WO2011086746A1 - 光拡散シート、およびその製造方法、ならびに当該光拡散シートを備えた透過型表示装置 - Google Patents

光拡散シート、およびその製造方法、ならびに当該光拡散シートを備えた透過型表示装置 Download PDF

Info

Publication number
WO2011086746A1
WO2011086746A1 PCT/JP2010/068963 JP2010068963W WO2011086746A1 WO 2011086746 A1 WO2011086746 A1 WO 2011086746A1 JP 2010068963 W JP2010068963 W JP 2010068963W WO 2011086746 A1 WO2011086746 A1 WO 2011086746A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
diffusion sheet
mesoporous silica
refractive index
light diffusion
Prior art date
Application number
PCT/JP2010/068963
Other languages
English (en)
French (fr)
Inventor
彰規 伊藤
時由 梅田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/519,136 priority Critical patent/US20120281289A1/en
Publication of WO2011086746A1 publication Critical patent/WO2011086746A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/107Porous materials, e.g. for reducing the refractive index
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side

Definitions

  • the present invention relates to a light diffusing sheet suitably used for a display device such as a liquid crystal display device, a manufacturing method thereof, and a transmissive display device including the light diffusing sheet.
  • FPD thin flat panel display
  • Some FPDs use liquid crystal, light emitting diodes (LEDs), organic electroluminescence (ELs), or the like as display elements.
  • These display devices emit light toward the display screen, or irradiate light by a backlight or the like provided on the back surface of the display screen (opposite to the observer). An observer visually recognizes the light emitted from the display screen.
  • the display device is designed so that light emitted obliquely from the display screen looks the same as when light emitted from the front of the display screen is viewed. In other words, the display screen is designed to look the same as when the display screen is viewed from the front.
  • the design is inadequate and the contrast characteristics when the display screen is viewed from the front are excellent.
  • the sense of change may be greater than when viewed from the front. Therefore, the display device has a problem that the appearance of the display differs depending on the viewing direction, that is, the viewing angle characteristic is inferior.
  • a method for improving the viewing angle characteristics of the display device, a method has been developed that enables viewing from an oblique direction by providing a sheet that diffuses light on the viewer side of the display device.
  • the light diffusing sheet include those obtained by subjecting the surface of the sheet to a concavo-convex treatment and those containing light diffusing fine particles inside the sheet.
  • the light diffusion sheet refracts light from the backlight in multiple directions (total reflection) using the difference in refractive index.
  • the light refracted by the light diffusion sheet is diffused in multiple directions from the surface and emitted to the viewer side.
  • the light diffusion sheet it is possible to visually recognize the light from all directions by diffusing light from the display device. As a result, an image viewed from the front and an image viewed from an angle are combined to realize a display device that does not change the viewing angle.
  • Patent Document 1 discloses a light diffusion sheet having a light shielding portion.
  • the light diffusion sheet is composed of a light diffusion portion and a light shielding portion, and a plurality of grooves having a V-shaped cross section are formed in parallel on the observation surface side of the light diffusion portion.
  • a light shielding portion is provided on the observation surface side of each groove, and the remaining space of the groove is filled with air. According to this, since most of the stray light that passes through the light diffusion sheet is absorbed by the light absorption layer, it is possible to prevent a decrease in contrast and the like.
  • a light diffusion sheet having a light shielding part as disclosed in Patent Document 1 it is common to use a resin containing particles colored with a pigment such as carbon as the light shielding part. Further, the refractive index of the light shielding part is made smaller than the refractive index of the light diffusion part. As a result, light other than stray light can be totally reflected at the interface between the light diffusion portion and the light shielding portion while absorbing the stray light incident on the light shielding portion.
  • the refractive index of the light shielding part should be kept small. Is desirable.
  • the concentration of the pigment in the light shielding portion cannot be increased.
  • the optical density (OD value) of the light shielding portion is lowered, there is a problem that stray light incident on the light shielding portion is lost. As a result, the front contrast is reduced, or the image is blurred.
  • Patent Document 2 discloses a light diffusion sheet in which the periphery of a light shielding portion is covered with a low refractive index resin.
  • the light diffusion sheet includes a light diffusion portion and a light shielding portion, and a plurality of grooves having a V-shaped cross section are formed in parallel on the observation surface side of the light diffusion portion.
  • a light shielding part is formed inside each groove, and a low refractive index resin is buried between the light shielding part and the wall surface of the groove. Fine particles (amorphous silica particles) are mixed in the low refractive index resin.
  • the light incident on the groove of the light diffusion portion is totally reflected at the interface between the light diffusion portion and the low refractive index resin.
  • the stray light that has entered the groove of the light diffusion portion passes through the low refractive index resin and is absorbed by the light shielding portion. Therefore, the omission of stray light incident on the groove of the light diffusing portion can be suppressed, and the light incident on the groove can be efficiently totally reflected and diffused.
  • the light diffusing sheet disclosed in Patent Document 2 it is possible to suppress the stray light that has entered the groove of the light diffusing portion, and efficiently and totally reflects the light incident on the groove. Can be diffused.
  • a high refractive index resin is used for the light diffusion portion, and a low refractive index resin is used between the light diffusion portion and the light shielding portion. Therefore, since the high refractive index resin and the low refractive index resin are used, the material cost increases and the manufacturing cost increases. Therefore, it is difficult to use the light diffusion sheet disclosed in this document for general purposes. Furthermore, when manufacturing the light-diffusion sheet currently disclosed by this literature, it is necessary to mix a microparticle with low refractive index resin, and a work process is complicated.
  • the refractive index of the resin becomes small.
  • the amorphous silica particles used as fine particles in this document have a large average particle size of 100 nm and a small surface area of 7 m 2 / g. Therefore, even if amorphous silica particles are mixed in a low refractive index resin, the refractive index of the low refractive index resin cannot be lowered. That is, unless a resin having a refractive index as small as possible is used as the low refractive index resin, the difference from the refractive index of the light diffusion portion does not increase, and the light incident on the light diffusion sheet cannot be efficiently pre-reflected.
  • a high refractive index resin and a low refractive index resin are used, there is a problem that the material cost increases and the manufacturing cost increases.
  • An object of the present invention is to provide a light diffusion sheet that can be produced, a method for manufacturing the same, and a transmissive display device including the light diffusion sheet.
  • a light diffusion sheet is a light diffusion sheet including a light diffusion portion that diffuses incident light incident from a light incident surface and emits the light from the light output surface.
  • a plurality of recesses having a support film provided on the light emitting surface side in the diffusing portion and a wall surface formed on the light emitting surface side of the light diffusing portion and transmitting or totally reflecting the incident light;
  • Each of the recesses is formed on at least a part of the wall surface of the recess and is configured by mesoporous silica nanoparticles, and for each of the recesses, a space surrounded by the wall surface, and an interior of the space surrounded by the reflection unit And a light shielding part supported by the support film.
  • the light diffusion portion is formed on the support film, and the light diffusion portion is provided with a plurality of recesses.
  • a reflection portion made of mesoporous silica nanoparticles is formed on at least a part of the wall surface of the recess.
  • a light shielding part is formed in the space surrounded by the wall surface of the recess and the space surrounded by the reflecting part.
  • the reflective portion is composed of mesoporous silica nanoparticles
  • the refractive index of the reflective portion is small. Therefore, the difference between the refractive index of the light diffusing portion and the refractive index of the reflecting portion increases, and the critical angle of the incident angle of the light that can be totally reflected by the light diffusing sheet with respect to the light diffusing sheet increases. As a result, the amount of light that can be totally reflected by the light diffusion sheet is increased, and the light use efficiency can be increased.
  • the light shielding part is formed inside the concave part, the light transmitted through the wall surface of the concave part and incident on the light shielding part is absorbed by the light shielding part, so that the generation of stray light can be prevented. Therefore, in the light diffusion sheet according to the present invention, a functional part that totally reflects light incident on the light diffusion sheet and a functional part that absorbs stray light transmitted through the wall surface of the recess are separated. That is, the light incident on the light diffusion sheet is totally reflected at the interface between the reflection portion and the light diffusion portion.
  • the material used for the light diffusing sheet is restricted, and an uncommon special resin or the like must be used. Therefore, the material cost becomes high and the manufacturing cost becomes high.
  • the reflecting portion has a small refractive index
  • the present invention even if a material having a high refractive index is not used as the light diffusing portion, the difference in refractive index from the reflecting portion becomes large. Therefore, since a general-purpose material can be used instead of an expensive material for the light diffusing portion, the light diffusing sheet can be manufactured at a reduced manufacturing cost.
  • the transmissive display device includes the above-described light diffusion sheet in order to solve the above-described problems.
  • a method of manufacturing a light diffusing sheet according to the present invention includes a light diffusing sheet having a light diffusing portion that diffuses incident light incident from a light incident surface and emits the light from the light emitting surface.
  • a manufacturing method wherein a light shielding part forming step for forming a plurality of light shielding parts on a support film, and for each light shielding part, a reflective part is formed by applying mesoporous silica nanoparticles to at least a part of the surface of the light shielding part.
  • a part forming step is
  • the light diffusion sheet according to the present invention is characterized in that mesoporous silica nanoparticles are used as the reflecting portion. According to this, since the refractive index of the reflecting portion can be kept low, the difference in refractive index from the light diffusing portion becomes large, and incident light incident on the light diffusing sheet can be efficiently totally reflected. . In addition, since the refractive index of the reflecting portion can be kept low, the difference in refractive index from the reflecting portion becomes large without using a material having a high refractive index as the light diffusing portion. Therefore, since a general-purpose material can be used instead of an expensive material for the light diffusing portion, the light diffusing sheet can be manufactured at a reduced manufacturing cost.
  • (E) in the figure is a diagram showing a process of forming a light diffusion portion. It is a figure which shows the cross section of the light-diffusion sheet which concerns on one Embodiment of this invention.
  • (A) in the figure is a diagram showing a procedure for coating the surface of a mesoporous silica with a black pigment
  • (b) in the diagram is a diagram showing a black mesoporous silica colored with a black pigment and its cross section. .
  • (A) in a figure is a figure which shows the process of apply
  • (A) in a figure is a figure which shows the process of apply
  • (b) in the figure is a low refractive index light shielding part. It is a figure which shows the process of pressing a formation metal mold
  • FIG. 2C is a perspective view showing an example of a mobile phone according to one embodiment of the present invention
  • FIG. 2D is a digital view according to one embodiment of the present invention. It is a perspective view which shows an example of a video camera.
  • FIG. 1 is a view showing a cross section of the light diffusion sheet 1.
  • the light diffusion sheet 1 is used by being attached to the front surface of a display screen in a transmissive display device such as a liquid crystal display device. Specifically, it is used for diffusing light emitted from the backlight or the like to the display screen and emitted to the viewer side, and widening the viewing angle.
  • a linear film called a louver arranged in a blind shape may be disposed between the light source and the light diffusing sheet 1, and the light source is parallel light. It is also possible to emit light that is collimated or substantially collimated.
  • the light diffusion sheet 1 includes a light diffusion portion 2, a light shielding portion 3, a reflection portion 4, and a substrate (support film) 6.
  • a plurality of light shielding portions 3 are formed on the substrate 6, and the light shielding portions 3 have a triangular cross section.
  • the plurality of light shielding portions 3 are arranged in parallel at intervals.
  • the surface of each light shielding part 3 is covered with the reflection part 4, and the light diffusion part 2 is formed so as to fill the gap between the light shielding parts 3 from above.
  • the light diffusing portion 2 has a structure having a plurality of concave portions 5 that are substantially V-shaped with a cross-sectional shape tapering on the light incident surface side (the side opposite to the substrate 6) when cut in the thickness direction. It has become.
  • the light diffusion portion 2 is disposed on the side where light from a backlight or the like is incident. That is, in the light diffusing sheet 1, light from a backlight or the like enters the light diffusing unit 2, and the light is emitted from the substrate 6 through the light diffusing unit 2.
  • This embodiment is characterized in that non-colored mesoporous silica (mesoporous silica nanoparticles) 8 is used as the reflecting portion 4.
  • the mesoporous silica 8 is a particle having uniform and regular pores (mesopores) made of silicon dioxide.
  • the mesoporous silica 8 is characterized by having pores (mesopores) having a diameter of about 2 to 50 nm. According to this, since the mesoporous silica 8 is porous, it is possible to keep the refractive index of the reflecting portion 4 low. Therefore, the difference in refractive index from the light diffusing unit 2 becomes large, and incident light incident on the light diffusing sheet 1 can be efficiently totally reflected.
  • the refractive index of the reflection part 4 can be suppressed low, even if a material with a high refractive index is not used for the light diffusion part 2, the difference in refractive index from the reflection part 4 becomes large. Therefore, a general-purpose material can be used instead of an expensive material for the light diffusing portion 2, and thus the light diffusing sheet 1 can be manufactured at a reduced manufacturing cost. This will be described in detail below.
  • the reflection part 4 covers the surface of the light shielding part 3 formed on the substrate 6, and the light diffusion part 2 is formed so as to fill the gap of the light shielding part 3 from above. Accordingly, the concave portion 5 formed in the light diffusion portion 2 has a structure in which the light shielding portion 3 is formed inside, and the reflection portion 4 is formed between the light shielding portion 3 and the concave portion 5.
  • FIG. 2 is a schematic diagram illustrating the principle of the light diffusion sheet 1.
  • the light diffusion sheet 1 is illustrated in a simplified manner.
  • the light diffusion sheet 1 has a limit angle (critical angle) of an incident angle with respect to the light diffusion sheet 1 of light that can be totally reflected.
  • critical angle critical angle
  • the light incident on the light diffusion sheet 1 at an angle not exceeding the critical angle reaches the concave portion 5 of the light diffusion portion 2 as shown by arrows (A) and (B) in FIG.
  • the light is totally reflected at the interface with the diffusing portion 2 and diffused and emitted.
  • incident light that passes through the light diffusion portion 2 without entering the concave portion 5 is emitted through the light diffusion portion 2 as it is, as indicated by an arrow (C) in FIG.
  • the light incident on the light diffusion sheet 1 at an angle exceeding the critical angle is not totally reflected at the interface between the reflection part 4 and the light diffusion part 2 as indicated by arrows (D) and (E) shown in FIG.
  • the light is transmitted through the wall surface of the recess 5 and absorbed by the light-shielding portion 3.
  • the front contrast is lowered and the image is blurred.
  • the light diffusing sheet 1 the light incident on the light shielding part 3 from the recess 5 is absorbed by the light shielding part 3, thereby preventing stray light from being generated, reducing the front contrast, and preventing image blurring. It is out.
  • the functional part that totally reflects the light incident on the light diffusion sheet 1 and the functional part that absorbs stray light transmitted through the wall surface of the recess 5 are separated. That is, the light incident on the light diffusing sheet 1 is totally reflected at the interface between the reflecting portion 4 and the light diffusing portion 2. Therefore, it is not necessary to use a material having a low refractive index for the light shielding portion 3 as in the prior art, and there is no problem even if a material having a high optical density (OD value) is used. As a result, it is possible to prevent omission of stray light incident on the light shielding part 3 due to the low OD value of the light shielding part 3. Therefore, it is possible to almost certainly suppress the decrease in front contrast and the occurrence of image blur.
  • the critical angle of the incident angle with respect to the light-diffusion sheet 1 of the light which can be totally reflected becomes large, the light which can be totally reflected increases and the utilization efficiency of light can be raised.
