液を接触させ、次いで、非水溶性含フッ素媒体を接触させる。
 上述したように、塩基型イオン交換樹脂に無機酸水溶液を接触させることで、塩基型イオン交換樹脂に吸着されたアニオン性含フッ素乳化剤は酸型化して、溶離し易い形で塩基型イオン交換樹脂に吸着される。アニオン性含フッ素乳化剤は、無機酸水溶液との相溶性が低いので、酸型化されても無機酸水溶液中に溶出することは殆どない。しかし、非水溶性含フッ素媒体は、アニオン性含フッ素乳化剤との相溶性が良好であるので、無機酸水溶液を接触させた塩基型イオン交換樹脂に非水溶性含フッ素媒体を接触させることで、塩基型イオン交換樹脂に吸着されたアニオン性含フッ素乳化剤が、アニオン性含フッ素乳化剤の酸として溶離し、非水溶性含フッ素媒体に溶出する。そして、第一の実施形態と同様にして非水溶性含フッ素媒体の相を回収することで、アニオン性含フッ素乳化剤の酸を大量に含む非水溶性含フッ素媒体の相を回収でき、回収した非水溶性含フッ素媒体の相を蒸留操作など行うことで、アニオン性含フッ素乳化剤の酸を回収することができる。
 第二の実施形態において、塩基型イオン交換樹脂に無機酸水溶液を接触させた後、これらの混合物から塩基型イオン交換樹脂を分離回収し、分離回収した塩基型イオン交換樹脂に非水溶性含フッ素媒体を接触させることが好ましい。このようにすることで、非水溶性含フッ素媒体の相を回収する際において、塩基型イオン交換樹脂と非水溶性含フッ素媒体との混合物から、塩基型イオン交換樹脂を濾別するなど、極めて簡単な操作により、非水溶性含フッ素媒体の相を回収できる。
 第二の実施形態において、アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂と、無機酸水溶液との割合は、質量比で、80/20~2/98が好ましく、75/25~20/80がより好ましい。また、塩基型イオン交換樹脂と非水溶性含フッ素媒体との割合は、質量比で、80/20~2/98が好ましく、75/25~20/80がより好ましい。上記範囲内であれば、アニオン性含フッ素乳化剤の酸の回収率が高い。
 第二の実施形態においても、上記第一の実施形態と同様に、非水溶性含フッ素媒体の相を分離した残部に対して、無機酸水溶液と非水溶性含フッ素媒体によるアニオン性含フッ素乳化剤の回収操作を1回以上繰り返してもよい。
 なお、塩基型イオン交換樹脂に無機酸水溶液を接触させた後、これらの混合物から分離回収した塩基型イオン交換樹脂に非水溶性含フッ素媒体を接触させる操作を行った場合、「非水溶性含フッ素媒体の相を分離した残部」とは、塩基型イオン交換樹脂を主とするものであるので、この場合においては、非水溶性含フッ素媒体の相を分離した残部に、(A)無機酸水溶液と非水溶性含フッ素媒体との混合液を接触させるか、あるいは、(B)無機酸水溶液を接触させ、次いで、非水溶性含フッ素媒体を接触させた後、非水溶性含フッ素媒体の相を回収し、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤を回収することが好ましい。
 次に、実施例及び比較例により本発明をより詳細に説明するが、本発明はこれらに限定されない。実施例中に記載される物性値の測定方法は下記のとおりである。
 (A)PTFE(ポリテトラフルオロエチレン)の平均一次粒子径(単位:μm):レーザー散乱法粒子径分布分析計(堀場製作所社製、商品名「LA-920」)を用いて測定した。
 (B)標準比重(以下、SSGともいう):ASTM D1457-91a、D4895-91aに準拠して測定した。12.0gのPTFEを計量して内径28.6mmの円筒金型で34.5MPaで2分間保持した。これを290℃のオーブンへ入れて120℃/hrで昇温した。次いで、380℃で30分間保持した後、60℃/hrで降温して294℃で24分間保持した。その後、23℃のデシケーター中で12時間保持した後、23℃での成形物と水との比重値を測定し、これを標準比重とした。
