WO2011089726A1 - 電気駆動式車両 - Google Patents

電気駆動式車両 Download PDF

Info

Publication number
WO2011089726A1
WO2011089726A1 PCT/JP2010/050909 JP2010050909W WO2011089726A1 WO 2011089726 A1 WO2011089726 A1 WO 2011089726A1 JP 2010050909 W JP2010050909 W JP 2010050909W WO 2011089726 A1 WO2011089726 A1 WO 2011089726A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
air
electrically driven
vehicle
power generation
Prior art date
Application number
PCT/JP2010/050909
Other languages
English (en)
French (fr)
Inventor
酒井和人
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/050909 priority Critical patent/WO2011089726A1/ja
Priority to JP2011550780A priority patent/JP5310875B2/ja
Priority to US13/520,461 priority patent/US9688114B2/en
Priority to CN201080062376.5A priority patent/CN102725156B/zh
Priority to EP10843891.2A priority patent/EP2529962B1/en
Publication of WO2011089726A1 publication Critical patent/WO2011089726A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/0025Heating, cooling or ventilating [HVAC] devices the devices being independent of the vehicle
    • B60H1/00264Transportable devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2203Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from burners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H2001/2228Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant controlling the operation of heaters
    • B60H2001/224Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant controlling the operation of heaters automatic operation, e.g. control circuits or methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H2001/2246Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant obtaining information from a variable, e.g. by means of a sensor
    • B60H2001/2253Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant obtaining information from a variable, e.g. by means of a sensor related to an operational state of the vehicle or a vehicle component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to an electrically driven vehicle, and more particularly to an electrically driven vehicle that air-conditions a passenger compartment.
  • Patent Document 1 a generator for charging a battery serving as a power source for a traveling motor and a power generation engine for driving the power generator are mounted, and the compressor for the air conditioner is driven by driving the power generation engine.
  • An electric vehicle that operates and heats the vehicle is disclosed.
  • a technology that is considered to be related to the present invention in that it includes a sub-engine that drives a generator and uses waste heat of the sub-engine for heating is disclosed in, for example, Patent Document 2 or 3, based on vehicle compartment temperature information.
  • Patent Document 4 discloses a technique that is considered to be related to the present invention in that air conditioning control is performed.
  • the electric vehicle disclosed in Patent Document 1 always includes a power generation engine. For this reason, this electric vehicle is accompanied by an increase in the weight of the vehicle by the amount of the power generation engine, and the energy efficiency is accordingly deteriorated.
  • air-conditioning means for performing air-conditioning is at least partially mounted on the vehicle body in a removable manner. In this case, the deterioration of energy efficiency due to weight increase can be suppressed by detaching the air-conditioning means as necessary. However, in this case, air conditioning cannot be performed at all unless air conditioning means is installed.
  • Air conditioning means must be installed in order to perform this, and as a result, it may be inconvenient.
  • the present invention has been made in view of the above-described problems, and can make it possible to secure a cruising distance while suppressing deterioration of energy efficiency due to an increase in weight and at the same time ensuring the appropriateness of using air conditioning.
  • An object is to provide a drive-type vehicle.
  • the present invention for solving the above problems utilizes a vehicle body provided with a vehicle compartment, a battery mounted on the vehicle main body and usable for traveling, and electric power of the battery in air-conditioning the vehicle compartment.
  • a first air-conditioning unit that performs air-conditioning
  • a second air-conditioning unit that is at least partially detachably mounted on the vehicle main body to perform air-conditioning other than air-conditioning using the power of the battery.
  • An electrically driven vehicle comprising: air conditioning means; and air conditioning changing means for changing a use state of at least one of the first air conditioning means and the second air conditioning means.
  • the air-conditioning change means switches the air-conditioning means to be used between the first air-conditioning means and the second air-conditioning means.
  • the present invention provides an air conditioning unit that the air conditioning change unit uses between the first air conditioning unit and the second air conditioning unit depending on whether the second air conditioning unit is operable. It is preferable that the configuration is switched.
  • the air conditioning change unit adjusts a utilization ratio between the first air conditioning unit and the second air conditioning unit.
  • the air conditioning changing means adjusts the usage ratio according to the charge amount of the battery.
  • the present invention further includes an operation unit capable of adjusting the utilization ratio, and the air conditioning change unit adjusts the utilization ratio according to a state of the operation means.
  • the air-conditioning change means is in a state where at least the first air-conditioning means is air-conditioning, and the difference between the target temperature set for air-conditioning and the actual temperature in the vehicle compartment is small. It is preferable that the air conditioning capability of the first air conditioning means is adjusted so that the air conditioning capability is lowered.
  • the second air conditioning unit is an air conditioning unit that performs power generation using fuel and performs air conditioning using waste heat during power generation.
  • the first air-conditioning means and the second air-conditioning means further include a common air blowing means.
  • the present invention while it is possible to secure a cruising distance, it is possible to suppress deterioration of energy efficiency due to an increase in weight, and at the same time, it is possible to ensure the appropriateness of the use of air conditioning.
  • FIG. 1 is a schematic configuration diagram of an electrically driven vehicle according to a first embodiment. It is a figure which shows an electric power generating apparatus.
  • FIG. 4 is another schematic configuration diagram of an electrically driven vehicle according to the first embodiment. It is a figure which shows the operation
  • FIG. 6 is a schematic configuration diagram of an electrically driven vehicle according to a fourth embodiment.
  • FIG. 1 is a schematic configuration diagram of an electrically driven vehicle according to a first embodiment. It is a figure which shows an electric power generating apparatus.
  • FIG. 4 is another schematic configuration diagram of an electrically driven vehicle according to the first embodiment. It is a figure which shows the operation
  • FIG. 9 is a flowchart illustrating an operation of a vehicle side ECU according to a fourth embodiment.
  • FIG. 6 is a schematic configuration diagram of an electrically driven vehicle according to a fifth embodiment.
  • FIG. 10 is a flowchart illustrating an operation of a vehicle side ECU according to a fifth embodiment.
  • FIG. 10 is a schematic configuration diagram of an electrically driven vehicle according to a sixth embodiment.
  • FIG. 10 is a flowchart illustrating an operation of a vehicle-side ECU according to a sixth embodiment.
  • FIG. 10 is a schematic configuration diagram of an electrically driven vehicle according to a seventh embodiment.
  • FIG. 10 is a schematic configuration diagram of an electrically driven vehicle according to an eighth embodiment.
  • FIG. 10 is a schematic configuration diagram of an electrically driven vehicle according to a ninth embodiment.
  • FIG. 10 is a schematic configuration diagram of an electrically driven vehicle according to a tenth embodiment.
  • the electrically driven vehicle 1 ⁇ / b> A includes a vehicle main body 10 and a power generation device 11, a battery 12, and an electric motor 13 mounted on the vehicle main body 10.
  • the electrically driven vehicle 1A is equipped with a power generator 11 so as to be detachable.
  • the electrically driven vehicle 1A on which the power generation device 11 is detachably mounted can be operated even when the power generation device 11 is not mounted and the electrical connection with the power generation device 11 is disconnected. .
  • the power generation device 11 is an engine-driven power generation device, and includes an engine 111, a generator 112, and a power generation device side ECU 113 as shown in FIG.
  • the engine 111 drives a generator 112, and the driven generator 112 generates an alternating current.
  • the generated alternating current is rectified to direct current by a rectifier circuit (not shown) before charging the battery 12.
  • the power generator ECU 113 is provided mainly for controlling the engine 111.
  • the battery 12 is a direct current battery, and is electrically and detachably connected to the power generation device 11 through a high voltage system wiring that is a power system wiring. And the electric power which the electric power generating apparatus 11 generated is charged to the battery 12 via a high voltage system wiring.
  • the battery 12 for example, a battery in which a plurality of batteries having a rated voltage of DC 12V are connected in series can be applied.
  • the electric motor 13 is a travel drive source composed of an electric motor, and is a DC motor. The electric motor 13 is supplied with electric power from the battery 12 and rotates the output shaft 14. Then, the rotation output is transmitted to the pair of left and right rear wheels 2 as drive wheels via the transmission 15, and as a result, the rear wheels 2 are driven.
  • the electrically driven vehicle 1A is a series hybrid electrically driven vehicle.
  • the electrically driven vehicle 1 ⁇ / b> A includes a pair of left and right rear wheels 2 as driving wheels, a pair of left and right front wheels 3 as steering wheels, a handle 4 for manually steering the front wheels 3, and a motor rotation speed of an electric motor 13.
  • An accelerator pedal 5 for changing the vehicle, a brake pedal 6 and a brake unit 7 for applying braking to the vehicle, a wire connection to the brake pedal 6 and a connection to the brake unit 7, and each front wheel 3, each rear wheel 2 are provided with drum brakes 8 respectively.
  • the accelerator pedal 5 is provided with an accelerator opening sensor 61 that detects the amount of depression of the accelerator pedal 5, and the brake pedal 6 is provided with a brake switch 62 that detects whether or not the brake pedal 6 is depressed.
  • the electrically driven vehicle 1A includes a key switch 21 and a power generation switch 22.
  • the key switch 21 and the power generation switch 22 are switches that can be selectively switched between ON and OFF.
  • the key switch 21 is an operation means for making an operation request to the electric motor 13. Specifically, when the key switch 21 is ON, an operation request is present, and when the key switch 21 is OFF, no operation request is present.
  • the power generation switch 22 is an operation means for making an operation request to the power generation device 11. Specifically, when the power generation switch 22 is ON, the operation request for the power generation device 11 is present, and when it is OFF, the operation request for the power generation device 11 is absent.
  • the key switch 21 and the power generation switch 22 are provided on an instrument panel (not shown).
  • the electrically driven vehicle 1 ⁇ / b> A includes an electric heater 30.
  • the electric heater 30 is provided outside the passenger compartment 10 a together with the power generator 11.
  • the electric heater 30 and the power generation device 11 are provided in the vehicle main body 10 outside the passenger compartment 10a and in front of the passenger compartment 10a.
  • a dashboard 71, a driver seat 72, a passenger seat 73, and a rear seat 74 are provided in the passenger compartment 10a, and more specifically, the power generator 11 is located outside the passenger compartment 10a and at the feet of the driver seat 72. It is provided in the front part.
  • the electric heater 30 is mounted on a mounting portion P that forms a space isolated from the surroundings.
  • the power generation device 11 has an opening / closing mechanism (not shown) that enables the power generation device 11 to be attached and detached, and is mounted on a mounting portion Q that forms a space isolated from the surroundings.
  • the electric heater 30 and the mounting portions P and Q of the power generator 11 are provided with air inlet / outlet portions (not shown).
  • the air present in the mounting portion P of the electric heater 30 is warmed by the heat of the electric heater 30 that generates heat by energization from the battery 12, and the air present in the mounting portion Q of the power generation device 11 is supplied from the power generation device 11 in operation. It is warmed by the waste heat that is heat dissipation.
  • the electric heater 30 corresponds to a first air-conditioning unit that performs air-conditioning using the power of the battery 12, and the power generation device 11 is detachably mounted on the vehicle body 10, and air-conditioning using the power of the battery 12.
  • the electric heater 30 and the power generator 11 are both air conditioning means for heating.
  • the power generation device 11 is specifically an air conditioning unit that performs power generation using fuel and performs air conditioning using waste heat during power generation, and more specifically, from the engine 111 as waste heat during power generation. It is an air conditioning means that performs air conditioning using heat radiation.
  • Each of the mounting portions P and Q of the electric heater 30 and the power generation device 11 is a heat exchange space forming portion that forms a space for heat exchange performed by air conditioning.
  • the electric heater 30 or the power generation apparatus 11 may be provided with a casing, and the provided casing may be used as the heat exchange space forming unit.
  • the electrically driven vehicle 1A is provided with a ventilation duct 31A.
  • the ventilation duct 31A connects the electric heater 30 and the mounting portions P and Q of the power generator 11 in parallel to the vehicle interior 10a.
  • the ventilation duct 31 ⁇ / b> A includes two branch portions provided on one end side corresponding to the electric heater 30 and the power generation device 11, and these branch portions are mounted portions P of the electric heater 30 and the power generation device 11. It is connected to each air outlet provided in Q.
  • the ventilation duct 31A includes a plurality of (here, two) branch portions provided on the other end side corresponding to each portion in the passenger compartment 10a (here, each air outlet (not shown) provided in the dashboard 71). These branch portions are connected to each air outlet.
  • the ventilation duct 31 ⁇ / b> A serves as guide means for guiding the air conditioned by the electric heater 30 and the power generation device 11.
  • the electrically driven vehicle 1 ⁇ / b> A includes a blower fan 32.
  • the blower fan 32 is provided in the ventilation duct 31A so as to blow air toward the passenger compartment 10a.
  • the blower fan 32 is specifically provided in a collective portion of the ventilation duct 31A. For this reason, the air first flows into the mounting portions P and Q of the power generation device 11 and the electric heater 30 through the air inlet portion by the blower fan 32, and is warmed by the power generation device 11 and the electric heater 30. Air is blown into the vehicle interior 10a from the mounting portions P and Q of the electric heater 30 through the ventilation duct 31A.
  • the blower fan 32 is a blower that blows air conditioned by the electric heater 30 or the power generation device 11. More specifically, in the electrically driven vehicle 1 ⁇ / b> A, the blower fan 32 is a common blower for the electric heater 30 and the power generation device 11. ing.
  • the electrically driven vehicle 1A includes a vehicle-side ECU 50A that is a first control device.
  • the vehicle-side ECU 50A includes a microcomputer including an unillustrated CPU, ROM, RAM, and the like and an input / output circuit.
  • the power generation device side ECU 113 corresponding to the second control device has the same configuration.
  • the power generation device 11 (more specifically, the power generation device side ECU 113) is electrically and detachably connected to the vehicle side ECU 50A.
  • the vehicle-side ECU 50A and the power generation device 11 are specifically connected via a low-voltage system wiring that is a control system wiring.
  • various control objects such as an electric motor 13, an electric heater 30, and a blower fan 32 are electrically connected to the vehicle-side ECU 50 ⁇ / b> A, as well as a key switch 21 and a power generation switch. 22, an air conditioner switch 23 that can be switched ON / OFF of the air conditioner, a temperature control switch 24 that can adjust the temperature of the air conditioner, an accelerator opening sensor 61, a brake switch 62, and the mounted generator 11.
  • various sensors and switches such as the mounting detection sensor 63 which is a state detection means capable of detecting whether the power generation device 11 is mounted or not are electrically connected.
  • a battery 12 is electrically connected to the vehicle-side ECU 50A in order to detect the battery charge amount.
  • ROM is a configuration for storing programs, map data, and the like in which various processes executed by the CPU are described.
  • the CPU-side ECU 50A and the power generation device-side ECU 113 perform various control means, determination means, and detection means by executing processing while using a temporary storage area of the RAM as required based on a program stored in the ROM. And calculating means are functionally realized.
  • air conditioning changing means that changes at least one of the usage states of the electric heater 30 or the power generation device 11 is functionally realized.
  • the air-conditioning change means can be realized to change the usage state according to, for example, the usage state of the vehicle or the usage state.
  • the air conditioning changing means can be realized to individually adjust at least one of the air conditioning capacities of the electric heater 30 or the power generator 11, or between the electric heater 30 and the power generator 11. It is realizable to switch the air-conditioning means utilized between, and it can implement
  • the air-conditioning change unit is specifically realized so as to switch the air-conditioning unit used between the electric heater 30 and the power generation device 11.
  • the air conditioning change means is realized so as to switch the air conditioning means to be used, specifically depending on whether or not the power generation device 11 can generate power.
  • the air conditioning change means can change the use state not only when the air conditioning switch 23 is already ON but also when the air conditioning switch 23 is OFF. That is, the usage state changed by the air conditioning change means includes not only the state currently used but also the state to be used in the future.
  • diagnostic means for diagnosing whether or not the power generation device 11 can generate power is functionally realized.
  • the diagnosis means is specifically realized to diagnose the power generation enabled state of the power generation device 11.
  • the diagnosis unit can be realized to diagnose the power generation possible state of the power generation device 11 by determining whether or not the power generation device 11 is mounted, for example.
  • the diagnosis means further includes, for example, an interlock device (not shown) such as a fixing confirmation device for the power generation device 11 or a power generation device 11 provided for detecting whether or not the mounting state of the power generation device 11 is a normal state.