  • the critical angle increases as the difference between the refractive index of the light diffusion portion 2 and the refractive index of the portion having the interface with the light diffusion portion 2 increases. Therefore, in this embodiment, it is preferable that the difference between the refractive index of the light diffusing unit 2 and the refractive index of the reflecting unit 4 is large. Therefore, as described above, in the present embodiment, the reflecting portion 4 is configured by the mesoporous silica 8. A graph relating to the refractive index of the resin containing the mesoporous silica 8 is shown in FIG.
  • FIG. 3 is a diagram showing the relationship between the concentration of the mesoporous silica 8 in the resin and the refractive index of the resin.
  • the concentration of the mesoporous silica 8 in the resin the higher the concentration of mesoporous silica 8 in the resin, the smaller the refractive index of the resin. Therefore, when the reflecting portion 4 is made of mesoporous silica 8, the refractive index of the reflecting portion 4 is reduced. This is because, in general, when porous particles are mixed in a resin, the refractive index of the resin decreases.
  • the silica compound includes particles called amorphous silica.
  • the average particle size of the amorphous silica is as large as 100 nm and the surface area is as small as 7 m 2 / g. Therefore, even if amorphous silica is mixed in the resin, the refractive index of the resin cannot be lowered.
  • the average particle diameter of the mesoporous silica 8 is 30 nm or less, and the surface area is as large as 1000 m 2 / g. For this reason, the mesoporous silica 8 used in the reflecting portion 4 can further reduce the refractive index of the reflecting portion 4.
  • the thickness of the reflective portion 4 is preferably at least 400 nm, and the concentration of the mesoporous silica 8 in the reflective portion 4 is preferably at least 10 wt%. If the above conditions are satisfied, the refractive index of the reflecting portion 4 can be sufficiently lowered.
  • the reflection part 4 composed of the mesoporous silica 8 exists in the part having the interface with the light diffusion part 2, and the refractive index of the reflection part 4 is mesoporous silica 8. Is getting smaller. Therefore, the difference between the refractive index of the light diffusing unit 2 and the refractive index of the reflecting unit 4 increases, and the critical angle of the incident angle of the light that can be totally reflected by the light diffusing sheet 1 with respect to the light diffusing sheet 1 increases. . As a result, the amount of light that can be totally reflected by the light diffusion sheet 1 is increased, and the light use efficiency can be increased.
  • the material used for the light diffusing sheet is restricted, and an uncommon special resin or the like must be used. Therefore, the material cost becomes high and the manufacturing cost becomes high.
  • a general-purpose material can be used instead of an expensive material for the light diffusing portion 2, and thus the light diffusing sheet 1 can be manufactured at a reduced manufacturing cost.
  • the conventional light diffusion sheet in the conventional light diffusion sheet, light that is nearly perpendicular to the light diffusion sheet (light from a region ⁇ 10 ° from the direction perpendicular to the light diffusion sheet) can be efficiently totally reflected. Yes, but the efficiency of using light from a larger angle was poor.
  • the difference between the refractive index of the light diffusing unit 2 and the refractive index of the reflecting unit 4 is large, and thus ⁇ 10 ° or more from the direction perpendicular to the light diffusing sheet 1 The utilization efficiency of light from the area can be increased.
  • the thickness of the reflecting portion 4 is 800 nm or more and the concentration of the mesoporous silica 8 in the reflecting portion 4 is 10 wt% or more, the region from ⁇ 10 ° or more from the direction perpendicular to the light diffusion sheet 1
  • the light utilization efficiency can be increased by 80%.
  • a 30% increase in light utilization efficiency can be obtained as a whole.
  • a reflective portion 4 is formed between the concave portion 5 and the light shielding portion 3, and the reflective portion 4 is formed so as to cover the entire wall surface of the concave portion 5. According to this, it can prevent that the light-shielding part 3 contacts the wall surface of the recessed part 5. FIG. If the light shielding part 3 comes into contact with the wall surface of the recess 5, the light incident on the contact part is not totally reflected at the interface with the light diffusion part 2 and is absorbed by the light shielding part 3.
  • the reflection part 4 is formed between the light-shielding part 3 and the recessed part 5, the light use efficiency can be prevented from decreasing due to the light-shielding part 3 coming into contact with the wall surface of the recessed part of the light diffusion part.
  • the present invention is not necessarily limited to this, and it is sufficient that the reflecting portion 4 is formed on at least a part of the wall surface of the recess 5.
  • the reflection part 4 should just be formed in the area
  • the thickness of the reflecting portion 4 is set to be equal to or greater than the wavelength. Since the maximum wavelength of visible light is 800 nm, the thickness of the reflecting portion 4 is preferably 800 nm or more. In the light diffusing sheet 1 according to the present embodiment, the thickness of the reflecting portion 4 can be easily set to 800 nm or more.
  • the light shielding part 3 is formed so as to reach the vicinity of the deepest part of the recess 5.
  • the stray light incident near the deepest part of the recess 5 can be almost certainly absorbed by the light shielding part 3.
  • the concave portions 5 of the light diffusing portion 2 are each substantially cone-shaped, such as a cone having a tapered light incident surface or a quadrangular pyramid, and preferably have a V-shaped cross section. According to this, light can be efficiently diffused with one light diffusion sheet, and a wide viewing angle can be realized.
  • the present invention is not necessarily limited to this, and it is only necessary to have a shape that allows light to diffuse at least in the vertical and horizontal directions.
  • the two oblique sides in the cross section of the recess 5 may not be contrasted with each other, may be a recess 5 having a polygonal cross section, or may be a recess 5 having a curved surface.
  • the recess 5 may be a groove having a V-shaped cross section, and the groove may be formed in parallel on the light emitting surface side of the light diffusion portion 2.
  • the two light diffusing sheets 1 may be used by bonding them so that the grooves formed in each of them are orthogonal to each other.
  • the shape of the light-shielding portion 3 may be determined in consideration of the shape of the recess 5.
  • the light-diffusion sheet 1 of this invention is not limited to this.
  • the depths of the plurality of recesses 5 may be different from each other.
  • the concave portion 5 only needs to have a shape in which light diffuses at least in the vertical and horizontal directions.
  • An example of the configuration of the recess 5 is shown in FIGS.
  • Reference numeral 80 shown in these drawings denotes a light exit surface that emits incident light that is incident on the light diffusion sheet and diffused in the light diffusion sheet.
  • the plurality of recesses 5 may be periodically formed in the one-dimensional direction on the light exit surface 80 of the light diffusion sheet 1a. That is, each of the plurality of recesses 5 has a groove shape extending along the one side (vertical or horizontal) of the light emitting surface 80 of the light diffusing sheet 1a and extending along the entire length in the vertical or horizontal direction of the light diffusing sheet 1a. They may be formed in parallel and at equal intervals.
  • the plurality of recesses 5 may be formed with disordered periodicity in the one-dimensional direction on the light exit surface 80 of the light diffusion sheet 1 b. That is, the plurality of recesses 5 have a groove shape extending along the one side (vertical or horizontal) of the light emitting surface 80 of the light diffusing sheet 1b and extending in the longitudinal or lateral length of the light diffusing sheet 1b. Alternatively, they may be formed at parallel and random intervals.
  • the several recessed part 5 is arrange
  • produced between the light diffusing sheet 1b and the existing periodic structure is suppressed in the display device to which the light diffusing sheet 1b is applied. Can do. Furthermore, the interference which the light which permeate
  • the plurality of recesses 5 may be periodically formed in the two-dimensional direction on the light exit surface 80 of the light diffusion sheet 1c. That is, each of the plurality of recesses 5 has a substantially conical shape, and each recess 5 may be arranged in a dot shape (dot shape) when viewed from the light emitting surface 80 side.
  • the plurality of substantially conical recesses 5 may be formed in a matrix shape (a grid pattern) in the vertical direction and the horizontal direction on the light exit surface 80 of the light diffusion sheet 1c, and may be formed at equal intervals. .
  • each of the plurality of recesses 5 has a substantially conical shape, and each recess 5 may be arranged in a dot shape (dot shape) when viewed from the light emitting surface 80 side.
  • a plurality of substantially cone-shaped recesses 5 may be formed at random intervals in the vertical and horizontal directions on the light exit surface 80 of the light diffusion sheet 1d. In this case, the plurality of recesses 5 are formed without forming a matrix.
  • the several recessed part 5 is arrange
  • each member of the light diffusion sheet 1 below, each member which comprises the light-diffusion sheet 1 is demonstrated.
  • the light diffusing unit 2 transmits light incident from the light incident surface side of the light diffusing unit 2 to the substrate 6 side on the light emitting surface side of the light diffusing unit 2 and emits the light. Therefore, the light diffusing portion 2 is formed of a material that can transmit incident light, and is preferably formed of a transparent resin in consideration of the transmittance. Further, the material constituting the light diffusing portion 2 is more preferably a material having ultraviolet curability. According to this, the operation
  • a material having a medium refractive index may be used as a material constituting such a light diffusing portion 2, for example, Epo-Tek (registered trademark), epoxy acrylate, vinyl chloride resin, styrene resin, Examples thereof include transparent resins such as urethane resins, polyester resins, acrylic resins, and polycarbonate resins.
  • Epo-Tek registered trademark
  • epoxy acrylate epoxy acrylate
  • vinyl chloride resin vinyl chloride resin
  • styrene resin examples thereof include transparent resins such as urethane resins, polyester resins, acrylic resins, and polycarbonate resins.
  • the light-shielding portion 3 examples include resins such as urethane resin containing a pigment such as carbon black generally used for a black matrix.
  • resins such as urethane resin containing a pigment such as carbon black generally used for a black matrix.
  • metals such as low reflection chromium, low reflection double layer nickel alloy, molybdenum (Mo) / molybdenum oxide (MoOx) laminated film, or a combination of any of the above materials and a resin can be applied. .
  • a resin having a high refractive index can also be used. is there. There is no problem even if a material having a high OD value is used.
  • a transparent material is used for the substrate 6 so that light (image light) of the display device can be emitted from the partial substrate 6.
  • Examples of such materials include base film materials such as polyethylene terephthalate, polycarbonate, polyester, acrylic, polyolefin, polypropylene, or vinyl. However, it is not necessarily limited to this.
  • FIG. 8 is a view showing a process of applying a material constituting the light shielding part 3 to the light shielding part forming mold 7.
  • FIG. 4B is a diagram illustrating a process of pressing the light shielding part forming mold 7 against the substrate 6.
  • C in FIG. 8 is a diagram showing a process of removing the light shielding part forming mold 7.
  • D in FIG. 8 is a diagram showing a process of forming the reflection portion 4 on the surface of the light shielding portion 3.
  • E in FIG. 8 is a diagram showing a process of forming the light diffusion portion 2.
  • the light shielding portion 3 is formed.
  • the material which comprises the light-shielding part 3 is apply
  • die 7 which has two or more recessed parts of the reverse shape to the light-shielding part 3.
  • a two-component mixed urethane resin solution for mold molding mixed with 5% by weight of carbon black is applied.
  • the light-shielding part 3 is cured in a state where the substrate 6 is pressed from above.
  • two types of solutions are mixed and reacted and cured in several tens of minutes, so the two types of solutions are mixed and quickly put on the light shielding part forming mold 7. Apply.
  • the light shielding part forming mold 7 is removed after the light shielding part 3 is sufficiently cured, a plurality of light shielding parts 3 are formed in parallel on the substrate 6 as shown in FIG.
  • the reflection part 4 is formed.
  • the material constituting the reflecting portion 4 is applied onto the light shielding portion 3. Specifically, mesoporous silica 8 and Epo-Tek (registered trademark) mixed with stirring are applied once by a spray method. Thereafter, the reflecting portion 4 is cured by irradiating with ultraviolet rays.
  • the light diffusion part 2 is formed. As shown in (e) of FIG. 8, the light diffusion part 2 is formed on the light shielding part 3 on which the reflection part 4 is formed. Specifically, Epo-Tek (registered trademark) is applied by a spray method so as to fill the gap of the light shielding portion 3 so as to have a height of about 100 ⁇ m. Then, the light diffusion part 2 is hardened by irradiating with ultraviolet rays. In this way, the light diffusion sheet 1 is formed.
  • Epo-Tek registered trademark
  • the manufacturing method of the light diffusion sheet 1 has been described above using specific examples, but the manufacturing method of the light diffusion sheet 1 according to the present embodiment is not necessarily limited thereto.
  • the light diffusion sheet 1 can be manufactured using a dip method, a spin coating method, or the like.
  • the reflecting portion 4 is formed by mixing mesoporous silica 8 in the same material as that constituting the light diffusing portion 2. According to this, since the material used when forming the reflection part 4 can be used as it is when forming the light diffusion part 2, the material used for forming the light diffusion sheet 1 can be reduced. it can. However, the present invention is not necessarily limited to this, and the reflecting portion 4 may be formed by mixing mesoporous silica 8 in a material different from that of the light diffusion portion 2. As the another material, for example, a transparent ultraviolet curable resin having a predetermined refractive index and having an ionizing radiation curing function, an electron beam curable resin, or the like can be used.
  • reactive oligomers such as epoxy acrylate, urethane acrylate, polyether acrylate, polyester acrylate, or polythiol, vinyl pyrrolidone, 2-ethylhexyl acrylate, ⁇ -hydroxy acrylate, or tetrahydrofurfuryl acrylate
  • a reactive monomer such as is selected as appropriate. Although some of these resins are directly cured by ionizing radiation, those that initiate a curing reaction via a catalyst or an initiator (a substance that excites the reaction) are generally used.
  • the photoinitiator includes a ketone type or an acetophenone type, and for example, Sandley 1000, Darocur 1163, Darocur 1173, Irgacure 183, Irgacure 651, or the like can be applied.
  • an appropriate photoinitiator is selected according to the type (wavelength characteristics) of ionizing radiation used for curing.
  • the reflecting portion 4 is formed of the mesoporous silica 8, but the light shielding portion 3 may be formed of the mesoporous silica 8 in addition to the reflecting portion 4. According to this, the cost which manufactures the light-diffusion sheet 1 can be held down. This will be described in detail with reference to FIG. FIG. 9 is a view showing a cross section of the light diffusion sheet 11.
  • the reflecting portion 14 is formed so as to cover the wall surface of the concave portion 15 of the light diffusing portion 12, and the reflecting portion 14 is made of mesoporous silica 18. Further, a light shielding part 13 is formed so as to cover the surface of the reflecting part 14. Specifically, the light-shielding portion 13 is composed of mesoporous silica 18 (black mesoporous silica 20) whose surface is coated with a black pigment.
  • the procedure for the coating method of mesoporous silica 18 is shown in FIG. (A) in FIG. 10 is a diagram showing a procedure for coating the surface of the mesoporous silica 18 with the black pigment 19.
  • (B) in FIG. 10 is a diagram showing a black mesoporous silica 20 colored with a black pigment 19 and a cross section thereof.
  • the mesoporous silica 18 is mixed in a container in which the black pigment 19 is placed. Then, the black pigment 19 is coated on the surface of the mesoporous silica 18 by a physical adsorption method or a chemical adsorption method. At this time, as the black pigment 19, for example, carbon black or an azine compound can be used. When carbon black is used, it is preferable to use a physical adsorption method, and when using an azine-based compound, it is preferable to use a chemical adsorption cation exchange method. As shown in FIG. 10B, the black mesoporous silica 20 thus formed is coated with a black surface, but the inside remains the mesoporous silica 18.
  • the mesoporous silica 18 constituting the reflecting portion 14 can keep the refractive index of the reflecting portion 14 low. Therefore, the difference in refractive index with the light diffusing unit 12 becomes large, and the incident light incident on the light diffusing sheet 11 can be efficiently totally reflected. Moreover, since the light which permeate
  • the light shielding part 13 can sufficiently absorb the light incident on the light shielding part 13 only by covering the wall surface of the reflecting part 14. Therefore, since the light shielding part 13 may be formed so as to cover the wall surface of the reflecting part 14, the amount of the black mesoporous silica 20 used can be suppressed. Therefore, the material cost of the light diffusion sheet 11 can be suppressed, and the manufacturing cost can be reduced.
  • the space surrounded by the light shielding portion 13 and the substrate 16 may be filled with resin or the like to form the convex portion 50, may be filled with the black mesoporous silica 20, or may be left as a gap.
  • a material for example, an epoxy acrylate having an ionizing radiation curing action is applicable.
  • FIG. 11 is a diagram showing a step of applying a material constituting the convex portion 50 to the convex portion forming mold 17.
  • B in FIG. 11 is a diagram showing a step of pressing the convex portion forming mold 17 against the substrate 16.
  • C in FIG. 11 is a diagram showing a step of removing the convex portion forming mold 17.
  • D in FIG. 11 is a diagram showing a process of forming the light shielding portion 13 on the surface of the convex portion 50 and forming the reflecting portion 14 on the surface of the light shielding portion 13.