 (C)アニオン性含フッ素乳化剤及びアニオン性含フッ素乳化剤の酸の濃度:ガラス瓶にメチレンブルー溶液(水の約500mLに硫酸の12gを徐々に加え、冷却後これにメチレンブルーの0.03g、及び無水硫酸ナトリウムの50gを溶解し、水を加えて1L(リットル)としたもの)の4mL、クロロホルムの5mLを入れ、さらに測定試料の1000~3000倍希釈液の0.1gを加えて激しく振り混ぜ、静置後、下相のクロロホルム相を採取した。採取したクロロホルム相を孔径0.2μmのフィルターで濾過し、分光光度計で630nmの吸光度を測定した。アニオン性含フッ素乳化剤の量に応じてクロロホルム相が青色を呈する。あらかじめ濃度既知のアニオン性含フッ素乳化剤溶液の0.1gを使用して同様の方法で吸光度を測定して検量線を作成し、該検量線を用いて測定試料中のアニオン性含フッ素乳化剤の濃度を求めた。同様にして、測定試料中のアニオン性含フッ素乳化剤の酸の濃度を求めた。
 (実施例1)
 強塩基型イオン交換樹脂(商品名:「PUROLITE(登録商標) A200MBOH」、ピュロライト社製)を充填した長さ80cm、内径0.9cmのカラム(内容積51cc)に、チューブ式ポンプにより非イオン系界面活性剤(商品名:「Newcol(登録商標) 1308FA」、日本乳化剤社製)の1.5質量%水溶液を毎時50ccで100mL通液した後、アニオン性含フッ素乳化剤(CFCFOCFCFOCFCOO(NH)を、PTFE質量に対し0.471質量%含んだ23.0KgのPTFE水性分散液(PTFE濃度29.4%、PTFEの平均一次粒子径は300nm、PTFEの標準比重は2.20)を毎時120ccで約195時間かけて通液した。通液後のPTFE水性分散液中のアニオン性含フッ素乳化剤は、PTFE質量に対して0.0471質量%に低減されていた。
 通液前のPTFE水性分散液には、計算により31.9gのアニオン性含フッ素乳化剤が含有されていた。また、通液後のPTFE水性分散液には3.18gのアニオン性含フッ素乳化剤が含有されていた。このことから、通液後の強塩基型イオン交換樹脂には、28.7gのアニオン性含フッ素乳化剤が吸着されたことになる。この強塩基型イオン交換樹脂を、50~60℃のオーブン中で、質量が一定になるまで約12時間乾燥した。これにより得られた強塩基型イオン交換樹脂は44.6gであり、1gあたり0.643gのアニオン性含フッ素乳化剤が吸着していることになる。
 攪拌子を入れた30ccガラス瓶に、上記の乾燥処理を行った強塩基型イオン交換樹脂の1.01gと、11N塩酸水溶液の0.300gと、非水溶性含フッ素媒体としてCFCHOCHFCHF(商品名:「アサヒクリン(登録商標) AE-3000」、旭硝子社製)(以下、AE-3000ともいう)の0.939gと、を入れて室温で100分間攪拌した。次いで、静置し、分離したAE-3000の相を回収して、該相中のアニオン性含フッ素乳化剤の酸(CFCFOCFCFOCFCOOH)の濃度を測定した。回収したAE-3000の相には、アニオン性含フッ素乳化剤の酸を0.310g含有していた。アニオン性含フッ素乳化剤の酸の回収率は47.8%であった。
 (実施例2~6)
 実施例1において、11N塩酸水溶液、AE-3000の使用量を、表1に示す量に変更する以外は、実施例1と同様にし、AE-3000の相を回収して該相中のアニオン性含フッ素乳化剤の酸の濃度を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (実施例7)
 強塩基型イオン交換樹脂(商品名:「PUROLITE(登録商標) A200MBOH」、ピュロライト社製)を、アニオン性含フッ素乳化剤(CFCFOCFCFOCFCOO(NH)を29.9質量%含んだ水溶液の8.96kg中に入れ、110時間攪拌した後、強塩基型イオン交換樹脂とアニオン性含フッ素乳化剤の水溶液を分離した。攪拌後のアニオン性含フッ素乳化剤の水溶液は、アニオン性含フッ素乳化剤の濃度が13.0質量%に低減されていた。このことから、1.51kgのアニオン性含フッ素乳化剤が強塩基型イオン交換樹脂に吸着したことになる。使用した強塩基型イオン交換樹脂の質量は3.27kg(含水率14.4%)であり、これより得られた強塩基型イオン交換樹脂1gあたり、0.462gのアニオン性含フッ素乳化剤が吸着していることになる。
