WO2011089648A1 - 数値制御装置、これを用いたワイヤ放電加工装置、及びこれを用いたワイヤ放電加工方法 - Google Patents

数値制御装置、これを用いたワイヤ放電加工装置、及びこれを用いたワイヤ放電加工方法 Download PDF

Info

Publication number
WO2011089648A1
WO2011089648A1 PCT/JP2010/000353 JP2010000353W WO2011089648A1 WO 2011089648 A1 WO2011089648 A1 WO 2011089648A1 JP 2010000353 W JP2010000353 W JP 2010000353W WO 2011089648 A1 WO2011089648 A1 WO 2011089648A1
Authority
WO
WIPO (PCT)
Prior art keywords
disconnection
machining
plate thickness
machining condition
threshold value
Prior art date
Application number
PCT/JP2010/000353
Other languages
English (en)
French (fr)
Inventor
小野寺康雄
塩澤貴弘
佐藤清侍
鵜飼佳和
小林浩敦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201080062003.8A priority Critical patent/CN102712056B/zh
Priority to US13/574,521 priority patent/US9272349B2/en
Priority to JP2011550717A priority patent/JP5460739B2/ja
Priority to PCT/JP2010/000353 priority patent/WO2011089648A1/ja
Priority to DE112010005167T priority patent/DE112010005167T5/de
Publication of WO2011089648A1 publication Critical patent/WO2011089648A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply
    • B23H7/20Electric circuits specially adapted therefor, e.g. power supply for programme-control, e.g. adaptive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/08Wire electrodes
    • B23H7/10Supporting, winding or electrical connection of wire-electrode
    • B23H7/102Automatic wire threading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/14Electric circuits specially adapted therefor, e.g. power supply

Definitions

  • the present invention relates to a wire electric discharge machining apparatus, and more particularly to a wire electric discharge machining apparatus having a function of preventing a wire electrode from being disconnected.
  • the machining speed In a wire electric discharge machine, the machining speed generally increases as the machining energy increases. Therefore, in order to increase the processing speed, the processing energy is increased by increasing the peak value of the discharge current or increasing the discharge frequency.
  • the greater the peak value of the discharge current or the higher the discharge frequency the greater the risk that the wire electrode will break. That is, there is a limit (disconnection limit) in the peak value of the discharge current and the discharge frequency at which discharge can be continued without disconnection of the wire electrode.
  • a limit disconnection limit
  • the peak value and the discharge frequency of the discharge current related to the disconnection limit are determined by the processing state such as the diameter and material of the wire electrode, the plate thickness and material of the workpiece, and the jet state of the processing liquid.
  • the processing state such as the diameter and material of the wire electrode, the plate thickness and material of the workpiece, and the jet state of the processing liquid.
  • the wire electric discharge machining apparatus of Patent Document 1 calculates the plate thickness and controls the machining conditions.
  • the plate thickness is calculated from the processing energy and processing speed per unit time.
  • Equation (1) the machining volume per unit time in electric discharge machining is expressed as shown in Equation (1) by the plate thickness of the workpiece, machining allowance, and the machining feed amount per unit time, that is, the machining speed.
  • Machining volume plate thickness x machining allowance x machining speed (1)
  • the processing volume is proportional to the processing energy. Normally, the machining allowance is controlled to be constant by servo control. Therefore, if equation (1) is modified, equation (2) can be obtained.
  • Plate thickness coefficient x machining energy / machining speed (2)
  • the coefficient can be obtained in advance if the workpiece is processed with a known thickness. That is, if the machining energy and the machining speed are calculated, the values other than the coefficient in Expression (2) are known, and therefore the coefficient can be calculated. If the coefficient can be determined, the plate thickness can be calculated from Equation (2) by obtaining the machining energy and the machining speed. Patent Document 1 switches an appropriate processing condition determined in advance according to the calculated plate thickness.
  • the wire electrode may be disconnected even if the processing conditions are changed according to the plate thickness. This is because the machining may become unstable depending on the machining shape or the jet state of the machining liquid. For example, a case where a steep step or a corner is processed, or a case where the processing liquid injection nozzle is processed away from the workpiece may be used. Therefore, a technique for detecting a sign of wire electrode disconnection caused by such processing instability and avoiding this is also disclosed. For example, in Patent Document 1, a disconnection sign signal for detecting a sign of disconnection is provided, and when the disconnection sign signal exceeds a predetermined threshold, disconnection is avoided by lowering the machining energy.
  • a short-circuit discharge pulse ratio (number of short-circuit discharge pulses / number of normal discharge pulses) indicating the rate at which a short-circuit occurs between the workpiece and the wire electrode within a predetermined time.
  • disconnection threshold value varies depending on the diameter and material of the wire electrode, the thickness and material of the workpiece, etc., it is necessary to determine whether the threshold is determined by performing trial processing for each condition to determine whether or not the disconnection occurs. Don't be.
  • the trial processing process cannot be automated and the time required for the entire processing is long.
  • a numerical controller of a wire electric discharge machining apparatus controls an oscillator that outputs a discharge pulse of the wire electric discharge machining apparatus and a servo amplifier that controls a servo motor that drives a wire electrode or a workpiece to move relative to each other.
  • a breakage sign signal generating means for generating a breakage sign signal based on the machining state quantity input from the oscillator, and a machining condition reset command based on the breakage sign signal and the breakage threshold
  • a disconnection threshold value detection means for outputting a disconnection threshold value reset command
  • a disconnection threshold value setting means for setting the disconnection threshold value based on the disconnection threshold value reset command and an input disconnection signal
  • a discharge pulse input from the oscillator Machining energy calculating means for calculating machining energy based on the number, and position information input from the servo amplifier Machining speed measuring means for measuring a machining speed
  • plate thickness calculating means for calculating a plate thickness of the workpiece based on the machining energy and the machining speed, the plate thickness, the machining condition reset command, and the disconnection
  • a machining condition switching means for outputting a machining condition switching command according to a predetermined algorithm based on the signal, and a control for sending an oscil
  • the wire electric discharge machining apparatus also provides a servo amplifier that controls a servo motor that drives a wire electrode or a workpiece to move the workpiece relative to each other, and a voltage is applied to a machining gap between the wire electrode and the workpiece.
  • An oscillator that outputs a discharge pulse to a machining power source for applying and machining a workpiece, a numerical control device that controls the oscillator and the servo amplifier so as to satisfy desired machining conditions, and detecting wire electrode disconnection
  • a wire breakage detector that outputs a breakage signal to the numerical control device, wherein the numerical control device generates a breakage sign signal based on a machining state quantity input from the oscillator Generation means, disconnection sign detection means for outputting a machining condition reset command and a disconnection threshold reset command based on the disconnection sign signal and the disconnection threshold value, A disconnection threshold value setting means for setting the disconnection threshold value based on a disconnection threshold value reset command and the disconnection signal, a processing energy calculation means for calculating processing energy based on the number of discharge pulses input from the oscillator, and a servo amplifier Machining speed measuring means for measuring the machining speed based on the input position information, plate thickness calculating means for calculating the plate thickness of the workpiece based
  • the numerical controller controls the oscillator and the servo amplifier so that the desired machining conditions are obtained, and the servo amplifier drives the wire electrode or the workpiece to move relative to each other.
  • Controls the motor, and the oscillator outputs a discharge pulse to a machining power source and applies a voltage to the machining gap between the wire electrode and the workpiece to process the workpiece and detect disconnection of the wire electrode.
  • a step of outputting a machining condition switching command so that the machining condition is reduced by a predetermined amount when the disconnection of the wire electrode is detected, machining energy and machining speed,
  • a step of calculating the plate thickness based on the above, and if the plate thickness changes, the processing conditions are switched so that the processing conditions set according to the changed plate thickness are satisfied.
  • the present invention since it is possible to automatically acquire the disconnection threshold value and appropriate machining conditions for each plate thickness in the trial machining process, it is possible to automate the setting of the machining conditions.
  • the development man-hours can be reduced with the automation of the machining condition setting. Further, as a result of the reduction of the development man-hour, the time required for the entire processing can be shortened. Furthermore, since the processing is performed using the disconnection threshold value for each plate thickness obtained by the trial processing and an appropriate processing condition in the main processing, the processing productivity can be improved.
  • FIG. 2 is a block diagram illustrating a configuration of an oscillator 4 in FIG. 1. It is a figure for demonstrating adjustment of the disconnection threshold value at the time of trial processing and processing conditions in Embodiment 1 of this invention. It is a flowchart which shows the procedure which adjusts the disconnection threshold value and processing conditions at the time of trial processing in Embodiment 1 of this invention. It is a block diagram for demonstrating the operation
  • FIG. 1 is a block diagram illustrating the entire apparatus of the wire electric discharge machining apparatus according to Embodiment 1 of the present invention, and is a block diagram for explaining an operation during trial machining.
  • FIG. 2 is a block diagram showing the configuration of the oscillator in FIG. A pair of power supply 3 connected to the processing power source 2 is in contact with the wire electrode 1. The machining power supply 2 applies a pulse voltage to the power supply 3 according to the oscillation output of the oscillation means 41 of the oscillator 4.
  • the workpiece 5 is placed on the workpiece table 6, and machining is performed by generating electric discharge in the machining gap between the workpiece 5 and the wire electrode 1.
  • the wire electrode 1 is moved at a predetermined speed with respect to the workpiece 5 by a servo motor 8 driven by a servo amplifier 7.
  • the control means 11 controls the oscillation means 41 with an oscillation command corresponding to a desired machining condition and controls the servo amplifier 7 with an axis feed command according to the machining conditions input by the machining condition input means 10. .
  • the oscillator 4 counts the number of discharge pulses generated in the machining gap for each predetermined period by the discharge pulse counting means 42 and outputs it to the NC device 9. Further, the oscillator 4 measures the machining state quantity by the machining state quantity measuring means 43 and outputs it to the NC device 9.
  • the processing state quantity indicates, for example, a discharge current, a discharge voltage, a no-load time, or the number of discharge pulses.
  • the processing state quantity measuring means 43 corresponding to these is, for example, a current sensor, a voltage sensor, a counter, or the like.
  • the servo amplifier 7 outputs a position feedback value in a linear scale (not shown) to the NC device 9.
  • the NC device 9 and its surrounding blocks will be described.
  • the machining energy calculation unit 12 calculates the machining energy from the number of discharge pulses input from the oscillator 4.
  • the machining speed measuring means 13 measures the machining speed from a position feedback value that is position information input from the servo amplifier 7.
  • the plate thickness calculating means 14 calculates the plate thickness of the workpiece 5 from the processing energy and the processing speed.
  • the disconnection sign signal calculating means 15 calculates and outputs a disconnection sign signal based on the machining state quantity input from the oscillator 4.
  • the disconnection threshold value setting means 16 sets and outputs a disconnection threshold value.
  • the disconnection sign detection means 17 compares the disconnection sign signal with the disconnection threshold value, and outputs a machining condition reset command and a disconnection threshold reset command.
  • the disconnection detection means 18 is provided in a feed motor (not shown) of the wire electrode 1 to detect whether or not the wire electrode 1 is disconnected, and outputs a disconnection detection signal that is a disconnection signal when the wire electrode 1 is disconnected.
  • the machining condition switching unit 19 sends a machining condition switching command to the control unit 11 according to a predetermined algorithm using a machining condition reset command and a disconnection signal for each plate thickness of the workpiece. Further, the machining conditions and the disconnection threshold corresponding to the plate thickness in this case are stored in the processing condition storage means 20 and the disconnection threshold storage means 21, respectively.
  • FIG. 3 is a diagram for explaining the adjustment of the disconnection threshold value and the processing conditions in the trial processing step of the workpiece 5 whose thickness does not change.
  • the horizontal axis indicates time, and the vertical axis indicates a disconnection predictor signal.
  • machining condition 1 is set as an initial value
  • threshold value 1 is set as an initial value of the disconnection threshold value.
  • the value of the disconnection sign signal under the machining condition 1 is smaller than the threshold value 1 from FIG. Therefore, it is determined that there is no possibility of disconnection, and the machining condition is switched to the machining condition 2 having a large energy by one step.
  • switching is performed using a step-type changeover switch called a notch. That is, the machining condition 1 is switched to the machining condition 2 by switching the set value of the notch. Specifically, by changing the set value of the notch, the peak value of the discharge current and the discharge pulse frequency are increased to increase the machining energy.
  • the disconnection predictor signal is increased when the processing condition 2 is switched, the disconnection predictor signal of the processing condition 2 is still smaller than the threshold value 1, so that it is determined that there is no possibility of disconnection. Then, the machining condition 3 with a larger machining energy is switched by one step.
  • the machining condition 3 is switched from FIG.
  • the wire electrode 1 should be disconnected if the processing is continued.
  • the first embodiment will be described assuming that the wire electrode 1 is not disconnected. Since the wire electrode 1 is not disconnected, it is determined that the threshold 1 is not a true disconnection threshold. Therefore, the disconnection threshold value is changed to a threshold value 2 that is larger than the disconnection sign signal of the processing condition 3. Since the disconnection threshold value is changed to the threshold value 2, the disconnection sign signal becomes smaller than the threshold value 2, so that it is determined that there is no danger of disconnection. Then, the machining condition 4 with a larger machining energy is switched by one more stage. In the first embodiment, it is assumed that the wire electrode 1 is disconnected as a result of the processing condition 4.
  • the machining energy is larger than the machining condition 3 but is switched to the machining condition 5 smaller than the machining condition 4. That is, for example, the machining condition 5 is set by a notch intermediate between the machining condition 3 and the machining condition 4. If it is assumed that there is no disconnection under the processing condition 5, the disconnection threshold value is changed to a threshold value 3 that is larger than the disconnection sign signal under the processing condition 5.
  • the disconnection threshold value approaches the true disconnection threshold value, and the processing condition also approaches an appropriate processing condition.
  • the processing is completed within an appropriate time by terminating the processing when the adjustment range of the disconnection threshold is smaller than a predetermined value.
  • the process may be performed under a condition for ending the process.
  • the thickness of the workpiece 5 does not change during the trial machining.
  • the thickness may change during the machining. Since the disconnection threshold value and the corresponding appropriate processing conditions differ for each plate thickness, the appropriate processing conditions also change when the plate thickness changes during processing. Therefore, in the first embodiment, the plate thickness is always detected during the trial machining, and when a different plate thickness is calculated, the same processing as shown in FIG. The threshold value and appropriate processing conditions are acquired.
  • the disconnection threshold value and the processing condition acquired by the trial processing are stored in the disconnection threshold value storage means 21 and the processing condition storage means 20 for each plate thickness.
  • the disconnection threshold value and appropriate processing conditions for each plate thickness are read from these storage means, and the workpiece 5 is processed using these conditions.
  • the trial machining can automatically acquire the disconnection threshold value and appropriate machining conditions, thereby reducing the development man-hours.
  • a process condition can be set automatically and productivity can be improved.
  • FIG. 4 is a flowchart showing a procedure for acquiring a disconnection threshold and appropriate processing conditions in trial processing.
  • the user selects trial machining by a machining mode selection unit (not shown).
  • the user or manufacturer inputs the machining conditions by the machining condition input means 10 (step S1).
  • the machining conditions input by the machining condition input means 10 are, for example, a discharge current value, a discharge voltage, a discharge pause time, a machining feed rate, and the like.
  • the user or manufacturer inputs the disconnection threshold value by using a disconnection threshold value input unit (not shown) and sets it in the disconnection threshold value setting unit 16 (step S2), and then starts processing (step S3).
  • the disconnection detection means 18 detects the presence or absence of disconnection of the wire electrode 1 by using an encoder or a sensor attached to the wire traveling system or the wire feed motor, and checks whether or not the wire electrode 1 is disconnected under the set processing conditions (step S4).
  • the machining condition switching means 19 sends a switching command to the control means 11 to switch to a machining condition with energy lower than the machining conditions set in step S1 (step S5).
  • the plate thickness calculating means 14 calculates the plate thickness (step S6). The method for calculating the plate thickness follows Formula (2).
  • the method for obtaining the processing energy and processing speed on the right side of Equation (2) will be described below.
  • the number of discharge pulses counted by the discharge pulse counting means 42 is sent to the machining energy calculating means 12.
  • the machining energy calculation means 12 calculates the machining energy from the product of the number of discharge pulses and the discharge current, and sends it to the plate thickness calculation means 14.
  • the processing speed is obtained by the processing speed measuring means 13. Specifically, using the position feedback value from the linear scale, the machining feed amount per unit time, that is, the machining speed, is measured and sent to the plate thickness calculation means 14.
  • the plate thickness calculated by the plate thickness calculating unit 14 is sent to the processing condition switching unit 19, and the processing condition switching unit 19 determines that the processing conditions are switched when the plate thickness is different from the previously calculated plate thickness (step S7).
  • the machining condition switching means 19 sends a machining condition switching command to the control means 11 and switches to the machining conditions set for each plate thickness (step S8), and then proceeds to step S9.
  • step S8 is skipped and the process proceeds to step S9.
  • the disconnection sign signal calculation means 15 calculates a disconnection sign signal based on the machining state quantity input from the machining state quantity measurement means 43 (step S9), and outputs it to the disconnection sign detection means 17.
  • the short-circuit discharge pulse ratio disclosed in Patent Document 1 as a disconnection predictor signal calculated from the machining state quantity. That is, the machining state quantity measuring means 43 counts the number of normal discharge pulses and the number of short-circuit discharge pulses, and sends these to the disconnection predictor signal calculation means 15 as machining state quantities.
  • the disconnection predictor signal calculating means 15 calculates the short-circuit discharge pulse ratio based on the number of pulses.
  • the threshold for determining the wire electrode 1 disconnection sign is set by the disconnection threshold setting means 16 and sent to the disconnection sign detection means 17.
  • the disconnection sign detection means 17 compares the disconnection sign signal calculated by the disconnection sign signal calculation means 15 with the disconnection threshold set in the disconnection threshold setting means 16 (step S10).
  • the disconnection sign detection means 17 sends a disconnection threshold reset command to the disconnection threshold setting means 16.
  • the disconnection threshold value setting means 16 resets the disconnection threshold value to a value larger by a predetermined value determined by the notch, and sends it to the disconnection sign detection means 17 (step S11).
  • the disconnection sign detection unit 17 determines that there is no possibility of disconnection, and sends a machining condition reset command to the machining condition switching unit 19 to switch to a machining condition with large energy.
  • the machining condition switching means 19 sends a machining condition switching command for switching to a machining condition having a large machining energy by a predetermined value determined by the notch to the control means 11 (step S12).
  • the control unit 11 controls the oscillator and the servo amplifier so as to achieve a processing condition with a large processing energy
  • the disconnection detection unit 18 confirms whether the wire electrode 1 is disconnected (step S13). If the wire electrode 1 is not disconnected, the process proceeds to step S16.
  • step S14 the machining condition switching means 19 sends to the control means 11 a machining condition switching command for switching to a condition where the machining energy is smaller than the condition changed in step S12 (step S14).
  • the condition to be switched in step S14 the energy of the condition before and after switching in step S12 or the energy at which the notch has an intermediate value is selected.
  • the machining is resumed (step S15), and the process proceeds to step S16.
  • step S16 the set disconnection threshold value and the processing condition are stored in the disconnection threshold value storage unit 21 and the processing condition storage unit 20 for each plate thickness calculated by the plate thickness calculation unit 14 (step S16).
  • the processing from step S6 to step S16 is repeated until the trial machining is completed (step S17).
  • step S6 to step S17 when the number of repetitions of step S6 to step S17 is small in the calculated plate thickness, the processing conditions switched in step S8 are not necessarily appropriate processing conditions. While the procedure from step S6 to step S16 is repeatedly performed, the processing conditions are gradually approached with respect to the calculated plate thickness.
  • the plate thickness and the disconnection predictive signal can be obtained on the premise that processing is performed. Therefore, even if it is not a step that is explicitly described as determining the disconnection of the wire electrode 1, the disconnection detecting means 18 always detects the disconnection of the wire electrode 1 during processing. Then, when the wire electrode 1 is disconnected, a processing resumption process is performed.
  • FIG. 5 is a block diagram showing a configuration of a wire electric discharge machining apparatus in the present machining.
  • the same components as those in FIG. 1 The difference from FIG. 1 is that the machining condition input means 10 and the disconnection threshold value setting means 16 are not provided, and the paths of some block diagrams are different.
  • FIG. 6 is a flowchart showing a procedure for performing the main processing using the disconnection threshold value for each plate thickness acquired by the trial processing and appropriate processing conditions.
  • the user selects the main processing by a processing mode selection means (not shown).
  • the control means 11 reads the initial machining conditions with reference to the machining conditions stored in the machining condition storage means 20 (step S21), and starts machining (step S22).
  • the machining condition storage means 20 stores the machining conditions for each plate thickness. However, since the plate thickness is not calculated at the start of machining, the machining condition with the smallest machining energy is selected to avoid disconnection.
  • the plate thickness calculating means 14 calculates the plate thickness based on the formula (2) using the machining energy output by the machining energy calculating means 12 and the machining feed amount output by the machining speed measuring means 13 ( Step S23).
  • the calculated plate thickness is sent to the processing condition storage means 20. Since the processing condition storage unit 20 stores appropriate processing conditions for each plate thickness, the appropriate processing conditions are read according to the plate thickness sent from the plate thickness calculation unit 14 (step S24), and are sent to the control unit 11. Send it out.
  • the control means 11 switches to the machining conditions read from the machining condition storage means 20 (step S25).
  • the plate thickness calculated by the plate thickness calculation means 14 is also sent to the disconnection threshold value storage means 21.
  • the disconnection threshold storage unit 21 stores a disconnection threshold for each plate thickness, reads the disconnection threshold according to the plate thickness sent from the plate thickness calculation unit 14 (step S26), and sends it to the disconnection sign detection unit 17.
  • the disconnection sign signal calculation means 15 calculates a disconnection sign signal based on the machining state quantity input from the oscillator 4 (step S27) and sends it to the disconnection sign detection means 17.
  • the disconnection sign detection means 17 compares the disconnection sign signal with the disconnection threshold (step S28).
  • the disconnection sign detection means 17 determines that there is a possibility of disconnection, and sends a disconnection sign detection signal to the machining condition switching means 19.
  • the machining condition switching means 19 sends a switching command to the control device 11 so as to switch to a machining condition whose energy is smaller than the machining conditions stored in the machining condition storage means 20 (step S29), and proceeds to step S30.
  • step S30 the disconnection sign detection means 17 determines that there is no possibility of disconnection, and proceeds to step S30.
  • the processing can be performed using an appropriate processing condition according to the calculated plate thickness. Furthermore, when there is a possibility of disconnection, the processing can be continued while avoiding disconnection of the wire electrode 1 by switching to a processing condition with low energy.
  • processing is performed under appropriate processing conditions for each plate thickness acquired at the time of trial processing, and further control for avoiding disconnection of the wire electrode 1 is performed by detecting disconnection signs.
  • the disconnection detecting means 18 detects the disconnection.
  • the disconnection cause investigation means investigates whether or not the disconnection sign signal has exceeded the disconnection threshold.
  • the disconnection detection means 18 sends a disconnection detection signal to the processing condition storage means 20.
  • the machining condition storage means 20 again stores a machining condition having a machining energy smaller than the stored condition as a machining condition for the plate thickness.
  • the disconnection detection unit 18 sends a disconnection detection signal to the disconnection threshold value storage unit 21.
  • the disconnection threshold value storage means 21 again stores a threshold value smaller than the disconnection sign signal at the time of disconnection as the disconnection threshold value of the plate thickness.
  • the first embodiment it is possible to automatically acquire the disconnection threshold value and the appropriate processing condition for each plate thickness in the trial processing, so that the processing condition setting can be automated. Play. Furthermore, since the processing is performed using the disconnection threshold value for each plate thickness obtained in the trial processing and an appropriate processing condition in the main processing, the processing productivity can be improved.
  • the wire electrode 1 is described as being moved at a predetermined speed relative to the workpiece 5 by the servo motor 8, but this is not always necessary.
  • the servo motor 8 may be configured to drive the workpiece table 6 on which the workpiece 5 is placed. That is, any means may be used as long as the wire electrode 1 and the workpiece 5 are moved relative to each other.
  • the user or the manufacturer inputs the machining conditions by the machining condition input means 10, but this is not always necessary.
  • a predetermined machining condition may be selected as an initial value.
  • the processing condition input means 10 can be reduced.
  • the plate thickness calculation means 14 calculates the plate thickness, but this is not always necessary.
  • the plate thickness of the workpiece may be recognized by using a plate thickness input unit (not shown) instead of the plate thickness calculation unit 14 and reading the plate thickness from, for example, a 3D drawing created by CAD or the like.
  • the plate thickness input means is not limited to the 3D drawing, and any means may be used as long as the plate thickness can be recognized. Thereby, even if it does not have the plate
  • the number of normal discharge pulses and the number of short-circuit discharge pulses are counted by the machining state quantity measuring means 43 provided in the oscillator 4, and the short-circuit discharge pulse ratio is calculated by the disconnection predictor signal calculating means 15 as the disconnection predictor signal.
  • the machining state quantity may be measured based on the value of the discharge voltage or the value of the discharge current. In such a case, the machining state quantity measuring means need not be provided in the oscillator 4. By adopting such a configuration, the same effect can be obtained while reducing the operation load on the oscillator 4.
  • the thickness of the workpiece 5 does not change during processing, but the thickness may actually change during processing. Since the disconnection threshold value and the corresponding appropriate processing conditions differ for each plate thickness, if the plate thickness changes during processing, the appropriate processing conditions also change, and appropriate processing cannot be performed. Therefore, in the first embodiment, it is sufficient to always detect the plate thickness both during the trial processing and during the main processing. When different plate thicknesses are calculated, the same processing as shown in FIG. 3 or FIG. 6 is performed again to acquire or set the disconnection threshold value and appropriate processing conditions for the different plate thicknesses. By setting it as such a structure, even if it is a case where the plate
  • the present invention can be used in a wire electric discharge machining apparatus having a function of preventing wire electrodes from being disconnected in the field of machine tools and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

本発明のワイヤ放電加工装置用数値制御装置は試し加工で板厚ごとの断線閾値と加工条件を取得すべく、加工状態量から断線予兆信号を生成する断線予兆信号生成手段と、断線予兆信号と断線閾値から加工条件再設定指令と断線閾値再設定指令を出力する断線予兆検出手段と、断線閾値再設定指令と断線信号とから断線閾値を設定する断線閾値設定手段と、パルス数から加工エネルギを算出する加工エネルギ算出手段と、位置情報から加工速度を計測する加工速度計測手段と、加工エネルギと加工速度とから被加工物の板厚を算出する板厚算出手段と、板厚と加工条件再設定指令と断線信号から所定のアルゴリズムに従い加工条件切替え指令を出力する加工条件切替手段と、加工条件切替え指令により定まる加工条件となるよう発振器に発振指令を送りサーボアンプに軸送り指令を送る制御手段と、板厚毎の加工条件と断線閾値を記憶する加工条件記憶手段と断線閾値記憶手段とを設けた。

Description

数値制御装置、これを用いたワイヤ放電加工装置、及びこれを用いたワイヤ放電加工方法
 本発明はワイヤ放電加工装置に関するものであり、特に、ワイヤ電極の断線を防止する機能を有するワイヤ放電加工装置に関するものである。
 ワイヤ放電加工装置では、一般に加工エネルギが大きいほど加工速度は速くなる。したがって加工速度を上げるために、放電電流のピーク値を大きくするか、または放電周波数を上げることにより、加工エネルギを大きくする。しかし、放電電流のピーク値を大きくすればするほど、または放電周波数を上げれば上げるほど、ワイヤ電極が断線するおそれが強くなる。つまりワイヤ電極が断線せずに放電を継続できる放電電流のピーク値及び放電周波数には限界(断線限界)が存在する。従来のワイヤ放電加工装置では、断線限界という制約のもとで、加工エネルギをできるだけ大きくする技術が開発されてきた。
 ところで、当該断線限界に係る放電電流のピーク値および放電周波数は、ワイヤ電極の径、材質、被加工物の板厚や材質、及び加工液の噴流状態等の加工状態によって決まることが知られている。このうち、ワイヤ電極及び被加工物の材質は加工中に変化しないが、被加工物の板厚や加工状態は、加工中に変動しうる。そこで従来技術では、ワイヤ電極が断線せず、かつ効率良く加工するために、加工中に変化する板厚および加工状態に応じて加工条件を制御していた(例えば特許文献1)。
特開平8-118146号公報
 断線限界は被加工物の板厚に依存するので、加工条件を断線限界の高い板厚部に合わせると、低い断線限界の板厚部を加工する際にワイヤ電極が断線する。一方、加工条件を断線限界の低い板厚部に合わせると、高い断線限界の板厚部を加工する際に加工速度が低下する。この課題に対して、特許文献1のワイヤ放電加工装置は板厚を算出して加工条件を制御している。ここで板厚は単位時間あたりの加工エネルギと加工速度から算出する。
 次に板厚の算出方法を説明する。まず放電加工における単位時間当たりの加工体積は、被加工物の板厚、加工取り代、及び単位時間当たりの加工送り量すなわち加工速度により、式(1)のように表される。
 加工体積=板厚×加工取り代×加工速度  (1)
加工体積は加工エネルギに比例する。また通常、加工取り代はサーボ制御により一定となるよう制御される。従って式(1)を変形すれば式(2)を得ることができる。
 板厚=係数×加工エネルギ/加工速度   (2)
式(2)において係数は、板厚が既知の被加工物で加工を行えば予め求めることができる。すなわち、加工エネルギと加工速度を算出すれば、式(2)の係数以外の値が既知となるので、係数を算出できる。係数を決定できれば、加工エネルギと加工速度を求めることで、式(2)から板厚を算出できる。特許文献1は、算出した板厚に応じ予め定められた適切な加工条件を切り替えるものである。
 しかしながら板厚に応じて加工条件を切替えてもワイヤ電極が断線するおそれがある。加工形状や加工液の噴流状態によって、加工が不安定になる場合があるためである。例えば急激な段差やコーナを加工する場合や、加工液噴射ノズルが被加工物から離れた状態で加工する場合などが挙げられる。そこで、このような加工の不安定性に起因するワイヤ電極の断線の予兆を検出し、これを回避する技術も開示されている。例えば特許文献1では、断線の予兆を検出する断線予兆信号を設け、断線予兆信号が所定の閾値を超えた場合、加工エネルギを下げることによって断線を回避する。すなわち具体的には、所定の時間内に被加工物とワイヤ電極間に短絡が発生する割合を示す短絡放電パルス比率=(短絡放電パルス数/正常放電パルス数)に基づいて断線の予兆を判断する。そして断線のおそれありと判断された場合は、放電パルスのエネルギの合計値が所定の閾値を超えないようにパルス電圧の供給を停止または減少することで、ワイヤ電極の断線を防止し、かつ断線限界エネルギに近い状態で加工していた。
 しかしながら従来技術では、断線予兆信号が得られても、当該信号から断線予兆を検出するためには、実際にワイヤ電極の断線を判断するための値(断線閾値)が必要である。ここで断線閾値はワイヤ電極の径や材質、被加工物の板厚や材質などによって変わるため、それぞれの条件ごとに試し加工を行って断線するか否かを調べることで、閾値を決めなければならない。しかし、試し加工工程を自動化することができず、加工全体に要する時間が長いという問題があった。
 この発明に係るワイヤ放電加工装置の数値制御装置は、ワイヤ放電加工装置の放電パルスを出力する発振器とワイヤ電極または被加工物を駆動して互いに相対移動させるサーボモータを制御するサーボアンプとを制御するワイヤ放電加工装置の数値制御装置において、前記発振器から入力される加工状態量に基づき断線予兆信号を生成する断線予兆信号生成手段と、前記断線予兆信号と断線閾値とに基づき加工条件再設定指令及び断線閾値再設定指令を出力する断線予兆検出手段と、前記断線閾値再設定指令と入力される断線信号とに基づき前記断線閾値を設定する断線閾値設定手段と、前記発振器から入力される放電パルス数に基づき加工エネルギを算出する加工エネルギ算出手段と、前記サーボアンプから入力される位置情報に基づき加工速度を計測する加工速度計測手段と、前記加工エネルギと前記加工速度とに基づき被加工物の板厚を算出する板厚算出手段と、前記板厚、前記加工条件再設定指令、および前記断線信号に基づき所定のアルゴリズムに従い加工条件切替え指令を出力する加工条件切替手段と、前記加工条件切替え指令により定まる加工条件となるよう前記発振器に発振指令を送るとともに前記サーボアンプに軸送り指令を送る制御手段と、前記板厚に対応する前記加工条件を記憶する加工条件記憶手段と、前記板厚に対応する断線閾値を記憶する断線閾値記憶手段と、を備えたものである。
 また、この発明に係るワイヤ放電加工装置は、ワイヤ電極または被加工物を駆動して互いに相対移動させるサーボモータを制御するサーボアンプと、前記ワイヤ電極と前記被加工物との加工間隙に電圧を印加して被加工物を加工するための加工電源に放電パルスを出力する発振器と、所望の加工条件となるよう前記発振器及び前記サーボアンプを制御する数値制御装置と、前記ワイヤ電極の断線を検出して断線信号を前記数値制御装置へ出力する断線検出器とを備えるワイヤ放電加工装置において、前記数値制御装置は、前記発振器から入力される加工状態量に基づき断線予兆信号を生成する断線予兆信号生成手段と、前記断線予兆信号と断線閾値とに基づき加工条件再設定指令及び断線閾値再設定指令を出力する断線予兆検出手段と、前記断線閾値再設定指令と前記断線信号とに基づき前記断線閾値を設定する断線閾値設定手段と、前記発振器から入力される放電パルス数に基づき加工エネルギを算出する加工エネルギ算出手段と、前記サーボアンプから入力される位置情報に基づき加工速度を計測する加工速度計測手段と、前記加工エネルギと前記加工速度とに基づき被加工物の板厚を算出する板厚算出手段と、前記板厚、前記加工条件再設定指令、および前記断線信号に基づき所定のアルゴリズムに従い加工条件切替え指令を出力する加工条件切替手段と、前記加工条件切替え指令により定まる加工条件となるよう前記発振器に発振指令を送るとともに前記サーボアンプに軸送り指令を送る制御手段と、前記板厚に対応する前記加工条件を記憶する加工条件記憶手段と、前記板厚に対応する断線閾値を記憶する断線閾値記憶手段と、を備えたものである。
 また、この発明に係るワイヤ放電加工方法は、数値制御装置が所望の加工条件となるよう発振器及びサーボアンプを制御し、前記サーボアンプはワイヤ電極又は被加工物を駆動して互いに相対移動させるサーボモータを制御し、前記発振器は加工電源に放電パルスを出力して前記ワイヤ電極と前記被加工物との加工間隙に電圧を印加することで被加工物を加工し、前記ワイヤ電極の断線を検出して断線信号を前記数値制御装置へ出力するワイヤ放電加工方法において、ワイヤ電極の断線を検出すると所定量だけ小さな加工条件となるよう加工条件切替え指令を出力するステップと、加工エネルギと加工速度とに基づき板厚を算出するステップと、前記板厚が変化した場合は変化した板厚に応じて設定された加工条件となるよう加工条件切替え指令を出力するステップと、加工状態量に基づき断線予兆信号を生成するステップと、前記断線予兆信号が断線閾値より大きい場合、所定量だけ大きな断線閾値を再設定して断線閾値と加工条件を記憶するステップと、前記断線予兆信号が断線閾値より小さい場合、所定量だけ大きな加工条件となるよう加工条件切替え指令を出力して断線閾値と加工条件を記憶するステップと、前記加工条件切替え指令に基づき加工条件を切替えて発振器及びサーボアンプを制御するステップと、を備えたものである。
 この発明によれば、試し加工工程において板厚ごとの断線閾値と適切な加工条件を自動で取得することができるので、加工条件の設定を自動化することができるという効果を奏する。また、加工条件設定の自動化に伴い開発工数を削減することができるという効果を奏する。さらに開発工数が削減される結果として加工全体に要する時間を短縮できるという効果を奏する。さらに本加工において試し加工で取得した板厚ごとの断線閾値と適切な加工条件を用いて加工を行うので、加工の生産性を向上できるという効果を奏する。
本発明の実施の形態1におけるワイヤ放電加工装置の試し加工時の動作を説明するためのブロック図である。 図1の発振器4の構成を示すブロック図である。 本発明の実施の形態1における試し加工時の断線閾値および加工条件の調整を説明するための図である。 本発明の実施の形態1における試し加工時の断線閾値と加工条件を調整する手順を示すフローチャートである。 本発明の実施の形態1におけるワイヤ放電加工装置の本加工時の動作を説明するためのブロック図である。 本発明の実施の形態1における算出板厚ごとの断線閾値と加工条件を用いて本加工を行う手順を示すフローチャートである。
 以下この発明を、その実施の形態を示す図面に基づいて具体的に説明する。
実施の形態1.
 まず本実施の形態1におけるワイヤ放電加工装置の構成を図を用いて説明する。図1は本発明の実施の形態1に係るワイヤ放電加工装置の装置全体を示すブロック図であり、試し加工時の動作を説明するためのブロック図である。図2は図1における発振器の構成を示すブロック図である。ワイヤ電極1には加工電源2に接続する一対の給電子3が接触する。加工電源2は発振器4の発振手段41の発振出力に応じて給電子3にパルス電圧を印加する。被加工物5は被加工物テーブル6に載置され、ワイヤ電極1との間の加工間隙に放電を発生させることで加工が行われる。加工中、ワイヤ電極1はサーボアンプ7で駆動されるサーボモータ8により、被加工物5に対して所定の速度で移動する。
 NC装置9では、加工条件入力手段10により入力された加工条件に従い、制御手段11が所望の加工条件に応じた発振指令により発振手段41を制御するとともに、軸送り指令によりサーボアンプ7を制御する。一方、発振器4は放電パルス計数手段42で所定の期間毎の加工間隙に発生する放電パルス数を計数し、NC装置9へ出力する。さらに発振器4は、加工状態量計測手段43で加工状態量を計測し、NC装置9に出力する。加工状態量とは例えば放電電流、放電電圧、無負荷時間又は放電パルス数などを指す。これらに対応する加工状態量計測手段43は、例えば電流センサ、電圧センサ、カウンタなどである。サーボアンプ7は、リニアスケール(図示せず)における位置フィードバック値をNC装置9へ出力する。
 NC装置9及びその周辺のブロックについて説明する。加工エネルギ算出手段12は、発振器4から入力される放電パルス数から加工エネルギを算出する。加工速度計測手段13はサーボアンプ7から入力される位置情報である位置フィードバック値から加工速度を計測する。板厚算出手段14は加工エネルギと加工速度から被加工物5の板厚を算出する。
 断線予兆信号算出手段15は、発振器4から入力される加工状態量に基づき断線予兆信号を算出して出力する。断線閾値設定手段16は断線閾値を設定して出力する。断線予兆検出手段17は断線予兆信号と断線閾値とを比較し、加工条件再設定指令及び断線閾値再設定指令を出力する。
 断線検出手段18はワイヤ電極1の図示しない送りモータに設けられ、ワイヤ電極1が断線したか否かを検出し、断線した場合に断線信号である断線検出信号を出力する。
 加工条件切替手段19は、被加工物の板厚ごとに、加工条件再設定指令と断線信号を用いた所定のアルゴリズムに従い加工条件切替え指令を制御手段11へ送る。また、この場合の板厚に対応した加工条件と断線閾値は、それぞれ加工条件記憶手段20と断線閾値記憶手段21とに記憶される。
 本実施の形態1における動作の説明に先立ち、本発明の原理を説明する。本発明では、試し加工時に断線閾値と加工条件を自動的に調整することにより、板厚に応じた断線閾値と適切な加工条件を取得する。図3は板厚の変わらない被加工物5の試し加工工程において、断線閾値および加工条件の調整を説明するための図であり、横軸が時間、縦軸が断線予兆信号を示す。なお本実施の形態1では、断線予兆信号が大きいほど、断線の可能性が高いものとして説明する。
 図3において、各加工条件1~5の加工エネルギの大小関係は[加工条件1]<[加工条件2]<[加工条件3]<[加工条件5]<[加工条件4]であるとする。まず、試し加工の開始時は初期値として加工条件1が設定され、断線閾値の初期値として閾値1が設定される。この時、図3より加工条件1の断線予兆信号の値は閾値1よりも小さい。したがって、断線のおそれはないと判断され、加工条件は一段階だけエネルギの大きな加工条件2に切り替えられる。なお、切り替えはノッチと呼ばれる段階型の切換えスイッチを用いて行われる。すなわちノッチの設定値を切換えることにより、加工条件1から加工条件2に切換えるものとする。具体的には、ノッチの設定値を切換えることで放電電流のピーク値や放電パルス周波数を上げて、加工エネルギを大きくする。
 図3に示すように、加工条件2に切り替えられると断線予兆信号は大きくなるものの、加工条件2の断線予兆信号は依然として閾値1よりも小さいので、断線のおそれはないと判断される。そして、さらに一段だけ加工エネルギの大きな加工条件3に切り替えられる。ここで、図3より加工条件3に切り替えられると断線予兆信号の値は閾値1よりも大きくなる。
 断線予兆信号が断線閾値より大きい場合、加工を継続するとワイヤ電極1は断線するはずである。しかし、本実施の形態1ではワイヤ電極1が断線しなかったと仮定して説明する。ワイヤ電極1が断線しないことで、閾値1は真の断線閾値ではないと判断される。そこで、断線閾値は加工条件3の断線予兆信号よりも大きな閾値2に変更される。断線閾値が閾値2に変更されることで断線予兆信号は閾値2より小さくなるので、断線の危険はないと判断される。そして、もう一段だけ加工エネルギの大きな加工条件4に切り替えられる。本実施の形態1では、加工条件4にした結果、ワイヤ電極1が断線したとする。
 この結果、ワイヤ電極1は加工条件3では断線しないが、加工条件4では断線することがわかった。そこで次に、加工条件3よりは加工エネルギが大きいが、加工条件4よりは小さい加工条件5に切り替えられる。すなわち、例えば加工条件5は加工条件3と加工条件4の中間のノッチで設定される。また、加工条件5で断線しないと仮定すれば、断線閾値は加工条件5での断線予兆信号より大きい閾値3に変更される。
 以上のように、断線閾値と加工条件を調整することによって、断線閾値は真の断線閾値に近づくとともに、加工条件も適切な加工条件に近づいていく。ただし、上述の処理を多数回繰り返すと、試し加工中に断線する回数が多くなるとともに、試し加工工程に要する時間も増大する。そこで例えば、断線閾値の調整幅が所定の値より小さくなった場合に処理を終了する等により、適切な時間内で処理が完了する構成とする。具体的には、調整幅がノッチによる調整可能な幅よりも小さくなった場合に、処理を終了する条件で処理を行えばよい。
 なお、本実施の形態1では試し加工中に被加工物5の板厚が変わらないものとして説明したが、実際の試し加工では加工中に板厚が変化することもある。断線閾値と、対応する適切な加工条件は板厚ごとに異なるので、加工中に板厚が変わると適切な加工条件も変わってしまう。そこで本実施の形態1では、試し加工中は常に板厚の検出を行い、異なる板厚が算出された場合は、再び図3に示したのと同様の処理を行って、異なる板厚に対する断線閾値と適切な加工条件の取得を行う。
 試し加工によって取得した断線閾値と加工条件は板厚ごとに断線閾値記憶手段21及び加工条件記憶手段20に記憶される。そして本加工では、これらの記憶手段から、板厚ごとの断線閾値と適切な加工条件が読み出され、これらの条件を用いて被加工物5を加工する。以上のように、試し加工では自動的に断線閾値と適切な加工条件を取得できるので開発工数を削減できる。また、本加工ではワイヤ電極1の断線を回避しながら、板厚に応じた適切な加工条件で加工するため、加工条件を自動で設定することができ、生産性を向上できる。
 次に、本実施の形態1における動作を、図を用いて説明する。本実施の形態では試し加工を行った後に本加工を行うので、まず試し加工における動作を説明する。図4は試し加工において断線閾値及び適切な加工条件を取得する手順を示すフローチャートである。試し加工を行うために、ユーザは図示しない加工モード選択手段によって試し加工を選択する。次にユーザまたはメーカは加工条件入力手段10により加工条件を入力する(ステップS1)。加工条件入力手段10により入力される加工条件は、例えば放電電流値、放電電圧、放電休止時間及び加工送り速度などである。ユーザまたはメーカは断線閾値を図示しない断線閾値入力手段により入力して断線閾値設定手段16に設定し(ステップS2)、その後、加工を開始する(ステップS3)。断線検出手段18は、ワイヤ走行系またはワイヤ送りモータに取り付けられたエンコーダやセンサ等により、ワイヤ電極1の断線の有無を検出し、設定された加工条件で断線しないかを調べる(ステップS4)。
 ステップS4でワイヤ電極1の断線が検出された場合は、加工条件切替手段19は制御手段11へ切替え指令を送り、ステップS1で設定した加工条件よりエネルギの小さい加工条件に切り替える(ステップS5)。一方、ステップS4において断線せずに加工が開始された場合は、板厚算出手段14が板厚を算出する(ステップS6)。板厚の算出方法は式(2)に従う。
 式(2)右辺の加工エネルギ及び加工速度の求め方を以下に説明する。放電パルス計数手段42が計数した放電パルス数は、加工エネルギ算出手段12に送出される。加工エネルギ算出手段12は、放電パルス数と放電電流との積から加工エネルギを算出して板厚算出手段14に送出する。一方、加工速度は加工速度計測手段13により求められる。具体的には、リニアスケールからの位置フィードバック値を用いて、単位時間あたりの加工送り量すなわち加工速度を計測して板厚算出手段14に送出する。
 板厚算出手段14で算出された板厚は加工条件切替手段19に送られ、加工条件切替手段19は板厚が前回算出した板厚と異なる場合に加工条件を切り替えると判断する(ステップS7)。加工条件を切り替えると判断すると、加工条件切替手段19は制御手段11へ加工条件切替え指令を送り、板厚ごとに設定された加工条件に切り替えてから(ステップS8)、ステップS9に進み、加工条件を切り替えないと判断した時はステップS8を飛ばしてステップS9に進む。
 次に、断線予兆信号算出手段15は加工状態量計測手段43から入力される加工状態量に基づき断線予兆信号を算出し(ステップS9)、断線予兆検出手段17に出力する。本実施の形態では、加工状態量から算出する断線予兆信号として、特許文献1に示された短絡放電パルス比率を用いて説明する。すなわち、加工状態量計測手段43が正常放電パルス数と短絡放電パルス数を計数し、これらを加工状態量として断線予兆信号算出手段15に送る。断線予兆信号算出手段15は、これらのパルス数に基づき短絡放電パルス比率を求める。
 一般に、エネルギの大きな加工条件を設定するほど加工速度は速くなるとともに、短絡放電パルス比率は高くなることが知られている。なお放電周波数は非常に高速である上、ばらつきが大きいので、短絡放電パルス比率を断線予兆信号として用いるためにはローパスフィルタ等で高周波のノイズ成分を除去する。
 ワイヤ電極1の断線の予兆を判断するための閾値は断線閾値設定手段16で設定されて、断線予兆検出手段17に送出される。断線予兆検出手段17は、断線予兆信号算出手段15が算出した断線予兆信号と、断線閾値設定手段16に設定された断線閾値とを比較する(ステップS10)。
 比較の結果、断線予兆信号>断線閾値の場合は、断線閾値を超えたにも関わらずワイヤ電極1が断線しない状態であるから、当該断線閾値が不適切であると判断する。そこで断線予兆検出手段17は断線閾値再設定指令を断線閾値設定手段16に送出する。この指令を受けて、断線閾値設定手段16は断線閾値をノッチで定まる所定の値だけ大きな値に再設定して断線予兆検出手段17に送出する(ステップS11)。
 一方、断線予兆信号≦断線閾値の場合は、断線予兆検出手段17は断線のおそれがないと判断し、エネルギの大きな加工条件に切替える加工条件再設定指令を加工条件切替手段19に送出する。これを受けて、加工条件切替手段19は、ノッチで定まる所定の値だけ加工エネルギの大きな加工条件に切り替える加工条件切替え指令を制御手段11に送出する(ステップS12)。制御手段11が、加工エネルギの大きな加工条件となるよう発振器及びサーボアンプを制御した後は、断線検出手段18はワイヤ電極1が断線していないかを確認する(ステップS13)。ワイヤ電極1が断線していなければステップS16に進む一方、ワイヤ電極1が断線した場合は、断線検出手段18が断線検出信号を出力する。すると加工条件切替手段19は、ステップS12で変更した条件よりも加工エネルギが小さな条件に切り替える加工条件切替え指令を制御手段11に送出する(ステップS14)。ステップS14で切り替えられる条件は、ステップS12で切り替える前後の条件のエネルギ、またはノッチが中間値となるエネルギが選ばれる。そして加工条件を切替えたら加工を再開し(ステップS15)、ステップS16に進む。
 ステップS16では設定された断線閾値と加工条件を、板厚算出手段14が算出した板厚ごとに、それぞれ断線閾値記憶手段21と加工条件記憶手段20に記憶する(ステップS16)。ステップS6からステップS16の処理は試し加工が終了するまで繰り返される(ステップS17)。
 なお、算出した板厚においてステップS6からステップS17の繰り返し回数が少ない場合は、ステップS8で切替えられる加工条件は必ずしも適切な加工条件であるとは限らない。ステップS6からステップS16の手順を繰り返し行ううち、次第に算出した板厚に対して適切な加工条件へと近づいてゆく。
 また図4に示すフローチャートにおいて、板厚や断線予兆信号を求めることができるのは、加工が行われていることが前提である。従って、ワイヤ電極1の断線を判断すると明示されたステップ以外であっても、加工中は常に断線検出手段18がワイヤ電極1の断線検出を行う。そして、ワイヤ電極1が断線した場合は加工再開処理が行われる。
 次に、試し加工を行った後に行う本加工における動作を説明する。図5は本加工におけるワイヤ放電加工装置の構成を示すブロック図である。図5において、図1と同一の構成には同一の符号を付して説明を省略する。図1と相違する点は、加工条件入力手段10と断線閾値設定手段16を備えないことと、また一部のブロック線図の経路が異なる点である。また、図6は試し加工で取得した板厚ごとの断線閾値と適切な加工条件を用いて本加工を行う手順を示すフローチャートである。
 本加工を行うために、ユーザは図示しない加工モード選択手段によって本加工を選択する。制御手段11は、加工条件記憶手段20に記憶された加工条件を参照して初期の加工条件を読み込み(ステップS21)、加工を開始する(ステップS22)。加工条件記憶手段20には、板厚ごとに加工条件を記憶しているが、加工の開始時は板厚が算出されていないので、断線を避けるために最も加工エネルギの小さい加工条件が選択される。
 加工の開始後、板厚算出手段14は加工エネルギ算出手段12が出力する加工エネルギと、加工速度計測手段13が出力する加工送り量とを用いて式(2)に基づき板厚を算出する(ステップS23)。算出された板厚は加工条件記憶手段20に送られる。加工条件記憶手段20は板厚ごとに適切な加工条件を記憶しているので、板厚算出手段14から送られた板厚に応じて適切な加工条件を読み出し(ステップS24)、制御手段11に送出する。制御手段11は加工条件記憶手段20から読み出された加工条件に切り替える(ステップS25)。
 一方、板厚算出手段14で算出された板厚は断線閾値記憶手段21にも送られる。断線閾値記憶手段21は板厚ごとに断線閾値を記憶しており、板厚算出手段14から送られた板厚に応じて断線閾値を読み出し(ステップS26)、断線予兆検出手段17に送出する。断線予兆信号算出手段15は、発振器4から入力される加工状態量に基づき断線予兆信号を算出し(ステップS27)、断線予兆検出手段17に送出する。断線予兆検出手段17は、断線予兆信号と断線閾値とを比較する(ステップS28)。
 比較の結果、断線予兆信号>断線閾値の場合は、断線予兆検出手段17は断線のおそれがあると判断して、断線予兆検出信号を加工条件切替手段19に送出する。加工条件切替手段19は、加工条件記憶手段20に記憶された加工条件よりもエネルギーが小さい加工条件に切替えるよう制御装置11に切替え指令を送出し(ステップS29)、ステップS30へ進む。
 一方、断線予兆信号≦断線閾値の場合は、断線予兆検出手段17は断線のおそれがないと判断して、ステップS30へ進む。ステップS23からステップS29の処理を本加工が終了するまで繰り返す(ステップS30)ことで、算出された板厚に応じた適切な加工条件を用いて加工を行うことができる。さらに、断線のおそれがある場合にはエネルギの低い加工条件に切り替えることで、ワイヤ電極1の断線を回避しつつ加工を継続することができる。
 なお、本加工では試し加工時に取得された板厚ごとの適切な加工条件で加工が行われ、さらに断線予兆検出を行うことでワイヤ電極1の断線を回避する制御が行われる。しかし、それでも何らかの理由でワイヤ電極1が断線した場合は、断線検出手段18が断線を検出する。この場合、図示しない断線原因調査手段が、断線予兆信号が断線閾値を超えていたか否かを調査する。調査の結果、もし断線予兆信号が断線閾値を超えて断線していた場合は、断線検出手段18は加工条件記憶手段20に断線検出信号を送出する。これに対して加工条件記憶手段20は、記憶された条件よりも加工エネルギの小さい加工条件を、再度当該板厚の加工条件として記憶しなおす。一方、断線閾値を超えずに断線していた場合は、断線検出手段18は断線閾値記憶手段21に断線検出信号を送出する。これに対して断線閾値記憶手段21は、断線した時の断線予兆信号より小さい閾値を、再度当該板厚の断線閾値として記憶しなおす。
 以上述べたように、本実施の形態1によれば、試し加工において板厚ごとの断線閾値と適切な加工条件を自動で取得することができるので加工条件設定を自動化することができるという効果を奏する。さらに本加工において試し加工で取得した板厚ごとの断線閾値と適切な加工条件を用いて加工を行うので、加工の生産性を向上することができるという効果を奏する。
 なお、本実施の形態1では、ワイヤ電極1はサーボモータ8により被加工物5に対して所定の速度で移動するものとして説明したが、これは必ずしも必要ではない。たとえば、サーボモータ8は被加工物5が載置される被加工物テーブル6を駆動する構成としてもよい。すなわち、ワイヤ電極1と被加工物5が互いに相対移動されれば、どのような手段を用いてもよい。
 また、本実施の形態1では、ユーザまたはメーカは加工条件入力手段10により加工条件を入力するものとして説明したが、これは必ずしも必要ではない。たとえば、図示しない加工モード選択手段によって試し加工または本加工を選択する際に、所定の加工条件を初期値として選択する構成としてもよい。これにより、加工条件入力手段10を削減することができる。
 また、本実施の形態1では、板厚算出手段14において板厚を算出するものとしたが、これは必ずしも必要ではない。たとえば、板厚算出手段14の代わりに図示しない板厚入力手段を用いて、例えばCAD等により作成された3D図面から板厚を読み込むことにより、被加工物の板厚を認識させてもよい。この場合、図4のステップS6及び図6のステップS23はそれぞれ板厚の読み込み、となる。なお板厚入力手段は3D図面に限らず、板厚の認識ができれば、どのような手段でもよい。これにより、板厚算出手段14を備えなくても、これを用いたのと同様の効果を得ることができる。
 また、本実施の形態1では、発振器4に備える加工状態量計測手段43で正常放電パルス数及び短絡放電パルス数を計数し、断線予兆信号算出手段15で断線予兆信号として短絡放電パルス比率を算出するものとしたが、これは必ずしも必要ではない。たとえば、放電電圧の値や放電電流の値に基づき加工状態量を計測するものとしてもよく、このような場合は加工状態量計測手段を発振器4に設ける必要はない。このような構成とすることにより、発振器4における動作負担を軽くしつつ、同様の効果を得ることができる。
 また、本実施の形態1では、加工中に被加工物5の板厚が変わらないものとして説明したが、実際は加工中に板厚が変化することもある。断線閾値と、対応する適切な加工条件は板厚ごとに異なるので、加工中に板厚が変わると適切な加工条件も変わり、適切な加工を行うことができない。そこで本実施の形態1では、試し加工中及び本加工中のいずれも、常に板厚の検出を行えばよい。そして、異なる板厚が算出された場合は、再度、図3または図6に示したのと同様の処理を行って、異なる板厚に対する断線閾値と適切な加工条件の取得または設定を行う。このような構成とすることで、被加工物5の板厚が変化する場合であっても、同様の効果を得ることができる。
 この発明は工作機械などの分野において、ワイヤ電極の断線を防止する機能を有するワイヤ放電加工装置に利用できる。
1 ワイヤ電極
2 加工電源
3 給電子
4 発振器
5 被加工物
6 被加工物テーブル
7 サーボアンプ
8 サーボモータ
9 NC装置
10 加工条件入力手段
11 制御手段
12 加工エネルギ算出手段
13 加工速度計測手段
14 板厚算出手段
15 断線予兆信号算出手段
16 断線閾値設定手段
17 断線予兆検出手段
18 断線検出手段
19 加工条件切替手段
20 加工条件記憶手段
21 断線閾値記憶手段
41 発振手段
42 放電パルス数計数手段
43 加工状態量計測手段

Claims (9)

  1. ワイヤ放電加工装置の放電パルスを出力する発振器とワイヤ電極または被加工物を駆動して互いに相対移動させるサーボモータを制御するサーボアンプとを制御するワイヤ放電加工装置の数値制御装置において、
    前記発振器から入力される加工状態量に基づき断線予兆信号を生成する断線予兆信号生成手段と、
    前記断線予兆信号と断線閾値とに基づき加工条件再設定指令及び断線閾値再設定指令を出力する断線予兆検出手段と、
    前記断線閾値再設定指令と入力される断線信号とに基づき前記断線閾値を設定する断線閾値設定手段と、
    前記発振器から入力される放電パルス数に基づき加工エネルギを算出する加工エネルギ算出手段と、
    前記サーボアンプから入力される位置情報に基づき加工速度を計測する加工速度計測手段と、
    前記加工エネルギと前記加工速度とに基づき被加工物の板厚を算出する板厚算出手段と、
    前記板厚、前記加工条件再設定指令、および前記断線信号に基づき所定のアルゴリズムに従い加工条件切替え指令を出力する加工条件切替手段と、
    前記加工条件切替え指令により定まる加工条件となるよう前記発振器に発振指令を送るとともに前記サーボアンプに軸送り指令を送る制御手段と、
    前記板厚に対応する前記加工条件を記憶する加工条件記憶手段と、
    前記板厚に対応する断線閾値を記憶する断線閾値記憶手段と、
    を備えたことを特徴とするワイヤ放電加工装置の数値制御装置。
  2. 前記加工状態量は正常放電パルス数及び短絡放電パルス数であり、前記断線予兆信号は短絡放電パルス比率であることを特徴とする、請求項1に記載の数値制御装置。
  3. 前記断線予兆検出手段は、前記断線閾値と前記断線予兆信号とを比較し、試し加工中に断線予兆信号が断線閾値を超える場合に断線閾値再設定指令を出力し、
    前記断線閾値設定手段は、前記断線閾値再設定指令が入力され、かつ前記断線信号が入力されない場合に、所定量だけ大きな断線閾値を再設定することを特徴とする、請求項1に記載の数値制御装置。
  4. 前記断線閾値設定手段は、断線閾値再設定指令が入力されず、かつ前記断線信号が入力される場合に、所定量だけ小さな断線閾値を再設定することを特徴とする、請求項1に記載の数値制御装置。
  5. 前記断線予兆検出手段は、前記断線閾値と前記断線予兆信号とを比較し、試し加工中に断線予兆信号が断線閾値以内の場合に加工条件再設定指令を出力し、
    前記加工条件切替手段は、前記加工条件再設定指令が入力されると所定量だけ大きな加工条件となるよう加工条件切替え指令を出力することを特徴とする、請求項1に記載の数値制御装置。
  6. 前記加工条件切替手段は、試し加工中に前記断線信号が入力されると、所定量だけ小さな加工条件となるよう加工条件切替え指令を出力することを特徴とする、請求項1に記載の数値制御装置。
  7. ワイヤ電極または被加工物を駆動して互いに相対移動させるサーボモータを制御するサーボアンプと、
    前記ワイヤ電極と前記被加工物との加工間隙に電圧を印加して被加工物を加工するための加工電源に放電パルスを出力する発振器と、
    所望の加工条件となるよう前記発振器及び前記サーボアンプを制御する数値制御装置と、
    前記ワイヤ電極の断線を検出して断線信号を前記数値制御装置へ出力する断線検出器と
    を備えるワイヤ放電加工装置において、
    前記数値制御装置は、
    前記発振器から入力される加工状態量に基づき断線予兆信号を生成する断線予兆信号生成手段と、
    前記断線予兆信号と断線閾値とに基づき加工条件再設定指令及び断線閾値再設定指令を出力する断線予兆検出手段と、
    前記断線閾値再設定指令と前記断線信号とに基づき前記断線閾値を設定する断線閾値設定手段と、
    前記発振器から入力される放電パルス数に基づき加工エネルギを算出する加工エネルギ算出手段と、
    前記サーボアンプから入力される位置情報に基づき加工速度を計測する加工速度計測手段と、
    前記加工エネルギと前記加工速度とに基づき被加工物の板厚を算出する板厚算出手段と、
    前記板厚、前記加工条件再設定指令、および前記断線信号に基づき所定のアルゴリズムに従い加工条件切替え指令を出力する加工条件切替手段と、
    前記加工条件切替え指令により定まる加工条件となるよう前記発振器に発振指令を送るとともに前記サーボアンプに軸送り指令を送る制御手段と、
    前記板厚に対応する前記加工条件を記憶する加工条件記憶手段と、
    前記板厚に対応する断線閾値を記憶する断線閾値記憶手段と、
    を備えたことを特徴とするワイヤ放電加工装置。
  8. 数値制御装置が所望の加工条件となるよう発振器及びサーボアンプを制御し、
    前記サーボアンプはワイヤ電極又は被加工物を駆動して互いに相対移動させるサーボモータを制御し、
    前記発振器は加工電源に放電パルスを出力して前記ワイヤ電極と前記被加工物との加工間隙に電圧を印加することで被加工物を加工し、
    前記ワイヤ電極の断線を検出して断線信号を前記数値制御装置へ出力するワイヤ放電加工方法において、
    ワイヤ電極の断線を検出すると所定量だけ小さな加工条件となるよう加工条件切替え指令を出力するステップと、
    加工エネルギと加工速度とに基づき板厚を算出するステップと、
    前記板厚が変化した場合は変化した板厚に応じて設定された加工条件となるよう加工条件切替え指令を出力するステップと、
    加工状態量に基づき断線予兆信号を生成するステップと、
    前記断線予兆信号が断線閾値より大きい場合、所定量だけ大きな断線閾値を再設定して断線閾値と加工条件を記憶するステップと、
    前記断線予兆信号が断線閾値より小さい場合、所定量だけ大きな加工条件となるよう加工条件切替え指令を出力して断線閾値と加工条件を記憶するステップと、
    前記加工条件切替え指令に基づき加工条件を切替えて発振器及びサーボアンプを制御するステップと、
    を備えたことを特徴とするワイヤ放電加工方法。
  9. 数値制御装置が所望の加工条件となるよう発振器及びサーボアンプを制御し、
    前記サーボアンプはワイヤ電極又は被加工物を駆動して互いに相対移動させるサーボモータを制御し、
    前記発振器は加工電源に放電パルスを出力して前記ワイヤ電極と前記被加工物との加工間隙に電圧を印加することで被加工物を加工し、
    前記ワイヤ電極の断線を検出して断線信号を前記数値制御装置へ出力するワイヤ放電加工方法において、
    加工エネルギと加工速度とに基づき板厚を算出するステップと、
    前記板厚に応じて設定された加工条件を読み出して加工条件の切替え指令を出力するステップと、
    前記板厚に応じて設定された断線閾値を読み出すとともに加工状態量に基づき断線予兆信号を生成するステップと、
    前記断線予兆信号が断線閾値より大きい場合、所定量だけ小さな加工条件となるよう加工条件切替え指令を出力するステップと、
    前記加工条件切替え指令に基づき加工条件を切替えて発振器及びサーボアンプを制御するステップと、
    を備えたことを特徴とするワイヤ放電加工方法。
PCT/JP2010/000353 2010-01-22 2010-01-22 数値制御装置、これを用いたワイヤ放電加工装置、及びこれを用いたワイヤ放電加工方法 WO2011089648A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080062003.8A CN102712056B (zh) 2010-01-22 2010-01-22 数控装置、使用该装置的线电极放电加工装置以及线电极放电加工方法
US13/574,521 US9272349B2 (en) 2010-01-22 2010-01-22 Numerical control device, wire electric discharge machining apparatus using the same, and wire electric discharge machining method using the same
JP2011550717A JP5460739B2 (ja) 2010-01-22 2010-01-22 数値制御装置、これを用いたワイヤ放電加工装置、及びこれを用いたワイヤ放電加工方法
PCT/JP2010/000353 WO2011089648A1 (ja) 2010-01-22 2010-01-22 数値制御装置、これを用いたワイヤ放電加工装置、及びこれを用いたワイヤ放電加工方法
DE112010005167T DE112010005167T5 (de) 2010-01-22 2010-01-22 Numerische-Steuerung-Vorrichtung, Drahterosionsvorrichtung, die dieselbe verwendet, und Drahterosionsverfahren, das dieselbe verwendet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000353 WO2011089648A1 (ja) 2010-01-22 2010-01-22 数値制御装置、これを用いたワイヤ放電加工装置、及びこれを用いたワイヤ放電加工方法

Publications (1)

Publication Number Publication Date
WO2011089648A1 true WO2011089648A1 (ja) 2011-07-28

Family

ID=44306472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000353 WO2011089648A1 (ja) 2010-01-22 2010-01-22 数値制御装置、これを用いたワイヤ放電加工装置、及びこれを用いたワイヤ放電加工方法

Country Status (5)

Country Link
US (1) US9272349B2 (ja)
JP (1) JP5460739B2 (ja)
CN (1) CN102712056B (ja)
DE (1) DE112010005167T5 (ja)
WO (1) WO2011089648A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150290733A1 (en) * 2012-10-30 2015-10-15 Mitsubishi Electric Corporation Wire electrical discharge machining apparatus, machining control device, and machining control program
KR20200053414A (ko) * 2018-11-08 2020-05-18 화낙 코퍼레이션 와이어 단선 예측 장치
EP3690571A1 (en) 2019-01-31 2020-08-05 Fanuc Corporation Wire disconnection prediction device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10030465B2 (en) * 2012-11-15 2018-07-24 Kureha Corporation Solidification- and extrusion-molded article of polyglycolic acid and method for manufacturing same
WO2015059875A1 (ja) * 2013-10-24 2015-04-30 パナソニックIpマネジメント株式会社 太陽電池モジュールの製造方法及び太陽電池モジュールの製造装置
DE112014006521B4 (de) * 2014-03-27 2019-03-28 Mitsubishi Electric Corporation Steuerungsvorrichtung für eine Drahterosionsmaschine
JP2017024114A (ja) * 2015-07-21 2017-02-02 ファナック株式会社 自動結線装置を備えたワイヤ放電加工機
CN108698146B (zh) * 2016-02-12 2019-12-13 三菱电机株式会社 加工控制装置、线放电加工装置及线放电加工方法
JP6760997B2 (ja) * 2018-06-15 2020-09-23 ファナック株式会社 ワイヤ放電加工機および加工条件調整方法
JP6808868B1 (ja) * 2020-03-31 2021-01-06 株式会社ソディック ワイヤ放電加工方法およびワイヤ放電加工装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212023A (ja) * 1989-02-08 1990-08-23 Makino Milling Mach Co Ltd 放電加工方法及び装置
JPH08118146A (ja) * 1994-10-25 1996-05-14 Mitsubishi Electric Corp ワイヤ放電加工機の電源制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255319A (ja) * 1984-05-30 1985-12-17 Mitsubishi Electric Corp 放電加工装置におけるワイヤ断線検出方法
US5306889A (en) * 1991-07-05 1994-04-26 Sodick Co., Ltd. Wire cut electrical discharge machining apparatus
JPH0732217A (ja) * 1993-07-20 1995-02-03 Fanuc Ltd ワイヤ放電加工機における被加工物厚さ測定装置と該測定装置を使用した加工条件変更方法
JP3662677B2 (ja) 1996-07-15 2005-06-22 三菱電機株式会社 ワイヤ放電加工機およびワイヤ放電加工方法
US6781080B1 (en) * 2000-10-20 2004-08-24 Mitsubishi Denki Kabushiki Kaisha Wire electric discharge machine with stored discharge energy threshold function
DE112006000074T8 (de) * 2005-09-15 2009-03-19 Mitsubishi Electric Corp. Elektrische Drahterodier-Bearbeitungsvorrichtung und elektrisches Drahterodier-Bearbeitungsverfahren
JP4294638B2 (ja) * 2005-11-29 2009-07-15 株式会社ソディック ワイヤカット放電加工方法および数値制御ワイヤカット放電加工装置
JP4795282B2 (ja) 2006-07-11 2011-10-19 三菱電機株式会社 加工条件探索装置
US7792605B2 (en) * 2006-07-26 2010-09-07 Mitsubishi Electric Corporation Numerical control apparatus
US7928337B2 (en) * 2006-10-24 2011-04-19 Mitsubishi Electric Corporation Apparatus for machining a workpiece using wire discharge including an upper and lower power supply unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212023A (ja) * 1989-02-08 1990-08-23 Makino Milling Mach Co Ltd 放電加工方法及び装置
JPH08118146A (ja) * 1994-10-25 1996-05-14 Mitsubishi Electric Corp ワイヤ放電加工機の電源制御装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150290733A1 (en) * 2012-10-30 2015-10-15 Mitsubishi Electric Corporation Wire electrical discharge machining apparatus, machining control device, and machining control program
KR20200053414A (ko) * 2018-11-08 2020-05-18 화낙 코퍼레이션 와이어 단선 예측 장치
EP3653327A1 (en) 2018-11-08 2020-05-20 Fanuc Corporation Wire disconnection prediction device
JP2020075321A (ja) * 2018-11-08 2020-05-21 ファナック株式会社 ワイヤ断線予測装置
US11630440B2 (en) 2018-11-08 2023-04-18 Fanuc Corporation Wire disconnection prediction device
KR102526225B1 (ko) * 2018-11-08 2023-04-26 화낙 코퍼레이션 와이어 단선 예측 장치
EP3690571A1 (en) 2019-01-31 2020-08-05 Fanuc Corporation Wire disconnection prediction device
KR20200095396A (ko) * 2019-01-31 2020-08-10 화낙 코퍼레이션 와이어 단선 예측 장치
US11471965B2 (en) 2019-01-31 2022-10-18 Fanuc Corporation Wire disconnection prediction device
KR102482512B1 (ko) 2019-01-31 2022-12-28 화낙 코퍼레이션 와이어 단선 예측 장치

Also Published As

Publication number Publication date
DE112010005167T5 (de) 2012-10-31
JPWO2011089648A1 (ja) 2013-05-20
CN102712056A (zh) 2012-10-03
US20130024020A1 (en) 2013-01-24
CN102712056B (zh) 2014-11-19
JP5460739B2 (ja) 2014-04-02
US9272349B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5460739B2 (ja) 数値制御装置、これを用いたワイヤ放電加工装置、及びこれを用いたワイヤ放電加工方法
KR100877304B1 (ko) 고주파 전력 공급 시스템
US7262381B2 (en) Controller for wire electric discharge machine
JP5204321B1 (ja) 加工状態を検出し極間の平均電圧を求めるワイヤ放電加工機
JP5031555B2 (ja) ワイヤ放電加工機
TWI525983B (zh) 馬達控制裝置
CN102947039B (zh) 放电加工控制装置
EP2617506B1 (en) Wire electrical discharge machine carrying out electrical discharge machining by inclining wire electrode
JP5062368B2 (ja) ワイヤ放電加工装置
US10493547B2 (en) Wire electrical discharge machining device
JP2567262B2 (ja) ワイヤ放電加工機の加工条件検出方法及び装置
JP4569973B2 (ja) 放電加工装置及び方法、並びに放電発生を判別する方法
CN109387694B (zh) 电压异常检测装置
US4510367A (en) Wire-cut electric discharge machine
JPH01274923A (ja) 電食加工機用サーボ制御装置
JP5361783B2 (ja) 形彫放電加工機及びジャンプ制御方法
JP3720596B2 (ja) 現在位置検出方法
JPH09248717A (ja) ワイヤ放電加工機の制御装置
JP2023117990A (ja) 交流電動機の監視装置
JPH1043951A (ja) ワイヤ放電加工装置
WO2014016923A1 (ja) 放電加工装置
EP1410865A2 (en) Electric discharge apparatus
JPH04304925A (ja) ジャンプ加工時の放電加工を安定化する放電加工方法
JPH06126534A (ja) 放電加工装置
KR20120068138A (ko) 와이어 방전기의 서보추종제어장치 및 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062003.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843814

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011550717

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120100051674

Country of ref document: DE

Ref document number: 112010005167

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13574521

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10843814

Country of ref document: EP

Kind code of ref document: A1