  • E in FIG. 11 is a diagram showing a step of forming the light diffusion portion 12.
  • a method for manufacturing the light diffusing sheet 11 for example, a manufacturing method disclosed in Japanese Unexamined Patent Application Publication No. 2009-63849 can be used. Since the specific method is the same as the method shown in the first embodiment, it is not mentioned here. Below, the schematic flow of the manufacturing method of the light-diffusion sheet 11 is demonstrated.
  • the convex part 50 which fills the space surrounded by the light shielding part 13 and the substrate 16 is formed.
  • the material which comprises the convex part 50 is apply
  • the substrate 16 is pressed onto the projection forming mold 17 coated with the material constituting the projection 50, and the substrate 16 is pressed from above. In this state, the convex portion 50 is cured.
  • the convex forming mold 17 is removed after the convex portions 50 are sufficiently cured, a plurality of convex portions 50 are formed in parallel on the substrate 16 as shown in FIG.
  • the light shielding portion 13 is formed.
  • the material constituting the light shielding part 13 is applied onto the convex part 50 by a spray method.
  • the light shielding part 13 is hardened by irradiating with ultraviolet rays.
  • the reflection portion 14 is formed.
  • the material constituting the reflecting portion 14 is applied onto the light shielding portion 13 by a spray method. Thereafter, the reflecting portion 14 is cured by irradiating with ultraviolet rays. As a result, as shown in FIG. 11 (d), a structure in which the light shielding portion 13 and the reflection portion 14 are stacked on the convex portion 50 is formed.
  • the light diffusion part 12 is formed. As shown to (e) in FIG. 11, the material which comprises the light-diffusion part 12 is apply
  • the method for manufacturing the light diffusion sheet 11 by the spray method has been described above, the method for manufacturing the light diffusion sheet 11 according to the present embodiment is not necessarily limited thereto.
  • the light diffusion sheet 1 can be manufactured using a dip method, a spin coating method, or the like.
  • the black mesoporous silica 20 is filled in the space enclosed by the light-shielding part 13 and the board
  • the black mesoporous silica 20 is filled in the space surrounded by the light shielding part 13 and the substrate 16, the light shielding part 13 may be formed by the method of forming the convex part 50. Thereby, the process of forming the light diffusion sheet 11 can be simplified.
  • the light diffusion portion 12 may be formed first.
  • the light diffusing unit 12 having the recesses 15 is formed by pressing a mold having a plurality of convex portions opposite to the recesses 15 included in the light diffusing unit 12 against the material constituting the light diffusing unit 12.
  • the material which comprises the reflection part 14 is apply
  • the material constituting the part 13 is applied.
  • the substrate 16 is formed on the side where the concave portion 15 of the light diffusion portion 12 is formed. As a result, a space can be provided in the space surrounded by the light shielding portion 13 and the substrate 16. According to this method, since it is not necessary to form anything in the space, the material cost can be further reduced.
  • the reflection part 14 when forming the reflection part 14, you may form the reflection part 14 by what mixed the mesoporous silica 18 with the material same as the material which comprises the light-diffusion part 12.
  • the material used when forming the reflection part 14 can be used as it is when forming the light diffusion part 12, the material used for forming the light diffusion sheet 11 can be reduced. it can.
  • the present invention is not necessarily limited to this, and the reflection portion 4 may be formed of a material mixed with a material different from the light diffusion portion 2.
  • the other material is, for example, the ultraviolet curable resin or the electron beam curable resin exemplified in the first embodiment. The same applies to the case where the light shielding portion 13 is formed.
  • the black mesoporous silica 20 is used as the light-shielding portion 13, but love collol (manufactured by Dainichi Seika Kogyo Co., Ltd.) is generally known as a particle that absorbs light.
  • Labcorol is a particle that has an acrylic copolymer as a main component and can be colored with a pigment. When this love color is colored with a pigment such as carbon black, it shows light absorption.
  • lab color can be applied instead of the mesoporous silica 18 and the black mesoporous silica 20, but when the lab color is mixed in the resin, the refractive index of the resin becomes high. That is, the difference between the refractive index of the reflecting portion 14 and the refractive index of the light diffusing portion 12 becomes small, and the incident light incident on the light diffusing sheet 11 cannot be totally reflected efficiently.
  • FIG. 12 is a view showing a cross section of the light diffusion sheet 21.
  • the inside of the concave portion 25 of the light diffusion portion 22 is filled with black mesoporous silica 30.
  • the black mesoporous silica 30 coated with the black pigment 19 is filled into the concave portion 25 to form the low refractive index light shielding portion 23.
  • the black mesoporous silica 30 can reduce the refractive index of the resin even when mixed in the resin, it has a function as a reflection portion.
  • the black mesoporous silica 30 can absorb light, it also has a function as a light shielding part.
  • the low refractive index light-shielding part 23 can serve as both the light-shielding part and the reflecting part.
  • the black mesoporous silica 30 constituting the low refractive index light-shielding part 23 can suppress the refractive index of the low refractive index light-shielding part 23 to be low. Therefore, the difference in refractive index with the light diffusing portion 22 becomes large, and the incident light incident on the light diffusing sheet 21 can be efficiently totally reflected.
  • the surface area of the black mesoporous silica 30 is as large as 1000 m 2 / g, the OD value of the low refractive index light-shielding part 23 formed by the black mesoporous silica 30 is high.
  • the light absorption of the low-refractive-index light-shielding part 23 composed of the black mesoporous silica 30 is improved, so that stray light incident on the low-refractive-index light-shielding part 23 can be absorbed almost certainly, and the stray light Can be prevented from coming off.
  • the concave portion 25 can be filled with the black mesoporous silica 30 with almost no gap. Therefore, even when the size of the concave portion 25 of the light diffusing sheet 1 is small or when the opening of the concave portion 25 is small, the black mesoporous silica 30 can be used without any problem. Moreover, it can respond also to the light-diffusion sheet 1 using a moth-eye formation technique.
  • FIG. 13 is a diagram showing a process of applying a material constituting the low refractive index light shielding portion 23 to the low refractive index light shielding portion forming mold 27.
  • B in FIG. 13 is a view showing a process of pressing the low refractive index light shielding part forming mold 27 against the substrate 26.
  • C in FIG. 13 is a diagram showing a step of removing the low refractive index light shielding part forming mold 27.
  • D in FIG. 13 is a diagram showing a step of forming the light diffusion portion 22.
  • a method for manufacturing the light diffusion sheet 21 for example, a manufacturing method disclosed in Japanese Unexamined Patent Application Publication No. 2009-63849 can be used. Since the specific method is the same as the method shown in the first embodiment, it is not mentioned here. Below, the schematic flow of the manufacturing method of the light-diffusion sheet 21 is demonstrated.
  • the low refractive index light-shielding portion 23 is formed. As shown to (a) in FIG. 13, the material which comprises the low-refractive-index light-shielding part 23 to the metal mold
  • a substrate 26 is pressed onto a low-refractive-index light-shielding part forming mold 27 coated with a material constituting the low-refractive-index light-shielding part 23, and the substrate
  • the low-refractive-index light-shielding portion 23 is cured in a state where the pressure 26 is pressed from above.
  • the low-refractive-index light-shielding part 23 is sufficiently cured and then the low-refractive-index light-shielding part forming die 27 is removed, a plurality of low-refractive index light-shielding parts are formed on the substrate 26 as shown in FIG. 23 are formed in parallel.
  • the material constituting the light diffusion portion 22 is applied on the low refractive index light shielding portion 23 by a spray method so as to fill the gaps of the low refractive index light shielding portion 23. To do. Thereafter, the light diffusion portion 22 is cured by irradiating with ultraviolet rays. In this way, the light diffusion sheet 21 is formed.
  • the method for manufacturing the light diffusion sheet 21 by the spray method has been described above, the method for manufacturing the light diffusion sheet 21 according to the present embodiment is not necessarily limited thereto.
  • the light diffusion sheet 21 can be manufactured by using a dip method, a spin coating method, or the like.
  • the low refractive index light shielding portion 23 may be formed by mixing mesoporous silica 28 with the same material as that constituting the light diffusion portion 22. According to this, since the material used when forming the low refractive index light-shielding part 23 can be used as it is when forming the light diffusion part 22, the material used for forming the light diffusion sheet 22 is reduced. can do.
  • the present invention is not necessarily limited to this, and the reflection portion 4 may be formed of a material mixed with a material different from the light diffusion portion 2.
  • the other material is, for example, the ultraviolet curable resin or the electron beam curable resin exemplified in the first embodiment.
  • FIG. 14 is a cross-sectional view schematically showing the display device 10 according to an embodiment of the present invention.
  • FIG. 15 is a cross-sectional view schematically showing the liquid crystal panel 24 and the light diffusion sheet 81 that constitute the display device 10 according to the embodiment of the present invention.
  • 9 shown to a figure is a backlight
  • 29 is a housing
  • the display device 10 includes a liquid crystal panel 24, a light diffusion sheet 81 attached to the display screen 45 of the liquid crystal panel 24, and a surface 46 (hereinafter referred to as the liquid crystal panel 24). , which is referred to as the other surface) and a backlight 9 arranged on the side.
  • the liquid crystal panel 24 includes a first polarizing plate 33a, a first retardation plate (not shown), a first glass substrate 47a, a liquid crystal layer 37, and color filters (32R, 32G, 32B). ), A second glass substrate 47b, a second retardation plate (not shown), and a second polarizing plate 33b, which are stacked in order.
  • a light diffusion sheet 81 is attached to the display screen 45 of the liquid crystal panel 24 via an adhesive layer (not shown).
  • the light diffusing sheet 81 has a wall surface that transmits or totally reflects incident light incident from the other surface 46, opens on a surface opposite to the other surface 46, and includes a light shielding portion inside. It has a plurality of recesses.
  • a linear film called a louver arranged in a blind shape may be arranged between the liquid crystal panel 24 and the backlight 9.
  • the linear film collimates the light emitted from the backlight 9, and the collimated light (parallel light) irradiates the liquid crystal panel 24.
  • the light emitted from the backlight 9 is substantially collimated by the linear film, and the liquid crystal panel 24 is irradiated with the substantially collimated light (substantially parallel light).
  • the display device 10 since the light diffusing sheet 1 is attached to the display screen 45 of the liquid crystal panel 24, the light diffusing sheet 1 irradiates the liquid crystal panel 24 from the backlight 9 to the viewer side ( In the light diffusion sheet 1, the light emitted to the surface opposite to the other surface 46 can be diffused to widen the viewing angle. That is, the display device 10 achieves a wide viewing angle, has high light utilization efficiency, suppresses generation of stray light, and has high visibility.
  • the display apparatus 10 which concerns on this invention is not limited to this. Absent.
  • the light diffusion sheet 81 the above-described light diffusion sheets 1a to 1d, 11 and 21 can be applied.
  • a light diffusion sheet that is used in a display device such as a liquid crystal display device and expands the viewing angle of the display device can be used.
  • FIG. 16 is a perspective view showing an example of a television receiver 40 according to an embodiment of the present invention.
  • FIG. 16B is a perspective view showing an example of a personal computer 50 according to an embodiment of the present invention.
  • C in FIG. 16 is a perspective view showing an example of the mobile phone 60 according to an embodiment of the present invention.
  • FIG. 16D is a perspective view showing an example of the digital video camera 70 according to the embodiment of the present invention.
  • the display device 10 can be mounted on a television receiver 40.
  • 41 is a casing
  • 42 is a speaker unit
  • 43 is a video input terminal
  • 44 is a support base.
  • the display device 10 can be mounted on a personal computer 50.
  • 51 is a keyboard
  • 52 is an external connection port
  • 53 is a pointing mouse
  • 54 is a main body
  • 55 is a housing.
  • the display device 10 can be mounted on a mobile phone 60.
  • 61 is an operation key
  • 62 is an audio input unit
  • 63 is an audio output unit
  • 64 is a main body
  • 65 is a housing
  • 66 is an antenna. .
  • the display device 10 can be mounted on a digital video camera 70.
  • 71 is an image receiving unit
  • 72 is a remote control receiving unit
  • 73 is an audio input unit
  • 74 is an eyepiece unit
  • 75 is a battery
  • 76 and 77 are An operation key
  • 78 is an external connection port
  • 79 is a main body.
  • the light diffusing sheet according to the present invention is characterized in that, for each of the concave portions, the reflective portion is composed of non-colored mesoporous silica nanoparticles.
  • the light diffusion sheet according to the present invention is characterized in that, for each of the concave portions, the reflective portion is composed of non-colored mesoporous silica nanoparticles.
  • the reflecting portion is formed by the non-colored mesoporous silica nanoparticles. Accordingly, since the refractive index of the reflecting portion can be kept low, the difference in refractive index from the light diffusing portion becomes large, and incident light incident on the light diffusing sheet can be efficiently totally reflected.
  • the light diffusion sheet according to the present invention is characterized in that, for each of the concave portions, the light shielding portion is composed of mesoporous silica nanoparticles whose surface is coated with a black pigment.
  • the light-shielding portion is formed by the mesoporous silica nanoparticles having a black pigment coated on the surface.
  • the light shielding part even if the light shielding part only covers the reflection part, the light incident on the light shielding part can be sufficiently absorbed. Therefore, since the light-shielding part may be formed so as to cover the reflection part, the amount of mesoporous silica nanoparticles whose surface is coated with a black pigment can be reduced. Therefore, the material used for the light diffusion sheet can be reduced, and the manufacturing cost can be reduced.
  • the reflection part is composed of mesoporous silica nanoparticles coated on the surface with a black dye
  • the light shielding part contains a black dye. It is characterized by being composed of mesoporous silica nanoparticles coated on the surface.
  • both the reflection part and the light shielding part are formed of mesoporous silica nanoparticles having a black pigment coated on the surface.
  • the refractive index of the reflective portion can be kept low by the mesoporous silica nanoparticles whose surface is coated with a black pigment.
  • the light incident on the light shielding portion can be absorbed by the mesoporous silica nanoparticles whose surface is coated with a black pigment.
  • the mesoporous silica nanoparticles whose surface is coated with a black pigment can serve as both a reflection portion and a light shielding portion.
  • the material used for the light diffusion sheet can be reduced, and the manufacturing cost of the light diffusion sheet can be reduced.
  • the light diffusion sheet according to the present invention is characterized in that the light shielding portion is formed for each of the concave portions up to the vicinity of the deepest portion of the concave portion.
  • the cross-sectional shape of the concave portion cut in the thickness direction of the light diffusion portion is a substantially V-shape with the light incident surface side tapered.
  • the plurality of recesses are each substantially cone-shaped with a tapered side on the light incident surface side.
  • incident light can be diffused in the vertical and horizontal directions, and light can be efficiently diffused with a single light diffusion sheet, thereby realizing a wide viewing angle.
  • the light diffusion sheet according to the present invention is characterized in that the black pigment is carbon black.
  • the black pigment is an azine compound.
  • the plurality of concave portions are each periodically formed in the one-dimensional direction on the light exit surface.
  • the plurality of concave portions are each periodically formed in the one-dimensional direction on the light exit surface.
  • the incident light can be diffused in the vertical and horizontal directions, and the light can be efficiently diffused with a single light diffusion sheet to realize a wide viewing angle.
  • the plurality of concave portions are each formed in a two-dimensional direction with disturbed periodicity on the light exit surface.
  • the plurality of concave portions are each formed in a two-dimensional direction with disturbed periodicity on the light exit surface.
  • a plurality of concave portions are randomly arranged, and moire generated between the light diffusion sheet and the existing periodic structure in the display device to which the light diffusion sheet is applied can be suppressed. Furthermore, the interference which the light which permeate
  • the reflection part is formed using uncolored mesoporous silica nanoparticles for each light shielding part.
  • the light diffusion sheet manufacturing method according to the present invention is characterized in that, in the light shielding part forming step, the plurality of light shielding parts are formed by mesoporous silica nanoparticles whose surface is coated with a black pigment.
  • the plurality of light shielding parts are formed by mesoporous silica nanoparticles having a black pigment coated on the surface
  • the reflection part is formed by mesoporous silica nanoparticles whose surface is coated with a black pigment.
  • the present invention can be used in a light diffusion sheet that is used in a display device such as a liquid crystal display device and expands the viewing angle of the display device.