 140ccガラス瓶に、上記の操作で得られたアニオン性含フッ素乳化剤を吸着させた強塩基型イオン交換樹脂の10.1gと、11N塩酸水溶液の25.0gと、AE-3000の25.5gとを入れ、振とう器(商品名:「SHAKER S‐31」、yamato社製)で60分間振とうした。次いで、静置し、分離したAE-3000の相を回収して、該相中のアニオン性含フッ素乳化剤の酸の濃度を測定した。回収したAE-3000の相には、アニオン性含フッ素乳化剤の酸を2.67g含有していた。アニオン性含フッ素乳化剤の酸の回収率は57.2%であった。
 (実施例8)
 実施例7において、AE‐3000相を分離した後、残った強塩基型イオン交換樹脂と塩酸水溶液の混合物に、新たにAE‐3000の25.1gを添加し、振とう器で60分間振とうした。次いで、静置し、分離したAE-3000の相を回収して、該相中のアニオン性含フッ素乳化剤の酸の濃度を測定した。回収したAE-3000の相には、アニオン性含フッ素乳化剤の酸を1.16g含有していた。該アニオン性含フッ素乳化剤の酸の回収率は24.9%であった。実施例7と8の操作により、アニオン性含フッ素乳化剤の酸の回収率は、合計で82.1%であった。
 (比較例1)
 140ccガラス瓶に、実施例7で得られたアニオン性含フッ素乳化剤を吸着させた強塩基型イオン交換樹脂の10.3gと、11N塩酸水溶液の25.0gとを入れ、振とう器で60分間振とうした。次いで、イオン交換樹脂を濾別して残った塩酸水溶液相にAE-3000の25.3gを添加し、60分振とうした。ガラス瓶を静置し、分離したAE-3000の相を回収して、該相中のアニオン性含フッ素乳化剤の酸の濃度を測定した。回収したAE-3000の相には、アニオン性含フッ素乳化剤の酸を62.9mg含有していた。アニオン性含フッ素乳化剤の酸の回収率は1.32%であった。
 (実施例9)
 600ccビーカーに、実施例7で得られたアニオン性含フッ素乳化剤を吸着させた強塩基型イオン交換樹脂の20.0gと、11N塩酸水溶液の50.0gと、AE-3000の50.0gとを入れ、60分間攪拌した。次いで、静置し、分離したAE-3000の相を回収して、該相中のアニオン性含フッ素乳化剤の酸の濃度を測定した。回収したAE-3000の相には、アニオン性含フッ素乳化剤の酸を4.99g含有していた。該アニオン性含フッ素乳化剤の酸の回収率は54.0%であった。
 (実施例10)
 600ccビーカーに、実施例7で得られたアニオン性含フッ素乳化剤を吸着させた強塩基型イオン交換樹脂の20.0gと、3N塩酸水溶液の50.0gと、AE-3000の50.0gとを入れ、60分間攪拌した。次いで、静置し、分離したAE-3000の相を回収して、該相中のアニオン性含フッ素乳化剤の酸の濃度を測定した。回収したAE-3000の相には、アニオン性含フッ素乳化剤の酸を3.23g含有していた。該アニオン性含フッ素乳化剤の酸の回収率は34.9%であった。
 (実施例11)
 500ml三口フラスコに、実施例7で得られたアニオン性含フッ素乳化剤を吸着させた強塩基型イオン交換樹脂の20.4gと、11N塩酸水溶液の24.0gとを入れ、60分間攪拌した。次いで塩酸水溶液を除き、強塩基型イオン交換樹脂とAE-3000の24.0gとを60分間攪拌した。AE-3000相中のアニオン性含フッ素乳化剤の酸の濃度を測定したところ、アニオン性含フッ素乳化剤の酸を3.92g含有しており、該アニオン性含フッ素乳化剤の酸の回収率は42.4%であった。
 本発明のアニオン性含フッ素乳化剤の回収方法によれば、アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂からアニオン性含フッ素乳化剤を高収率で回収できる。また、アニオン性含フッ素乳化剤の回収に使用した非水溶性含フッ素媒体は再利用でき、廃液処理に要する手間を軽減できる。そして、回収したアニオン性含フッ素乳化剤は、そのまま、あるいは中和してアルカリ金属塩やアンモニウム塩として、含フッ素ポリマー水性乳化液の乳化重合等に使用できる。
 なお、2010年2月3日に出願された日本特許出願2010-021754号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (14)