  • the lock confirmation device of the opening / closing mechanism provided for the mounting portion Q detects a normal state, whether or not the fuel of the power generation device 11 is sufficient (a predetermined amount or more), Whether there is no abnormality in the electrical connection state, whether there is no abnormality in the mechanical connection state of the power generation device 11, whether there is any abnormality such as a failure in the power generation device 11, or the contents of the determination are appropriately determined. By determining in combination, it can be realized to diagnose the power generation possible state of the power generation device 11.
  • the diagnosis unit is implemented to perform diagnosis by determining a combination of a plurality of determination contents regarding the power generation possible state of the power generation device 11. Specifically, as a result of the determination made by combining the above-described determination contents, the diagnostic unit is equipped with the power generation device 11, the interlock device detects a normal state, and the fuel of the power generation device 11 is a predetermined amount. As described above, when it is determined that there is no abnormality in the electrical and mechanical connection state of the power generation device 11 and that there is no abnormality in the power generation device 11, it is realized that the power generation device 11 determines that power generation is possible.
  • the diagnostic unit is equipped with the power generation device 11, the interlock device detects a normal state, and the fuel of the power generation device 11 is a predetermined amount.
  • the diagnosis means includes, for example, at least determining whether or not the power generation device 11 is mounted as a basic determination content. Can be realized.
  • the diagnostic means basically determines whether or not there is an abnormality in the electrical and mechanical connection state of the power generation device 11. By including the content, it can be realized to indirectly determine whether or not the power generation device 11 is mounted.
  • the vehicle-side ECU 50A diagnoses the power generation state of the power generation device 11 (step S1), and as a result, determines whether or not the power generation device 11 can generate power (step S2). If it is affirmation determination, vehicle side ECU50A will switch the air-conditioning means to be used to the electric power generating apparatus 11 (step S3). Thereby, the air-conditioning means used becomes the power generation device 11. On the other hand, if a negative determination is made in step S2, the vehicle-side ECU 50A switches the air conditioning means to be used to the electric heater 30 (step S4). Thereby, the air-conditioning means used becomes the electric heater 30.
  • the electrically driven vehicle 1 ⁇ / b> A a power generation device 11 that performs air conditioning other than air conditioning using battery power is detachably mounted. For this reason, the electrically driven vehicle 1 ⁇ / b> A can be air-conditioned without consuming battery power by performing air conditioning with the power generation device 11, thereby ensuring the cruising distance of the vehicle.
  • the electrically driven vehicle 1 ⁇ / b> A can suppress deterioration of energy efficiency due to weight increase by lowering the power generation device 11.
  • the electrically driven vehicle 1 ⁇ / b> A includes an electric heater 30 in addition to the power generation device 11.
  • the use state of the electric heater 30 and the power generation device 11 are changed according to the use state of the vehicle or the use state. Can be secured.
  • the air-conditioning means to be used is switched between the electric heater 30 and the power generation device 11 depending on whether or not the power generation device 11 can generate power.
  • the electrically driven vehicle 1 ⁇ / b> A can perform air conditioning without consuming battery power by performing air conditioning with the power generation device 11 when the power generation device 11 can generate power.
  • the electrically driven vehicle 1 ⁇ / b> A can be air-conditioned by the electric heater 30 when the power generation device 11 cannot generate power, for example, when the power generation device 11 is not mounted. Therefore, the electrically driven vehicle 1A can ensure the appropriateness of the use of air conditioning in that it can improve the convenience while securing the cruising distance of the vehicle.
  • the power generation device 11 is provided in the vehicle main body 10 outside the passenger compartment 10 a and in the front part of the driver's seat 72. For this reason, the electrically driven vehicle 1A can also effectively warm the driver's seat 72 having the highest use frequency by heat radiation from the power generation device 11 transmitted from the outside of the passenger compartment 10a to the inside of the passenger compartment 10a.
  • the power generation device 11 that performs air conditioning other than air conditioning using battery power performs power generation using fuel and also performs air conditioning using waste heat during power generation. ing.
  • the electrically driven vehicle 1 ⁇ / b> A is also preferable in that it can increase the efficiency of energy use by cogeneration when performing air conditioning other than air conditioning using battery power.
  • the electrically driven vehicle 1B is substantially the same as the electrically driven vehicle 1A except that the electrically driven vehicle 1B includes a vehicle side ECU 50B instead of the vehicle side ECU 50A. For this reason, illustration of the electrically driven vehicle 1B is omitted.
  • the vehicle-side ECU 50B is substantially the same as the vehicle-side ECU 50A except that the air conditioning change means is realized as described below.
  • the air conditioning changing means is realized so as to adjust the usage ratio between the electric heater 30 and the power generation device 11 when changing the usage state.
  • the air conditioning change means is specifically realized to adjust the usage ratio according to the charge amount of the battery 12.
  • the air conditioning change means realized so as to adjust the utilization ratio is realized so that the electric heater 30 and the power generation device 11 can perform air conditioning simultaneously when the power generation device 11 can generate power.
  • the air conditioning change means is specifically realized to adjust the usage ratio so that the usage ratio of the electric heater 30 increases as the charge amount of the battery 12 increases.
  • the utilization ratio of the electric heater 30 can be set to 0% at the minimum and 100% at the maximum, for example.
  • the present invention is not limited to this, and the utilization ratio of the electric heater 30 can be set to a value that is, for example, a minimum that is greater than 0% and a value that is less than 100% at the maximum.
  • step S3 the vehicle-side ECU 50B detects the amount of charge of the battery 12 (step S11). Subsequently, the vehicle-side ECU 50B adjusts the usage ratio according to the detected amount of charge of the battery 12 (step S12).
  • the usage ratio is adjusted between the electric heater 30 and the power generator 11 when changing the usage state. For this reason, the electrically driven vehicle 1B suppresses fluctuations in the air conditioning capability, for example, as compared with the case where the air conditioning capability of the electric heater 30 or the power generation device 11 is individually adjusted when ensuring the appropriateness of the use of air conditioning. can do.
  • the utilization ratio is adjusted so that the utilization ratio of the electric heater 30 increases as the charge amount of the battery 12 increases.
  • the electrically driven vehicle 1 ⁇ / b> B can prevent the battery 12 from being overcharged and suppress the fuel consumption of the power generator 11.
  • the usage ratio is adjusted so that the usage ratio of the electric heater 30 decreases as the charge amount of the battery 12 decreases.
  • the electrically driven vehicle 1 ⁇ / b> B can suppress the power consumption of the battery 12 and promote the charging of the battery 12, thereby ensuring the cruising distance of the vehicle.
  • the electrically driven vehicle 1 ⁇ / b> B can ensure the appropriateness of the use of air conditioning in that it can perform rational and well-balanced air conditioning between the electric heater 30 and the power generation device 11.
  • the electrically driven vehicle 1C is substantially the same as the electrically driven vehicle 1A except that it further includes an adjustment switch 25 shown in FIG. 6 and a vehicle side ECU 50C instead of the vehicle side ECU 50A.
  • the adjustment switch 25 is provided on an instrument panel (not shown).
  • the adjustment switch 25 is an operation means that can adjust the utilization ratio between the power generator 11 and the electric heater 30.
  • the adjustment switch 25 can adjust the utilization ratio of the electric heater 30 (in other words, the power generation device 11) to an appropriate value between 0% and 100%.
  • the present invention is not limited to this.
  • the utilization ratio of the electric heater 30 can be set to a value smaller than 0% at the minimum and a value smaller than 100% at the maximum.
  • the operation means that can adjust the usage ratio between the power generation device 11 and the electric heater 30 may be configured to be able to adjust the usage ratio in stages, for example.
  • the vehicle-side ECU 50C changes the use ratio between the electric heater 30 and the power generator 11 according to the state of the adjustment switch 25. This is substantially the same as the vehicle-side ECU 50A except that it is realized so as to adjust the vehicle.
  • the air conditioning change means realized so as to adjust the utilization ratio is realized so that the electric heater 30 and the power generation device 11 can perform air conditioning simultaneously when the power generation device 11 can generate power.
  • step S3 the vehicle-side ECU 50C detects the state of the adjustment switch 25 (step S21). Subsequently, the vehicle side ECU 50C adjusts the usage ratio according to the detected state of the adjustment switch 25 (step S22).
  • air conditioning can be performed while suppressing fuel consumption of the power generation device 11.
  • the electrically driven vehicle 1C when the cruising distance of the vehicle is expected to be long, the power consumption of the battery 12 is suppressed by reducing the utilization ratio of the electric heater 30, thereby reducing the cruising distance of the vehicle. It can also be secured. For this reason, 1 C of electrically driven vehicles can ensure the appropriateness
  • the electrically driven vehicle 1D is an electrically driven vehicle except that it further includes a temperature sensor 64 and a vehicle side ECU 50D instead of the vehicle side ECU 50A. It is substantially the same as 1A. Similar changes can be applied to, for example, the electrically driven vehicles 1B and 1C.
  • the temperature sensor 64 is provided in a portion of the ventilation duct 31 ⁇ / b> A on the downstream side of the mounting portions P and Q of the electric heater 30 and the power generation device 11. Therefore, the temperature sensor 64 is provided in a portion of the ventilation duct 31A on the downstream side of the portion where two branch portions provided on one end side gather.
  • the temperature sensor 64 is provided at the gathering portion of the ventilation duct 31A, and more specifically, the portion located at the most downstream side of the gathering portion (specifically, provided at the other end side here). And a portion where a plurality of branch portions gather).
  • the temperature sensor 64 provided in this manner serves as detection means that can detect the temperature of air that has been air-conditioned by detecting the temperature of the gathering portion of the ventilation duct 31A.
  • the vehicle-side ECU 50D is substantially the same as the vehicle-side ECU 50A except that the temperature sensor 64 is further electrically connected and that the air conditioning change means is further realized as described below.
  • the air conditioning changing means when changing the use state, adjusts the air conditioning capability of the air conditioning means to be used on the basis of the temperature of the collective part and the required temperature that is the target temperature set when air conditioning is performed. Further realized. Specifically, the air conditioning change means relatively increases the air conditioning capability of the air conditioning means to be used when the temperature of the collecting section is lower than the required temperature, compared to when the temperature of the collecting section is equal to or higher than the required temperature. To be realized.
  • the air conditioning change means is realized to relatively reduce the air conditioning capability of the air conditioning means to be used when the temperature of the collecting section is equal to or higher than the required temperature than when the temperature of the collecting section is lower than the required temperature.
  • the air-conditioning change means is realized so as to adjust the air-conditioning capability of the air-conditioning means to be used based on the temperature of the collecting unit and the required temperature when air-conditioning is being performed.
  • the required temperature can be set with the temperature adjustment switch 24.
  • step S31 determines whether air conditioning is performed based on the output of the air conditioning switch 23 (step S31). If the determination is negative, this flowchart is temporarily terminated. On the other hand, if an affirmative determination is made in step S31, the vehicle-side ECU 50D determines whether or not the temperature of the collecting portion is lower than the required temperature (step S32).
  • step S33 air conditioning capability UP
  • step S34 air conditioning capability DOWN
  • the temperature sensor 64 is provided in a portion on the downstream side of the portion of the ventilation duct 31A where two branch portions provided on one end side gather. Therefore, when the air-driven vehicle 1D performs air conditioning, the air-conditioning means to be used is the electric heater 30 or the power generation device 11, and the air-conditioning means to be used is, for example, the electric heater 30 and the power generation device 11. Even if it exists, adjustment of an air-conditioning capability can be performed with one temperature sensor 64. For this reason, the electrically driven vehicle 1D can ensure the appropriateness of the use of the air conditioning in that the control and the configuration can be simplified.
  • the electrically driven vehicle 1 ⁇ / b> E is provided with the room temperature sensor 65 and the electrically driven vehicle 1 ⁇ / b> B except that it includes a vehicle side ECU 50 ⁇ / b> E instead of the vehicle side ECU 50 ⁇ / b> B. Is substantially the same. The same change can be applied to the electrically driven vehicle 1C, for example.
  • the room temperature sensor 65 is provided for the passenger compartment 10a, and serves as detection means that can detect the actual temperature in the passenger compartment 10a by detecting the room temperature.
  • the vehicle-side ECU 50E is substantially the same as the vehicle-side ECU 50B, except that the room temperature sensor 65 is further electrically connected and the air conditioning change means is further realized as described below.
  • the air-conditioning change means when changing the usage state, is configured so that the air-conditioning capacity is lowered when the difference between the required temperature and the room temperature is small when at least the electric heater 30 is air-conditioned. It is further realized to adjust the air conditioning capability of the heater 30.
  • the air-conditioning change means is specifically realized to stop the operation of the electric heater 30 by stopping energization of the electric heater 30. Is done.
  • the air conditioning change means more specifically, when the electric heater 30 and the power generation device 11 are air-conditioning at the same time and the difference between the required temperature and the room temperature is smaller than the predetermined value ⁇ , Realized to stop operation.
  • the air conditioning change means is further realized so as to adjust the air conditioning capability of the air conditioning means to be used based on the room temperature and the required temperature.
  • the air conditioning change means is realized such that when the room temperature is lower than the required temperature, the air conditioning capability of the air conditioning means to be used is relatively increased as compared with the case where the room temperature is equal to or higher than the required temperature.
  • the air conditioning change means is realized such that when the room temperature is equal to or higher than the required temperature, the air conditioning capability of the air conditioning means to be used is relatively lowered than when the room temperature is lower than the required temperature.
  • the air conditioning change means is realized so as to adjust the air conditioning capability of the air conditioning means to be used based on the room temperature and the required temperature when air conditioning is performed.
  • step S12 the vehicle-side ECU 50E determines whether or not the electric heater 30 and the power generation device 11 are simultaneously performing air conditioning (step S41). If the determination is affirmative, the vehicle-side ECU 50E determines whether or not the room temperature is equal to or greater than a value obtained by subtracting the predetermined value ⁇ from the required temperature (step S42). In this step, it is determined whether or not the difference between the required temperature and room temperature is smaller than a predetermined value ⁇ .
  • step S42 the vehicle side ECU 50E operates the electric heater 30 (step S43). If the electric heater 30 is already operating, the operation of the electric heater 30 is continued in this step. On the other hand, if an affirmative determination is made in step S42, the vehicle-side ECU 50E stops the operation of the electric heater 30 (step S44). On the other hand, if the determination in step S41 is negative, the vehicle ECU 50E determines whether air conditioning is being performed (step S45). If the determination is negative, this flowchart is temporarily terminated.
  • step S46 determines whether or not the room temperature is lower than the required temperature. If the determination is affirmative, the vehicle-side ECU 50E relatively increases the air conditioning capability of the air conditioning means used in step S47 (air conditioning capability UP). Specifically, when the vehicle-side ECU 50E proceeds to step S46 following step S43, the air-conditioning capability of the power generator 11 is relatively increased in this step. On the other hand, if a negative determination is made in step S46, the vehicle-side ECU 50E relatively reduces the air conditioning capability of the air conditioning means used in step S48 (air conditioning capability DOWN).
  • step S46 when the vehicle-side ECU 50E proceeds to step S46 following step S43, the air-conditioning capability of the power generator 11 is relatively reduced in this step.
  • the air conditioning capability of the power generation device 11 is relatively decreased, for example, the amount of heat generated by the power generation device 11 can be decreased, or the output of the blower fan 32 can be decreased.
  • the operation of the electric heater 30 is stopped when the difference between the required temperature and the room temperature is smaller than the predetermined value ⁇ . That is, in the electrically driven vehicle 1E, the operation of the electric heater 30 is stopped when the room temperature approaches the required temperature to some extent.
  • the actual temperature in the passenger compartment 10a is used, which is different from the case where the temperature of the collecting portion is used, for example, as in the fourth embodiment. It is possible to detect whether or not the room temperature has actually approached the required temperature to some extent. For this reason, the electrically driven vehicle 1E can suppress the air-conditioning performance from significantly decreasing by stopping the operation of the electric heater 30 even though the room temperature is not close to the required temperature to some extent.
  • the electrically driven vehicle 1E even if the operation of the electric heater 30 is stopped, the power generation device 11 can continue air conditioning. For this reason, the electric drive vehicle 1E can suppress the power consumption of the battery 12 by the electric heater 30 when continuing the air conditioning in a state where the room temperature is close to the required temperature to some extent. For this reason, the electrically driven vehicle 1E can ensure the appropriateness of the use of air conditioning in that it can further secure the cruising distance of the vehicle while sufficiently ensuring the air conditioning performance as compared with the case of continuing the air conditioning by the electric heater 30. .
  • the air conditioning change means is not in a state where the electric heater 30 and the power generation device 11 are performing air conditioning at the same time, but in a state where the power generation device 11 can generate power, and the electric heater 30 of the electric heater 30 and the power generation device 11 is It may be realized to stop the operation of the electric heater 30 when the difference between the required temperature and the room temperature is smaller than the predetermined value ⁇ in the air-conditioning state.
  • the air conditioning can be continued by stopping the operation of the electric heater 30 and further realizing the air conditioning changing means so as to start the operation of the power generator 11.
  • the power consumption of the battery 12 by the electric heater 30 can be suppressed when the air conditioning is continued with the room temperature approaching the required temperature to some extent.
  • the air conditioning performance may temporarily decrease.
  • the difference between the required temperature and the room temperature is It is also possible to further realize the air conditioning change means so as to start the operation of the power generator 11 when the value is smaller than the predetermined value ⁇ which is larger than the predetermined value ⁇ instead of the predetermined value ⁇ .
  • the air conditioning change means may be realized so as to adjust the air conditioning capability of the electric heater 30 so that the air conditioning capability is lowered without stopping the operation of the electric heater 30, for example. This also suppresses the power consumption of the battery 12 by the electric heater 30 when the air conditioning is continued in a state where the room temperature is close to the required temperature to some extent. Further, the air conditioning change means may be realized so as to adjust the utilization ratio so that the utilization ratio of the electric heater 30 is lowered, for example, instead of stopping the operation of the electric heater 30.
  • the heat generation amount of the power generation device 11 increases as the utilization ratio of the power generation device 11 increases, and as a result, the room temperature can be quickly changed to the required temperature as compared with the case where the heat generation amount of the power generation device 11 is not particularly changed. And charging of the battery 12 can be further promoted.
  • the electrically driven vehicle 1 ⁇ / b> F is different from the electrically driven vehicle 1 ⁇ / b> A except that it further includes a switching valve 33 and a vehicle side ECU 50 ⁇ / b> F instead of the vehicle side ECU 50 ⁇ / b> A. It is substantially the same. Similar changes can be applied to, for example, the electrically driven vehicles 1B to 1E.
  • the switching valve 33 is provided so as to be interposed in a portion of the ventilation duct 31A where two branch portions provided on one end side gather.
  • the switching valve 33 communicates with the ventilation duct 31A between a state where the mounting portion P of the electric heater 30 communicates with the interior of the passenger compartment 10a and a state where the mounting portion Q of the power generator 11 communicates with the interior of the passenger compartment 10a. It is a switching means capable of switching the state.
  • the vehicle-side ECU 50F is substantially the same as the vehicle-side ECU 50A except that the switching valve 33 is further electrically connected and the switching control means described below is further functionally realized. .
  • the switching control unit is realized to control the switching valve 33 so as to switch the communication state of the ventilation duct 31A in correspondence with the air conditioning unit to be used. Specifically, when the air-conditioning means to be used is the electric heater 30, the switching control means connects the mounting portion P of the electric heater 30 and the interior of the passenger compartment 10a so that the switching valve 33 is connected to the electric heater 30 side. It implement
  • the switching control means communicates the mounting portion Q of the power generation device 11 with the interior of the passenger compartment 10a to switch the switching valve 33 to the power generation device 11 side. It is realized to perform the control.
  • the switching means capable of switching the communication state of the ventilation duct 31A is realized by, for example, a set of opening / closing means that can individually open and close the flow paths of the two branch portions branched in correspondence with the electric heater 30 and the power generation device 11. May be. Further, the switching means may be configured to be able to switch the communication state of the ventilation duct 31A to a state in which the electric heater 30 and the power generation device 11 communicate with the interior of the passenger compartment 10a. In this regard, when the air-conditioning means to be used is the electric heater 30 and the power generation apparatus 11, the switching control means communicates the mounting portions P and Q of the electric heater 30 and the power generation apparatus 11 with the interior of the passenger compartment 10a. It may be further realized to perform control for switching the switching means.
  • step S51 the vehicle-side ECU 50F switches to the air-conditioning means side using the switching valve 33 (step S51). Specifically, when the process proceeds from step S3 to step S51, the vehicle-side ECU 50F switches the switching valve 33 to the power generation device 11 side, and when the process proceeds from step S4 to step S51, the vehicle-side ECU 50F detects the switching valve 33. Is switched to the electric heater 30 side.
  • the vehicle-side ECU 50F further communicates the mounting portions P and Q of the electric heater 30 and the power generation device 11 with the interior of the passenger compartment 10a in this step.
  • the switching valve 33 can be switched.
  • the switching valve 33 that can switch the communication state of the ventilation duct 31 ⁇ / b> A is provided in the ventilation duct 31 ⁇ / b> A corresponding to the air conditioning means to be used. Therefore, in the electrically driven vehicle 1 ⁇ / b> F, when the power generation device 11 is not mounted or when the power generation device 11 is not performing air conditioning, the air that is not air-conditioned from the mounting portion Q of the power generation device 11 is It is possible to prevent the air that has been conditioned by the electric heater 30 from flowing into the mounting portion Q of the power generator 11.
  • the electrically driven vehicle 1F can prevent the air conditioning performance from being deteriorated when the power generating device 11 is not installed or when the air generating device 11 is not performing air conditioning. Therefore, it is possible to ensure the appropriateness of the use of air conditioning.
  • the electrically driven vehicle 1 ⁇ / b> G is provided with a ventilation duct 31 ⁇ / b> B instead of the ventilation duct 31 ⁇ / b> A in that the mounting positions of the power generator 11 and the electric heater 30 are different. Except for this point, it is substantially the same as the electrically driven vehicle 1A. Similar changes may be appropriately applied to each electrically driven vehicle described above in other embodiments such as the electrically driven vehicle 1B.
  • a ventilation duct 31B is provided so that the mounting portions P and Q of the power generator 11 and the electric heater 30 are communicated in series.
  • the ventilation fan 32 is provided in the gathering part which is a part before branching to each part of the compartment 10a among the ventilation ducts 31B.
  • the ventilation duct 31 ⁇ / b> B is provided in a portion of the collecting portion on the downstream side of the mounting portions P and Q of the power generation device 11 and the electric heater 30.
  • positioning of the mounting parts P and Q of the electric power generating apparatus 11 and the electric heater 30 may be the arrangement
  • a ventilation duct 31B is provided so that the mounting portions P and Q of the power generation device 11 and the electric heater 30 are connected in series.
  • the electrically driven vehicle 1G can be configured to be advantageous in terms of cost by simplifying the ventilation duct 31B.
  • the air conditioned by the electric heater 30 is blown to the vehicle interior 10a without any trouble. be able to.
  • the electrically driven vehicle 1G can be configured to be advantageous in terms of cost in that the switching valve 33 can be eliminated as compared with, for example, the electrically driven vehicle 1F. Even in the case where the ventilation duct 31B is provided in this way, the electrically driven vehicle 1G is advantageous in terms of cost in that air conditioning can be performed by the blower fan 32 common to the electric heater 30 and the power generation device 11. It can be set as a simple structure.
  • the electrically driven vehicle 1 ⁇ / b> H is different in that the mounting position of the power generation device 11 is different and is provided with ventilation ducts 31 ⁇ / b> C and 31 ⁇ / b> D instead of the ventilation duct 31 ⁇ / b> A. Other than that, it is substantially the same as the electrically driven vehicle 1A. Similar changes may be appropriately applied to each electrically driven vehicle described above in other embodiments such as the electrically driven vehicle 1B.
  • the power generation device 11 is provided in the passenger compartment 10a. Specifically, in the electrically driven vehicle 1H, the power generation device 11 is provided below the driver's seat 72 as indicated by a broken line.
  • the ventilation duct 31C communicates the mounting portion P of the electric heater 30 and the interior of the passenger compartment 10a.
  • the ventilation duct 31 ⁇ / b> D is a plurality of ventilation ducts provided so as to be able to blow waste heat that is heat radiation from the power generation apparatus 11 during operation from the mounting portion Q of the power generation apparatus 11 toward the seats 72, 73, 74. It is configured.
  • a dedicated blower fan can be provided for blowing air through the ventilation duct 31D.
  • the radiator fan can be used.
  • the power generation device 11 is provided in the vehicle interior 10a, so that the waste heat of the power generation device 11 can be used more effectively than the electrically driven vehicle 1A when the vehicle interior 10a is warmed.
  • the power generation device 11 is provided below the driver seat 72, so that the driver seat 72 having the highest use frequency can be effectively warmed.
  • the ventilation duct 31D that directly air-conditions each seat 72, 73, 74 can be easily provided. For this reason, the electrically driven vehicle 1H can also realize the air conditioning of all the seats 72, 73, 74, which is more effective air conditioning than the case where, for example, the dashboard 71 is provided with an air outlet, in terms of cost.
  • the electrically driven vehicle 1 ⁇ / b> I includes a plurality of mounting portions (here, two mounting portions Q and R) of the power generator 11, and the mounting portion R Even when the power generation device 11 is mounted, the power generation device 11 is substantially the same as the electrically driven vehicle 1A except that the power generation device 11 is configured to be electrically connectable to the battery 12 and the vehicle-side ECU 50A. . Similar changes may be appropriately applied to each electrically driven vehicle described above in other embodiments such as the electrically driven vehicle 1B.
  • the mounting portion R which is another mounting portion of the power generation device 11, is a mounting portion that is not in direct communication with the interior of the passenger compartment 10a through the ventilation duct.
  • the mounting portion R is provided in a portion of the vehicle main body 10 that is isolated from the passenger compartment 10a. More specifically, the mounting portion R is provided in the vehicle main body 10 outside the passenger compartment 10a and at a rear portion of the passenger compartment 10a.
  • the electrically driven vehicle 1 ⁇ / b> I is configured so that the power generation device 11 can be detachably mounted on any of the mounting portions Q and R.
  • the mounting portion R by mounting the power generation device 11 on the mounting portion R, it is possible to suppress the waste heat of the power generation device 11 from being transmitted to the vehicle interior 10a. For this reason, electrically driven vehicle 1I can suppress that the temperature in vehicle interior 10a rises by mounting power generator 11 in mounting part R, for example, when heating is unnecessary, such as summer. Further, in the electrically driven vehicle 1I, the mounting portion R is provided in the vehicle main body 10 outside the vehicle compartment 10a and at the rear portion of the vehicle compartment 10a.
  • the electrically driven vehicle 1I has a relationship with the traveling direction of the vehicle and the airtightness of the passenger compartment 10a as compared with the case where the mounting portion R is provided outside the passenger compartment 10a and in front of the passenger compartment 10a. Further, when the power generation device 11 is mounted on the mounting portion R, it is also possible to suitably suppress the temperature inside the passenger compartment 10a from rising.
  • the electrically driven vehicle 1 ⁇ / b> J is provided with a ventilation duct 31 ⁇ / b> E and a point where the first and second on-off valves 34 and 35 are further provided. It is substantially the same as the electrically driven vehicle 1A. Similar changes may be appropriately applied to each electrically driven vehicle described above in other embodiments such as the electrically driven vehicle 1B.
  • the ventilation duct 31E is provided so as to communicate the mounting portion Q of the power generation apparatus 11 with the atmosphere.
  • the first on-off valve 34 is provided so as to be interposed in a portion of the ventilation duct 31 ⁇ / b> A branched in correspondence with the power generation device 11.
  • the second on-off valve 35 is provided so as to be interposed in the ventilation duct 31E.
  • the first and second on-off valves 34 and 35 can be opened and closed by electronic control, for example.
  • the first on-off valve 34 is opened and the second on-off valve 35 is closed, so that air conditioning is not performed.
  • control means for performing control for closing the first on-off valve 34 and opening the second on-off valve 35 when the air conditioning switch 23 is OFF)
  • the first and second on-off valves 34 and 35 can be opened and closed.
  • the present invention is not limited to this, and the first and second on-off valves 34 and 35 may be configured to be openable and closable by manual operation, for example.
  • the electrically driven vehicle 1J In the electrically driven vehicle 1J, the first on-off valve 34 is closed and the second on-off valve 35 is opened, so that the air warmed by the waste heat of the power generation device 11 is blown into the vehicle interior 10a. Can be prevented. For this reason, the electrically driven vehicle 1J closes the first on-off valve 34 and opens the second on-off valve 35 when heating is unnecessary, for example, in summer, so that the temperature of the passenger compartment 10a rises. This can be suppressed.
  • the electric drive vehicle 1J allows the vehicle interior 10a to flow out to the atmosphere through the ventilation duct 31E and the air heated by the waste heat of the power generation device 11 through the ventilation duct 31E even when the power generation is necessary but the air conditioning is not necessary. It can suppress suitably that temperature of this rises. Moreover, since the electrically driven vehicle 1J does not need to include the mounting portion R unlike the electrically driven vehicle 1I, the space of the vehicle body 10 can be used more effectively.
  • the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention.
  • the first air conditioning unit is an air conditioner including a compressor that operates using battery power
  • the second air conditioning unit has energy other than battery power (for example, An air conditioner device including a compressor that operates by using an engine or an engine output of an engine-driven power generation device) may be used.
  • the first and second air conditioning units may include a common compressor configured to be able to switch the energy to be used between battery power and energy other than battery power.
  • the compressor is provided in the vehicle main body, and a portion other than the compressor (for example, an engine main body capable of driving the compressor or an engine-driven power generation device main body) is detachably mounted on the vehicle main body.
  • the engine-driven power generation device 11 is the second air conditioning unit that performs power generation using fuel and performs air conditioning using waste heat during power generation.
  • the present invention is not necessarily limited to this, and the second air conditioning unit that performs power generation using fuel and performs air conditioning using waste heat during power generation may be, for example, a fuel cell type power generation device.
  • the second air-conditioning unit can perform air-conditioning using heat radiation from, for example, a fuel cell-type power generation device as waste heat during power generation.
  • the Example mentioned above demonstrated the case where the electric power generating apparatus 11 was the 2nd air conditioning means which performs the air conditioning using the heat radiation from the engine 111 as waste heat at the time of electric power generation.
  • the present invention is not necessarily limited to this, and the second air conditioning means includes, for example, a heat exchanger that cools the cooling medium, and uses the heat radiation of the cooling medium in the heat exchanger as waste heat during power generation. It may be an engine-driven power generation device including a cooling medium cooling type engine that performs the above.
  • the vehicle main body is provided with a heat exchanger
  • the second air conditioning unit is configured so that a portion other than the heat exchanger (for example, the power generation device main body) is detachably mounted on the vehicle main body.
  • the second air conditioning means may perform air conditioning using both heat radiation from the engine and heat radiation in the heat exchanger, for example. Further, these contents can be similarly applied to the case where the fuel cell type power generation device as the second air conditioning means is a cooling medium cooling type, for example.
  • the air conditioning change unit adjusts the usage ratio between the electric heater 30 and the power generation device 11 according to the state of the adjustment switch 25 .
  • the air conditioning change means adjusts the usage ratio between the first air conditioning means and the second air conditioning means based on, for example, information obtainable from the in-vehicle navigation device. May be. In this case, for example, depending on the distance from the home or the desk lamp equipped with the charging facility, the farther the distance is, the lower the usage ratio of the first air-conditioning means or the set destination.
  • the use ratio of the first air-conditioning means is reduced as the distance increases, so that appropriate air-conditioning according to the use state of the vehicle can be performed.
  • an operation means that can select whether or not to adjust the usage ratio may be further provided. Thereby, it is also possible to confirm whether or not the adjustment of the usage ratio actually matches the user's intention.
  • each vehicle-side ECU such as the vehicle-side ECU 50A
  • various means functionally realized by each vehicle-side ECU are realized by hardware such as other electronic control devices, dedicated electronic circuits, or a combination thereof. Also good.

Abstract

 電気駆動式車両1Aは、車室10aが設けられた車両本体10と、車両本体10aに搭載され、走行に利用可能なバッテリ12と、車室10aを空調するにあたり、バッテリ12の電力を利用した空調を行う電気ヒータ30と、車室10aを空調するにあたり、車両本体10に少なくとも部分的に脱着可能に搭載され、バッテリ12の電力を利用した空調以外の他の空調を行う発電装置11と、電気ヒータ30または発電装置11のうち、少なくともいずれかの利用状態を変更する空調変更手段と、を備える。 

Description

電気駆動式車両
 本発明は電気駆動式車両に関し、特に車室を空調する電気駆動式車両に関する。
 従来、車室を空調する電気駆動式車両が知られている。この点、例えば特許文献1では、走行用モータの電力源となるバッテリに対する充電用の発電機と、発電機を駆動する発電用エンジンとを搭載し、発電用エンジンを駆動することでエアコンのコンプレッサを作動させて冷暖房を行う電気自動車が開示されている。
 このほか発電機を駆動するサブエンジンを備え、サブエンジンの廃熱を暖房に利用する点で本発明と関連性があると考えられる技術が例えば特許文献2または3で、車室温度情報に基づく空調制御を行う点で本発明と関連性があると考えられる技術が例えば特許文献4でそれぞれ開示されている。
特開平10-145905号公報 特開2005-299425号公報 実開昭61-157013号公報 実開平3-64110号公報
 ところで、バッテリを備える電気駆動式車両では、車室を空調するにあたり、バッテリ電力を利用した空調(例えばバッテリ電力を利用した電気ヒータによる暖房)を行うことが考えられる。ところが、かかる空調では一般にバッテリ電力を大きく消費することになるため、車両の航続距離の大幅な低下を招く虞がある。これに対して特許文献1が開示する電気自動車では、発電用エンジンを駆動することでエアコンのコンプレッサを作動させ、これにより空調を行っている。このためこの電気自動車では、空調を行うことに起因して車両の航続距離が大幅に短くなることを回避できると考えられる。
 しかしながら、特許文献1が開示する電気自動車は、発電用エンジンを常時搭載している。このためこの電気自動車は、発電用エンジンの分だけ車両の重量増を伴い、その分、エネルギー効率が悪化することになる。
 一方、これに対しては例えば空調を行う空調手段を少なくとも部分的に車両本体に脱着可能に搭載することが考えられる。この場合には必要に応じて空調手段を脱着することで、重量増に起因するエネルギー効率の悪化を抑制できる。
 ところがこの場合には、空調手段を搭載していなければ、空調を一切行えないことになる。このためこの場合には、空調手段を搭載していない状態で車両を運転しようとする場合に、空調を行うことを断念するか、或いは例えば比較的短時間や短距離の運転であっても空調を行うために空調手段を搭載しなければならないことになり、この結果、不便と感じられる場合もあると考えられる。
 そこで本発明は上記課題に鑑みてなされたものであり、航続距離の確保を可能としつつ、重量増に起因するエネルギー効率の悪化を抑制可能とし、同時に空調の利用について適切性を確保可能な電気駆動式車両を提供することを目的とする。
 上記課題を解決するための本発明は車室が設けられた車両本体と、前記車両本体に搭載され、走行に利用可能なバッテリと、前記車室を空調するにあたり、前記バッテリの電力を利用した空調を行う第1の空調手段と、前記車室を空調するにあたり、前記車両本体に少なくとも部分的に脱着可能に搭載され、前記バッテリの電力を利用した空調以外の他の空調を行う第2の空調手段と、前記第1の空調手段または前記第2の空調手段のうち、少なくともいずれかの利用状態を変更する空調変更手段と、を備えた電気駆動式車両である。
 また本発明は前記空調変更手段が、前記第1の空調手段と前記第2の空調手段との間で利用する空調手段を切り替える構成であることが好ましい。
 また本発明は前記空調変更手段が、前記第2の空調手段が作動可能であるか否かに応じて、前記第1の空調手段と前記第2の空調手段との間で利用する空調手段を切り替える構成であることが好ましい。
 また本発明は前記空調変更手段が、前記第1の空調手段と前記第2の空調手段との間で利用比率を調整する構成であることが好ましい。
 また本発明は前記空調変更手段が、前記バッテリの充電量に応じて前記利用比率を調整する構成であることが好ましい。
 また本発明は前記利用比率を調整可能な操作手段をさらに備え、前記空調変更手段が、前記操作手段の状態に応じて前記利用比率を調整する構成であることが好ましい。
 また本発明は前記空調変更手段が、少なくとも前記第1の空調手段が空調を行っている状態で、空調を行うにあたり設定された目標温度と、前記車室内の実温度との差が小さい場合に、空調能力が低下するように前記第1の空調手段の空調能力を調整する構成であることが好ましい。
 また本発明は前記第2の空調手段が、燃料を使用した発電を行うとともに、発電時の廃熱を利用した空調を行う空調手段である構成であることが好ましい。
 また本発明は前記車室を空調するにあたり、前記第1の空調手段と前記第2の空調手段とに共通の送風手段をさらに備えた構成であることが好ましい。
 本発明によれば、航続距離の確保を可能としつつ、重量増に起因するエネルギー効率の悪化を抑制可能とし、同時に空調の利用について適切性を確保できる。
実施例1にかかる電気駆動式車両の概略構成図である。 発電装置を示す図である。 実施例1にかかる電気駆動式車両の他の概略構成図である。 実施例1にかかる車両側ECU(Electronic control unit:電子制御装置)の動作をフローチャートで示す図である。 調整スイッチを示す図である。 実施例2にかかる車両側ECUの動作をフローチャートで示す図である。 実施例3にかかる車両側ECUの動作をフローチャートで示す図である。 実施例4にかかる電気駆動式車両の概略構成図である。 実施例4にかかる車両側ECUの動作をフローチャートで示す図である。 実施例5にかかる電気駆動式車両の概略構成図である。 実施例5にかかる車両側ECUの動作をフローチャートで示す図である。 実施例6にかかる電気駆動式車両の概略構成図である。 実施例6にかかる車両側ECUの動作をフローチャートで示す図である。 実施例7にかかる電気駆動式車両の概略構成図である。 実施例8にかかる電気駆動式車両の概略構成図である。 実施例9にかかる電気駆動式車両の概略構成図である。 実施例10にかかる電気駆動式車両の概略構成図である。
 以下、本発明を実施するための形態を図面と共に詳細に説明する。
 図1に示すように、電気駆動式車両1Aは車両本体10を備えるとともに、車両本体10に搭載された発電装置11とバッテリ12と電動モータ13とを備えている。電気駆動式車両1Aは、発電装置11を脱着可能に搭載している。発電装置11を脱着可能に搭載した電気駆動式車両1Aは、発電装置11を搭載していない状態で、且つ発電装置11との電気的な接続が切り離された状態でも運転が可能になっている。
 発電装置11はエンジン駆動式の発電装置であり、図2に示すようにエンジン111と発電機112と発電装置側ECU113とを備えている。エンジン111は発電機112を駆動し、駆動された発電機112は交流を発生させる。そして発生した交流はバッテリ12に充電される前に図示しない整流回路によって直流に整流される。発電装置側ECU113は主にエンジン111を制御するために設けられている。
 図1に示すように、バッテリ12は直流バッテリであり、パワー系配線である高電圧系配線を介して発電装置11と電気的に且つ脱着可能に接続されている。そして、発電装置11が発電した電力は高電圧系配線を介してバッテリ12に充電される。バッテリ12には、例えば定格電圧DC12Vのバッテリを直列に複数接続したものを適用できる。電動モータ13は電動機からなる走行駆動源であり、直流モータとなっている。電動モータ13はバッテリ12から電力の供給を受け、出力軸14を回転する。そして、その回転出力がトランスミッション15を介して駆動輪である左右一対の後輪2に伝達され、この結果、後輪2が駆動する。このように、電気駆動式車両1Aはシリーズハイブリッド方式の電気駆動式車両となっている。
 電気駆動式車両1Aは、駆動輪である左右一対の後輪2のほか、操舵輪である左右一対の前輪3や、前輪3を手動操舵するためのハンドル4や、電動モータ13のモータ回転数を変えるためのアクセルペダル5や、車両に制動を付与するためのブレーキペダル6およびブレーキユニット7や、ブレーキペダル6にワイヤ結合されているとともにブレーキユニット7に連結され、各前輪3、各後輪2にそれぞれ設けられたドラムブレーキ8を備えている。アクセルペダル5には、アクセルペダル5の踏み込み量を検知するアクセル開度センサ61が、ブレーキベダル6には、ブレーキペダル6の踏み込みの有無を検知するブレーキスイッチ62がそれぞれ設けられている。
 さらに電気駆動式車両1Aはキースイッチ21および発電スイッチ22を備えている。キースイッチ21および発電スイッチ22はON、OFF間の選択的な切換操作が可能なスイッチとなっている。キースイッチ21は電動モータ13に対する運転要求をするための操作手段となっている。具体的にはキースイッチ21がONである場合には運転要求が有りの状態になり、OFFである場合には運転要求が無しの状態になる。発電スイッチ22は発電装置11に対して運転要求をするための操作手段となっている。具体的には発電スイッチ22がONである場合には、発電装置11に対する運転要求が有りの状態になり、OFFである場合には、発電装置11に対する運転要求が無しの状態になる。キースイッチ21および発電スイッチ22は図示しないインストルメントパネルに設けられている。
 さらに電気駆動式車両1Aは、電気ヒータ30を備えている。図3に示すように、電気ヒータ30は発電装置11とともに車室10a外に設けられている。具体的には電気ヒータ30および発電装置11は車両本体10のうち、車室10a外、且つ車室10aの前方の部分に設けられている。この点、車室10a内にはダッシュボード71や運転席72や助手席73や後部座席74が設けられており、発電装置11はさらに具体的には車室10a外、且つ運転席72の足元前方の部分に設けられている。
 電気ヒータ30は具体的には、周囲と隔離された空間を形成する搭載部Pに搭載されている。発電装置11は具体的には、発電装置11の脱着を可能にするための図示しない開閉機構を有して、周囲と隔離された空間を形成する搭載部Qに搭載されている。電気ヒータ30および発電装置11の搭載部P、Qには図示しない空気出入口部がそれぞれ設けられている。電気ヒータ30の搭載部Pに存在する空気は、バッテリ12からの通電により発熱する電気ヒータ30の熱で暖められ、発電装置11の搭載部Qに存在する空気は、運転中の発電装置11からの放熱である廃熱で暖められる。
 この点、電気ヒータ30はバッテリ12の電力を利用した空調を行う第1の空調手段に相当しており、発電装置11は車両本体10に脱着可能に搭載され、バッテリ12の電力を利用した空調以外の他の空調を行う第2の空調手段に相当している。具体的には電気ヒータ30および発電装置11は、ともに暖房を行う空調手段となっている。
 また発電装置11は具体的には燃料を使用した発電を行うとともに、発電時の廃熱を利用した空調を行う空調手段となっており、さらに具体的には発電時の廃熱としてエンジン111からの放熱を利用した空調を行う空調手段となっている。
 電気ヒータ30および発電装置11の搭載部P、Qそれぞれは、空調で行われる熱交換の空間を形成する熱交換空間形成部となっている。この点、例えば電気ヒータ30や発電装置11に筐体を設け、設けた筐体を熱交換空間形成部とすることもできる。
 さらに電気駆動式車両1Aは通風ダクト31Aを備えている。通風ダクト31Aは、電気ヒータ30および発電装置11の搭載部P、Qそれぞれを車室10aに対して並列に接続している。具体的には通風ダクト31Aは電気ヒータ30および発電装置11に対応させて設けられた2つの分岐部を一端側に備えており、これら分岐部が電気ヒータ30および発電装置11の搭載部P、Qに設けられた空気出口部それぞれに接続されている。また通風ダクト31Aは車室10a内の各部(ここではダッシュボード71に設けられた図示しない各送風口)に対応させて設けられた複数(ここでは2つ)の分岐部を他端側に備えており、これら分岐部が各送風口に接続されている。そして通風ダクト31Aの中間に位置する集合部では、一端側に設けられた2つの分岐部と他端側に設けられた複数の分岐部とがそれぞれ集合している。通風ダクト31Aは電気ヒータ30や発電装置11が空調した空気を導く案内手段となっている。
 さらに電気駆動式車両1Aは送風ファン32を備えている。送風ファン32は、車室10aに向かって送風をするように通風ダクト31Aに設けられている。この点、送風ファン32は具体的には通風ダクト31Aの集合部に設けられている。このため空気は送風ファン32によってまず空気入口部を介して発電装置11および電気ヒータ30の搭載部P、Qそれぞれに流入するとともに、発電装置11および電気ヒータ30で暖められ、さらに発電装置11および電気ヒータ30の搭載部P、Qから通風ダクト31Aを介して車室10a内に送風される。送風ファン32は電気ヒータ30や発電装置11が空調した空気を送風する送風手段となっており、電気駆動式車両1Aではさらに具体的には電気ヒータ30および発電装置11に共通の送風手段となっている。
 さらに電気駆動式車両1Aは第1の制御装置である車両側ECU50Aを備えている。車両側ECU50Aは図示しないCPU、ROM、RAM等からなるマイクロコンピュータと入出力回路とを備えている。なお、第2の制御装置に相当する発電装置側ECU113についても同様の構成となっている。車両側ECU50Aには、発電装置11(より具体的には発電装置側ECU113)が電気的に且つ脱着可能に接続されている。この点、車両側ECU50Aと発電装置11とは、具体的には制御系配線である低電圧系配線を介して接続されている。
 また図1および図3に示すように、車両側ECU50Aには電動モータ13や電気ヒータ30や送風ファン32などの各種の制御対象が電気的に接続されているほか、キースイッチ21や、発電スイッチ22や、空調のON、OFFを切替可能な空調スイッチ23や、空調の温度調節が可能な温度調節スイッチ24や、アクセル開度センサ61や、ブレーキスイッチ62や、搭載状態の発電装置11を検知することで、発電装置11の搭載、非搭載を検知可能な状態検知手段である搭載検知センサ63などの各種のセンサ・スイッチ類が電気的に接続されている。さらに車両側ECU50Aには、バッテリ充電量を検出するためにバッテリ12が電気的に接続されている。
 ROMはCPUが実行する種々の処理が記述されたプログラムやマップデータなどを格納するための構成である。CPUがROMに格納されたプログラムに基づき、必要に応じてRAMの一時記憶領域を利用しつつ処理を実行することで、車両側ECU50Aや発電装置側ECU113では各種の制御手段や判定手段や検出手段や算出手段などが機能的に実現される。
 例えば車両側ECU50Aでは、電気ヒータ30または発電装置11のうち、少なくともいずれかの利用状態を変更する空調変更手段が機能的に実現される。
 利用状態を変更するにあたり、空調変更手段は例えば車両の使用状態、或いは使用状況に応じて利用状態を変更するように実現することができる。
 また利用状態を変更するにあたり、空調変更手段は例えば電気ヒータ30または発電装置11のうち、少なくともいずれかの空調能力を個別に調整するように実現することや、電気ヒータ30と発電装置11との間で利用する空調手段を切り替えるように実現することや、電気ヒータ30と発電装置11との間で利用比率を調整するように実現することができる。
 この点、車両側ECU50Aでは、空調変更手段が具体的には電気ヒータ30と発電装置11との間で利用する空調手段を切り替えるように実現される。
 また車両側ECU50Aでは、空調変更手段が具体的には発電装置11が発電可能であるか否かに応じて、利用する空調手段を切り替えるように実現される。
 なお、空調変更手段は空調スイッチ23が既にONになっている場合だけでなく、空調スイッチ23がOFFになっている場合でも利用状態を変更することができる。すなわち、空調変更手段が変更する利用状態には、現に利用されている状態だけでなく、これから利用されるべき状態も含まれている。
 また例えば車両側ECU50Aでは、発電装置11が発電可能であるか否かを診断する診断手段が機能的に実現される。
 発電装置11が発電可能であるか否かを診断するにあたり、診断手段は具体的には発電装置11の発電可能状態について診断するように実現される。
 この点、診断手段は例えば発電装置11が搭載されているか否かを判断することで、発電装置11の発電可能状態について診断するよう実現することができる。
 また診断手段は例えば、さらに発電装置11の搭載状態が正規の状態であるか否かを検出するために設けられた図示しないインターロック装置(例えば発電装置11の固定確認装置や、発電装置11の搭載部Qに対して設けられた開閉機構のロック確認装置)が正規の状態を検出しているか否か、発電装置11の燃料が十分(所定量以上)であるか否か、発電装置11の電気的接続状態に異常がないか否か、発電装置11の機械的な接続状態に異常がないか否か、発電装置11に故障などの異常がないか否か、またはこれらの判断内容を適宜組み合わせて判断することで、発電装置11の発電可能状態について診断するよう実現できる。
 この点、さらに具体的には診断手段は、発電装置11の発電可能状態について複数の判断内容を組み合わせて判断することで診断を行うように実現される。
 具体的には診断手段は、上述した各判断内容を組み合わせて判断した結果、発電装置11が搭載されており、インターロック装置が正規の状態を検出しており、発電装置11の燃料が所定量以上であり、発電装置11の電気的および機械的な接続状態に異常がなく、且つ発電装置11に異常がないと判断した場合に、発電装置11が発電可能であると判断するように実現される。
 一方、発電装置11の発電可能状態について複数の判断内容を組み合わせて診断を行うにあたり、診断手段は例えば少なくとも発電装置11が搭載されているか否かを判断することを基本的な判断内容として含むように実現することができる。但しこれに限られず、診断手段は発電装置11が搭載されているか否かを判断する代わりに、例えば発電装置11の電気的および機械的な接続状態に異常があるか否かを基本的な判断内容として含むことで、発電装置11が搭載されているか否かを間接的に判断するように実現することもできる。
 次に車両側ECU50Aの動作を図4に示すフローチャートを用いて説明する。車両側ECU50Aは発電装置11の発電可能状態について診断し(ステップS1)、この結果、発電装置11が発電可能であるか否かを判断する(ステップS2)。肯定判定であれば、車両側ECU50Aは利用する空調手段を発電装置11に切り替える(ステップS3)。これにより、利用される空調手段が発電装置11となる。一方、ステップS2で否定判定であれば、車両側ECU50Aは利用する空調手段を電気ヒータ30に切り替える(ステップS4)。これにより、利用される空調手段が電気ヒータ30となる。
 次に電気駆動式車両1Aの作用効果について説明する。ここで、電気駆動式車両1Aでは、バッテリ電力を利用した空調以外の他の空調を行う発電装置11を脱着可能に搭載している。このため電気駆動式車両1Aは、発電装置11で空調を行うようにすることでバッテリ電力を消費せずに空調を行うことができ、これにより車両の航続距離を確保できる。また電気駆動式車両1Aは、発電装置11を降ろすことで重量増に起因するエネルギー効率の悪化を抑制することもできる。
 一方、電気駆動式車両1Aは、発電装置11とは別に電気ヒータ30も備えている。これに対して電気駆動式車両1Aでは、車両の使用状態、或いは使用状況に応じて電気ヒータ30と発電装置11の利用状態を変更するようにすることで、様々な観点から空調の利用について適切性を確保できる。
 この点、電気駆動式車両1Aでは、具体的には発電装置11が発電可能であるか否かに応じて、電気ヒータ30と発電装置11との間で利用する空調手段を切り替える。そしてこれにより電気駆動式車両1Aは、発電装置11が発電可能である場合には発電装置11で空調を行うことで、バッテリ電力を消費せずに空調を行うことができる。また電気駆動式車両1Aは、例えば発電装置11が搭載されていない場合など発電装置11が発電可能でない場合には、電気ヒータ30で空調を行うことができる。このため電気駆動式車両1Aは車両の航続距離を確保しつつ利便性の向上を図ることができる点で、空調の利用について適切性を確保できる。
 また電気駆動式車両1Aでは、発電装置11を車両本体10のうち、車室10a外、且つ運転席72の足元前方の部分に設けている。このため電気駆動式車両1Aは、車室10a外から車室10a内に伝わる発電装置11からの放熱で、利用頻度が一番高い運転席72を効果的に暖めることもできる。
 また電気駆動式車両1Aでは、バッテリ電力を利用した空調以外の他の空調を行う発電装置11が、燃料を使用して発電を行うとともに、発電時の廃熱を利用した空調を行うようになっている。このため電気駆動式車両1Aは、バッテリ電力を利用した空調以外の他の空調を行う場合にコジェネレーションによるエネルギー利用の高効率化を図ることができる点でも好適である。
 本実施例にかかる電気駆動式車両1Bは、車両側ECU50Aの代わりに車両側ECU50Bを備えている点以外、電気駆動式車両1Aと実質的に同一のものとなっている。このため電気駆動式車両1Bについては図示省略する。
 車両側ECU50Bは、空調変更手段が以下に示すように実現される点以外、車両側ECU50Aと実質的に同一のものとなっている。
 車両側ECU50Bでは、利用状態を変更するにあたり、空調変更手段が電気ヒータ30と発電装置11との間で利用比率を調整するように実現される。
 利用比率を調整するにあたり、空調変更手段は具体的にはバッテリ12の充電量に応じて利用比率を調整するように実現される。利用比率を調整するように実現される空調変更手段は、発電装置11が発電可能である場合に、電気ヒータ30と発電装置11とで同時に空調を行うことができるように実現される。
 また空調変更手段は具体的には、バッテリ12の充電量が大きいほど電気ヒータ30の利用比率が高くなるように利用比率を調整するよう実現される。
 この点、電気ヒータ30の利用比率は例えば最小で0%、最大で100%とすることができる。但しこれに限られず、電気ヒータ30の利用比率を例えば最小で0%よりも大きい値にするとともに、最大で100%よりも小さい値にすることも可能である。
 次に車両側ECU50Bの動作を図5に示すフローチャートを用いて説明する。なお、本フローチャートはステップS11、S12が追加されている点以外、図4に示すフローチャートと実質的に同一のものとなっている。このためここでは特にこれらのステップについて説明する。ステップS3に続いて、車両側ECU50Bはバッテリ12の充電量を検出する(ステップS11)。続いて車両側ECU50Bは、検出したバッテリ12の充電量に応じて利用比率を調整する(ステップS12)。
 次に電気駆動式車両1Bの作用効果について説明する。電気駆動式車両1Bでは、利用状態を変更するにあたり、電気ヒータ30と発電装置11との間で利用比率を調整する。このため電気駆動式車両1Bは、空調の利用について適切性を確保するにあたり、例えば電気ヒータ30または発電装置11の空調能力を個別に調整する場合と比較して、空調能力が変動することを抑制することができる。
 この点、電気駆動式車両1Bでは、バッテリ12の充電量が大きいほど、電気ヒータ30の利用比率が高くなるように利用比率を調整する。そしてこれにより電気駆動式車両1Bは、バッテリ12の過充電を防止するとともに、発電装置11の燃料消費を抑制することができる。
 一方、電気駆動式車両1Bでは、バッテリ12の充電量が小さいほど、電気ヒータ30の利用比率が低くなるように利用比率を調整する。そしてこれにより電気駆動式車両1Bは、バッテリ12の電力消費を抑制するとともにバッテリ12の充電を促進できることから、車両の航続距離を確保できる。
 このため電気駆動式車両1Bは、電気ヒータ30と発電装置11との間で、合理的でバランスの良い空調を行える点で、空調の利用について適切性を確保することができる。
 本実施例にかかる電気駆動式車両1Cは、図6に示す調整スイッチ25をさらに備えている点と、車両側ECU50Aの代わりに車両側ECU50Cを備えている点以外、電気駆動式車両1Aと実質的に同一のものとなっている。このため電気駆動式車両1Cについては図示省略する。
 調整スイッチ25は図示しないインストルメントパネルに設けられている。調整スイッチ25は、発電装置11と電気ヒータ30との間で利用比率を調整可能な操作手段となっている。調整スイッチ25は具体的には、電気ヒータ30(換言すれは発電装置11)の利用比率を0%から100%までの間で適宜の値に調整できるようになっている。但しこれに限られず、例えば電気ヒータ30の利用比率を最小で0%よりも大きい値にするとともに、最大で100%よりも小さい値にすることも可能である。また、発電装置11と電気ヒータ30との間で利用比率を調整可能な操作手段は、例えば利用比率を段階的に調整可能に構成されたものであってもよい。
 車両側ECU50Cは調整スイッチ25がさらに電気的に接続される点と、利用状態を変更するにあたり、空調変更手段が調整スイッチ25の状態に応じて電気ヒータ30と発電装置11との間で利用比率を調整するように実現される点以外、車両側ECU50Aと実質的に同一のものとなっている。利用比率を調整するように実現される空調変更手段は発電装置11が発電可能である場合に、電気ヒータ30と発電装置11とで同時に空調を行うことができるように実現される。
 次に車両側ECU50Cの動作を図7に示すフローチャートを用いて説明する。なお、本フローチャートはステップS21、S22が追加されている点以外、図4に示すフローチャートと実質的に同一のものとなっている。このためここでは特にこれらのステップについて説明する。ステップS3に続いて、車両側ECU50Cは調整スイッチ25の状態を検出する(ステップS21)。続いて車両側ECU50Cは、検出した調整スイッチ25の状態に応じて利用比率を調整する(ステップS22)。
 次に電気駆動式車両1Cの作用効果について説明する。ここで、空調を行う車両の使用状況としては、例えばバッテリ電力を使用した空調を行っても、充電設備を備える自宅や電気スタンドまでの車両走行が十分可能な場合も想定される。そしてこの場合には、仮に発電装置11が発電可能な場合であっても、発電装置11の燃料消費を抑制したいことから、ユーザが敢えて電気ヒータ30で空調を行いたいと思う場合もあると考えられる。
 これに対して電気駆動式車両1Cでは、発電装置11が発電可能な場合であっても、調整スイッチ25で利用比率を調整することで、電気ヒータ30のみで、或いは電気ヒータ30を併用して空調を行うことができる。そしてこの場合には、は発電装置11の燃費消費を抑制しつつ空調を行うことができる。
 また電気駆動式車両1Cでは、逆に車両の航続距離が長いと見込まれる場合には、電気ヒータ30の利用比率を下げることで、バッテリ12の電力消費を抑制し、これにより車両の航続距離を確保することもできる。
 このため電気駆動式車両1Cは、車両の使用状況に応じた適切な空調を行える点で、空調の利用について適切性を確保することができる。
 図8に示すように、本実施例にかかる電気駆動式車両1Dは、温度センサ64をさらに備えている点と、車両側ECU50Aの代わりに車両側ECU50Dを備えている点以外、電気駆動式車両1Aと実質的に同一のものとなっている。なお、同様の変更を例えば電気駆動式車両1B、1Cに適用することも可能である。
 温度センサ64は、通風ダクト31Aのうち、電気ヒータ30および発電装置11の搭載部P、Qそれぞれよりも下流側の部分に設けられている。したがって温度センサ64は通風ダクト31Aのうち、一端側に設けられた2つの分岐部が集合する部分よりも下流側の部分に設けられている。具体的には温度センサ64は通風ダクト31Aの集合部に設けられており、さらに具体的には集合部のうち、最も下流側に位置する部分(具体的にはここでは他端側に設けられた複数の分岐部が集合する部分)に設けられている。このように設けられた温度センサ64は通風ダクト31Aの集合部の温度を検知することで、空調が行われた空気の温度を検知可能な検知手段となっている。
 車両側ECU50Dは、温度センサ64がさらに電気的に接続される点と、空調変更手段がさらに以下に示すように実現される点以外、車両側ECU50Aと実質的に同一のものとなっている。
 車両側ECU50Dでは、利用状態を変更するにあたり、空調変更手段が集合部の温度と、空調を行うにあたり設定された目標温度である要求温とに基づき、利用する空調手段の空調能力を調整するようにさらに実現される。
 具体的には空調変更手段は、集合部の温度が要求温よりも低い場合には、集合部の温度が要求温以上である場合よりも、利用する空調手段の空調能力を相対的に高めるように実現される。また空調変更手段は、集合部の温度が要求温以上である場合には、集合部の温度が要求温より低い場合よりも、利用する空調手段の空調能力を相対的に低下させるように実現される。
 空調変更手段は、空調を行っている場合に、集合部の温度と要求温とに基づき、利用する空調手段の空調能力を調整するように実現される。
 なお、要求温は温度調節スイッチ24で設定することができる。
 次に車両側ECU50Dの動作を図9に示すフローチャートを用いて説明する。なお、本フローチャートはステップS31からS34までが追加されている点以外、図4に示すフローチャートと同一のものとなっている。このためここでは特にこれらのステップについて説明する。ステップS3またはステップS4に続き、
車両側ECU50Dは、空調スイッチ23の出力に基づき、空調を行っているか否かを判定する(ステップS31)。否定判定であれば、本フローチャートを一旦終了する。一方、ステップS31で肯定判定であれば、車両側ECU50Dは、集合部の温度が要求温よりも低いか否かを判定する(ステップS32)。肯定判定であれば、車両側ECU50DはステップS33で利用する空調手段の空調能力を相対的に高める(空調能力UP)。一方、ステップS32で否定判定であれば、車両側ECU50DはステップS34で利用する空調手段の空調能力を相対的に低下させる(空調能力DOWN)。
 次に電気駆動式車両1Dの作用効果について説明する。電気駆動式車両1Dでは、温度センサ64を通風ダクト31Aのうち、一端側に設けられた2つの分岐部が集合する部分よりも下流側の部分に設けている。このため電気駆動式車両1Dは、空調を行うにあたり、利用する空調手段が電気ヒータ30であっても発電装置11であっても、さらには利用する空調手段が例えば電気ヒータ30および発電装置11であっても、1つの温度センサ64で空調能力の調整を行うことができる。このため電気駆動式車両1Dは、これにより制御や構成の簡素化を図ることができる点で、空調の利用について適切性を確保することができる。
 図10に示すように本実施例にかかる電気駆動式車両1Eは、室温センサ65をさらに備えている点と、車両側ECU50Bの代わりに車両側ECU50Eを備えている点以外、電気駆動式車両1Bと実質的に同一のものとなっている。なお、同様の変更を例えば電気駆動式車両1Cに対して適用することも可能である。
 室温センサ65は車室10aに対して設けられており、室温を検知することで車室10a内の実温度を検知可能な検知手段となっている。
 車両側ECU50Eは、室温センサ65がさらに電気的に接続される点と、空調変更手段がさらに以下に示すように実現される点以外、車両側ECU50Bと実質的に同一のものとなっている。
 車両側ECU50Eでは、利用状態を変更するにあたり、空調変更手段が、少なくとも電気ヒータ30が空調を行っている状態で、要求温と室温との差が小さい場合に、空調能力が低下するように電気ヒータ30の空調能力を調整するようさらに実現される。
 空調能力が低下するように電気ヒータ30の空調能力を調整するにあたり、空調変更手段は、具体的には電気ヒータ30への通電を中止することによって、電気ヒータ30の作動を停止するように実現される。
 また空調変更手段はさらに具体的には、電気ヒータ30と発電装置11とが同時に空調を行っている状態で、要求温と室温との差が所定値αよりも小さい場合に、電気ヒータ30の作動を停止するように実現される。
 また車両側ECU50Eでは、空調変更手段が、室温と要求温とに基づき、利用する空調手段の空調能力を調整するようにさらに実現される。
 具体的には空調変更手段は、室温が要求温よりも低い場合には、室温が要求温以上である場合よりも、利用する空調手段の空調能力を相対的に高めるように実現される。また空調変更手段は、室温が要求温以上である場合には、室温が要求温よりも低い場合よりも、利用する空調手段の空調能力を相対的に低下させるように実現される。
 空調変更手段は、空調を行っている場合に、室温と要求温とに基づき、利用する空調手段の空調能力を調整するように実現される。
 次に車両側ECU50Eの動作を図11に示すフローチャートを用いて説明する。なお、本フローチャートはステップS41からS48までがさらに追加されている点以外、図5に示すフローチャートと同一のものとなっている。このためここでは特にこれらのステップについて説明する。ステップS12に続いて、車両側ECU50Eは、電気ヒータ30と発電装置11とが同時に空調を行っているか否かを判定する(ステップS41)。肯定判定であれば、車両側ECU50Eは室温が要求温から所定値αを減じた値以上であるか否かを判定する(ステップS42)。本ステップで、要求温と室温との差が所定値αよりも小さいか否かが判定される。ステップS42で否定判定であれば、車両側ECU50Eは電気ヒータ30を作動させる(ステップS43)。なお、電気ヒータ30が既に作動している場合には、本ステップで電気ヒータ30の作動が継続されることになる。一方、ステップS42で肯定判定であれば、車両側ECU50Eは電気ヒータ30の作動を停止する(ステップS44)。一方、ステップS41で否定判定であった場合には、車両側ECU50Eは空調を行っているか否かを判定する(ステップS45)。否定判定であれば、本フローチャートを一旦終了する。
 次にステップS43、S44、またはステップS45の肯定判定に続いて、車両側ECU50Eは室温が要求温よりも低いか否かを判定する(ステップS46)。肯定判定であれば、車両側ECU50Eは、ステップS47で利用する空調手段の空調能力を相対的に高める(空調能力UP)。具体的には車両側ECU50Eは、ステップS43に続いてステップS46に進んだ場合には、本ステップで発電装置11の空調能力を相対的に高めることになる。
 一方、ステップS46で否定判定であれば、車両側ECU50Eは、ステップS48で利用する空調手段の空調能力を相対的に低下させる(空調能力DOWN)。具体的には車両側ECU50Eは、ステップS43に続いてステップS46に進んだ場合には、本ステップで発電装置11の空調能力を相対的に低下させることになる。なお、発電装置11の空調能力を相対的に低下させるにあたっては、例えば発電装置11の発熱量を減少させることや、送風ファン32の出力を低下させることができる。
 次に電気駆動式車両1Eの作用効果について説明する。電気駆動式車両1Eでは、要求温と室温との差が所定値αよりも小さい場合に、電気ヒータ30の作動を停止する。すなわち電気駆動式車両1Eでは、室温が要求温にある程度近づいた状態では、電気ヒータ30の作動を停止する。この点、電気駆動式車両1Eでは、電気ヒータ30の作動を停止するにあたり、車室10a内の実温度を用いることで、例えば実施例4と同様に集合部の温度を用いた場合とは異なり、室温が実際に要求温にある程度近づいた状態であるか否かを検出することができる。このため電気駆動式車両1Eは、室温が要求温にある程度近づいた状態でないにも関わらず、電気ヒータ30の作動を停止することで、空調性能が大幅に低下することを抑制できる。
 一方、電気駆動式車両1Eでは、電気ヒータ30の作動を停止した場合であっても発電装置11で継続して空調を行うことができる。このため電気駆動式車両1Eは、室温が要求温にある程度近づいた状態で空調を継続するにあたって、電気ヒータ30によるバッテリ12の電力消費を抑制できる。このため電気駆動式車両1Eは、電気ヒータ30による空調を継続する場合と比較して、空調性能を十分確保しつつ車両の航続距離をさらに確保できる点で、空調の利用について適切性を確保できる。
 なお、空調変更手段は電気ヒータ30と発電装置11とが同時に空調を行っている状態ではなく、発電装置11が発電可能な状態で、且つ電気ヒータ30および発電装置11のうち、電気ヒータ30が空調を行っている状態で、要求温と室温との差が所定値αよりも小さい場合に、電気ヒータ30の作動を停止するように実現されてもよい。この場合には、例えば電気ヒータ30の作動を停止するとともに、さらに発電装置11の作動を開始するように空調変更手段を実現することで、空調を継続して行うこともできる。この場合にも、室温が要求温にある程度近づいた状態で空調を継続するにあたって、電気ヒータ30によるバッテリ12の電力消費を抑制できる。
 一方、この場合には、例えば発電装置11(より具体的にはエンジン111)の暖機状態によっては空調性能が一時的に低下する可能性もある。このためこの場合には、例えば発電装置11が発電可能な状態で、且つ電気ヒータ30および発電装置11のうち、電気ヒータ30が空調を行っている状態で、要求温と室温との差が、所定値αの代わりに所定値αよりも値が大きい所定値βよりも小さい場合に、発電装置11の作動を開始するように空調変更手段をさらに実現することもできる。これにより発電装置11の暖機を予め促進できることから、空調性能が一時的に低下することも抑制できる。
 また、空調変更手段は例えば電気ヒータ30の作動を停止することなく、空調能力が低下するように電気ヒータ30の空調能力を調整するように実現されてもよい。これによっても、室温が要求温にある程度近づいた状態で空調を継続するにあたって、電気ヒータ30によるバッテリ12の電力消費を抑制できる。
 また、空調変更手段は電気ヒータ30の作動を停止する代わりに、例えば電気ヒータ30の利用比率が低下するように利用比率を調整するよう実現されてもよい。この場合には発電装置11の利用比率が高まることで、発電装置11の発熱量が大きくなり、この結果、発電装置11の発熱量を特段変更しない場合と比較して、室温をより素早く要求温に到達させるとともに、バッテリ12の充電をさらに促進できるようになる点で好適である。
 図12に示すように本実施例にかかる電気駆動式車両1Fは切替弁33をさらに備えている点と、車両側ECU50Aの代わりに車両側ECU50Fを備えている点以外、電気駆動式車両1Aと実質的に同一のものとなっている。なお、同様の変更を例えば電気駆動式車両1Bから1Eまでに適用することも可能である。
 切替弁33は通風ダクト31Aのうち、一端側に設けられた2つの分岐部が集合する部分に介在させるようにして設けられている。切替弁33は電気ヒータ30の搭載部Pと車室10a内とを連通する状態と、発電装置11の搭載部Qと車室10a内とを連通する状態との間で、通風ダクト31Aの連通状態を切替可能な切替手段となっている。
 車両側ECU50Fは、切替弁33がさらに電気的に接続される点と、以下に示す切替制御手段がさらに機能的に実現される点以外、車両側ECU50Aと実質的に同一のものとなっている。
 切替制御手段は、利用する空調手段に対応させて、通風ダクト31Aの連通状態を切り替えるように切替弁33を制御するよう実現される。
 具体的には切替制御手段は、利用する空調手段が電気ヒータ30である場合には、電気ヒータ30の搭載部Pと車室10a内とを連通することで、切替弁33を電気ヒータ30側に切り替えるための制御を行うように実現される。
 また切替制御手段は、利用する空調手段が発電装置11である場合には、発電装置11の搭載部Qと車室10a内とを連通することで、切替弁33を発電装置11側に切り替えるための制御を行うように実現される。
 なお、通風ダクト31Aの連通状態を切替可能な切替手段は、例えば電気ヒータ30、発電装置11に対応させて分岐した2つの分岐部の流路それぞれを個別に開閉可能な開閉手段のセットによって実現されてもよい。また切替手段はさらに通風ダクト31Aの連通状態を電気ヒータ30および発電装置11と、車室10a内とを連通する状態に切替可能に構成されてもよい。この点、利用する空調手段が電気ヒータ30および発電装置11である場合には、切替制御手段は電気ヒータ30および発電装置11の搭載部P、Qそれぞれと車室10a内とを連通するように切替手段を切り替えるための制御を行うようにさらに実現されてよい。
 次に車両側ECU50Fの動作を図13に示すフローチャートを用いて説明する。なお、本フローチャートはステップS51が追加されている点以外、図4に示すフローチャートと同一のものとなっている。このためここでは特にこれらのステップについて説明する。ステップS3またはステップS4に続き、車両側ECU50Fは切替弁33を利用する空調手段側に切り替える(ステップS51)。具体的にはステップS3からステップS51に進んだ場合には、車両側ECU50Fは切替弁33を発電装置11側に切り替え、ステップS4からステップS51に進んだ場合には、車両側ECU50Fは切替弁33を電気ヒータ30側に切り替える。なお、利用する空調手段が電気ヒータ30および発電装置11である場合には、車両側ECU50Fは本ステップでさらに電気ヒータ30および発電装置11の搭載部P、Qそれぞれと車室10a内とを連通するように切替弁33を切り替えるようにすることができる。
 次に電気駆動式車両1Fの作用効果について説明する。電気駆動式車両1Fでは、利用する空調手段に対応させて、通風ダクト31Aの連通状態を切替可能な切替弁33を通風ダクト31Aに設けている。このため電気駆動式車両1Fは、発電装置11が搭載されていない場合や、発電装置11で空調を行っていない場合に、発電装置11の搭載部Qから空調が行われていない空気が車室10aに流入することや、電気ヒータ30で空調された空気が発電装置11の搭載部Qへ流出することを防止できる。
 このため電気駆動式車両1Fは電気駆動式車両1Aと比較して、発電装置11を搭載していない場合や発電装置11で空調を行っていない場合に、空調性能が低下することを防止できる点で、空調の利用について適切性を確保できる。
 図14に示すように本実施例にかかる電気駆動式車両1Gは、発電装置11および電気ヒータ30の搭載位置が異なっている点と、これに伴い通風ダクト31Aの代わりに通風ダクト31Bを備えている点以外、電気駆動式車両1Aと実質的に同一のものとなっている。なお、同様の変更は例えば電気駆動式車両1Bなど他の実施例で前述した各電気駆動式車両に適宜適用されてもよい。
 電気駆動式車両1Gでは、発電装置11および電気ヒータ30の搭載部P、Qそれぞれを直列に連通するように通風ダクト31Bが設けられている。そして電気駆動式車両1Gでは、送風ファン32が、通風ダクト31Bのうち、車室10aの各部に分岐する前の部分である集合部に設けられている。具体的には通風ダクト31Bは、集合部のうち、発電装置11および電気ヒータ30の搭載部P、Qそれぞれよりも下流側の部分に設けられている。なお、発電装置11および電気ヒータ30の搭載部P、Qの配置は例えば互いに入れ替えられた配置となっていてもよい。
 次に電気駆動式車両1Gの作用効果について説明する。電気駆動式車両1Gでは、発電装置11および電気ヒータ30の搭載部P、Qそれぞれを直列に連通するように通風ダクト31Bを設けている。このため電気駆動式車両1Gは、通風ダクト31Bの簡素化を図ることで、コスト的に有利な構成とすることができる。
 また電気駆動式車両1Gでは、発電装置11を搭載していない場合や発電装置11で発電をしていない場合であっても、電気ヒータ30が空調した空気を何ら支障なく車室10aに送風することができる。このため電気駆動式車両1Gは、例えば電気駆動式車両1Fと比較して切替弁33を不要にできる点で、コスト的に有利な構成とすることもできる。
 またこのように通風ダクト31Bを設けた場合であっても、電気駆動式車両1Gは、電気ヒータ30および発電装置11に共通の送風ファン32で空調を行うことができる点で、コスト的に有利な構成とすることができる。
 図15に示すように本実施例にかかる電気駆動式車両1Hは、発電装置11の搭載位置が異なっている点と、これに伴い通風ダクト31Aの代わりに通風ダクト31C、31Dを備えている点以外、電気駆動式車両1Aと実質的に同一のものとなっている。なお、同様の変更は例えば電気駆動式車両1Bなど他の実施例で前述した各電気駆動式車両に適宜適用されてもよい。
 電気駆動式車両1Hでは、発電装置11が車室10a内に設けられている。具体的には電気駆動式車両1Hでは、発電装置11が破線で示すように運転席72の下に設けられている。通風ダクト31Cは、電気ヒータ30の搭載部Pと車室10a内とを連通している。通風ダクト31Dは、発電装置11の搭載部Qから各座席72、73、74に向かって、運転中の発電装置11からの放熱である廃熱を送風できるように設けられた複数の通風ダクトで構成されている。通風ダクト31Dの送風には例えば専用の送風ファンを設けることができるほか、エンジン111がラジエータファンを備える場合には、ラジエータファンを利用することができる。
 次に電気駆動式車両1Hの作用効果について説明する。電気駆動式車両1Hでは、発電装置11を車室10a内に設けたことで、車室10aを暖めるにあたり電気駆動式車両1Aと比較して発電装置11の廃熱をより有効に利用できる。
 また電気駆動式車両1Hでは、発電装置11を運転席72の下に設けることで、利用頻度が一番高い運転席72を効果的に暖めることができる。
 また電気駆動式車両1Hでは、発電装置11を運転席72の下に設けることで、各座席72、73、74を直接的に空調する通風ダクト31Dを容易に設けることもできる。このため電気駆動式車両1Hは、例えばダッシュボード71に送風口を設けた場合よりも効果的な空調である全座席72、73、74の空調をコスト的に有利に実現することもできる。
 図16に示すように本実施例にかかる電気駆動式車両1Iは、発電装置11の搭載部を複数(ここでは搭載部Qと搭載部Rの2つ)備えている点と、搭載部Rに発電装置11を搭載した場合にも、発電装置11がバッテリ12および車両側ECU50Aと電気的に接続可能に構成されている点以外、電気駆動式車両1Aと実質的に同一のものとなっている。なお、同様の変更は例えば電気駆動式車両1Bなど他の実施例で前述した各電気駆動式車両に適宜適用されてもよい。
 発電装置11の他の搭載部である搭載部Rは、車室10a内と通風ダクトを介して直接連通していない搭載部となっている。搭載部Rは、具体的には車両本体10のうち、車室10aと隔離された部分に設けられている。さらに具体的には搭載部Rは車両本体10のうち、車室10a外、且つ車室10aの後方の部分に設けられている。そして電気駆動式車両1Iは、いずれの搭載部Q、Rに対しても発電装置11を脱着可能に搭載できるように構成されている。
 次に電気駆動式車両1Iの作用効果について説明する。電気駆動式車両1Iでは、搭載部Rに発電装置11を搭載することで、発電装置11の廃熱が車室10a内に伝わることを抑制できる。このため電気駆動式車両1Iは、例えば夏季など暖房が不要なときに発電装置11を搭載部Rに搭載することで、車室10a内の温度が上昇することを抑制できる。
 また電気駆動式車両1Iでは、搭載部Rを車両本体10のうち、車室10a外、且つ車室10aの後方の部分に設けている。このため電気駆動式車両1Iは、例えば車室10a外、且つ車室10aの前方の部分に搭載部Rを設けた場合と比較して、車両進行方向や車室10aの気密性との関係上、発電装置11を搭載部Rに搭載した場合に車室10a内の温度が上昇することも好適に抑制できる。
 図17に示すように本実施例にかかる電気駆動式車両1Jは、通風ダクト31Eがさらに設けられている点と、第1および第2の開閉弁34、35がさらに設けられている点以外、電気駆動式車両1Aと実質的に同一のものとなっている。なお、同様の変更は例えば電気駆動式車両1Bなど他の実施例で前述した各電気駆動式車両に適宜適用されてもよい。
 通風ダクト31Eは、発電装置11の搭載部Qと大気とを連通するように設けられている。第1の開閉弁34は通風ダクト31Aのうち、発電装置11に対応させて分岐された部分に介在させるようにして設けられている。第2の開閉弁35は通風ダクト31Eに介在させるようにして設けられている。
 第1および第2の開閉弁34、35は具体的には例えば電子制御で開閉可能とすることができる。この場合には例えば空調を行っている場合(空調スイッチ23がONである場合)に第1の開閉弁34を開弁するとともに第2の開閉弁35を閉弁し、空調を行っていない場合(空調スイッチ23がOFFである場合)に第1の開閉弁34を閉弁するとともに第2の開閉弁35を開弁するための制御を行う制御手段を車両側ECU50Aでさらに実現することで、第1および第2の開閉弁34、35を開閉させることができる。但しこれに限られず、第1および第2の開閉弁34、35は例えば手動操作で開閉可能に構成されてもよい。
 次に電気駆動式車両1Jの作用効果について説明する。電気駆動式車両1Jでは、第1の開閉弁34を閉弁するとともに第2の開閉弁35を開弁することで、発電装置11の廃熱により暖められた空気が車室10a内に送風されることを防止できる。このため電気駆動式車両1Jは、例えば夏季など暖房が不要なときに第1の開閉弁34を閉弁するとともに第2の開閉弁35を開弁することで、車室10aの温度が上昇することを抑制できる。
 また電気駆動式車両1Jは、発電が必要である一方で空調が不要な場合でも、通風ダクト31Eを介して発電装置11の廃熱で暖められた空気を大気に流出させることで、車室10aの温度が上昇することを好適に抑制できる。
 また電気駆動式車両1Jは、電気駆動式車両1Iのように搭載部Rを備える必要がないため、車両本体10のスペースをより有効に活用することもできる。
 上述した実施例は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。
 例えば上述した実施例では、電気ヒータ30および発電装置11が第1および第2の空調手段として、ともに暖房を行う空調手段である場合について説明した。
 しかしながら、本発明においては必ずしもこれに限られず、例えば第1の空調手段がバッテリ電力を利用して作動するコンプレッサを備えたエアコン装置であるとともに、第2の空調手段がバッテリ電力以外のエネルギー(例えばエンジン、或いはエンジン駆動式の発電装置が備えるエンジンの出力)を利用して作動するコンプレッサを備えたエアコン装置であってもよい。
 この場合には、空調として冷房を行う場合にも、航続距離の確保を可能としつつ、重量増に起因するエネルギー効率の悪化を抑制可能とし、同時に空調の利用について適切性を確保することができる。
 さらにこの場合、第1および第2の空調手段は、利用するエネルギーをバッテリ電力と、バッテリ電力以外のエネルギーとの間で切替可能に構成された共通のコンプレッサを備えるようにしてもよい。この場合には、例えばコンプレッサを車両本体に備えるとともに、コンプレッサ以外の部分(例えばコンプレッサを駆動可能なエンジン本体、或いはエンジン駆動式の発電装置本体)を車両本体に部分的に脱着可能に搭載するように第2の空調手段を構成することで、重量増に起因するエネルギー効率の悪化を抑制可能にすることができる。
 また上述した実施例では、エンジン駆動式の発電装置11が、燃料を使用した発電を行うとともに発電時の廃熱を利用した空調を行う第2の空調手段である場合について説明した。
 しかしながら、本発明においては必ずしもこれに限られず、燃料を使用した発電を行うとともに発電時の廃熱を利用した空調を行う第2の空調手段は、例えば燃料電池式の発電装置であってもよい。この場合、第2の空調手段は、発電時の廃熱として例えば燃料電池式の発電装置からの放熱を利用した空調を行うことができる。
 また上述した実施例では、発電装置11が発電時の廃熱としてエンジン111からの放熱を利用した空調を行う第2の空調手段である場合について説明した。
 しかしながら本発明においては必ずしもこれに限られず、第2の空調手段は、例えば冷却媒体の冷却を行う熱交換器を備えるとともに、発電時の廃熱として熱交換器における冷却媒体の放熱を利用した空調を行う冷却媒体冷却式のエンジンを備えたエンジン駆動式の発電装置であってもよい。この場合には、例えば車両本体に熱交換器を備えるとともに、熱交換器以外の部分(例えば発電装置本体)を部分的に車両本体に脱着可能に搭載するように第2の空調手段を構成することで、重量増に起因するエネルギー効率の悪化を抑制可能することができる。
 またこの場合、第2の空調手段は例えばエンジンからの放熱および熱交換器における放熱をともに利用した空調を行ってもよい。
 またこれらの内容は、例えば第2の空調手段である燃料電池式の発電装置が冷却媒体冷却式である場合についても同様に適用できる。
 また上述した実施例3では、空調変更手段が調整スイッチ25の状態に応じて電気ヒータ30と発電装置11の間で利用比率を調整する場合について説明した。
 しかしながら、本発明においては必ずしもこれに限られず、空調変更手段は、例えば車載用ナビゲーション装置から取得可能な情報に基づき、第1の空調手段と第2の空調手段との間で利用比率を調整してもよい。
 この場合には、例えば充電設備を備えた自宅や電気スタンドとの距離に応じて、距離が離れている場合ほど、第1の空調手段の利用比率を低下させることや、設定された目的地までの距離に応じて、距離が離れている場合ほど、第1の空調手段の利用比率を低下させることで、車両の使用状況に応じた適切な空調を行えるようにすることもできる。またこの場合には、例えば利用比率を調整するか否かを選択操作可能な操作手段をさらに備えてもよい。これにより、利用比率の調整が実際にユーザの意思と合致するか否かを確認することもできる。
 また上述した実施例で例えば車両側ECU50Aなど各車両側ECUによって機能的に実現される各種の手段は、例えばその他の電子制御装置や専用の電子回路などのハードウェアやこれらの組み合わせによって実現されてもよい。
  1A、1B、1C、1D、1E、1F、1G、1H、1I、1J 電気駆動式車両
  10  車両本体
  10a 車室
  11  発電装置
  111 エンジン
  12  バッテリ
  30  電気ヒータ
  31A、31B、31C、31D、31E 通風ダクト
  32  送風ファン
  33  切替弁
  34  第1の開閉弁
  35  第2の開閉弁
  50A、50B、50C、50D、50E、50F  車両側ECU

Claims (9)

  1. 車室が設けられた車両本体と、
     前記車両本体に搭載され、走行に利用可能なバッテリと、
     前記車室を空調するにあたり、前記バッテリの電力を利用した空調を行う第1の空調手段と、
     前記車室を空調するにあたり、前記車両本体に少なくとも部分的に脱着可能に搭載され、前記バッテリの電力を利用した空調以外の他の空調を行う第2の空調手段と、
     前記第1の空調手段または前記第2の空調手段のうち、少なくともいずれかの利用状態を変更する空調変更手段と、を備えた電気駆動式車両。
  2. 請求項1記載の電気駆動式車両であって、
     前記空調変更手段が、前記第1の空調手段と前記第2の空調手段との間で利用する空調手段を切り替える電気駆動式車両。
  3. 請求項2記載の電気駆動式車両であって、
     前記空調変更手段が、前記第2の空調手段が作動可能であるか否かに応じて、前記第1の空調手段と前記第2の空調手段との間で利用する空調手段を切り替える電気駆動式車両。
  4. 請求項1記載の電気駆動式車両であって、
     前記空調変更手段が、前記第1の空調手段と前記第2の空調手段との間で利用比率を調整する電気駆動式車両。
  5. 請求項4記載の電気駆動式車両であって、
     前記空調変更手段が、前記バッテリの充電量に応じて前記利用比率を調整する電気駆動式車両。
  6. 請求項4記載の電気駆動式車両であって、
     前記利用比率を調整可能な操作手段をさらに備え、
     前記空調変更手段が、前記操作手段の状態に応じて前記利用比率を調整する電気駆動式車両。
  7. 請求項1記載の電気駆動式車両であって、
     前記空調変更手段が、少なくとも前記第1の空調手段が空調を行っている状態で、空調を行うにあたり設定された目標温度と、前記車室内の実温度との差が小さい場合に、空調能力が低下するように前記第1の空調手段の空調能力を調整する電気駆動式車両。
  8. 請求項1から7いずれか1項記載の電気駆動式車両であって、
     前記第2の空調手段が、燃料を使用した発電を行うとともに、発電時の廃熱を利用した空調を行う空調手段である電気駆動式車両。
  9. 請求項8項記載の電気駆動式車両であって、
     前記車室を空調するにあたり、前記第1の空調手段と前記第2の空調手段とに共通の送風手段をさらに備えた電気駆動式車両。

     
     
PCT/JP2010/050909 2010-01-25 2010-01-25 電気駆動式車両 WO2011089726A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/050909 WO2011089726A1 (ja) 2010-01-25 2010-01-25 電気駆動式車両
JP2011550780A JP5310875B2 (ja) 2010-01-25 2010-01-25 電気駆動式車両
US13/520,461 US9688114B2 (en) 2010-01-25 2010-01-25 Electrically driven vehicle
CN201080062376.5A CN102725156B (zh) 2010-01-25 2010-01-25 电力驱动式车辆
EP10843891.2A EP2529962B1 (en) 2010-01-25 2010-01-25 Electrically driven vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/050909 WO2011089726A1 (ja) 2010-01-25 2010-01-25 電気駆動式車両

Publications (1)

Publication Number Publication Date
WO2011089726A1 true WO2011089726A1 (ja) 2011-07-28

Family

ID=44306549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050909 WO2011089726A1 (ja) 2010-01-25 2010-01-25 電気駆動式車両

Country Status (5)

Country Link
US (1) US9688114B2 (ja)
EP (1) EP2529962B1 (ja)
JP (1) JP5310875B2 (ja)
CN (1) CN102725156B (ja)
WO (1) WO2011089726A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130152605A1 (en) * 2011-12-20 2013-06-20 Kelk Ltd. Fluid temperature adjusting device
CN105291766A (zh) * 2015-11-03 2016-02-03 北汽银翔汽车有限公司 一种新能源汽车的ptc加热器结构
DE102019209836A1 (de) 2018-07-09 2020-01-09 Suzuki Motor Corporation Stromerzeugungssteuerungssystem
DE102019209834A1 (de) 2018-07-09 2020-01-09 Suzuki Motor Corporation Stromerzeugungssteuersystem

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010056208A1 (de) * 2010-12-24 2012-06-28 Daimler Ag Verfahren zum Beheizen eines Innenraumes einer Kraftfahrzeuges
JP2014024383A (ja) * 2012-07-25 2014-02-06 Tokyo R & D Co Ltd 電気自動車の温調装置
CN104742684B (zh) * 2013-12-31 2017-03-01 上海汽车集团股份有限公司 一种控制汽车空调保护温度的方法
JP6364926B2 (ja) * 2014-04-24 2018-08-01 株式会社デンソー 車両用空調装置
US9764618B2 (en) 2014-11-25 2017-09-19 Ford Global Technologies, Llc HVAC system with travel time based control
KR102451881B1 (ko) * 2017-10-12 2022-10-06 현대자동차 주식회사 차량용 공조 시스템의 제어방법
US11878693B1 (en) 2023-06-09 2024-01-23 Dimaag-Ai, Inc. Electrical vehicles comprising power distribution systems and methods of operating thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172320U (ja) * 1981-04-22 1982-10-29
JPH08268036A (ja) * 1995-03-28 1996-10-15 Calsonic Corp 電気自動車用冷暖房装置
JP2008296646A (ja) * 2007-05-29 2008-12-11 Toyota Motor Corp ハイブリッド車両用空調制御装置
JP2009154853A (ja) * 2007-12-25 2009-07-16 Satoru Ono アイドリングストップ時の乗車室内温度調整装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172320A (en) 1981-04-17 1982-10-23 Taizo Ebara Orientation treatment of glass for liquid crystal display
JPS61157013A (ja) 1984-12-28 1986-07-16 Toshiba Corp 差動増幅回路
JPH0364110A (ja) 1989-08-01 1991-03-19 Sony Corp 利得制御回路
US5664635A (en) * 1994-05-18 1997-09-09 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control system for inhibiting unintended use of hybrid electric vehicle
JPH10145905A (ja) * 1996-11-06 1998-05-29 Nissan Motor Co Ltd 電気自動車および電気自動車の補機類駆動方法
US6761037B2 (en) * 2002-01-23 2004-07-13 Sanden Corporation Vehicle air conditioner using a hybrid compressor
JP3979181B2 (ja) 2002-05-22 2007-09-19 株式会社デンソー 車両用電気機器制御装置
JP2004106608A (ja) * 2002-09-13 2004-04-08 Kengo Tomomi 自動車用エアコン、自動車用冷蔵庫、これを装備した自動車、および、自動車エアコン用の部材
JP3933030B2 (ja) * 2002-10-22 2007-06-20 株式会社デンソー ハイブリッド車用空調装置
JP2004182214A (ja) * 2002-12-02 2004-07-02 Yamaha Motor Co Ltd 電動車両
JP4315041B2 (ja) 2004-04-07 2009-08-19 トヨタ自動車株式会社 冷却水温度制御装置
JP2007280927A (ja) * 2005-12-12 2007-10-25 Toyota Motor Corp 燃料電池の冷却システム
CN101140095B (zh) * 2006-09-05 2010-05-12 珍通科技股份有限公司 车用切换式太阳能空调辅助系统
JP4940877B2 (ja) 2006-10-10 2012-05-30 トヨタ自動車株式会社 空調制御システム
DE102007051311A1 (de) 2007-10-26 2009-04-30 Enerday Gmbh Kraftstofftank, von diesem versorgtes Brennstoffzellenmodul und Verfahren zum Bereitstellen eines Brennstoffzellenmoduls
DE102007051566A1 (de) * 2007-10-29 2009-04-30 Enerday Gmbh Klimatisierungssystem für ein Fahrzeug
US9849753B2 (en) * 2008-05-16 2017-12-26 GM Global Technology Operations LLC Heating system for an automotive vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172320U (ja) * 1981-04-22 1982-10-29
JPH08268036A (ja) * 1995-03-28 1996-10-15 Calsonic Corp 電気自動車用冷暖房装置
JP2008296646A (ja) * 2007-05-29 2008-12-11 Toyota Motor Corp ハイブリッド車両用空調制御装置
JP2009154853A (ja) * 2007-12-25 2009-07-16 Satoru Ono アイドリングストップ時の乗車室内温度調整装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130152605A1 (en) * 2011-12-20 2013-06-20 Kelk Ltd. Fluid temperature adjusting device
CN105291766A (zh) * 2015-11-03 2016-02-03 北汽银翔汽车有限公司 一种新能源汽车的ptc加热器结构
DE102019209836A1 (de) 2018-07-09 2020-01-09 Suzuki Motor Corporation Stromerzeugungssteuerungssystem
DE102019209834A1 (de) 2018-07-09 2020-01-09 Suzuki Motor Corporation Stromerzeugungssteuersystem

Also Published As

Publication number Publication date
CN102725156A (zh) 2012-10-10
EP2529962A4 (en) 2014-05-14
CN102725156B (zh) 2015-01-21
US9688114B2 (en) 2017-06-27
EP2529962A1 (en) 2012-12-05
US20120324934A1 (en) 2012-12-27
JPWO2011089726A1 (ja) 2013-05-20
EP2529962B1 (en) 2016-11-16
JP5310875B2 (ja) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5310875B2 (ja) 電気駆動式車両
CN100519248C (zh) 用于电动车辆的电存储装置的冷却设备和冷却方法
WO2010064509A1 (ja) 蓄電器加温装置
JP5590336B2 (ja) 空調制御装置
US10124651B2 (en) Systems and methods for controlling electrically powered heating devices within electrified vehicles
US20150097041A1 (en) Vehicle comprising air conditioning apparatus
JP4341634B2 (ja) ハイブリッド車両
JP2015162947A (ja) 車両用制御装置
US10532661B2 (en) System and method for heating electrified vehicle
US11794549B2 (en) Vehicle air-conditioner
JP5733186B2 (ja) 車両
JP6015620B2 (ja) 車両
JP4887621B2 (ja) 充放電制御装置および車両
JP4626506B2 (ja) 車両に搭載された電気機器の冷却制御装置
CN108778812A (zh) 电动车辆的高压设备冷却系统
JP4687606B2 (ja) 冷却システムおよび自動車
JP7027872B2 (ja) 車両
JP6778056B2 (ja) 電動車両の空調装置
JP2005297714A (ja) 冷却装置
JP2007153054A (ja) 車両に搭載された電気機器の冷却装置
JPH11151932A (ja) ハイブリッド式車両用空調装置
JP6167787B2 (ja) 車両用空調制御装置
JP2014108682A (ja) 車両用空調システム
JP2008174130A (ja) 車両用空調装置
JP2011009133A (ja) 燃料電池システムの制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062376.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843891

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550780

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13520461

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010843891

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010843891

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE