WO2011092770A1 - 荷電粒子線装置 - Google Patents

荷電粒子線装置 Download PDF

Info

Publication number
WO2011092770A1
WO2011092770A1 PCT/JP2010/006530 JP2010006530W WO2011092770A1 WO 2011092770 A1 WO2011092770 A1 WO 2011092770A1 JP 2010006530 W JP2010006530 W JP 2010006530W WO 2011092770 A1 WO2011092770 A1 WO 2011092770A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged particle
particle beam
scanning
inspection
sample
Prior art date
Application number
PCT/JP2010/006530
Other languages
English (en)
French (fr)
Inventor
祐介 大南
夏規 津野
真理 野副
裕史 宮井
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Publication of WO2011092770A1 publication Critical patent/WO2011092770A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/303Contactless testing of integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data
    • H01J2237/221Image processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24564Measurements of electric or magnetic variables, e.g. voltage, current, frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means

Definitions

  • the present invention relates to a technique for controlling an inspection method of a charged particle beam apparatus.
  • a semiconductor device usually has a structure in which interphase insulating layers and wiring layers including plugs and vias that ensure vertical conduction are alternately formed on a transistor formed on a substrate surface.
  • a junction (such as a PN junction) is formed on the surface of the substrate so that the charge accumulated in the transistor does not leak under conditions other than a predetermined potential.
  • an electrical defect such as a refresh failure occurs in a semiconductor device, for example, in the case of a memory product, a defect such as deletion of written data occurs.
  • a method for evaluating such an electrical defect a method of performing an electrical test on a finished product and directly evaluating an electrical characteristic is known.
  • the electrical test is a test for a finished product, and it is not possible to test an electrical defect that occurs at an early stage of manufacturing, that is, an ion implantation for forming a junction or a heat treatment stage. Therefore, an inspection method or an inspection apparatus that can detect an electrical defect during the manufacturing process by any method is desired.
  • Patent Document 1 discloses that a sample surface is irradiated with a primary charged particle beam whose irradiation energy and beam current amount are controlled so as not to saturate a plug, and a sample is obtained from a change in potential contrast of a secondary electron image obtained over time. A method is described in which a change in surface potential with time is measured, and a refresh failure of a plug on a semiconductor circuit is inspected from information on the change in surface potential with time.
  • Patent Document 2 discloses a method of registering and setting SEM electron beam irradiation conditions in advance in accordance with the structure (type of circuit pattern shape) of a sample to be inspected. Further, in Patent Document 3, an electron beam is scanned a plurality of times at the same location on a specimen to be inspected, and a part of the scanning is used for pre-dose to stabilize the charged state of the scanning line, and the remaining scanning is performed. An invention is disclosed in which only an image signal detected by the method is used for forming an inspection image.
  • Patent Document 4 secondary electrons or reflected electrons from a sample to be measured are discriminated and detected by an energy filter, and a time constant of the measurement sample is determined from the relationship between the detected electron signal intensity and the electron beam irradiation time.
  • the electrical characteristics of the inspection location on the specimen to be inspected for electrical defects are theoretically expressed by an equivalent circuit, and each electrical defect is expressed as a difference in capacitance C or resistance R on the equivalent circuit. Is done.
  • the inspection of the electrical defect using the SEM corresponds to detecting the difference in the capacitance C or the resistance R based on the difference between the detection image and the reference image. Therefore, the invention disclosed in Patent Document 1 is a detection method for detecting a difference in time constant between a normal part and a defective part, which changes depending on the difference in the capacitance C or the resistance R, from a temporal change in potential contrast between a detected image and a reference image. It can be said that.
  • the electron beam irradiation conditions corresponding to the circuit pattern are determined in advance as described in Patent Document 2, the electron beam irradiation conditions that allow the plurality of electrical defects to be detected well are not necessarily obtained. This is because the inspected samples carried into the inspection apparatus have different charged states, and if the charged states are different, the optimum electron beam irradiation conditions are different even if the circuit pattern is the same.
  • Patent Document 3 is an idea that predoses using a beam having the same irradiation conditions as the image forming beam.
  • a plurality of beam irradiations on the same scanning line are all performed under the same irradiation conditions.
  • By controlling how the irradiation interval of the plurality of beam irradiations is controlled and changing the irradiation interval a plurality of beam irradiations are performed.
  • Patent Document 4 determines the scanning order based on the effective time constant in the visual field region on the sample, and can detect an image with higher image quality than before.
  • the disclosure content of Document 4 is limited to controlling the arrangement order of scanning lines arranged in the visual field region, and until a technique for realizing optimum image acquisition conditions for detecting a plurality of types of electrical defects is disclosed. Has not reached.
  • the SEM image acquisition condition can be optimized to detect a specific type of electrical defect in the above-described conventional technique, the image acquisition condition is changed in order to detect a plurality of types of defects.
  • the inspection must be repeated the number of times corresponding to the type of defect to be detected, and the lengthening of the inspection time becomes a problem.
  • the present invention realizes an inspection method using a charged particle beam apparatus or a charged particle beam capable of performing inspection under inspection conditions capable of capturing at least two kinds of electrical defects with a higher probability than in the past by one inspection.
  • the purpose is to do.
  • an image is formed from optical conditions during primary charged particle beam scanning or an output image signal
  • the above object is achieved by adjusting the image forming conditions when the image can be captured with two or more kinds of electrical defects.
  • the dose per unit time given to the sample to be inspected is adjusted for each scanning line.
  • the image forming conditions are adjusted by performing weighted addition processing for each scanning line on the detected image signal.
  • the charging condition on the sample naturally changes with the number of scans.
  • the inspection of the electrical defect by the image is to detect a difference from the normal part of the capacitance C or the resistance R, and therefore is included in the generated secondary charged particles (backscattered electrons or secondary electrons).
  • the type of defect information to be changed varies depending on the charged state of the sample to be inspected when the secondary charged particles are generated.
  • a charged state that easily captures the two or more types of electrical defects is intentionally formed by changing the beam irradiation conditions. Further, when weighted addition processing is performed on the detected image signal, this corresponds to forming an inspection image by weighting the image signal according to the amount of defect information included in the image signal.
  • the present invention acquires an image capable of capturing the two or more types of electrical defects with the above configuration.
  • the present invention it is possible to realize a charged particle beam inspection apparatus or inspection method capable of capturing at least two or more types of electrical defects with higher probability than before. In addition, it is possible to quickly find an optimum condition for finding at least two types of defects in one inspection.
  • FIG. 3 is a schematic diagram illustrating a scanning order of multiple scanning according to the first embodiment.
  • FIG. It is a figure explaining the analog output waveform of the X scanning signal and Y scanning signal for performing the beam scanning shown in FIG. It is explanatory drawing of the data processing part for performing a weighted average process. It is a figure which shows the test
  • FIG. It is an example of the image profile obtained when two different types of defective parts and a normal part are inspected. It is an example which shows the relationship between a dose amount and the number of defects. It is an example which shows the relationship between a dose amount and the number of defects. It is a schematic diagram which shows the beam scanning of Example 2 which combined multiple scanning and split scanning. 15 is an example of an XY scanning signal for realizing the beam scanning shown in FIG.
  • FIG. 14 by a step-and-repeat method or a stage continuous movement method. It is a figure which shows the test
  • FIG. It is a figure explaining arrange
  • FIG. It is the figure explaining having arrange
  • FIG. It is a figure which shows the structural example of the recipe setting screen of the SEM type
  • an embodiment of the present invention will be described by taking an SEM type inspection apparatus using an SEM as an example, but the present invention is not limited to an SEM type inspection apparatus, but also a charged particle beam such as an SEM type defect review apparatus and an ion microscope. It is possible to apply to the apparatus in general.
  • the observation sample is a device sample having only a vertical wiring (hereinafter referred to as a plug). Further, it is assumed that the bottom of the plug is a plug connected to the substrate 51. Hereinafter, this is referred to as a normal part 53. Actually, there is a PN junction on the substrate side, but this is not considered here.
  • a schematic view of the cross section is shown in FIG. It is assumed that the plug has a role of wiring, and there is an insulating portion having a large resistance value around the plug.
  • defective part 2 (55) is electrically connected to an adjacent plug.
  • the conductive portion 57 is provided inside the device, but it may be the bottom or the surface layer.
  • the plug wiring resistance of the normal part 53 is R 1
  • the capacitance (capacitance) component in the plug is C 1 .
  • R 0 is sufficiently larger than R 1 .
  • the wiring resistance of the plug portion can be R 1
  • the plug (capacitance) component can be C 1.
  • the equivalent circuit of the defect 1 (54) is as shown in FIG. Assume that R 2 is larger than R 1 .
  • the resistance of the conduction portion 57 is set to 0 for the sake of simplicity.
  • the plug wiring resistances R 1 and C 1 are arranged in parallel.
  • the normal part 53, the defect part 1 (54), and the defect part 2 (55) are irradiated with an electron beam for a certain period of time.
  • Q be the dose, that is, the amount of charge supplied to the sample surface by the primary electron beam.
  • the sample surface voltage at the moment when the dose amount Q is supplied to the sample can be expressed by the following equations, respectively.
  • the image gradation difference is also determined by the sample surface potential.
  • a large sample surface potential is formed in the insulating portion even with a small amount of charge. If a too large sample surface potential is formed, all the secondary electrons emitted from the sample are attracted to the charged insulating portion and neutralized, so that in reality, they do not increase from a certain voltage.
  • FIG. 3 is a graph showing a time transition of a sample formed by irradiating a dose amount Q at a certain moment in FIG.
  • t is time and ⁇ is a time constant.
  • the time constant ⁇ of the normal part 53 is equal to R 1 C 1
  • the time constant ⁇ of the defective part 1 (54) is equal to (R 1 + R 2 ) C 1 . Defects can be identified by the difference in time constant.
  • the normal part 53 and the defective part 2 (55) are considered. Since the capacity of the defective portion 2 (55) is 2 ⁇ C 1 and half of the normal portion 53, the sample surface potential difference ⁇ V 2 between the normal portion 53 and the defective portion 2 (55) is determined by (Equation 6).
  • the dose Q should be increased in order to better identify the normal portion 53 and the defective portion 2 (55).
  • the defect portion 2 (55) is different from the defect portion 1 (54) because there is a difference in the sample surface voltage between the normal portion 53 and the defect portion 2 (55) by one dose Q irradiation. There is no need to wait for a certain amount of time.
  • FIG. 5 shows the time variation of the surface potential of the sample when the beam irradiation is performed four times on the defective part and the normal part having the attenuation curve as shown in FIG.
  • the dose amount given to the sample by irradiation is assumed to be Q).
  • a weighted averaging process is performed in which a weight corresponding to the number of times of beam irradiation (essentially, a weight for a charged potential that best reflects the type of defect information to be detected) is added to the detected image signal and averaged. This makes it possible to adjust defect information included in the formed image.
  • the above-described weighted averaging process is suitable for the type of defect inspection such as the defect portion 1 (54) shown in FIG.
  • FIG. 6 the whole structure of the SEM type
  • the SEM inspection apparatus of this embodiment irradiates a sample with a primary electron beam, detects secondary charged particles such as secondary electrons and backscattered electrons, and outputs a signal as an image signal.
  • the unit 42 is configured.
  • the control unit 30, the image processing unit 22, and the screen display unit 31 are connected to each other by a communication cable such as a LAN cable.
  • the SEM inspection apparatus of the present embodiment also includes a transport system for carrying in / out the sample to be inspected into the sample chamber.
  • the electron optical column has an electron gun 2 having an electron source 0 from which an electron beam is emitted, an optical lens 1 capable of controlling the amount of current reaching the sample from the electron source 0, and for deflecting the electron beam.
  • a sample stage (not shown) on which the sample 7 to be inspected is placed, a sample stage 4 for moving the sample stage in a desired direction, and the like are provided.
  • the control unit 30 includes a signal generation unit 10 that generates a scanning deflection signal supplied to the deflector 5, a D / A converter 9 that converts a digital signal generated by the signal generation unit 10 into an analog signal, an amplifier 8, and the like.
  • the scanning system control unit, the detection system control unit configured by the A / D converter 15 that converts the analog detection signal of the detector 6 amplified by the amplifier 14 into a digital signal, the data processing unit 16, and the operation of the sample stage 4 A sample stage control unit to be controlled is included.
  • the SEM type inspection apparatus of the present embodiment applies the dose amount per unit time given to the specimen to be inspected for each scanning line, that is, when the same scanning line is irradiated with the beam a plurality of times, for each scanning number. It has a function of adjusting the dose, and this function is realized by changing the optical condition or changing the image forming condition.
  • the dose per unit time on the sample there are the following three methods.
  • the control current value of the electron gun optical lens 1 is similarly tabulated in accordance with the number of scans or the scan order and stored in the control unit 30. During scanning, the control current value to the electron gun optical lens 1 is adjusted according to the table.
  • the adjustment of the dose amount is executed by the scanning system control unit. This will be described in detail below with reference to FIGS.
  • FIG. 7 schematically shows the trajectory of the electron beam when scanning the primary electron beam a plurality of times on the same scanning line.
