WO2011089981A1 - 信号生成装置および信号生成方法 - Google Patents

信号生成装置および信号生成方法 Download PDF

Info

Publication number
WO2011089981A1
WO2011089981A1 PCT/JP2011/050543 JP2011050543W WO2011089981A1 WO 2011089981 A1 WO2011089981 A1 WO 2011089981A1 JP 2011050543 W JP2011050543 W JP 2011050543W WO 2011089981 A1 WO2011089981 A1 WO 2011089981A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling frequency
filter
signal generation
signal
generation device
Prior art date
Application number
PCT/JP2011/050543
Other languages
English (en)
French (fr)
Inventor
裕康 佐野
浩志 富塚
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP11734588.4A priority Critical patent/EP2528231B1/en
Priority to US13/574,069 priority patent/US20120313671A1/en
Priority to JP2011550891A priority patent/JP5665770B2/ja
Publication of WO2011089981A1 publication Critical patent/WO2011089981A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/0248Filters characterised by a particular frequency response or filtering method
    • H03H17/0264Filter sets with mutual related characteristics
    • H03H17/0273Polyphase filters
    • H03H17/0275Polyphase filters comprising non-recursive filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • H03H17/0621Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
    • H03H17/0635Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies
    • H03H17/0642Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies the ratio being arbitrary or irrational

Definitions

  • the present invention relates to a signal generation device and a signal generation method for generating a signal obtained by converting a sampling frequency based on a sampled input signal.
  • sampling frequency conversion that converts a signal sampled at one sampling frequency into a signal sampled at another sampling frequency may be performed.
  • a conventional sampling frequency conversion method will be described.
  • sampling frequency conversion is performed using an oversampling polyphase filter.
  • the oversampling polyphase filter is a filter used to generate a signal having a sampling frequency M times, and M filters each having a tap coefficient set so as to generate a filter H having a desired filter characteristic. Use a filter bank. Then, the signals output from each filter bank are periodically selected at equal time intervals to be output signals, whereby filtering processing and sampling frequency conversion can be performed.
  • the tap coefficients of the four sub-filters are obtained by extracting the tap coefficients of the desired filter H at regular intervals by shifting the base points.
  • the tap coefficients of the filter banks are set according to the characteristics of the filter H, and four filter banks are set to F1, F2, F3, and F4 at equal time intervals within the sampling interval of the input signal.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a signal generation device and a signal generation method capable of performing sampling frequency conversion at an arbitrary ratio with a simple configuration.
  • the present invention includes a filter unit that performs sampling frequency conversion on an input signal having a predetermined sampling frequency and generates the signal after the sampling frequency conversion as an output signal.
  • the signal generation apparatus and the signal generation method according to the present invention have a fixed frequency of the high-speed clock for operation and include filter bank means, and the filter control means uses the frequency of the high-speed clock for operation and the sampling frequency of the output signal. Based on the ratio, a tap coefficient set to be set in the filter bank means is selected, and the output after the filter bank means performs filtering using the selected set of tap coefficients is used as the output signal after the sampling conversion. Since it did in this way, there exists an effect that sampling frequency conversion of arbitrary ratios can be performed with a simple structure.
  • FIG. 1 is a diagram illustrating a functional configuration example of the signal generation device according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the filter bank.
  • FIG. 3 is a diagram illustrating an example of the switching operation of the switching unit.
  • FIG. 4A is a diagram illustrating an example of a tap coefficient corresponding to an impulse response with a desired filter characteristic H of 16 times oversample.
  • FIG. 4B is a diagram of an example of the filter bank tap coefficient set (H 0 ).
  • FIG. 4C is a diagram illustrating an example of a filter bank tap coefficient set (H 4 ).
  • FIG. 4-4 is a diagram illustrating an example of a filter bank tap coefficient set (H 8 ).
  • FIG. 1 is a diagram illustrating a functional configuration example of the signal generation device according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the filter bank.
  • FIG. 3 is a diagram illustrating an example of the switching operation of the switching
  • FIG. 4-5 is a diagram illustrating an example of a filter bank tap coefficient set (H 12 ).
  • FIG. 5 is a diagram illustrating a configuration example of the control signal generation unit.
  • FIG. 6 is a diagram illustrating an example of the operation when the ratio between the frequency of the high-speed clock and the sampling frequency of the output signal is four times.
  • FIG. 7 is a diagram showing an example of the operation when the ratio between the frequency of the high-speed clock for operation and the sampling frequency of the output signal is smaller than four times.
  • FIG. 8 is a diagram illustrating an example of the operation when the ratio between the frequency of the high-speed clock for operation and the sampling frequency of the output signal is double.
  • FIG. 9 is a diagram illustrating a functional configuration example of the signal generation device according to the second embodiment.
  • FIG. 10 is a diagram illustrating a functional configuration example of the signal generation device according to the third embodiment.
  • FIG. 11 is a diagram illustrating a configuration example of the averaging processing unit.
  • FIG. 1 is a diagram illustrating a functional configuration example of a first embodiment of a signal generation device according to the present invention.
  • the signal generation device 1 according to the present embodiment performs a sampling frequency conversion process on an input signal X n (n indicates a sampling number) having a predetermined sampling frequency, and a signal Ym (m after the sampling frequency conversion process) (Sample number after sampling frequency conversion processing) is output.
  • the signal generator 1 of the present embodiment includes a filter bank 2-0 to 2- (L-1) (L is an integer of 1 or more), a control signal generator (control means) 3 And a switching unit 4.
  • FIG. 2 is a diagram illustrating a configuration example of the filter banks 2-0 to 2- (L-1).
  • the filter banks 2-0 to 2- (L-1) have the same configuration, and include a shift register 10, multipliers 11-0 to 11-4, and an adder 12.
  • the multipliers 11-0 to 11-4 constitute a coefficient multiplication unit 13.
  • the configuration of the filter banks 2-0 to 2- (L-1) is the same as that of an ordinary FIR (Finite Impulse Response) filter.
  • the shift register 10 generates signals X n , X n ⁇ 1 , X n ⁇ 2 , X n ⁇ 3 , and X n ⁇ 4 delayed by one sample with respect to the input signal X n .
  • Multiplier 11-0 multiplies Xn by tap coefficient C0
  • multiplier 11-1 multiplies Xn-1 by tap coefficient C1
  • multiplier 11-2 multiplies Xn-2 by tap coefficient C1.
  • the multiplier 11-3 multiplies Xn-3 by the tap coefficient C3, and the multiplier 11-4 multiplies Xn-4 by the tap coefficient C4.
  • the adding unit 12 adds the outputs of the multipliers 11-0 to 11-4 and outputs the result to the switching unit 4.
  • FIG. 3 is a diagram illustrating an example of the switching operation of the switching unit 4.
  • the frequency of the operation clock is made the same as the sampling frequency of the output signal (the converted sampling frequency after the sampling frequency conversion), and the filter bank is switched based on the operation clock ( By switching the filter bank to be selected as the output signal, it is possible to generate an output signal having a post-conversion sampling frequency.
  • fclk and fout are not necessarily the same because the high-speed clock frequency fclk for operation is fixed and the sampling frequencies fout of a plurality of output signals are supported. Therefore, in this embodiment, the filter bank to be selected is changed by fclk / fout.
  • L 16
  • the sampling frequency can be converted up to 16 times the input signal Xn . Therefore, the high-speed clock frequency fclk for operation may be any frequency that is 16 times or more the sampling frequency of the input signal, but here the high-speed clock frequency fclk is set to a sampling frequency 16 times that of the input signal.
  • the sampling frequency of the input signal Xn is fixed.
  • sampling frequency conversion is performed using four filter banks.
  • four filter banks 2-0, 2-4, 2-8, and 2-12 H 0 , H 4 , H 8 , H 12 ) are selected.
  • the filter banks 2-0 to 2- (L-1) a set of tap coefficients H 0 to H L-1 in which a desired filter characteristic H is extracted from the tap coefficients corresponding to each filter bank is set.
  • the tap coefficients set in each filter bank are 5 (C0, C1, C2, C3, C4).
  • H 0 ⁇ h (0,0), h (0,1), h (0,2), h (0,3), h (0,4) ⁇
  • H 1 ⁇ h (1, 0), h (1, 1), h (1, 2), h (1, 3), h (1, 4) ⁇
  • H 2 ⁇ h (2, 0), h (2, 1), h (2, 2), h (2, 3), h (2, 4), ...
  • H 4 ⁇ h (4, 0), h (4, 1), h (4, 2), h ( 4,3), h (4,4) ⁇ , ...
  • H 15 ⁇ h (15,0), h (15,1), h (15,2), h (15,3), h (15 , 4) ⁇ .
  • H 0 to H L-1 is a set of tap coefficients obtained by extracting tap coefficients corresponding to a desired filter characteristic H at equal intervals (L intervals) by changing the start points one by one. It is a set of tap coefficients obtained by polyphase decomposition of the filter characteristic H.
  • FIG. 3 shows four filter banks 2-0, 2-4, 2-8, and 2-12 (corresponding to H 0 , H 4 , H 8 , and H 12 respectively) are selected and four filter banks are selected.
  • movement which switches in order is shown.
  • FIG. 4A shows an example of all tap coefficients corresponding to the impulse response of the desired filter characteristic H with 16 times oversampling.
  • FIG. 4B shows a set of tap coefficients of the filter bank 2-0. (H 0) indicates, Figure 4-3 shows a set of tap coefficients of the filter bank 2-4 (H 4), Figure 4-4, set of tap coefficients of the filter bank 2-8 (H 8) 4-5 shows a set of tap coefficients (H 12 ) of the filter bank 2-12.
  • the tap coefficients of the filter banks 2-0, 2-4, 2-8, and 2-12 are all tap coefficients corresponding to the impulse response of the desired filter characteristic H. Are extracted at equal intervals (L intervals) by shifting the start point by four points. Therefore, as shown in FIG. 3, the switching unit 4 switches four of the filter banks 2-0, 2-4, 2-8, and 2-12 at a time interval corresponding to fout, whereby 1 of fclk is obtained.
  • An output signal Y m having a sampling frequency of / 4 can be generated.
  • the sampling frequency fout of the output signal is set in the control signal generation unit 3, and the control signal generation unit 3 generates a control signal for the switching unit 4 based on the fout, as will be described later.
  • the unit 4 switches the filter bank to be selected based on the control signal.
  • the process of the control signal generation unit 3 will be described.
  • FIG. 5 is a diagram illustrating a configuration example of the control signal generation unit 3.
  • the control signal generation unit 3 includes a phase generation unit 31, a shift register enable generation unit 32, and a filter control unit 33.
  • the control signal generation unit 3 operates with a high-speed clock (frequency fclk) for operation.
  • the control signal generator 3 receives a sampling frequency setting (phase) that is a value determined by the ratio between the frequency of the high-speed clock and the output sampling frequency.
  • the output sampling frequency may be input to the control signal generation unit 3, and the control signal generation unit 3 may calculate the sampling frequency setting (phase).
  • Sampling frequency setting (phase) ⁇ P is a value calculated based on the following equation (1). Note that ⁇ P is not necessarily an integer.
  • ⁇ P L / (fclk / fout) (1)
  • fclk / fout 4
  • the sampling frequency setting (phase) ⁇ P 4.
  • the phase of 0 to 2 ⁇ is expressed as a value that is linearly converted to a value of 0 to (L ⁇ 1), and ⁇ P is also expressed as a converted phase.
  • the phase generation unit 31 integrates the phase based on the input sampling frequency setting (phase), and uses the result (0 to (L ⁇ 1)) obtained by performing the modulo L operation on the integration result as the output phase. Output.
  • the phase generation unit 31 obtains the output phase P (k) based on ⁇ P, for example, according to the following equation (2).
  • S (0) is 0 here.
  • F (•) is a function that performs processing to round off the decimal point
  • the phase generation unit 31 outputs the output phase P (k) to the shift register enable generation unit 32 and the filter control unit 33.
  • the switching unit 4 performs switching based on this control signal.
  • the shift register enable generation unit 32 generates a shift register enable pulse that instructs updating of the contents of the shift registers 10 of the filter banks 2-0 to 2- (L-1) based on the output phase P (k).
  • the filter banks 2-0 to 2- (L-1) update the value of the shift register 10 to a value based on the next (next sample) input signal based on the shift register enable pulse.
  • the shift register enable pulse generation method of the shift register enable generation unit 32 may be any method as long as the shift register enable pulse is generated once in the sampling period of the input signal.
  • the output phase P (k) compares P (k) with a predetermined threshold value ⁇ in units of high-speed clocks, and P (k) is greater than or equal to ⁇ , one high-speed clock unit This pulse is generated.
  • FIG. 6 is a diagram illustrating an example of the operation when the ratio between the frequency of the high-speed clock and the sampling frequency of the output signal is four times.
  • one out of every four high-speed clock cycles is indicated by a high-speed clock arrow, and the filter banks 2-0 to 2- (L--) are indicated by the clock indicated by the arrow (once every four times). 1) is selected, and output signals from the selected 2-0 to 2- (L-1) are output as output signals after sampling conversion.
  • FIG. 6 shows the set numbers (H 0 , H 4 , H 8 , H 12 ) of tap coefficients of the selected filter bank 2-j and the output phase at that time (phase in FIG. 6).
  • the shift register enable pulse is set between the arrows (for four high-speed clocks), but in practice, it may be set to High for each high-speed clock.
  • the value of ⁇ is not limited to 8, and any value from 0 to L ⁇ 1 can be used.
  • FIG. 7 is a diagram showing an example of the operation when the ratio between the frequency of the high-speed clock for operation and the sampling frequency of the output signal is smaller than four times.
  • L 16
  • the ratio fclk / fout between the frequency of the high-speed clock for operation and the sampling frequency of the output signal is a value 4 + b (for example, 0.5 /
  • An example of operation in the case of 4 ⁇ b ⁇ 0.5 / 3) is shown.
  • the output phase P (k) calculated based on the expression (2) is rounded off to the first four points by rounding off the decimal point of S (k).
  • S (0) 0 (initial value) at the first point
  • P (3) is 12.
  • S (k) is converted to an integer (rounded or rounded down) and a filter bank to be selected is determined, so that the frequency of the high-speed clock for operation and the sampling frequency of the output signal can be reduced.
  • a case where the ratio does not become an integral multiple can also be handled. Therefore, it is possible to cope with a sampling frequency of an arbitrary output signal with a small error by using a limited number of filter banks.
  • FIG. 8 is a diagram showing an example of the operation when the ratio between the frequency of the high-speed clock for operation and the sampling frequency of the output signal is 8 times.
  • ⁇ P 2
  • eight filter banks of filter banks 2-0, 2-2, 2-4, 2-6, 2-8, 2-10, 2-12, and 2-14 are sequentially switched.
  • an output signal having a sampling frequency of 1/8 of the frequency of the high-speed clock for operation is generated.
  • ⁇ P is used to determine the filter banks 2-0 to 2- (L-1) to be selected.
  • the frequency of the high-speed clock for operation, the sampling frequency of the output signal Other methods may be used without using ⁇ P as long as the method performs the same selection (switching) as described above based on the ratio.
  • the control signal generation unit 3 applies the filter bank to the filter unit.
  • a tap coefficient set to be set in a filter bank selected as an output signal is instructed.
  • filter banks 2-0 to 2- (L-1) to be selected are determined based on ⁇ P, that is, the ratio between the frequency of the high-speed clock for operation and the sampling frequency of the output signal.
  • ⁇ P that is, the ratio between the frequency of the high-speed clock for operation and the sampling frequency of the output signal.
  • any method may be used as long as it is a method for determining the filter banks 2-0 to 2- (L-1) based on the sampling frequency of the output signal.
  • the frequency of the high-speed clock for operation is fixed, L filter banks 2-0 to 2- (L-1) corresponding to the maximum oversampling ratio L are provided, and the phase The generation unit 31 determines and designates the filter bank 2-0 to 2- (L-1) to be selected based on the ratio between the frequency of the high-speed clock for operation and the sampling frequency of the output signal, and the switching unit 4
  • the outputs from the filter banks 2-0 to 2- (L-1) are selected and output. Therefore, without combining multiple up-sampling and down-sampling polyphase filters, the frequency of the high-speed clock for operation is fixed with a simple configuration, and sampling frequency conversion of any oversampling ratio up to the maximum oversampling ratio It can be performed.
  • FIG. FIG. 9 is a diagram illustrating a functional configuration example of the second embodiment of the signal generation device according to the present invention.
  • the signal generation device 1 a according to the present embodiment includes a filter bank 2 and a control signal generation unit 5.
  • the filter bank 2 has the same configuration as the filter banks 2-0 to 2- (L-1) of the first embodiment. In the first embodiment, L filter banks are provided, but in the signal device 1a of the present embodiment, one filter bank 2 is used.
  • the control signal generation unit 5 includes a phase generation unit 51, a shift register enable generation unit 52, and a tap coefficient generation unit (filter control means) 53.
  • the operation is performed with the high-speed clock fclk corresponding to the maximum oversampling ratio.
  • the maximum oversampling ratio L (resolution) is assumed to be 16.
  • the phase generation unit 51 of the control signal generation unit 5 has a sampling frequency setting (phase) ⁇ P determined by the ratio of the frequency of the high-speed clock and the output sampling frequency. Entered.
  • the phase generation unit 51 obtains the output phase P (k) similarly to the phase generation unit 31 of the first embodiment, and outputs it to the shift register enable generation unit 52 and the tap coefficient generation unit 53.
  • the operation of the shift register enable generation unit 52 is the same as the operation of the shift register enable generation unit 32 of the first embodiment.
  • the coefficient multiplier 13 of the filter bank 2 sets the set of tap coefficients output from the tap coefficient generator 53 as tap coefficients (C0 to C4).
  • the filter bank 2 outputs a signal filtered using the tap coefficient set H j as the output signal Ym after the sanding frequency conversion.
  • the operations of the present embodiment other than those described above are the same as those of the first embodiment.
  • one filter bank 2 is provided, and the tap coefficient generation unit 53 holds a set of tap coefficients H 0 to H 12 and is calculated in the same manner as in the first embodiment. Based on (k), a set of tap coefficients is selected, and the coefficient multiplier 13 of the filter bank 2 sets the selected set of tap coefficients. Therefore, the same effect as in the first embodiment can be obtained by using one filter bank, and the configuration can be simplified as compared with the first embodiment.
  • FIG. 10 is a diagram illustrating a functional configuration example of the signal generation device according to the third embodiment of the present invention.
  • the signal generation device 1 b according to the present embodiment includes a signal generation unit 6 and an averaging processing unit 7.
  • the signal generation unit 6 has the same configuration as the signal generation device 1 of the first embodiment or the signal generation device 1a of the second embodiment.
  • the sampling frequency setting (phase) ⁇ P is averaged and then input to the control signal generation unit 3 of the first embodiment or the control signal generation unit 5 of the second embodiment.
  • any configuration may be used for the configuration of the averaging processing unit 7 and the averaging processing method, an example using an IIR (Infinite Impulse Response) filter will be described here.
  • FIG. 11 is a diagram illustrating a configuration example of the averaging processing unit 7.
  • the averaging processing unit 7 includes a multiplier 71, an adder 72, a multiplier 73, and a delay unit (D) 74.
  • ⁇ (0 ⁇ ⁇ ⁇ 1) is a gain for setting the smoothing of the filter. Since the process of the averaging process part 7 is the same as the process of a normal IIR filter, description is abbreviate
  • the configuration of the averaging processing unit 7 is not limited to this, and may be realized by other configurations such as a configuration using primary and secondary loop filters. The operations of the present embodiment other than those described above are the same as those in the first or second embodiment.
  • ⁇ P is input to the phase generation unit 51, and ⁇ P is averaged.
  • sampling frequency of the output signal is input to the phase generation unit 51, sampling of the output signal is performed. Average frequency.
  • the signal generation device and the signal generation method according to the present invention are useful for a signal generation device that generates a signal obtained by converting a sampling frequency based on a sampled input signal, and in particular, a signal after conversion. This is suitable when the sampling frequency is not fixed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Analogue/Digital Conversion (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

 所定のサンプリング周波数の入力信号に対してサンプリング周波数変換を行い、サンプリング周波数変換後の信号を出力信号として生成するフィルタバンク(2-0~2-(L-1))と、出力信号のサンプリング周波数を示すサンプリング周波数設定値に基づいて用いるフィルタバンク(2-0~2-(L-1))を選択する制御信号生成部3と、を備え、切替部4は、制御信号生成部3の選択結果に基づいてフィルタバンク(2-0~2-(L-1))を選択する。

Description

信号生成装置および信号生成方法
 本発明は、サンプリングされた入力信号に基づいてサンプリング周波数を変換した信号を生成する信号生成装置および信号生成方法に関する。
 無線通信等では、あるサンプリング周波数でサンプリングされた信号を別のサンプリング周波数でサンプリングされた信号に変換するサンプリング周波数変換が行なわれることがある。以下、従来のサンプリング周波数変換方法について説明する。ここでは、オーバサンプリング・ポリフェーズフィルタを用いてサンプリング周波数変換を行なう場合を説明する。
 オーバサンプリング・ポリフェーズフィルタは、サンプリング周波数をM倍にした信号を生成するために用いるフィルタであり、所望のフィルタ特性を有するフィルタHを生成するように、それぞれタップ係数が設定されたM個のフィルタバンクを用いる。そして、各フィルタバンクから出力される信号を、周期的に等時間間隔で選択して出力信号とすることにより、フィルタリング処理を行うとともにサンプリング周波数変換を行なうことができる。
 たとえば、M=4の場合、所定のサンプリング間隔の入力信号は、M=4個のサブフィルタにそれぞれ入力される。4個のサブフィルタのタップ係数は、所望のフィルタHのタップ係数をそれぞれ基点をずらして等間隔に取り出したものである。4個のサブフィルタをF1~F4とし、F1~F4のタップ係数のセットをそれぞれH0={h(0,0),h(0,1),h(0,2),h(0,3),h(0,4)},H1={h(1,0),h(1,1),h(1,2),h(1,3),h(1,4)},H2={h(2,0),h(2,1),h(2,2),h(2,3),h(2,4)},H3={h(3,0),h(3,1),h(3,2),h(3,3),h(3,4)}とすると、4倍のオーバーサンプルに対応するフィルタHのインパルス応答は、{h(0,0),h(1,0),h(2,0),h(3,0),h(0,1),h(1,1),…}となる。なお、ここでは、FIRフィルタを想定し、各フィルタバンクのタップ係数は、フィルタHの4倍オーバーサンプルに対応するインパルス応答に基づいて設定するとする。
 以上のように、フィルタHの特性に応じて、フィルタバンクのタップ係数を設定しておき、入力信号のサンプリング間隔内で、等時間間隔で4個のフィルタバンクをF1,F2,F3,F4の出力を順番に選択することにより、4倍にサンプリング周波数を変換した出力信号を得ることができる。
西村著 「ディジタル信号処理による通信システム設計」,CQ出版社,pp.79-89(2006年6月)
 しかしながら、上記従来のポリフェーズフィルタを用いたサンプリング変換方法によれば、出力信号を任意のサンプリング周波数に変換する場合には、入力信号のサンプリング周波数およびサンプリング変換処理用の動作クロックの周波数を変える必要がある、という問題があった。
 また、動作クロックが固定周波数の場合に、出力信号のサンプリング周波数を任意の値に設定するためには、オーバサンプリングとダウンサンプリングのポリフェーズフィルタを複数組み合わせて実現する必要がある。そのため、演算規模が増大し、またポリフェーズフィルタのタップ係数の候補数が増大することによりメモリ規模が増大する、という問題があった。
 また、動作クロックが固定周波数の場合に、出力信号のサンプリング周波数を任意の値に設定するためには、ポリフェーズフィルタを構成する際には出力信号のサンプリング周波数に対応した複数のフィルタバンクを用いる必要があるため、演算規模または回路が増大する、という問題があった。
 本発明は、上記に鑑みてなされたものであって、簡易な構成で、任意の比率のサンプリング周波数変換を行なうことができる信号生成装置および信号生成方法を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、所定のサンプリング周波数の入力信号に対してサンプリング周波数変換を行い、前記サンプリング周波数変換後の信号を出力信号として生成するフィルタ手段と、前記出力信号のサンプリング周波数を示すサンプリング周波数設定値に基づいて前記フィルタ手段が用いるタップ係数の組をあらかじめ定めた複数のタップ係数の組から選択する制御手段と、を備え、前記フィルタ手段は、前記制御手段の選択結果に基づいて前記サンプリング周波数変換を生成することを特徴とする。
 本発明にかかる信号生成装置および信号生成方法は、動作用の高速クロックの周波数を固定とし、フィルタバンク手段を備え、フィルタ制御手段が、動作用の高速クロックの周波数と出力信号のサンプリング周波数との比に基づいて、フィルタバンク手段に設定するタップ係数のセットを選択して、選択したタップ係数のセットを用いてフィルタバンク手段がフィルタリングを行った後の出力、をサンプリング変換後の出力信号とするようにしたので、簡易な構成で、任意の比率のサンプリング周波数変換を行なうことができる、という効果を奏する。
図1は、実施の形態1の信号生成装置の機能構成例を示す図である。 図2は、フィルタバンクの構成例を示す図である。 図3は、切替部の切替動作の一例を示す図である。 図4-1は、16倍オーバーサンプルの所望のフィルタ特性Hのインパルス応答に対応するタップ係数の一例を示す図である。 図4-2は、フィルタバンクのタップ係数のセット(H0)の一例を示す図である。 図4-3は、フィルタバンクのタップ係数のセット(H4)の一例を示す図である。 図4-4は、フィルタバンクのタップ係数のセット(H8)の一例を示す図である。 図4-5は、フィルタバンクのタップ係数のセット(H12)の一例を示す図である。 図5は、制御信号生成部の構成例を示す図である。 図6は、高速クロックの周波数と出力信号のサンプリング周波数との比が4倍となる場合の動作の一例を示す図である。 図7は、動作用の高速クロックの周波数と出力信号のサンプリング周波数との比が4倍よりも小さいときの動作の一例を示す図である。 図8は、動作用の高速クロックの周波数と出力信号のサンプリング周波数との比が2倍のときの動作の一例を示す図である。 図9は、実施の形態2の信号生成装置の機能構成例を示す図である。 図10は、実施の形態3の信号生成装置の機能構成例を示す図である。 図11は、平均化処理部の構成例を示す図である。
 以下に、本発明にかかる信号生成装置および信号生成方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明にかかる信号生成装置の実施の形態1の機能構成例を示す図である。本実施の形態の信号生成装置1は、所定のサンプリング周波数の入力信号Xn(nは、サンプリング番号を示す)に対してサンプリング周波数変換処理を実施し、サンプリング周波数変換処理後の信号Ym(mはサンプリング周波数変換処理後のサンプル番号)を出力する。
 図1に示すように、本実施の形態の信号生成装置1は、フィルタバンク2-0~2-(L-1)(Lは1以上の整数)と、制御信号生成部(制御手段)3と、切替部4と、で構成される。図2は、フィルタバンク2-0~2-(L-1)の構成例を示す図である。ここでは、フィルタバンク2-0~2-(L-1)がそれぞれタップ係数を5個使用する場合を例に説明するが、タップ係数の数はこれに限らない。フィルタバンク2-0~2-(L-1)は、それぞれ同様の構成であり、シフトレジスタ10と、乗算器11-0~11-4と、加算部12と、で構成される。また、乗算器11-0~11-4は、係数乗算部13を構成する。
 フィルタバンク2-0~2-(L-1)の構成は、通常のFIR(Finite Impulse Response)フィルタと同様である。シフトレジスタ10は、入力信号Xnに対して、1サンプルずつ遅延させた信号Xn,Xn-1,Xn-2,Xn-3,Xn-4を生成する。乗算器11-0は、Xnにタップ係数C0を乗算し、乗算器11-1は、Xn-1にタップ係数C1を乗算し,乗算器11-2は、Xn-2にタップ係数C2を乗算し、乗算器11-3は、Xn-3にタップ係数C3を乗算し、乗算器11-4は、Xn-4にタップ係数C4を乗算する。加算部12は、乗算器11-0~11-4の出力を加算して切替部4へ出力する。
 図3は、切替部4の切替動作の一例を示す図である。また、図4-1~4-5は、フィルタバンクのタップ係数の一例を示す図である。図3および図4-1~4-5では、L=16(16倍オーバサンプルの分解能)とし、動作用の高速クロック周波数fclkと出力信号のサンプリング周波数foutとの比(fclk/fout)が4の場合の切替動作の一例を示している。
 一般に、従来のポリフェーズフィルタを用いた周波数変換では、動作クロックの周波数を出力信号のサンプリング周波数(サンプリング周波数変換後の変換後サンプリング周波数)と同一とし、動作クロックに基づいて、フィルタバンクを切替える(出力信号として選択するフィルタバンクを切替える)ことにより、変換後サンプリング周波数の出力信号を生成することができる。
 これに対し、本実施の形態では、動作用の高速クロック周波数fclkを固定したままで、複数の出力信号のサンプリング周波数foutに対応するため、fclkとfoutは同一とは限らない。したがって、本実施の形態では、fclk/foutによって、選択対象のフィルタバンクを変更する。ここでは、L=16とし、入力信号Xnに対して最大16倍にサンプリング周波数を変換できる構成としている。したがって、動作用の高速クロック周波数fclkは、入力信号の16倍のサンプリング周波数以上の周波数であればよいが、ここでは、高速クロック周波数fclkは、入力信号の16倍のサンプリング周波数とする。また、ここでは、入力信号Xnのサンプリング周波数は固定とする。
 以上の前提で、fclk/foutが4の場合には、入力信号の4倍のサンプリング周波数に変換することになる。したがって、4つのフィルタバンクを用いてサンプリング周波数変換を行うことになる。ここでは、フィルタバンク2-0,2-4,2-8,2-12(H0,H4,H8,H12)の4つを選択対象とする。フィルタバンク2-0~2-(L-1)には、所望のフィルタ特性Hを各々のフィルタバンクに対応するタップ係数をとりだしたタップ係数のセットH0~HL-1が設定されているとする。ここでは、タップ数を5としているため、各フィルタバンクに設定するタップ係数は5つ(C0,C1,C2,C3,C4)である。
 したがって、H0={h(0,0),h(0,1),h(0,2),h(0,3),h(0,4)},H1={h(1,0),h(1,1),h(1,2),h(1,3),h(1,4)},H2={h(2,0),h(2,1),h(2,2),h(2,3),h(2,4),…,H4={h(4,0),h(4,1),h(4,2),h(4,3),h(4,4)},…,H15={h(15,0),h(15,1),h(15,2),h(15,3),h(15,4)}と表現することができる。また、H0~HL-1は、所望のフィルタ特性Hに対応するタップ係数を、それぞれ1点ずつ始点を変えて等間隔(L個間隔)で抽出したタップ係数のセットであり、所望のフィルタ特性Hをポリフェーズ分解して得られるタップ係数のセットである。
 図3では、フィルタバンク2-0,2-4,2-8,2-12(H0,H4,H8,H12にそれぞれ対応)の4つを選択対象とし、4つのフィルタバンクを順番に切替える動作を示している。また、図4-1は、16倍オーバーサンプルの所望のフィルタ特性Hのインパルス応答に対応する全タップ係数の一例を示しており、図4-2は、フィルタバンク2-0のタップ係数のセット(H0)を示し、図4-3は、フィルタバンク2-4のタップ係数のセット(H4)を示し、図4-4は、フィルタバンク2-8のタップ係数のセット(H8)を示し、図4-5は、フィルタバンク2-12のタップ係数のセット(H12)を示している。
 図4-1~図4-5に示すように、フィルタバンク2-0,2-4,2-8,2-12のタップ係数は、所望のフィルタ特性Hのインパルス応答に対応する全タップ係数を、4点ずつ始点をずらして等間隔(L個間隔)で抽出したものとなる。したがって、図3に示すように、切替部4が、フィルタバンク2-0,2-4,2-8,2-12の4つを、foutに対応する時間間隔で切替えることにより、fclkの1/4のサンプリング周波数の出力信号Ymを生成することができる。
 本実施の形態では、制御信号生成部3に、出力信号のサンプリング周波数foutを設定し、制御信号生成部3が、foutに基づいて後述のように、切替部4に対する制御信号を生成し、切替部4がその制御信号に基づいて、選択するフィルタバンクを切替える。以下、制御信号生成部3の処理について説明する。
 図5は、制御信号生成部3の構成例を示す図である。図5に示すように、制御信号生成部3は、位相生成部31と、シフトレジスタイネーブル生成部32と、フィルタ制御部33と、で構成される。
 制御信号生成部3は、動作用の高速クロック(周波数fclk)で動作している。制御信号生成部3は、高速クロックの周波数と出力サンプリング周波数との比で決定される値であるサンプリング周波数設定(位相)が入力される。なお、制御信号生成部3には、出力サンプリング周波数が入力されることとし、制御信号生成部3が、サンプリング周波数設定(位相)を算出するようにしてもよい。サンプリング周波数設定(位相)ΔPは以下の式(1)に基づいて算出する値とする。なお、ΔPは必ずしも整数である必要はない。
  ΔP=L/(fclk/fout)          …(1)
ここでは、fclk/fout=4であるため、サンプリング周波数設定(位相)ΔP=4となる。
 なお、本実施の形態では、0~2πの位相を0~(L-1)の値に線形に変換した値として表現し、ΔPも変換した位相として表現している。位相生成部31は、入力されたサンプリング周波数設定(位相)に基づき、位相を積分して、積分結果に対してモジュロLの演算を行った結果(0~(L-1))を出力位相として出力する。
 具体的には、位相生成部31は、ΔPに基づいて、たとえば、以下の式(2)に従って出力位相P(k)を求める。なお、ここでは初期値S(0)は0とする。
   S(k)=F{S(k-1)+ΔP)}
   P(k)=modulo{S(k),L}      …(2)
 ここで、F(・)は小数点以下を四捨五入する処理を行う関数であり、kは出力信号のサンプル番号である。したがって、P(k)は、高速クロックの4(=fclk/fout)パルスごとに1回算出すればよい。なお、F(・)は演算の簡素化のために、小数点以下を切り捨てる処理を行う関数であってもよい。
 位相生成部31は、シフトレジスタイネーブル生成部32とフィルタ制御部33に出力位相P(k)を出力する。フィルタ制御部33は、出力位相P(k)に基づいて、P(k)が更新されるたびに、すなわち(高速クロックの4(=fclk/fout)周期に1回)、j=P(k)となるフィルタバンク2-jを選択し、選択したフィルタバンク2-jによるフィルタ処理後の信号Ym(mはサンプル番号)を出力するよう指示する制御信号を切替部4に出力する。切替部4は、この制御信号に基づいて、切替を行う。
 シフトレジスタイネーブル生成部32は、出力位相P(k)に基づいて、フィルタバンク2-0~2-(L-1)のシフトレジスタ10の内容の更新を指示するシフトレジスタイネーブルパルスを生成する。フィルタバンク2-0~2-(L-1)は、シフトレジスタイネーブルパルスに基づいて、シフトレジスタ10の値を次の(次のサンプル)入力信号に基づく値に更新する。シフトレジスタイネーブル生成部32のシフトレジスタイネーブルパルスの生成方法は、入力信号のサンプル周期に1回、シフトレジスタイネーブルパルスを生成するような方法であればどのような方法でもよい。ここでは、一例として、出力位相P(k)が、高速クロック単位でP(k)と所定のしきい値αを比較し、P(k)がα以上となった場合に、1高速クロック単位のパルスを生成することとする。
 図6は、高速クロックの周波数と出力信号のサンプリング周波数との比が4倍となる場合の動作の一例を示す図である。なお、図6では、高速クロックの周期の4回に1回を高速クロックの矢印で示しており、矢印で示したクロック(4回に1回)でフィルタバンク2-0~2-(L-1)が選択され、選択された2-0~2-(L-1)からの出力信号がサンプリング変換後の出力信号として出力される。図6では、選択されるフィルタバンク2-jのタップ係数のセット番号(H0,H4,H8,H12)と、そのときの出力位相(図6では位相)を示している。
 また、図6では、αをL/2=8としており、P(k)=8となったときにシフトレジスタイネーブルパルスをLowからHighにしている。なお、図6では、シフトレジスタイネーブルパルスを矢印から矢印の間(高速クロック4回分)としているが、実際には1高速クロック単位でHighとすればよい。また、αの値は8に限らず、0~L-1の任意の値を用いることができる。
 図7は、動作用の高速クロックの周波数と出力信号のサンプリング周波数との比が4倍よりも小さいときの動作の一例を示す図である。図7では、L=16とし、動作用の高速クロックの周波数と出力信号のサンプリング周波数との比fclk/foutが、4より若干小さく、ΔPが4より若干大きい値4+b(たとえば、0.5/4≦b<0.5/3)となる場合の動作例を示している。
 図7の例の場合、式(2)に基づいて算出される出力位相P(k)は、S(k)の小数点以下が四捨五入されることにより、はじめの4点目までは、図6の例と同じである。たとえば、1点目ではS(0)=0(初期値)、4点目では、S(3)=3×ΔP=3×(4+b)であり、P(3)は12である。一方、5点目では、S(4)=4×ΔP=4×(4+b)となり、四捨五入すると16となる。したがって、P(4)=1となり、5点目では、j=1として、フィルタバンク2-1(タップ係数のセット番号H)が選択される。このようにして、以降、フィルタバンク2-5,2-9,2-13,2-2,2-6,…と入力信号のサンプリング周期ごとに選択対象のフィルタバンクが変更されることになる。
 このように、本実施の形態では、S(k)を整数化(四捨五入または切り捨て)して、選択するフィルタバンクを決定することにより、動作用の高速クロックの周波数と出力信号のサンプリング周波数との比が整数倍にならない場合にも対応することができる。したがって、限られた個数のフィルタバンクを用いて、少ない誤差で任意の出力信号のサンプリング周波数に対応することができる。
 図8は、動作用の高速クロックの周波数と出力信号のサンプリング周波数との比が8倍のときの動作の一例を示す図である。図8は、L=16とし、fclk/fout=8であるため、動作用の高速クロックの周波数の1/8のサンプリング周波数の出力信号に変換する場合に相当する。この場合、ΔP=2であり、フィルタバンク2-0,2-2,2-4,2-6,2-8,2-10,2-12,2-14の8つのフィルタバンクを順次切替えることにより、動作用の高速クロックの周波数の1/8のサンプリング周波数の出力信号を生成する。
 なお、本実施の形態では、ΔPを用いて、選択するフィルタバンク2-0~2-(L-1)を決定するようにしたが、動作用の高速クロックの周波数と出力信号のサンプリング周波数との比に基づいて、上記と同様の選択(切替)を行う方法であれば、ΔPを用いずに他の方法を用いてもよい。
 なお、本実施の形態のフィルタバンク2-0~2-(L-1)と切替部4とを1つのフィルタ手段と考えると、制御信号生成部3は、このフィルタ手段に対して、フィルタバンク2-0~2-(L-1)を選択することにより出力信号として選択するフィルタバンクに設定するタップ係数のセットを指示していると考えることができる。
 なお、本実施の形態では、ΔP、すなわち動作用の高速クロックの周波数と出力信号のサンプリング周波数との比に基づいて選択するフィルタバンク2-0~2-(L-1)を決定するようにしたが、出力信号のサンプリング周波数に基づいてフィルタバンク2-0~2-(L-1)を決定する方法であればこれに限らずどのような方法を用いてもよい。
 このように、本実施の形態では、動作用の高速クロックの周波数を固定とし、最大のオーバサンプリング比Lに対応するL個のフィルタバンク2-0~2-(L-1)を備え、位相生成部31が、動作用の高速クロックの周波数と出力信号のサンプリング周波数との比に基づいて、選択するフィルタバンク2-0~2-(L-1)を決定して指示し、切替部4が、指示に基づいて、フィルタバンク2-0~2-(L-1)からの出力を選択して、出力するようにした。そのため、複数のアップサンプリングおよびダウンサンプリングのポリフェーズフィルタを組み合わせることなく、簡易な構成で、動作用の高速クロックの周波数を固定とし、最大のオーバサンプリング比までの任意のオーバサンプリング比のサンプリング周波数変換を行うことができる。
実施の形態2.
 図9は、本発明にかかる信号生成装置の実施の形態2の機能構成例を示す図である。本実施の形態の信号生成装置1aは、フィルタバンク2と、制御信号生成部5と、で構成される。フィルタバンク2は、実施の形態1のフィルタバンク2-0~2-(L-1)と同様の構成を有する。実施の形態1では、L個のフィルタバンクを備えたが、本実施の形態の信号装置1aでは、1つのフィルタバンク2を用いる。
 以下、実施の形態1と異なる点を説明する。制御信号生成部5は、位相生成部51と、シフトレジスタイネーブル生成部52と、タップ係数生成部(フィルタ制御手段)53と、で構成される。本実施の形態では、最大オーバサンプリング比に対応する高速クロックfclkで動作しているとする。ここでは、最大オーバサンプリング比L(分解能)を16として説明する。
 制御信号生成部5の位相生成部51には、実施の形態1の位相生成部31と同様に、高速クロックの周波数と出力サンプリング周波数との比で決定される、サンプリング周波数設定(位相)ΔPが入力される。ΔPの算出方法は、実施の形態1と同様である。L=16,fclk/fout=4とすると、ΔP=4である。位相生成部51は、実施の形態1の位相生成部31と同様に出力位相P(k)を求め、シフトレジスタイネーブル生成部52とタップ係数生成部53に出力する。
 シフトレジスタイネーブル生成部52の動作は、実施の形態1のシフトレジスタイネーブル生成部32の動作と同様である。タップ係数生成部53は、実施の形態1で示したH0~H12のタップ係数のセットを保持している。タップ係数生成部53は、出力位相P(k)に基づいて、j=P(k)となるタップ係数のセットHjを選択し、選択したタップ係数のセットをフィルタバンク2の係数乗算部13に出力する。フィルタバンク2の係数乗算部13は、タップ係数生成部53から出力されたタップ係数のセットをタップ係数(C0~C4)として設定する。そして、フィルタバンク2からは、タップ係数のセットHjを用いてフィルタリングされた信号がサンリング周波数変換後の出力信号Ymとして出力される。以上述べた以外の本実施の形態の動作は、実施の形態1と同様である。
 このように、本実施の形態では、1つのフィルタバンク2を備え、タップ係数生成部53が、H0~H12のタップ係数のセットを保持し、実施の形態1と同様に算出されたP(k)に基づいて、タップ係数のセットを選択して、フィルタバンク2の係数乗算部13は選択されたタップ係数のセットを設定するようにした。そのため、1つのフィルタバンクを用いて、実施の形態1と同様の効果を得ることができ、実施の形態1に比べ簡易な構成とすることができる。
実施の形態3.
 図10は、本発明にかかる信号生成装置の実施の形態3の機能構成例を示す図である。本実施の形態の信号生成装置1bは、信号発生部6と、平均化処理部7と、で構成される。信号発生部6は、実施の形態1の信号生成装置1または実施の形態2の信号生成装置1aと同様の構成を有する。
 本実施の形態では、サンプリング周波数設定(位相)ΔPを平均化した後に、実施の形態1の制御信号生成部3または実施の形態2の制御信号生成部5に入力する。平均化処理部7の構成および平均化の処理方法はどのようなものを用いてもよいが、ここでは、IIR(Infinite Impulse Response)フィルタを用いる例について説明する。
 図11は、平均化処理部7の構成例を示す図である。図11に示すように、平均化処理部7は、乗算器71と、加算器72と、乗算器73と、遅延器(D)74と、で構成される。なお、γ(0≦γ<1)はフィルタの平滑化を設定するためのゲインである。平均化処理部7の処理は、通常のIIRフィルタの処理と同様であるため説明を省略する。なお、平均化処理部7の構成は、これに限らず、1次および2次のループフィルタを用いた構成等、他の構成により実現してもよい。以上述べた以外の本実施の形態の動作は、実施の形態1または実施の形態2と同様である。
 なお、ここでは、ΔPが位相生成部51に入力されることとし、ΔPを平均化するようにしたが、出力信号のサンプリング周波数が位相生成部51に入力される場合には、出力信号のサンプリング周波数を平均化する。
 このように、本実施の形態では、サンプリング周波数設定(位相)ΔPをあらかじめ平均化することにより、ΔPを滑らかに変化させることができ、出力するサンプル信号についても連続的に滑らかに変化させることができる。したがって、実施の形態1または実施の形態2と同様の効果が得られるとともに、サンプリング周波数設定(位相)に雑音等が付加されている場合や途中でサンプリング周波数設定(位相)を変化させる場合に、出力信号を滑らかに変化させることができる。
 以上のように、本発明にかかる信号生成装置および信号生成方法は、サンプリングされた入力信号に基づいて、サンプリング周波数を変換した信号を生成する信号生成装置に有用であり、特に、変換後の信号のサンプリング周波数が固定でない場合に適している。
 1,1a,1b 信号生成装置
 2,2-0~2-(L-1) フィルタバンク
 3,5 制御信号生成部
 4 切替部
 6 信号発生部
 7 平均化処理部
 10 シフトレジスタ
 11-0~11-4 乗算器
 12 加算部
 13 係数乗算部
 31,51 位相生成部
 32,52 シフトレジスタイネーブル生成部
 33 フィルタ制御部
 53 タップ係数生成部
 71,73 乗算器
 72 加算器
 74 遅延器

Claims (14)

  1.  所定のサンプリング周波数の入力信号に対してサンプリング周波数変換を行い、前記サンプリング周波数変換後の信号を出力信号として生成するフィルタ手段と、
     前記出力信号のサンプリング周波数を示すサンプリング周波数設定値に基づいて前記フィルタ手段が用いるタップ係数の組をあらかじめ定めた複数のタップ係数の組から選択する制御手段と、
     を備え、
     前記フィルタ手段は、前記制御手段の選択結果に基づいて前記サンプリング周波数変換を生成することを特徴とする信号生成装置。
  2.  前記フィルタ手段は、
     各々異なるタップ係数の組を設定した複数のフィルタと、
     前記制御手段の指示に基づいて前記フィルタのうち1つを選択して前記出力信号とする切替手段と、
     を備え、
     前記制御手段は、前記サンプリング周波数設定値に基づいて、前記切替手段が選択する前記フィルタを決定することにより前記フィルタ手段が用いるタップ係数を選択する、
     ことを特徴とする請求項1に記載の信号生成装置。
  3.  前記制御手段は、複数のタップ係数の組を保持し、前記サンプリング周波数設定値に基づいて、前記タップ係数の組を選択することにより前記フィルタ手段が用いるタップ係数を選択し、
     前記フィルタ手段は、
     1つのフィルタ、
     を備え、
     前記フィルタは前記制御手段が選択した前記タップ係数の組を用いて前記サンプリング周波数変換を行う、
     ことを特徴とする請求項1に記載の信号生成装置。
  4.  前記フィルタをFIRフィルタとする、
     ことを特徴とする請求項2または3に記載の信号生成装置。
  5.  前記サンプリング周波数設定値を、前記フィルタ手段の動作クロックと前記出力信号のサンプリング周波数との比に基づいて算出された値とする、
     ことを特徴とする請求項1~4のいずれか1つに記載の信号生成装置。
  6.  前記制御手段は、
     前記サンプリング周波数設定値に基づいて、前記複数のタップ係数組を所定の順序で並べた際に選択するタップ係数の組の位置を示す位相を生成する位相生成手段と、
     前記位相に基づいて前記フィルタ手段が用いるタップ係数を選択するフィルタ制御手段と、
     を備えることを特徴とする請求項5に記載の信号生成装置。
  7.  前記位相生成手段は、前記位相を、0を最小値とし前記タップ係数の組の総数を最大値とする値として生成することを特徴とする請求項6に記載の信号生成装置。
  8.  前記位相生成手段は、前記位相を、小数点以下を四捨五入または切捨てを行なった値として生成することを特徴とする請求項7に記載の信号生成装置。
  9.  前記制御手段は、
     前記フィルタ手段に対して入力とする前記入力信号の更新のタイミングを指示するシフトレジスタイネーブル信号を生成するシフトレジスタイネーブル生成手段、
     さらに備える、
     ことを特徴とする請求項6、7または8に記載の信号生成装置。
  10.  前記シフトレジスタイネーブル生成手段は、前記位相が所定のしきい値以上となった場合に前記入力信号の更新のタイミングを指示するよう、前記シフトレジスタイネーブル信号を生成する、
     ことを特徴とする請求項9に記載の信号生成装置。
  11.  前記サンプリング周波数設定値を平均化する平均化処理手段、
     をさらに備え、
     前記制御手段は、前記平均化処理手段によるサンプリング周波数設定値を、前記フィルタ手段が用いるタップ係数を選択するために用いる前記サンプリング周波数設定値とする、
     ことを特徴とする請求項1~10のいずれか1つに記載の信号生成装置。
  12.  前記平均化処理手段をIIRフィルタとする、
     ことを特徴とする請求項11に記載の信号生成装置。
  13.  所定のフィルタリング特性のインパルス応答をポリフェーズ分解することにより、前記タップ数の組を求める、
     ことを特徴とする請求項1~12のいずれか1つに記載の信号生成装置。
  14.  所定のサンプリング周波数の入力信号に対してサンプリング周波数変換を行い、前記サンプリング周波数変換後の信号を出力信号として生成する信号生成装置における信号生成方法であって、
     前記出力信号のサンプリング周波数を示すサンプリング周波数設定値に基づいて前記フィルタ手段が用いるタップ係数の組をあらかじめ定めた複数のタップ係数の組から選択する制御ステップと、
     前記制御ステップの選択結果に基づいて前記サンプリング周波数変換を生成するサンプリング周波数変換ステップと、
     を含むことを特徴とする信号生成方法。
PCT/JP2011/050543 2010-01-19 2011-01-14 信号生成装置および信号生成方法 WO2011089981A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11734588.4A EP2528231B1 (en) 2010-01-19 2011-01-14 Signal generation device and signal generation method
US13/574,069 US20120313671A1 (en) 2010-01-19 2011-01-14 Signal generation device and signal generation method
JP2011550891A JP5665770B2 (ja) 2010-01-19 2011-01-14 信号生成装置および信号生成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010009070 2010-01-19
JP2010-009070 2010-01-19

Publications (1)

Publication Number Publication Date
WO2011089981A1 true WO2011089981A1 (ja) 2011-07-28

Family

ID=44306784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050543 WO2011089981A1 (ja) 2010-01-19 2011-01-14 信号生成装置および信号生成方法

Country Status (4)

Country Link
US (1) US20120313671A1 (ja)
EP (1) EP2528231B1 (ja)
JP (1) JP5665770B2 (ja)
WO (1) WO2011089981A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283810A (ja) * 1990-03-30 1991-12-13 Toshiba Corp 標本化周波数変換装置
JPH1065494A (ja) * 1996-08-21 1998-03-06 Yamaha Corp フィルタ係数設定方法およびフィルタ係数設定装置並びにサンプリング周波数変換方法およびサンプリング周波数変換装置
JPH11191724A (ja) * 1997-12-25 1999-07-13 Sharp Corp 周波数変換装置
JP2002271174A (ja) * 2001-02-20 2002-09-20 Samsung Electronics Co Ltd サンプリングレート変換装置及び方法
JP2009232079A (ja) * 2008-03-21 2009-10-08 Japan Radio Co Ltd 補間フィルタ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2600821B2 (ja) * 1988-07-11 1997-04-16 ソニー株式会社 標本化周波数変換装置
US6014682A (en) * 1997-05-30 2000-01-11 International Business Machines Corporation Methods and apparatus for variable-rate down-sampling filters for discrete-time sampled systems using a fixed sampling rate
US6643321B1 (en) * 1998-09-30 2003-11-04 Alvarion Ltd. Method for rapid synchronization of a point to multipoint communication system
JP4581288B2 (ja) * 2000-05-09 2010-11-17 パナソニック株式会社 復調器
US20030058004A1 (en) * 2001-09-24 2003-03-27 Stengel Robert E. Method and apparatus for direct digital synthesis of frequency signals
JP4109004B2 (ja) * 2002-04-01 2008-06-25 松下電器産業株式会社 データ信号抜き取り装置
DE102004059940A1 (de) * 2004-12-13 2006-06-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Signalkonvertierer zum Konvertieren eines Startsignals in ein Endsignal und Verfahren zum Konvertieren eines Startsignals in ein Endsignal
EP1684428A1 (en) * 2005-01-13 2006-07-26 Deutsche Thomson-Brandt Gmbh Sample rate converter
US7570727B2 (en) * 2005-02-24 2009-08-04 Yamaha Corporation Data transmission controller and sampling frequency converter
JP4854533B2 (ja) * 2007-01-30 2012-01-18 富士通株式会社 音響判定方法、音響判定装置及びコンピュータプログラム
US20080273641A1 (en) * 2007-05-04 2008-11-06 Jingnong Yang Ofdm-based device and method for performing synchronization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283810A (ja) * 1990-03-30 1991-12-13 Toshiba Corp 標本化周波数変換装置
JPH1065494A (ja) * 1996-08-21 1998-03-06 Yamaha Corp フィルタ係数設定方法およびフィルタ係数設定装置並びにサンプリング周波数変換方法およびサンプリング周波数変換装置
JPH11191724A (ja) * 1997-12-25 1999-07-13 Sharp Corp 周波数変換装置
JP2002271174A (ja) * 2001-02-20 2002-09-20 Samsung Electronics Co Ltd サンプリングレート変換装置及び方法
JP2009232079A (ja) * 2008-03-21 2009-10-08 Japan Radio Co Ltd 補間フィルタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NISHIMURA: "Communication system design by digital signal processing", June 2006, CQ PUBLISHING CO., LTD., pages: 79 - 89

Also Published As

Publication number Publication date
EP2528231A1 (en) 2012-11-28
JPWO2011089981A1 (ja) 2013-05-23
EP2528231A4 (en) 2017-12-06
EP2528231B1 (en) 2018-10-10
JP5665770B2 (ja) 2015-02-04
US20120313671A1 (en) 2012-12-13

Similar Documents

Publication Publication Date Title
US6512468B1 (en) System and method for increasing sample rate converter filter coefficient derivation speed
EP0695032B1 (en) Digital-to-digital sample rate converter
EP2771973B1 (en) Asynchronous sample rate converter
JPH09200042A (ja) 複合位相濾波器とこれを用いたタイミング誤差補償装置及びその方法
JPH1155077A (ja) ディジタル・フィルタ及びディジタル・フィルタ内で位相値およびロールオーバ信号を得る方法
US9432043B2 (en) Sample rate converter, an analog to digital converter including a sample rate converter and a method of converting a data stream from one data rate to another data rate
CN105991137A (zh) 可变分数速率数字重采样的系统和方法
JP3267911B2 (ja) 循環型構造のフィルタ入力回路を備えた適応等化器
US20060212503A1 (en) Multi-channel sample rate conversion method
JPWO2007010889A1 (ja) 適応ディジタルフィルタ、fm受信機、信号処理方法、およびプログラム
JPH07202633A (ja) ディジタルフィルタ及び同ディジタルフィルタを用いたオーバサンプリング型アナログ/ディジタル変換器
US6438567B2 (en) Method for selective filtering
CN106972840B (zh) 一种采样率转换方法与装置
JP2013135401A (ja) リサンプル処理装置およびそれを用いたデジタル変調信号発生装置およびリサンプル処理方法
Beyrouthy et al. Data sampling and processing: Uniform vs. non-uniform schemes
JP5665770B2 (ja) 信号生成装置および信号生成方法
US8242829B1 (en) Multichannel interpolator
JPH0555875A (ja) デイジタルフイルタ
JPH1141305A (ja) 変調装置
KR100905153B1 (ko) 디지털 업다운 컨버터용 필터, 인터폴레이션 필터, 및데시메이션 필터
JPH0590897A (ja) オーバーサンプリングフイルタ回路
JP2009232079A (ja) 補間フィルタ
US6489910B1 (en) Oversampling circuit and digital/analog converter
EP1458097A1 (en) Arbitrary sampling rate conversion
CN115085693B (zh) 一种多通道多相内插处理架构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734588

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550891

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13574069

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011734588

Country of ref document: EP