  1.  アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂から、アニオン性含フッ素乳化剤を溶離して、アニオン性含フッ素乳化剤の酸として回収するアニオン性含フッ素乳化剤の回収方法であって、
     前記塩基型イオン交換樹脂に無機酸水溶液と非水溶性含フッ素媒体との混合液を接触させた後、非水溶性含フッ素媒体の相を回収し、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤の酸を回収することを特徴とするアニオン性含フッ素乳化剤の回収方法。
  2.  アニオン性含フッ素乳化剤を吸着した塩基型イオン交換樹脂から、アニオン性含フッ素乳化剤を溶離して、アニオン性含フッ素乳化剤の酸として回収するアニオン性含フッ素乳化剤の回収方法であって、
     前記塩基型イオン交換樹脂に無機酸水溶液を接触させ、次いで、非水溶性含フッ素媒体を接触させた後、非水溶性含フッ素媒体の相を回収し、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤の酸を回収することを特徴とするアニオン性含フッ素乳化剤の回収方法。
  3.  前記塩基型イオン交換樹脂に無機酸水溶液を接触させた後、塩基型イオン交換樹脂を分離回収して非水溶性含フッ素媒体を接触させる、請求項2に記載のアニオン性含フッ素乳化剤の回収方法。
  4.  前記無機酸水溶液と、前記非水溶性含フッ素媒体との割合が、質量比で、無機酸水溶液/非水溶性含フッ素媒体=5/95~95/5である請求項1~3のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
  5.  前記塩基型イオン交換樹脂と、前記無機酸水溶液と、前記非水溶性含フッ素媒体との割合が、質量比で、塩基型イオン交換樹脂/(無機酸水溶液と非水溶性含フッ素媒体との合計量)=60/40~1/99である請求項1~4のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
  6.  前記アニオン性含フッ素乳化剤の酸が、含フッ素カルボン酸である請求項1~5のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
  7.  前記アニオン性含フッ素乳化剤の酸が、エーテル性酸素原子を1~3個含有してもよい、炭素数5~7の含フッ素カルボン酸である請求項6に記載のアニオン性含フッ素乳化剤の回収方法。
  8.  前記非水溶性含フッ素媒体が、ヒドロフルオロカーボン及びヒドロフルオロエーテルからなる群から選ばれる少なくとも1種である請求項1~7のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
  9.  前記非水溶性含フッ素媒体が、CFCHOCFCFH、CFCHOCFCFHCF、(CFCHOCFCFH、CFCHOCHFCHF、CF(CF3OCH、CF(CFOCH、CF(CFOCHCH、CF(CFOCHCH、(CFCFCFOCHCH、CHFCFCFCFCFCF、CFCFCFCFCHCH、CFCFCFCFCFCFCHCH、CFCFCHFCHFCF、CFCHCFCH及びCFCFCFCFHCHからなる群から選ばれる少なくとも1種である請求項8に記載のアニオン性含フッ素乳化剤の回収方法。
  10.  前記無機酸水溶液が、塩酸水溶液、硫酸水溶液、硝酸水溶液及びリン酸水溶液からなる群から選ばれる少なくとも1種である請求項1~9のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
  11.  前記前記無機酸水溶液の濃度が、0.1N~13Nである請求項1~10のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
  12.  前記塩基型イオン交換樹脂が、強塩基型イオン交換樹脂である請求項1~11のいずれかに記載のアニオン性含フッ素乳化剤の回収方法。
  13.  非水溶性含フッ素媒体の相を分離した残部に非水溶性含フッ素媒体を接触させた後、非水溶性含フッ素媒体の相を分離回収し、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤の酸を回収する、請求項1又は2に記載のアニオン性含フッ素乳化剤の回収方法。
  14.  非水溶性含フッ素媒体の相を分離した残部に、(A)無機酸水溶液と非水溶性含フッ素媒体との混合液を接触させるか、あるいは、(B)無機酸水溶液を接触させ、次いで、非水溶性含フッ素媒体を接触させた後、非水溶性含フッ素媒体の相を分離回収し、該非水溶性含フッ素媒体の相からアニオン性含フッ素乳化剤の酸を回収する、請求項3に記載のアニオン性含フッ素乳化剤の回収方法。
PCT/JP2011/052175 2010-02-03 2011-02-02 アニオン性含フッ素乳化剤の回収方法 WO2011096448A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011552806A JP5720580B2 (ja) 2010-02-03 2011-02-02 アニオン性含フッ素乳化剤の回収方法
EP11739796.8A EP2532423B1 (en) 2010-02-03 2011-02-02 Method of recovering anionic fluorinated emulsifiers
CN2011800074599A CN102740974A (zh) 2010-02-03 2011-02-02 阴离子性含氟乳化剂的回收方法
RU2012137193/05A RU2012137193A (ru) 2010-02-03 2011-02-02 Способ извлечения анионного фторированного эмульгатора
US13/539,664 US8492585B2 (en) 2010-02-03 2012-07-02 Method for recovering anionic fluorinated emulsifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-021754 2010-02-03
JP2010021754 2010-02-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/539,664 Continuation US8492585B2 (en) 2010-02-03 2012-07-02 Method for recovering anionic fluorinated emulsifier

Publications (1)

Publication Number Publication Date
WO2011096448A1 true WO2011096448A1 (ja) 2011-08-11

Family

ID=44355443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052175 WO2011096448A1 (ja) 2010-02-03 2011-02-02 アニオン性含フッ素乳化剤の回収方法

Country Status (6)

Country Link
US (1) US8492585B2 (ja)
EP (1) EP2532423B1 (ja)
JP (1) JP5720580B2 (ja)
CN (1) CN102740974A (ja)
RU (1) RU2012137193A (ja)
WO (1) WO2011096448A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038990A1 (ja) 2011-09-13 2013-03-21 旭硝子株式会社 アニオン性含フッ素乳化剤の回収方法
WO2014136692A1 (ja) 2013-03-06 2014-09-12 旭硝子株式会社 アニオン性含フッ素乳化剤の回収方法
WO2015053235A1 (ja) * 2013-10-10 2015-04-16 旭硝子株式会社 含フッ素乳化剤の回収方法
US9790163B2 (en) 2014-03-31 2017-10-17 Asahi Glass Company, Limited Method for recovering anionic fluorinated emulsifier
JP2019507163A (ja) * 2016-03-04 2019-03-14 スリーエム イノベイティブ プロパティズ カンパニー 全フッ素化アルカン酸の除去方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106232231B (zh) * 2014-04-18 2020-11-20 3M创新有限公司 支链氟化乳化剂的回收
JP6123864B2 (ja) * 2015-10-19 2017-05-10 ダイキン工業株式会社 炭素数2〜7の含フッ素有機酸および不純物を含む組成物の処理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632656B2 (ja) * 1979-02-02 1988-01-20 Hoechst Ag
JP2001062313A (ja) * 1999-07-14 2001-03-13 Dyneon Gmbh フッ素化乳化剤の溶出法
JP2002059160A (ja) * 2000-08-11 2002-02-26 Daikin Ind Ltd 含フッ素陰イオン系界面活性剤の分離方法
JP2003094052A (ja) * 2001-09-21 2003-04-02 Asahi Glass Co Ltd 含フッ素乳化剤の吸着・回収方法
JP2003512931A (ja) * 1999-11-05 2003-04-08 ダイネオン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディート ゲゼルシャフト フッ素化された乳化剤の回収方法
JP2003220393A (ja) * 2001-11-22 2003-08-05 Asahi Glass Co Ltd 含フッ素乳化剤の吸着・回収方法
JP2003285076A (ja) * 2002-01-25 2003-10-07 Jiemuko:Kk 含フッ素乳化剤の回収法
JP2010021754A (ja) 2008-07-10 2010-01-28 Kyocera Mita Corp 画像処理装置及び画像処理プログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632656A (ja) 1986-06-23 1988-01-07 Furukawa Electric Co Ltd:The ウエハ研磨方法及びそれに用いるウエハ研磨基板
WO2004000734A1 (ja) * 2002-06-19 2003-12-31 Sasakura Engineering Co., Ltd. 含フッ素乳化剤の回収方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632656B2 (ja) * 1979-02-02 1988-01-20 Hoechst Ag
JP2001062313A (ja) * 1999-07-14 2001-03-13 Dyneon Gmbh フッ素化乳化剤の溶出法
JP2003512931A (ja) * 1999-11-05 2003-04-08 ダイネオン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディート ゲゼルシャフト フッ素化された乳化剤の回収方法
JP2002059160A (ja) * 2000-08-11 2002-02-26 Daikin Ind Ltd 含フッ素陰イオン系界面活性剤の分離方法
JP2003094052A (ja) * 2001-09-21 2003-04-02 Asahi Glass Co Ltd 含フッ素乳化剤の吸着・回収方法
JP2003220393A (ja) * 2001-11-22 2003-08-05 Asahi Glass Co Ltd 含フッ素乳化剤の吸着・回収方法
JP2003285076A (ja) * 2002-01-25 2003-10-07 Jiemuko:Kk 含フッ素乳化剤の回収法
JP2010021754A (ja) 2008-07-10 2010-01-28 Kyocera Mita Corp 画像処理装置及び画像処理プログラム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2756884A4 (en) * 2011-09-13 2015-04-22 Asahi Glass Co Ltd METHOD FOR RECOVERING ANIONIC FLUORINATED EMULSIFIER
CN103796759A (zh) * 2011-09-13 2014-05-14 旭硝子株式会社 阴离子性含氟乳化剂的回收方法
EP2756884A1 (en) * 2011-09-13 2014-07-23 Asahi Glass Company, Limited Method for recovering anionic fluorinated emulsifier
WO2013038990A1 (ja) 2011-09-13 2013-03-21 旭硝子株式会社 アニオン性含フッ素乳化剤の回収方法
JPWO2013038990A1 (ja) * 2011-09-13 2015-03-26 旭硝子株式会社 アニオン性含フッ素乳化剤の回収方法
US9045411B2 (en) 2011-09-13 2015-06-02 Asahi Glass Company, Limited Method for recovering anionic fluorinated emulsifier
WO2014136692A1 (ja) 2013-03-06 2014-09-12 旭硝子株式会社 アニオン性含フッ素乳化剤の回収方法
US9550717B2 (en) 2013-03-06 2017-01-24 Asahi Glass Company, Limited Method for recovering anionic fluorinated emulsifier
JPWO2014136692A1 (ja) * 2013-03-06 2017-02-09 旭硝子株式会社 アニオン性含フッ素乳化剤の回収方法
WO2015053235A1 (ja) * 2013-10-10 2015-04-16 旭硝子株式会社 含フッ素乳化剤の回収方法
US9708246B2 (en) 2013-10-10 2017-07-18 Asahi Glass Company, Limited Method for recovering fluorinated emulsifier
US9790163B2 (en) 2014-03-31 2017-10-17 Asahi Glass Company, Limited Method for recovering anionic fluorinated emulsifier
JP2019507163A (ja) * 2016-03-04 2019-03-14 スリーエム イノベイティブ プロパティズ カンパニー 全フッ素化アルカン酸の除去方法

Also Published As

Publication number Publication date
EP2532423A1 (en) 2012-12-12
EP2532423A4 (en) 2014-11-12
US8492585B2 (en) 2013-07-23
US20120271065A1 (en) 2012-10-25
CN102740974A (zh) 2012-10-17
JPWO2011096448A1 (ja) 2013-06-10
EP2532423B1 (en) 2015-04-22
RU2012137193A (ru) 2014-03-10
JP5720580B2 (ja) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5720580B2 (ja) アニオン性含フッ素乳化剤の回収方法
KR100499439B1 (ko) 폐수로부터 불소화 알칸산을 회수하는 방법
JP5983615B2 (ja) アニオン性含フッ素乳化剤の回収方法
CA2599761A1 (en) Recovery of fluorinated surfactants from a basic anion exchange resin having quaternary ammonium groups
JP5392188B2 (ja) 含フッ素ポリマー水性分散液の製造方法
JP2007520552A (ja) フッ酸界面活性剤が付着した吸着性粒子からフッ酸界面活性剤を回収する方法
US9550717B2 (en) Method for recovering anionic fluorinated emulsifier
WO2011046186A1 (ja) 凝析加工用ポリテトラフルオロエチレン水性分散液の製造方法及び凝析加工用ポリテトラフルオロエチレン水性分散液
EP3366665A1 (en) Method for treating composition containing impurities and fluorine-containing organic acid having 2-7 carbon atoms
JP6447628B2 (ja) アニオン性含フッ素乳化剤の回収方法
JP6477481B2 (ja) 含フッ素乳化剤の回収方法
WO2023144756A1 (en) Closed-loop technologies for purifying fluorine containing water streams
JP2023536099A (ja) エマルジョンからフルオロ有機化合物を除去するためのプロセス
JP2011025102A (ja) 含フッ素界面活性剤含有水の浄化方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007459.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739796

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011552806

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011739796

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012137193

Country of ref document: RU