Abstract

 光拡散シート(1)は、基板(6)上に光拡散部(2)を有しており、当該光拡散部(3)は、断面形状がV字状の凹部(5)を複数有した構造になっている。各凹部(5)の内部には遮光部(3)が形成されており、遮光部(3)と凹部(5)の壁面との間を埋めるようにしてメソポーラスシリカ(8)によって構成された反射部(4)が形成されている。当該メソポーラスシリカ(8)によって反射部(4)の屈折率は小さくなるので、光拡散部(2)との屈折率の差が大きくなり、光拡散シート(1)に入射した入射光を効率良く全反射させることができる。また、光拡散部(2)として高屈折率を有する高価な材料を用いる必要がないため、製造費を削減して光拡散シート(1)を製造することができる。

Description

光拡散シート、およびその製造方法、ならびに当該光拡散シートを備えた透過型表示装置
 本発明は、液晶表示装置等の表示装置に好適に用いられる光拡散シート、およびその製造方法、ならびに当該光拡散シートを備えた透過型表示装置に関する。
 近年では、表示装置の開発研究が目覚ましく、従来主流であったブラウン管を使用した表示装置から、薄型のフラットパネルディスプレイ(FPD)の表示装置が広く利用されるようになっている。FPDには、表示素子として液晶、発光ダイオード(LED)または、有機エレクトロルミネッセンス(EL)等を利用したものがある。
 これらの表示装置は、表示画面に向かって発光、または表示画面の背面(観察者とは反対側)に設けられたバックライト等によって光を照射している。表示画面から出射された光を観察者は視認する。なお、表示装置では、表示画面から斜めに出射する光が、表示画面の正面に出射した光を見たときと同じように見えるように設計されている。すなわち、表示画面を斜めから見たときに、表示画面を正面から見たときと同じように見えるように設計されている。しかし、その設計は不十分であり、表示画面を正面から見たときのコントラスト特性は優れているものの、斜めから見ると正面から見たときと比べ変化感が大きい場合がある。したがって、表示装置には、観察する方向によって表示の見え方が異なる、すなわち視野角特性が劣るという問題がある。
 そこで、表示装置の視野角特性を向上させる方法の1つとして、表示装置の観察者側に光を拡散させるシートを設けることにより、斜め方向からの視認を可能にする方法が開発されている。光拡散シートには、シート表面に凹凸処理をしたもの、またはシート内部に光拡散性微粒子を含有させたもの等がある。当該光拡散シートは、屈折率の差を利用してバックライトからの光を多方向に屈折(全反射)させる。光拡散シートによって屈折した光は、その表面から多方向に拡散して観察者側に出射される。このように、光拡散シートを用いれば、表示装置からの光の拡散によってあらゆる方向からの視認が可能となる。その結果、正面から見たときの映像と、斜めから見たときの映像とが一緒になり、視野角の変化感のない表示装置を実現している。
 しかしながら、このような光拡散シートが有する光拡散性によって、映像光または外光が乱反射して、多くの迷光を生じさせることになり、表示装置の表面輝度およびコントラストの低下等を招いてしまう。また、光拡散シートが全反射させることができる光には限度があり、光拡散シート(表示画面)に対する入射角が小さい光は、全反射されない。そのため、映像光が拡散される度合い(光利用効率)が低く、視認性が低下してしまう。
 そこで、光拡散シートの特性を向上させる目的で様々な工夫がされている。例えば、特許文献1には、遮光部を有する光拡散シートが開示されている。具体的には、光拡散シートは光拡散部と遮光部とから構成されており、光拡散部の観察面側に断面がV字状となる複数の溝が並列形成されている。各溝の観察面側には遮光部が設けられており、溝の残りの空間は空気で充填されている。これによれば、光拡散シートを通過する迷光の大部分は光吸収層に吸収されるため、コントラストの低下等を防止することができる。
 特許文献1に開示されているような遮光部を有している光拡散シートでは、当該遮光部として、カーボン等の顔料によって着色されている粒子を含む樹脂を用いるのが一般的である。また、遮光部の屈折率が光拡散部の屈折率よりも小さくなるようにしている。これによって、遮光部に入射した迷光を吸収しつつ、迷光以外の光は光拡散部と遮光部との界面で全反射させることができる。
 したがって、光拡散部と遮光部との界面で光を全反射させるためには、光拡散部の屈折率との差をできるだけ大きくすることが望ましく、そのためには遮光部の屈折率を小さく抑えることが望ましい。しかしながら、遮光部において小さい屈折率を維持するためには、遮光部の顔料の濃度を高くすることができない。その結果、遮光部の光学濃度(OD値)が低くなるため、遮光部に入射した迷光が抜けてしまう問題がある。それによって、正面コントラストの低下、または画像のボケ等がもたらされる。
 一方、遮光部の屈折率を小さく抑える代わりに、光拡散部の屈折率を高くすることによって、遮光部において迷光が抜けるのを回避することが可能であると考えられる。しかし、屈折率が高い材料を光拡散部に用いると材料費が高くなり、製造コストが高くなってしまう。そのため、光拡散部に屈折率が高い材料を用いた光拡散シートを汎用的に用いるのは難しい。
 そこで、光拡散シートの特性をさらに向上させるために、新たな工夫がされている。例えば、特許文献2では、遮光部の周辺を低屈折率樹脂で覆った光拡散シートが開示されている。具体的には、光拡散シートは光拡散部と遮光部とから構成されており、光拡散部の観察面側に断面がV字形状となる複数の溝が並列形成されている。各溝の内部には遮光部が形成されており、当該遮光部と溝の壁面との間には低屈折率樹脂が埋められている。低屈折率樹脂には、微小粒子(アモルファスシリカ粒子)が混合されている。これによれば、光拡散部の溝に入射した光は、当該光拡散部と低屈折率樹脂との界面において全反射される。一方、光拡散部の溝に入射した迷光は、低屈折率樹脂を透過して遮光部に吸収される。したがって、光拡散部の溝に入射した迷光の抜けを抑制することができ、なおかつ当該溝に入射した光を効率良く全反射して、拡散させることができる。
日本国公開特許公報「特開2000-352608号公報(2000年12月19日公開)」 日本国公開特許公報「特開2009-63849号公報(2009年3月26日公開)」
 上述したように、特許文献2に開示されている光拡散シートでは、光拡散部の溝に入射した迷光の抜けを抑制することができ、なおかつ当該溝に入射した光を効率良く全反射して、拡散させることができる。しかしながら、本文献に開示されている光拡散シートでは、光拡散部には高屈折率樹脂を用い、光拡散部と遮光部との間には低屈折率樹脂を用いている。したがって、高屈折率樹脂と低屈折率樹脂とを用いているので、材料費が高くなり、製造コストが高くなってしまう。そのため、本文献に開示されている光拡散シートを汎用的に用いるのは難しい。さらに、本文献に開示されている光拡散シートを製造する場合には、低屈折率樹脂に微小粒子を混合する必要があり、作業工程が複雑である。
 また、一般的に、多孔質な粒子を樹脂中に混合すると、当該樹脂の屈折率が小さくなる。しかしながら、本文献で微小粒子として用いているアモルファスシリカ粒子は、平均粒径が100nmと大きく、表面積が7m/gと小さい。したがって、アモルファスシリカ粒子を低屈折率樹脂中に混合しても、当該低屈折率樹脂の屈折率を下げることができない。すなわち、低屈折率樹脂として、できるだけ屈折率が小さい樹脂を用いなければ、光拡散部の屈折率との差が大きくならず、光拡散シートに入射した光を効率良く前反射することができない。しかし、上述したように、高屈折率樹脂と低屈折率樹脂とを用いると、材料費が高くなり、製造コストが高くなってしまう問題がある。
 そこで、本発明は上記問題に鑑みてなされたものであり、その目的は、光拡散シートの材料費等の製造費を抑えつつ、当該光拡散シートに入射した光を効率良く全反射することができる光拡散シート、およびその製造方法、ならびに当該光拡散シートを備えた透過型表示装置を提供することにある。
 本発明に係る光拡散シートは、上記課題を解決するために、光入射面から入射した入射光を拡散させて光出射面から出射する光拡散部を備えた光拡散シートであって、上記光拡散部における上記光出射面側に設けられている支持フィルムと、上記光拡散部の上記光出射面側の内部に形成され、上記入射光を透過または全反射させる壁面を有する複数の凹部と、上記凹部ごとに、当該凹部の壁面の少なくとも一部に形成され、メソポーラスシリカナノ粒子によって構成された反射部と、上記凹部ごとに、上記壁面によって囲まれる空間、および上記反射部によって囲まれる空間の内部に形成され、上記支持フィルムによって支持された遮光部とを備えていることを特徴としている。
 上記構成によれば、支持フィルム上には、光拡散部が形成されており、光拡散部には複数の凹部が設けられている。当該凹部の壁面の少なくとも一部には、メソポーラスシリカナノ粒子によって構成された反射部が形成されている。さらに、凹部の壁面によって囲まれる空間、および反射部によって囲まれる空間の内部には、遮光部が形成されている。
 このように、本発明に係る光拡散シートでは、反射部がメソポーラスシリカナノ粒子によって構成されているため、当該反射部の屈折率は小さい。そのため、光拡散部の屈折率と、反射部の屈折率との差が大きくなり、光拡散シートにおいて全反射させることができる光の光拡散シートに対する入射角の臨界角度が大きくなる。その結果、当該光拡散シートが全反射させることができる光が増え、光の利用効率を上げることができる。
 また、凹部の内部には遮光部が形成されているので、当該凹部の壁面を透過し、遮光部に入射する光は、当該遮光部によって吸収されるので、迷光の発生を防ぐことができる。したがって、本発明に係る光拡散シートでは、当該光拡散シートに入射した光を全反射させる機能部分と、凹部の壁面を透過した迷光を吸収する機能部分とが分けられている。すなわち、光拡散シートに入射した光は、反射部と光拡散部との界面において全反射される。そのため、従来のように屈折率が小さい材料を遮光部に用いる必要がなく、光学濃度(OD値)が高い材料を用いても問題ない。その結果、遮光部のOD値が低いことによる、当該遮光部に入射した迷光の抜けを防ぐことができる。したがって、正面コントラストの低下、および画像のボケの発生をほぼ確実に抑えることができる。
 従来では、遮光部の屈折率と光拡散部の屈折率との差を大きくするために、遮光部の屈折率を小さくし、光拡散部の屈折率を大きくする必要があった。そのため、光拡散シートに用いる材料には制約がかかり、一般的ではない特殊な樹脂等を用いなければならないので、材料費が高くなり、製造コストが高くなってしまう。しかしながら、上述したように、反射部は小さい屈折率を有しているため、本発明では光拡散部として屈折率が高い材料を用いなくとも、反射部との屈折率の差は大きくなる。したがって、光拡散部として高価な材料ではなく、汎用的な材料を用いることが可能なので、製造費を削減して光拡散シートを製造することができる。
 本発明に係る透過型表示装置は、上記課題を解決するために、上記した光拡散シートを備えていることを特徴としている。
 上記構成によれば、広い視野角を実現しつつ、正面コントラストを向上させ、画像のボケの発生を抑えた高い視認性を有する表示装置を実現することができる。
 また、本発明に係る光拡散シートの製造方法は、上記課題を解決するために、光入射面から入射した入射光を拡散させて光出射面から出射する光拡散部を備えた光拡散シートの製造方法であって、支持フィルム上に複数の遮光部を形成する遮光部形成工程と、上記遮光部ごとに、当該遮光部の表面の少なくとも一部にメソポーラスシリカナノ粒子を塗布して反射部を形成する反射部形成工程と、上記反射部形成工程の後に、上記支持フィルムの上記複数の遮光部が形成されている側に、上記反射部の表面を覆うようにして光拡散部を形成する光拡散部形成工程とを備えていることを特徴としている。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。
 本発明に係る光拡散シートでは、反射部として、メソポーラスシリカナノ粒子を用いていることを特徴としている。これによれば、反射部の屈折率を低く抑えることが可能であるため、光拡散部との屈折率の差が大きくなり、光拡散シートに入射した入射光を効率良く全反射させることができる。また、反射部の屈折率を低く抑えることができるので、光拡散部として屈折率が高い材料を用いなくとも、反射部との屈折率の差は大きくなる。したがって、光拡散部として高価な材料ではなく、汎用的な材料を用いることが可能なので、製造費を削減して光拡散シートを製造することができる。
本発明の一実施形態に係る光拡散シートの断面を示す図である。 本発明の一実施形態に係る光拡散シートの原理を説明する図である。 メソポーラスシリカの樹脂中の濃度と、当該樹脂の屈折率の関係を示した図である。 本発明の一実施形態に係る凹部の一構成例を示す図である。 本発明の一実施形態に係る凹部の一構成例を示す図である。 本発明の一実施形態に係る凹部の一構成例を示す図である。 本発明の一実施形態に係る凹部の一構成例を示す図である。 図中の(a)は、遮光部形成用金型に遮光部を構成する材料を塗布する工程を示す図であり、図中の(b)は、遮光部形成用金型を基板に押し当てる工程を示す図であり、図中の(c)は、遮光部形成用金型を取り外す工程を示す図であり、図中の(d)は、遮光部の表面に反射部を形成する工程を示す図であり、図中の(e)は、光拡散部を形成する工程を示す図である。 本発明の一実施形態に係る光拡散シートの断面を示す図である。 図中の(a)は、メソポーラスシリカに黒色色素を表面にコーティングする手順を示す図であり、図中の(b)は、黒色色素を着色した黒色メソポーラスシリカ、およびその断面を示す図である。 図中の(a)は、凸部形成用金型に凸部を構成する材料を塗布する工程を示す図であり、図中の(b)は、凸部形成用金型を基板に押し当てる工程を示す図であり、図中の(c)は、凸部形成用金型を取り外す工程を示す図であり、図中の(d)は、凸部の表面に遮光部を形成し、当該遮光部の表面に反射部を形成する工程を示す図であり、図中の(e)は、光拡散部を形成する工程を示す図である。 本発明の一実施形態に係る光拡散シートの断面を示す図である。 図中の(a)は、低屈折率遮光部形成用金型に低屈折率遮光部を構成する材料を塗布する工程を示す図であり、図中の(b)は、低屈折率遮光部形成用金型を基板に押し当てる工程を示す図であり、図中の(c)は、低屈折率遮光部形成用金型を取り外す工程を示す図であり、図中の(d)は、光拡散部を形成する工程を示す図である。 本発明の一実施形態に係る表示装置の概略を示す断面図である。 本発明の一実施形態に係る表示装置を構成する液晶パネルおよび光拡散シートの概略を示す断面図である。 図中の(a)は、本発明の一実施形態に係るテレビジョン受像機の一例を示す斜視図であり、図中の(b)は、本発明の一実施形態に係るパーソナルコンピュータの一例を示す斜視図であり、図中の(c)は、本発明の一実施形態に係る携帯電話の一例を示す斜視図であり、図中の(d)は、本発明の一実施形態に係るデジタルビデオカメラの一例を示す斜視図である。
 〔第一の実施形態〕
 (光拡散シートの概要)
 本実施形態に係る光拡散シート1の概要について、図1を参照して説明する。図1は、光拡散シート1の断面を示す図である。