  • the same scanning line is scanned with the beam three times, and the upper scanning line 701 is sequentially scanned in the X direction in the order of the circled numbers, and when the scanning line 701 is scanned three times, The scanning position is moved in the Y direction, and beam scanning in the X direction is repeated three times on the next scanning line 702. That is, on the scanning line 701, the electron beam is scanned in the order indicated by solid line 1, dotted line 2, and dotted line 3, and on the scanning line 702, scanning is repeated in the order of solid line 4, dotted line 5, and dotted line 6. At this time, the optical conditions such as the scanning speed are adjusted on each scanning line so that the defect to be detected can be detected best.
  • FIG. 8 shows a deflection voltage waveform of the XY scan signal generated by the signal generator 10 of FIG. 6 in order to execute the scan of FIG.
  • the beam irradiation position in the Y direction remains unchanged until the end of three beam scans, so that the X scan signal has a sawtooth wave and the Y scan signal has a period of three sawtooth waves.
  • the signal waveform is a step function.
  • the widths of the blade portions constituting the sawtooth wave (length T 1 in the figure) are all described in the same way, but in practice, the scanning order of the same scanning line ( In some cases, beam scanning control is performed to change the scanning speed in accordance with the number of scans. In this case, the width of the sawtooth blade portion varies depending on the scanning order.
  • the X scanning signal of the present embodiment may be constituted by a sawtooth wave having waveform components having different periods according to the scanning order.
  • the signal generation unit 10 provided in the scanning system control unit includes a signal width setting unit 11, a signal interval setting unit 12, and a signal amount setting unit 13, which are parts for setting the width, interval, and maximum value of analog signals.
  • the scanning speed of the primary electron beam is controlled by changing the period of the scanning deflection signal generated by the signal generator 10. For example, when the scanning signal output from the amplifier 8 is the X scanning signal shown in FIG. 8, the period of the scanning signal, that is, the scanning speed, is controlled by changing the sawtooth wave length T 1 in FIG. . The time interval between scans is controlled by changing the period T 2 (sawtooth pitch).
  • the scanning signal is stored in a register or memory (not shown) in the signal generation unit 10 in a table describing the scanning order and the sawtooth wave length T 1 (scanning speed). Control by referring to the table.
  • an input means for setting the scanning speed and the scanning width is displayed on the operation screen displayed on the screen display means 31.
  • the signal width setting unit 11 and the signal amount setting unit 13 control T 1 , V 1, or V 2 in accordance with the input scanning speed and scanning line value.
  • the A / D converter 15 converts an analog signal into a digital signal at a sampling rate synchronized with the scanning speed of the primary electron beam. Normally, when the scanning speed is changed, the sampling rate is changed accordingly.
  • the image processing unit 22 includes image memories 17 and 18, a comparison calculation unit 19, a defect determination unit 20, an image display storage unit 21, and the like.
  • the image memory 17 stores a reference pattern corresponding to a normal pattern
  • the image memory 18 stores a detection image sequentially acquired for the inspection area on the wafer.
  • the reference pattern here, for example, a pattern determined as having no defect among detection images actually captured from a sample, a pattern generated from design data, or the like is used.
  • the comparison calculation unit 19 is a processing unit that compares the reference pattern and the detected image to generate a difference image.
  • the defect determination unit 20 is a processing unit that determines a defect based on the generated difference image.
  • the image display storage unit 21 is a processing unit that presents the determination result to the operator and stores the acquired detection image in a storage unit (not shown). The number of defects is stored in the defect number storage unit 41.
  • the SEM inspection apparatus of the present embodiment includes a weighted average processing unit 29 that performs weighted average processing.
  • the weighted average processing unit 29 is provided inside the data processing unit 16 that processes the output signal of the A / D converter 15 of FIG. 6, that is, the image signal converted into a digital signal by A / D conversion. Is as shown in FIG.
  • the weighted average processing unit 29 irradiates the same part with a beam, a memory unit 28 for storing data, a weighting unit 23 for adding a coefficient corresponding to a weight to a pixel value represented by the digital signal, an adding unit 25
  • the division unit 27 divides by the number N of line additions (N is an integer equal to or greater than 1), and several selectors 24 and 26 for switching the signal output destination.
  • the weighted average processing unit 29 includes a circuit element that executes the following expression (1).
  • Expression (1) expresses a weighted average process of image signals obtained by a plurality of beam irradiations using a mathematical expression, and X n is detected in the nth scan (n is an integer between 1 and N).
  • the signal intensity of the image signal, An is a weighting factor corresponding to the weight, and Y is the finally obtained signal intensity (pixel value).
  • Equation (1a) the capital letter N is the sum of the weighting factors.
  • a signal result of multiplying the weight coefficient A n in X n to the weighting section 23 A n X n is through the selector 24 and stored in the memory unit 28.
  • the result A n + 1 X n + 1 obtained by multiplying the signal X n + 1 acquired at the (n + 1) th time by the weighting coefficient A n + 1 is sent to the adding unit 25, and the A n Xn is output from the memory unit 28.
  • a n + 1 X n + 1 and A n X n are added by the adding unit 25, and the added data is re-stored in the memory unit 28 via the selector 26, and this is repeated. Thereby, the addition process corresponding to the numerator of Expression (1) is sequentially executed.
  • the selector 26 After adding A N-1 X N-1 and A N X N of the final term (corresponding to the N- 1th addition), the selector 26 is controlled to divide the calculation result of the adder 25 instead of the memory 28. Output to the unit 27. Thereby, the division unit 27 performs division using N as a divisor.
  • the data processing unit 16 illustrated in FIG. 9 includes a unit for supplying deflection information to the weighted average processing unit 29.
  • the data processing unit 16 is connected to the signal generation unit 10 through the deflection information transmission path 35, and the deflection information of the primary electron beam, that is, T 1 , T 2 , V 1 or V 2 shown in FIG.
  • Each information is transmitted from the signal generation unit 10 to the deflection information command unit 36 in the data processing unit 16 every moment.
  • the data processing unit 16 determines information on which scanning line the image signal currently detected is an image signal detected by scanning, or an image signal detected by which scan. Synchronization information can be obtained.
  • the deflection information received by the deflection information command unit 36 is sent to the lookup table 37.
  • the lookup table 37 the method and order of processing of the detection signals are registered in advance, and the weighted amount adjustment unit 38, the memory control unit 39, and the selector control unit 40 refer to the lookup table 37, respectively.
  • An instruction is sent to the weighted unit 23, the memory unit 28, and the selectors 24 and 27.
  • the weighting amount adjusting unit 38 sends the weighting coefficient value to be applied to the next input image signal to the weighting unit 23.
  • the memory control unit 39 sends to the memory 28 information indicating which address in the memory is to be output in response to a signal output from the selector 24 to the adder 25 next.
  • the selector control unit 40 sends information indicating where to switch the signal to the selectors 24 and 27 in accordance with the progress of the calculation of the expression (1).
  • FIG. 10 shows the flow.
  • the first step preparation for inspection such as loading of the wafer to be inspected into the apparatus, position alignment of the sample to be inspected, and beam calibration is performed.
  • this step can be automated, it is basically executed by the operator of the apparatus.
  • the second step it is determined whether to perform weighted averaging.
  • the number of additions N and the weight A N for each N are also set. This determination is performed by the apparatus operator, and the determination result or the information about the number of additions N and the weight A N is input to the apparatus via the GUI.
  • the inspection threshold is set.
  • the threshold for identifying the defective portion 1 is referred to as an inspection threshold 1
  • the threshold for identifying the defective portion 2 is referred to as an inspection threshold 2.
  • FIG. 11 shows a signal profile indicating the outline of the acquired image and the contrast of the normal part 53, the defective part 1 (54), and the defective part 2 (55).
  • the first to fourth steps described above are basically executed by manual operation of the device operator.
  • the automatic sequence process 58 for automatically changing various parameters is performed. This determination is performed, for example, according to the set mode information by setting the mode “execute automatic sequence processing” on the recipe setting screen by the operator.
  • the automatic change parameter for example, the dose amount Q per unit time, the irradiation interval T 2, and the like are targeted.
  • the automatic sequence process 58 it is possible to automatically obtain a relationship between a dose amount and the number of defects, for example, a horizontal axis dose amount as shown in FIG.
  • An expression of the relationship between the dose amount and the number of defects may be a table or a list of data.
  • the acquired graph is displayed on the screen display means 31, and the apparatus operator can find the optimum inspection condition (for example, point D in the figure).
  • the process proceeds to the sixth step. If the automatic sequence process is not performed, the process proceeds to the step 6a.
  • the inspection pixel size p, the dose Q per unit time, the scanning speed v or sampling speed f of the electron beam, and the deflection swing (number of pixels or deflection width) are input to the apparatus.
  • the host control unit 42 determines the T 1 based on the input information.
  • an interval T 2 (or T 1 + T 2 ) for electron beam irradiation is input.
  • the sixth step and the seventh step described above are executed by a manual operation of the apparatus operator as in the first step to the fourth step.
  • the total test time is estimated using the parameters entered in the sixth step.
  • the computer or the upper control unit 42 provided in the screen display means 31 sets the inspection pixel size p, the dose amount Q (or electron beam scanning speed v or sampling speed f), and the electron beam irradiation interval T 2 ( Alternatively, T 1 + T 2 ), the weight A N , and the parameters of the area of the place where the trial inspection is performed are used to calculate the total time required for the main inspection (the time required for the inspection).
  • the calculated total time is displayed on the screen display means 31. If the apparatus operator is not satisfied with the inspection time, the apparatus operator returns to the second step and resets the conditions.
  • a trial inspection is performed. That is, electron beam irradiation is started and an image of a test inspection is actually acquired. This operation is executed by the control unit 30.
  • the image processing unit 22 calculates the number of defect portions and the defect coordinates using the image acquired in the ninth step and the inspection threshold values 1 and 2 set in the fourth step. .
  • the eleventh step it is determined whether to change the inspection condition. This determination is performed by manual operation of the device operator. If the inspection conditions are not changed, this inspection is executed as the twelfth step.
  • the range of parameters and the step size used in the automatic sequence process are set in steps 6a and 7a. This setting is also performed by manual operation of the operator.
  • an automatic variable amount ⁇ Q of the dose amount Q and variable ranges Qmin and Qmax are set.
  • an automatic variable amount ⁇ T and variable ranges Tmin and Tmax for the irradiation interval T 2 are set.
  • the set parameters are stored in the upper control unit 42.
  • step 8a the host control unit 42 calculates the time required for the automatic sequence using the set parameter and displays it on the screen display means 31. If the equipment operator is not satisfied with the inspection time, reset the conditions.
  • step 9a automatic sequence processing 58 is executed.
  • the automatic sequence processing 58 is a sequence in which a beam is irradiated to a predetermined portion of a sample to be inspected, and the number of defects is obtained from the obtained image while changing the dose amount little by little within a setting range.
  • the overall control of the automatic sequence processing 58 is executed by the host control unit 42, but the defect number acquisition / storage step is executed by the image processing unit 22, and the defect number storage is executed by the defect number storage unit 41.
  • the upper control unit 42 displays the relationship between the number of defects and each parameter as shown in FIG. 12 on the screen display means 31 (step 10a).
  • step 11a the device operator determines and sets the optimum parameter using the display result.
  • the dose corresponding to the optimum condition is the point D where the graphs intersect, but this optimum condition may be changed depending on the object to be inspected. For example, when it can be determined that the inspection target has many non-conducting defects such as the defect portion 1 and the short defect that is the defect portion 2 cannot be obtained with a simple distribution degree, the position in the left direction in FIG. May be the optimum condition. Further, if the relationship between the dose amount and the number of defects is as shown in FIG. 13, that is, it is determined that the inspection condition at the point E instead of the point D is preferable for the inspection target object in which the defect portion 2 does not exist. it can.
  • the SEM type inspection apparatus described in the present embodiment makes it possible to realize a defect inspection apparatus or a defect inspection method capable of detecting a plurality of types of defects more accurately than in the past.
  • the same scanning line is scanned a plurality of times with different optical conditions, or the same scanning line is scanned a plurality of times and weighted averaging processing is performed on the detected image signal, thereby improving the detection efficiency of a plurality of types of defects.
  • a configuration example of the improved SEM type inspection apparatus has been described.
  • a configuration example of an SEM type inspection apparatus or SEM type defect review apparatus having a configuration in which defect detection efficiency is further improved by using the above scanning method and split scanning together will be described. Since the hardware configuration of the apparatus is almost the same as the configuration shown in FIGS. 6 and 9, only the differences from the first embodiment will be described below for the apparatus configuration.
  • FIG. 14 is a schematic diagram showing a scanning order when a plurality of scans on the same scan line and split scan are used in combination.
  • FIG. 14 considers the case where the field of view of the SEM image is composed of four scanning lines, and four scanning lines 1401, 1402, 1403, and 1404 are arranged in the predetermined field of view.
  • the scanning origin in the XY directions is the upper left corner of the field of view
  • the scanning axis in the X direction is right positive
  • the scanning axis in the Y direction is positive downward.
  • each scanning line is sequentially scanned from 1401 ⁇ 1403 ⁇ 1402 ⁇ 1404, and even when one scanning line is irradiated a plurality of times, for example, the scanning line 1401 is scanned a predetermined number of times. After scanning, scanning of the next scanning line 1403 is started.
  • the scanning of the adjacent scanning lines 1403 is not performed, but scanning of the scanning lines 1402 separated by a predetermined interval is performed, and then the first scanning line 1401 is scanned. Returning to the adjacent scanning line 1403, scanning is performed.
  • the distance between the first scan line 1401 and the next scan line 1402, that is, the separation time can be freely determined according to factors such as the material of the sample to be inspected, the circuit pattern, the ease of charging, and the ease of removal of charge (time constant). Can do.
  • This separation time corresponds to T 2 described in the first embodiment. That is, T 2 shown in FIG. 5 can be changed by controlling the scanning method of 1401 ⁇ 1403 ⁇ 1402 ⁇ 1404 ⁇ 1401.
  • the scanning order of the primary electron beam in the case where the multiple scanning and the split scanning according to the present invention are combined will be described.
  • the number of scans of the same scan line is three as in the case of FIG.
  • the scanning order of the primary electron beam is as indicated by parenthesized numerals in FIG. That is, scanning in the X direction (1) is performed on the scanning line 1401, then deflected by a predetermined distance in the positive Y direction and moved to the scanning line 1402 (movement 703). A predetermined distance is deflected in the negative direction to move to the scanning line 1403 (movement 704), and after the end of the scanning (3), a predetermined distance is deflected in the positive Y direction to the scanning line 1404 (movement 705).
  • the process returns to the first scanning line 1401 (movement 706), and scanning (5) is performed.
  • scanning (5) deflection in the Y direction similar to movement 703 is performed (movement 707), and scanning (6) is performed.
  • the movement 708 indicates deflection in the Y direction immediately before the last scan (12).
  • the step-and-repeat method is an inspection method in which the sample stage is stationary when acquiring the inspection image, and the visual field is moved by moving the sample stage to the next inspection region after acquiring the inspection image of a certain region.
  • the stage continuous movement method is an inspection method in which an inspection image is acquired by one-dimensionally scanning a beam in a direction intersecting or orthogonal to the sample stage moving direction while moving the sample stage during imaging.
  • a belt-like beam locus called “scanning stripe” is drawn on the inspection region on the sample by moving the stage and scanning the beam, and the image signal is continuously output according to the scanning stripe.
  • the step-and-repeat type inspection apparatus has a relatively small inspection area on the sample and is suitable for a fixed point observation type inspection apparatus or defect review apparatus that inspects a predetermined position on the sample.
  • the stage continuous movement type inspection apparatus is suitable for an SEM type visual inspection apparatus that needs to inspect a large area on a large inspection sample such as a semiconductor wafer.
  • the X scan signal is common to the step-and-repeat method and the continuous stage movement method, and a so-called sawtooth wave signal is supplied to the deflector 5.
  • the numbers with parentheses attached to the sawtooth portion of the sawtooth wave signal correspond to the respective scans indicated by the numbers with parentheses in FIG. A wave signal is supplied to the deflector 5.
  • signals having different waveforms are supplied to the deflector 5 by the step-and-repeat method and the stage continuous movement method.
  • the Y scanning signal is a rectangular signal having different heights in which the step function shown in FIG. 8 is continuous according to the movements 703 to 708 in the Y direction shown in FIG. That is, in the Y scanning signal shown in FIG. 15A, the beam is deflected in the positive Y direction by a distance corresponding to the movement 703 in FIG. 14 at the rising edge 703 of the rectangular waveform, and at the next falling edge 704, the negative Y value is obtained. The beam is returned in the direction by a distance corresponding to movement 704.
  • the above beam deflection control is repeated from movement 703 to 708 and imaging of a predetermined visual field is completed, visual field movement to the next inspection position is performed by moving the stage.
  • the Y-direction scanning is also controlled by the signal generation unit 10 shown in FIG.
  • the rectangular width of the Y scanning signal shown in FIG. 15A is basically equal to the sum of the sawtooth wave length T 1 and the sawtooth wave pitch T 2 of the X scanning signal. Be controlled. Since T 1 differs depending on the scanning order of the same scanning line, the signal width setting unit 11 refers to the table provided in the signal generation unit 10 and, as in the first embodiment, sets T 1 for each scanning order. It is adjusted.
  • the height of the rectangle of the Y scanning signal also differs depending on the scanning order. Accordingly, a table in which the deflection distance in the Y direction is made to correspond to the scanning order of each scanning line is stored in the signal generation unit 10, and at the time of scanning, the signal amount setting unit 13 refers to the table for each scanning order. Adjust the height of the rectangular signal. In the case of FIG.
  • the baseline voltage V 0 of the rectangular signal, the Y deflection voltage V 1 at the first movement (first Y deflection voltage), the Y deflection voltage V 2 at the second movement ( (Second Y deflection voltage) and Y deflection voltage V 2 (third Y deflection voltage) at the time of the third movement are respectively stored in the table.
  • the scanning method in the present embodiment is realized by the step-and-repeat method.
  • the control of the Y scanning signal is a little more complicated.
  • the sample stage continuously moves in one direction (Y direction in the case of FIG. 14) during imaging. Therefore, when the X scan of a certain scan line is completed and the scan proceeds to the scan of the next scan line, it is not necessary to perform Y deflection only by the distance from the next scan line in the visual field, and the sample stage moving distance is added. It is necessary to deflect the beam. That is, the stage continuous movement type Y scanning signal has a waveform such that the baseline voltage of the Y scanning signal in FIG. 15A fluctuates by the Y deflection voltage synchronized with the stage moving distance. In FIG. 15B, the baseline voltage is indicated by a dotted line inclined by the Y deflection voltage synchronized with the stage movement control, and positive and negative Y deflections according to the scanning order are on the inclined baseline. Is superimposed.
  • the signal amount setting unit 13 has a function of calculating a baseline voltage synchronized with the movement distance of the stage and superimposing it on the step-and-repeat Y scanning signal.
  • the beam deflection in the Y direction is returned to the scanning origin (the fall of the deflection voltage 1501 in the figure).
  • the period 1502 from the start of beam deflection in the Y direction to the return to the scanning origin is determined by the scanning limit in the Y direction (optical performance of the electro-optic column) at which off-axis aberration can be ignored and a homogeneous image can be obtained. It is necessary to change the scanning deflection control depending on the optical performance of the electro-optical column.
  • the beam deflection in the same direction as the stage moving direction described above or in the opposite direction is sometimes called back deflection.
  • the scanning of the present embodiment is realized by the stage continuous movement method, complicated back-turn deflection corresponding to the beam scanning order is performed in the scanning stripe.
  • the scanning method of this embodiment is realized by the stage continuous movement method.
  • the primary electron beam is scanned on the sample by the scanning deflection control described above, and defect inspection is performed using the obtained inspection image. Since the signal processing method when performing the weighted average processing on the acquired image signal is the same as that in the first embodiment, the description thereof is omitted.
  • the primary beam irradiation to each scan line is intermittently performed with time between adjacent scan lines. There is an effect that it is difficult to reach a scanning line. Therefore, by combining the multiple scanning and the split scanning according to the present invention, it is possible to obtain an effect that the charged state necessary for detecting the target defect can be more easily formed than the scanning method of the first embodiment. As a result, it is possible to realize an SEM inspection apparatus or a defect review SEM that has a significantly higher defect capture rate than before.
  • FIG. 1 an inspection flow for setting an inspection condition according to an area to be inspected will be described. That is, this is a case where two regions are inspected at a time such that the edge of the inspection target wafer has many non-conducting defects and the center does not know which defect is detected.
  • the inspection flow in such a case is shown in FIG.
  • the hardware configuration of the apparatus is almost the same as the configuration shown in FIGS.
  • the first step at least two or more areas to be inspected are set.
  • the name or type of the defect is set in the area. That is, the setting is such that only the defective portion 1 (54) is selectively acquired at the location A and the defective portion 2 (55) is selectively acquired at the location B.
  • the inspection conditions dose amount per unit time, number of additions, weight, irradiation interval, inspection threshold, etc.
  • the automatic sequence process 58 in FIG. 10 may be performed during this step.
  • the optimum dose amount for acquiring both different defect types is point D or point E.
  • the number of types of defects to be detected increases, in fact, only one defect detection condition requires all of the target There may be situations where it is difficult to catch defects. Therefore, it is also possible to set areas with different inspection conditions on the sample to be inspected, and inspect with different inspection conditions for each set area in one inspection operation.
  • an example of inspection in which a wafer on which a circuit pattern of a semiconductor device is formed is used as a sample to be inspected, and inspection conditions are changed in units of a predetermined circuit area constituting the circuit pattern will be described. In the following description, it is assumed that defect inspection is performed by the stage continuous movement method, and the hardware configuration of the apparatus is almost the same as the configuration shown in FIGS. 6 and 9.
  • FIG. 17 shows a first example.
  • the inspection conditions are changed in units of memory mat columns in which memory cells are periodically arranged.
  • a plurality of scanning stripes 401 and 402 for performing beam scanning are arranged in the memory mat area in the die, and the memory mat columns 403 and 404 in which the scanning stripes 401 and 402 are arranged are used as units for changing the inspection condition.
  • An inspection condition 1 for identifying the defective portion 1 is set in the scanning stripe 401
  • an inspection condition 2 for identifying the defective portion 2 is set in the scanning stripe 402 to be inspected.
  • the scanning stripe 401 can be inspected mainly for short defects
  • the scanning stripe 402 can be inspected to acquire non-conducting defects.
  • the inspection conditions set in the scanning stripes 401 and 402 are set to inspection conditions that can detect the plurality of inspection conditions described in the first to third embodiments, it is possible to detect a large number of types of defects. It becomes.
  • FIG. 17 a horizontal row of memory cells is inspected under the same conditions.
  • a macro area on the entire surface of the wafer to be inspected may be inspected under a plurality of inspection conditions (right side in the figure). Is the inspection area 1 to be inspected under the inspection condition 1, the right side in the figure is the inspection area 2 to be inspected under the inspection condition 2), and each memory cell may be inspected under a plurality of inspection conditions as shown in FIG. .
  • the inspection condition 1 for identifying the defective portion 1 and the inspection condition 2 for identifying the defective portion 2 are determined.
  • the inspection area 1 for performing the inspection condition 1 and the inspection area 2 for performing the inspection condition 2 are set.
  • the stage is driven and inspection is started. Inspection of inspection area 1 is started under inspection condition 1. For example, a short defect is mainly acquired here.
  • the inspection area 2 is inspected under the inspection condition 2 after switching from the inspection condition 1 to the inspection condition 2.
  • the stage drive may or may not be stopped.
  • non-conducting defects are mainly acquired.
  • the above description is based on the assumption that the stage continuous movement type inspection apparatus is used. However, a similar function can be realized by a step-and-repeat type inspection apparatus. However, in order to obtain the inspection image of the memory mat as shown in FIG. 17 or FIG. 19, it is necessary to control the movement of the sample stage in units of the size of the memory mat. The continuous movement method is more advantageous.
  • FIG. 21 is a diagram showing an example of a recipe setting screen for setting inspection conditions.
  • the child window 200 includes a sample map 201 for determining an inspection area on the wafer, an area setting button 202 for setting an area 223 to be inspected, and an area release button 203 for releasing the set area.
  • the child window 204 includes a pixel size setting unit 205 that sets the inspection pixel size p, a dose amount setting unit 206 that sets the dose amount Q per unit time, an addition number setting unit 207 that sets the addition number N, A sampling rate setting unit 208 that sets a sampling rate, an irradiation interval setting unit 209 that sets an irradiation interval, a weighted average process selection unit 210 that selects whether or not to execute a weighted average process, and parameters for automatic processing sequence processing
  • an image acquisition start button 212 for starting image acquisition.
  • the child window 300 is a screen for setting a weighting coefficient for the image signal obtained by the nth scanning among the set number of line additions, and includes a setting number display unit 301 for determining the nth pixel data, a weighting coefficient, and the like. And a setting unit 302.
  • a child window 310 as shown in FIG. 24 is displayed on the screen.
  • the child window 310 includes an automatic variable amount ⁇ Q setting unit 311, an initial value Qmin setting unit 312, a final value Qmax setting unit 313, and an automatic variable amount ⁇ T setting unit 314 for the irradiation interval T 2.
  • An initial value Tmin setting unit 315 and a final value Tmax setting unit 316 are initial value Tmin setting unit 315 and a final value Tmax setting unit 316.
  • the child window 213 includes a first inspection threshold setting unit 214 that sets a defect determination threshold for the first inspection condition, a second inspection threshold setting unit 215 that sets a defect determination threshold for the second inspection condition, and an inspection.
  • a start button 216 and an inspection stop button 217 are included.
  • the image acquisition start button 212 and the inspection start button 216 are displayed, since the image acquisition operation and the inspection can be performed simultaneously, they may be unified into one button.
  • an expected inspection time display unit 219 that displays an expected time required for the inspection time
  • an actual inspection time display unit 220 that displays an actual inspection time
  • a defect number display unit 221 that displays the number of defects.
  • the part for setting the inspection condition for detecting two defective portions on the same screen is shown, but it may be a separate window or a separate tab screen.
  • An area 2 setting unit 305 for setting an area 302 to be inspected, an area 1 setting canceling unit 305 for canceling the set area, and an area 2 setting canceling unit 306 are configured.
  • the entire surface of the wafer to be inspected is displayed in the child window 300, but a map of memory cells as shown in FIGS. 17 and 19 may be used.
  • the two condition settings of inspection condition 1 or inspection condition 2 can be set by displaying two child windows 204. That is, it consists of a part 306 for setting the inspection conditions for region 1 and a part 307 for setting the inspection conditions for region 2.
  • the information input at each setting part described above is transmitted to the control unit 30 via the communication cable 33 after being subjected to appropriate preprocessing either directly or by an arithmetic device provided in the screen display means 31.
  • the control unit 30 also performs various scanning deflection controls or image signal processing described in the first and second embodiments based on the transmitted information.

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 被検査試料上の同一箇所を複数回走査し、一次荷電粒子ビーム走査時の光学条件あるいは出力される画像信号から画像を形成する際の画像形成条件を、少なくとも2種類以上の電気的欠陥を捕捉可能な条件に調整し、被検査試料の電気的欠陥を検査する。 これにより、少なくとも2種類以上の電気的欠陥を1回の検査で従来よりも高い確率で捕捉可能な条件で検査を実行する荷電粒子線装置ないし荷電粒子線による検査方法を実現することができる。

Description

荷電粒子線装置
 本発明は、荷電粒子線装置の検査手法を制御する技術に関する。
 半導体デバイスは、通常、基板表面に形成されたトランジスタ上に、縦方向の導通を確保するプラグやビアなどを含む相間絶縁層と配線層とが交互に形成された構造を有している。基板表面には接合(PN接合など)が形成されており、所定の電位以外の条件においてはトランジスタに蓄積された電荷がリークしないようになっている。半導体デバイスにおいてリフレッシュ不良等の電気的欠陥が発生すると、例えば、メモリ製品の場合には書き込んだデータが消えるなどの不具合が発生する。このような電気的欠陥を評価する方法として、完成した製品に電気テストを施し、電気特性を直接評価する方法が知られている。しかし、電気テストは完成品に対するテストであり、製造初期の段階、すなわち接合形成のためのイオン打ち込みや熱処理の段階で発生する電気的欠陥に対してはテストを行うことはできない。従って、何らかの方法で製造工程途中の電気的欠陥を検出できる検査方法あるいは検査装置が切望されている。
 このような製造工程途中の電気的欠陥を検出可能な検査装置として、走査型電子顕微鏡(以下SEM)を応用した検査装置が盛んに用いられている。例えば、特許文献1には、照射エネルギーとビーム電流量とがプラグが飽和しない程度に制御された一次荷電粒子線を試料表面に照射し、得られる二次電子画像の電位コントラストの経時変化から試料表面電位の経時変化を計測し、表面電位の経時変化情報から半導体回路上のプラグのリフレッシュ不良を検査する方法が記載されている。
 SEMを応用した検査装置における欠陥検出原理は、取得画像を何らかの参照画像と比較して取得画像と参照画像のブライトネス差あるいはコントラスト差を検出することにある。従って、欠陥検出感度は、画像取得時の光学条件(一次荷電粒子ビームの照射条件)あるいは画像検出条件に大きく左右される。特許文献2には、SEMの電子線照射条件を被検査試料の構造(回路パターン形状の種類)に応じて予め登録しておき、設定する方法が開示されている。また、特許文献3には、被検査試料上の同一箇所に電子ビームを複数回走査し、そのうち1部の走査をプリドーズのために使用して走査ラインの帯電状態を安定化させ、残りの走査により検出される画像信号のみを検査画像の形成に使用する発明が開示されている。
 一方、近年の研究により、SEMにおける取得画像の画質は、一次荷電粒子ビームの走査条件にも大きく左右されることが分かってきた。特許文献4には、被計測試料からの二次電子あるいは反射電子をエネルギーフィルタで弁別検出し、検出電子の信号強度と電子線照射時間の関係から計測試料の持つ時定数を決定し、SEM画像の視野領域内(=二次元的なビーム走査領域)における電子ビームの走査順序を決定された時定数に従って定めることにより、被計測試料の帯電電位を安定化させ、取得画像の画質を向上させる発明が開示されている。
特開2002-009121号公報 特開2000-314710号公報 特開2006-331825号公報 特開2008-123716号公報
 電気的欠陥の検査対象となる被検査試料上の検査箇所の電気特性は、理論的には等価回路で表現され、電気的欠陥は、いずれも等価回路上の容量Cあるいは抵抗Rの相違として表現される。SEMを用いた電気的欠陥の検査とは、要約すれば上記容量Cあるいは抵抗Rの相違を検出画像と参照画像の差に基づき検出することに相当する。従って、特許文献1に開示される発明は、上記容量Cあるいは抵抗Rの相違によって変わる正常部と欠陥部の時定数の差を、検出画像と参照画像の電位コントラストの経時変化から検出する検出方法であると言える。しかし実際には、半導体デバイスには複数種類の電気的欠陥が存在し、実際の検査では、それら複数の欠陥を検出することが要求される。特許文献1に開示される発明は、欠陥と判定される画像と正常部と判断される画像において、時定数の差がどの程度あった場合に欠陥と判断するか、また、複数種類の電気的欠陥を上手く検出するための時間及び階調の閾値変更をどのように行うかの開示がない。したがって、特許文献1に開示される発明では複数種類の欠陥取得は非常に困難である。
 一方、特許文献2に記載のように回路パターンに応じた電子ビーム照射条件を予め定めておいても、上記複数の電気的欠陥を上手く検出可能な電子ビーム照射条件となるとは限らない。検査装置に搬入されてくる被検査試料は各々帯電状態が異なっており、帯電状態が異なっていれば、回路パターンが同一であっても最適な電子ビーム照射条件は異なるからである。
 同様に、特許文献3に開示された発明は、画像形成用ビームと同じ照射条件のビームを使ってプリドーズを行うという着想の発明である。しかし、同一走査ラインへの複数回のビーム照射は全て同一の照射条件で行っており、複数回のビーム照射の照射間隔をどのように制御するか、また、照射間隔を可変することによって、複数種の欠陥をどのように識別するのかの点についても開示がない。従って、複数種類の電気的欠陥を検出可能な帯電状態を上手く形成することは困難である。
 その点、特許文献4に開示された発明は、試料上の視野領域内での実効的な時定数に基づき走査順序を定めており、従来よりも高い画質の画像を検出可能であるが、特許文献4の開示内容は視野領域内に配置する走査ラインの配置順序を制御することにとどまり、複数種類の電気的欠陥を検出するために最適な画像の取得条件を実現する手法を開示するまでには至っていない。
 仮に、上記従来技術で、SEM画像の取得条件をある特定種類の電気的欠陥を検出可能な条件に最適化できたとしても、複数種類の欠陥を検出するためには、画像取得条件を変えた検査を検出しようとする欠陥の種類に応じた回数分繰り返さなければいけないことになり、検査時間の長大化が問題となる。
 そこで、本発明は、少なくとも2種類以上の電気的欠陥を1回の検査で従来よりも高い確率で捕捉可能な検査条件で検査を実行可能な荷電粒子線装置ないし荷電粒子線による検査方法を実現することを目的とする。また、そのような検査条件を従来よりも容易に設定可能な荷電粒子線装置を実現することを目的とする。
 本発明では、被検査試料上の同一箇所を複数回走査して検査に用いる画像を取得する検査装置あるいは検査方法において、一次荷電粒子ビーム走査時の光学条件あるいは出力される画像信号から画像を形成する際の画像形成条件を上記2種類以上の電気的欠陥を捕捉可能な画像を可能な条件に調整することにより、上記目的を達成する。前者の場合、被検査試料に与える単位時間あたりのドーズ量を走査ライン毎に調整する。後者の場合は、検出画像信号に対し走査1ライン毎に重み付け加算処理を行うことにより、画像形成条件を調整する。
 被検査試料上の同一箇所を複数回走査する場合、当然、試料上の帯電条件が走査回数毎に変わる。上記の通り、画像による電気的欠陥の検査とは、容量Cあるいは抵抗Rの正常部との相違を検出するものであるので、発生する二次荷電粒子(後方散乱電子あるいは2次電子)に含まれる欠陥情報の種類は、二次荷電粒子が発生した時点での被検査試料の帯電状態により変化する。
 一次荷電粒子ビームの光学条件を調整する場合、ビームの照射条件を変えることにより、上記2種類以上の電気的欠陥を捕捉しやすい帯電状態を意図的に形成していることになる。また、検出される画像信号を重み付け加算処理する場合、画像信号に含まれる欠陥情報の多寡に応じて画像信号を重み付けして検査画像を形成していることに相当する。
 本発明は、以上の構成により、上記2種類以上の電気的欠陥を捕捉可能な画像を取得する。
 本発明によれば、少なくとも2種類以上の電気的欠陥を従来よりも高確率で捕捉可能な荷電粒子線検査装置または検査方法を実現することができる。また、少なくとも2種類以上の欠陥を一回の検査で見つけるための最適な条件を迅速に見つけることができる。
被検査対象のプラグ部における正常部及び欠陥部を説明した図である。 絶縁部と正常部53と欠陥部の等価回路を説明した図である。 電子線を照射した時の、試料表面電位と時間との関係を示した図である。 ドーズ量と試料表面電位との関係を示す図である。 電子線を照射時の、試料表面電位と時間との関係を示した図である。 実施例1のSEM式外観検査装置の構成を説明する図である。 実施例1の多重走査の走査順序を示す模式図である。 図7に示すビーム走査を行うためのX走査信号およびY走査信号のアナログ出力波形を説明する図である。 重み付き平均処理を行うためのデータ処理部の説明図である。 実施例1の検査装置を走査する際の検査フローを示す図である。 種類の異なる2つの欠陥部と正常部を検査した際に得られる画像プロファイルの例である。 ドーズ量と欠陥数との関係を示す一例である。 ドーズ量と欠陥数との関係を示す一例である。 多重走査とスプリット走査を組み合わせた実施例2のビーム走査を示す模式図である。 図14に示すビーム走査をステップアンドリピート方式またはステージ連続移動方式で実現するためのXY走査信号の例である。 実施例3の検査フローを示す図である。 ダイ内に2つの走査ストライプを配置し、走査ストライプ1と2とで検査条件を変えて検査を行うことを説明した図である。 検査条件の異なる複数の走査ストライプをウェハサイズの単位で配置し、検査を行うことを説明した図である。 検査条件の異なる複数の走査ストライプをメモリマットサイズの単位で配置し、検査を行うことを説明した図である。 実施例4の検査フローを示す図である。 実施例1~4に記載のSEM式検査装置のレシピ設定画面の構成例を示す図である。 実施例1~4に記載のSEM式検査装置のレシピ設定画面の構成例を示す図である。 実施例1~4に記載のSEM式検査装置のレシピ設定画面の構成例を示す図である。 実施例1~4に記載のSEM式検査装置のレシピ設定画面の構成例を示す図である。
 以下、SEMを用いたSEM式検査装置を例にして、本発明の実施形態について説明するが、本発明は、SEM式検査装置のみならず、SEM式欠陥レビュー装置やイオン顕微鏡など、荷電粒子線装置一般に適用することが可能である。
 (原理説明)
 まず、各実施形態に共通して用いられる本発明の計測原理について以下に説明する。なお、以下の説明では、複数種類の欠陥を有する被検査試料の例として、正常部と2種類の欠陥部が存在する場合を想定して説明を行う。
 ここでは説明を簡単にするために、観察試料を縦型の配線(以下プラグ)だけを持つデバイス試料とする。また、本プラグの底が基板51につながっているプラグであることを想定する。これを以下では正常部53とよぶ。実際は基板側にPN接合などがあるが、ここでは考慮しない。断面の概略図を図1に示す。尚、プラグには配線の役割があり、その周辺は抵抗値が大きい絶縁部があるとする。
 それに対し、欠陥部は以下2種類とする。なお、以下の説明において、カッコ内の数値は図面での参照番号を表すものとする。
 欠陥部1(54)では、プラグの下底に絶縁膜があるとする。
 欠陥部2(55)では、隣り合ったプラグと導通しているとする。図1ではデバイス内部に導通部57があるが、下底であっても表層であってもかまわない。
 以下で、前記部位の等価回路について述べる。等価回路を図2に示す。
 絶縁部の抵抗をR0、キャパシタンス(容量)成分をC0とする。
 正常部53のプラグ配線抵抗をR1、プラグ内キャパシタンス(容量)成分をC1とする。一般的にR0はR1より十分大きい。
 欠陥部1(54)の絶縁膜の厚みがプラグの高さと比較してある程度薄いと考えると、プラグ部の配線抵抗をR1、プラグ内(容量)成分をC1とすることができ、絶縁膜の抵抗値をR2とすると、欠陥部1(54)の等価回路は図2で示したようになる。R2はR1と比べて大きいとする。
 欠陥部2(55)では、ここでは説明を簡単にするために、導通部57の抵抗を0とする。その結果、図2の通り、プラグ配線抵抗をR1とC1が並列に並ぶことになる。
 以下で、電子線をある一定時間正常部53,欠陥部1(54),欠陥部2(55)に照射することを考える。ドーズ量、すなわち一次電子ビームにより試料表面に供給される電荷量をQとする。ドーズ量Qが試料に供給された瞬間(図3中A点)の試料表面電圧はそれぞれ以下の式で表すことができる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 検出される信号量は試料表面電位によって決まるため、画像階調差も試料表面電位によって決まる。
 絶縁部は少しの電荷量でも大きな試料表面電位が形成される。あまりに大きな試料表面電位が形成されると、試料から放出される二次電子はすべて前記帯電した絶縁部に引き寄せられ中和されるため、実際はある一定電圧からは上がらなくなる。ここでは、絶縁膜部の試料表面電位をV0=Vmaxとおく。
 ドーズ量Qを照射した瞬間の絶縁部-正常部53または欠陥部1(54)との試料表面電位差ΔV1は(式6)で決まる。
Figure JPOXMLDOC01-appb-M000005
 この結果から、Qが小さいほど電位差ΔV1が大きくなるため、絶縁部と正常部53または欠陥部1(54)との識別をよりよく行うためにはドーズ量Qは小さくすべきであることがわかる。
 次に、正常部53または欠陥部1(54)との試料表面電位差について考える。式(3)と式(4)は等しいので、ドーズ量Qを照射しただけでは、試料表面電位差がつかない。そこで、試料上の同一部位に時間差T2をおいて一次電子ビームを複数回照射することにより、欠陥部1(54)の絶縁膜部抵抗R2の特性を利用して、正常部53または欠陥部1(54)間に電位差を作りだすことができる(その様子は、図2を用いて後述する)。図3にある瞬間にドーズ量Qを照射して形成された試料の時間変移を示すグラフで、正常部,欠陥部1,欠陥部2に対する試料表面電位の時間変移(減衰曲線)が示されている。ある時刻でドーズ量Qが供給されると、正常部,欠陥部1,欠陥部2の電位は、式(3)~(5)に従って、初期状態V1,V2,V3まで持ち上げられ、その後、図2の等価回路により定まる時定数に従って減衰する。図3中の減衰曲線のカーブは、以下の式(7)によりフィッティングすることが可能である。
Figure JPOXMLDOC01-appb-M000006
 ここで、tは時間、τは時定数である。正常部53の時定数τはR11に等しく欠陥部1(54)の時定数τは(R1+R2)C1に等しい。この時定数に違いがある分だけ欠陥の識別が可能になる。
 次に、正常部53と欠陥部2(55)について考える。欠陥部2(55)の容量は2×C1と正常部53の半分となっているので、正常部53と欠陥部2(55)との試料表面電位差ΔV2は(式6)で決まる
Figure JPOXMLDOC01-appb-M000007
 つまり、Qが大きいほど電位差が大きくなるため、正常部53と欠陥部2(55)との識別をよりよく行うためにはドーズ量Qは大きくすべきである。尚、欠陥部2(55)では、一回のドーズ量Qの照射で正常部53と欠陥部2(55)との試料表面電圧との差があるので、欠陥部1(54)と違いある一定時間を待つ必要はない。
 以上をまとめると、ドーズ量と試料表面電位の関係は図4のようになる。
 図3と図4から、欠陥部1(54)を識別するには、ドーズ量Qを小さくしライン加算処理を行って且つ時間差を設ける検査条件が必要であり、欠陥部2(55)を識別するには、ドーズ量Qの大きい検査条件が必要であることがわかる。
 以上の説明では、ドーズ量Q、すなわち一次荷電粒子ビーム照射の光学条件によって検出可能な欠陥がどのように変わるかについて説明した。次に以下では、画像信号から画像を形成する際の画像形成条件、つまり、ライン加算処理時における重み付き平均処理の物理的な意味について図5を用いて説明する。
 図5には、図3に示されるような減衰カーブを持つ欠陥部,正常部に対してビーム照射を4回行った時の試料表面電位の時間変化を照射回数毎に示す(1回のビーム照射で試料に与えるドーズ量はQであるとする)。
 通常、信号S/N比を向上させるためには、取得した信号をそれぞれ加算したのち加算回数Nで割り算する単純平均処理を行う。しかし、図5のような時間特性の場合、1回目のビーム照射により形成される試料表面電位には正常部53と欠陥部1(54)との間で大きな差がない(図中C部)のと比較して、4回目のビーム照射後に形成される試料表面電位には正常部53と欠陥部1(54)との間で大きな差がある(図中B部)。電子ビーム照射により検出される二次荷電粒子の量は試料の表面電位を反映するから、図5の結果は、1回目のビーム照射後よりも4回目のビーム照射後の方が正常部と欠陥部の検出信号量の差が大きいことを示している。換言すれば、検出される二次荷電粒子に含まれる欠陥情報はビーム照射回数に応じて変わることになる。よって、ビーム照射回数に応じた重み(本質的には、検出したい種類の欠陥情報を最もよく反映する帯電電位に対する重み)を検出される画像信号に積算して平均する重み付き平均化処理を行うことにより、形成画像に含まれる欠陥情報を調整することが可能となる。本実施例で言えば図2に示した欠陥部1(54)のような種類の欠陥検査には、上述の重み付き平均化処理が適しているといえる。
 本実施例では、多重走査で走査ライン毎にドーズ量を可変にする機能、または重み付き平均処理機能を備えたSEM式検査装置の基本構成例について説明する。
 (装置構成)
 図6には、本実施例のSEM式検査装置の全体構成を示す。本実施例のSEM式検査装置は、大まかには、一次電子ビームを試料に照射し、二次電子や後方散乱電子などの二次荷電粒子を検出して、画像信号として信号出力する電子光学カラム,試料ステージを格納する試料室,試料ステージや上記電子光学カラムなど、電子光学カラムや試料ステージといった撮像手段の個別構成要素を制御する制御部30、得られた画像信号を用いて欠陥検査を行う画像処理部22,SEM式検査装置の検査条件や動作条件を設定入力するための操作画面が表示される画面表示手段31,制御部30や画像処理部22を含めたシステム全体を制御する上位制御部42などにより構成される。上記の制御部30,画像処理部22および画面表示手段31は、LANケーブルなどの通信ケーブルにより相互に接続されている。なお図示してはいないが、本実施例のSEM式検査装置は、試料室内に被検査試料を搬入・搬出するための搬送系も備えている。
 電子光学カラムは、電子ビームが放出する電子源0を有する電子銃2と、電子源0から試料までに到達する電流量を制御することが可能な光学レンズ1と、前記電子ビームを偏向するための偏向器5と、電子線の焦点位置を変えるための対物レンズ3と、試料からの放出電子を検出するための検出器6などにより構成される。
 試料室内には、被検査試料7を載置する試料台(図示せず)と、試料台を所望の方向に移動させるための試料ステージ4などが設けられる。
 制御部30は、偏向器5に供給する走査偏向信号を生成する信号生成部10,信号生成部10が生成するデジタル信号をアナログ信号に変換するD/Aコンバータ9,アンプ8などにより構成される走査系制御部,アンプ14により増幅された検出器6のアナログ検出信号をデジタル信号に変換するA/Dコンバータ15,データ処理部16などにより構成される検出系制御部,試料ステージ4の動作を制御する試料ステージ制御部などを含んで構成される。
 さて、本実施例のSEM式検査装置は、前述の通り、被検査試料に与える単位時間あたりのドーズ量を走査ライン毎、つまり同一走査ラインに複数回ビーム照射を行う場合に、走査回数毎にドーズ量を調整する機能を有しており、この機能は、光学条件を変えるまたは画像形成条件を変えることにより実現される。光学条件の制御により試料上への単位時間当たりのドーズ量を制御するためには、以下の3通りの方法がある。
(1)制御部30により電子源0からの放出電流量を走査毎に直接可変する方法
(2)電子銃2に備えられた光学レンズ1を用いて試料に到達する電流量を制御する方法
(3)前記偏向器5のアナログ信号周期を早くすることで、走査速度を早くする方法
 上記(1)の方法でドーズ量を調整する場合には、電子源0への印加電圧を同一箇所への走査回数に応じて変える。このため、制御部30に走査回数あるいは走査順序に応じた電子源電圧値を格納したテーブルを設けておき、走査時には、テーブルに記載された電圧値に従って、電子源電圧値を調整する。
 上記(2)の方法でドーズ量を調整する場合には、同じく電子銃光学レンズ1の制御電流値を走査回数あるいは走査順序に対応させてテーブル化し、制御部30に格納しておく。走査時には、テーブルに従って、電子銃光学レンズ1への制御電流値を調整する。
 上記(3)の方法によりドーズ量を調整する場合には、ドーズ量の調整は走査系制御部により実行される。以下、図7,図8を用いて詳細に説明する。
 図7には、同一走査ラインに複数回一次電子ビームを走査する際の電子ビームの軌跡を模式的に示した。図7に示す例では、同一走査ラインに3回ビームを走査させており、上側の走査ライン701上に丸数字の順序でX方向に順次走査させ、走査ライン701を3回走査し終わると、Y方向に走査位置を移動し、次の走査ライン702上でX方向のビーム走査を3回繰り返す。すなわち、走査ライン701上では、実線1,点線2,点線3で示される順序で電子ビームを走査させ、走査ライン702上では、実線4,点線5,点線6の順序で走査を繰り返す。この際、各走査ライン上で、走査速度などの光学条件を、検出したい欠陥が最もよく検出できるように調整する。
 図7の走査を実行するために図6の信号生成部10が生成するXY走査信号の偏向電圧波形を図8に示す。図7に示す走査の場合、3回のビーム走査が終了するまではY方向のビーム照射位置は不変であるので、X走査信号はノコギリ波、Y走査信号はノコギリ波3周期分の周期を持つ階段関数状の信号波形となる。なお、簡単のため、図8においてはノコギリ波を構成する刃の部分の幅(図中の長さT1)は全て同じように記載しているが、実際には同一走査ラインの走査順序(走査回数)に応じて走査速度を変えるビーム走査制御を行う場合もあり、その場合、ノコギリ波の刃の部分の幅は、走査順序に応じて異なることになる。言い換えれば、本実施例のX走査信号は、走査順序に応じて周期の異なる波形成分を持つノコギリ波により構成される場合もある。
 走査系制御部に設けられる信号生成部10は、アナログ信号の幅,その間隔、及び最大値を設定する部位である信号幅設定部11と、信号間隔設定部12と、信号量設定部13を備える。一次電子ビームの走査速度は、信号生成部10により生成される走査偏向信号の周期を変えることにより制御される。例えば、前記アンプ8から出力される走査信号が図8に示すX走査信号であった場合、走査信号の周期すなわち走査速度は、図8のノコギリ波の長さT1を変えることにより制御される。また、走査と走査の時間間隔は、期間T2(ノコギリ波のピッチ)を変えることにより制御される。
 信号幅設定部11では、図中ノコギリ部の幅T1を、信号間隔設定部12では図中T2を、信号量設定部13では信号ピーク値V1やノコギリ波の高さV2の値を制御する。走査信号は、走査順序とノコギリ波の長さT1(走査速度)を対応して記述したテーブルを信号生成部10内のレジスタあるいはメモリ(図示せず)に格納しておき、走査時には、上記のテーブルを参照することによって制御する。
 また、画面表示手段31上に表示される操作画面上には、走査速度や走査幅を設定するための入力手段が表示される。信号幅設定部11および信号量設定部13は、入力された走査速度や走査ラインの値に従ってT1,V1あるいはV2を制御する。
 尚、T1は画素辺りのサンプリング速度f[1/sec]と画素数nから計算できる(T1=n/f)ので、T1ではなくて、f及びnの入力に代換えることが可能である。また、V1はSEM画像の視野の大きさに対応し、V2は偏向開始位置であるので、V1やV2を直接設定するのではなく、GUI上で偏向する幅や偏向開始位置を指定することで代換えることが可能である。但し、T2については、直接時間入力するか、上記テーブルに従って制御する。
 A/Dコンバータ15は一次電子ビームの走査速度に同期したサンプリングレートでアナログ信号をデジタル信号に変換し、通常、走査速度を変えた場合には、それに合わせてサンプリングレートも変える。
 画像処理部22は、画像メモリ17,18,比較演算部19,欠陥判定部20,画像表示保存部21などより構成される。本実施例のSEM式検査装置の場合、画像メモリ17には、正常パターンに対応する参照パターンが格納され、画像メモリ18にはウェーハ上の検査領域について逐次取得される検出画像が格納される。ここでの参照パターンには、例えば試料から実際に撮像された検出画像のうち欠陥を有していないものとして判定されたパターン,設計データから発生されたパターン等を使用する。比較演算部19は、参照パターンと検出画像とを比較して差分画像を生成する処理ユニットである。欠陥判定部20は、生成された差分画像に基づいて欠陥を判定する処理ユニットである。画像表示保存部21は、判定結果をオペレータに提示すると共に取得された検出画像を不図示の記憶手段に保存する処理ユニットである。欠陥数は欠陥数保存部41にて保存される。
 次に、図9を用いて、重み付き平均処理機能を実現するための装置構成について説明する。一般に、二次荷電粒子画像のSN向上を目的として、電子線を同一部位にN回照射するライン加算処理が行われている。ライン加算処理を行うときは、N回照射した時のデータは全て前記データ処理部16にて保管し、N回分の検出データを全て足し合わせて、最後にNで割り算することによって、平均化する。その結果、検出信号のS/N比を向上させることができる。以下では、これを単純平均処理とよぶ。
 一方、本実施例のSEM式検査装置は、重み付き平均処理を行う重み付き平均処理部29を備えている。重み付き平均処理部29は、図6のA/Dコンバータ15の出力信号、すなわちA/D変換によりデジタル信号に変換された画像信号を処理するデータ処理部16の内部に設けられており、詳細は図9に示す通りである。重み付き平均処理部29は、データを蓄えるメモリ部28と、前記デジタル信号によって表現される画素値に重みに対応する係数を積算する重み付け部23と、加算部25と、同一部位にビームを照射したライン加算回数N(Nは1以上の整数)で割り算する割り算部27と、信号の出力先を切り替えるための数個のセレクタ24,26などを含んで構成される。
 この重み付き平均処理部29は、以下の式(1)を実行する回路要素を備えている。式(1)は、複数回のビーム照射により得られる画像信号の重み付き平均処理を数式で表現したものであり、Xnはn回目(nは1以上N以下の整数)の走査で検出される画像信号の信号強度、Anが重みに対応する重み係数、Yは最終的に得られる信号強度(画素値)である。式(1a)で示されるように、大文字のNは重み係数の総和である。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 信号Xnに重み付け部23にて重み係数Anをかけた結果Annをセレクタ24を経由させ、メモリ部28に格納する。n+1回目に取得した信号Xn+1に重み係数An+1をかけた結果An+1n+1を加算部25に送り、メモリ部28から前記Annを出力し、前記An+1n+1とAnnを加算部25にて加算し、加算されたデータをセレクタ26を経由しメモリ部28に再格納し、これを繰り返す。これにより、式(1)の分子に相当する加算処理が順次実行される。最終項(N-1回目の加算に相当)のAN-1N-1とANNを加算した後は、セレクタ26を制御し、加算部25の演算結果をメモリ28ではなく割り算部27へ出力させる。これにより、割り算部27にてNを除数とする割り算を行う。
 積算すべき重みは、同一走査ラインの走査順序に応じて決まるため、上記の重み付き平均処理を行うためには、一次電子ビームの偏向情報が必要となる。また、走査順序に応じた走査速度を調整する手法と重み付き平均処理を併用する場合もある。そこで、図9に示すデータ処理部16は、重み付き平均処理部29に偏向情報を供給するための手段を備えている。まず、データ処理部16は偏向情報伝送路35を介して信号生成部10と接続されており、一次電子ビームの偏向情報、すなわち、図8に示したT1,T2,V1あるいはV2の各情報は、信号生成部10から時々刻々データ処理部16内の偏向情報命令部36へ伝送される。これにより、データ処理部16は、現在検出されている画像信号が、どの走査ラインを走査して検出された画像信号か、あるいは何番目の走査で検出された画像信号かという情報を判断するための同期情報を得ることができる。
 偏向情報命令部36にて受信された偏向情報は、ルックアップテーブル37に送られる。ルックアップテーブル37には検出信号を処理する方法,順番などが予め登録されており、重み付き量調整部38,メモリ制御部39,セレクタ制御部40は、それぞれルックアップテーブル37を参照して、重み付き部23,メモリ部28,セレクタ24,27に対して命令を送る。例えば、重み付き量調整部38は、次に入力される画像信号に対して適用すべき重み係数の値を重み付き部23に送る。メモリ制御部39は、セレクタ24から次に加算部25に出力される信号に対してはメモリ内のどのアドレスの加算結果を出力すべきかという情報をメモリ28に送る。セレクタ制御部40は、式(1)の演算の進行具合に応じて、信号をどこへスイッチさせるべきかという情報をセレクタ24,27に送る。
 以上の方法で、複数回被検査対象に電子線を照射するライン加算処理を行った時の検出信号を重み付き平均処理することが可能である。なお、図9に示す構成はあくまで一例に過ぎず、本発明の技術思想に含まれる範疇で他の構成も取りうることは言うまでもない。
 (装置の動作フロー)
 以下に、検出したい欠陥が2種類ある場合の検査条件決定フローについて説明する。図10にそのフローを示す。
 第1のステップでは、被検査対象ウェーハの装置へのロード,被検査対象試料の位置アライメント、ビーム校正などの検査準備を行う。本ステップは自動化も可能であるが、基本的には装置のオペレータにより実行される。
 第2のステップで、重み付き平均処理を行うかを決定する。重み付き平均処理を行う場合は、加算回数NとNごとの重みANも設定する。この判断は装置オペレータにより行われ、判断結果あるいは加算回数Nおよび重みANの情報がGUIを介して装置に入力される。
 第3のステップで、試験的な検査を行う場所の設定を行う。この設定も装置オペレータにより行われる。
 第4のステップで、画像取得の終了を確認した後、検査閾値の設定を行う。ここでは、欠陥の種類を2種類としているので、検査閾値は2通り設定する。以下では、欠陥部1(54)を識別するための閾値を検査閾値1とし、欠陥部2(55)を識別するための閾値を検査閾値2とする。前記取得した画像の概略と、前記正常部53と、前記欠陥部1(54)と、欠陥部2(55)のコントラストを示す信号プロファイルを図11に示す。
 以上説明した第1のステップから第4のステップは、基本的には装置オペレータのマニュアル操作により実行される。
 第5のステップで、各種パラメータを自動変更する自動シーケンス処理58を行うかどうかの判定を行う。この判定は、例えば、レシピ設定画面上でオペレータが「自動シーケンス処理を実行」というモードを設定し、設定されたモードの情報に従って行われる。自動変更パラメータとしては、例えば単位時間当たりのドーズ量Q,照射する間隔T2などが対象となる。自動シーケンス処理58を行うと、ドーズ量と欠陥数の関係、例えば、図12のような横軸ドーズ量、縦軸が欠陥数といったグラフの自動取得が可能である。ドーズ量と欠陥数の関係の表現としては、表やデータの羅列でもかまわない。取得されたグラフは画面表示手段31上に表示され、装置オペレータが最適な検査条件(例えば図中のD点)を見つけることが可能となる。
 自動シーケンス処理を行わない場合は第6のステップに進み、自動シーケンス処理を行わない場合は第6aのステップに進む。
 第6のステップでは、検査画素サイズp,単位時間当たりのドーズ量Qまたは電子線の走査速度vまたはサンプリング速度f,偏向振り幅(画素数または偏向幅)を装置に入力する。上位制御部42は、入力された情報に基づき前記T1を決定する。また、第7のステップでは、電子線を照射する間隔T2(またはT1+T2)を入力する。以上の第6のステップおよび第7のステップは、第1のステップから第4のステップと同様、装置オペレータのマニュアル操作により実行される。
 第8のステップでは、第6のステップで入力されたパラメータを使用して検査の総時間が見積もられる。画面表示手段31に備えられたコンピュータあるいは上位制御部42は、前記設定した検査画素サイズp,ドーズ量Q(または電子線の走査速度vまたはサンプリング速度f),電子線を照射する間隔T2(またはT1+T2),重みAN,試験的な検査を行う場所の面積のパラメータを使って、本検査にかかる総時間(検査の所要時間)を計算する。計算された総時間は画面表示手段31上に表示される。装置オペレータは、検査時間に満足できない場合は、第2のステップまで戻り、条件の設定をしなおす。
 第9のステップで、試験的な検査を実行する。すなわち、電子線照射を開始し、試験検査の画像を実際に取得する。この動作は制御部30により実行される。
 第10のステップでは、画像処理部22は、第9のステップで取得された画像と第4のステップで設定された検査閾値1,2とを用いて、欠陥部の数及び欠陥座標を算出する。
 第11のステップで、検査条件を変更するかの判定を行う。この判定は、装置オペレータのマニュアル操作により実行される。検査条件を変更しない場合は、第12ステップとして、本検査を実行する。
 第5のステップで自動シーケンス処理58を行う場合は、ステップ6aと7aで、自動シーケンス処理に用いるパラメータの範囲と刻み幅を設定する。この設定もオペレータのマニュアル操作により行われる。第6aのステップでは、ドーズ量Qの自動可変量ΔQ、可変範囲Qmin,Qmaxを設定する。第7aのステップでは、照射する間隔T2の自動可変量ΔT,可変範囲Tmin,Tmaxを設定する。設定されたパラメータは上位制御部42にて保存される。
 第8aのステップでは、上位制御部42は、前記設定したパラメータを使用して、自動シーケンスにかかる時間を算出し、画面表示手段31上に表示する。装置オペレータが検査時間に満足できない場合は、条件の設定をしなおす。
 第9aのステップでは自動シーケンス処理58が実行される。自動シーケンス処理58は、被検査試料の所定箇所にビームを照射し、得られた画像から欠陥数を求める処理を、ドーズ量を設定範囲内で少しずつ変えながら行うシーケンスであって、設定されたドーズ量に対応する光学条件でビームを照射し、画像を取得する画像取得ステップ、得られた画像から欠陥を検出し、欠陥数を求めて保存する欠陥数の取得・保存ステップ,自動シーケンス処理58が終了したかどうかを判定するシーケンス終了処理判定ステップ,ドーズ量の刻み幅ΔQ分だけ光学条件を調整する条件調整ステップなどにより構成される。自動シーケンス処理58の全体的な制御は上位制御部42により実行されるが、欠陥数の取得・保存ステップは画像処理部22にて実行され、欠陥数の保存は欠陥数保存部41により実行される。
 自動シーケンス処理58が終了すると、上位制御部42は、例えば図12に示すような欠陥数と各パラメータとの関係を画面表示手段31上に表示する(第10aのステップ)。
 第11aのステップでは、装置オペレータが前記表示結果を用いて最適パラメータの決定及び設定を行う。
 以上のフローにより、2種類以上の欠陥を検出するための最適条件で検査することが可能となる。なお、図12に示した例では最適条件に対応するドーズ量を各々のグラフが交わるD点としたが、この最適条件は検査される対象によって変えてもよい。例えば、被検査対象には欠陥部1のような非導通欠陥が多く、欠陥部2であるショート欠陥は簡単な分布程度の取得できない、と判断できる場合には、図12中の左方向の位置を最適条件としてもよい。また、ドーズ量と欠陥数の関係が図13のようであれば、つまり、欠陥部2が存在しないような被検査対象物ではD点ではなくE点での検査条件の方が望ましいことが判断できる。
 以上、本実施例で説明したSEM式検査装置により、複数の種類の欠陥を従来よりも精度よく検出可能な欠陥検査装置ないし欠陥検査方法が実現可能となる。
 実施例1では、同一走査ラインを光学条件を変えて複数回走査する、または同一走査ラインを複数回走査し検出される画像信号を重み付け平均化処理することにより、複数種類の欠陥の検出効率を向上させたSEM式検査装置の構成例について説明した。本実施例では、上記走査方法とスプリット走査を併用することにより、更に欠陥検出効率を高めた構成のSEM式検査装置またはSEM式欠陥レビュー装置の構成例について説明する。なお、装置のハードウェア構成は、図6および図9に示す構成とほぼ同一であるので、以下では、装置構成については、実施例1との相違点についてのみ説明する。
 はじめに、図14を用いてスプリット走査の概念を説明する。図14は、同一走査ラインへの複数回走査とスプリット走査を併用した場合の走査順序を示した模式図である。簡単のため、図14ではSEM画像の視野が4本の走査線で構成される場合を考えており、所定視野内に4本の走査ライン1401,1402,1403および1404が配置されている。なお、簡単のため、図14においては、XY方向の走査原点は視野の左上隅、X方向の走査軸は右向き正、Y方向の走査軸は下向き正であるとする。
 通常のラスター走査の場合、各走査ラインは、1401→1403→1402→1404と上から順次走査され、1本の走査ラインを複数回照射する場合であっても、例えば、走査ライン1401を所定回数走査した後に、次走査ライン1403の走査が開始される。
 一方、スプリット走査の場合は、最初の走査ライン1401の走査の終了後は、隣接走査ライン1403の走査は行わずに、所定間隔離れた走査ライン1402の走査を行い、その後、最初の走査ライン1401の隣接走査ライン1403に戻って走査を行う。初回走査ライン1401と次回走査ライン1402との距離、すなわち離間時間は、被検査試料の材質,回路パターンあるいは帯電しやすさ,帯電の抜けやすさ(時定数)といった要因に応じて自由に定めることができる。この離間時間は実施例1で記述したT2に対応する。つまり、1401→1403→1402→1404→1401までの走査方法を制御することによって、図5で示したT2を変えることができる。
 次に、本発明の複数回走査とスプリット走査を組み合わせた場合における一次電子ビームの走査順序について説明する。同一走査ラインの走査回数は、図7の場合と同様、3回とする。この場合の一次電子ビームの走査順序は、図14のカッコ付き数字で示す通りとなる。すなわち、走査ライン1401上でX方向の走査(1)を行い、次にYの正の方向に所定距離偏向して走査ライン1402に移り(移動703)、走査(2)の終了後、Yの負の方向に所定距離偏向して走査ライン1403に移り(移動704)、走査(3)の終了後、Yの正の方向に所定距離偏向して走査ライン1404に移り(移動705)、走査(4)の終了後、最初の走査ライン1401に戻って(移動706)、走査(5)を行う。走査(5)の終了後は、移動703と同様のY方向の偏向を行い(移動707)、走査(6)を行う。以上の要領で、走査を走査(1)から走査(12)まで繰り返すことにより、各走査ラインについて3回の走査を実行する。なお、移動708は、最終回の走査(12)直前のY方向への偏向を示す。
 図15(A),(B)には、図14に示したスプリット走査型のビーム走査を行うために偏向器5に供給されるXY走査信号の波形を、ステップアンドリピート方式と、ステージ連続移動方式の両者について模式的に示す。ここで、ステップアンドリピート方式とは、検査画像の取得時には試料ステージを静止させ、ある領域の検査画像取得後、次の検査領域に試料ステージを移動することにより視野移動を行う方式の検査方式である。また、ステージ連続移動方式とは、撮像中に試料ステージを移動しながら試料ステージ移動方向とは交差または直交する方向にビームを1次元走査して検査画像を取得する方式の検査方法である。この場合、ステージ移動とビーム走査により試料上の被検査領域上に「走査ストライプ」と称される帯状のビーム軌跡が描かれ、画像信号は、走査ストライプに応じて連続的に出力される。
 ステップアンドリピート方式の検査装置は、試料上の検査面積が比較的少なくかつ試料上の決められた位置の検査を行う定点観測式検査装置あるいは欠陥レビュー装置に適している。一方、ステージ連続移動方式の検査装置は、半導体ウェーハなどの大きな被検査試料上で大面積の検査を行う必要のあるSEM式外観検査装置に適している。
 図15(A),(B)の説明に戻ると、X走査信号については、ステップアンドリピート方式およびステージ連続移動方式で共通であり、いわゆるノコギリ波信号が偏向器5に供給される。ここで、ノコギリ波信号のノコギリ刃の部分に付されたカッコ付き数字は、図14中にカッコ付き数字で示された各走査に対応しており、各走査ラインでのX走査に対応したノコギリ波信号が偏向器5に供給される。
 一方、Y走査信号については、ステップアンドリピート方式およびステージ連続移動方式で異なる波形の信号が偏向器5に供給される。
 ステップアンドリピート方式の検査の場合、Y走査信号は、図8に示す階段関数が図14に示したY方向の移動703~708に応じて連続する、高さの異なる矩形信号となる。すなわち、図15(A)に示すY走査信号において、矩形波形の立ち上がり703では図14の移動703に相当する距離だけYの正方向にビームが偏向され、次の立ち下り704では、Yの負方向に移動704に相当する距離だけビームが戻される。以上のビーム偏向制御が移動703から708まで繰り返され、所定視野の撮像が終了すると、ステージ移動により次の検査位置への視野移動が行われる。
 上記のY方向走査も、図6に示した信号生成部10により制御される。図15(A)に示すY走査信号の矩形の幅は、基本的にはX走査信号のノコギリ波の長さT1とノコギリ波のピッチT2との和に等しく、信号幅設定部11により制御される。なお、T1は同一走査ラインの走査順序に応じて異なるため、実施例1同様、信号幅設定部11は、信号生成部10内に設けられたテーブルを参照し、走査順序毎にT1を調整している。
 また、本実施例の場合、本発明の走査にスプリット走査を組み合わせているため、Y走査信号の矩形の高さも走査順序に応じて異なることになる。従って、Y方向への偏向距離を各走査ラインの走査順序と対応させたテーブルを信号生成部10に格納しておき、走査時には、信号量設定部13は、当該テーブルを参照し走査順序毎に矩形信号の高さを調整する。図15(A)の場合には、矩形信号のベースライン電圧V0や、1回目の移動時のY偏向電圧V1(第1Y偏向電圧),2回目の移動時のY偏向電圧V2(第2Y偏向電圧),3回目の移動時のY偏向電圧V2(第3Y偏向電圧)が、それぞれテーブルに格納される。
 以上のXY走査信号制御により、本実施例での走査方式がステップアンドリピート方式で実現される。
 ステージ連続移動方式の場合、Y走査信号の制御はもう少し複雑になる。上述の通り、ステージ連続移動方式では、撮像中、試料ステージが1方向(図14の場合にはY方向)に連続移動している。従って、ある走査ラインのX走査が終了して次走査ラインの走査に移る場合、視野内での次走査ラインとの距離分だけY偏向を行うだけでは足りず、試料ステージの移動距離分を加算してビームを偏向する必要がある。すなわちステージ連続移動方式のY走査信号は、図15(A)のY走査信号のベースライン電圧がステージ移動距離に同期したY偏向電圧分だけ変動するような波形の信号となる。図15(B)においては、ベースライン電圧が、ステージ移動制御との同期するY偏向電圧分だけ傾いた点線で示されており、走査順序に応じた正負のY偏向がこの傾いたベースライン上に重畳されている。
 更に、X方向への電子ビーム走査の間もステージは移動するため、矩形波の山の部分(例えば、図中の領域1500)の長さもベースライン電圧の傾きと同じ傾きで変化させる。このためステージ連続移動方式の場合、信号量設定部13は、ステージの移動距離と同期したベースライン電圧を算出し、ステップアンドリピート方式のY走査信号に重畳させる機能をもつ。
 ステージの移動距離がY方向へのビーム偏向では追随できなくなるほど大きくなった場合は、Y方向のビーム偏向を走査原点に振り戻す(図中の偏向電圧の立ち下り1501)。Y方向のビーム偏向開始から走査原点への振り戻しまでの周期1502は、軸外収差が無視でき均質な画像を取得できると見なせるY方向への走査限界(電子光学カラムの光学性能)によって定まり、電子光学カラムの光学性能によって走査偏向制御を変える必要がある。
 以上説明したステージ移動方向と同じ方向あるいは逆方向へのビーム偏向は振り戻し偏向と呼ばれる場合もある。本実施例の走査をステージ連続移動方式で実現する場合、ビーム走査順序に応じた複雑な振り戻し偏向が走査ストライプ内で行われることになる。
 以上のXY走査信号制御により、本実施例の走査方式がステージ連続移動方式で実現される。
 以上説明した走査偏向制御により一次電子ビームを試料上に走査し、得られた検査画像を用いて欠陥検査を行う。取得された画像信号に重み付き平均処理を行う場合の信号処理方法は、実施例1と同様であるので説明は省略する。
 本実施例で説明したスプリット走査は、隣接する走査ライン同士では、各走査ラインへの一次ビーム照射が時間をおいて間欠的に行われるため、隣接走査ラインの帯電の影響が、現在走査している走査ラインに及びにくいという効果がある。従って、本発明の多重走査とスプリット走査を組み合わせることにより、目的とする欠陥を検出するために必要な帯電状態が、実施例1の走査方式よりも作りやすくなるという効果を奏することができる。これにより、従来よりも欠陥捕捉率の格段に高いSEM式検査装置あるいは欠陥レビューSEMを実現できる。
 本実施例では、被検査対象の領域によって検査条件を設定する検査フローに関して説明する。つまり、検査対象ウェーハの端は非導通欠陥が多く、中心はどちらの欠陥が検出されるかわからない、といったように一回に2領域を検査する場合である。こういった場合の検査フローを図16に示す。なお、実施例2と同様、装置のハードウェア構成は、図6および図9に示す構成とほぼ同一であるものとする。
 第1のステップで、検査を行う領域を少なくとも2か所以上設定する。その領域に、前記欠陥の呼称または種類を設定する。つまり、場所Aでは欠陥部1(54)のみを選択的に取得し、場所Bでは欠陥部2(55)を選択的に取得するといった設定である。
 第2のステップで、前記2か所の領域での検査条件(単位時間当たりのドーズ量,加算回数,重み,照射する間隔,検査閾値等)を設定する。どちらの欠陥が検出されるかわからない場合はこのステップ中に図10中の自動シーケンス処理58を行ってもよい。
 第3のステップで、実際の検査を開始する。
 異なる欠陥種を両方取得するための最適ドーズ量を図12ではD点やE点としたが、検出したい欠陥の種類が多くなると、実際には1つの欠陥検出条件だけでは、目的とする全ての欠陥を捕捉するのが困難な状況もありうる。そこで、被検査試料上に検査条件の異なる領域を設定し、一回の検査動作の中で、設定領域ごとに別検査条件で検査することも可能である。以下では、半導体デバイスの回路パターンが形成されたウェーハを被検査試料とし、回路パターンを構成する所定の回路領域を単位として検査条件を変える検査の例について説明する。なお、以下の説明は、ステージ連続移動方式で欠陥検査を行うことを前提とし、装置のハードウェア構成も、図6および図9に示す構成とほぼ同一であるものとする。
 図17には、その第一の例を示す。第一の例では、メモリセルが周期的に並んだメモリマットの列を単位として検査条件を変えている。ダイ内のメモリマット領域に、ビーム走査を行う複数の走査ストライプ401,402を配置し、走査ストライプ401,402が配置されたメモリマット列403,404を検査条件を変更する単位とする。走査ストライプ401では欠陥部1を識別する検査条件1を設定し、検査を行う走査ストライプ402では欠陥部2を識別する検査条件2を設定する。例えば、走査ストライプ401ではショート欠陥を重点的に検査し、走査ストライプ402では非導通欠陥を取得するといった検査を行うことが可能となる。このような検査方法でウェーハ全面検査を行うと、ショート欠陥と非導通欠陥を同時に取得された被検査対象試料の欠陥分布を取得することが可能となる。
 また、走査ストライプ401,402に設定する検査条件を、実施例1~3で説明した複数の検査条件を検出可能な検査条件に各々設定すれば、それだけ多数の種類の欠陥を検出することが可能となる。
 図17ではメモリセルの横一列を同一条件で検査しているが、図18のように被検査対象のウェーハ全面のマクロ的な領域を複数の検査条件で検査してもよいし(図中右側が検査条件1にて検査する検査領域1で、図中右側が検査条件2にて検査する検査領域2)、図19のようにメモリセル一つずつを複数の検査条件で検査してもよい。
 本実施例の検査フローを図20に示す。
 第1のステップで、欠陥部1を識別する検査条件1の決定と、欠陥部2を識別する検査条件2の決定を行う。
 第2のステップで、検査条件1を行う検査領域1の設定と、検査条件2を行う検査領域2の設定を行う。
 第3のステップで、ステージ駆動させ、検査を開始する。検査領域1を検査条件1にて検査を開始する。例えば、ここでは重点的にショート欠陥が取得される。
 第4のステップで、検査領域2を検査する前に、検査条件1から検査条件2に切り替えた後、検査条件2にて検査領域2を検査する。検査条件を切り替える時は、ステージ駆動を止めても良いし、止めなくても良い。例えば、ここでは重点的に非導通欠陥が取得される。
 なお、以上の説明は、ステージ連続移動方式の検査装置を前提として説明したが、ステップアンドリピート方式の検査装置でも同様の機能は実現可能である。ただし、図17や図19に示すようなメモリマットの検査画像を取得するためには、メモリマットのサイズ単位で試料ステージの移動を制御する必要があり、ステージ移動の制御精度の制約上、ステージ連続移動方式の方が有利である。
 本実施例では、実施例1~4で説明した各検査装置を操作するために必要となる入力画面の例について説明する。なお、以下に説明する操作画面は、全て図6の画面表示手段31に表示されるものとする。
 図21は、検査条件を設定するためのレシピ設定画面の例を示す図である。子ウィンドウ200には、ウェーハ上の検査領域を決めるための試料マップ201および、検査を行う領域223を設定するための領域設定ボタン202や設定した領域を解除する領域解除ボタン203を備える。
 子ウィンドウ204には、検査画素サイズpを設定する画素サイズ設定部205と、単位時間当たりのドーズ量Qを設定するドーズ量設定部206と、加算回数Nを設定する加算回数設定部207と、サンプリング速度を設定するサンプリング速度設定部208と、照射間隔を設定する照射間隔設定部209と、重み付き平均処理の実行可否を選択する重み付き平均処理選択部210と、自動処理シーケンス処理用パラメータを変更するための子ウィンドウ310を表示するためのボタン308と、自動処理シーケンス処理58を行うかを判定するチェックボックス309と、重み付き平均処理の詳細設定画面をポップアップ表示させるための詳細設定ボタン211と、画像取得を開始させる画像取得開始ボタン212を含んで構成される。
 詳細設定ボタン211を押すと、例えば、図22に示すような子ウィンドウ300が画面上に表示される。子ウィンドウ300は、設定されたライン加算回数のうちn番目の走査による画像信号に対して重み付け係数を設定するための画面であり、n番目の画素データを決める設定回数表示部301と、重み付け係数設定部302とを含んで構成される。ボタン308を押すと、例えば、図24に示すような子ウィンドウ310が画面上に表示される。子ウィンドウ310には、ドーズ量Qの自動可変量ΔQの設定部311と、初期値Qmin設定部312と、最終値Qmax設定部313と、照射する間隔T2の自動可変量ΔT設定部314と、初期値Tmin設定部315、最終値Tmax設定部316を有する。
 子ウィンドウ213は、第1の検査条件に対する欠陥判定の閾値を設定する第1検査閾値設定部214と、第2の検査条件に対する欠陥判定の閾値を設定する第2検査閾値設定部215と、検査開始ボタン216と、検査停止ボタン217とを含んで構成される。
 画像取得開始ボタン212と検査開始ボタン216が表示されているが、画像取得動作と検査は同時に行うことも可能であるので、ひとつのボタンに統一してもよい。
 子ウィンドウ218には、検査時間にかかる予想時間を表示させる検査予想時間表示部219と、実際の検査時間を表示させる実検査時間表示部220と、欠陥の数を表示する欠陥数表示部221,222を備える。
 尚、上記例では、同一画面上に二つの欠陥部を検出するための検査条件を設定する部位などを示したが、別ウィンドウにしてもよいし、別タブ画面にしてもよい。
 次に、被検査対象の領域によって検査条件を設定する際の操作画面について説明する。例えば、図23のような操作画面にて可能である。子ウィンドウ300には、欠陥部1(54)を検出するための条件1にて検査する領域301を設定する領域1設定部304と、欠陥部2(55)を検出するための条件2にて検査する領域302を設定する領域2設定部305と、前記設定された領域を解除する領域1設定解除部305,領域2設定解除部306で構成される。
 図23の子ウィンドウ300には、被検査対象ウェーハ全面を表示してあるが、図17や図19のようなメモリセルのマップでもよい。
 検査条件1または検査条件2の二つの条件設定は、子ウィンドウ204が二つ表示されることで設定可能である。つまり、領域1の検査条件を設定する部位306と、領域2の検査条件を設定する部位307からなる。
 以上説明した各設定部位で入力された情報は、制御部30に直接あるいは画面表示手段31に備えられた演算装置により適当な前処理を施された後に、通信ケーブル33を介して伝送される。また、制御部30は、上記伝送された情報を元に、実施例1や実施例2で説明した各種の走査偏向制御あるいは画像信号の処理を行う。
 以上、各実施例で説明した装置の操作画面について説明したが、本発明の範囲は上述の操作画面には限定されず、特許請求の範囲に記載された発明の範囲にて様々な変更が可能である。
0 電子源
1 電子銃光学レンズ
2 電子銃
3 対物レンズ
4 試料ステージ
5 偏向器
6 検出器
7 被検査試料
8,14 アンプ
9 D/Aコンバータ
10 信号生成部
11 信号幅設定部
12 信号間隔設定部
13 信号量設定部
15 A/Dコンバータ
16 データ処理部
17,18 画像メモリ
19 比較演算部
20 欠陥判定部
21 画像表示保存部
22 画像処理部
23 重み付け部
24,26 セレクタ
25 加算部
27 割り算部
28 メモリ
29 重み付き平均処理部
30 制御部
31 画面表示手段
32,33,34,43 通信ケーブル
35 偏向情報伝送路
36 偏向情報命令部
37 ルックアップテーブル
38 重み付き量調整部
39 メモリ制御部
40 セレクタ制御部
41 欠陥数保存部
42 上位制御部
51 基板
52 絶縁部
53 正常部
54 欠陥部1
55 欠陥部2
56 絶縁膜
57 導通部
58 自動シーケンス処理
59 繰り返し処理
200 検査領域設定子ウィンドウ
201 試料マップ
202 検査領域設定ボタン
203 検査領域解除ボタン
204 画像取得条件設定子ウィンドウ
205 検査画素サイズを設定する部位
206 ドーズ量設定部
207 加算回数設定部
208 サンプリング速度設定部
209 照射間隔設定部
210 重み付き平均処理選択部
211 詳細設定ボタン
212 画像取得開始ボタン
213,218,300,310 子ウィンドウ
214 第1検査閾値設定部
215 第2検査閾値設定部
216 検査開始ボタン
217 検査停止ボタン
219 検査予想時間表示部
220 実検査時間表示部
221,222 欠陥数表示部
301 設定回数表示部
302 重み付け係数設定部
304 領域1設定部
305 領域2設定部
306 領域1設定解除部
307 領域2設定解除部
308 ボタン
309 チェックボックス
311 ドーズ量Qの自動可変量ΔQの設定部
312 初期値Qmin設定部
313 最終値Qmax設定部
314 T2の自動可変量ΔT設定部
315 初期値Tmin設定部
316 最終値Tmax設定部
400 メモリマット
401,402 走査ストライプ
403 メモリマット列1
404 メモリマット列2

Claims (14)

  1.  設定された光学条件に従って一次荷電粒子ビームを被検査試料上に走査し、検出される二次荷電粒子に基づく画像信号を出力する荷電粒子光学カラムと、
     前記被検査試料上の同一箇所に複数回の走査が実行された場合に、当該複数回の走査に基づき出力される各々の画像信号に対して重み付き平均処理を実行するデータ処理部とを有し、
     当該重み付き平均処理が実行された画像信号を用いて前記被検査試料を検査することを特徴とする荷電粒子線装置。
  2.  請求項1に記載の荷電粒子線装置において、
     前記被検査試料を載置する試料台と、
     当該試料台を所定方向に移動させる試料ステージとを有し、
     当該試料ステージの連続的な移動と、該試料ステージの移動方向と交差する方向への一次荷電粒子ビームの走査とにより形成される走査ストライプを前記被検査試料上に配置し、当該走査ストライプから前記画像信号を取得することを特徴とする荷電粒子線装置。
  3.  請求項1に記載の荷電粒子線装置において、
     前記被検査試料を載置する試料台と、
     当該試料台を所定方向に移動させる試料ステージとを有し、
     当該試料ステージを移動させることにより前記荷電粒子光学カラムの視野を前記被検査試料上の検査位置に移動させ、
     前記試料ステージが静止した状態で前記画像信号を取得することを特徴とする荷電粒子線装置。
  4.  請求項2に記載の荷電粒子線装置において、
     前記試料ステージの移動方向とは逆向きのビーム偏向を前記走査中に行うことにより、同一箇所への複数回の走査を前記走査ストライプ内で実行することを特徴とする荷電粒子線装置。
  5.  請求項4に記載の荷電粒子線装置において、
     前記一次荷電粒子ビームの走査およびビーム偏向を制御する制御部を有することを特徴とする荷電粒子線装置。
  6.  請求項1に記載の荷電粒子線装置において、
     前記光学条件を設定するための操作画面が表示される画面表示手段を有し、
     前記同一箇所に対する一次荷電粒子ビームの走査回数と、当該一次荷電粒子ビームの各走査に対する重み付き平均処理の重み係数を設定するための設定手段が、前記操作画面上に表示されることを特徴とする荷電粒子線装置。
  7.  請求項1に記載の荷電粒子線装置において、
     前記データ処理部は、
     前記複数回の走査のうち1回の走査に対応して出力される画像信号に所定の重み係数を積算する処理を前記複数回の走査に対応して出力される画像信号について繰り返し、更に当該重み係数の積算された画像信号を加算する処理を実行する重み付け平均化処理部を備えたことを特徴とする荷電粒子線装置。
  8.  所定の光学条件に従って一次荷電粒子ビームを被検査試料上に走査し、検出される二次荷電粒子に基づく画像信号を出力する荷電粒子光学カラムと、
     前記一次荷電粒子ビームの走査ライン1本あたりかつ単位時間あたり前記被検査試料に与えるドーズ量が所望の値になるように前記光学条件を制御する荷電粒子光学カラムの制御手段と、
     当該制御された光学条件での走査の結果出力される前記画像信号を用いて前記被検査試料の検査を行うことを特徴とする荷電粒子線装置。
  9.  請求項8に記載の荷電粒子線装置において、
     前記光学条件を設定するための操作画面が表示される画面表示手段を有することを特徴とする荷電粒子線装置。
  10.  請求項8に記載の荷電粒子線装置において、
     前記光学条件の制御が、前記一次荷電粒子ビームの走査速度の制御であることを特徴とする荷電粒子線装置。
  11.  請求項8に記載の荷電粒子線装置において、
     前記光学条件の制御が、同一の走査ラインに対するN回目の一次荷電粒子ビーム走査と、N+1回目の一次荷電粒子ビーム走査との時間間隔の制御であることを特徴とする荷電粒子線装置。
  12.  設定された光学条件に従って一次荷電粒子ビームを被検査試料上に走査し、検出される二次荷電粒子に基づく画像信号を出力する荷電粒子光学カラムと、
     前記画像信号に基づき前記被検査試料上に存在する欠陥または異物を検出する欠陥判定部とを有する荷電粒子線装置において、
     複数の前記光学条件あるいは前記画像信号の検出条件により検出された前記画像信号に基づき、前記欠陥または異物の数と前記検査条件との関係を少なくとも2種類以上の前記欠陥または異物に対して抽出する欠陥判定部を更に有することにより、
     前記少なくとも2種類以上の欠陥または異物を1回の検査シーケンスで検出可能な検出条件を提示する機能を備えることを特徴とする荷電粒子線装置。
  13.  請求項12に記載の荷電粒子線装置において、
     前記欠陥または異物の検査条件を設定するためのレシピ設定画面が表示される画面表示手段を有し、
     前記少なくとも2種類以上の前記欠陥または異物に対する前記欠陥または異物の数と前記検査条件との関係が前記レシピ設定画面に表示されることを特徴とする荷電粒子線装置。
  14.  設定された光学条件に従って一次荷電粒子ビームを被検査試料上に走査し、検出される二次荷電粒子に基づく画像信号を用いた試料検査方法において、
     前記一次荷電粒子ビームを前記被検査試料上の同一箇所に複数回走査させ、
     当該複数回走査のうち1の走査に対応して検出される画像信号に対して所定の重み係数を積算する処理を前記複数回走査に対応して得られる画像信号に対して繰り返し、
     前記重み係数が積算された前記複数回走査に対応して得られる画像信号を加算し、
     前記加算処理が行われた画像信号を用いて前記被検査試料を検査することを特徴とする試料検査方法。
PCT/JP2010/006530 2010-01-28 2010-11-08 荷電粒子線装置 WO2011092770A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010016147A JP2011154918A (ja) 2010-01-28 2010-01-28 荷電粒子線装置
JP2010-016147 2010-01-28

Publications (1)

Publication Number Publication Date
WO2011092770A1 true WO2011092770A1 (ja) 2011-08-04

Family

ID=44318784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006530 WO2011092770A1 (ja) 2010-01-28 2010-11-08 荷電粒子線装置

Country Status (2)

Country Link
JP (1) JP2011154918A (ja)
WO (1) WO2011092770A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112714942A (zh) * 2018-09-18 2021-04-27 Asml荷兰有限公司 用于检测快充电设备中的时间相关缺陷的装置和方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7106299B2 (ja) * 2018-03-06 2022-07-26 株式会社ニューフレアテクノロジー 電子ビーム検査装置及び電子ビーム走査のスキャン順序取得方法
JP7403530B2 (ja) 2018-08-28 2023-12-22 エーエスエムエル ネザーランズ ビー.ブイ. 時間依存欠陥検査装置
JP7285728B2 (ja) 2019-08-07 2023-06-02 株式会社日立ハイテク 電気特性を導出するシステム及び非一時的コンピューター可読媒体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294345A (ja) * 1996-03-05 1998-11-04 Hitachi Ltd 回路パターンの検査方法及び検査装置
JP2000208085A (ja) * 1999-01-08 2000-07-28 Schlumberger Technol Inc 低電圧粒子ビ―ムを用いた半導体検査用の電圧コントラスト方法及び装置
JP2002353279A (ja) * 2001-05-25 2002-12-06 Hitachi Ltd 回路パターン検査方法とその装置
JP2005292157A (ja) * 2005-06-03 2005-10-20 Hitachi High-Technologies Corp ウェハ欠陥検査方法及びウェハ欠陥検査装置
JP2008135733A (ja) * 2006-10-31 2008-06-12 Hitachi High-Technologies Corp 半導体ウェーハ検査装置、及びその検査方法
JP2009194240A (ja) * 2008-02-15 2009-08-27 Hitachi High-Technologies Corp 走査電子顕微鏡を備えた外観検査装置及び走査電子顕微鏡を用いた画像データの処理方法
JP2010067533A (ja) * 2008-09-12 2010-03-25 Hitachi High-Technologies Corp 基板の検査装置、および、基板の検査方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294345A (ja) * 1996-03-05 1998-11-04 Hitachi Ltd 回路パターンの検査方法及び検査装置
JP2000208085A (ja) * 1999-01-08 2000-07-28 Schlumberger Technol Inc 低電圧粒子ビ―ムを用いた半導体検査用の電圧コントラスト方法及び装置
JP2002353279A (ja) * 2001-05-25 2002-12-06 Hitachi Ltd 回路パターン検査方法とその装置
JP2005292157A (ja) * 2005-06-03 2005-10-20 Hitachi High-Technologies Corp ウェハ欠陥検査方法及びウェハ欠陥検査装置
JP2008135733A (ja) * 2006-10-31 2008-06-12 Hitachi High-Technologies Corp 半導体ウェーハ検査装置、及びその検査方法
JP2009194240A (ja) * 2008-02-15 2009-08-27 Hitachi High-Technologies Corp 走査電子顕微鏡を備えた外観検査装置及び走査電子顕微鏡を用いた画像データの処理方法
JP2010067533A (ja) * 2008-09-12 2010-03-25 Hitachi High-Technologies Corp 基板の検査装置、および、基板の検査方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112714942A (zh) * 2018-09-18 2021-04-27 Asml荷兰有限公司 用于检测快充电设备中的时间相关缺陷的装置和方法

Also Published As

Publication number Publication date
JP2011154918A (ja) 2011-08-11

Similar Documents

Publication Publication Date Title
JP5286004B2 (ja) 基板の検査装置、および、基板の検査方法
JP6907257B2 (ja) 電子ビーム装置
KR101411119B1 (ko) 하전 입자 빔 현미경
US7829853B2 (en) Sample surface observation method
JP5124002B2 (ja) 半導体ウェーハ検査装置、及びその検査方法
US20100181480A1 (en) Charged particle beam device
WO2010013612A1 (ja) 回路パターン検査装置、および回路パターンの検査方法
JP2007329337A (ja) 半導体ウェーハ検査装置および半導体ウェーハ検査方法
US10879037B2 (en) Charged particle beam device with distance setting between irradiation regions in a scan line
JP5174844B2 (ja) 回路パターン検査装置およびその検査方法
TWI758743B (zh) 圖像生成方法,非暫態性電腦可讀媒體,及系統
WO2016017561A1 (ja) 荷電粒子線装置
JP5932428B2 (ja) 走査電子顕微鏡
WO2011092770A1 (ja) 荷電粒子線装置
US20120091339A1 (en) Charged-particle microscope device, and method of controlling charged-particle beams
US9978558B2 (en) Scanning-electron-microscope image processing device and scanning method
JP4746659B2 (ja) 回路パターンの検査方法
WO2013011792A1 (ja) 試料の検査条件・測定条件の自動判定方法及び走査型顕微鏡
JP4857240B2 (ja) 半導体ウェーハ検査装置
JP6995648B2 (ja) 計測検査装置
JP2016139531A (ja) 試料の観察、検査、測定方法、及び走査電子顕微鏡
JP4537111B2 (ja) 電子ビームを用いた検査方法及び検査装置
JP5500868B2 (ja) 走査電子顕微鏡、および走査電子顕微鏡における像表示方法
JP2017199451A (ja) 荷電粒子線装置
JPH0450778A (ja) 固体撮像装置の検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844539

Country of ref document: EP

Kind code of ref document: A1