WO2011092905A1 - 線材、鋼線及びそれらの製造方法 - Google Patents

線材、鋼線及びそれらの製造方法 Download PDF

Info

Publication number
WO2011092905A1
WO2011092905A1 PCT/JP2010/068363 JP2010068363W WO2011092905A1 WO 2011092905 A1 WO2011092905 A1 WO 2011092905A1 JP 2010068363 W JP2010068363 W JP 2010068363W WO 2011092905 A1 WO2011092905 A1 WO 2011092905A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
wire
ppm
mass
steel
Prior art date
Application number
PCT/JP2010/068363
Other languages
English (en)
French (fr)
Inventor
真吾 山崎
敏之 真鍋
大輔 平上
也康 室賀
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010020185A external-priority patent/JP4970562B2/ja
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to KR1020117017872A priority Critical patent/KR101318009B1/ko
Priority to CN201080005987.6A priority patent/CN102301024B/zh
Priority to MX2011008034A priority patent/MX2011008034A/es
Priority to EP10838391.0A priority patent/EP2532764B1/en
Priority to DK10838391.0T priority patent/DK2532764T3/da
Priority to BRPI1007872A priority patent/BRPI1007872A2/pt
Priority to US13/142,473 priority patent/US8470099B2/en
Publication of WO2011092905A1 publication Critical patent/WO2011092905A1/ja
Priority to US13/898,810 priority patent/US9212405B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/44Methods of heating in heat-treatment baths
    • C21D1/48Metal baths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods

Definitions

  • the present invention relates to a wire rod, a steel wire, and a manufacturing method thereof. More specifically, the present invention relates to applications such as steel tires and sawing wires used as reinforcing materials for automobile radial tires, various industrial belts and hoses, and PC steel wires, galvanized steel stranded wires, and spring steels.
  • the present invention relates to a rolled wire suitable for uses such as a wire and a cable for a suspension bridge, a manufacturing method thereof, and a steel wire made of the rolled wire.
  • Steel cords used as reinforcing materials for automobile radial tires, various belts, hoses, etc., or steel wires used for sawing wires are generally first stretched from a wire with a diameter of 5 to 6 mm that has been adjusted and cooled after hot rolling.
  • a steel cord is manufactured by twisting a plurality of the ultrafine steel wires thus obtained into a twisted steel wire by twisting. In general, when a wire breakage occurs when a wire rod is processed into a steel wire or a steel wire is twisted, productivity and yield are greatly reduced.
  • wire rods and steel wires belonging to the above technical field are strongly required not to be disconnected during wire drawing or twisting.
  • the diameter of the steel wire to be processed is extremely thin, and thus disconnection is particularly likely to occur.
  • steel wires used as PC steel wires, PC stranded wires, ropes, PWS wires for bridges, etc. are generally wire-drawn with a diameter of 5 to 16 mm after hot rolling and adjusted and cooled. It is formed into a strand shape by applying hot dip galvanization after drawing or in the middle of drawing as necessary, and bundling or bundling without twisting.
  • wire breakage occurs when a wire rod is processed into a steel wire, or a vertical crack (delamination) occurs when a steel wire is twisted
  • productivity and yield are greatly reduced. Therefore, it is strongly required that wires and steel wires belonging to the above technical field not be broken during wire drawing, twisting or bundling.
  • such products have been required to secure a strength of 1600 MPa or more and to ensure sufficient performance with respect to toughness evaluated by a torsion test or the like. The movement to become more and more has increased.
  • Patent Document 1 is made of a steel material having a specific chemical composition, and defines the content average area ratio of pro-eutectoid cementite “a high-strength high-toughness ultrafine steel wire, a high-strength high-toughness ultrafine steel wire, and the A twisted product using an extra fine steel wire and a method for producing the extra fine steel wire are disclosed.
  • the wire proposed in this publication contains one or more of Ni and Co, which are expensive elements, as essential components, the manufacturing cost increases.
  • Patent Document 2 the technique which suppresses the production
  • Al is a strong deoxidizing element and increases the amount of hard inclusions that cause wire breakage in wire drawing, it is difficult to apply it to wire rods for small diameter steel wires such as steel cords.
  • Patent Document 3 a high carbon wire is heated to an austenite temperature range, then cooled to a temperature range of 823 to 1023 K, and after plastic working with a degree of work of 15 to 80% in this temperature range, 823 to 923 K is performed.
  • a large capital investment is required, which may increase manufacturing costs.
  • the present invention has been made in view of the above situation, and its purpose is for applications such as steel cords and sawing wires, or applications such as PC steel wires, galvanized steel stranded wires, steel wires for springs, and cables for suspension bridges. It is to provide a high-strength wire rod excellent in suitable drawability with good yield and low cost under high productivity.
  • a first aspect of the present invention is as follows: 0.95-1.30% by mass of C; 0.1-1.5% by mass of Si; 0.1-1.0% by mass of Mn 0 to 0.1 wt% Al; 0 to 0.1 wt% Ti; 0 to 0.02 wt% P; 0 to 0.02 wt% S; 10 to 50 ppm N And 10 to 40 ppm O, 0 to 0.5 mass% Cr, 0 to 0.5 mass% Ni, 0 to 0.5 mass% Co, and 0 to 0.5 mass% V ;; 0-0.5 wt% Cu; 0-0.1 wt% Nb; 0-0.2 wt% Mo; 0-0.2 wt% W; 0-30 ppm
  • a wire having a composition comprising: B of 0; 50 to 50 ppm of REM; 0 to 50 ppm of Ca; 0 to 50 ppm of Mg; 0 to 100
  • a second aspect of the present invention is a method for manufacturing a wire according to (1) or (2) above.
  • This manufacturing method includes a step of hot rolling a steel slab having the above composition to obtain a rolled wire; a step of winding the rolled wire; and a molten salt of 500 to 600 ° C. with the rolled wire at 900 ° C. or higher. And a step of performing a patenting treatment by immersing in a layer.
  • a third aspect of the present invention is the method for manufacturing a wire according to (1) or (2) above.
  • This manufacturing method includes a step of hot rolling a steel slab having the above composition to obtain a rolled wire; a step of winding the rolled wire; starting cooling of the rolled wire at 900 ° C. or higher;
  • the cooling speed Y during cooling from °C to 650 °C is Y ⁇ exp ((C% ⁇ 0.66) /0.12) (Formula 1)
  • the 4th aspect of this invention is a manufacturing method of the wire as described in said (1) or (2).
  • This manufacturing method includes a step of preparing a rolled wire rod having a diameter of 3 to 16 mm having the above-described composition and reheating to 950 ° C. or higher and 1050 ° C. or lower; And a patenting process in a lead bath or fluidized bed at ⁇ 600 ° C. (6)
  • a fifth aspect of the present invention has the above-described composition, and an area of 97% or more of the cross section perpendicular to the longitudinal direction is occupied by the pearlite structure, and 0.5% of the central region of the cross section.
  • the steel wire has a diameter of 0.1 to 0.4 mm and a tensile strength of 4200 MPa or more, and has a cross section perpendicular to the longitudinal direction of the steel wire.
  • 2 is a steel wire in which an area of 0.5% or less of the surface layer region is occupied by pro-eutectoid cementite.
  • a sixth aspect of the present invention has the above-described composition, and an area of 97% or more of the cross section perpendicular to the longitudinal direction is occupied by the pearlite structure, and 0.5% of the central region of the cross section % Or less, and an area of 0.5% or less of the first surface region of the cross section is a steel wire obtained by drawing a wire occupied by a pro-eutectoid cementite structure,
  • the steel wire has a diameter of 0.8 to 8 mm and a tensile strength of 1800 MPa or more, and has an area of 0.5% or less of the third surface region of the cross section perpendicular to the longitudinal direction of the steel wire. It is a steel wire occupied by proeutectoid cementite.
  • the steel wire according to the above (7) is obtained by (a) performing blueing, heat stretching, hot dip galvanizing, or hot dip galvanizing after the wire is drawn on the wire, (b) hot dip galvanizing. Alternatively, it may be obtained by performing the wire drawing after hot-dip zinc alloy plating, or (c) performing hot-dip galvanization or hot-dip zinc alloy plating after the wire drawing and further performing wire drawing. (9) According to a seventh aspect of the present invention, a steel wire having the above composition is hot-rolled to produce a rolled wire, the rolled wire is wound up, and the rolled wire at 900 ° C.
  • a steel wire having the above composition is hot-rolled to produce a rolled wire, the rolled wire is wound, and the rolled wire at 900 ° C.
  • a wire having a diameter of 3 to 7 mm having the above composition is reheated to 950 ° C. or higher and 1050 ° C. or lower, and cooling is started for the reheated wire of 900 ° C. or higher.
  • Manufacturing a wire having a diameter of 3 to 7 mm by performing a patenting treatment in a lead bath or fluidized bed at 500 to 600 ° C .; drawing the wire; and drawing at 900 ° C.
  • a steel wire having the above composition is hot-rolled to produce a rolled wire, the rolled wire is wound up, and the rolled wire at 900 ° C.
  • the steel wire according to (7) comprising: a step of producing a wire having a diameter of 5 to 16 mm by performing a patenting treatment by immersing in a molten salt layer at 0 ° C; and a step of drawing the wire. It is a manufacturing method.
  • a rolled slab is manufactured by performing hot rolling on a steel slab having the above composition, the rolled wire is wound, and the rolled wire at 900 ° C. or higher is cooled. Starting and cooling Y during cooling from 900 ° C. to 650 ° C.
  • And (7) comprising: a step of producing a wire having a diameter of 5 to 16 mm by performing a patenting process in a lead bath or fluidized bed at 500 to 600 ° C .; and a step of drawing the wire It is a manufacturing method of the steel wire as described in (4).
  • a high-strength wire having excellent wire drawing suitable for applications such as steel cords, sawing wires, PC steel wires, galvanized steel stranded wires, spring steel wires, and suspension bridge cables can be produced with high productivity. Can be provided with good yield and low price.
  • pro-eutectoid cementite generated in the surface layer region of the wire is shown.
  • region of a wire is shown.
  • region of a wire is shown.
  • the relationship between the amount of C of a wire and the area ratio of proeutectoid ⁇ in the central region of the wire is shown.
  • the influence of the cooling rate from 900 ° C. to 650 ° C.
  • region of a wire is shown.
  • region of a wire is shown.
  • the relationship between the amount of C of a wire and the area ratio of proeutectoid ⁇ in the central region of the wire is shown.
  • the influence of the cooling rate from 900 ° C. to 650 ° C. and the amount of C on the precipitation amount of proeutectoid ⁇ in the central region of the wire is shown.
  • the present inventors have repeatedly investigated and studied the influence of the chemical composition and mechanical properties of the wire on the wire drawing workability, and as a result, have obtained the following knowledge.
  • the content of alloy elements such as C, Si, Mn, and Cr may be increased.
  • C the content of alloy elements
  • Si silicon
  • Mn the content of alloy elements
  • Cr the content of alloy elements
  • the C content is increased, in the cooling process from the austenite region during the patenting treatment, as indicated by the arrow in FIG. 1 in the supercooled austenite from the start of cooling to the start of pearlite transformation.
  • the critical cooling rate that can suppress the formation of proeutectoid cementite in the central region of the wire can be expressed as a function of the amount of C.
  • a heating rate higher than the above-mentioned critical cooling rate can be obtained by immersing a wire having a diameter of 3 to 16 mm having a C content of 1.3% by mass or less in a molten salt after heating.
  • E In a normal wire rod rolling line, the wire rod is wound at a constant temperature after finish rolling, and is conveyed by a conveyor to a patenting treatment zone such as a stealmore. In the reheating patenting line, there is no wire winding process, but it takes a certain amount of time to transport from the heating zone exit side to the cooling zone for patenting. High C material exceeding 1% by mass has a high cementite precipitation temperature (austenite ⁇ austenite + cementite temperature).
  • FIG. 1 shows an example of pro-eutectoid cementite generated in the surface region of the wire. Since such surface cementite is a brittle structure, it causes a surface crack at the time of wire drawing, and causes the occurrence of delamination of the steel wire obtained by wire drawing, which significantly reduces the ductility of the steel wire.
  • the cooling start temperature of the wire for patenting needs to be 900 ° C. or higher.
  • the finish rolling is set to 980 ° C. or higher, and the winding or reheating temperature is increased to 925 ° C. or higher, preferably higher than 950 ° C., and the conveyance time is shortened as much as possible, or during the conveyance. It is necessary to suppress the temperature drop.
  • H If the finish rolling temperature and the coiling temperature are too high, the austenite grain size of the wire becomes coarse and the ductility decreases, so there is an upper limit temperature at which ductility can be ensured.
  • (First embodiment) (Configuration of wire rod) 1st Embodiment of this invention is 0.5% or less of the surface layer area
  • the surface layer region (first surface layer region) of the wire means a region corresponding to a depth of 50 ⁇ m from the surface of the wire (periphery in the cross section) in a cross section perpendicular to the longitudinal direction of the wire.
  • the wire center region means a region having a radius of 100 ⁇ m from the center point of the cross section perpendicular to the longitudinal direction of the wire.
  • the pro-eutectoid cementite means cementite produced at the prior austenite grain boundary and having a thickness of 100 nm or more and a small deformability.
  • an area of 97% or more of the cross section perpendicular to the longitudinal direction of the wire is occupied by the pearlite structure.
  • the remainder may be a pro-eutectoid cementite, a bainite structure, a pseudo pearlite structure, a ferrite structure, a grain boundary ferrite structure, a martensite structure, or the like.
  • the steel slab (billet) is hot-rolled to a diameter of 3 to 16 mm.
  • the wire temperature it is necessary to set the wire temperature at 900 ° C. or higher when cooling for patenting is started by salt candy or stealmore. More preferably, it is 920 degreeC or more.
  • finish rolling temperature and the coiling temperature are both 1050 ° C. or less.
  • the amount of pro-eutectoid cementite generated in the central region of the wire depends on the cooling speed Y during cooling from 900 ° C to 650 ° C.
  • the inventors of the present invention have a cooling rate Y [° C./s] and a carbon content C% [% by mass] of the wire.
  • Reheating patenting means a patenting process that is performed after the object is once brought to a temperature of 200 ° C. or lower and then reheated.
  • the reheating temperature is 950 ° C. or more and 1050 ° C. C or lower, preferably 975 ° C. or higher, or C% ⁇ 450 + 450 (° C.), whichever is higher, and 1050 ° C. or lower.
  • cooling for patenting It is effective to set the steel wire temperature at the start to 900 ° C. or higher, desirably 920 ° C. or higher, and perform a patenting treatment in a lead bath or fluidized bed at 500 to 600 ° C.
  • the wire according to this embodiment contains C, Si, Mn, Al, Ti, N, and O.
  • the content of each component will be described.
  • C 0.95 to 1.35% by mass
  • C is an element effective for increasing the strength of the wire, and when its content is less than 0.95%, it is difficult to stably impart high strength to the final product.
  • the content of C is too large, not only is the net-form pro-eutectoid cementite generated at the austenite grain boundaries and breakage is likely to occur during wire drawing, but the toughness and ductility of the ultrafine wire after the final wire drawing is increased. Deteriorate significantly. Therefore, the C content is specified to be 0.95 to 1.30% by mass. In order to obtain a high-strength steel wire, the content is preferably 1.0% by mass or more, more preferably 1.1% by mass or more.
  • Si 0.1 to 1.5% by mass
  • Si is an element effective for increasing the strength. Furthermore, it is an element useful as a deoxidizer, and is also an element necessary when targeting a steel wire containing no Al. If it is less than 0.1% by mass, the deoxidation action is too small. -On the other hand, if the amount of Si is too large, precipitation of pro-eutectoid ferrite is promoted even in hypereutectoid steel, and the limit workability in wire drawing decreases. Furthermore, the wire drawing process by mechanical descaling becomes difficult. Therefore, the Si content is specified to be 0.1 to 1.5% by mass. Preferably it is 1.0 mass% or less, More preferably, it is 0.35 mass% or less.
  • Mn 0.1 to 1.0% by mass
  • Mn is also an element useful as a deoxidizing agent, like Si. It is also effective in improving the hardenability and increasing the strength of the wire. Further, Mn has an action of preventing hot brittleness by fixing S in steel as MnS. If the content is less than 0.1% by mass, it is difficult to obtain the above effect.
  • Mn is an element that easily segregates, and when it exceeds 1.0 mass%, segregation occurs particularly in the central region of the wire, and martensite and bainite are generated in the segregated portion, so that wire drawing workability is lowered. Therefore, the Mn content is specified to be 0.1 to 1.0% by mass.
  • Al 0 to 0.1% by mass
  • the content of Al includes 0% by mass (or exceeds 0% by mass) so that hard non-deformable alumina-based non-metallic inclusions are not formed and cause ductility deterioration and wire drawing deterioration of the steel wire. It is specified in the range of mass% or less. Preferably it is 0.05 mass% or less, More preferably, it is 0.01 mass% or less.
  • Ti 0 to 0.1% by mass
  • the Ti content is 0.1 mass% or less including 0 mass% (or exceeding 0 mass%) so that a hard non-deformable oxide is generated and does not cause ductility degradation and wire ductility degradation of the steel wire.
  • it is 0.05 mass% or less, More preferably, it is 0.01 mass% or less.
  • N 10-50 ppm N produces Al, Ti, B and nitrides in steel and has the effect of preventing coarsening of the austenite grain size at the time of heating. The effect is effectively exhibited by containing 10 ppm or more. However, if the content becomes too large, the amount of nitride increases too much, and the amount of dissolved B in austenite is reduced. Furthermore, since there is a possibility that solute N promotes aging during wire drawing, the upper limit is made 50 ppm. Preferably it is 30 ppm or less.
  • O 10 to 40 ppm O forms complex inclusions that do not adversely affect the wire drawing characteristics by forming complex inclusions with Si and others. Such soft inclusions can be finely dispersed after rolling, and have the effect of reducing the ⁇ grain size by the pinning effect and improving the ductility of the patenting wire. Therefore, the lower limit is defined as 10 ppm. However, if the content is too large, hard inclusions are formed and the wire drawing characteristics deteriorate, so the upper limit of O is specified to 40 ppm.
  • the wire according to the present embodiment further includes Cr, Ni, Co, V, Cu, Nb, Mo, W, B, REM, for the purpose of improving mechanical properties such as strength, toughness, and ductility.
  • Cr 0 to 0.5% by mass Cr is an element effective for reducing the lamella spacing of pearlite and improving the strength of the wire and the wire drawing workability. Addition of 0.1% by mass or more is preferable for effectively exhibiting such an action. On the other hand, if the amount of Cr is too large, the end time of transformation becomes long, and there is a possibility that a supercooled structure such as martensite or bainite is generated in the hot rolled wire rod. Stipulated to be 5% by mass.
  • Ni 0 to 0.5% by mass Ni does not contribute much to increasing the strength of the wire, but is an element that increases the toughness of the wire. Addition of 0.1% by mass or more is preferable for effectively exhibiting such an action. On the other hand, if Ni is added excessively, the transformation end time becomes long, so the upper limit is defined as 0.5 mass%.
  • Co 0 to 0.5% by mass
  • Co is an element effective for suppressing precipitation of pro-eutectoid cementite in the rolled material. Addition of 0.1% by mass or more is preferable for effectively exhibiting such an action. On the other hand, even if Co is added in excess, the effect is saturated and economically useless, so the upper limit is defined as 0.5% by mass.
  • V 0 to 0.5% by mass
  • V forms fine carbonitrides in the ferrite, thereby preventing austenite grains from coarsening during heating and contributing to an increase in strength after rolling.
  • Addition of 0.05% by mass or more is preferable for effectively exhibiting such an action.
  • the upper limit is defined as 0.5% by mass.
  • Cu 0 to 0.5% by mass
  • Cu has the effect of increasing the corrosion resistance of the ultrafine steel wire. Addition of 0.1% by mass or more is preferable for effectively exhibiting such an action. However, if added excessively, it reacts with S and segregates CuS in the grain boundaries, so that flaws are generated in the steel ingot, wire, etc. during the wire manufacturing process. In order to prevent such adverse effects, the upper limit is defined as 0.5% by mass.
  • Nb 0 to 0.1% by mass
  • Nb has the effect of increasing the corrosion resistance of the ultrafine steel wire. Addition of 0.05% by mass or more is preferable for effectively exhibiting such an action. On the other hand, when Nb is added excessively, the transformation end time becomes long, so the upper limit is defined as 0.1% by mass.
  • Mo 0 to 0.2% by mass Mo concentrates at the pearlite growth interface and has the effect of suppressing the growth of pearlite by the so-called solution drag effect. By adding an appropriate amount, it is possible to suppress only the growth of pearlite in a high temperature range of 600 ° C. or higher, and it is possible to suppress the generation of pearlite having coarse lamella spacing. Mo also has the effect of suppressing the formation of ferrite and improving the hardenability, and is effective in reducing the non-pearlite structure. If Mo is excessive, pearlite growth in the entire temperature range is suppressed, patenting takes a long time, leading to a reduction in productivity, and coarse Mo 2 C carbides are precipitated, resulting in a decrease in wire drawing workability. To do. Therefore, the Mo content is specified to be 0.2 mass% or less. A preferred content is 0.005 to 0.06 mass%.
  • W 0 to 0.2% by mass W, like Mo, is concentrated at the pearlite growth interface and has the effect of suppressing the growth of pearlite by the so-called solution drag effect.
  • W also has the effect of suppressing the formation of ferrite and improving the hardenability, and is effective in reducing the non-pearlite structure. If W is excessive, pearlite growth in the entire temperature range is suppressed, patenting takes a long time, causing a decrease in productivity, and coarse W 2 C carbides are precipitated, resulting in poor wire drawing workability. To do. Therefore, the W content is specified to be 0.2% by mass or less. A preferred content is 0.005 to 0.06 mass%.
  • B 0 to 30 ppm
  • B When B exists in austenite in a solid solution state, it concentrates at the grain boundary and suppresses the formation of non-pearlite precipitates such as ferrite, pseudopearlite, and bainite. When the content is 4 ppm or more, this effect can be strongly obtained. On the other hand, when B is added too much, precipitation of coarse Fe 23 (CB) 6 carbide is promoted in austenite, which adversely affects the drawability.
  • the upper limit of the B content is specified to be 30 ppm.
  • the preferred content is 4 to 15 ppm, more preferably 8 to 12 ppm.
  • REM 0-50ppm REM is effective for detoxification of S, but excessive addition generates oxides and causes disconnection, so the upper limit of the content is specified to 50 ppm.
  • Ca 0 to 50 ppm Ca is effective in reducing hard alumina inclusions, but excessive addition generates oxides and causes disconnection, so the upper limit of the content is specified to 50 ppm.
  • Mg 0-50ppm Mg becomes a fine oxide and refines the structure of steel to improve ductility. If it exceeds 50 ppm, disconnection tends to occur starting from the oxide, so the upper limit of the content is defined as 50 ppm.
  • Zr 0 to 100 ppm
  • Zr is a crystallization nucleus of austenite as ZrO, so there is an effect of increasing the equiaxed ratio of austenite and reducing central segregation. However, if it exceeds 100 ppm, it tends to cause disconnection starting from the oxide. The upper limit is defined as 100 ppm.
  • the second embodiment of the present invention is a steel wire having a diameter of 0.1 to 0.4 mm and a tensile strength of 4200 MPa or more, obtained by stretching the wire described in the first embodiment.
  • the area of 0.5% or less of the surface layer region (second surface layer region) in the cross section perpendicular to the longitudinal direction of the steel wire is occupied by the pro-eutectoid cementite.
  • the second surface layer region means a region from the surface layer of the steel wire to 10 ⁇ m.
  • the wire described in the first embodiment is drawn, heated to 900 ° C. or higher, and cooling is started by introducing the heated wire into a 500-600 ° C. lead bath or fluidized bed. It can be obtained by performing patenting at least once and performing cold drawing.
  • the third embodiment of the present invention is a steel wire having a diameter of 0.8 to 8 mm and a tensile strength of 1800 MPa or more, obtained by stretching the wire described in the first embodiment having a diameter of 5 to 16 mm. .
  • an area of 0.5% or less of the surface layer region (third surface region) having a cross section perpendicular to the longitudinal direction of the steel wire is occupied by the pro-eutectoid cementite.
  • the third surface layer region means a region from the surface layer of the steel wire to 20 ⁇ m.
  • Such a steel wire can be obtained by cold-drawing the wire described in the first embodiment.
  • the steel wire thus obtained may be used as it is after drawing, (1) Blueing, heat stretching, hot dip galvanizing, or hot dip zinc alloy plating is performed after wire drawing, (2) Hot wire galvanizing or hot dip zinc alloy plating is followed by wire drawing, or (3) wire drawing After wire drawing, hot dip galvanization, or hot dip galvanizing alloy plating, further wire drawing may be performed.
  • the wire having the characteristics described in the above embodiment, the steel wire, or the manufacturing method thereof can also be expressed as follows. That is, according to one embodiment of the present invention, the components are, by mass, C: 0.95 to 1.30%, Si: 0.1 to 1.5%, Mn: 0.1 to 1.0%, Al : 0.1% or less, Ti: 0.1% or less, N: 10 to 50 ppm, O: 10 ppm or more and 40 ppm or less, the balance is composed of Fe and impurities, the area ratio of the pearlite structure is 97% or more, the balance Is a wire made of bainite, pseudo pearlite, ferrite, grain boundary ferrite, and pro-eutectoid cementite, and the area ratio of pro-eutectoid cementite in the region where the radius of the central part of the wire is 100 ⁇ m is 0.5% or less, and 50 ⁇ m from the surface of the wire.
  • the components are, by mass, C: 0.95 to 1.30%, Si: 0.1 to
  • the area ratio of pro-eutectoid cementite in the depth region up to 0.5% is 0.5% or less, and is a high strength steel wire rod excellent in ductility.
  • Cr 0.5% or less (not including 0%)
  • Ni 0.5% or less (not including 0%)
  • Co 0.5% or less (not including 0%)
  • V 0.5% or less (not including 0%)
  • Cu 0.5% or less (not including 0%)
  • Nb 0.1% or less (not including 0%)
  • W 0.2% or less (not including 0%)
  • B 30 ppm (not including 0%), at least one selected from the group consisting of You may contain.
  • Another aspect of the present invention is a steel wire obtained by drawing a wire as described above having a diameter of 3 to 7 mm, drawing again after patenting, and has a tensile strength of 4200 MPa or more.
  • This is a high strength steel wire excellent in ductility, in which the area ratio of pro-eutectoid cementite in the region from the surface layer to a depth of 10 ⁇ m is 0.5% or less.
  • Still another aspect of the present invention is a steel wire obtained by drawing a wire as described above having a diameter of 5.0 to 16 mm, and performing blueing, heat stretching, hot dip galvanization, or hot dip zinc alloy plating,
  • the above-mentioned wire having a diameter of 5.0 to 16 mm is hot-dip galvanized or hot-dip galvanized and then drawn, or a wire having a diameter of 5.0 to 16 mm is drawn.
  • a steel wire that has been further drawn after hot dip galvanization or hot dip zinc alloy plating has a tensile strength of 1800 MPa or more, and a pro-eutectoid cementite area ratio in the region from the surface layer to a depth of 20 ⁇ m is 0.00.
  • the steel slab having the above-mentioned components is hot-rolled to a wire diameter of 3 to 16 mm, subjected to finish rolling and winding, and then immersed in a molten salt trough.
  • This is a method for producing a wire material for high-strength steel wire having excellent ductility, in which the temperature of the wire is set to 900 ° C. or higher, and then directly immersed in a molten salt of 500 to 600 ° C. to perform a patenting treatment.
  • the heating temperature of the wire is 950 ° C. or higher and 1050 ° C. or lower
  • the above-mentioned high ductility high-strength steel wire characterized in that the wire temperature at the start of cooling is set to 900 ° C. or higher, and patenting is immediately performed in 500 to 600 ° C. lead or fluidized bed. Is the method.
  • Still another aspect of the present invention is to heat a steel wire at the time of patenting when a wire having a diameter of 3 to 7 mm manufactured by the above-described manufacturing method is drawn and cold drawing is performed after patenting.
  • the temperature is 950 ° C or higher and 1050 ° C or lower
  • the steel wire temperature at the start of cooling for patenting is 900 ° C or higher
  • the steel wire that has been subjected to patenting treatment in lead of 500 to 600 ° C or fluidized bed is immediately drawn. This is a method for producing a high strength steel wire having excellent ductility.
  • Tables 1 to 4 show A-1 steel, B-1 steel, C-1 steel, D-1 steel, E steel, F steel, G-1 steel, and H steel used in Examples ⁇ 1 to ⁇ 19 of the present invention.
  • DLP refers to a direct in-line patenting facility in which a rolled wire is directly immersed in molten salt for patenting.
  • the cooling speed Y from 900 ° C. to 650 ° C. is 900 ° C. to 650 ° C. by measuring the temperature of the ring overlapping portion with a non-contact type thermometer every 0.5 m on the Stemmore conveyor.
  • the required time t [s] for cooling to ° C. was measured and determined as (900-650) / t [° C./s].
  • a ring-shaped wire rod with a diameter of 1.0 to 1.5 m is divided into 8 equal parts to identify the highest and lowest TS parts. did.
  • a 10 mm long sample was cut out from the part corresponding to these parts of the continuous ring, embedded in resin so that a cross section perpendicular to the length direction (C cross section) could be observed, polished with alumina, and corroded with saturated picral. SEM observation was performed.
  • Quasi-pearlite part in which cementite is dispersed in granular form at four locations bainite part in which plate-like cementite is dispersed at a coarse lamellar spacing more than three times from the surroundings, and grain boundary ferrite precipitated along austenite
  • the area ratio excluding the part and the proeutectoid cementite part was measured by image analysis as the area ratio of the pearlite structure, and obtained as an average value of four locations.
  • photography location of the area ratio of proeutectoid cementite is demonstrated.
  • a region having a radius of 100 ⁇ m was selected from the central point in the cross section of the portion having the lowest TS.
  • the surface layer region of the wire four regions of 50 ⁇ m ⁇ 50 ⁇ m in the vicinity of the peripheral portion in the cross section of the portion with the highest TS were selected every 90 degrees in the circumferential direction. These selected portions were measured at a magnification of 5000 times, and the area ratio of pro-eutectoid cementite having a thickness of 100 nm or more was measured by image analysis. In addition, about the surface layer area
  • the wire drawing characteristics are as follows: After removing the scale of the rolled wire by pickling, a wire with a length of 10 m, to which a zinc phosphate coating is applied by a bonder treatment, is prepared, and the area reduction rate per pass is 16 to 20%. In the middle of the process, lead patenting or fluidized bed patenting was performed, and wet continuous drawing was performed to a diameter of 0.18 to 0.22 mm to obtain a high-strength steel wire.
  • a 10 mm long sample can be cut out from a steel wire having a diameter of 0.18 to 0.22 m, and a cross section perpendicular to the length direction (C cross section) can be observed.
  • C cross section perpendicular to the length direction
  • SEM selection location a rectangular area of 10 ⁇ m ⁇ 50 ⁇ m near the peripheral edge in the cross section of the steel wire was selected. The selected portion was measured at a magnification of 10,000 times, and the area ratio of pro-eutectoid cementite having a thickness of 100 nm or more was measured by image analysis.
  • Tables 5 to 8 show the manufacturing conditions and measurement results of the wire rods and steel wires in Examples ⁇ 1 to ⁇ 19 and Comparative Examples ⁇ 1 to ⁇ 18.
  • FBP means patenting by a fluidized bed.
  • FIG. 1 As data reflecting the results of Examples ⁇ 1 to ⁇ 19 and Comparative Examples ⁇ 1, ⁇ 5, ⁇ 6, ⁇ 7, ⁇ 17, and ⁇ 18 in which the wire temperature at the start of cooling was set to less than 900 ° C., FIG. The relationship between the temperature at the start of cooling and the surface cementite area ratio is shown. From this figure, it can be confirmed that when the wire temperature at the start of cooling is 900 ° C. or higher, the proeutectoid cementite on the surface of the wire can be suppressed to 0.5% or less.
  • FIG. 3 shows a comparative example in which the finishing temperature or the temperature at the start of cooling for patenting was low, which is an important index for suppressing the proeutectoid cementite of the surface layer, although the component range was appropriate, with Examples ⁇ 1 to ⁇ 19 For ⁇ 1, ⁇ 5, ⁇ 6, ⁇ 7, ⁇ 9, ⁇ 17, and ⁇ 18, the relationship between the C amount of the wire and the pro-eutectoid cementite area ratio of the surface region of the wire is shown in FIG. Is appropriate, but for Comparative Examples ⁇ 4 and ⁇ 11 in which the cooling speed Y of 900 ⁇ 650 ° C.
  • FIG. 5 shows the cooling rates Y and C amounts from 900 ° C. to 650 ° C. for Examples ⁇ 4, ⁇ 8, ⁇ 12, ⁇ 17, ⁇ 18, ⁇ 19 and Comparative Examples ⁇ 4, ⁇ 11, ⁇ 15 cooled with Stealmore during wire rod rolling. Shows the influence on the precipitation amount of pro-eutectoid cementite in the central region of the wire. From this figure, it can be confirmed that when the cooling speed Y satisfies (Equation 1), the pro-eutectoid cementite in the central region of the wire can be suppressed to 0.5% or less.
  • Tables 9 to 12 show a-1 steel, b-1 steel, c steel, d steel, e steel, f-2 steel, g-1 steel, h steel, i used in Examples ⁇ 1 to ⁇ 16 of the present invention.
  • the chemical components of steel, a-2 steel, g-2 steel, q steel, and r steel are shown. In Tables 9 to 16, numbers not included in the appropriate range and unfavorable results are underlined.
  • Steel billets (steel pieces) containing chemical components shown in Tables 9 to 12 are heated, and then hot rolled into wire rods with a diameter of 5.0 to 16 mm. After final rolling at a predetermined temperature, winding, and patenting Treated or reheated patented.
  • the cooling speed Y from 900 ° C. to 650 ° C. is 900 ° C. to 650 ° C. by measuring the temperature of the ring overlap portion with a non-contact type thermometer every 0.5 m on the Stemmore conveyor in the case of Stemmore.
  • the required time t [t] for cooling to 0 ° C. was measured and determined as (900-650) / t [° C./s].
  • a ring-shaped wire rod with a diameter of 1.0 to 1.5 m is divided into 8 equal parts to identify the highest and lowest TS parts. did.
  • a 10 mm long sample was cut out from the part corresponding to these parts of the continuous ring, embedded in resin so that a cross section perpendicular to the length direction (C cross section) could be observed, polished with alumina, and corroded with saturated picral. SEM observation was performed.
  • Quasi-pearlite part in which cementite is dispersed in granular form at four locations bainite part in which plate-like cementite is dispersed at a coarse lamellar spacing more than three times from the surroundings, and grain boundary ferrite precipitated along austenite
  • the area ratio excluding the part and the proeutectoid cementite part was measured by image analysis as the area ratio of the pearlite structure, and obtained as an average value of four locations.
  • photography location of the area ratio of proeutectoid cementite is demonstrated.
  • a region having a radius of 100 ⁇ m was selected from the center point in the cross section of the portion having the lowest TS.
  • the surface area of the wire four square areas of 50 ⁇ m ⁇ 50 ⁇ m near the peripheral edge in the cross section of the portion with the highest TS were selected every 90 degrees in the circumferential direction. These selected portions were measured at a magnification of 5000 times, and the area ratio of pro-eutectoid cementite having a thickness of 100 nm or more was measured by image analysis.
  • the maximum value of the measurement result of four places was used.
  • the wire drawing characteristics of the wire were evaluated by obtaining a target high-strength steel wire by any of the following methods and conducting a tensile test and a twist test.
  • the steel wire was subjected to any one of hot dip galvanizing, hot dip zinc alloy plating, bluing, and heat stretching.
  • Tables 13 to 16 show the manufacturing conditions and measurement results of the wires and steel wires in Examples ⁇ 1 to ⁇ 16 and Comparative Examples ⁇ 1 to ⁇ 7.
  • Comparative Examples ⁇ 1 and ⁇ 5 since the wire temperature at the start of cooling for patenting was low, the generation of surface layer pro-eutectoid cementite of the rolled wire material could not be suppressed.
  • FIG. 6 shows the temperature at the start of cooling the rolled wire. And the surface cementite area ratio. From this figure, it can be confirmed that by setting the wire temperature at the start of cooling to 900 ° C. or higher, the proeutectoid cementite of the wire surface layer can be suppressed to 0.5% or less.
  • FIG. 7 shows a comparison with Examples ⁇ 1 to ⁇ 16, although the component range was appropriate, but the finishing temperature or the temperature at the start of cooling for patenting, which is an important index for suppressing proeutectoid cementite on the surface layer, was low.
  • region of a wire is shown.
  • FIG. 8 shows examples C1 to ⁇ 16 and the comparative examples ⁇ 3 and ⁇ 4 in which the cooling speed Y of 900 ⁇ 650 ° C.
  • FIG. 9 shows the influence of the cooling rates Y and C from 900 ° C. to 650 ° C. on the amount of proeutectoid cementite deposited in the central region of the wires for Examples ⁇ 6 and ⁇ 9 and Comparative Examples ⁇ 3 and ⁇ 4. From this figure, it can be confirmed that when the cooling speed Y satisfies (Equation 1), the pro-eutectoid cementite in the central region of the wire can be suppressed to 0.5% or less.
  • a high-strength wire having excellent wire drawing suitable for applications such as steel cords, sawing wires, PC steel wires, galvanized steel stranded wires, spring steel wires, and suspension bridge cables can be produced with high productivity. Therefore, it can be provided at a low price with a high yield, and the industrial applicability is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

 本願発明は、0.95~1.30質量%のCと;0.1~1.5質量%のSiと;0.1~1.0質量%のMnと;0~0.1質量%のAlと;0~0.1質量%のTiと;0~0.02質量%のPと;0~0.02質量%のSと;10~50ppmのNと;10~40ppmのOと;Fe及び不可避的不純物を少なくとも含有する残部と;を含む組成を有する線材であって、前記線材の長手方向に対して垂直な断面の97%以上の面積が、パーライト組織により占有され、前記断面の中心領域の0.5%以下の面積と、前記断面の第1の表層領域の0.5%以下の面積とが、初析セメンタイト組織により占有される線材である。

Description

線材、鋼線及びそれらの製造方法
 本発明は、線材、鋼線及びそれらの製造方法に関する。より詳しくは、本発明は、自動車のラジアルタイヤや、各種産業用ベルトやホースの補強材として用いられるスチールコード、ソーイングワイヤなどの用途、及び、PC鋼線、亜鉛めっき鋼撚線、ばね用鋼線、吊り橋用ケーブルなどの用途に好適な圧延線材とその製造方法、及び前記圧延線材を素材とする鋼線に関する。
 本願は、2010年2月1日に、日本に出願された特願2010-020185号に基づき優先権を主張し、その内容をここに援用する。
 自動車のラジアルタイヤ、各種のベルト、ホース等の補強材として用いられるスチールコード、又はソーイングワイヤに用いられる鋼線は、一般に、熱間圧延後調整冷却した直径が5~6mmの線材を1次伸線加工して直径を3~4mmにし、パテンティング処理を行い、2次伸線加工して1~2mmの直径にし、最終パテンティング処理を行い、ブラスメッキを施し、最終湿式伸線加工を施して直径0.15~0.40mmにすることにより製造される。
 このようにして得られた極細鋼線を、更に撚り加工で複数本撚り合わせて撚鋼線とすることでスチールコードが製造される。
 一般に、線材を鋼線に加工する際や鋼線を撚り加工する際に断線が生ずると、生産性と歩留りが大きく低下してしまう。したがって、上記技術分野に属する線材や鋼線は、伸線加工時や撚り加工時に断線しないことが強く要求される。伸線加工のうちでも最終湿式伸線加工の場合には、被処理鋼線の直径が極めて細いため、特に断線が発生しやすい。更に、近年、種々の目的からスチールコードなどを軽量化する動きが高まってきた。このため、前記の各種製品に対して高強度が要求されるようになってきた。
 また、PC鋼線、PC撚り線、ロープ、橋梁用PWSワイヤなどとして用いられる鋼線は、一般に、熱間圧延後、調整冷却した直径が5~16mmの線材を、伸線加工して直径を2~8mmにし、必要に応じて伸線後又は伸線途中の段階で溶融亜鉛めっきを施し、撚り合わせる、又は撚り合わせること無しに結束することでストランド状に成型される。
 一般に、線材を鋼線に加工する際に断線、あるいは鋼線を撚り加工する際に縦割れ(デラミネーション)が生ずると、生産性と歩留りが大きく低下してしまう。したがって、上記技術分野に属する線材や鋼線は、伸線加工時や撚り又は結束加工時に断線しないことが強く要求される。
 このような製品は、従来1600MPa以上の強度を確保すると共に、捻り試験などによって評価される靭延性についても十分な性能を確保することが求められてきたが、近年、種々の目的からワイヤを軽量化する動きが高まってきた。
 このため、前記の各種製品に対して高強度が要求されるようになり、C含有量が0.9質量%未満の炭素鋼線材などでは、所望の高強度が得られなくなっている。このため、0.9質量%以上のC含有量の鋼線への要望が高まっている。しかし、C含有量を高めると初析セメンタイト(以下、初析θと示す場合がある)の生成により伸線加工性やねじり特性(耐デラミネーション性)が低下するので、断線頻度が高くなる。このため、C含有量が高くて鋼線に高い強度を確保させることができ、しかも伸線加工性にも優れた線材に対する要求が極めて大きくなっている。
 上記した近年の産業界からの要望に対して、1%を超えるような高炭素線材の製造技術が提案されている。
 例えば、特許文献1には、特定の化学組成を有する鋼材からなり、初析セメンタイトの含有平均面積率を規定した「高強度高靱性極細鋼線用線材、高強度高靱性極細鋼線、及び該極細鋼線を用いた撚り製品、並びに該極細鋼線の製造方法」が開示されている。しかし、この公報で提案された線材は、高価な元素であるNi及びCoの1種以上を必須の成分として含有するため、製造コストが嵩む。
 特許文献2では、0.6%以上のAlを添加することで、1%を超える高炭素鋼の初析セメンタイトの生成を抑制する技術が提案されている。しかしながら、Alは強脱酸元素であり、伸線における断線の原因となる硬質介在物量が増加するため、スチールコードのような細径鋼線用の線材に適用することは難しい。
 一方、特許文献3では、高炭素線材をオーステナイト温度域に加熱後、823~1023Kの温度範囲に冷却し、この温度域で加工度15~80%の塑性加工を行った後、823~923Kの温度域で恒温変態させることで、初析セメンタイトを抑制する技術を提案している。しかしながら、このような温度域で所定の加工を施すためには大掛かりな設備投資が必要で、製造コストの増加を招く虞がある。
日本国特許第2609387号公報 日本国特開2003-193129号公報 日本国特開平8-283867号公報
 本発明は、上記現状に鑑みなされたもので、その目的は、スチールコード、ソーイングワイヤなどの用途、又は、PC鋼線、亜鉛めっき鋼撚線、ばね用鋼線、吊り橋用ケーブルなどの用途に好適な伸線性に優れた高強度線材を高い生産性の下に歩留りよく廉価に提供することである。
 本発明は、上述の課題を解決するために以下の構成及び方法を採用する。
(1)本発明の第1の態様は、0.95~1.30質量%のCと;0.1~1.5質量%のSiと;0.1~1.0質量%のMnと;0~0.1質量%のAlと;0~0.1質量%のTiと;0~0.02質量%のPと;0~0.02質量%のSと;10~50ppmのNと;10~40ppmのOと;0~0.5質量%のCrと;0~0.5質量%のNiと;0~0.5質量%のCoと;0~0.5質量%のVと;0~0.5質量%のCuと;0~0.1質量%のNbと;0~0.2質量%のMoと;0~0.2質量%のWと;0~30ppmのBと;0~50ppmのREMと;0~50ppmのCaと;0~50ppmのMgと;0~100ppmのZrと;Fe及び不可避的不純物を含有する残部と;を含む組成を有する線材であって、この線材の長手方向に対して垂直な断面の97%以上の面積が、パーライト組織により占有され、前記断面の中心領域の0.5%以下の面積と、前記断面の第1の表層領域の0.5%以下の面積とが、初析セメンタイト組織により占有されている線材である。
(2)上記(1)に記載の線材では、前記線材の前記断面が、前記パーライト組織と;前記初析セメンタイトと;ベイナイト組織と;擬似パーライト組織と;フェライト組織と;粒界フェライト組織と;マルテンサイト組織と;により占有されていてもよい。
(3)本発明の第2の態様は、上記(1)又は(2)に記載の線材の製造方法である。この製造方法は、上述の組成を有する鋼片に熱間圧延を行って圧延線材を得る工程と;前記圧延線材を巻き取る工程と;900℃以上の前記圧延線材を500~600℃の溶融ソルト層に浸漬することによりパテンティング処理を行う工程と;を備える。
(4)本発明の第3の態様は、上記(1)又は(2)に記載の線材の製造方法である。この製造方法は、上述の組成を有する鋼片に熱間圧延を行って圧延線材を得る工程と;前記圧延線材を巻き取る工程と;900℃以上の前記圧延線材に対し冷却を開始し、900℃から650℃まで冷却される間の冷速Yが、
 Y≧exp((C%-0.66)/0.12)   (式1)
を満たすように制御して急冷し、650℃~500℃の温度にてパーライト変態を終了させることによりパテンティング処理を行う工程と;を備える。
(5)本発明の第4の態様は、上記(1)又は(2)に記載の線材の製造方法である。この製造方法は、上述の組成を有する直径3~16mmの圧延線材を準備し、950℃以上1050℃以下に再加熱する工程と;900℃以上の前記圧延線材に対して冷却を開始し、500~600℃の鉛浴槽又は流動床にてパテンティング処理を行う工程と;を備える。
(6)本発明の第5の態様は、上述の組成を有し、長手方向に対して垂直な断面の97%以上の面積が、パーライト組織により占有され、前記断面の中心領域の0.5%以下の面積と、前記断面の第1の表層領域の0.5%以下の面積とが、初析セメンタイト組織により占有されている線材に、伸線及び再加熱パテンティング処理を少なくとも1回施すことにより得られる鋼線であって、前記鋼線は、0.1~0.4mmの直径と、4200MPa以上の引張り強さとを有し、前記鋼線の長手方向に対して垂直な断面の第2の表層領域の0.5%以下の面積が、初析セメンタイトにより占有されている鋼線である。
(7)本発明の第6の態様は、上述の組成を有し、長手方向に対して垂直な断面の97%以上の面積が、パーライト組織により占有され、前記断面の中心領域の0.5%以下の面積と、前記断面の第1の表層領域の0.5%以下の面積とが、初析セメンタイト組織により占有されている線材を伸線することにより得られる鋼線であって、前記鋼線は、0.8~8mmの直径と、1800MPa以上の引張り強さとを有し、前記鋼線の長手方向に対して垂直な断面の第3の表層領域の0.5%以下の面積が、初析セメンタイトにより占有されている鋼線である。
(8)上記(7)に記載の鋼線は、前記線材を(a)前記伸線後に、ブルーイング、ヒートストレッチ、溶融亜鉛めっき、または溶融亜鉛合金めっきを行うこと、(b)溶融亜鉛めっき、または溶融亜鉛合金めっき後に、前記伸線を行うこと、又は、(c)前記伸線後に、溶融亜鉛めっき、または溶融亜鉛合金めっきを行い、さらに伸線を行うことにより得られてもよい。
(9)本発明の第7の態様は、上述の組成を有する鋼片に熱間圧延を行って圧延線材を製造し、前記圧延線材を巻き取り、900℃以上の前記圧延線材を500~600℃の溶融ソルト層に浸漬することによりパテンティング処理を行うことにより直径3~7mmの線材を製造する工程と;前記線材を伸線する工程と;900℃以上の、伸線された前記線材に500~600℃の鉛浴槽又は流動床に導入することで冷却を開始することにより第2のパテンティング処理を行う工程と;前記第2のパテンティング処理を行った前記線材に冷間伸線を行う工程と;を備える上記(6)に記載の鋼線の製造方法である。
(10)本発明の第8の態様は、上述の組成を有する鋼片に熱間圧延を行って圧延線材を製造し、前記圧延線材を巻き取り、900℃以上の前記圧延線材に対し冷却を開始し、900℃から650℃まで冷却される間の冷速Yが、
 Y≧exp((C%-0.66)/0.12)   (式1)
を満たすように制御して急冷し、650℃~500℃の温度にてパーライト変態を終了させることによりパテンティング処理を行うことによって直径3~7mmの線材を製造する工程と;前記線材を伸線する工程と;900℃以上の、伸線された前記線材に500~600℃の鉛浴槽又は流動床に導入することで冷却を開始することにより第2のパテンティング処理を行う工程と;前記第2のパテンティング処理を行った前記線材に冷間伸線を行う工程と;を備える、上記(6)に記載の鋼線の製造方法である。
(11)本発明の第9の態様は、上述の組成を有する直径3~7mmの線材を950℃以上1050℃以下に再加熱し、900℃以上の前記再加熱線材に対して冷却を開始し、500~600℃の鉛浴槽又は流動床にてパテンティング処理を行うことによって直径3~7mmの線材を製造する工程と;前記線材を伸線する工程と;900℃以上の、伸線された前記線材に500~600℃の鉛浴槽又は流動床に導入することで冷却を開始することにより第2のパテンティング処理を行う工程と;前記第2のパテンティング処理を行った前記線材に冷間伸線を行う工程と;を備える、上記(6)に記載の鋼線の製造方法である。
(12)本発明の第10の態様は、上述の組成を有する鋼片に熱間圧延を行って圧延線材を製造し、前記圧延線材を巻き取り、900℃以上の前記圧延線材を500~600℃の溶融ソルト層に浸漬することによりパテンティング処理を行うことにより直径5~16mmの線材を製造する工程と;前記線材を伸線する工程と;を備える上記(7)に記載の鋼線の製造方法である。
(13)本発明の第10の態様は、上述の組成を有する鋼片に熱間圧延を行って圧延線材を製造し、前記圧延線材を巻き取り、900℃以上の前記圧延線材に対し冷却を開始し、900℃から650℃まで冷却される間の冷速Yが、
 Y≧exp((C%-0.66)/0.12)   (式1)
を満たすように制御して急冷し、650℃~500℃の温度にてパーライト変態を終了させることによりパテンティング処理を行うことによって直径5~16mmの線材を製造する工程と;前記線材を伸線する工程と;を備える上記(7)に記載の鋼線の製造方法である。
(14)本発明の第10の態様は、上述の組成を有する直径5~16mmの圧延線材を準備し、950℃以上1050℃以下に再加熱し、900℃以上の前記圧延線材に対して冷却を開始し、500~600℃の鉛浴槽又は流動床にてパテンティング処理を行うことによって直径5~16mmの線材を製造する工程と;前記線材を伸線する工程と;を備える上記(7)に記載の鋼線の製造方法である。
 本発明によれば、スチールコード、ソーイングワイヤ、PC鋼線、亜鉛めっき鋼撚線、ばね用鋼線、吊り橋用ケーブルなどの用途に好適な伸線性に優れた高強度線材を高い生産性の下に歩留まりよく廉価に提供することができる。
線材の表層領域に発生した初析セメンタイトの例を示す。 線材の冷却開始温度と、線材の第1の表層領域における初析θの面積率との関係を示す。 線材のC量と、線材の第1の表層領域における初析θの面積率との関係を示す。 線材のC量と、線材の中心領域における初析θの面積率との関係を示す。 900℃から650℃までの冷速及びC量が、線材の中心領域における初析θの析出量に及ぼす影響を示す。 線材の冷却開始温度と、線材の第1の表層領域における初析θの面積率との関係を示す。 線材のC量と、線材の第1の表層領域における初析θの面積率との関係を示す。 線材のC量と、線材の中心領域における初析θの面積率との関係を示す。 900℃から650℃までの冷速と及びC量が、線材中心領域における初析θの析出量に及ぼす影響を示す。
 本発明者らは、線材の化学組成と機械的性質が伸線加工性に及ぼす影響について調査・研究を重ね、その結果、下記の知見を得た。
(a)引張強さを高めるためには、C、Si、Mn、Crなどの合金元素の含有量を増やせばよい。特にCを1質量%以上に増加させ、目的とする強度を得るための加工ひずみを相対的に低下させることにより、鋼線の延性を高く保ちつつ高強度化が図れる。
(b)C含有量を増加させると、パテンティング処理の際のオーステナイト域からの冷却過程において、冷却開始からパーライト変態が開始するまでの間に過冷オーステナイト中で、図1の矢印で示すような初析セメンタイトが析出しやすくなる。この傾向は、冷却速度が小さくなる線材中心領域で顕著となる。
(c)線材中心領域の初析セメンタイト生成を抑制できる限界冷却速度は、C量の関数で表すことができる。母相オーステナイトをこれ以上の速度で冷却し、引き続き恒温処理を施すことで、冷速が低下する線材中心領域の初析セメンタイトの生成を抑制することが出来る。
(d)C含有量が1.3質量%以下である直径3~16mmの線材を加熱後に溶融ソルトに浸漬することで、上記の限界冷却速度以上の冷却速度を得ることができる。
(e)通常の線材圧延ラインでは、仕上げ圧延後に一定の温度で線材を巻き取り、ステルモア等のパテンティング処理ゾーンにコンベアで搬送する。再加熱パテンティングラインにおいて、線材の巻き取り工程は無いが、加熱帯出側からパテンティングのための冷却帯までの搬送にはある程度の時間を要する。1質量%を超える高C材では、セメンタイト析出温度(オーステナイト→オーステナイト+セメンタイト温度)が高いため、従来通りの加熱・搬送条件では、搬送中に大気に触れる線材最表層数十μmの深さの領域における温度が低下し、パテンティング処理のための冷却を開始する前に、線材最表層で初析セメンタイトが生成する虞がある。
(f)図1に線材表層領域に生成した初析セメンタイトの例を示す。このような表層のセメンタイトは、脆い組織であるため、伸線時に表層き裂の原因となり、伸線よって得られる鋼線のデラミネーション発生の原因となるなど、鋼線の延性を著しく低下させる。
(g)このような線材最表層の初析セメンタイトを抑制するには、パテンティングのための線材の冷却開始温度を900℃以上とする必要がある。そのためには、仕上圧延を980℃以上とし、かつ従来よりも巻き取りあるいは再加熱温度を高めの925℃以上、好ましくは950℃より高い温度とし、かつ搬送時間を極力短縮する、又は搬送中の温度低下を抑制することが必要となる。
(h)仕上げ圧延温度及び巻き取り温度を高くしすぎると、線材のオーステナイト粒径が粗大化し、延性が低下するため、延性を確保できる上限温度がある。
 以下、上述の知見に基づく本発明の実施形態について詳しく説明する。
(第1実施形態)
(線材の構成)
 本発明の第1実施形態は、線材の長手方向に対して垂直な断面における中心領域の0.5%以下の面積と、前記断面における表層領域(第1の表層領域)の0.5%以下の面積とが、初析セメンタイト組織により占有される線材である。
 本発明者らの検討によれば、伸線前の線材表層領域と線材中心領域の初析セメンタイト率と、伸線後の鋼線の延性には相関があり、線材表層領域のセメンタイトの面積率を0.5%以下に抑制することができれば、伸線することで得られる鋼線の延性が向上し、線材中心領域のセメンタイトの面積率を0.5%以下の抑制することで、伸線断線を抑制できる。
 ここで、線材の表層領域(第1の表層領域)とは、線材の長手方向に垂直な断面において、線材の表面(断面における周縁部)から50μmまでの深さに相当する領域を意味する。
 線材中心領域とは、線材の長手方向に垂直な断面の中心点から半径100μmの領域を意味する。
 初析セメンタイトとは、旧オーステナイト粒界に生成した、厚みが100nm以上である、変形能が小さいセメンタイトを意味する。
 また、本実施形態に係る線材は、線材の長手方向に対して垂直な断面の97%以上の面積が、パーライト組織により占有される。その残部は、初析セメンタイト、ベイナイト組織、擬似パーライト組織、フェライト組織、粒界フェライト組織、マルテンサイト組織等であればよい。
(線材の製造条件)
 0.95~1.3質量%の高C材の圧延線材の表層領域における初析セメンタイトを上記の面積率に抑制するためには、鋼片(ビレット)を、直径3~16mmに熱間圧延するに際して、ソルト漕又はステルモアによってパテンティングのための冷却を開始する際の線材温度を900℃以上とする必要がある。より好ましくは920℃以上である。そのためには、980℃以上にて仕上げ圧延を行い、925℃より高い温度域、好ましくは950℃より高い温度にて巻き取りすることが望ましい。仕上げ圧延温度及び巻き取り温度を高くしすぎると、線材のオーステナイト粒径が粗大化し、延性(絞り値)が低下する。このため、仕上げ圧延温度、巻き取り温度は、共に1050℃以下であることが望ましい。
 線材中心領域の初析セメンタイト発生量は、900℃から650℃まで冷却される間の冷速Yに依存する。本発明者らは、冷速Y[℃/s]及び線材の炭素含有量C%[質量%]が、
 Y≧exp((C%-0.66)/0.12) (式1)
を満たすような方法にて線材を急冷し、その後500~650℃の温度にてパーライト変態を終了させることが有効であることを発見した。
 同様の対策は、伸線前又は伸線途中の鋼線に施す再加熱パテンティングの工程でも行うことが望ましい。再加熱パテンティングとは、対象物を一度200℃以下の状態にし、その後、再加熱してから行うパテンティング処理を意味する。0.95~1.3質量%の高C材の再加熱パテンティング鋼線の表層領域及び中心領域における初析セメンタイトを上記の面積率に抑制するためには、再加熱温度を950℃以上1050℃以下、望ましくは、975℃以上、又はC%×450+450(℃)のいずれか高い温度以上1050℃以下とし、C及びその他の合金元素を十分に固溶させた後、パテンティングのための冷却開始時の鋼線温度を900℃以上、望ましくは920℃以上とし、500~600℃の鉛浴槽又は流動床にてパテンティング処理を施すことが有効である。
(基本元素)
 本実施形態に係る線材は、C、Si、Mn、Al、Ti、N、Oを含有する。
以下、各成分の含有量について説明する。
C:0.95~1.35質量%
 Cは、線材の強度を高めるのに有効な元素であり、その含有量が0.95%未満の場合には高い強度を安定して最終製品に付与させることが困難である。一方、Cの含有量が多すぎるとオーステナイト粒界にネット状の初析セメンタイトが生成して伸線加工時に断線が発生しやすくなるだけでなく、最終伸線後における極細線材の靱性・延性を著しく劣化させる。したがって、Cの含有量を0.95~1.30質量%に規定する。高級強度鋼線を得るためには1.0質量%以上、より好ましくは1.1質量%以上が好ましい。
Si:0.1~1.5質量%
 Siは強度を高めるのに有効な元素である。更に脱酸剤として有用な元素であり、Alを含有しない鋼線材を対象とする際にも必要な元素である。0.1質量%未満では脱酸作用が過少である。-方、Si量が多すぎると過共析鋼においても初析フェライトの析出を促進するとともに、伸線加工での限界加工度が低下する。更にメカニカルデスケーリングによる伸線工程が困難になる。したがって、Siの含有量を0.1~1.5質量%に規定する。好ましくは1.0質量%以下、より好ましくは0.35質量%以下である。
Mn:0.1~1.0質量%
 MnもSiと同様、脱酸剤として有用な元素である。また、焼き入れ性を向上させ、線材の強度を高めるのにも有効である。更にMnは、鋼中のSをMnSとして固定して熱間脆性を防止する作用を有する。その含有量が0.1質量%未満では前記の効果が得難い。一方、Mnは偏析しやすい元素であり、1.0質量%を超えると特に線材の中心領域に偏析し、その偏析部にはマルテンサイトやベイナイトが生成するので、伸線加工性が低下する。したがって、Mnの含有量を0.1~1.0質量%に規定する。
Al:0~0.1質量%
 Alの含有量は、硬質非変形のアルミナ系非金属介在物が生成して鋼線の延性劣化と伸線性劣化を招かないように0質量%を含む(又は0質量%を超える)0.1質量%以下の範囲に規定する。好ましくは0.05質量%以下、さらに好ましくは0.01質量%以下である。
Ti:0~0.1質量%
 Tiの含有量は、硬質非変形の酸化物が生成して鋼線の延性劣化と伸線性劣化を招かないように0質量%を含む(又は0質量%を超える)0.1質量%以下の範囲に規定する。好ましくは0.05質量%以下、さらに好ましくは0.01質量%以下である。
N:10~50ppm
 Nは、鋼中でAl、Ti、Bと窒化物を生成し、加熱時におけるオーステナイト粒度の粗大化を防止する作用があり、その効果は10ppm以上含有させることによって有効に発揮される。しかし、含有量が多くなり過ぎると、窒化物量が増大し過ぎて、オーステナイト中の固溶B量を低下させる。さらに固溶Nが伸線中の時効を促進する恐れが生じてくるので、上限を50ppmとする。好ましくは30ppm以下である。
O:10~40ppm
 Oは、Siその他と複合介在物を形成することで、伸線特性への悪影響を及ぼさない軟質介在物を形成させることが可能となる。このような軟質介在物は圧延後に微細分散させることが可能で、ピニング効果によりγ粒径を微細化し、パテンティング線材の延性を向上させる効果がある。そのため下限を10ppmに規定する。しかし、含有量が多くなり過ぎると、硬質な介在物を形成し、伸線特性が劣化するので、Oの上限を40ppmに規定する。
(不可避的不純物)
 尚、本実施形態に係る線材に不純物として含有されるPとSの含有量は特に規定しないが、従来の極細鋼線と同様に延性を確保する観点から、各々0.02質量%以下に制限することが望ましい。ただし、PとSを各々0.0005質量%より低く含有させても、その効果は限定的である。
(選択元素)
 本実施形態に係る線材は、上記元素に加え、更に強度、靭性、延性等の機械的特性の向上を目的として、Cr、Ni、Co、V、Cu、Nb、Mo、W、B、REM、Ca、Mg、及びZrのうち1種以上の元素を選択的に含有してもよい。以下、各成分の含有量について説明する。
Cr:0~0.5質量%
 Crはパーライトのラメラ間隔を微細化し、線材の強度や伸線加工性等を向上させるのに有効な元素である。この様な作用を有効に発揮させるには0.1質量%以上の添加が好ましい。一方、Cr量が多過ぎると変態終了時間が長くなり、熱間圧延線材中にマルテンサイトやベイナイトなどの過冷組織が生じる恐れがあるほか、メカニカルでスケーリング性も悪くなるので、その上限を0.5質量%に規定する。
Ni:0~0.5質量%
 Niは線材の強度上昇にはあまり寄与しないが、伸線材の靭性を高める元素である。このような作用を有効に発揮させるには0.1質量%以上の添加が好ましい。一方、Niを過剰に添加すると変態終了時間が長くなるので、上限値を0.5質量%に規定する。
Co:0~0.5質量%
 Coは、圧延材における初析セメンタイトの析出を抑制するのに有効な元素である。この様な作用を有効に発揮させるには0.1質量%以上の添加が好ましい。一方、Coを過剰に添加してもその効果は飽和して経済的に無駄であるので、その上限値を0.5質量%に規定する。
V:0~0.5質量%
 Vはフェライト中に微細な炭窒化物を形成することにより、加熱時のオーステナイト粒の粗大化を防止するとともに、圧延後の強度上昇にも寄与する。この様な作用を有効に発揮させるには0.05質量%以上の添加が好ましい。しかし、過剰に添加し過ぎると、炭窒化物の形成量が多くなり過ぎると共に、炭窒化物の粒子径も大きくなるため上限を0.5質量%に規定する。
Cu:0~0.5質量%
 Cuは、極細鋼線の耐食性を高める効果がある。この様な作用を有効に発揮させるには0.1質量%以上の添加が好ましい。しかし過剰に添加すると、Sと反応して粒界中にCuSを偏析するため、線材製造過程で鋼塊や線材などに疵を発生させる。この様な悪影響を防止するために、その上限を0.5質量%に規定する。
Nb:0~0.1質量%
 Nbは、極細鋼線の耐食性を高める効果がある。この様な作用を有効に発揮させるには0.05質量%以上の添加が好ましい。一方、Nbを過剰に添加すると変態終了時間が長くなるので、上限値を0.1質量%に規定する。
Mo:0~0.2質量%
 Moはパーライト成長界面に濃縮し、いわゆるソリュートドラッグ効果によりパーライトの成長を抑制する効果がある。適量を添加することにより、600℃以上の高温域におけるパーライトの成長のみを抑制することが可能であり、粗大なラメラ間隔のパーライトの生成を抑制することができる。また、Moはフェライト生成を抑制する、焼き入れ性向上の効果も有し、非パーライト組織の低減にも有効である。Moは過剰であると、全温度域におけるパーライト成長が抑制され、パテンティングに長時間を要し、生産性の低下を招くと共に、粗大なMoC炭化物が析出し、伸線加工性が低下する。したがって、Moの含有量を0.2質量%以下に規定する。好ましい含有量は0.005~0.06質量%である。
W:0~0.2質量%
 WはMo同様、パーライト成長界面に濃縮し、いわゆるソリュートドラッグ効果によりパーライトの成長を抑制する効果がある。適量を添加することにより、600℃以上の高温域におけるパーライトの成長のみを抑制することが可能であり、粗大なラメラ間隔のパーライトの生成を抑制することができる。また、Wはフェライト生成を抑制する、焼き入れ性向上の効果も有し、非パーライト組織の低減にも有効である。Wは過剰であると、全温度域におけるパーライト成長が抑制され、パテンティングに長時間を要し、生産性の低下を招くと共に、粗大なWC炭化物が析出し、伸線加工性が低下する。したがって、Wの含有量を0.2質量%以下に規定する。好ましい含有量は0.005~0.06質量%である。
B:0~30ppm
 Bは固溶状態でオーステナイト中に存在する場合、粒界に濃化してフェライト、擬似パーライト、ベイナイト等の非パーライト析出の生成を抑制する。含有量が4ppm以上である場合、この効果を強く得ることができる。一方、Bを添加しすぎるとオーステナイト中において粗大なFe23(CB)炭化物の析出を促進し、伸線性に悪影響を及ぼす。これを満足するためにBの含有量の上限値を30ppmに規定する。好ましい含有量は4~15ppm、より好ましくは8~12ppmである。
REM:0~50ppm
 REMはSの無害化に有効であるが、過度の添加は酸化物を生成せしめて断線の原因となるため、含有量の上限を50ppmに規定する。
Ca:0~50ppm
 Caは硬質なアルミナ系の介在物を低減するのに有効であるが、過度の添加は酸化物を生成せしめて断線の原因となるため、含有量の上限を50ppmに規定する。
Mg:0~50ppm
 Mgは微細な酸化物となり、鋼の組織を微細化して延性を向上させる。50ppmを超えると酸化物を起点とし断線が生じやすくなるため、含有量の上限を50ppmに規定する。
Zr:0~100ppm
 ZrはZrOとしてオーステナイトの晶出核となるため、オーステナイトの等軸率を高め、中心偏析を低減する効果があるが、100ppmを超えると酸化物を起点とし断線が生じやすくなるため、含有量の上限を100ppmに規定する。
(第2実施形態)
(鋼線の構成)
 本発明の第2実施形態は、第1実施形態に記載の線材を延伸することにより得られる、0.1~0.4mmの直径と4200MPa以上の引張り強さとを有する鋼線である。この鋼線は、鋼線の長手方向に対して垂直な断面における表層領域(第2の表層領域)の0.5%以下の面積が、初析セメンタイトにより占有される。
 ここで、第2の表層領域とは、鋼線の表層から10μmまでの領域を意味する。
(鋼線の製造条件)
 このような鋼線は、第1実施形態に記載の線材を伸線し、900℃以上に加熱し、加熱した線材を500~600℃の鉛浴槽又は流動床に導入することで冷却を開始するパテンティングを少なくとも1回行い、冷間伸線を施すことにより得ることができる。
(第3実施形態)
(鋼線の構成)
 本発明の第3実施形態は、直径5~16mmの第1実施形態に記載の線材を延伸することにより得られる、0.8~8mmの直径と1800MPa以上の引張り強さとを有する鋼線である。この鋼線は、鋼線の長手方向に対して垂直な断面の表層領域(第3の表層領域)の0.5%以下の面積が、初析セメンタイトにより占有される。
 ここで、第3の表層領域とは、鋼線の表層から20μmまでの領域を意味する。
(鋼線の製造条件)
 このような鋼線は、第1実施形態に記載の線材に冷間伸線を施すことにより得ることができる。
 このようにして得られる鋼線は、伸線後そのまま使用してもよいが、
(1)伸線後に、ブルーイング、ヒートストレッチ、溶融亜鉛めっき、または溶融亜鉛合金めっきを施す、(2)溶融亜鉛めっき、または溶融亜鉛合金めっき後、伸線を施す、又は、(3)伸線し、溶融亜鉛めっき、または溶融亜鉛合金めっき後、さらに伸線を施す、等の処理を行ってもよい。
 上記の実施形態で説明した特徴を有する線材、鋼線、又はそれらの製造方法は、以下のように表現することもできる。
 すなわち、本発明の一態様は、成分が、質量%で、C:0.95~1.30%、Si:0.1~1.5%、Mn:0.1~1.0%、Al:0.1%以下、Ti:0.1%以下、N:10~50ppm、O:10ppm以上40ppm以下を含有し、残部はFe及び不純物からなる、パーライト組織の面積率が97%以上、残部がベイナイト、擬似パーライト、フェライト、粒界フェライト、初析セメンタイトからなる線材であり、線材中心部の半径が100μmの領域における初析セメンタイト面積率が0.5%以下であり、且つ線材表層から50μmまでの深さの領域における初析セメンタイトの面積率が0.5%以下である、延性に優れた高強度鋼線用線材である。
 また、更に質量%で、Cr:0.5%以下(0%を含まない),Ni:0.5%以下(0%を含まない),Co:0.5%以下(0%を含まない),V :0.5%以下(0%を含まない),Cu:0.5%以下(0%を含まない)、Nb:0.1%以下(0%を含まない),Mo:0.2%以下(0%を含まない),W:0.2%以下(0%を含まない)、B:30ppm(0%を含まない)、よりなる群から選択される少なくとも1種以上を含有してもよい。
 また、本発明の他の一態様は、直径3~7mmの上述のような線材を伸線し、パテンティング処理した後に再び伸線した鋼線であって、引張強さが4200MPa以上であり、その表層から10μmまでの深さの領域における初析セメンタイト面積率が0.5%以下である、延性に優れた高強度鋼線である。
 また、本発明の更に他の一態様は、直径5.0~16mmの上述のような線材を伸線し、ブルーイング、ヒートストレッチ、溶融亜鉛めっき、または溶融亜鉛合金めっきを施した鋼線、又は直径5.0~16mmの上述のような線材に溶融亜鉛めっきもしくは溶融亜鉛合金めっき後、伸線を施した鋼線、又は直径5.0~16mmの上述のような線材を伸線し、溶融亜鉛めっきもしくは溶融亜鉛合金めっき後、さらに伸線を施した鋼線であって、引張強さが1800MPa以上であり、その表層から20μmまでの深さの領域における初析セメンタイト面積率が0.5%以下である、延性に優れた高強度鋼線である。
 また、本発明の更に他の一態様は、上述の成分の鋼片を、線径3~16mmに熱間圧延をするに際して、仕上げ圧延および巻き取りをした後、溶融ソルト漕へ浸漬する際の線材の温度を900℃以上とし、引き続き500~600℃の溶融ソルトに直接浸漬することでパテンティング処理を行う延性に優れた高強度鋼線用線材の製造方法である。
 また、本発明の更に他の一態様は、上述の成分の鋼片を、線径3~16mmに熱間圧延するに際して、仕上げ圧延および巻き取りをした後、パテンティングのためのステルモア等の冷却開始の際の線材温度を900℃以上とし、続くパテンティング処理において、900℃から650℃まで冷却される間の冷速Yが(式1)
  Y≧exp((C%-0.66)/0.12)    (式1)
を満たすような方法にて急冷し、その後500~650℃の温度にてパーライト変態を終了させる、延性に優れた高強度鋼線用線材の製造方法である。
 また、本発明の更に他の一態様は、上述の成分を有する線径3~16mmの線材を再加熱パテンティングするに際して、線材の加熱温度を950℃以上1050℃以下とし、パテンティングのための冷却開始時の線材温度を900℃以上とし、直ちに500~600℃の鉛もしくは流動床にてパテンティング処理を実施することを特徴とする、上述の延性に優れた高強度鋼線用線材の製造方法である。
 また、本発明の更に他の一態様は、上述の製造方法によって製造されたφ3~7mmの線材を伸線し、パテンティング後さらに冷間伸線を施すに際して、パテンティング時の鋼線の加熱温度を950℃以上1050℃以下とし、パテンティングのための冷却開始時の鋼線温度を900℃以上とし、直ちに500~600℃の鉛もしくは流動床にてパテンティング処理を実施した鋼線を伸線する、延性に優れた高強度鋼線の製造方法である。
 次に実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に含まれる。
(第1実施例)
 表1~4に、本発明の実施例α1~α19で用いたA-1鋼、B-1鋼、C-1鋼,D-1鋼、E鋼、F鋼、G-1鋼、H鋼、I鋼、J鋼、K鋼、L-1鋼、M鋼、N鋼、O鋼、P鋼、Q-1鋼、Q-2鋼、Q-3鋼の化学成分と、比較例α1~α18で用いたA-2鋼、A-3鋼、B-2鋼、B-3鋼、B-4鋼、C-2鋼、D-2鋼、G-2鋼、G-3鋼、G-4鋼、L-2鋼、R鋼、S鋼、T鋼、U鋼、V鋼、W鋼、X鋼の化学成分とを示す。尚、表1~8において、適正範囲に含まれない数値や不利な結果などに下線を引いた。
 表1~4に示す化学成分を含有する鋼のビレット(鋼片)を加熱後、熱間圧延により直径3~7mmの線材とし、所定の温度にて仕上げ圧延、巻き取り後、パテンティング処理を施した。
 圧延線材をリング状に巻き取った後、ステルモア又は直接溶融ソルト浸漬(DLP)によるパテンティング処理を施した。なお、DLPとは圧延線材を直接溶融塩に浸漬してパテンティング処理するDirect In-line Patenting設備のことをいう。900℃から650℃までの冷速Yは、ステルモアの場合はステルモアコンベア上で、リング重なり部の温度を非接触タイプの温度計にて0.5mおきに測定することによって、900℃から650℃までの冷却される所要時間t[s]を測定し、(900-650)/t[℃/s]として求めた。
 圧延線材のパーライト組織の面積率と初析セメンタイト面積率の測定のため、直径1.0~1.5mのリング状の線材1リングを8等分し、TSが最も高い部位と低い部位を同定した。連続するリングのこれらの部位に相当する部分から10mm長さのサンプルを切り出し、長さ方向に垂直な断面(C断面)を観察できるように樹脂埋め込みした後、アルミナ研磨し、飽和ピクラールにて腐食し、SEM観察を実施した。
 パーライト組織の面積率は、上記2部位(TSが最も高い部位と低い部位)の表層から1/4D深さ部分(D=直径)の、200×200μmの正方形領域を円周方向に90度毎に4箇所、3000倍で測定し、セメンタイトが粒状に分散した擬似パーライト部、板状セメンタイトが周囲より3倍以上の粗いラメラ間隔で分散しているベイナイト部、オーステナイトに沿って析出した粒界フェライト部、初析セメンタイト部を除いた面積率を、パーライト組織の面積率として、画像解析によって測定し、4箇所の平均値として求めた。
 初析セメンタイトの面積率のSEM撮影箇所について説明する。
 線材の中心領域は、TSが最も低い部位の断面における中心点から半径100μmの領域を選定した。
 線材の表層領域は、TSが最も高い部位の断面における周縁部付近の50μm×50μmの領域を円周方向に90度毎に4箇所選定した。
 これらの選定箇所を5000倍で測定し、厚みが100nm以上である初析セメンタイトの面積率を画像解析によって測定した。
 尚、表層領域については、4箇所の測定結果の最大値を用いた。
 線材の伸線特性は、圧延線材のスケールを酸洗にて除去した後、ボンデ処理によりリン酸亜鉛皮膜を付与した長さ10mの線材を用意し、1パス当たりの減面率16~20%の単頭式伸線を行い、途中で鉛パテンティング又は流動床パテンティングを実施し、直径0.18~0.22mmまで湿式連続伸線し、高強度鋼線を得た。
 伸線した鋼線の初析セメンタイト面積率の測定のため、直径0.18~0.22mの鋼線から10mm長さのサンプルを切り出し、長さ方向に垂直な断面(C断面)を観察できるように樹脂埋め込みした後、アルミナ研磨し、飽和ピクラールにて腐食し、SEM観察を実施した。
 SEMの選定箇所は、鋼線の断面における周縁部付近の10μm×50μmの長方形領域を選定した。
 この選定箇所を10000倍で測定し、厚みが100nm以上である初析セメンタイトの面積率を画像解析によって測定した。
 表5~8に、実施例α1~α19及び比較例α1~α18における線材及び鋼線の製造条件及び測定結果を示す。表において、FBPは流動床によるパテンティング処理を意味する。
 表1~8に示される実施例α1~α19からわかるように、線材の含有元素の量を適切に制御した上で、圧延線材の表層及び中心領域の初析セメンタイト分率を抑制した場合には、伸線後の鋼線におけるデラミネーション及び伸線断線の発生が抑制できた。
 比較例α1、α5、α6、α7、α17、α18では、パテンティングのための冷却開始時の線材温度が低いことに起因して、圧延線材の表層初析セメンタイト生成を抑制できなかった。このため、圧延線材の表層部の初析セメンタイト面積率が0.5%を超え、最終伸線後の鋼線にデラミネーションが発生した。
 ここで、実施例α1~α19及び、冷却開始時の線材温度を900℃未満に設定した比較例α1、α5、α6、α7、α17、α18の結果を反映させたデータとして、図2に圧延線材の冷却開始時の温度と表層セメンタイト面積率の関係を示す。この図から、冷却開始時の線材温度を900℃以上とした場合に、線材表層の初析セメンタイトを0.5%以下に抑制できたことが確認できる。
 比較例α2では、巻き取り温度が高かったため、圧延線材の延性が低く、一次伸線で断線した。
 比較例α3では、最終パテンティング時の加熱温度が低いため、最終伸線後の鋼線の表層部及び中心領域でセメンタイトが抑制できず、デラミネーションが生成した。
 比較例α4及び比較例α11、比較例α15では、圧延線材のパテンティング処理をステルモアで実施し、900℃から650℃までの冷速Yが
 Y≧exp((C%-0.66)/0.12)   (式1)
を満たさないため、線材中心領域での初析セメンタイトが多量に生成し、一次伸線で断線した。
 図3は、実施例α1~α19と、成分範囲は適切であるものの、表層の初析セメンタイトを抑制する重要な指標である仕上げ温度あるいはパテンティングのための冷却開始時の温度が低かった比較例α1、α5、α6、α7、α9、α17、α18とについて、線材のC量と、線材の表層領域の初析セメンタイト面積率との関係を示す
 図4は、実施例α1~α19と、成分範囲は適切であるものの、900→650℃の冷速Yが(式1)を満たさなかった比較例α4、α11とについて、線材のC量と、線材中心領域の初析セメンタイト面積率との関係を示す。
 図5は、線材圧延の際にステルモアで冷却した実施例α4、α8、α12、α17、α18、α19と比較例α4、α11、α15とについて、900℃から650℃までの冷速YとC量が、線材中心領域の初析セメンタイト析出量に及ぼす影響を示す。この図から、冷速Yが(式1)を満たした場合に、線材中心領域の初析セメンタイトを0.5%以下に抑制出来たことが確認できる。
 比較例α8では、溶融ソルト温度が低かったため、上部ベイナイトの生成により延性が低下し、一次伸線で断線が発生した。
 比較例α9では、仕上げ圧延温度が低すぎたため、仕上げ圧延時に線材表層に初析セメンタイトが生成した。このため、圧延線材の表層部の初析θ面積率が0.5%を超え、最終伸線後の鋼線にデラミネーションが発生した。
 比較例α10では、仕上げ圧延温度が高すぎたため、線材の延性が低下し、一次伸線で断線が発生した。
 比較例α12ではC量が高かったため、線材の強度が高く、延性が低すぎたため、一次伸線で断線が発生した。
 比較例α13及びはC量が低かったため、所定のTSの鋼線が得られなかった。
 比較例α14ではMn量が高かったため、ベイナイトやミクロマルテンサイトが生成し、所定のパーライト分率を満足できなかった。このため、一次伸線で断線が発生した。
 比較例α16ではSi量が高かったため、ベイナイトやミクロマルテンサイトが生成し、所定のパーライト分率を満足できなかった。このため、一次伸線で断線が発生した。
 比較例α17では巻き取り温度が一般的な条件のため表層初析θが多く、最終伸線後の鋼線にデラミネーションが発生した。
 比較例α18では巻き取り温度が低かったため、表層初析θが多く、最終伸線後の鋼線にデラミネーションが発生した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
(第2実施例)
 表9~12に、本発明の実施例β1~β16で用いたa-1鋼、b-1鋼、c鋼、d鋼、e鋼、f-2鋼、g-1鋼、h鋼、i鋼、j-1鋼、k鋼、l鋼、m鋼、n鋼,o鋼、p鋼の化学成分と、比較例β1~β7で用いたj-2鋼、b-2鋼、f-2鋼、a-2鋼、g-2鋼、q鋼、r鋼の化学成分とを示す。尚、表9~16において、適正範囲に含まれない数値や不利な結果などに下線を引いた。
 表9~12に示す化学成分を含有する鋼のビレット(鋼片)を加熱後、熱間圧延により直径5.0~16mmの線材とし、所定の温度にて仕上げ圧延、巻き取り後、パテンティング処理、あるいは再加熱パテンティングを施した。
 圧延線材をリング状に巻き取った後、ステルモア又は直接溶融ソルト浸漬(DLP)によるパテンティング処理を施した。900℃から650℃までの冷速Yは、ステルモアの場合はステルモアコンベア上で、リング重なり部の温度を非接触タイプの温度計にて0.5mおきに測定することによって、900℃から650℃までの冷却される所要時間t[t]を測定し、(900-650)/t[℃/s]として求めた。
 圧延線材のパーライト組織の面積率と初析セメンタイト面積率の測定のため、直径1.0~1.5mのリング状の線材1リングを8等分し、TSが最も高い部位と低い部位を同定した。連続するリングのこれらの部位に相当する部分から10mm長さのサンプルを切り出し、長さ方向に垂直な断面(C断面)を観察できるように樹脂埋め込みした後、アルミナ研磨し、飽和ピクラールにて腐食し、SEM観察を実施した。
 パーライト組織の面積率は、上記2部位(TSが最も高い部位と低い部位)の表層から1/4D深さ部分(D=直径)の、200×200μmの正方形領域を円周方向に90度毎に4箇所、3000倍で測定し、セメンタイトが粒状に分散した擬似パーライト部、板状セメンタイトが周囲より3倍以上の粗いラメラ間隔で分散しているベイナイト部、オーステナイトに沿って析出した粒界フェライト部、初析セメンタイト部を除いた面積率を、パーライト組織の面積率として、画像解析によって測定し、4箇所の平均値として求めた。
 初析セメンタイトの面積率のSEM撮影箇所について説明する。
 線材中心領域は、TSが最も低い部位の断面における中心点から半径100μmの領域を選定した。
 線材表層領域は、TSが最も高い部位の断面における周縁部付近の50μm×50μmの正方形領域を円周方向に90度毎に4箇所選定した。
 これらの選定箇所を5000倍で測定し、厚みが100nm以上である初析セメンタイトの面積率を画像解析によって測定した。
 尚、表層領域については、4箇所の測定結果の最大値を用いた。
 線材の伸線特性は、以下のいずれかの方法にて目的とする高強度鋼線を得て、引張試験と捻回試験を行うことで評価した。
(1)圧延線材のスケールを酸洗にて除去した後、ボンデ処理によりリン酸亜鉛皮膜を付与した長さ20mの線材を用意し、1パス当たりの減面率16~20%の単頭式伸線を行い、直径0.8~7mmの高強度鋼線を得た。この鋼線に溶融亜鉛めっき、溶融亜鉛合金めっき、ブルーイング、ヒートストレッチのいずれかを施した。
(2)圧延線材のスケールを酸洗にて除去した後、溶融亜鉛めっき又は溶融亜鉛合金めっきを施した長さ20mの線材を用意し、1パス当たりの減面率16~20%の単頭式伸線を行い、直径0.8~7mmの高強度鋼線を得た。
(3)圧延線材のスケールを酸洗にて除去した後、ボンデ処理によりリン酸亜鉛皮膜を付与した長さ20mの線材を用意し、1パス当たりの減面率16~20%の単頭式伸線を行い、溶融亜鉛めっき又は溶融亜鉛合金めっきを施した後、さらに伸線を施し、直径0.8~7mmの高強度鋼線を得た。
 伸線した鋼線の初析セメンタイト面積率の測定のため、上記鋼線から10mm長さのサンプルを切り出し、長さ方向に垂直な断面(C断面)を観察できるように樹脂埋め込みした後、アルミナ研磨し、飽和ピクラールにて腐食し、SEM観察を実施した。
 SEMの撮影箇所は、鋼線の断面における周縁部付近の20μm×50μmの長方形領域を選定した。
 この選定箇所を10000倍で測定し、厚みが100nm以上である初析セメンタイトの面積率を画像解析によって測定した。
 表13~16に、実施例β1~β16及び比較例β1~β7における線材及び鋼線の製造条件及び測定結果を示す。
 表9~表16に示される実施例β1~β16からわかるように、線材の含有元素の量を適切に制御した上で、圧延線材の表層及び中心領域の初析セメンタイト分率を抑制した場合には、伸線後の鋼線におけるデラミネーション及び伸線断線の発生が抑制できた。
 比較例β1及び比較例β5では、パテンティングのための冷却開始時の線材温度が低かったため、圧延線材の表層初析セメンタイト生成を抑制できなかった。
 ここで、実施例β1~β16と、冷却開始時の線材温度を900℃未満に設定した比較例β1、β5、β7の結果を反映させたデータとして、図6に圧延線材の冷却開始時の温度と表層セメンタイト面積率との関係を示す。この図から、冷却開始時の線材温度を900℃以上とすることで、線材表層の初析セメンタイトを0.5%以下に抑制できることが確認できる。
 比較例β2およびβ7では、仕上げ圧延温度が低すぎたため、仕上げ圧延時に線材表層に初析セメンタイトが生成した。
 比較例β3及び比較例β4では、圧延線材のパテンティング処理をステルモアで実施し、900℃から650℃までの冷速Yが
 Y≧exp((C%-0.66)/0.12) (式1)
を満たさないため、C量に応じた所定の冷却速度が得られず、線材中心領域での初析セメンタイトが多量に生成し、伸線中に断線した。
 比較例β6では、Bが規定量よりも多いq鋼を用いたため、表層におけるセメンタイトが多量に生成した。
 図7は、実施例β1~β16と、成分範囲は適切であるものの、表層の初析セメンタイトを抑制する重要な指標である仕上げ温度あるいはパテンティングのための冷却開始時の温度が低かったも比較例β1、β2、β5とについて、線材のC量と、線材の表層領域の初析セメンタイト面積率との関係を示す。
 図8は、実施例β1~β16と、成分範囲は適切であるものの、900→650℃の冷速Yが(式1)を満たさなかった比較例β3、β4とについて、線材のC量と、線材中心領域の初析セメンタイト面積率との関係を示す。
 図9は、実施例β6、β9と、比較例β3、β4とについて、900℃から650℃までの冷速Y及びC量が、線材中心領域の初析セメンタイト析出量に及ぼす影響を示す。この図から、冷速Yが(式1)を満たした場合に、線材中心領域の初析セメンタイトを0.5%以下に抑制出来たことが確認できる。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 本発明によれば、スチールコード、ソーイングワイヤ、PC鋼線、亜鉛めっき鋼撚線、ばね用鋼線、吊り橋用ケーブルなどの用途に好適な伸線性に優れた高強度線材を高い生産性の下に歩留まりよく廉価に提供することができ、産業上の利用可能性が高い。

Claims (14)

  1.  0.95~1.30質量%のCと;
     0.1~1.5質量%のSiと;
     0.1~1.0質量%のMnと;
     0~0.1質量%のAlと;
     0~0.1質量%のTiと;
     0~0.02質量%のPと;
     0~0.02質量%のSと;
     10~50ppmのNと;
     10~40ppmのOと;
     0~0.5質量%のCrと;
     0~0.5質量%のNiと;
     0~0.5質量%のCoと;
     0~0.5質量%のVと;
     0~0.5質量%のCuと;
     0~0.1質量%のNbと;
     0~0.2質量%のMoと;
     0~0.2質量%のWと;
     0~30ppmのBと;
     0~50ppmのREMと;
     0~50ppmのCaと;
     0~50ppmのMgと;
     0~100ppmのZrと;
     Fe及び不可避的不純物を含有する残部と;
    を含む組成を有する線材であって、
     この線材の長手方向に対して垂直な断面の97%以上の面積が、パーライト組織により占有され、
     前記断面の中心領域の0.5%以下の面積と、前記断面の第1の表層領域の0.5%以下の面積とが、初析セメンタイト組織により占有されている
    ことを特徴とする線材。
  2.  前記線材の前記断面が、
     前記パーライト組織と;
     前記初析セメンタイトと;
     ベイナイト組織と;
     擬似パーライト組織と;
     フェライト組織と;
     粒界フェライト組織と;
     マルテンサイト組織と;
    により占有されていることを特徴とする請求項1に記載の線材。
  3.  0.95~1.30質量%のCと;
     0.1~1.5質量%のSiと;
     0.1~1.0質量%のMnと;
     0~0.1質量%のAlと;
     0~0.1質量%のTiと;
     0~0.02質量%のPと;
     0~0.02質量%のSと;
     10~50ppmのNと;
     10~40ppmのOと;
     0~0.5質量%のCrと;
     0~0.5質量%のNiと;
     0~0.5質量%のCoと;
     0~0.5質量%のVと;
     0~0.5質量%のCuと;
     0~0.1質量%のNbと;
     0~0.2質量%のMoと;
     0~0.2質量%のWと;
     0~30ppmのBと;
     0~50ppmのREMと;
     0~50ppmのCaと;
     0~50ppmのMgと;
     0~100ppmのZrと;
     Fe及び不可避的不純物を含有する残部と;
    を含む組成を有する鋼片に熱間圧延を行って圧延線材を得る工程と;
     前記圧延線材を巻き取る工程と;
     900℃以上の前記圧延線材を500~600℃の溶融ソルト層に浸漬することによりパテンティング処理を行う工程と;
    を備えることを特徴とする、請求項1又は2に記載の線材の製造方法。
  4.  0.95~1.30質量%のCと;
     0.1~1.5質量%のSiと;
     0.1~1.0質量%のMnと;
     0~0.1質量%のAlと;
     0~0.1質量%のTiと;
     0~0.02質量%のPと;
     0~0.02質量%のSと;
     10~50ppmのNと;
     10~40ppmのOと;
     0~0.5質量%のCrと;
     0~0.5質量%のNiと;
     0~0.5質量%のCoと;
     0~0.5質量%のVと;
     0~0.5質量%のCuと;
     0~0.1質量%のNbと;
     0~0.2質量%のMoと;
     0~0.2質量%のWと;
     0~30ppmのBと;
     0~50ppmのREMと;
     0~50ppmのCaと;
     0~50ppmのMgと;
     0~100ppmのZrと;
     Fe及び不可避的不純物を含有する残部と;
    を含む組成を有する鋼片に熱間圧延を行って圧延線材を得る工程と;
     前記圧延線材を巻き取る工程と;
     900℃以上の前記圧延線材に対し冷却を開始し、900℃から650℃まで冷却される間の冷速Yが、
     Y≧exp((C%-0.66)/0.12)   (式1)
    を満たすように制御して急冷し、650℃~500℃の温度にてパーライト変態を終了させることによりパテンティング処理を行う工程と;
    を備えることを特徴とする、請求項1又は2に記載の線材の製造方法。
  5.  0.95~1.30質量%のCと;
     0.1~1.5質量%のSiと;
     0.1~1.0質量%のMnと;
     0~0.1質量%のAlと;
     0~0.1質量%のTiと;
     0~0.02質量%のPと;
     0~0.02質量%のSと;
     10~50ppmのNと;
     10~40ppmのOと;
     0~0.5質量%のCrと;
     0~0.5質量%のNiと;
     0~0.5質量%のCoと;
     0~0.5質量%のVと;
     0~0.5質量%のCuと;
     0~0.1質量%のNbと;
     0~0.2質量%のMoと;
     0~0.2質量%のWと;
     0~30ppmのBと;
     0~50ppmのREMと;
     0~50ppmのCaと;
     0~50ppmのMgと;
     0~100ppmのZrと;
     Fe及び不可避的不純物を含有する残部と;
    を含む組成を有する直径3~16mmの圧延線材を準備し、950℃以上1050℃以下に再加熱する工程と;
     900℃以上の前記圧延線材に対して冷却を開始し、500~600℃の鉛浴槽又は流動床にてパテンティング処理を行う工程と;
    を備えることを特徴とする、請求項1又は2に記載の線材の製造方法。
  6.  0.95~1.30質量%のCと;
     0.1~1.5質量%のSiと;
     0.1~1.0質量%のMnと;
     0~0.1質量%のAlと;
     0~0.1質量%のTiと;
     0~0.02質量%のPと;
     0~0.02質量%のSと;
     10~50ppmのNと;
     10~40ppmのOと;
     0~0.5質量%のCrと;
     0~0.5質量%のNiと;
     0~0.5質量%のCoと;
     0~0.5質量%のVと;
     0~0.5質量%のCuと;
     0~0.1質量%のNbと;
     0~0.2質量%のMoと;
     0~0.2質量%のWと;
     0~30ppmのBと;
     0~50ppmのREMと;
     0~50ppmのCaと;
     0~50ppmのMgと;
     0~100ppmのZrと;
     Fe及び不可避的不純物を含有する残部と;
    を含む組成を有し、長手方向に対して垂直な断面の97%以上の面積が、パーライト組織により占有され、前記断面の中心領域の0.5%以下の面積と、前記断面の第1の表層領域の0.5%以下の面積とが、初析セメンタイト組織により占有されている線材に、伸線及び再加熱パテンティング処理を少なくとも1回施すことにより得られる鋼線であって、
     前記鋼線は、0.1~0.4mmの直径と、4200MPa以上の引張り強さとを有し、
     前記鋼線の長手方向に対して垂直な断面の第2の表層領域の0.5%以下の面積が、初析セメンタイトにより占有されている
    ことを特徴とする鋼線。
  7.  0.95~1.30質量%のCと;
     0.1~1.5質量%のSiと;
     0.1~1.0質量%のMnと;
     0~0.1質量%のAlと;
     0~0.1質量%のTiと;
     0~0.02質量%のPと;
     0~0.02質量%のSと;
     10~50ppmのNと;
     10~40ppmのOと;
     0~0.5質量%のCrと;
     0~0.5質量%のNiと;
     0~0.5質量%のCoと;
     0~0.5質量%のVと;
     0~0.5質量%のCuと;
     0~0.1質量%のNbと;
     0~0.2質量%のMoと;
     0~0.2質量%のWと;
     0~30ppmのBと;
     0~50ppmのREMと;
     0~50ppmのCaと;
     0~50ppmのMgと;
     0~100ppmのZrと;
     Fe及び不可避的不純物を含有する残部と;
    を含む組成を有し、この線材の長手方向に対して垂直な断面の97%以上の面積が、パーライト組織により占有され、前記断面の中心領域の0.5%以下の面積と、前記断面の第1の表層領域の0.5%以下の面積とが、初析セメンタイト組織により占有されている線材を伸線することにより得られる鋼線であって、
     前記鋼線は、0.8~8mmの直径と、1800MPa以上の引張り強さとを有し、
     前記鋼線の長手方向に対して垂直な断面の第3の表層領域の0.5%以下の面積が、初析セメンタイトにより占有されている
    ことを特徴とする鋼線。
  8.  前記鋼線が、前記線材を
     (a)前記伸線後に、ブルーイング、ヒートストレッチ、溶融亜鉛めっき、または溶融亜鉛合金めっきを行うこと、
     (b)溶融亜鉛めっき、または溶融亜鉛合金めっき後に、前記伸線を行うこと、又は、
     (c)前記伸線後に、溶融亜鉛めっき、または溶融亜鉛合金めっきを行い、さらに伸線を行うこと
    により得られる
    ことを特徴とする請求項7に記載の鋼線。
  9.  0.95~1.30質量%のCと;
     0.1~1.5質量%のSiと;
     0.1~1.0質量%のMnと;
     0~0.1質量%のAlと;
     0~0.1質量%のTiと;
     0~0.02質量%のPと;
     0~0.02質量%のSと;
     10~50ppmのNと;
     10~40ppmのOと;
     0~0.5質量%のCrと;
     0~0.5質量%のNiと;
     0~0.5質量%のCoと;
     0~0.5質量%のVと;
     0~0.5質量%のCuと;
     0~0.1質量%のNbと;
     0~0.2質量%のMoと;
     0~0.2質量%のWと;
     0~30ppmのBと;
     0~50ppmのREMと;
     0~50ppmのCaと;
     0~50ppmのMgと;
     0~100ppmのZrと;
     Fe及び不可避的不純物を含有する残部と;
    を含む組成を有する鋼片に熱間圧延を行って圧延線材を製造し、前記圧延線材を巻き取り、900℃以上の前記圧延線材を500~600℃の溶融ソルト層に浸漬することによりパテンティング処理を行うことにより直径3~7mmの線材を製造する工程と;
     前記線材を伸線する工程と;
     900℃以上の、伸線された前記線材に500~600℃の鉛浴槽又は流動床に導入することで冷却を開始することにより第2のパテンティング処理を行う工程と;
     前記第2のパテンティング処理を行った前記線材に冷間伸線を行う工程と;
    を備えることを特徴とする、請求項6に記載の鋼線の製造方法。
  10.  0.95~1.30質量%のCと;
     0.1~1.5質量%のSiと;
     0.1~1.0質量%のMnと;
     0~0.1質量%のAlと;
     0~0.1質量%のTiと;
     0~0.02質量%のPと;
     0~0.02質量%のSと;
     10~50ppmのNと;
     10~40ppmのOと;
     0~0.5質量%のCrと;
     0~0.5質量%のNiと;
     0~0.5質量%のCoと;
     0~0.5質量%のVと;
     0~0.5質量%のCuと;
     0~0.1質量%のNbと;
     0~0.2質量%のMoと;
     0~0.2質量%のWと;
     0~30ppmのBと;
     0~50ppmのREMと;
     0~50ppmのCaと;
     0~50ppmのMgと;
     0~100ppmのZrと;
     Fe及び不可避的不純物を含有する残部と;
    を含む組成を有する鋼片に熱間圧延を行って圧延線材を製造し、前記圧延線材を巻き取り、900℃以上の前記圧延線材に対し冷却を開始し、900℃から650℃まで冷却される間の冷速Yが、
     Y≧exp((C%-0.66)/0.12)   (式1)
    を満たすように制御して急冷し、650℃~500℃の温度にてパーライト変態を終了させることによりパテンティング処理を行うことによって直径3~7mmの線材を製造する工程と;
     前記線材を伸線する工程と;
     900℃以上の、伸線された前記線材に500~600℃の鉛浴槽又は流動床に導入することで冷却を開始することにより第2のパテンティング処理を行う工程と;
     前記第2のパテンティング処理を行った前記線材に冷間伸線を行う工程と;
    を備えることを特徴とする、請求項6に記載の鋼線の製造方法。
  11.  0.95~1.30質量%のCと;
     0.1~1.5質量%のSiと;
     0.1~1.0質量%のMnと;
     0~0.1質量%のAlと;
     0~0.1質量%のTiと;
     0~0.02質量%のPと;
     0~0.02質量%のSと;
     10~50ppmのNと;
     10~40ppmのOと;
     0~0.5質量%のCrと;
     0~0.5質量%のNiと;
     0~0.5質量%のCoと;
     0~0.5質量%のVと;
     0~0.5質量%のCuと;
     0~0.1質量%のNbと;
     0~0.2質量%のMoと;
     0~0.2質量%のWと;
     0~30ppmのBと;
     0~50ppmのREMと;
     0~50ppmのCaと;
     0~50ppmのMgと;
     0~100ppmのZrと;
     Fe及び不可避的不純物を含有する残部と;
    を含む組成を有する直径3~7mmの線材を950℃以上1050℃以下に再加熱し、900℃以上の前記再加熱線材に対して冷却を開始し、500~600℃の鉛浴槽又は流動床にてパテンティング処理を行うことによって直径3~7mmの線材を製造する工程と;
     前記線材を伸線する工程と;
     900℃以上の、伸線された前記線材に500~600℃の鉛浴槽又は流動床に導入することで冷却を開始することにより第2のパテンティング処理を行う工程と;
     前記第2のパテンティング処理を行った前記線材に冷間伸線を行う工程と;
    を備えることを特徴とする、請求項6に記載の鋼線の製造方法。
  12.  0.95~1.30質量%のCと;
     0.1~1.5質量%のSiと;
     0.1~1.0質量%のMnと;
     0~0.1質量%のAlと;
     0~0.1質量%のTiと;
     0~0.02質量%のPと;
     0~0.02質量%のSと;
     10~50ppmのNと;
     10~40ppmのOと;
     0~0.5質量%のCrと;
     0~0.5質量%のNiと;
     0~0.5質量%のCoと;
     0~0.5質量%のVと;
     0~0.5質量%のCuと;
     0~0.1質量%のNbと;
     0~0.2質量%のMoと;
     0~0.2質量%のWと;
     0~30ppmのBと;
     0~50ppmのREMと;
     0~50ppmのCaと;
     0~50ppmのMgと;
     0~100ppmのZrと;
     Fe及び不可避的不純物を含有する残部と;
    を含む組成を有する鋼片に熱間圧延を行って圧延線材を製造し、前記圧延線材を巻き取り、900℃以上の前記圧延線材を500~600℃の溶融ソルト層に浸漬することによりパテンティング処理を行うことにより直径5~16mmの線材を製造する工程と;
     前記線材を伸線する工程と;
    を備えることを特徴とする、請求項7に記載の鋼線の製造方法。
  13.  0.95~1.30質量%のCと;
     0.1~1.5質量%のSiと;
     0.1~1.0質量%のMnと;
     0~0.1質量%のAlと;
     0~0.1質量%のTiと;
     0~0.02質量%のPと;
     0~0.02質量%のSと;
     10~50ppmのNと;
     10~40ppmのOと;
     0~0.5質量%のCrと;
     0~0.5質量%のNiと;
     0~0.5質量%のCoと;
     0~0.5質量%のVと;
     0~0.5質量%のCuと;
     0~0.1質量%のNbと;
     0~0.2質量%のMoと;
     0~0.2質量%のWと;
     0~30ppmのBと;
     0~50ppmのREMと;
     0~50ppmのCaと;
     0~50ppmのMgと;
     0~100ppmのZrと;
     Fe及び不可避的不純物を含有する残部と;
    を含む組成を有する鋼片に熱間圧延を行って圧延線材を製造し、前記圧延線材を巻き取り、900℃以上の前記圧延線材に対し冷却を開始し、900℃から650℃まで冷却される間の冷速Yが、
     Y≧exp((C%-0.66)/0.12)   (式1)
    を満たすように制御して急冷し、650℃~500℃の温度にてパーライト変態を終了させることによりパテンティング処理を行うことによって直径5~16mmの線材を製造する工程と;
     前記線材を伸線する工程と;
    を備えることを特徴とする、請求項7に記載の鋼線の製造方法。
  14.  0.95~1.30質量%のCと;
     0.1~1.5質量%のSiと;
     0.1~1.0質量%のMnと;
     0~0.1質量%のAlと;
     0~0.1質量%のTiと;
     0~0.02質量%のPと;
     0~0.02質量%のSと;
     10~50ppmのNと;
     10~40ppmのOと;
     0~0.5質量%のCrと;
     0~0.5質量%のNiと;
     0~0.5質量%のCoと;
     0~0.5質量%のVと;
     0~0.5質量%のCuと;
     0~0.1質量%のNbと;
     0~0.2質量%のMoと;
     0~0.2質量%のWと;
     0~30ppmのBと;
     0~50ppmのREMと;
     0~50ppmのCaと;
     0~50ppmのMgと;
     0~100ppmのZrと;
     Fe及び不可避的不純物を含有する残部と;
    を含む組成を有する直径5~16mmの圧延線材を準備し、950℃以上1050℃以下に再加熱し、900℃以上の前記圧延線材に対して冷却を開始し、500~600℃の鉛浴槽又は流動床にてパテンティング処理を行うことによって直径5~16mmの線材を製造する工程と;
     前記線材を伸線する工程と;
    を備えることを特徴とする、請求項7に記載の鋼線の製造方法。
PCT/JP2010/068363 2009-04-21 2010-10-19 線材、鋼線及びそれらの製造方法 WO2011092905A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020117017872A KR101318009B1 (ko) 2010-02-01 2010-10-19 선재, 강선 및 그들의 제조 방법
CN201080005987.6A CN102301024B (zh) 2010-02-01 2010-10-19 线材、钢丝以及它们的制造方法
MX2011008034A MX2011008034A (es) 2010-02-01 2010-10-19 Varilla de alambre, alambre de acero, y metodo de fabricacion de los mismos.
EP10838391.0A EP2532764B1 (en) 2010-02-01 2010-10-19 Wire material, steel wire, and processes for production of those products
DK10838391.0T DK2532764T3 (da) 2009-04-21 2010-10-19 Trådmateriale, stålwire, og fremgangsmåder til fremstilling af disse produkter
BRPI1007872A BRPI1007872A2 (pt) 2010-02-01 2010-10-19 fio-máquina, arame de aço, e método de fabricação dos mesmos
US13/142,473 US8470099B2 (en) 2009-04-21 2010-10-19 Wire rod, steel wire, and manufacturing method thereof
US13/898,810 US9212405B2 (en) 2009-04-21 2013-05-21 Wire rod, steel wire, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-020185 2010-02-01
JP2010020185A JP4970562B2 (ja) 2009-04-21 2010-02-01 延性に優れた高強度鋼線用線材及び鋼線の製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/142,473 A-371-Of-International US8470099B2 (en) 2009-04-21 2010-10-19 Wire rod, steel wire, and manufacturing method thereof
US13/898,810 Division US9212405B2 (en) 2009-04-21 2013-05-21 Wire rod, steel wire, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2011092905A1 true WO2011092905A1 (ja) 2011-08-04

Family

ID=44320386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068363 WO2011092905A1 (ja) 2009-04-21 2010-10-19 線材、鋼線及びそれらの製造方法

Country Status (5)

Country Link
EP (1) EP2532764B1 (ja)
KR (1) KR101318009B1 (ja)
CN (1) CN102301024B (ja)
MX (1) MX2011008034A (ja)
WO (1) WO2011092905A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018510964A (ja) * 2015-02-17 2018-04-19 サンドヴィック マテリアルズ テクノロジー ドイチュラント ゲーエムベーハー ステンレス鋼ストランドの製造方法及びステンレス鋼ストランド
CN112223569A (zh) * 2020-09-28 2021-01-15 王佩 一种耐磨线切割复合线材及其制备方法
WO2023162615A1 (ja) * 2022-02-22 2023-08-31 住友電気工業株式会社 鋼線

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103966417B (zh) * 2013-01-31 2016-04-20 张家港市骏马钢帘线有限公司 一种提高超细高碳钢丝表面质量和拉拔性能的工艺方法
JP6079894B2 (ja) * 2013-10-08 2017-02-15 新日鐵住金株式会社 線材、過共析ベイナイト鋼線、及びそれらの製造方法
CN103627979A (zh) * 2013-11-12 2014-03-12 铜陵市肆得科技有限责任公司 一种大型泵轴承钢材料及其制备方法
WO2015163407A1 (ja) * 2014-04-24 2015-10-29 新日鐵住金株式会社 高強度スチールコード用線材
US20180087125A1 (en) * 2015-03-30 2018-03-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-carbon steel wire material with excellent wire drawability, and steel wire
CN104878318B (zh) * 2015-05-07 2017-05-03 芜湖品度电子科技有限公司 二维码编织机用高韧性抗拉伸弹簧材料组合物和弹簧的制备方法
EP3346020B1 (en) 2015-09-04 2020-07-29 Nippon Steel Corporation Spring steel wire and spring
BR112018007711A2 (ja) * 2015-10-23 2018-10-23 Nippon Steel & Sumitomo Metal Corporation Steel wire material for Wire drawing processing
CN105568134A (zh) * 2016-01-05 2016-05-11 江阴兴澄特种钢铁有限公司 一种微合金化轿车碳素轮毂轴承用钢及其制造方法
KR101767838B1 (ko) * 2016-06-16 2017-08-14 주식회사 포스코 내수소취성이 우수한 스프링용 선재, 강선 및 그들의 제조방법
CN106151333A (zh) * 2016-07-07 2016-11-23 无锡戴尔普机电设备有限公司 一种新型风量调节阀复位弹簧材料
KR101917461B1 (ko) * 2016-12-22 2018-11-09 주식회사 포스코 신선가공성이 우수한 고강도 선재, 열처리 선재 및 이들의 제조방법
JP6528920B2 (ja) * 2017-05-18 2019-06-12 日本製鉄株式会社 線材、及び鋼線の製造方法
CN109112260B (zh) * 2017-06-23 2023-04-11 江苏翔鹰五金弹簧有限公司 一种蓝化直丝钢线的热处理方法
EP3647446A4 (en) * 2017-06-30 2021-02-17 Nippon Steel Corporation HIGH STRENGTH STEEL WIRE
KR102031440B1 (ko) * 2017-12-20 2019-10-11 주식회사 포스코 신선가공성이 우수한 고강도 선재 및 그 제조방법
KR102030157B1 (ko) * 2017-12-20 2019-10-08 주식회사 포스코 피로 특성이 우수한 스프링용 강선, 강선용 고탄소 선재 및 이들의 제조방법
CN108950409A (zh) * 2018-06-26 2018-12-07 宁波鸿丰泰高新材料有限公司 一种高性能金刚石母线及其制备方法
KR102098534B1 (ko) * 2019-07-23 2020-04-07 주식회사 포스코 신선가공성이 우수한 고강도 선재 및 그 제조방법
CN110588096A (zh) * 2019-09-25 2019-12-20 哈尔滨工程大学 一种连续金属Mo丝增强Ti/Al3Ti层状复合材料及制备方法
KR102326268B1 (ko) * 2019-12-20 2021-11-15 주식회사 포스코 고강도 도금 강선 및 그 제조방법
KR102312331B1 (ko) * 2019-12-20 2021-10-14 주식회사 포스코 고강도 도금 강선 및 이들의 제조방법
CN112176258B (zh) * 2020-09-30 2022-06-21 江苏省沙钢钢铁研究院有限公司 2500MPa级钢绞线用盘条及其制造方法
CN117858973A (zh) * 2021-08-11 2024-04-09 浦项股份有限公司 高强度高韧性钢板及其制造方法
CN113583541A (zh) * 2021-08-17 2021-11-02 常州市方正型钢有限公司 一种防锈耐热异型钢及其加工工艺
CN114932338A (zh) * 2022-05-07 2022-08-23 本钢板材股份有限公司 一种高钛气体保护焊丝用盘条及其生产工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295448A (ja) * 1992-04-21 1993-11-09 Nippon Steel Corp 過共析鋼線材の製造方法
JPH08283867A (ja) 1995-04-15 1996-10-29 Sumitomo Metal Ind Ltd 伸線用過共析鋼線材の製造方法
JP2609387B2 (ja) 1990-12-28 1997-05-14 株式会社 神戸製鋼所 高強度高靭性極細鋼線用線材、高強度高靭性極細鋼線、および該極細鋼線を用いた撚り製品、並びに該極細鋼線の製造方法
JP2735647B2 (ja) * 1988-12-28 1998-04-02 新日本製鐵株式会社 高強度高延性鋼線材および高強度高延性極細鋼線の製造方法
JP2939770B2 (ja) * 1991-02-25 1999-08-25 新日本製鐵株式会社 高強度ビードワイヤの製造方法
JP2003193129A (ja) 2001-12-27 2003-07-09 Jfe Steel Kk 伸線加工性に優れる高強度鋼線材の製造方法
JP2008208450A (ja) * 2007-01-30 2008-09-11 Nippon Steel Corp 強度延性バランスに優れた高強度極細鋼線の製造方法
JP2010020185A (ja) 2008-07-11 2010-01-28 Ricoh Co Ltd 現像剤担持体、現像装置及び画像形成装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1555598A1 (en) * 2004-01-14 2005-07-20 Deutsche Thomson-Brandt Gmbh Method for generating an on-screen menu
JP2007327084A (ja) * 2006-06-06 2007-12-20 Kobe Steel Ltd 伸線加工性に優れた線材およびその製造方法
CN102292460B (zh) * 2010-01-25 2014-03-26 新日铁住金株式会社 线材、钢丝及线材的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2735647B2 (ja) * 1988-12-28 1998-04-02 新日本製鐵株式会社 高強度高延性鋼線材および高強度高延性極細鋼線の製造方法
JP2609387B2 (ja) 1990-12-28 1997-05-14 株式会社 神戸製鋼所 高強度高靭性極細鋼線用線材、高強度高靭性極細鋼線、および該極細鋼線を用いた撚り製品、並びに該極細鋼線の製造方法
JP2939770B2 (ja) * 1991-02-25 1999-08-25 新日本製鐵株式会社 高強度ビードワイヤの製造方法
JPH05295448A (ja) * 1992-04-21 1993-11-09 Nippon Steel Corp 過共析鋼線材の製造方法
JPH08283867A (ja) 1995-04-15 1996-10-29 Sumitomo Metal Ind Ltd 伸線用過共析鋼線材の製造方法
JP2003193129A (ja) 2001-12-27 2003-07-09 Jfe Steel Kk 伸線加工性に優れる高強度鋼線材の製造方法
JP2008208450A (ja) * 2007-01-30 2008-09-11 Nippon Steel Corp 強度延性バランスに優れた高強度極細鋼線の製造方法
JP2010020185A (ja) 2008-07-11 2010-01-28 Ricoh Co Ltd 現像剤担持体、現像装置及び画像形成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2532764A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018510964A (ja) * 2015-02-17 2018-04-19 サンドヴィック マテリアルズ テクノロジー ドイチュラント ゲーエムベーハー ステンレス鋼ストランドの製造方法及びステンレス鋼ストランド
JP7080639B2 (ja) 2015-02-17 2022-06-06 サンドヴィック マテリアルズ テクノロジー ドイチュラント ゲーエムベーハー ステンレス鋼ストランドの製造方法及びステンレス鋼ストランド
CN112223569A (zh) * 2020-09-28 2021-01-15 王佩 一种耐磨线切割复合线材及其制备方法
WO2023162615A1 (ja) * 2022-02-22 2023-08-31 住友電気工業株式会社 鋼線

Also Published As

Publication number Publication date
EP2532764A1 (en) 2012-12-12
KR20110101231A (ko) 2011-09-15
CN102301024A (zh) 2011-12-28
KR101318009B1 (ko) 2013-10-14
CN102301024B (zh) 2014-03-05
EP2532764B1 (en) 2019-04-24
EP2532764A4 (en) 2016-01-20
MX2011008034A (es) 2011-10-05

Similar Documents

Publication Publication Date Title
WO2011092905A1 (ja) 線材、鋼線及びそれらの製造方法
JP4842408B2 (ja) 線材、鋼線、及び線材の製造方法
JP4970562B2 (ja) 延性に優れた高強度鋼線用線材及び鋼線の製造方法
JP5114684B2 (ja) 延性に優れた線材及び高強度鋼線並びにそれらの製造方法
JP5939359B2 (ja) 高炭素鋼線材及びその製造方法
JP5224009B2 (ja) 鋼線材及びその製造方法
JP5162875B2 (ja) 伸線特性に優れた高強度線材およびその製造方法
JP5169839B2 (ja) 捻回特性に優れるpws用めっき鋼線及びその製造方法
JP5098444B2 (ja) 高延性の直接パテンティング線材の製造方法
US10329646B2 (en) Steel wire for drawing
JP6180351B2 (ja) 生引き性に優れた高強度鋼線用線材および高強度鋼線
JP2007327084A (ja) 伸線加工性に優れた線材およびその製造方法
US8470099B2 (en) Wire rod, steel wire, and manufacturing method thereof
JPWO2007139234A1 (ja) 高延性の高炭素鋼線材
JP6229792B2 (ja) 高強度スチールコード用線材
JP6264461B2 (ja) 伸線加工性に優れた高炭素鋼線材
KR20110082042A (ko) 가공성이 우수한 고탄소강 선재
WO2016158901A1 (ja) 伸線性に優れた高炭素鋼線材、および鋼線
JP6614005B2 (ja) 高強度鋼線用熱間圧延線材およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005987.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13142473

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010838391

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117017872

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/008034

Country of ref document: MX

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1007872

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1007872

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110729