 光拡散シート1は、液晶表示装置等の透過型表示装置において、表示画面の前面に取り付けて用いられるものである。具体的には、バックライト等から表示画面に照射され、観察者側に出射される光を拡散し、視野角を広げるために用いられる。透過型表示装置に光拡散シート1を設けたとき、光源と光拡散シート1との間に、ルーバーと呼ばれる、ブラインド状に配置された線状のフィルムを配置しても良く、光源を平行光にコリメート、または略コリメートした光を発するものにしても良い。
 図1に示すように、光拡散シート1は、光拡散部2、遮光部3、反射部4、および基板(支持フィルム)6を有している。具体的には、基板6上に複数の遮光部3が形成されており、当該遮光部3は三角形状の断面をしている。複数の遮光部3は、互いに間隔を空けて並列に配置されている。各遮光部3の表面は、反射部4によって覆われており、さらにその上から各遮光部3の隙間を埋めるようにして光拡散部2が形成されている。すなわち、当該光拡散部2は、厚み方向に切断した際に、断面形状が光入射面側(基板6とは反対側)に先細った略V字形状となる凹部5を複数有した構造になっている。
 なお、光拡散シート1を表示装置に設ける際には、バックライト等からの光が入射する側に光拡散部2が位置するようにして配置する。すなわち、光拡散シート1では、バックライト等からの光が光拡散部2に入射され、当該光拡散部2を介して基板6から当該光を出射する。
 本実施形態では、反射部4として、無着色のメソポーラスシリカ(メソポーラスシリカナノ粒子)8を用いていることを特徴としている。メソポーラスシリカ8とは、二酸化ケイ素を材質として、均一で規則的な細孔(メソ孔)を持つ粒子である。当該メソポーラスシリカ8は、直径2~50nm程度の細孔(メソ孔)を有していることを特徴としている。これによれば、メソポーラスシリカ8が多孔質であることから、反射部4の屈折率を低く抑えることが可能である。そのため、光拡散部2との屈折率の差が大きくなり、光拡散シート1に入射した入射光を効率良く全反射させることができる。また、反射部4の屈折率を低く抑えることができるので、光拡散部2として屈折率が高い材料を用いなくとも、反射部4との屈折率の差は大きくなる。したがって、光拡散部2として高価な材料ではなく、汎用的な材料を用いることが可能なので、製造費を削減して光拡散シート1を製造することができる。これについては、以下で詳しく説明する。
 (光拡散シート1の構成)
 以下では、光拡散シート1の詳しい構成について説明する。
 上述したように、基板6上に形成された遮光部3の表面を反射部4が覆っており、その上から光拡散部2が遮光部3の隙間を埋めるようにして形成されている。したがって、光拡散部2に形成される凹部5は、内部に遮光部3が形成されており、当該遮光部3と凹部5との間には反射部4が形成されている構造になる。
 このような光拡散シート1に入射した入射光を出射する工程について、図2を参照して説明する。図2は、光拡散シート1の原理を説明する概略図である。本図では、光の反射を明確にするために、光拡散シート1を簡略して図示している。
 光拡散シート1には、全反射させることができる光の光拡散シート1に対する入射角の限界角度(臨界角度)がある。当該臨界角度を超えない角度で光拡散シート1に入射した光は、図2に示す矢印(A)および(B)のように、光拡散部2の凹部5に達すると、反射部4と光拡散部2との界面において全反射し、拡散して出射される。また、凹部5に入射せずに光拡散部2を透過する入射光は、図2に示す矢印(C)のように、そのまま光拡散部2を介して出射される。
 一方、臨界角度を超える角度で光拡散シート1に入射した光は、図2に示す矢印(D)および(E)のように、反射部4と光拡散部2との界面において全反射せず、凹部5の壁面を透過して遮光部3に吸収される。この凹部5の壁面を透過した光が観察者側に抜けてしまい、観察者に視認されると、正面コントラストが低下し、画像にボケが生じる。しかし、光拡散シート1においては、凹部5から遮光部3に入射する光を、当該遮光部3が吸収することによって、迷光の発生を防ぎ、正面コントラストの低下、および画像のボケの発生を防いでいる。
 以上のように、光拡散シート1では、当該光拡散シート1に入射した光を全反射させる機能部分と、凹部5の壁面を透過した迷光を吸収する機能部分とが分けられている。すなわち、光拡散シート1に入射した光は、反射部4と光拡散部2との界面において全反射される。そのため、従来のように屈折率が小さい材料を遮光部3に用いる必要がなく、光学濃度(OD値)が高い材料を用いても問題ない。その結果、遮光部3のOD値が低いことによる、当該遮光部3に入射した迷光の抜けを防ぐことができる。したがって、正面コントラストの低下、および画像のボケの発生をほぼ確実に抑えることができる。
 なお、全反射させることができる光の光拡散シート1に対する入射角の臨界角度が大きくなると、全反射させることができる光が増え、光の利用効率を上げることができる。当該臨界角度は、光拡散部2の屈折率と、光拡散部2と界面を有する部分の屈折率との差が大きいほど大きくなる。したがって、本実施形態では、光拡散部2の屈折率と、反射部4の屈折率との差が大きいことが好ましい。そこで、上述したように、本実施形態では、反射部4はメソポーラスシリカ8によって構成されている。メソポーラスシリカ8を含んだ樹脂の屈折率に関するグラフを図3に示す。図3は、メソポーラスシリカ8の樹脂中濃度と、当該樹脂の屈折率との関係を示した図である。図3に示すように、メソポーラスシリカ8の樹脂中濃度が大きいほど、当該樹脂の屈折率が小さくなっているのが分かる。したがって、反射部4をメソポーラスシリカ8によって構成すると、当該反射部4の屈折率は小さくなる。これは、一般的に、多孔質な粒子を樹脂中に混合すると、当該樹脂の屈折率が小さくなるためである。シリカ化合物には、メソポーラスシリカ8の他にアモルファスシリカという粒子が存在するが、当該アモルファスシリカの平均粒径は100nmと大きく、表面積は7m/gと小さい。したがって、アモルファスシリカを樹脂中に混合しても、当該樹脂の屈折率を下げることができない。一方、メソポーラスシリカ8の平均粒径は30nm以下であり、表面積は1000m/gと大きい。そのため、メソポーラスシリカ8を反射部4に用いた方が、当該反射部4の屈折率をより低下させることができる。特に、反射部4の厚さは、少なくとも400nmあることが好ましく、当該反射部4中のメソポーラスシリカ8の濃度は、少なくとも10wt%あることが好ましい。上記条件を満たしていれば、反射部4の屈折率を十分に下げることができる。
 このように、本実施形態に係る光拡散シート1では、光拡散部2と界面を有する部分にメソポーラスシリカ8によって構成された反射部4が存在し、当該反射部4の屈折率はメソポーラスシリカ8によって小さくなっている。そのため、光拡散部2の屈折率と、反射部4の屈折率との差が大きくなり、光拡散シート1において全反射させることができる光の光拡散シート1に対する入射角の臨界角度が大きくなる。その結果、当該光拡散シート1が全反射させることができる光が増え、光の利用効率を上げることができる。
 従来では、遮光部の屈折率と光拡散部の屈折率との差を大きくするために、遮光部の屈折率を小さくし、光拡散部の屈折率を大きくする必要があった。そのため、光拡散シートに用いる材料には制約がかかり、一般的ではない特殊な樹脂等を用いなければならないので、材料費が高くなり、製造コストが高くなってしまう。しかしながら、上述したように、反射部4は小さい屈折率を有しているため、本実施形態では光拡散部2として屈折率が高い材料を用いなくとも、反射部4との屈折率の差は大きくなる。したがって、光拡散部2として高価な材料ではなく、汎用的な材料を用いることが可能なので、製造費を削減して光拡散シート1を製造することができる。
 また、従来の光拡散シートでは、光拡散シートに対してほぼ垂直入射に近い光(光拡散シートに対して垂直な方向から±10°の領域からの光)は、効率良く全反射させることができるが、それよりも大きい角度からの光の利用効率は悪かった。しかし、本実施形態に係る光拡散シート1では、光拡散部2の屈折率と、反射部4の屈折率との差が大きいため、光拡散シート1に対して垂直な方向から±10°以上の領域からの光の利用効率を上げることができる。例えば、反射部4の厚さを800nm以上、反射部4中のメソポーラスシリカ8の濃度を10wt%以上にした場合には、光拡散シート1に対して垂直な方向から±10°以上の領域からの光の利用効率を80%上昇させることができる。その結果、全体として、30%の光利用効率の上昇を得ることができる。
 本実施形態では、凹部5と遮光部3との間には反射部4が形成されており、当該反射部4は凹部5の全壁面を覆うようにして形成されている。これによれば、遮光部3が凹部5の壁面に接触することを防ぐことができる。当該遮光部3が凹部5の壁面に接触してしまうと、その接触部分に入射した光は、光拡散部2との界面において全反射されず、遮光部3に吸収されてしまう。したがって、遮光部3と凹部5との間に反射部4が形成されていれば、遮光部3が光拡散部の凹部の壁面に接触することによる光の利用効率の低下を防ぐことができる。しかし、必ずしもこれに限定されるわけではなく、凹部5の壁面の少なくとも一部に反射部4は形成されていれば良い。具体的には、反射部4は、凹部5の壁面の少なくとも10%の領域に形成されていれば良い。このように、凹部5の壁面の少なくとも一部に形成されていれば、光拡散シート1に入射した光を十分に全反射させることができる。
 なお、光拡散シート1に入射した入射光をスネルの法則で全反射させる場合、エバネッセント波と呼ばれる光の滲み出しが発生する。当該光の滲み出しは波長程度のものであるため、反射部4の厚さを波長以上の厚みにしなければ、入射光を全反射させることができない。可視光の最大波長は800nmであるため、反射部4の厚みは800nm以上であることが好ましい。本実施形態に係る光拡散シート1では、反射部4の厚さを容易に800nm以上にすることができる。
 さらに、本実施形態では、遮光部3は凹部5の最深部付近にまで至って形成されている。これより、凹部5の最深部付近に入射した迷光も、遮光部3によってほぼ確実に吸収することができる。
 また、上述したように、メソポーラスシリカ8の樹脂中濃度が大きいほど、当該樹脂の屈折率が小さくなる。すなわち、換言すれば、樹脂中のメソポーラスシリカ8の濃度を調節すれば、当該樹脂の屈折率を調整することができる。したがって、反射部4を構成するメソポーラスシリカ8の濃度を調整すれば、当該反射部4を所望の屈折率にすることができる。
 なお、光拡散部2の凹部5は、それぞれ上記光入射面側が先細った円錐、または四角錐等の略錐体形状であり、V字形状の断面を有していることが好ましい。これによれば、光拡散シート1枚で効率良く光を拡散し、広い視野角を実現することができる。しかし、必ずしもこれに限定されるわけではなく、少なくとも上下左右方向に光が拡散するような形状を有していれば良い。例えば、凹部5の断面における2つの斜辺は互いに対照でなくても良いし、多角形の断面を有する凹部5でも良いし、湾曲した曲面を有する凹部5でも良い。あるいは、凹部5を断面がV字状となる溝とし、当該溝を光拡散部2の光出射面側に並列に形成しても良い。この場合には、2枚の光拡散シート1を用い、それぞれに形成されている溝が互いに直交し合うようにして張り合わせて利用すれば良い。なお、凹部5の形状を考慮して、遮光部3の形状を決定すれば良い。
 なお、本実施形態では、複数の凹部5の深さがすべて等しい場合を例示しているが、本発明の光拡散シート1は、これに限定されるものではない。例えば、複数の凹部5の深さは、それぞれ異なっていても良い。
 また、上述したように、凹部5は、少なくとも上下左右方向に光が拡散するような形状を有していれば良い。そこで、凹部5の構成例を図4~7に示す。これらの図に示す80は、光拡散シート内に入射され、光拡散シート内で拡散された入射光を出射する光出射面である。
 図4に示すように、複数の凹部5は、光拡散シート1aの光出射面80において、一次元方向に、周期的に形成されていても良い。すなわち、複数の凹部5は、それぞれ光拡散シート1aの光出射面80の一辺(縦または横)に沿って、光拡散シート1aの縦方向または横方向の全長に延在する溝状をなしており、並列かつ等間隔に形成されていても良い。
 なお、複数の凹部5の配置は、これに限定されるものではない。例えば、図5に示すように、複数の凹部5は、それぞれ光拡散シート1bの光出射面80において、一次元方向に、周期性を乱して形成されていても良い。すなわち、複数の凹部5は、光拡散シート1bの光出射面80の一辺(縦または横)に沿って、光拡散シート1bの縦方向または横方向の全長に延在する溝状をなしており、並列かつランダムな間隔で形成されていても良い。
 このようにすることによって、複数の凹部5がランダムに配置され、光拡散シート1bと、該光拡散シート1bが適用される表示装置に既存の周期構造との間で発生するモアレを抑制することができる。さらに、光拡散シート1bを透過する光が周期的な凹部5等の構造物によって引き起こされる干渉を抑制することができる。
 また、図6に示すように、複数の凹部5は、光拡散シート1cの光出射面80において二次元方向に、周期的に形成されていても良い。すなわち、複数の凹部5は、それぞれ略錐体状をなしており、光出射面80側から見た場合に、各凹部5が点状(ドット状)に配置されていても良い。そして、複数の略錐体状の凹部5が、光拡散シート1cの光出射面80において、縦方向および横方向にマトリクス状(碁盤目状)をなし、なおかつ等間隔に形成されていても良い。
 さらに、複数の凹部5の配置は、これに限定されるものではなく、図7に示すように、光拡散シート1dの光出射面80において、二次元方向に、周期性を乱して形成されていても良い。すなわち、複数の凹部5は、それぞれ略錐体状をなしており、光出射面80側から見た場合に、各凹部5が点状(ドット状)に配置されていても良い。そして、複数の略錐体状の凹部5が、光拡散シート1dの光出射面80において、縦方向および横方向にランダムな間隔で形成されていても良い。この場合、複数の凹部5は、マトリクス状をなすことなく形成されている。
 このようにすることによって、複数の凹部5がランダムに配置され、光拡散シート1dと、該光拡散シート1dが適用される表示装置に既存の周期構造との間で発生するモアレを抑制することができる。さらに、光拡散シート1dを透過する光が周期的な凹部5等の構造物によって引き起こされる干渉を抑制することができる。
 (光拡散シート1の各部材)
 以下では、光拡散シート1を構成する各部材について説明する。
 光拡散部2は、当該光拡散部2の光入射面側から入射した光を、光拡散部2の光出射面側の基板6側まで透過させ、出射する。したがって、光拡散部2は、入射光を透過させることが可能な材料により形成されており、透過率を考慮すると、透明な樹脂により形成されていることが好ましい。また、光拡散部2を構成する材料は、紫外線硬化性を有する材料であることがより好ましい。これによれば、光拡散シート1を形成する際の作業を、より簡単にすることができる。なお、上述したように、光拡散部2として屈折率が高い材料を用いなくとも、反射部4との屈折率の差は大きくなる。したがって、このような光拡散部2を構成する材料として、中程度の屈折率を有する材料を用いれば良く、例えば、Epo-Tek(登録商標)、エポキシアクリレート、塩化ビニル系樹脂、スチレン系樹脂、ウレタン系樹脂、ポリエステル系樹脂、アクリル系樹脂、またはポリカーボネート系樹脂等の透明樹脂等が挙げられる。以上では具体例を示したが、光拡散部2を構成する材料は、必ずしもこれらに限定されるわけではない。
 遮光部3としては、一般的にブラックマトリックス用に用いられるカーボンブラック等の顔料を含有したウレタン樹脂等の樹脂類が挙げられる。他には、低反射クロム、低反射二層ニッケル合金、またはモリブデン(Mo)/酸化モリブデン(MoOx)の積層膜等の金属類、または上記材料のいずれかと樹脂とを組み合わせたもの等が適用できる。上述したように、従来のように屈折率が小さい材料を遮光部3に用いる必要がないため、顔料を含有した樹脂を遮光部3として用いる場合には、高屈折率を有する樹脂も使用可能である。また、OD値が高い材料を用いても問題ない。
 基板6としては、表示装置の光(映像光)が当該部基板6から出射できるように、基板6には透明材料を用いる。このような材料の例として、ポリエチレンテレフタレート、ポリカーボネート、ポリエステル、アクリル、ポリオレフィン、ポリプロピレン、またはビニル等のベースフィルム材料等が挙げられる。しかし、必ずしもこれに限定されるわけではない。
 (光拡散シート1の製造方法)
 以下では、光拡散シート1の製造方法について、図8を参照して説明する。図8中の(a)は、遮光部形成用金型7に遮光部3を構成する材料を塗布する工程を示す図である。図4中の(b)は、遮光部形成用金型7を基板6に押し当てる工程を示す図である。図8中の(c)は、遮光部形成用金型7を取り外す工程を示す図である。図8中の(d)は、遮光部3の表面に反射部4を形成する工程を示す図である。図8中の(e)は、光拡散部2を形成する工程を示す図である。
 本実施形態に係る光拡散シート1の製造方法として、例えば、特開2009-63849号公報に開示されている製造方法を利用しても良い。具体的には、まず、遮光部3を形成する。図8中の(a)に示すように、遮光部3とは逆形状の凹部を複数有する遮光部形成用金型7に、遮光部3を構成する材料を塗布する。具体的には、カーボンブラックを5wt%混合した型成型用の2液混合ウレタン樹脂溶液を塗布する。次に、図84中の(b)に示すように、遮光部3を構成する材料が塗布された遮光部形成用金型7上に、基板6として、正方形状の一辺が30mmのアクリル樹脂基板を押し当てる。基板6を上部から加圧した状態で、遮光部3を硬化させる。この際、2液混合ウレタン樹脂溶液を用いる場合には、2種類の溶液を混合させて、数10分で反応硬化するため、2種類の溶液を混合後にすばやく遮光部形成用金型7上に塗布する。遮光部3を十分硬化させた後に、遮光部形成用金型7を取り除くと、図8中の(c)に示すように、基板6上に複数の遮光部3が並列して形成される。
 次に、反射部4を形成する。図8中の(d)に示すように、反射部4を構成する材料を遮光部3上に塗布する。具体的には、メソポーラスシリカ8とEpo-Tek(登録商標)とを撹拌混合したものをスプレー法によって1回塗布する。その後、紫外線を照射することによって反射部4を硬化する。
 最後に、光拡散部2を形成する。図8中の(e)に示すように、反射部4が形成された遮光部3上に、光拡散部2を形成する。具体的には、Epo-Tek(登録商標)を高さ100μm程度になるようにスプレー法によって、遮光部3の隙間を埋めるようにして塗布する。その後、紫外線を照射することによって光拡散部2を硬化する。このようにして、光拡散シート1は形成される。
 以上では、具体例を用いて光拡散シート1の製造方法を説明したが、本実施形態に係る光拡散シート1の製造方法は必ずしもこれに限定されるものではない。例えば、スプレー法以外にも、ディップ方式、またはスピンコート法等を用いて光拡散シート1を製造することも可能である。
 なお、以上の説明では、光拡散部2を構成する材料と同一の材料に、メソポーラスシリカ8を混合したもので反射部4を形成している。これによれば、反射部4を形成する際に用いた材料を、光拡散部2を形成するときにそのまま用いることができるので、光拡散シート1を形成するために用いる材料を削減することができる。しかし、必ずしもこれに限定されるわけではなく、メソポーラスシリカ8を光拡散部2とは別の材料に混合したもので反射部4を形成しても良い。当該別の材料として、例えば、所定の屈折率を有し、電離放射線硬化作用を有する透明な紫外線硬化型樹脂、または電子線硬化型樹脂等を用いることができる。具体的には、エポキシアクリレート系、ウレタンアクリレート系、ポリエーテルアクリレート系、ポリエステルアクリレート系、またはポリチオール系等の反応性オリゴマー、ビニルピロリドン、2-エチルヘキシルアクリレート、β-ヒドロキシアクリレート、またはテトラヒドロフルフリルアクリテート等の反応性モノマー等が適宜選択される。これらの樹脂は、電離放射線によって直接硬化するものもあるが、触媒または開始剤(反応を励起させる物質)を介して、硬化反応を始めるものが一般的である。
 例えば、波長300~400nmの紫外線を利用して硬化反応起こすためには、紫外線域での反応を励起させる光開始剤を数%混合する必要がある。当該光開始剤には、ケトン系またはアセトフェノン系のものがあり、例えば、サンドレー1000、Darocure1163、Darocure1173、Irgacure183、またはIrgacure651等が適用できる。このように、硬化する際に用いる電離放射線の種類(波長特性)等に応じて適当な光開始剤を選択する。
 〔第二の実施形態〕
 (光拡散シート11の構成)
 第一の実施形態では、反射部4をメソポーラスシリカ8によって形成しているが、反射部4以外にも遮光部3をメソポーラスシリカ8によって形成しても良い。これによれば、光拡散シート1を製造するコストを抑えることができる。これについて、図9を参照して詳しく説明する。図9は、光拡散シート11の断面を示す図である。
 図9に示すように、光拡散部12の凹部15の壁面を覆うようにして反射部14は形成されており、当該反射部14はメソポーラスシリカ18によって構成されている。さらに、反射部14の表面を覆うようにして遮光部13が形成されている。具体的には、遮光部13は、黒色の色素を表面にコーティングされたメソポーラスシリカ18(黒色メソポーラスシリカ20)によって構成されている。メソポーラスシリカ18のコーティング法の手順を図10に示す。図10中の(a)は、メソポーラスシリカ18に黒色色素19を表面にコーティングする手順を示す図である。図10中の(b)は、黒色色素19を着色した黒色メソポーラスシリカ20、およびその断面を示す図である。
 図10中の(a)に示すように、まずメソポーラスシリカ18を黒色色素19が入れられた容器の中に混入する。そして、物理吸着法または化学吸着法等によって黒色色素19をメソポーラスシリカ18の表面にコーティングする。この際、黒色色素19としては、例えば、カーボンブラック、またはアジン系化合物等を利用することができる。カーボンブラックを用いる場合には物理吸着法を用い、アジン系化合物を用いる場合には化学吸着法のカチオン交換法を用いるのが好ましい。このようにして形成した黒色メソポーラスシリカ20は、図10中の(b)に示すように、表面は黒色にコーティングされているが、内部はメソポーラスシリカ18のままである。
 以上の構成によれば、反射部14を構成するメソポーラスシリカ18によって、当該反射部14の屈折率を低く抑えることが可能である。そのため、光拡散部12との屈折率の差が大きくなり、光拡散シート11に入射した入射光を効率良く全反射させることができる。また、凹部15の壁面を透過し、遮光部13に入射する光は、当該遮光部13によって吸収されるので、迷光の発生を防ぐことができる。このように、遮光部13を黒色メソポーラスシリカ20によって構成した光拡散シート11では、第一の実施形態に係る光拡散シート1と同様の効果を得ることができる。
 さらに、遮光部13は、反射部14の壁面を覆うだけでも、当該遮光部13に入射した光を十分に吸収することができる。したがって、遮光部13は、反射部14の壁面を覆うようにして形成すれば良いので、黒色メソポーラスシリカ20の使用量を少なく抑えることができる。そのため、光拡散シート11の材料費を抑えることができ、製造コストを下げることができる。なお、遮光部13と基板16とに囲まれる空間は、樹脂等を埋めて凸部50を形成しても良いし、黒色メソポーラスシリカ20を埋めても良いし、空隙のままでも良い。凸部50を設ける場合には、凸部50として紫外線硬化性を有する材料を用いることが好ましい。これによれば、光拡散シート11を形成する際の作業を、より簡単にすることができる。このような材料としては、例えば、電離放射線硬化作用を有するエポキシアクリレート等が適用可能である。
 (光拡散シート11の製造方法)
 以下では、光拡散シート11の製造方法について、図7を参照して説明する。図11中の(a)は、凸部形成用金型17に凸部50を構成する材料を塗布する工程を示す図である。図11中の(b)は、凸部形成用金型17を基板16に押し当てる工程を示す図である。図11中の(c)は、凸部形成用金型17を取り外す工程を示す図である。図11中の(d)は、凸部50の表面に遮光部13を形成し、当該遮光部13の表面に反射部14を形成する工程を示す図である。図11中の(e)は、光拡散部12を形成する工程を示す図である。
 本実施形態においても、光拡散シート11の製造方法として、例えば、特開2009-63849号公報に開示されている製造方法を利用することができる。その具体的な方法については、第一の実施形態において示した方法と同様であるため、ここでは言及しない。以下では、光拡散シート11の製造方法の概略的な流れを説明する。
 まず、遮光部13と基板16とによって囲まれる空間を埋める凸部50を形成する。図11中の(a)に示すように、当該凸部50とは逆形状の凹部を複数有する凸部形成用金型17に、凸部50を構成する材料を塗布する。次に、図11中の(b)に示すように、凸部50を構成する材料が塗布された凸部形成用金型17上に、基板16を押し当て、当該基板16を上部から加圧した状態で凸部50を硬化させる。凸部50を十分硬化させた後に、凸部形成用金型17を取り除くと、図11中の(c)に示すように、基板16上に複数の凸部50が並列して形成される。
 次に、遮光部13を形成する。遮光部13を構成する材料を凸部50上にスプレー法によって塗布する。その後、紫外線を照射することによって、遮光部13を硬化する。
 続いて、反射部14を形成する。反射部14を構成する材料を遮光部13上にスプレー法によって塗布する。その後、紫外線を照射することによって、反射部14を硬化する。これによって、図11中の(d)に示すように、遮光部13と反射部14とが凸部50上に積層されたものが形成される。
 最後に、光拡散部12を形成する。図11中の(e)に示すように、反射部14が形成された凸部50上に、光拡散部12を構成する材料をスプレー法によって、凸部50の隙間を埋めるようにして塗布する。その後、紫外線を照射することによって光拡散部12を硬化する。このようにして、光拡散シート11は形成される。
 以上では、スプレー法によって光拡散シート11を製造する方法を説明したが、本実施形態に係る光拡散シート11の製造方法は必ずしもこれに限定されるものではない。例えば、スプレー法以外にも、ディップ方式、またはスピンコート法等を用いて光拡散シート1を製造することも可能である。
 また、以上では、光拡散シート11が凸部50を有する場合の製造方法を説明したが、上述したように、遮光部13と基板16とによって囲まれる空間には、黒色メソポーラスシリカ20を埋めても良いし、空隙のままでも良い。例えば、遮光部13と基板16とによって囲まれる空間に黒色メソポーラスシリカ20を埋める場合には、凸部50を形成する方法によって、遮光部13を形成すれば良い。これによって、光拡散シート11を形成する工程を簡素化することができる。
 一方、遮光部13と基板16とによって囲まれる空間を空隙のままにする場合には、始めに光拡散部12から形成していけば良い。具体的には、光拡散部12が有する凹部15とは逆形状の凸部を複数有する金型を、光拡散部12を構成する材料に押し当てて凹部15を有する光拡散部12を形成する。そして、光拡散部12に形成された凹部15の内部に、反射部14を構成する材料を当該凹部15の壁面を覆うようにして塗布し、さらに当該反射部14の表面を覆うようにして遮光部13を構成する材料を塗布する。最後に、光拡散部12の凹部15が形成されている側に基板16を形成する。これによって、遮光部13と基板16とによって囲まれる空間に空隙を設けることができる。この方法によれば、当該空間に何も形成する必要がないため、より材料費を削減することができる。
 なお、反射部14を形成する際に、光拡散部12を構成する材料と同一の材料にメソポーラスシリカ18を混合したもので反射部14を形成しても良い。これによれば、反射部14を形成する際に用いた材料を、光拡散部12を形成するときにそのまま用いることができるので、光拡散シート11を形成するために用いる材料を削減することができる。しかし、必ずしもこれに限定されるわけではなく、光拡散部2とは別の材料に混合したもので反射部4を形成しても良い。当該別の材料とは、例えば、第一の実施形態において例示した紫外線硬化型樹脂、または電子線硬化型樹脂等である。遮光部13を形成する場合についても、同様である。
 〔第三の実施形態〕
 (光拡散シート21の構成)
 第二の実施形態では、遮光部13として黒色メソポーラスシリカ20を用いたが、光を吸収する粒子として、ラブコロール(大日精化工業株式会社製)が一般的に知られている。ラブコロールは、アクリルコポリマーを主成分としており、顔料によって着色することが可能な粒子である。このラブコロールに、カーボンブラック等の顔料を着色したものは光吸収性を示す。したがって、メソポーラスシリカ18、および黒色メソポーラスシリカ20の代わりにラブコロールを適用できるように考えられるが、当該ラブコロールを樹脂中に混合すると、当該樹脂の屈折率が高くなってしまう。すなわち、反射部14の屈折率と、光拡散部12の屈折率との差が小さくなってしまい、光拡散シート11に入射した入射光を効率良く全反射させることができない。
 一方、上述したように、メソポーラスシリカ18を樹脂中に混合すると、当該樹脂の屈折率は低下する。また、表面を黒色色素19でコーティングした黒色メソポーラスシリカ20を樹脂中に混合しても、当該樹脂の屈折率は低下する。これは、黒色メソポーラスシリカ20の表面のみが黒色色素19によってコーティングされているため、樹脂の屈折率には影響を及ぼさない。そこで、黒色メソポーラスシリカ20を樹脂中に混合しても、当該樹脂の屈折率は低下することから、黒色メソポーラスシリカ20を用いて遮光部13および反射部14を形成しても良い。すなわち、黒色メソポーラスシリカ20に遮光部13および反射部14を兼ねさせても良い。これについて、図12を参照して説明する。図12は、光拡散シート21の断面を示す図である。
 図12に示すように、光拡散部22の凹部25の内部には、黒色メソポーラスシリカ30が充填されている。具体的には、第二の実施形態と同様にして黒色色素19をコーティングした黒色メソポーラスシリカ30を凹部25の内部に充填して低屈折率遮光部23を形成する。上述したように、黒色メソポーラスシリカ30は、樹脂中に混合しても当該樹脂の屈折率を小さくすることができるので、反射部としての機能を有している。さらに、黒色メソポーラスシリカ30は、光を吸収することができるので、遮光部としての機能も有している。したがって、低屈折率遮光部23は遮光部と反射部とを兼ねることができる。以上の構成によれば、低屈折率遮光部23を構成する黒色メソポーラスシリカ30によって、当該低屈折率遮光部23の屈折率を低く抑えることが可能である。そのため、光拡散部22との屈折率の差が大きくなり、光拡散シート21に入射した入射光を効率良く全反射させることができる。また、凹部25の壁面を透過し、低屈折率遮光部23に入射する光は、当該低屈折率遮光部23によって吸収されるので、迷光の発生を防ぐことができる。このように、凹部25の内部を黒色メソポーラスシリカ30によって充填して低屈折率遮光部23を形成した光拡散シート21では、第一の実施形態に係る光拡散シート1と同様の効果を得ることができる。
 さらに、黒色メソポーラスシリカ30の表面積は、1000m/gと大きいため、当該黒色メソポーラスシリカ30によって形成された低屈折率遮光部23のOD値は高くなる。これより、黒色メソポーラスシリカ30によって構成される低屈折率遮光部23の光の吸収性が良くなるため、低屈折率遮光部23に入射した迷光をほぼ確実に吸収することができ、なおかつ当該迷光が抜けるのを防ぐことができる。
 また、黒色メソポーラスシリカ30の平均粒径は30nm以下と小さいため、凹部25をほぼ隙間なく黒色メソポーラスシリカ30によって埋めることができる。したがって、光拡散シート1の凹部25の大きさが小さい場合、または凹部25の開口部が小さい場合等でも黒色メソポーラスシリカ30であれば問題なく対応することができる。また、モスアイ形成技術を利用した光拡散シート1にも対応することもできる。
 (光拡散シート21の製造方法)
 以下では、光拡散シート21の製造方法について、図9を参照して説明する。図13中の(a)は、低屈折率遮光部形成用金型27に低屈折率遮光部23を構成する材料を塗布する工程を示す図である。図13中の(b)は、低屈折率遮光部形成用金型27を基板26に押し当てる工程を示す図である。図13中の(c)は、低屈折率遮光部形成用金型27を取り外す工程を示す図である。図13中の(d)は、光拡散部22を形成する工程を示す図である。
 本実施形態においても、光拡散シート21の製造方法として、例えば、特開2009-63849号公報に開示されている製造方法を利用することができる。その具体的な方法については、第一の実施形態において示した方法と同様であるため、ここでは言及しない。以下では、光拡散シート21の製造方法の概略的な流れを説明する。
 まず、低屈折率遮光部23を形成する。図13中の(a)に示すように、当該低屈折率遮光部23とは逆形状の凹部を複数有する低屈折率遮光部形成用金型27に、低屈折率遮光部23を構成する材料を塗布する。次に、図13中の(b)に示すように、低屈折率遮光部23を構成する材料が塗布された低屈折率遮光部形成用金型27上に、基板26を押し当て、当該基板26を上部から加圧した状態で低屈折率遮光部23を硬化させる。低屈折率遮光部23を十分硬化させた後に、低屈折率遮光部形成用金型27を取り除くと、図13中の(c)に示すように、基板26上に複数の低屈折率遮光部23が並列して形成される。
 最後に図13中の(d)に示すように、低屈折率遮光部23上に、光拡散部22を構成する材料をスプレー法によって、低屈折率遮光部23の隙間を埋めるようにして塗布する。その後、紫外線を照射することによって光拡散部22を硬化する。このようにして、光拡散シート21は形成される。
 以上では、スプレー法によって光拡散シート21を製造する方法を説明したが、本実施形態に係る光拡散シート21の製造方法は必ずしもこれに限定されるものではない。例えば、スプレー法以外にも、ディップ方式、またはスピンコート法等を用いて光拡散シート21を製造することも可能である。
 なお、低屈折率遮光部23を形成する際に、光拡散部22を構成する材料と同一の材料にメソポーラスシリカ28を混合したもので低屈折率遮光部23を形成しても良い。これによれば、低屈折率遮光部23を形成する際に用いた材料を、光拡散部22を形成するときにそのまま用いることができるので、光拡散シート22を形成するために用いる材料を削減することができる。しかし、必ずしもこれに限定されるわけではなく、光拡散部2とは別の材料に混合したもので反射部4を形成しても良い。当該別の材料とは、例えば、第一の実施形態において例示した紫外線硬化型樹脂、または電子線硬化型樹脂等である。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 例えば、本発明に係る光拡散シートは、表示装置に適用することができる。以下では、本発明に係る表示装置について、図14および15を参照して説明する。図14は、本発明の一実施形態に係る表示装置10の概略を示す断面図である。図15は、本発明の一実施形態に係る表示装置10を構成する液晶パネル24および光拡散シート81の概略を示す断面図である。なお、図に示す9は、バックライトであり、29は、筐体である。
 図14に示すように、本実施形態に係る表示装置10は、液晶パネル24と液晶パネル24の表示画面45に取り付けられた光拡散シート81と、液晶パネル24とは反対側の面46(以下、他方の面と称す)側に配置されたバックライト9とから概略構成されている。
 図15に示すように、液晶パネル24は、第1の偏光板33a、第1の位相差板(図示せず)、第1のガラス基板47a、液晶層37、カラーフィルタ(32R,32G,32B)、第2のガラス基板47b、第2の位相差板(図示せず)、および第2の偏光板33bを備えており、これらが順に積層された構造をなしている。そして、粘着層(図示せず)を介して、液晶パネル24の表示画面45に光拡散シート81が取り付けられている。
 光拡散シート81としては、第1の実施形態の光拡散シート1と同様のものが用いられる。すなわち、光拡散シート81は、他方の面46から入射された入射光を透過または全反射させる壁面を有し、他方の面46とは反対側の面に開口し、内部に遮光部を備えた複数の凹部を有している。
 また、液晶パネル24とバックライト9との間には、ルーバーと呼ばれるブラインド状に配置された線状のフィルムを配置しても良い。この線状のフィルムにより、バックライト9から出射された光がコリメートされ、そのコリメート光(平行光)が、液晶パネル24を照射する。あるいは、その線状のフィルムにより、バックライト9から出射された光が略コリメートされ、その略コリメート光(略平行光)が、液晶パネル24を照射する。
 上述した表示装置10によれば、液晶パネル24の表示画面45に光拡散シート1が取り付けられているので、該光拡散シート1によって、バックライト9から液晶パネル24に照射され、観察者側(光拡散シート1において、他方の面46とは反対側の面)に出射される光を拡散し、視野角を広げることができる。すなわち、表示装置10は、広い視野角を実現しつつ、光の利用効率が高く、迷光の発生を抑え、高い視認性を有するものとなる。
 なお、以上では、光拡散シート81としては、第1の実施形態の光拡散シート1と同様のものを用いた場合を示したが、本発明に係る表示装置10はこれに限定されるものではない。例えば、光拡散シート81としては、上述した光拡散シート1a~1d,11,21を適用することができる。本発明においては、液晶表示装置等の表示装置において使用し、その表示装置の視野角を拡大する光拡散シートを利用することができる。
 また、本発明に係る光拡散シートを備えた表示装置10は、各種の電子機器に適用することができる。以下では、本発明に係る表示装置10を備えた電子機器について、図16を参照して説明する。図16中の(a)は、本発明の一実施形態に係るテレビジョン受像機40の一例を示す斜視図である。図16中の(b)は、本発明の一実施形態に係るパーソナルコンピュータ50の一例を示す斜視図である。図16中の(c)は、本発明の一実施形態に係る携帯電話60の一例を示す斜視図である。図16中の(d)は、本発明の一実施形態に係るデジタルビデオカメラ70の一例を示す斜視図である。
 図16中の(a)に示すように、本発明に係る表示装置10は、テレビジョン受像機40に搭載することができる。図中の41は、筐体であり、42は、スピーカ部であり、43は、ビデオ入力端子であり、44は、支持台である。
 図16中の(b)に示すように、本発明に係る表示装置10は、パーソナルコンピュータ50に搭載することができる。図中の51は、キーボードであり、52は、外部接続ポートであり、53は、ポインティングマウスであり、54は、本体であり、55は、筐体である。
 図16中の(c)に示すように、本発明に係る表示装置10は、携帯電話60に搭載することができる。図中の61は、操作キーであり、62は、音声入力部であり、63は、音声出力部であり、64は、本体であり、65は、筐体であり、66は、アンテナである。
 図16中の(d)に示すように、本発明に係る表示装置10は、デジタルビデオカメラ70に搭載することができる。図中の71は、受像部であり、72は、リモコン受信部であり、73は、音声入力部であり、74は、接眼部であり、75は、バッテリであり、76および77は、操作キーであり、78は、外部接続ポートであり、79は、本体である。
 〔実施形態の総括〕
 以上のように、本発明に係る光拡散シートにおいては、上記凹部ごとに、上記反射部は、無着色のメソポーラスシリカナノ粒子によって構成されていることを特徴としている。
 上記構成によれば、遮光部が光拡散部の凹部の壁面に接触することによる光の利用効率の低下を防ぐことができる。
 また、本発明に係る光拡散シートにおいては、上記凹部ごとに、上記反射部は、無着色のメソポーラスシリカナノ粒子によって構成されていることを特徴としている。
 上記構成によれば、無着色のメソポーラスシリカナノ粒子によって反射部を形成している。これより、反射部の屈折率を低く抑えることが可能であるので、光拡散部との屈折率の差が大きくなり、光拡散シートに入射した入射光を効率良く全反射させることができる。
 また、本発明に係る光拡散シートにおいては、上記凹部ごとに、上記遮光部は、黒色色素を表面にコーティングされたメソポーラスシリカナノ粒子によって構成されていることを特徴としている。
 上記構成によれば、黒色色素を表面にコーティングしたメソポーラスシリカナノ粒子によって遮光部を形成している。これより、凹部の壁面を透過し、遮光部に入射する光は、当該遮光部によって吸収されるので、迷光の発生を防ぐことができる。
 また、遮光部は反射部を覆うだけでも、当該遮光部に入射した光を十分に吸収することができる。したがって、遮光部は反射部を覆うように形成すれば良いので、表面を黒色色素によってコーティングしたメソポーラスシリカナノ粒子の使用量を少なく抑えることができる。そのため、光拡散シートに使用する材料緒を削減することができ、製造コストを下げることができる。
 また、本発明に係る光拡散シートにおいては、上記凹部ごとに、上記反射部は、黒色色素を表面にコーティングされたメソポーラスシリカナノ粒子によって構成され、上記凹部ごとに、上記遮光部は、黒色色素を表面にコーティングされたメソポーラスシリカナノ粒子によって構成されていることを特徴としている。
 上記構成によれば、反射部および遮光部共に黒色色素を表面にコーティングしたメソポーラスシリカナノ粒子によって形成している。これより、黒色色素を表面にコーティングしたメソポーラスシリカナノ粒子によって、反射部の屈折率を低く抑えることが可能である。さらには、そのため、黒色色素を表面にコーティングしたメソポーラスシリカナノ粒子によって、遮光部に入射した光を吸収することができる。すなわち、黒色色素を表面にコーティングしたメソポーラスシリカナノ粒子によって、反射部と遮光部とを兼ねることができる。その結果、光拡散シートに使用する材料を削減することができ、当該光拡散シートの製造コストを下げることができる。
 また、本発明に係る光拡散シートにおいては、上記凹部ごとに、当該凹部の最深部付近に至るまで上記遮光部が形成されていることを特徴としている。
 上記構成によれば、光拡散部の凹部の最深部付近に入射した迷光等の光をほぼ確実に吸収することができる。
 また、本発明に係る光拡散シートにおいては、上記光拡散部の厚み方向に切断した上記凹部の断面形状は、上記光入射面側が先細った略V字形状であることを特徴としている。
 また、本発明に係る光拡散シートにおいては、上記複数の凹部は、それぞれ上記光入射面側が先細った略錐体形状であることを特徴としている。
 上記構成によれば、上下左右方向に入射光を拡散することができ、光拡散シート1枚で効率良く光を拡散し、広い視野角を実現することができる。
 また、本発明に係る光拡散シートにおいては、上記黒色色素は、カーボンブラックであることを特徴としている。
 また、本発明に係る光拡散シートにおいては、上記黒色色素は、アジン系化合物であることを特徴としている。
 上記構成によれば、メソポーラスシリカナノ粒子の表面を黒色色素でコーティングすることによって、光を効率良く吸収することができる。
 また、本発明に係る光拡散シートにおいては、複数の上記凹部は、それぞれ上記光出射面において、一次元方向に、周期的に形成されていることを特徴としている。
 また、本発明に係る光拡散シートにおいては、複数の上記凹部は、それぞれ上記光出射面において、一次元方向に、周期的に形成されていることを特徴としている。
 上記の構成によれば、上下左右方向に入射光を拡散することができ、光拡散シート1枚で効率良く光を拡散し、広い視野角を実現することができる。
 また、本発明に係る光拡散シートにおいては、複数の上記凹部は、それぞれ上記光出射面において、二次元方向に、周期性を乱して形成されていることを特徴としている。
 また、本発明に係る光拡散シートにおいては、複数の上記凹部は、それぞれ上記光出射面において、二次元方向に、周期性を乱して形成されていることを特徴としている。
 上記の構成によれば、複数の凹部がランダムに配置され、光拡散シートと、該光拡散シートが適用される表示装置に既存の周期構造との間で発生するモアレを抑制することができる。さらに、光拡散シートを透過する光が周期的な凹部等の構造物によって引き起こされる干渉を抑制することができる。
 また、本発明に係る光拡散シートの製造方法においては、上記反射部形成工程において、上記遮光部ごとに、無着色のメソポーラスシリカナノ粒子を用いて上記反射部を形成することを特徴としている。
 また、本発明に係る光拡散シートの製造方法においては、上記遮光部形成工程において、黒色色素を表面にコーティングしたメソポーラスシリカナノ粒子によって上記複数の遮光部を形成することを特徴としている。
 また、本発明に係る光拡散シートの製造方法においては、上記遮光部形成工程において、黒色色素を表面にコーティングしたメソポーラスシリカナノ粒子によって上記複数の遮光部を形成し、上記反射部形成工程において、上記遮光部ごとに、黒色色素を表面にコーティングしたメソポーラスシリカナノ粒子によって上記反射部を形成することを特徴としている。
 上記方法によれば、正面コントラストの低下、および画像のボケの発生を抑え、高い視認性を実現する光拡散シートを提供することができる。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。
 本発明は、液晶表示装置等の表示装置において使用し、前記表示装置の視野角を拡大する光拡散シートに利用することができる。
1,1a~1d,11,21 光拡散シート
2,12,22 光拡散部
3,13 遮光部
4,14 反射部
5,15,25 凹部
6,16,26 基板
7,17 遮光部形成用金型
8,18,28 メソポーラスシリカ
19 黒色色素
20,30 黒色メソポーラスシリカ
23 低屈折率遮光部
27 低屈折率遮光部形成用金型

Claims (19)

  1.  光入射面から入射した入射光を拡散させて光出射面から出射する光拡散部を備えた光拡散シートであって、
     上記光拡散部における上記光出射面側に設けられている支持フィルムと、
     上記光拡散部の上記光出射面側の内部に形成され、上記入射光を透過または全反射させる壁面を有する複数の凹部と、
     上記凹部ごとに、当該凹部の壁面の少なくとも一部に形成され、メソポーラスシリカナノ粒子によって構成された反射部と、
     上記凹部ごとに、上記壁面によって囲まれる空間、および上記反射部によって囲まれる空間の内部に形成され、上記支持フィルムによって支持された遮光部とを備えていることを特徴とする光拡散シート。
  2.  上記凹部ごとに、上記反射部は、当該凹部の全壁面を覆うように形成されていることを特徴とする請求項1に記載の光拡散シート。
  3.  上記凹部ごとに、上記反射部は、無着色のメソポーラスシリカナノ粒子によって構成されていることを特徴とする請求項1または2に記載の光拡散シート。
  4.  上記凹部ごとに、上記遮光部は、黒色色素を表面にコーティングされたメソポーラスシリカナノ粒子によって構成されていることを特徴とする請求項3に記載の光拡散シート。
  5.  上記凹部ごとに、上記反射部は、黒色色素を表面にコーティングされたメソポーラスシリカナノ粒子によって構成され、
     上記凹部ごとに、上記遮光部は、黒色色素を表面にコーティングされたメソポーラスシリカナノ粒子によって構成されていることを特徴とする請求項1または2に記載の光拡散シート。
  6.  上記凹部ごとに、当該凹部の最深部付近に至るまで上記遮光部が形成されていることを特徴とする請求項3~5のいずれか1項に記載の光拡散シート。
  7.  上記光拡散部の厚み方向に切断した上記凹部の断面形状は、上記光入射面側が先細った略V字形状であることを特徴とする請求項1~6のいずれか1項に記載の光拡散シート。
  8.  上記複数の凹部は、それぞれ上記光入射面側が先細った略錐体形状であることを特徴とする請求項7に記載の光拡散シート。
  9.  上記黒色色素は、カーボンブラックであることを特徴とする請求項4または5に記載の光拡散シート。
  10.  上記黒色色素は、アジン系化合物であることを特徴とする請求項4または5に記載の光拡散シート。
  11.  複数の上記凹部は、それぞれ上記光出射面において、一次元方向に、周期的に形成されていることを特徴とする請求項1~10のいずれか1項に記載の光拡散シート。
  12.  複数の上記凹部は、それぞれ上記光出射面において、一次元方向に、周期性を乱して形成されていることを特徴とする請求項1~10のいずれか1項に記載の光拡散シート。
  13.  複数の上記凹部は、それぞれ上記光出射面において、二次元方向に、周期的に形成されていることを特徴とする請求項7に記載の光拡散シート。
  14.  複数の上記凹部は、それぞれ上記光出射面において、二次元方向に、周期性を乱して形成されていることを特徴とする請求項7に記載の光拡散シート。
  15.  請求項1~14のいずれか1項に記載の光拡散シートを備えていることを特徴とする透過型表示装置。
  16.  光入射面から入射した入射光を拡散させて光出射面から出射する光拡散部を備えた光拡散シートの製造方法であって、
     支持フィルム上に複数の遮光部を形成する遮光部形成工程と、
     上記遮光部ごとに、当該遮光部の表面の少なくとも一部にメソポーラスシリカナノ粒子を塗布して反射部を形成する反射部形成工程と、
     上記反射部形成工程の後に、上記支持フィルムの上記複数の遮光部が形成されている側に、上記反射部の表面を覆うようにして光拡散部を形成する光拡散部形成工程とを備えていることを特徴とする光拡散シートの製造方法。
  17. 上記反射部形成工程において、上記遮光部ごとに、無着色のメソポーラスシリカナノ粒子を用いて上記反射部を形成することを特徴とする請求項16に記載の光拡散シートの製造方法。
  18.  上記遮光部形成工程において、黒色色素を表面にコーティングしたメソポーラスシリカナノ粒子によって上記複数の遮光部を形成することを特徴とする請求項17に記載の光拡散シートの製造方法。
  19.  上記遮光部形成工程において、黒色色素を表面にコーティングしたメソポーラスシリカナノ粒子によって上記複数の遮光部を形成し、
     上記反射部形成工程において、上記遮光部ごとに、黒色色素を表面にコーティングしたメソポーラスシリカナノ粒子によって上記反射部を形成することを特徴とする請求項16に記載の光拡散シートの製造方法。
PCT/JP2010/068963 2010-01-14 2010-10-26 光拡散シート、およびその製造方法、ならびに当該光拡散シートを備えた透過型表示装置 WO2011086746A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/519,136 US20120281289A1 (en) 2010-01-14 2010-10-26 Light-diffusion sheet, method for manufacturing same, and transmission display device provided with this light-diffusion sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010006162 2010-01-14
JP2010-006162 2010-01-14

Publications (1)

Publication Number Publication Date
WO2011086746A1 true WO2011086746A1 (ja) 2011-07-21

Family

ID=44304040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068963 WO2011086746A1 (ja) 2010-01-14 2010-10-26 光拡散シート、およびその製造方法、ならびに当該光拡散シートを備えた透過型表示装置

Country Status (2)

Country Link
US (1) US20120281289A1 (ja)
WO (1) WO2011086746A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192797A1 (ja) * 2013-05-29 2014-12-04 テイ・エス テック株式会社 車両用発光部品
JP2016206682A (ja) * 2016-08-10 2016-12-08 株式会社タムロン 光学素子

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106033156B (zh) 2015-03-12 2019-11-05 中强光电股份有限公司 显示装置及显示方法
CN106033159B (zh) * 2015-03-12 2019-10-01 中强光电股份有限公司 显示装置
KR20200061667A (ko) * 2018-11-26 2020-06-03 엘지디스플레이 주식회사 유기발광 표시장치 및 이의 커버 윈도우 제조 방법
CN110082854B (zh) * 2019-05-16 2020-12-01 京东方科技集团股份有限公司 一种背光模组及其制作方法、驱动方法、显示装置
US11333920B2 (en) * 2020-01-22 2022-05-17 Himax Display, Inc. Display panel
CN112099264A (zh) * 2020-09-14 2020-12-18 深圳市隆利科技股份有限公司 一种光学膜片及应用其的直下式背光模组

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113709A (ja) * 1995-10-19 1997-05-02 Dainippon Printing Co Ltd 光拡散フィルムおよび表示装置
JPH1149953A (ja) * 1997-08-07 1999-02-23 Ube Nitto Kasei Co Ltd 黒色ポリオルガノシロキサン微粒子の製造方法
JP2000352608A (ja) * 1999-06-11 2000-12-19 Dainippon Printing Co Ltd 光拡散シート
WO2003099941A1 (fr) * 2002-05-24 2003-12-04 Canon Kabushiki Kaisha Materiau colore et procede de production de ce materiau
JP2005165252A (ja) * 2003-11-14 2005-06-23 Sony Corp 光機能性拡散板、反射型スクリーン及びその製造方法
JP2005326819A (ja) * 2004-04-12 2005-11-24 Kuraray Co Ltd 光拡散板
JP2006083345A (ja) * 2004-09-17 2006-03-30 Canon Inc 色材とその製造方法、並びにその色材を用いたインク、電気泳動粒子、電気泳動型表示装置及びカラーフィルタ
JP2006321987A (ja) * 2005-04-21 2006-11-30 Mitsubishi Chemicals Corp 樹脂組成物及び成形体
JP2008150428A (ja) * 2006-12-14 2008-07-03 Toda Kogyo Corp ブラックマトリックス用着色材及び該ブラックマトリックス用着色材を含有するブラックマトリックス用着色組成物並びにカラーフィルター
JP2008309829A (ja) * 2007-06-12 2008-12-25 Panasonic Corp 光拡散シートの製造方法
JP2009063849A (ja) * 2007-09-07 2009-03-26 Panasonic Corp 光拡散スクリーンとその製造方法および背面投射型ディスプレイ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822792B2 (en) * 2001-05-14 2004-11-23 Dai Nippon Printing Co., Ltd. Sheet for use for projection screen, light diffusion sheet and projection screen

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113709A (ja) * 1995-10-19 1997-05-02 Dainippon Printing Co Ltd 光拡散フィルムおよび表示装置
JPH1149953A (ja) * 1997-08-07 1999-02-23 Ube Nitto Kasei Co Ltd 黒色ポリオルガノシロキサン微粒子の製造方法
JP2000352608A (ja) * 1999-06-11 2000-12-19 Dainippon Printing Co Ltd 光拡散シート
WO2003099941A1 (fr) * 2002-05-24 2003-12-04 Canon Kabushiki Kaisha Materiau colore et procede de production de ce materiau
JP2005165252A (ja) * 2003-11-14 2005-06-23 Sony Corp 光機能性拡散板、反射型スクリーン及びその製造方法
JP2005326819A (ja) * 2004-04-12 2005-11-24 Kuraray Co Ltd 光拡散板
JP2006083345A (ja) * 2004-09-17 2006-03-30 Canon Inc 色材とその製造方法、並びにその色材を用いたインク、電気泳動粒子、電気泳動型表示装置及びカラーフィルタ
JP2006321987A (ja) * 2005-04-21 2006-11-30 Mitsubishi Chemicals Corp 樹脂組成物及び成形体
JP2008150428A (ja) * 2006-12-14 2008-07-03 Toda Kogyo Corp ブラックマトリックス用着色材及び該ブラックマトリックス用着色材を含有するブラックマトリックス用着色組成物並びにカラーフィルター
JP2008309829A (ja) * 2007-06-12 2008-12-25 Panasonic Corp 光拡散シートの製造方法
JP2009063849A (ja) * 2007-09-07 2009-03-26 Panasonic Corp 光拡散スクリーンとその製造方法および背面投射型ディスプレイ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192797A1 (ja) * 2013-05-29 2014-12-04 テイ・エス テック株式会社 車両用発光部品
US10035455B2 (en) 2013-05-29 2018-07-31 Ts Tech Co., Ltd. Light-emitting part for vehicle
JP2016206682A (ja) * 2016-08-10 2016-12-08 株式会社タムロン 光学素子

Also Published As

Publication number Publication date
US20120281289A1 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
WO2011086746A1 (ja) 光拡散シート、およびその製造方法、ならびに当該光拡散シートを備えた透過型表示装置
JP7317800B2 (ja) 光学デバイス
WO2010143335A1 (ja) 光学部材およびそれを備えた液晶表示装置
US9010979B2 (en) Composite optical film and backlight module using the same
KR101605539B1 (ko) 시야각 제한 시트 및 플랫 패널 디스플레이
JP2005221619A (ja) 光学シート及びバックライト、並びに液晶表示装置
WO2011068168A1 (ja) 光拡散シート、およびその製造方法、ならびに当該光拡散シートを備えた透過型表示装置
WO2018155304A1 (ja) 輝度均一化部材、バックライトユニットおよび液晶表示装置
JP2009086682A (ja) 二次元視野角拡大部材および表示装置
EP2618185A1 (en) Methods for manufacturing light-diffusing element and polarizing plate with light-diffusing element, and light-diffusing element and polarizing plate with light-diffusing element obtained by same methods
JP2000056105A (ja) 指向性光拡散フィルム、その製造方法、及び、表示装置
JP2012014163A (ja) 視認性向上シートの製造方法および視認性向上シート
JP6476812B2 (ja) 反射スクリーン、映像表示システム
WO2012005135A1 (ja) 光拡散シートおよび当該光拡散シートを備えた表示装置
KR20210151226A (ko) 색상 변환 어셈블리, 표시 패널 및 색상 변환 어셈블리의 제조 방법
JP2011215515A (ja) 防眩性フィルム
JP2008102547A (ja) 二次元視野角拡大部材および表示装置
JP2016151618A (ja) 光学シート、映像源ユニット及び映像表示装置
JP2006065185A (ja) 透過型スクリーン及びその製造方法並びに背面投射型表示装置
JP2016151710A (ja) 光学シート、映像源ユニット及び映像表示装置
JP5070891B2 (ja) 光学シートとそれを用いたバックライト・ユニットおよびディスプレイ
JP2016038432A (ja) 光制御シート、透過型スクリーン、背面投射型表示装置
JP2013130641A (ja) 光拡散シート、表示装置及び電子機器
JP5101485B2 (ja) 光学要素製造方法
JP2012150356A (ja) 光学シート、表示装置、及び光学シートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843101

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13519136

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP