WO2011086266A1 - Nouveaux materiaux intermediaires realises par entrecroisement avec entrelacement de fils voiles - Google Patents

Nouveaux materiaux intermediaires realises par entrecroisement avec entrelacement de fils voiles Download PDF

Info

Publication number
WO2011086266A1
WO2011086266A1 PCT/FR2010/052779 FR2010052779W WO2011086266A1 WO 2011086266 A1 WO2011086266 A1 WO 2011086266A1 FR 2010052779 W FR2010052779 W FR 2010052779W WO 2011086266 A1 WO2011086266 A1 WO 2011086266A1
Authority
WO
WIPO (PCT)
Prior art keywords
material according
veiled
intermediate material
ribbon
tape
Prior art date
Application number
PCT/FR2010/052779
Other languages
English (en)
Inventor
Jean-Marc Beraud
Jean-Christophe Minni
Original Assignee
Hexcel Reinforcements
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hexcel Reinforcements filed Critical Hexcel Reinforcements
Priority to JP2012545380A priority Critical patent/JP5765788B2/ja
Priority to CA2780855A priority patent/CA2780855C/fr
Priority to RU2012131371/05A priority patent/RU2551514C2/ru
Priority to US13/513,914 priority patent/US9914267B2/en
Priority to BR112012014358A priority patent/BR112012014358B1/pt
Priority to EP20100807607 priority patent/EP2516138B1/fr
Priority to ES10807607T priority patent/ES2465993T3/es
Priority to CN201080064521.3A priority patent/CN102770260B/zh
Publication of WO2011086266A1 publication Critical patent/WO2011086266A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/342Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using isostatic pressure
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/267Glass
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/44Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific cross-section or surface shape
    • D03D15/46Flat yarns, e.g. tapes or films
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1369Fiber or fibers wound around each other or into a self-sustaining shape [e.g., yarn, braid, fibers shaped around a core, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2008Fabric composed of a fiber or strand which is of specific structural definition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3033Including a strip or ribbon
    • Y10T442/3041Woven fabric comprises strips or ribbons only

Definitions

  • the present invention relates to the technical field of reinforcing materials, suitable for the constitution of composite parts. More specifically, the invention relates to a new intermediate material for the production of composite parts, by injection or subsequent infusion of thermosetting resin, a method of manufacturing composite parts from such a material, and the composite parts obtained.
  • a direct process is defined by the fact that one or more fibrous reinforcements are implemented in the "dry” state (that is to say without the final matrix), the resin or matrix, being implemented separately for example by injection into the mold containing the fibrous reinforcements ("RTM” process, of the English Resin Transfer Molding), by infusion through the thickness of the fibrous reinforcements ("LRI” process, from “Liquid Resin Infusion “or” RFI “process, or by manual coating or impregnation by roller or brush, on each of the unitary layers of fibrous reinforcement applied successively to the shape .
  • Composite parts used in the automotive, aeronautical or naval industry are in particular subject to very stringent requirements. strict, especially in terms of mechanical properties.
  • the mechanical properties of the parts are mainly related to a parameter which is the fiber volume ratio (FVT).
  • FVT fiber volume ratio
  • preforms are made from fabrics (WO 94/12708 in particular) or braids, in particular of cylindrical shape (EP 1 798 428 and US2007 / 0193439, for example).
  • fabrics WO 94/12708 in particular
  • braids in particular of cylindrical shape
  • EP 1 798 428 and US2007 / 0193439 for example.
  • the inventors have considered applying to these braids or fabrics, a chemical binder to improve the mechanical performance of the parts obtained and in particular their impact resistance.
  • the material according to the invention must offer design possibilities for composite parts of primary or secondary structures having good mechanical properties and also for parts having a high fiber volume ratio.
  • This intermediate material must also be achieved at a competitive cost and, relatively easily.
  • One of the objectives of the invention is also to propose a material whose production is easily automated.
  • the material according to the invention must offer easy handling and implementation.
  • the present invention proposes to provide a new intermediate material that can be produced in complex shapes such as cylindrical or complex braids.
  • the material according to the invention must also be able to be produced in the form of a fabric or braid which exhibits satisfactory deformability.
  • the present invention relates to an intermediate material composed of a set of interlocking interlocking ribbons characterized in that at least some of the ribbons, and preferably all ribbons, called veiled ribbons, are composed of a series of threads or reinforcing filaments which extend in a direction parallel to the length of the ribbon to form a unidirectional sheet which is associated on each of its faces with a nonwoven of thermoplastic fibers, these two nonwovens ensuring the cohesion of said veiled ribbon through to their thermoplastic nature.
  • the material according to the invention is intended for the production of composite parts by direct process. Also, the mass of nonwovens, within each veiled tape, represents 3 to 10% of the total mass of each ribbon.
  • the subject of the invention is also a method for manufacturing a composite part, characterized in that it comprises the following steps:
  • thermosetting resin is added by infusion under a pressure lower than atmospheric pressure, especially at a pressure of less than 1 bar and, for example, between 0.1 and 1 bar.
  • the invention relates to the composite parts that can be obtained according to such a method, which present in particular a fiber volume content (FVT) of 50 to 63%, preferably 53 to 60%.
  • FVT fiber volume content
  • Figures 1 and 2 are, respectively, a schematic representation, in perspective, partly cut away, and in section, of a ribbon used in the context of the invention, wherein a unidirectional web is associated with two nonwoven.
  • Figure 3 shows different weaving constructions that can present an intermediate material according to the invention.
  • Figure 4 shows a material according to the invention having a cylindrical braid shape.
  • Figures 5A and 5B show a device for measuring the thickness of a preform formed of ribbons, under vacuum.
  • Figure 6 is a photograph of an exemplary ribbon that can be used in the context of the invention, and highlights its sharp edge.
  • Figure 7 shows different shapes of parts that can be obtained from an intermediate material according to the invention in the form of a cylindrical braid.
  • Figure 8 shows, schematically, an overview of a device for producing an associated tape on each of its large faces to a nonwoven.
  • Figure 9 illustrates a weave construction, named 2/2 twill weave, used in the examples.
  • FIG. 10 gives the permeabilities as a function of the volume content of fibers, for an intermediate material according to the invention.
  • FIGS 11 to 15 show the mechanical performance of composite parts obtained with an intermediate material according to the invention.
  • the invention provides materials made by interlacing and interlacing ribbons, at least some of which are veiled ribbons.
  • the unidirectional threads or filaments constituting the ribbons are associated with nonwovens, before their interweaving with interleaving.
  • each veiled ribbon is associated with two nonwovens over its entire length and, including at the points of crossing and / or interlacing. Interlacing with interlacing is, for example, performed by weaving or braiding.
  • the advantage of the material according to the invention made from unidirectional fiber strips associated on each of their faces with a non-woven thermoplastic fibers is particularly at the level of deformability, which will be much better in the context of the invention, since the bands can move between them, while the son are blocked by the chemical binder in the case of a fabric treated after weaving or braided treated after braiding.
  • the ribbons can move relative to each other, since apart from the mechanical connection obtained by the intercrossing / interlacing, there is no other connection, in particular no connection obtained thanks to a chemical binder between the ribbons, in particular by gluing or otherwise.
  • the material according to the invention can be braided directly onto a mandrel to obtain a cylindrical braid, then be shaped, for example by sewing or preforming, in order to produce a more complex preform, as illustrated in particular in FIG. material according to the invention can also be directly braided on a mandrel of complex shape, possibly in several successive layers.
  • tape or tape means a sheet material which has a length, much greater than its width.
  • Such ribbons may in particular have widths of 3 to 25 mm.
  • these can be made from one or more threads, a thread consisting of a set of filaments. Veiled ribbons of smaller width can even be obtained in the case where a very thin wire of 1K or 3K is used.
  • the veiled ribbons I produced in the context of the invention have a length I and a width L.
  • These veiled ribbons consist of a set of filaments f (in the case of a single thread 1) or a set of threads 1 (each consisting of a set of filaments) which extend parallel to the width of the ribbon.
  • a veiled ribbon has a generally rectangular shape and is associated on each of its large faces la and lb to a nonwoven (respectively 2a and 2b), as shown in Figure 2.
  • nonwoven which can also be called “veil”
  • veil is conventionally meant a set of continuous or short fibers arranged randomly.
  • These nonwovens or veils may for example be produced by the processes “Meltblow”, “Spunlaid” or “Electrospinning", well known to those skilled in the art.
  • the constituent fibers of the nonwoven may have average diameters in the range of 0.5 and 70 ⁇ m.
  • the fibers may have, for example, a length of between 1 and 100 mm.
  • the use of nonwovens which have a random and isotropic coverage makes it possible to give each veiled tape uniform cohesion and in all directions, unlike the use of spaced yarns, for example.
  • the constituent fibers of the nonwovens are, advantageously, made of a thermoplastic material, in particular chosen from: Polyamides (PA: PA6, PA12, PAA, PA6.6, PA 6,10, PA 6,12, ...), Copolyamides (CoPA), Polyamides - block ether or ester (PEBAX, PEBA), Polyphthalamide (PPA), Polyesters (Polyethylene terephthalate -PET-, Polybutylene terephthalate - PBT -...), Copolyesters (CoPE), thermoplastic polyurethanes (TPU), polyacetals (POM ...), Polyolefins (PP, HDPE, LDPE, LLDPE ....), Polyethersulfones (PES), polysulfones (PSU ...), polyphenyl s
  • PA Polyamides
  • PA PA6, PA12, PAA, PA6.6, PA 6,10, PA 6,12, ...)
  • Copolyamides CoPA
  • Each veiled tape used for the constitution of the intermediate material according to the invention has, on each of its large faces, a nonwoven of thermoplastic fibers which ensures its cohesion.
  • a nonwoven of thermoplastic fibers it is possible to use nonwovens marketed for example by the companies Protechnic (66, rue des Fabriques, 68702 - CERNAY Cedex - France) or Spunfab Ltd. / Keuchel Associates, Inc. (175 Muffin Lane Cuyahoga Falls, OH 44223, USA).
  • the unidirectional sheet consisting of one or more reinforcing son may be of a material chosen from the following materials: carbon, glass, aramid, silica, basalt, ceramic and their mixtures, or any other material used in the field of composite materials, the fibers may be natural or synthetic. Carbon fibers are nevertheless preferred.
  • the filaments or reinforcing fibers are arranged so as to ensure almost complete coverage over the entire ribbon surface.
  • the veiled tape consists of a unidirectional sheet of several son, they will be arranged edge to edge, with a minimum, see no gap of material ("gap” in English) or overlap ("overlap" in English).
  • a yarn generally consists of a set of filaments and generally has, in the case of carbon yarns, from 1,000 to 80,000 filaments, preferably from 12,000 to 24,000 filaments.
  • carbon threads of 1 to 24 K, for example of 3, 6K, 12K or 24K, and preferably 12 and 24K, are used.
  • the constituent fibers are preferably continuous.
  • the yarns present in the veiled ribbons have a substantially parallelepipedal or elliptical cross section and are referred to as flat yarns. These son have a certain width and thickness.
  • a 3K carbon flat wire with a title of 200 tex generally has a width of 1 to 3 mm, a carbon flat wire of 12K and a title of 446 tex, a width of 2 to 5 mm, a flat wire of 12K with a title of 800tex, a width between 3 and 7mm, a carbon flat wire of 24K and a title of 1600 tex, a width of 5 to 12 mm and a wire carbon plate of 24K and a title of 1040 tex, a width of 5 to 10 mm.
  • a carbon flat wire of 3,000 to 24,000 filaments will therefore most often have a width of 1 to 12 mm.
  • the carbon threads present in the veiled ribbons have a title of between 60 and 3800 Tex, and preferably between 400 and 900 tex.
  • the thickness of the unidirectional carbon layer, within a ribbon may be from about 90 to about 270 ⁇ m.
  • High Resistance (HR) yarns whose tensile modulus is between 220 and 241GPa and whose tensile breaking stress is between 3450 and 4830 Pa
  • the Intermediate Module yarns (INI) ) whose tensile modulus is between 290 and 297GPa and whose tensile strength is between 3450 and 6200MPa
  • the High Wires Module (HM) whose modulus in tension is between 345 and 448GPa and whose tensile breaking strength is between 3450 and 5520Pa (according to the "ASM Handbook", ISBN 0-87170-703-9, ASM International 2001).
  • these veiled ribbons are superimposed and interlaced with interlacing.
  • the intermediate materials according to the invention are preferably composed exclusively of veiled ribbons composed of a series of reinforcing threads or filaments which extend in a direction parallel to the length of the ribbon to form a unidirectional sheet which is associated on each of its faces to a nonwoven made of thermoplastic fibers, these two nonwovens ensuring the cohesion of said veiled tape due to their thermoplastic nature.
  • the intermediate materials according to the invention consist exclusively of braiding or weaving veiled ribbons as more specifically described in the present patent application.
  • these veiled ribbons are combined with other ribbons such as single son or other.
  • these veiled ribbons may, for example, be used in the frame in the case of a fabric, the warp son being conventional and not veiled, or on a wire in two in the case of a braid , so that the entire surface of the textile architecture is covered by at least one veiled ribbon.
  • the material according to the invention will have an opening factor of less than or equal to 0.5%. This opening factor can be determined by the method described in the examples. Such an opening factor can, in particular be more easily achieved when the ribbons Veiled used are calibrated and / or when the material according to the invention consists exclusively of veiled ribbons.
  • the ribbons may be woven, according to different constructions, in particular of the taffeta (also called canvas), twill or satin weave type as illustrated in FIG. 3 (left part: taffeta and right part: satin) or 9.
  • the references 10 and 11 respectively designate the ribbons of the frame and the ribbons of the chain. It is also possible to use the technique described in patent application EP0670921 which describes an improved weaving method in which the weft is unwound without torsion, and where a vibration blooming system can, in addition, be applied to the fabric.
  • the material according to the invention can be obtained according to a weaving process which can implement one or the other of these improvements or both in combination.
  • the use of unwinding at the unwinding of the weft described in this document has the advantage of not adding torsion to the ribbon which can thus remain flat in the woven intermediate material obtained.
  • the material according to the invention may also be in the form of a braid, in particular a braid forming a cylinder as shown in FIG. 4.
  • Such braids are made by braiding ribbons as previously described.
  • the braiding techniques as described in documents EP 1 798 428 or US 2007/0193439 may in particular be implemented.
  • a robotic means places a mandrel in the center of a braider, and scans the length of the mandrel during braiding, so that the braid covers the mandrel. After several passes, the mandrel is covered with different layers of braided ribbons.
  • ribbons used in the context of the invention on braiders, especially if they are optimized for plaiting flat threads.
  • a non braiding technique symmetrical using two kinds of ribbons, as described in WO 92/15740, can also be used. It is also possible to sew an open braid to give it a cylinder shape or any other desired complex shape.
  • each veiled tape constituting the intermediate material according to the invention consists of a unidirectional sheet of carbon fibers having a weight per unit area of 100 to 280 g / m 2 , associated on each of its faces, a nonwoven of thermoplastic fibers, said nonwovens each having a thickness of 0.5 to 50 microns, preferably 3 to 35 microns.
  • each veiled tape has a thickness of 80 to 380 microns, preferably 90 to 320 microns, and preferably 93 to 305 microns.
  • the NF EN ISO 9073-2 standard does not make it possible to measure one of the constituents of a combined material of several elements.
  • the following methods can be used: one to measure the thickness of one nonwoven within a ribbon and the other to measure the total thickness of the ribbon.
  • the thickness of the nonwoven or web attached to the unidirectional sheet of reinforcement son or filaments can be determined from microscopic sections that allow an accuracy of +/- 1 ⁇ .
  • the method is as follows: A veiled tape combining a unidirectional sheet made of reinforcing threads or filaments and two webs laminated on each side of the sheet is impregnated with a brush of a resin that polymerizes at room temperature. (Araldite and Araldur 5052 from Huntsman). The assembly is fixed between two plates to apply a pressure of the order of 2-5 kPa during the polymerization. The measurement of the thickness of the veil present in the veiled tape is independent the pressure exerted during this step.
  • One slice of the assembly is coated with Struers Epofix Kit cold setting resin, then polished (using 320 micron silicon carbide grit sandpaper and various felts). at 0.3 ⁇ m grain) to be observed with an Olympus BX 60 optical microscope coupled to an Olympus ColorView IIIu camera.
  • the implementation of this resin which polymerizes at ambient temperature has no influence on the thickness of the veil but only makes it possible to carry out the measurements.
  • the analySIS auto 5.0 software from Olympus Soft Imaging Solution GmbH can take pictures and make thickness measurements. For each veiled ribbon (unidirectional web combined with veils on each side), 5 images are taken with a magnification of 20. On each image, 15 thickness measurements of the web are made and the mean and standard deviation of these measures are determined.
  • the total thickness of a veiled ribbon can be determined from the following method, the device of which is shown diagrammatically in FIGS. 5A and 5B, which determines an average on a preform consisting of a stack of veiled ribbons.
  • A designates the preform; B the support plate; C the silicone paper; D the vacuum film; E the vacuum seal; F the drainage felt and G the vacuum plug.
  • This method is conventionally used by those skilled in the art and allows a global measurement by minimizing the variability that can exist locally within the same ribbon.
  • a preform consisting of a stack of different oriented layers of veiled tape is placed between two layers of silicone paper 130 g / m 2 and a thickness of 0.15 mm sold by the company SOPAL in a vacuum film CAPRAN 518 from Aerovac (Aerovac Systems France, Umeco Composites, 1 rue de la Sausse 31240 Saint-Jean, France) and in contact with an Airbleed 10HA drainage felt marketed by Aerovac.
  • Aerovac Airbleed 10HA drainage felt marketed by Aerovac.
  • Aerovac Airbleed 10HA drainage felt
  • the thickness of the preform is measured between two digital TESA Digico 10 comparators after subtraction of the thickness of the vacuum cover and the silicone papers. 25 measurements are made by preform and the mean and standard deviation of these measurements are determined. The resulting thickness of the veiled ribbon is then determined by dividing the thickness of the total preform by the number of layers of superposed veiled ribbons.
  • the thickness of each voided ribbon present in the intermediate product according to the invention has a low variability, in particular with variations of thickness not exceeding 20 m in standard deviation, preferably not exceeding 10 pm in standard deviation. This characteristic makes it possible to improve the regularity of the composite parts that can be obtained.
  • the basis weight of the carbon fiber web can be determined from the basis weight of each void ribbon (unidirectional web + 2 webs). If we know the surface mass of the sails, it is then possible to deduce the surface mass of the unidirectional layer.
  • the basis weight is determined from the intermediate product by chemical etching (possibly also by pyrolysis) of the web. This type of method is conventionally used by those skilled in the art to determine the carbon fiber content of a fabric or a composite structure.
  • a method of measuring the basis weight of a ribbon is described below.
  • the grammage of a ribbon is measured by weighing cut samples of 100 cm 2 (i.e. 113 mm in diameter).
  • the ribbon is placed between two glossy cartonnage cartonnage Roset (Saint Julien en Genevois, France) of 447 g / m 2 and 0.450 mm thick to ensure a certain rigidity of the whole.
  • a circular pneumatic punch of the company Novi Profibre (Eybens, France) is used to cut the whole; 10 samples are taken per type of ribbon.
  • the surfacic weight of the veil present within each veiled tape is in the range of 0.2 to 20 g / m *.
  • the association between the unidirectional web and the webs can be carried out discontinuously, for example only at certain points or zones, but is preferably carried out in a connection which extends over the entire surface. of the tablecloth, described as continuous.
  • the association of the unidirectional web with the two webs can be done via an adhesive layer, for example chosen from epoxy adhesives, polyurethane adhesives, thermosetting adhesives, polymerizable monomer-based adhesives, structural acrylic adhesives. or modified acrylics, hot-melt adhesives. But, most often the association is achieved through the sticky nature that the hot sails present, for example during a thermocompression step during their design which ensures a connection between the unidirectional sheet and the sails.
  • the cohesion of each veiled ribbon is provided exclusively by thermoplastic nonwovens.
  • each veiled ribbon has a given width substantially constant over its entire length, that is to say that the veiled ribbons have a very small variability in width over their entire length.
  • the veiled ribbons according to the invention also have a very low variability in terms of surface density.
  • the width of each veiled ribbon has, over the entire length of said ribbon, a standard deviation of in particular less than 0.25 mm, preferably less than 0.22 mm and preferably less than or equal to 0.20 mm.
  • a small variability of width makes it possible in particular to produce parts of a great regularity, with controlled mechanical properties.
  • the width of the veiled ribbons and the standard deviation can be determined according to the method described in the examples for the results of TABLE 3.
  • the standard deviation can be defined as the root mean square of the deviations from the mean, namely:
  • n number of values
  • Such a veiled tape of substantially constant width may be obtained by a method which comprises the following steps:
  • the constitution of the veiled ribbon can be made from one or more threads.
  • a ribbon consists of several threads, it is the set of threads (and not each thread taken individually) which is calibrated to lead to a given width tablecloth.
  • the wire (s) can be pulled from a reel and can be spread before the calibration step.
  • the son or son may pass on a spreading device, for example consisting of one or more spreader bars.
  • This spreading step may be necessary, depending on the grammage desired and also to obtain, before calibration, a width for the web or for the son greater than the desired width after calibration.
  • This calibration system may be completed by a vibrating bar in the direction of its length, located at the outlet of the spreader bars, just upstream of the calibration means.
  • such a device can be completed by several vibrating bars in the case where the association of important title son is used for very low surface weights.
  • the calibration step is performed by passing the ply or the wire on calibration means, it may be a passage of a given width, especially in the form of a flat bottom groove, arranged on a roller or a passage arranged between two teeth, in the case where a single ribbon based on one or more threads is made or a calibrating comb delimiting calibrated passages for several threads, in the case where several veiled ribbons are manufactured in parallel.
  • the calibration strictly speaking, of the width of the web is only done on the two outer threads, the other threads being guided by a comb located upstream. of the spreading element so that there is no free space between the yarns inside the web.
  • the calibrated unidirectional sheet At the outlet of the calibration means, the calibrated unidirectional sheet will present, over its entire length, an almost constant width that it will keep until the final veiled ribbon is obtained.
  • the width of the calibrated unidirectional sheet will have, over the entire length of the unidirectional sheet, a standard deviation of in particular less than 0.25 mm, preferably less than 0.24 mm and preferably less than 0.24 mm. or equal to 0.20 mm.
  • the nonwovens are advantageously associated with the ribbon, after adjustment of the width of the ribbon, so as to maintain the width obtained after adjustment. It is thus possible to calibrate the ribbon to the desired width, which is substantially constant over its entire length, and freeze the calibration obtained by combining the ribbon of fibers with the nonwovens by gluing, and thus minimize variations in width.
  • the calibrated unidirectional sheet obtained is then associated on each of its faces with a thermoplastic nonwoven, for example on a conveyor belt driven by rollers.
  • the distance between the output of the calibration means and the association means of the web to the nonwovens will preferably be very small, of the order of a few millimeters, in order to maintain the calibration obtained.
  • the nonwovens are subjected, upstream of their association with the ribbon, to a heating step causing the softening, or even the melting of the polymer.
  • the heating and pressure conditions are adapted to the material constituting the nonwovens and to their thickness. Most often a thermocompression step at a temperature in the range of T f non-ussé - 15 ° C and T f non-woven + 60 ° C (with T f nonwoven which refers to the melting temperature of the non woven) and under a pressure of 0.1 to 0.6 MPa is carried out. It is thus possible to achieve compression rates of the nonwoven before and after association ranging from 1 to 10.
  • the step of laminating the nonwovens on the unidirectional reinforcing fibers is also critical to control properly the final thickness of the ribbon. Indeed, depending on the temperature and pressure conditions, especially during lamination, it is possible to modify, and therefore adjust, the thickness of the nonwoven present on each side in the ribbon.
  • the thickness of the nonwovens before their association with the unidirectional sheet is chosen, depending on how they are associated with the unidirectional fiber sheet. Most often, their thickness is very close to the desired thickness on the ribbon. It may also be possible to choose to use a thicker nonwoven which is then temperature laminated during the association step, so as to achieve the desired thickness.
  • the layer of unidirectional fibers is associated on each of its large faces with two substantially identical nonwovens, so as to obtain a perfectly symmetrical intermediate product.
  • each veiled tape does not have cut fibers on its longitudinal edges. This makes the use of these much easier in braiding and weaving processes. Indeed, the presence of fibers or filaments cut at the ribbon edge has the disadvantage of creating zones of accumulation of fibers or filaments at certain points along the ribbon path in the processes mentioned, and cause machine stops for cause. breakage of threads or poor quality of reinforcement created. These edges with the presence of cut filaments are also a generator of threads wound on themselves even when unwinding the coil where the ribbon is wound, which also results in breakages of threads or quality defects (it is then called " rings "created on the tape reel). Such a feature is made possible, especially by the method described above which avoids cutting to obtain the desired width ribbon.
  • each veiled ribbon has, at certain points only of its longitudinal edges or over the entire length of its two longitudinal edges, a direct connection between the two nonwovens, carried out thanks to the thermoplastic nature of these.
  • the ribbon, on the one hand, and the parts cut on either side of its edges, on the other hand are driven by extraction means, such as drive or suction means.
  • the width of the nonwovens is chosen so that they exceed both sides of the unidirectional sheet.
  • the ribbon is pulled from the conveyor belt by means of a drive roller (call trio) and is cut at each of its longitudinal edges by means of a heating cutter, and in particular heated knives.
  • the cut is not made in a wire, but just next to the edge of the wire, to avoid any fray.
  • the hot cutting of the nonwoven at each edge of the tape causes some retraction of the latter. Since the two nonwovens have a width greater than the width of the unidirectional web, there is a one-time bonding of the two nonwovens between them which preferentially trap the unidirectional web at the carbon edges.
  • the veiled ribbon obtained then has a sharp edge 4, without fragments of cut filaments, as shown in FIG.
  • the ribbon is then pulled by a trio of call rollers. It is also possible to favor, still, obtaining a sharp edge to proceed to the extraction of the non-woven waste, by training means such as drive rollers or by suction means .
  • the extreme parts corresponding to the waste comprise a yarn whose non-woven fabric can only be cut on one side, which will help promote the entrainment or aspiration of waste. It can also be expected to have on the edges to be cut and play the role of waste, a different type of wire used for the formation of veiled ribbons.
  • the intermediate materials according to the invention can be used for the production of aeronautical parts which require high mechanical performance, and in particular for the production of primary structural parts.
  • the cylindrical braids according to the invention can be used for the manufacture of elongated parts, such as fuselages frames or stiffeners.
  • the braid is deformed and maintained in shape by sewing or preforming (thermocompression) to present a section in the form of I, T, S in particular, as shown in Figure 7.
  • Such parts can be made by any known direct process, such as processes by infusion or injection of thermosetting resin.
  • the matrix used is of the thermosetting type.
  • the injected resin will, for example, be chosen from the following thermosetting polymers: epoxides, unsaturated polyesters, vinyl esters, phenolics, polyimides and bismaleimides.
  • the composite part is obtained after a heat treatment step.
  • the composite part is generally obtained by a conventional consolidation cycle of the polymers in question, by performing a heat treatment, recommended by the suppliers of these polymers, and known to those skilled in the art.
  • This consolidation step of the desired part is carried out by polymerization / crosslinking according to a cycle defined in temperature and under pressure, followed by cooling.
  • the pressure applied during the cycle of treatment is weak in the case of vacuum infusion and stronger in the case of injection into a RTM mold.
  • the intermediate material and the process according to the invention make it possible, in certain cases, to produce composite parts having a TVF of the order of 60%, which corresponds to the standard rate for the primary structures in aeronautics (ie the vital parts for the device) and, also, to greatly improve the low speed impact resistance of the composite parts obtained: for example, the falling of a tool in a workshop during the manufacture of a machine. composite structure, shock with a foreign body during its use in operation.
  • the pressure applied during an injection process is greater than that used in an infusion process. As a result, it is easier to make parts with a correct TVF with an injection method than infusion.
  • the materials according to the invention make it possible to achieve the desired volume content of fibers, and in particular of the order of 53 to 60%, even when the composite part is produced with a step c) as mentioned above, which implements an infusion and not an injection of resin. Such an embodiment is also an advantageous variant.
  • the composite parts that can be obtained according to the process of the invention are also integral parts of the invention, in particular parts having a fiber volume content of 50 to 63% and especially 53 to 60%.
  • the T700GC 31E 12K carbon yarns are marketed by Toray Industries, Japan.
  • a nonwoven made of polyamides of 4 (sold under the reference 128D04 by Protechnic, France and named veil was used)
  • the characteristics of the veil used for the manufacture of veiled ribbons according to the invention are indicated in TABLE 1.
  • melting point of the veil indicated in TABLE 1 is determined by differential scanning calorimetry (DSC) according to ISO 11357-3.
  • the basis weight is measured according to the ISO 3801 standard.
  • the porosity rate indicated in TABLE 1 is calculated from the following formula:
  • the material of the veil is expressed in kg / m 3 ,
  • the carbon threads are used to form ribbons in association with two sails a, using a machine as shown FIGURE 8.
  • the reference of the cutting heating elements is: Thermocut TC-1 from the company LOEPFE BROTHER, LIMITED, Wetzikon, Switzerland.
  • the carbon wire (s) 1 are unwound from carbon coils 100 fixed on a creel 101, pass through a comb 102, are conducted in the axis of the machine using a guide roller 103.
  • the carbon yarns 12K and 800Tex initially with a width varying from about 4.5 to 7 mm are then spread by means of the heating bar 11 and the spreading bar 12 and calibrated to a width of 5.42. mm thanks to the calibration means to have a unidirectional tablecloth width desired.
  • the rolls of nonwoven 104a and 104b are unrolled without tension and transported by means of continuous mats 105a and 105b fixed between the free rotating rollers 106a, 106b, 106c, 106d and the heated bars 107a, 107b.
  • the nonwovens 2a and 2b are preheated in the zones 108a and 108b before being in contact with the carbon threads 1 and laminated on either side of two heated bars 107a and 107b whose air gap is controlled.
  • a calender 108 which can be cooled, then applies a pressure on the unidirectional sheet with a nonwoven on each side, which is then directed towards the cutting means 109.
  • a return roller 110 makes it possible to redirect the ribbon I towards the traction system comprising a trio call 111 and then winding 112 to form a roll consisting of veiled tape I.
  • the characteristics of the ribbons obtained are shown in TABLE 3.
  • the measurements of average width and standard deviation were carried out thanks to the following device: the veiled ribbon is unrolled from its support at the constant speed of 1.2 m per minute, with a tension constant between 200 and 400cN, where it passes then, at a distance of 265mm and without support at this point, in front of a model camera Baumer Optronic Type FWX 20, focal length 20mm, 1624x1236 pixels (Baumer Optronic Gmbh, Germany).
  • the NEUROCHECK 5.1 software (Neurocheck Gmbh, Germany) then analyzes the image and stores the width values in a file which will then be processed statistically by the software ⁇ (Minitab Inc, USA).
  • a 2/2 twill weave weave such as that shown in FIG. 9 is used to manufacture intermediate materials according to the invention, using the ribbons as previously described. 1.85 ribbons (which corresponds to the number of threads since a ribbon is composed of a single thread in the exemplified case) per cm are used in warp and weft. This same weave is used in the comparative examples.
  • the ribbons obtained with the sail and calibrated at 5.42mm are used in warp and weft.
  • the weaving is carried out on Dornier loom (Lindau, Germany) model PTS according to the method called "weaving at the unwound SD" in patent EP 0670921, that is to say without spreading post-weaving, at a speed of 100 picks / min.
  • the woven armor is a twill 2/2, the duitage is 1.85 threads / cm, to obtain a balanced fabric of 295 g / m 2 .
  • Transverse permeability can be defined by the ability of a fluid to traverse a fibrous material. It is measured in m 2 .
  • the values given above, as well as those mentioned in the examples which follow, are measured with the apparatus and the measuring technique described in Thesis. entitled “Problem of the measurement of the transverse permeability of fibrous preforms for the fabrication of composite structures", by Romain Nunez, supported at the Lau Nationale Superieure des Mines in Saint Etienne, on October 16, 2009, to which we can refer for More details.
  • the measurement is carried out in particular with a control of the thickness of the sample during the test by using two co-cylindrical chambers making it possible to reduce the influence of "race-tracking" (passage of the fluid on the side or "on the side Of the material whose permeability is to be measured).
  • the fluid used is water and the pressure is 1 bar +/- 0.01 bar.
  • the opening factors were measured according to the following method.
  • the device consists of a SONY brand camera (model SSC-
  • DC58AP equipped with a lOx lens, and a Waldmann brand light table, model W LP3 NR, 101381 230V 50HZ 2xl5W.
  • the sample to be measured is placed on the light cover, the camera is fixed on a bracket, and positioned at 29cm of the sample, then the sharpness is adjusted.
  • the measurement width is determined according to the fibrous material to be analyzed, using the ring (zoom), and a rule: 10cm for open fibrous materials (OF> 2%), 1,17cm for materials fibrous little open (OF ⁇ 2%).
  • the brightness is adjusted to obtain a value of OF corresponding to that given on the control plate.
  • the Videomet contrast measuring software from Scion Image (Scion Corporation, USA) is used. After image capture, the image is processed as follows: Using a tool, we define a maximum area corresponding to the selected calibration, for example for 10cm-70 holes, and having a number whole pattern. We then select a elementary surface in the textile sense of the term, that is to say a surface that describes the geometry of the fibrous material by repetition.
  • the percentage OF is defined per hundred, to which the black surface divided by the elementary surface is subtracted, ie 100 (black surface / elementary surface).
  • the brightness adjustment is important because diffusion phenomena can change the apparent size of the holes and therefore the OF. An intermediate brightness will be retained, so that no phenomenon of saturation or diffusion too important is visible.
  • Composite plates are made from a set of intermediate materials arranged in different orientations 0 °, 45 °, -45 °, 90 °.
  • the stack is symmetrical.
  • the number of intermediate materials (also called plies) constituting the stack is determined from the following formula deduced from formula (3):
  • n Iis - iu ⁇ 3
  • the target thickness of the plate is the closest to 4 mm (defined by the standard prEN 6038), e p i a that is expressed in mm (in the examples the targeted thickness is 3.81 mm),
  • the density of IUD car one is expressed in g / m 2 .
  • the stack thus consists of 12 folds in the case of a carbon weight of 295 g / m 2 and is written in abbreviated notation: [(+ 45 / - 45) / (0/90)] 3S .
  • the different plies are held together by welding slightly with each addition of new fold in a few points using a soldering iron.
  • the set is a preform.
  • the 340 mm x 340 mm preform consisting of the stacking sequence adapted to the carbon weight is placed in an injection mold under a press.
  • a frame of known thickness surrounds the preform to obtain the desired fiber volume ratio (FVT).
  • Hexcel is injected at 80 ° C under 2 bars through the preform which is maintained at 120 ° C, temperature of the press platens.
  • the pressure applied to each of the two plates of the press is 5 bars.
  • the outlet pipe is closed and the polymerization cycle begins (up to 180 ° C at 3 ° C / min, then 2 hours at 180 ° C, then cooling at 5 ° C / min).
  • Six test pieces per configuration type of 150 x 100mm (prEN 6038 standard) are then cut to perform the post-crash test (CAI).
  • test pieces (12 per type of configuration) are attached to a device as specified in EN 6038.
  • the test specimens were subjected to several impacts at different energies ranging from 10 to 50 J using equipment adapted to the preliminary European standard prEN 6038 published by ASD-STAN (AeroSpace and Defense Standard, Avenue de Tervueren 270, 1150 Woluwe-Saint- Pierre, Belgium).
  • the compression tests were carried out on a mechanical test machine Zwick (Zwick Sari France, Roissy Charles de Gaule, France).
  • FIGS. 13, 14 and 15 compare the results of compressive failure stresses after impact of the plate obtained with the intermediate materials of Example 1 and the plate. obtained with the intermediate materials of Comparative Example 2, respectively according to the tests of the standard pr EN 6031 (FIGS. 13 and 14), according to the test of standard ASTM D 6484 (FIG. 15). In these tests, the mechanical performance is equivalent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Nonwoven Fabrics (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Woven Fabrics (AREA)

Abstract

La présente invention concerne un matériau intermédiaire composé d'un ensemble de rubans entrecroisés avec entrelacement caractérisé en ce qu'au moins certains des rubans, et de préférence tous les rubans, nommés rubans voilés, sont composés d'une série de fils ou filaments de renfort qui s'étendent selon une direction parallèle à la longueur du ruban pour former une nappe unidirectionnelle qui est associée sur chacune de ses faces à un non-tissé en fibres thermoplastiques, ces deux non-tissés assurant la cohésion dudit ruban voilé grâce à leur caractère thermoplastique, un procédé de fabrication mettant en ouvre un tel matériau pour la réalisation de pièces composites, ainsi que les pièces composites obtenues.

Description

NOUVEAUX MATERIAUX INTERMEDIAIRES REALISES
PAR ENTRECROISEMENT AVEC ENTRELACEMENT DE FILS VOILES
La présente invention concerne le domaine technique des matériaux de renfort, adaptés à la constitution de pièces composites. Plus précisément, l'invention concerne un nouveau matériau intermédiaire pour la réalisation de pièces composites, par injection ou infusion ultérieure de résine thermodurcissable, un procédé de fabrication de pièces composites à partir d'un tel matériau, ainsi que les pièces composites obtenues.
La fabrication de pièces ou d'articles composites, c'est-à-dire comprenant, d'une part, un ou plusieurs renforts ou nappes fibreuses et, d'autre part, une matrice principalement de type thermodurcissable (« résine ») et pouvant inclure des thermoplastiques, peut, par exemple, être réalisée par un procédé dit "direct" ou "LCM" (de l'anglais Liquid Composite Moulding »). Un procédé direct est défini par le fait qu'un ou plusieurs renforts fibreux sont mis en œuvre à l'état "sec" (c'est-à-dire sans la matrice finale), la résine ou matrice, étant mise en œuvre séparément, par exemple par injection dans le moule contenant les renforts fibreux (procédé "RTM", de l'anglais Resin Transfer Moulding), par infusion au travers de l'épaisseur des renforts fibreux (procédé "LRI", de l'anglais « Liquid Resin Infusion » ou procédé "RFI", de l'anglais « Resin Film Infusion »), ou bien encore par enduction/imprégnation manuelle au rouleau ou au pinceau, sur chacune des couches unitaires de renfort fibreux, appliquées de manière successive sur la forme.
Pour les procédés RTM, LRI ou RFI, il faut en général tout d'abord fabriquer une préforme fibreuse de la forme de l'article fini désiré, puis imprégner cette préforme d'une résine. La résine est injectée ou infusée par différentiel de pressions, en température, puis une fois que toute la quantité de résine nécessaire est contenue dans la préforme, l'ensemble est porté à une température plus élevée pour réaliser le cycle de polymérisation/réticulation et ainsi entraîner son durcissement.
Les pièces composites utilisées dans l'industrie automobile, aéronautique ou navale, sont en particulier soumises à des exigences très strictes, notamment en termes de propriétés mécaniques. Or, les propriétés mécaniques des pièces sont principalement liées à un paramètre qui est le taux volumique de fibres (TVF). Par ailleurs, dans ces secteurs, il est particulièrement important de disposer de matériaux qui, d'une part présentent une grande régularité, et d'autre part offrent des facilités de manipulation et de mise en œuvre.
Dans ces secteurs, un grand nombre de préformes sont réalisées à partir de tissus {WO 94/12708 notamment) ou de tresses, notamment de forme cylindrique (EP 1 798 428 et US2007/0193439, par exemple). Pour améliorer la résistance à l'impact des pièces qu'il est souhaité de réaliser à partir de telles préformes, les inventeurs ont envisagé d'appliquer sur ces tresses ou tissus, un liant chimique pour améliorer les performances mécaniques des pièces obtenues et notamment leur résistance à l'impact.
Néanmoins, l'application d'un tel liant chimique d'amélioration de résistance à l'impact sur une forme telle qu'un mandrin de tressage n'est pas chose facile. En effet, se posent notamment la question de la continuité de ce liant et de la difficulté d'automatisation. De plus, l'application d'un liant chimique sur un tissu ou une tresse, peut limiter la déformabilité du matériau obtenu et donc sa mise en oeuvre sur des formes complexes.
Dans ce contexte, le matériau selon l'invention doit offrir des possibilités de conception pour des pièces composites de structures primaires ou secondaires présentant de bonnes propriétés mécaniques et également pour des pièces présentant un taux volumiques de fibres élevées.
Ce matériau intermédiaire se doit également d'être réalisé à un prix de revient concurrentiel et, de façon relativement aisée. Un des objectifs de l'invention est également de proposer un matériau dont la production soit facilement automatisable.
Le matériau selon l'invention se doit d'offrir des facilités de manipulation et de mise en œuvre. Notamment, la présente invention se propose de fournir un nouveau matériau intermédiaire qui puisse être produit selon des formes complexes de type tresses de forme cylindrique ou complexe. Le matériau selon l'invention se doit également de pouvoir être produit sous la forme d'un tissu ou tresse qui présente une déformabilité satisfaisante.
Aussi, la présente invention concerne un matériau intermédiaire composé d'un ensemble de rubans entrecroisés avec entrelacement caractérisé en ce qu'au moins certains des rubans, et de préférence tous les rubans, nommés rubans voilés, sont composés d'une série de fils ou filaments de renfort qui s'étendent selon une direction parallèle à la longueur du ruban pour former une nappe unidirectionnelle qui est associée sur chacune de ses faces à un non-tissé en fibres thermoplastiques, ces deux non-tissés assurant la cohésion dudit ruban voilé grâce à leur caractère thermoplastique.
Diverses autres caractéristiques du matériau selon l'invention sont détaillées dans les revendications.
Le matériau selon l'invention est destiné à la réalisation de pièces composites par procédé direct. Aussi, la masse de non-tissés, au sein de chaque ruban voilé, représente de 3 à 10 % de la masse totale de chaque ruban.
L'invention a également pour objet un procédé de fabrication d'une pièce composite caractérisé en ce qu'il comporte les étapes suivantes :
a) disposer d'au moins un matériau selon l'invention,
b) éventuellement empiler différents matériaux selon l'invention et éventuellement les solidariser sous la forme d'une préforme, c) ajouter, par infusion ou injection, une résine thermodurcissable, d) consolider la pièce souhaitée par une étape de polymérisation/réticulation suivant un cycle défini en température et sous pression, suivi d'un refroidissement.
Selon un mode de mise en œuvre particulier du procédé selon l'invention, la résine thermodurcissable est ajoutée par infusion sous une pression inférieure à la pression atmosphérique, notamment à une pression inférieure à 1 bar et, par exemple, comprise entre 0,1 et 1 bar.
Selon un autre de ses aspects, l'invention concerne les pièces composites susceptibles d'être obtenues selon un tel procédé, qui présentent notamment un taux volumique de fibres (TVF) de 50 à 63%, de préférence de 53 à 60%.
Diverses autres caractéristiques ressortent de la description faite ci- dessous en référence aux dessins annexés.
Les Figures 1 et 2 sont, respectivement, une représentation schématique, en perspective, partiellement arrachée, et en coupe, d'un ruban utilisé dans le cadre de l'invention, dans lequel une nappe unidirectionnelle est associée à deux non tissés.
La Figure 3 montre différentes constructions de tissage que peut présenter un matériau intermédiaire selon l'invention.
La Figure 4 représente un matériau selon l'invention présentant une forme de tresse cylindrique.
Les Figures 5A et 5B représentent un dispositif pour mesurer l'épaisseur d'une préforme formée de rubans, sous vide.
La Figure 6 est une photographie d'un exemple de ruban qui peut être utilisé dans le cadre de l'invention, et met en évidence son bord bien net.
La Figure 7 montre différentes formes de pièces qui peuvent être obtenues, à partir d'un matériau intermédiaire selon l'invention en forme de tresse cylindrique.
La Figure 8 représente, de façon schématique, une vue d'ensemble d'un dispositif de réalisation d'un ruban associé sur chacune de ses grandes faces à un non-tissé.
La Figure 9 illustre une construction de tissage, nommée armure sergé 2/2, utilisée dans les exemples.
La Figures 10 donne les perméabilités en fonction du taux volumique de fibres, pour un matériau intermédiaire conforme à l'invention.
Les Figures 11 à 15 montrent les performances mécaniques de pièces composites obtenues avec un matériau intermédiaire conforme à l'invention.
L'invention propose des matériaux réalisés par entrecroisement et entrelacement de rubans, dont certains au moins sont des rubans voilés. Dans le cadre de l'invention, les fils ou filaments unidirectionnels constitutifs des rubans sont associés à des non-tissés, avant leur entrecroisement avec entrelacement. Aussi, dans le matériau selon l'invention, chaque ruban voilé est associé à deux non-tissés sur toute sa longueur et, y compris au niveau des points de croisement et/ou entrelacement. L'entrecroisement avec entrelacement est, par exemple, réalisé par tissage ou tressage. Par rapport à un tissu qui serait associé après tissage à un liant chimique, par exemple sous la forme d'un voile, l'avantage du matériau selon l'invention réalisé à partir de bandes de fibres unidirectionnelles associées sur chacune de leurs faces à un non-tissé de fibres thermoplastiques, se situe, notamment, au niveau de la déformabilité, qui sera bien meilleure dans le cadre de l'invention, étant donné que les bandes peuvent bouger entre elles, alors que les fils sont bloqués par le liant chimique dans le cas d'un tissu traité après tissage ou d'une tresse traitée après tressage. Au sein du matériau selon l'invention, les rubans peuvent bouger les uns par rapport aux autres, étant donné qu'hormis la liaison mécanique obtenue par l'entrecroisement/entrelacement, il n'existe aucune autre liaison, notamment aucune liaison obtenu grâce à un liant chimique entre les rubans notamment par collage ou autre.
Par ailleurs, le fait d'utiliser directement des rubans porteurs de non- tissés qui vont apporter les propriétés mécaniques souhaitées à la pièce finale, offre de nombreuses possibilités de conception. Par exemple, le matériau selon l'invention peut directement être tressé sur un mandrin pour obtenir une tresse de forme cylindrique, puis être mis en forme par exemple par couture ou préformage afin de réaliser une préforme plus complexe, comme illustré notamment Figure 7. Le matériau selon l'invention peut également être directement tressé sur un mandrin de forme complexe, éventuellement en plusieurs couches successives.
De plus, le choix spécifique de rubans voilés, par rapport à d'autres rubans associés à un autre type de liant chimique tel qu'une poudre thermoplastique ou un liant pulvérisé « hot melt », comme proposé par la société Oxeon, permet d'obtenir par la suite, des pièces composites qui présentent de bien meilleures propriétés de résistance à l'impact. Dans le cadre de l'invention, par ruban ou bande, on entend un matériau en feuille qui présente une longueur, bien supérieure à sa largeur. De tels rubans peuvent notamment présenter des largeurs de 3 à 25 mm. Dans le cas des rubans voilés, ces derniers peuvent être réalisés à partir de un ou plusieurs fils, un fil étant constitué d'un ensemble de filaments. Des rubans voilés de plus faible largeur peuvent même être obtenus dans le cas où un fil très fin de 1K ou 3K est utilisé. Dans la suite, on pourra également nommer une bande de fils ou filaments parallèles, bande de fibres parallèles. Comme le montre la Figure 1, les rubans voilés I fabriqués dans le cadre de l'invention présentent une longueur I et une largeur L. Ces rubans voilés sont constitués d'un ensemble de filaments f (cas d'un seul fil 1) ou d'un ensemble de fils 1 (chacun constitué d'un ensemble de filaments) qui s'étendent parallèlement à la largeur du ruban. Un ruban voilé a une forme générale rectangulaire et est associé sur chacune de ses grandes faces la et lb à un non-tissé (respectivement 2a et 2b), comme le montre la Figure 2.
Par non-tissé, qui peut également être nommé « voile », on entend classiquement un ensemble de fibres continues ou courtes disposées aléatoirement. Ces non tissés ou voiles pourront par exemple être produits par les procédés « Meltblow », « Spunlaid » ou « Electrospinning », bien connus de l'homme du métier. En particulier, les fibres constitutives du non- tissé peuvent présenter des diamètres moyens compris dans la gamme allant de 0,5 et 70 pm. Dans le cas d'un non-tissé de fibres courtes, les fibres peuvent présenter, par exemple, une longueur comprise entre 1 et 100 mm. L'utilisation de non-tissés qui présentent une couverture aléatoire et isotropique permet de conférer à chaque ruban voilé une cohésion uniforme et dans toutes les directions, contrairement à la mise en œuvre de fils espacés, par exemple. Pour chaque ruban voilé, la liaison entre les non-tissés et la nappe unidirectionnelle a été préalablement assurée, par chauffage, en utilisant le caractère collant à chaud des non-tissés thermoplastiques, suivi d'un refroidissement. A titre d'exemple, les fibres constitutives des non-tissés sont, avantageusement, constituées d'un matériau thermoplastique, notamment choisi parmi : les Polyamides (PA : PA6, PA12, PAU, PA6,6, PA 6,10, PA 6,12, ...), Copolyamides (CoPA), les Polyamides - block ether ou ester (PEBAX, PEBA), polyphtalamide (PPA), les Polyesters (Polyéthylène téréphtalate -PET-, Polybutylène téréphtalate - PBT-...), les Copolyesters (CoPE), les polyuréthanes thermoplastiques (TPU), les polyacétales (POM...), les Polyoléfines (PP, HDPE, LDPE, LLDPE....), Polyéthersulfones (PES), les polysulfones (PSU...), les polyphénylènes sulfones (PPSU...), PolyétherétherCétones (PEEK), PolyétherCétoneCétone (PEKK), Poly(Sulfure de Phénylène) (PPS), ou Polyétherimides (PEI), les polyimides thermoplastiques, les polymères à cristaux liquides (LCP), les phenoxys, les copolymères à blocs tels que les copolymères Styrène-Butadiene- Méthylméthacrylate(SBM), les copolymères éthylméthacrylate-Acrylate de Butyl-Méthylméthacrylate (MAM) et leurs mélanges. Les non-tissés peuvent être constitués de fibres de même nature, mais également d'un mélange de fibres constituées de ces matériaux thermoplastiques. La matière est bien entendue adaptée aux différents types de systèmes thermodurcissables utilisés pour la constitution de la matrice, lors de la réalisation ultérieure des pièces composites.
Chaque ruban voilé utilisé pour la constitution du matériau intermédiaire selon l'invention présente, sur chacune de ses grandes faces, un non-tissé de fibres thermoplastiques qui lui assure sa cohésion. Notamment, à titre de non-tissé de fibres thermoplastiques, on peut utiliser des non-tissés commercialisés par exemple par les sociétés Protechnic (66, rue des Fabriques, 68702 - CERNAY Cedex - France) ou Spunfab Ltd. / Keuchel Associates, Inc. (175 Muffin Lane Cuyahoga Falls, OH 44223, USA).
Dans le cadre de l'invention, la nappe unidirectionnelle constituée de un ou plusieurs fils de renfort peut être en un matériau choisi parmi les matériaux suivants : carbone, verre, aramide, silice, basalte, céramique et leurs mélanges, ou tout autre matériau utilisé dans le domaine des matériaux composites, les fibres pouvant être naturelles ou synthétiques. Les fibres de carbone sont néanmoins préférées.
Au sein de chaque ruban, les filaments ou fibres de renfort sont disposés de manière à assurer une couverture quasi-totale sur toute la surface du ruban. En particulier, lorsque le ruban voilé est constitué d'une nappe unidirectionnelle de plusieurs fils, ceux-ci seront disposés bord à bord, avec un minimum, voir aucun manquement de matière (« gap » en anglais) ou chevauchement (« overlap » en anglais).
Un fil est en général constitué d'un ensemble de filaments et comporte, en général, dans le cas des fils de carbone, de 1 000 à 80 000 filaments, avantageusement de 12 000 à 24 000 filaments. De façon, particulièrement préférée, dans le cadre de l'invention, des fils de carbone de 1 à 24 K, par exemple, de 3 , 6K, 12K ou 24K, et préférentiellement de 12 et 24K, sont utilisés. Les fibres constitutives sont de préférence continues. Les fils présents au sein des rubans voilés présentent une section droite transversale sensiblement parallélépipédique ou elliptique et sont qualifiés de fils plats. Ces fils présentent une certaine largeur et épaisseur. A titre d'exemple, un fil plat de carbone de 3K et d'un titre de 200 tex présente généralement une largeur de 1 à 3 mm, un fil plat de carbone de 12K et d'un titre de 446 tex, une largeur de 2 à 5 mm, un fil plat de 12K d'un titre de 800tex, une largeur entre 3 et 7mm, un fil plat de carbone de 24K et d'un titre de 1600 tex, une largeur de 5 à 12 mm et un fil plat de carbone de 24K et d'un titre de 1040 tex, une largeur de 5 à 10 mm. Un fil plat de carbone de 3 000 à 24 000 filaments présentera donc le plus souvent une largeur de 1 à 12 mm. Pour certains modes de réalisation, les fils de carbone présents au sein des rubans voilés, présentent un titre compris entre 60 et 3800 Tex, et préférentiellement entre 400 et 900 tex. Avant l'association du ou des fils au non-tissés pour réaliser les rubans, il est possible d'étaler ou non les fils utilisés classiquement disponibles dans le commerce. A titre d'exemple, l'épaisseur de la nappe unidirectionnelle de carbone, au sein d'un ruban, peut être de 90 à 270 pm environ. Parmi les fils de carbone, on peut distinguer des fils Haute Résistance (HR) dont le module en traction est compris entre 220 et 241GPa et dont la contrainte à rupture en traction est comprise entre 3450 et 4830 Pa, les fils de Module Intermédiaire (INI) dont le module en traction est compris entre 290 et 297GPa et dont la contrainte à rupture en traction est comprise entre 3450 et 6200MPa et les Fils Haut Module (HM) dont le module en traction est compris entre 345 et 448GPa et dont la contrainte à rupture en traction est comprise entre 3450 et 5520Pa (d'après le « ASM Handbook », ISBN 0-87170-703-9, ASM International 2001).
Les rubans voilés tels que précédemment décrits, et dont certains exemples plus précis vont être donnés, par la suite dans la description et les exemples, sont utilisés, dans le cadre de l'invention pour fabriquer des matériaux intermédiaires, destinés à être associés à une matrice de résine thermodurcissable pour la réalisation ultérieure de pièces composites, pour l'aéronautique notamment. Dans les matériaux intermédiaires selon l'invention, ces rubans voilés sont superposés et entrecroisés avec entrelacement. Les matériaux intermédiaires selon l'invention sont, de préférence, constitués exclusivement de rubans voilés composés d'une série de fils ou filaments de renfort qui s'étendent selon une direction parallèle à la longueur du ruban pour former une nappe unidirectionnelle qui est associée sur chacune de ses faces à un non-tissé en fibres thermoplastiques, ces deux non-tissés assurant la cohésion dudit ruban voilé grâce à leur caractère thermoplastique. En particulier, les matériaux intermédiaires selon l'invention sont exclusivement constitués d'un tressage ou tissage de rubans voilés tels que plus précisément décrits dans la présente demande de brevet. Il n'est cependant pas exclu que dans les matériaux intermédiaires selon l'invention, ces rubans voilés soient combinés à d'autres rubans tels que des fils simples ou autres. En effet, ces rubans voilés peuvent, par exemple, n'être utilisés qu'en trame dans le cas d'un tissu, les fils de chaîne étant classiques et non voilés, ou sur un fil sur deux dans le cas d'une tresse, de façon à ce que toute la surface de l'architecture textile soit couverte par au moins un ruban voilé.
Tout type de technique d'entrecroisement avec entrelacement peut être utilisé. De préférence, la couverture apportée par l'entrecroisement sera maximale. Avantageusement, le matériau selon l'invention présentera un facteur d'ouverture inférieur ou égal à 0,5%. Ce facteur d'ouverture peut être déterminé par la méthode décrite dans les exemples. Un tel facteur d'ouverture peut, notamment être plus facilement atteint lorsque les rubans voilés utilisés sont calibrés et/ou lorsque le matériau selon l'invention est constitué exclusivement de rubans voilés.
On peut, par exemple, utiliser toute technique de tissage, telles que, notamment celles décrites dans les documents WO 2006/0759961 et WO 98/46817. Dans les matériaux selon l'invention les rubans peuvent être tissés, selon différentes constructions, notamment du type armure taffetas (appelé aussi toile), sergée ou satin comme illustré Figure 3 (partie gauche : taffetas et partie droite : satin) ou 9. Les références 10 et 11 désignent respectivement les rubans de la trame et les rubans de la chaîne. II est également possible d'utiliser la technique décrite dans la demande de brevet EP0670921 qui décrit un procédé de tissage amélioré dans lequel la trame est déroulée sans torsion, et où un système d'épanouissement par vibration peut, en plus, être appliqué au tissu obtenu pour augmenter son taux volumique de fibre en réduisant son facteur d'ouverture. Dans le cadre de l'invention, le matériau selon l'invention peut être obtenu selon un procédé de tissage qui peut mettre en œuvre l'une ou l'autre de ces améliorations ou les deux en combinaison. L'utilisation d'un dévidage à la déroulée de la trame décrit dans ce document a l'avantage de ne pas ajouter de torsion au ruban qui peut ainsi rester plat dans le matériau intermédiaire tissé obtenu.
Le matériau selon l'invention peut également se présenter sous la forme d'une tresse, en particulier d'une tresse formant un cylindre comme présenté Figure 4. De telles tresses sont réalisées par tressage de rubans tels que précédemment décrits. Les techniques de tressage telles que décrites dans les documents EP 1 798 428 ou US 2007/0193439 peuvent notamment être mises en œuvre. Dans ces techniques, un moyen robotisé vient placer un mandrin au centre d'une tresseuse, et balaye la longueur de ce mandrin pendant le tressage, de sorte que la tresse recouvre le mandrin. Après plusieurs passages, le mandrin est recouvert de différentes couches de rubans tressés. Il est aisée de mettre en œuvre des rubans utilisés dans le cadre de l'invention sur des tresseuses, spécialement si celles-ci sont optimisées pour tresser des fils plats. Une technique de tressage non symétrique mettant en œuvre deux sortes de rubans, telle que décrite dans la demande WO 92/15740, peut également âtre utilisée. Il est également possible de coudre une tresse ouverte pour lui conférer une forme de cylindre ou toute autre forme complexe désirée.
Est décrit ci-après un type particulier de ruban voilé de fibres de carbone qui permet d'obtenir des matériaux intermédiaires selon l'invention qui vont permettre notamment de réaliser, ultérieurement, des pièces composites qui vont allier à la fois de bonnes propriétés mécaniques et un taux volumique de fibres élevé, propriétés recherchées notamment dans le domaine de l'aéronautique. Selon un mode de réalisation préféré, chaque ruban voilé constitutif du matériau intermédiaire selon l'invention est constitué d'une nappe unidirectionnelle de fibres de carbone présentant une masse surfacique de 100 à 280 g/m2, associée, sur chacune de ses faces, à un non-tissé de fibres thermoplastiques, lesdits non-tissés présentant, chacun, une épaisseur de 0,5 à 50 microns, de préférence de 3 à 35 microns. Selon un mode de réalisation particulier, chaque ruban voilé présente une épaisseur de 80 à 380 microns, de préférence de 90 à 320 microns, et préférentiellement de 93 à 305 microns.
La norme NF EN ISO 9073-2 ne permet pas de mesurer l'un des constituants d'un matériau combiné de plusieurs éléments. Les méthodes suivantes peuvent être utilisées : l'une pour mesurer l'épaisseur d'un non- tissé au sein d'un ruban et l'autre pour mesurer l'épaisseur totale du ruban.
Ainsi, au sein d'un ruban, l'épaisseur du non tissé ou voile fixé sur la nappe unidirectionnelle de fils ou filaments de renfort peut être déterminée à partir de coupes microscopiques qui permettent une précision de +/- 1 μιη. La méthode est la suivante : Un ruban voilé associant une nappe unidirectionnelle constituée de fils ou filaments de renfort et deux voiles contrecollés de chaque côté de la nappe est imprégné à l'aide d'un pinceau d'une résine qui polymérise à la température ambiante (Araldite et Araldur 5052 de la société Huntsman). L'ensemble est fixé entre deux plaques pour appliquer une pression de l'ordre de 2-5 kPa lors de la polymérisation. La mesure de l'épaisseur du voile présent dans le ruban voilé est indépendante de la pression exercée lors de cette étape. Une tranche de l'ensemble est enrobée dans une résine de prise à froid Epofix Kit de Struers, puis polie (à l'aide d'un papier abrasif à base de carbure de silicium d'un grain 320 pm et de différents feutres jusqu'à un grain de 0,3 pm) pour pouvoir être observée à l'aide d'un microscope optique Olympus BX 60 couplé à une caméra Olympus ColorView IIIu. La mise en uvre de cette résine qui polymérise à l'ambiante n'a aucune influence sur l'épaisseur du voile mais permet uniquement d'effectuer les mesures. Le logiciel analySIS auto 5.0 de la société Olympus Soft Imaging Solution GmbH permet de prendre des photos et de réaliser les mesures d'épaisseur. Pour chaque ruban voilé (nappe unidirectionnelle combinée à des voiles de chaque côté), 5 images sont prises avec un grossissement de 20. Sur chaque image, 15 mesures d'épaisseur du voile sont réalisées et la moyenne et l'écart-type de ces mesures sont déterminés.
L'épaisseur totale d'un ruban voilé peut être déterminée à partir de la méthode suivante, dont le dispositif est schématisé sur les Figures 5A et 5B, qui détermine une moyenne sur une préforme constituée d'un empilement de rubans voilés. Sur ces Figures, A désigne la préforme ; B la plaque de support ; C le papier siliconé; D le film de mise sous vide ; E le joint de mise sous vide ; F le feutre de drainage et G la prise de vide. Cette méthode est classiquement utilisée par l'homme du métier et permet une mesure globale en minimisant la variabilité qui peut exister localement au sein d'un même ruban. Une préforme constituée d'un empilement de différentes couches orientées de ruban voilé est placée entre deux couches de papiers siliconés de 130 g/m2 et d'une épaisseur de 0,15 mm commercialisé par la société SOPAL dans un film de mise sous vide CAPRAN 518 de la société Aerovac (Aerovac Systèmes France, Umeco Composites, 1 rue de la Sausse 31240 Saint-Jean, France) et en contact avec un feutre de drainage Airbleed 10HA commercialisé par Aerovac. L'étanchéité de l'ensemble est assurée à l'aide d'un joint de mise sous vide SM5130 commercialisé par Aerovac. Un vide compris entre 0,1 et 0,2 kPa est tiré à l'aide d'une pompe à vide Leybold SV40 B (Leybold Vacuum, Bourg les Valence, France). Ensuite, l'épaisseur de la préforme est mesurée entre deux comparateurs digitaux TESA Digico 10 après soustraction de l'épaisseur de la bâche à vide et des papiers siliconés. 25 mesures sont réalisées par préforme et la moyenne et l'écart type de ces mesures sont déterminés. L'épaisseur obtenue du ruban voilé est alors déterminée en divisant l'épaisseur de la préforme totale par le nombre de couches de rubans voilés superposés.
De façon avantageuse, l'épaisseur de chaque ruban voilé présent au sein du produit intermédiaire selon l'invention présente une faible variabilité, notamment avec des variations d'épaisseurs n'excédant pas 20 m en écart- type, de préférence n'excédant pas 10 pm en écart-type. Cette caractéristique permet d'améliorer la régularité des pièces composites qui peuvent être obtenues.
Le grammage de la nappe de fibres de carbone peut être déterminé à partir du grammage de chaque ruban voilé (nappe unidirectionnelle + 2 voiles). Si l'on connaît la masse surfacique des voiles, il est alors possible de déduire la masse surfacique de la nappe unidirectionnelle. De façon avantageuse, la masse surfacique est déterminée à partir du produit intermédiaire par attaque chimique (éventuellement également par pyrolyse) du voile. Ce type de méthode est classiquement utilisé par l'homme du métier pour déterminer le taux de fibres de carbone d'un tissu ou d'une structure composite.
On décrit ci-après une méthode de mesure du grammage d'un ruban. Le grammage d'un ruban est mesuré par pesée d'échantillons découpés de 100 cm2 (c'est-à-dire de 113 mm de diamètre). Pour faciliter la découpe des échantillons d'un ruban qui est souple, le ruban est placé entre deux cartons lustrés de la société Cartonnage Roset (Saint Julien en Genevois, France) de 447 g/m2 et de 0,450 mm d'épaisseur pour assurer une certaine rigidité de l'ensemble. Un emporte pièce circulaire pneumatique de la société Novi Profibre (Eybens, France) est utilisé pour découper l'ensemble ; 10 échantillons sont prélevés par type de ruban. Par ailleurs, de façon avantageuse, la masse surfacique du voile présent au sein de chaque ruban voilé est comprise dans la gamme allant de 0,2 à 20 g/m*.
Dans chaque ruban, l'association entre la nappe unidirectionnelle et les voiles peut être réalisée de manière discontinue, par exemple uniquement en certains points ou zones, mais est, de préférence, réalisée selon une liaison qui s'étend sur la totalité de la surface de la nappe, qualifiée de continue. L'association de la nappe unidirectionnelle aux deux voiles peut se faire par l'intermédiaire d'une couche adhésive, par exemple choisie parmi les adhésifs époxydes, adhésifs polyuréthane, les colles thermodurcissables, les adhésifs à base de monomère polymérisables, les adhésifs acryliques structuraux ou acryliques modifiés, les adhésifs hot-melt. Mais, le plus souvent l'association est réalisée grâce au caractère collant que présentent les voiles à chaud, par exemple lors d'une étape de thermocompression lors de leur conception qui permet d'assurer une liaison entre la nappe unidirectionnelle et les voiles. De manière préférée, la cohésion de chaque ruban voilé est assurée exclusivement par les non-tissés thermoplastiques.
Selon un mode de réalisation particulier, chaque ruban voilé présente une largeur donnée sensiblement constante sur toute sa longueur, c'est-à- dire que les rubans voilés possèdent une très faible variabilité de largeur sur toute leur longueur. Dans ce cas, du fait de la largeur sensiblement constante des rubans voilés utilisés, les rubans voilés selon l'invention présentent également une très faible variabilité en termes de masse surfacique. En particulier, la largeur de chaque ruban voilé présente, sur toute la longueur dudit ruban, un écart type notamment inférieur à 0,25 mm, de préférence inférieur à 0,22 mm et préférentiellement inférieur ou égal à 0,20 mm. Une faible variabilité de largeur permet notamment de réaliser par la suite des pièces d'une grande régularité, avec des propriétés mécanique contrôlées. La largeur des rubans voilés et l'écart type peuvent être déterminés selon la méthode décrite dans les exemples pour les résultats du TABLEAU 3. L'écart type peut être défini comme la moyenne quadratique des écarts à la moyenne, soit:
Figure imgf000017_0001
(i)
avec:
n = nombre de valeurs
xi= une valeur x =moyenne arithmétique
Un tel ruban voilé de largeur sensiblement constante peut être obtenu selon un procédé qui comprend les étapes suivantes :
Al) ajustement de la largeur du ruban à la largeur souhaitée grâce à des moyens de calibrage,
A2) association du ruban sur chacune de ses faces à un non-tissé de fibres thermoplastiques permettant d'assurer une cohésion homogène du ruban, de manière à ce que la masse totale des non-tissés n'excède pas 25 % de la masse totale du ruban obtenu.
La constitution du ruban voilé peut être réalisée à partir de un ou plusieurs fils. Dans le cas où un ruban est constitué de plusieurs fils, c'est l'ensemble des fils (et non chaque fil pris individuellement) qui est calibré pour conduire à une nappe de largeur donnée.
Le procédé de constitution de tels rubans voilés qui ne sont pas actuellement disponibles dans le commerce est détaillé ci-après. Le ou les fils peuvent être tirés d'une bobine et peuvent subir un étalement, avant l'étape de calibration. Pour cela, le ou les fils pourront passer sur un dispositif d'étalement, par exemple constitués de un ou plusieurs barreaux étaleurs. Cette étape d'étalement pourra être nécessaire, en fonction du grammage souhaité et également, pour obtenir, avant calibration une largeur pour la nappe ou pour les fils supérieure à la largeur souhaitée après calibration. Ce système de calibration pourra être complété par une barre vibrante dans le sens de sa longueur, située en sortie des barreaux étaleurs, juste en amont des moyens de calibrage. De même, un tel dispositif pourra être complété par plusieurs barres vibrantes dans le cas où l'association de fils de titre important est utilisée pour des masses surfaciques très faibles.
L'étape de calibrage est réalisée en faisant passer la nappe ou le fil sur des moyens de calibrage, il peut s'agir d'un passage de largeur donné, notamment sous la forme d'une gorge à fond plat, aménagé sur un rouleau ou d'un passage aménagé entre deux dents, dans le cas où un ruban unique à base de un ou plusieurs fils est réalisé ou d'un peigne calibreur délimitant des passages calibrés pour plusieurs fils, dans le cas où plusieurs rubans voilés sont fabriqués en parallèle. Lorsque l'on réalise une nappe constituée de plusieurs fils, en réalité, la calibration, à proprement parlé, de la largeur de la nappe ne se fait que sur les deux fils extérieurs, les autres fils étant guidés par un peigne se situant en amont de l'élément d'étalement de telle sorte qu'il n'y ait pas d'espace libre entre les fils à l'intérieur de la nappe.
En sortie des moyens de calibrage, la nappe unidirectionnelle calibrée présentera sur toute sa longueur, une largeur quasi-constante qu'elle va garder, jusqu'à l'obtention du ruban voilé final. De préférence, en sortie des moyens de calibrage, la largeur de la nappe unidirectionnelle calibrée présentera, sur toute la longueur de la nappe unidirectionnelle, un écart type notamment inférieur à 0,25 mm, de préférence inférieur à 0,24 mm et préférentiellement inférieur ou égal à 0,20 mm.
Dans un tel procédé, les non-tissés sont avantageusement associés au ruban, après ajustement de la largeur du ruban, de manière à maintenir la largeur obtenue après ajustement. Il est ainsi possible de calibrer le ruban à la largeur souhaitée, qui est sensiblement constante sur toute sa longueur, et figer la calibration obtenue en associant le ruban de fibres aux non-tissés par collage, et minimiser ainsi les variations de largeur. La nappe unidirectionnelle calibrée obtenue est ensuite associée, sur chacune de ses faces, à un non-tissé thermoplastique, par exemple sur un tapis convoyeur entraîné par des rouleaux. La distance entre la sortie des moyens de calibration et les moyens d'association de la nappe aux non-tissés sera, de préférence, très faible, de l'ordre de quelques millimètres, afin de conserver la calibration obtenue. Pour permettre leur liaison avec les fils ou filaments, après refroidissement, les non-tissés sont soumis, en amont de leur association au ruban, à une étape de chauffage entraînant le ramollissement, voire la fusion du polymère. Les conditions de chauffage et de pression, sont adaptées au matériau constitutif des non-tissés et à leur épaisseur. Le plus souvent une étape de thermocompression à une température comprise dans la gamme allant de Tf non-ussé - 15°C et Tf non-tissé + 60°C (avec Tf non-tissé qui désigne la température de fusion du non-tissé) et sous une pression de 0,1 à 0,6 MPa est réalisée. Il est, ainsi, possible d'atteindre des taux de compression du non-tissé avant et après association allant de 1 à 10. L'étape de contrecollage des non-tissés sur l'unidirectionnel de fibres de renfort est également déterminante pour maîtriser correctement l'épaisseur finale du ruban. En effet, en fonction des conditions de température et de pression, notamment lors du contrecollage, il est possible de modifier, et donc d'ajuster, l'épaisseur du non-tissé présent de chaque côté dans le ruban.
L'épaisseur des non-tissés avant leur association à la nappe unidirectionnelle est choisie, en fonction de la façon dont ils vont être associés à la nappe de fibres unidirectionnelles. Le plus souvent, leur épaisseur est très proche de l'épaisseur souhaitée sur le ruban. Il peut également être possible de choisir d'utiliser un non-tissé d'épaisseur plus importante qui est alors laminé sous température lors de l'étape d'association, de manière à atteindre l'épaisseur voulue. De façon préférée, la nappe de fibres unidirectionnelles est associée sur chacune de ses grandes faces à deux non-tissés sensiblement identiques, de façon à obtenir un produit intermédiaire parfaitement symétrique.
Selon un mode de réalisation particulier, pouvant être combiné aux précédents, chaque ruban voilé ne présente pas de fibres coupées sur ses bords longitudinaux. Ceci rend l'utilisation de ces derniers beaucoup plus facile dans les procédés de tressage et tissage. En effet, la présence de fibres ou filaments coupés en bord de ruban a pour inconvénient de créer des zones d'accumulation des fibres ou filaments à certains points le long du trajet du ruban dans les procédés cités, et de causer des arrêts machine pour cause de casse de fils ou de mauvaise qualité du renfort créé. Ces bords avec présence de filaments coupés sont également générateur de fils s'enroulant sur eux même lors du dévidage de la bobine où se trouve enroulé le ruban, ce qui a pour conséquence également des casses de fils ou défaut de qualité (on parle alors de « bagues » créées sur la bobine de ruban). Une telle caractéristique est rendue possible, notamment grâce au procédé précédemment décrit qui évite tout découpage pour obtenir la largeur souhaitée au ruban.
Aussi, selon un mode de réalisation particulier, pouvant être combiné aux précédents, chaque ruban voilé présente, en certains points seulement de ses bords longitudinaux ou sur toute la longueur de ses deux bords longitudinaux, une liaison directe entre les deux non-tissés, réalisée grâce au caractère thermoplastique de ces derniers.
Dans le cadre de cette dernière variante de réalisation, de manière à encore favoriser l'obtention d'un bord net et une bonne maîtrise de la largeur du ruban, dans le procédé précédemment détaillé, le ruban, d'une part, et les parties découpées de part et d'autre de ses bords, d'autre part, sont entraînés par des moyens d'extraction, tels que des moyens d'entraînement ou d'aspiration.
Dans ce cas, la largeur des non-tissés est choisie de manière à ce que ces derniers dépassent de part et d'autre de la nappe unidirectionnelle. Ensuite, le ruban est tiré du tapis convoyeur au moyen de rouleau d'entraînement (trio d'appel) et est soumis à une découpe au niveau de chacun de ses bords longitudinaux, au moyen d'un dispositif de découpe chauffant, et en particulier de couteaux chauffants. La découpe n'est pas réalisée dans un fil, mais juste à côté du bord du fil, afin d'éviter toute effilochure. Le découpage à chaud du non-tissé au niveau de chaque bord du ruban, entraine une certaine rétractation de ce dernier. Les deux non-tissés présentant une largeur supérieure à la largeur de la nappe unidirectionnelle, on observe un collage ponctuel des deux non tissés entre eux qui viennent préférentiellement emprisonner la nappe unidirectionnelle au niveau des bords de carbone. Le ruban voilé obtenu présente alors un bord bien net 4, sans fragments de filaments coupés, comme illustré Figure 6. Le ruban est alors tracté par un trio de rouleaux d'appel. Il est également possible pour favoriser, encore, l'obtention d'un bord bien net de procéder à l'extraction des chutes de non-tissé, par des moyens d'entrainement de type rouleaux d'entraînement ou par des moyens d'aspiration. Dans ce cas, les parties extrêmes correspondant aux déchets comportent un fil dont le non-tissé peut n'être découpé que d'un seul côté, ce qui va permettre de favoriser l'entraînement ou l'aspiration des déchets. Il peut également être prévu de disposer sur les bords destinés à être découpés et jouer le rôle de déchets, un fil de nature différente de ceux servant à la constitution des rubans voilés.
Les matériaux intermédiaires selon l'invention peuvent être utilisés pour la réalisation de pièces aéronautiques qui demandent de hautes performances mécaniques, et notamment pour la réalisation de pièces de structure primaire. En particulier, les tresses de forme cylindrique conformes à l'invention peuvent être utilisées pour la fabrication de pièces longilignes, telles que des cadres de fuselages ou des raidisseurs. Dans ce cas, par exemple, la tresse est déformée et maintenue en forme par couture ou préformage (thermocompression) pour présenter une section en forme de I, T, S notamment, comme illustré Figure 7.
De telles pièces pourrons être réalisées par tout procédé direct connu, tels que les procédés par infusion ou injection de résine thermodurcissables. La matrice utilisée est de type thermodurcissable. La résine injectée sera, par exemple, choisie parmi les polymères thermodurcissables suivants : les époxydes, les polyesters insaturés, les vinylesters, les phénoliques, les polyimides, les bismaléimides. La pièce composite est obtenue après une étape de traitement thermique. En particulier, la pièce composite est obtenue généralement par un cycle de consolidation classique des polymères considérés, en effectuant un traitement thermique, recommandé par les fournisseurs de ces polymères, et connu de l'homme du métier. Cette étape de consolidation de la pièce souhaitée est réalisée par polymérisation/réticulation suivant un cycle défini en température et sous pression, suivie d'un refroidissement. La pression appliquée lors du cycle de traitement est faible dans le cas de l'infusion sous vide et plus forte dans le cas de l'injection dans un moule RTM.
Le matériau intermédiaire et le procédé selon l'invention permettent, dans certains cas, de réaliser des pièces composites présentant un TVF de l'ordre de 60%, qui correspond au taux standard pour les structures primaires en aéronautique (c'est-à-dire les pièces vitales pour l'appareil) et, également, d'améliorer fortement la résistance à l'impact à faible vitesse des pièces composites obtenues: par exemple, la chute d'un outil dans un atelier lors de la fabrication d'une structure composite, un choc avec un corps étranger lors de son utilisation en fonctionnement.
La pression appliquée lors d'un procédé par injection est supérieure à celle utilisée lors d'un procédé par infusion. Il en résulte qu'il est plus facile de réaliser des pièces avec un TVF correct avec un procédé d'injection que d'infusion. Les matériaux selon l'invention permettent d'atteindre le taux volumique de fibres souhaité, et notamment de l'ordre de 53 à 60%, même lorsque la pièce composite est réalisée avec une étape c) telle que mentionnée précédemment, qui met en œuvre une infusion et non une injection de résine. Un tel mode de réalisation constitue d'ailleurs une variante avantageuse.
Les pièces composites susceptibles d'être obtenues selon le procédé de l'invention font également parties intégrantes de l'invention, en particulier, les pièces qui présentent un taux volumique de fibres de 50 à 63% et notamment de 53 à 60%.
Les exemples ci-après permettent d'illustrer l'invention, mais n'ont aucun caractère limitatif.
PARTIE A : CONSTITUTION DES RUBANS
Les fils de carbone T700GC 31E de 12 K sont commercialisés par la société Toray Industries, Japon.
Un non-tissé en polyamides de 4 (vendu sous la références 128D04 par Protechnic, France et nommé voile a a été utilisé. Les caractéristiques du voile a utilisé pour la fabrication des rubans voilés conformes à l'invention sont indiquées dans le TABLEAU 1. Le point de fusion du voile indiqué dans le TABLEAU 1 est déterminé par calorimetrie différentielle à balayage (DSC) selon la norme ISO 11357-3. La masse surfacique est mesurée suivant la norme ISO 3801. Le taux de porosité indiqué dans le TABLEAU 1 est calculé à partir de la formule suivante :
T A fo/ 1 Masse surfacique du voile .„ Taux de porosité voile (%) = 1 - x lOO (2)
P matière du voile ^ ^voile
Où - la masse surfacique du voile est exprimée en kg/m2,
- pmatière du voile est exprimée en kg/m3,
- e voiie est exprimée en m.
TABLEAU 1 : Caractéristiques du voile utilisé (les valeurs mentionnées après ± représentent l'écart type)
Figure imgf000023_0001
* Mesurées par analyse d'images
Les fils de carbone sont utilisés pour constituer des rubans en association avec deux voiles a, à l'aide d'une machine telle que représentée FIGURE 8. La référence des éléments chauffants de découpe est : Thermocut TC-1 de la société LOEPFE BROTHER, LIMITED, Wetzikon, Suisse.
Le ou les fils de carbone 1 sont déroulés à partir de bobines de carbone 100 fixées sur un cantre 101, passent au travers d'un peigne 102, sont conduits dans l'axe de la machine à l'aide d'un rouleau de guidage 103. Les fils de carbone 12K et 800Tex initialement d'une largeur de variant de 4,5 à 7 mm environ sont alors étalés grâce à la barre chauffante 11 et à la barre d'étalement 12 puis calibré à une largeur de 5,42 mm grâce aux moyen de calibrage pour avoir une nappe unidirectionnelle à la largeur souhaitée. Les rouleaux de non-tissés 104a et 104b sont déroulés sans tension et transportés à l'aide de tapis continus 105a et 105b fixés entre les rouleaux libres en rotation 106a, 106b, 106c, 106d et les barres chauffées 107a, 107b. Les non-tissés 2a et 2b sont préchauffés dans les zones 108a et 108b avant d'être en contact avec les fils de carbones 1 et contrecollés de part et d'autre de deux barres chauffées 107a et 107b dont l'entrefer est contrôlé. Une calandre 108, qui peut être refroidie, applique ensuite une pression sur la nappe unidirectionnelle avec un non-tissé de chaque côté, qui est ensuite dirigée vers les moyens de découpe 109. Un rouleau de renvoi 110 permet de rediriger le ruban I vers le système de traction comprenant un trio d'appel 111 puis d'enroulage 112 pour former un rouleau constitué du ruban voilé I.
Les conditions opératoires sont indiquées dans le TABLEAU 2.
TABLEAU 2
Figure imgf000024_0001
Les caractéristiques des rubans obtenus sont présentées TABLEAU 3. Les mesures de largeur moyenne et d'écart type ont été réalisées grâce au dispositif suivant : le ruban voilé est déroulé de son support à la vitesse constante de 1,2m par minute, avec une tension constante comprise entre 200 et 400cN, où il passe ensuite, à une distance de 265mm et sans support à cet endroit, devant une caméra modèle Baumer Optronic Type FWX 20, focale 20mm, 1624x1236 pixels (Baumer Optronic Gmbh, Allemagne). La calibration de la caméra est la suivante : 1 pixel équivaut à 0.05mm, ce qui correspond à une taille de photo de 1640 pixels x 0,05=82mm. Une photo est ensuite prise tous les 38mm, sur une longueur minimum de 50m correspondant à 1315 mesures de largeur minimum. Le logiciel NEUROCHECK 5.1 (Neurocheck Gmbh, Allemagne) analyse ensuite l'image et stocke les valeurs de largeurs dans un ficher qui sera ensuite traité statistiquement par le logiciel ΜΙΙΜΓΤΑΒ (Minitab Inc, USA).
TABLEAU 3
Figure imgf000025_0001
PARTIE B : CONSTITUTION DES MATERIAUX INTERMEDIAIRES
Dans tous les exemples ci-après, un tissage armure sergé 2/2 tel que celui représenté Figure 9 est utilisé pour fabriquer des matériaux intermédiaires selon l'invention, à l'aide des rubans tels que précédemment décrits. 1,85 rubans (ce qui correspond au nombre de fils étant donné qu'un ruban est composé d'un seul fil dans le cas exemplifié) par cm sont utilisés en chaîne et en trame. Ce même tissage est utilisé dans les exemples comparatifs.
Exemple 1
Les rubans obtenus avec le voile a et calibrés à 5,42mm sont utilisés en chaîne et en trame. Le tissage est réalisé sur métier à tisser Dornier (Lindau, Allemagne) modèle PTS conformément à la méthode nommée « tissage à la déroulée SD » dans le brevet EP 0670921, c'est-à-dire sans étalement post- tissage, à une vitesse de 100 duites/min. L'armure tissé est un sergé 2/2, le duitage est à 1,85 fils/cm, afin d'obtenir un tissu équilibré de 295 g/m2.
Exemple comparatif 1
Des fils de carbone T700GC 31E de 12 K non voilés sont utilisés en chaîne et en trame. Le tissage est réalisé sur métier à tisser Dornier (Lindau, Allemagne) modèle PTS conformément à la méthode nommée « tissage à la déroulée SD» dans le brevet EP 0670921, c'est-à-dire sans étalement posttissage, à une vitesse de 100 duites/min. L'armure tissé est un sergé 2/2, le duitage est à 1,85 fils/cm afin d'obtenir un tissu équilibré de 295g/m2 (référence 48302 d'Hexcel Renforcements).
Exemple comparatif 2
Des fils de carbone T700GC 31E de 12 K non voilés sont utilisés en chaîne et en trame. Le tissage est réalisé sur métier à tisser Dornier (Lindau, Allemagne) modèle PTS conformément à la méthode nommée « tissage à la déroulée SD » dans le brevet EP 0670921, c'est-à-dire sans étalement posttissage, à une vitesse de 100 duites/min. L'armure tissé est un sergé 2/2, le duitage est à 1,85 fils/cm afin d'obtenir un tissu équilibré de 295g/m2 (référence 48302 d'Hexcel Renforcements).
Après le tissage, le tissu obtenu est associé sur chacune de ses faces au voile a précédemment décrit conformément aux conditions données TABLEAUX 4 et 5. Une ligne de laminage à plat (ou « ligne de contrecollage » de la société S-Line (Brugg, Switzerland) avec les paramètres suivants :
TABLEAU 4
Figure imgf000026_0001
TABLEAU 5
Figure imgf000026_0002
Mesures de perméabilité
La perméabilité transverse peut se définir par l'aptitude qu'a un fluide à traverser un matériau fibreux. Elle se mesure en m2. Les valeurs données ci- dessus, ainsi que celles mentionnées dans les exemples qui suivent, sont mesurées avec l'appareillage et la technique de mesure décrite dans la Thèse intitulée « Problématique de la mesure de la perméabilité transverse de préformes fibreuses pour la fabrication de structures composites », par Romain Nunez, soutenue à l'Ecole Nationale Supérieure des Mines de Saint Etienne, le 16 Octobre 2009, à laquelle on pourra se référer pour plus de détails. La mesure est notamment réalisée avec un contrôle de l'épaisseur de l'échantillon pendant l'essai en utilisant deux chambres co-cylindriques permettant de réduire l'influence du « race-tracking » (passage du fluide à coté ou « sur le coté » du matériau dont la perméabilité est à mesurer). Le fluide utilisé est de l'eau et la pression est de 1 bar +/-0,01bar. Les mesures de perméabilités obtenues avec les matériaux de l'exemple 1 et des exemples comparatifs 1 et 2 sont présentées Figure 10.
Mesures de facteur d'ouverture
Les facteurs d'ouverture ont été mesurés selon la méthode suivante. Le dispositif est constitué d'une caméra de marque SONY (modèle SSC-
DC58AP), équipée d'un objectif de lOx, et d'une table lumineuse de marque Waldmann, modèle W LP3 NR,101381 230V 50HZ 2xl5W. L'échantillon à mesurer est posé sur la taie lumineuse, la caméra est fixée sur une potence, et positionnée à 29cm de l'échantillon, puis la netteté est réglée.
La largeur de mesure est déterminée en fonction du matériau fibreux à analyser, à l'aide de la bague (zoom), et d'une règle : 10cm pour les matériaux fibreux ouverts (OF>2%), 1,17cm pour les matériaux fibreux peu ouverts (OF<2%).
A l'aide du diaphragme et d'un cliché témoin, la luminosité est réglée pour obtenir une valeur d'OF correspondant à celle donnée sur le cliché témoin.
Le logiciel de mesure par contraste Videomet, de la société Scion Image (Scion Corporation, USA), est utilisé. Après capture de l'image, celle-ci est traitée de la façon suivante : A l'aide d'un outil, on définit une surface maximum correspondant à l'étalonnage choisi, par exemple pour 10cm - 70 trous, et comportant un nombre de motifs entier. On sélectionne alors une surface élémentaire au sens textile du terme, c'est-à-dire une surface qui décrit la géométrie du matériau fibreux par répétition.
La lumière de la table lumineuse passant au travers des ouvertures de du matériau fibreux, l'OF en pourcentage est défini par cent auquel est soustrait la surface noire divisée par la surface élémentaire soit 100-(surface noire / surface élémentaire ).
Il est à noter que le réglage de la luminosité est important car des phénomènes de diffusion peuvent modifier la taille apparente des trous et donc de l'OF. Une luminosité intermédiaire sera retenue, de telle sorte qu'aucun phénomène de saturation ou de diffusion trop importante ne soit visible.
Les résultats obtenus sont présentés dans le TABLEAU 6 ci-après :
TABLEAU 6
Figure imgf000028_0001
On peut noter que les valeurs sont très basses pour les trois renforts décrits, des tissus avec des facteurs d'ouverture inférieurs à 0,5% sont dits « fermés ».
PARTIE C : REALISATION DE PIECES COMPOSITES
Des plaques composites sont réalisées à partir d'un ensemble de matériaux intermédiaires disposés dans avec les différentes orientations 0°, 45°, -45°, 90°. L'empilement est symétrique. Le nombre de matériaux intermédiaires (également nommés plis) constituant l'empilement est déterminé à partir de la formule suivante déduite de la formule (3):
carbone plaque 1 fa
n Iis= —— iu ^3
Masse surfacique UD cafbone
sachant que : - l'épaisseur visée de la plaque est la plus proche de 4 mm (définie par la norme prEN 6038), e piaque est exprimée en mm (dans les exemples l'épaisseur visée est de 3,81mm),
- le taux volumique de fibres (TVF) visé pour obtenir les meilleures propriétés mécaniques, est de généralement 60% et p rlbre carbone est exprimée en g/cm3,
- La masse surfacique de IUD car one est exprimée en g/m2.
L'empilement est ainsi constitué de 12 plis dans le cas d'un grammage de carbone de 295 g/m2 et s'écrit en notation abrégée : [(+45/- 45)/(0/90)]3S.
4.2 Fabrication de la plaque composite
Les différents plis sont maintenus entre eux en soudant légèrement à chaque ajout de nouveau pli en quelques points à l'aide d'un fer à souder. L'ensemble constitue une préforme. La préforme de 340 mm x 340 mm, constituée de la séquence d'empilement adapté au grammage de carbone est placée dans un moule d'injection sous une presse. Un cadre d'épaisseur connu entoure la préforme afin d'obtenir le taux volumique de fibres (TVF) souhaité.
La résine époxy commercialisée sous la référence HexFlow RTM6 par
Hexcel est injectée à 80°C sous 2 bars à travers la préforme qui est maintenue à 120°C, température des plateaux de la presse. La pression appliquée sur chacun des deux plateaux de la presse est de 5 bars. Lorsque que la résine apparaît au point de sortie du moule, le tuyau de sortie est fermé et le cycle de polymérisation commence (montée jusqu'à 180°C à 3°C/min, puis maintien 2 heures à 180°C, puis refroidissement à 5 °C/min). 6 éprouvettes par type de configuration de 150 x 100mm (norme prEN 6038) sont ensuite découpées pour réaliser le test de compression après impact (CAI).
5. Essais mécaniques
Les éprouvettes (12 par type de configuration) sont fixées sur un dispositif comme indiqué dans la norme prEN 6038. Les éprouvettes ont été soumises à plusieurs impacts à différentes énergies allant de 10 à 50 J à l'aide d'un équipement adapté à la norme européenne préliminaire prEN 6038 publiée par ASD-STAN (AeroSpace and Defence Standard, Avenue de Tervueren 270, 1150 Woluwe-Saint-Pierre, Belgique). Les essais de compression ont été réalisés sur une machine de tests mécaniques Zwick (Zwick France Sari, Roissy Charles de Gaule, France).
Les résultats de contrainte à la rupture en compression après impact (CAI) de la plaque obtenue avec les matériaux intermédiaires de l'exemple 1 et des plaques obtenues avec les matériaux intermédiaires des exemples comparatifs 1 et 2 sont donnés Figure 11. Les performances CAI sont améliorées pour les pièces composites conformes à l'invention.
Les résultats des tests conformes à la norme pr EN6038 sont donnés Figure 12. Les Figures 13, 14 et 15 comparent les résultats de contraintes à rupture en compression après impact de la plaque obtenue avec les matériaux intermédiaires de l'exemple 1 et de la plaque obtenue avec les matériaux intermédiaires de l'exemple comparatif 2, respectivement selon les tests de la norme pr EN 6031 (Figure 13 et 14), selon le test de la norme ASTM D 6484 (Figure 15). Dans ces tests, les performances mécaniques sont équivalentes.

Claims

REVENDICATIONS
1 - Matériau intermédiaire composé d'un ensemble de rubans entrecroisés avec entrelacement caractérisé en ce qu'au moins certains des rubans, et de préférence tous les rubans, nommés rubans voilés, sont composés d'une série de fils ou filaments de renfort qui s'étendent selon une direction parallèle à la longueur du ruban pour former une nappe unidirectionnelle qui est associée sur chacune de ses faces à un non-tissé en fibres thermoplastiques, ces deux non-tissés assurant la cohésion dudit ruban voilé grâce à leur caractère thermoplastique.
2 - Matériau intermédiaire selon la revendication 1 caractérisé en ce que chaque ruban voilé présente une largeur donnée sensiblement constante sur toute sa longueur.
3 - Matériau intermédiaire, selon la revendication 1 ou 2, caractérisé en ce que la largeur de chaque ruban voilé présente, sur toute la longueur dudit ruban, un écart type notamment inférieur à 0,25 mm, de préférence inférieur à 0,22 mm et préférentiellement inférieur ou égal à 0,20 mm.
4 - Matériau intermédiaire, selon l'une des revendications précédentes, caractérisé en ce que chaque ruban voilé ne présente pas de fibres coupées sur ses bords longitudinaux.
5 - Matériau intermédiaire, selon l'une des revendications précédentes, caractérisé en ce que chaque ruban voilé présente, en certains points seulement de ses bords longitudinaux ou sur toute la longueur de ses deux bords longitudinaux, une liaison directe entre les deux non-tissés, réalisée grâce au caractère thermoplastique de ces derniers.
6 - Matériau intermédiaire, selon l'une des revendications précédentes, caractérisé en ce que chaque ruban voilé est réalisé à partir d'un seul fil correspondant à un ensemble de filaments.
7 - Matériau intermédiaire, selon l'une des revendications 1 à 5, caractérisé en ce que chaque ruban voilé est réalisé à partir de plusieurs fils.
8 - Matériau intermédiaire, selon l'une des revendications précédentes, caractérisé en ce que la masse de non-tissés, au sein de chaque ruban voilé, représente de 3 à 10 % de la masse totale de chaque ruban. 9 - Matériau intermédiaire, selon l'une des revendications précédentes, caractérisé en ce que les fils ou filaments de renfort, au sein de chaque ruban voilé, sont en un matériau choisi parmi les matériaux suivants : carbone, verre, aramide, silice, basalte, céramique et leurs mélanges.
10 - Matériau intermédiaire, selon l'une des revendications précédentes, caractérisé en ce que les fibres thermoplastiques, au sein de chaque ruban voilé, sont choisies parmi les fibres de Polyamides (PA : PA6, PA12, PAU, PA6,6, PA 6,10, PA 6,12, ...), Copolyamides (CoPA), Polyamides - block ether ou ester (PEBAX, PEBA), polyphtalamide (PPA), Polyesters (Polyéthylène téréphtalate -PET-, Polybutylène téréphtalate - PBT-...), Copolyesters (CoPE), polyuréthanes thermoplastiques (TPU), polyacétales (POM...), Polyoléfines (PP, HDPE, LDPE, LLDPE....), Polyéthersulfones (PES), polysulfones (PSU...), les polyphénylènes sulfones (PPSU...), PolyétherétherCétones (PEEK), PolyétherCétoneCétone (PEKK), Poly(Sulfure de Phénylène) (PPS), ou Polyétherimides (PEI), polyimides thermoplastiques, polymères à cristaux liquides (LCP), phenoxys, copolymères à blocs tels que les copolymères Styrène-Butadiene-Méthylméthacrylate(SBM), copolymères Méthylméthacrylate -Acrylate de Butyl-Méthylméthacrylate (MAM) ou un mélange de fibres constituées de ces matériaux thermoplastiques.
11 - Matériau intermédiaire, selon l'une des revendications précédentes, caractérisé en ce que la cohésion de chaque ruban voilé est assurée exclusivement par les non-tissés thermoplastiques.
12 - Matériau intermédiaire, selon l'une des revendications précédentes, caractérisé en ce que chaque ruban voilé est constitué d'une nappe unidirectionnelle de fibres de carbone présentant une masse surfacique de 100 à 280 g/m2, associée, sur chacune de ses faces, à un non-tissé de fibres thermoplastiques, lesdits non-tissés présentant, chacun, une épaisseur de 0,5 à 50 microns, de préférence de 3 à 35 microns.
13 - Matériau intermédiaire selon la revendication 12 caractérisé en ce que chaque ruban voilé présente une épaisseur de 80 à 380 microns, de préférence de 90 à 320 microns, et préférentiellement de 93 à 305 microns. 14 - Matériau intermédiaire, selon l'une des revendications 12 ou 13, caractérisé en ce que l'épaisseur de chaque ruban voilé présente une faible variabilité, notamment avec des variations d'épaisseurs n'excédant pas 20 pm en écart-type, de préférence n'excédant pas 10 μιη en écart-type.
15 - Matériau intermédiaire, selon l'une des revendications 12 à 14, caractérisé en ce que la nappe unidirectionnelle, au sein de chaque ruban voilé, est constituée exclusivement de fibres de carbone.
16 - Matériau intermédiaire, selon l'une des revendications 12 à 15, caractérisé en ce que les voiles, au sein de chaque ruban voilé, ont une masse surfacique comprise dans la gamme allant de 0,2 à 20 g/m2.
17 - Matériau intermédiaire, selon l'une des revendications précédentes, caractérisé en ce qu'il se présente sous la forme d'un tissu.
18 - Matériau intermédiaire, selon l'une des revendications précédentes, caractérisé en ce qu'il se présente sous la forme d'une tresse, en particulier d'une tresse formant un cylindre.
19 - Procédé de fabrication d'une pièce composite caractérisé en ce qu'il comporte les étapes suivantes :
a) disposer d'au moins un matériau selon l'une des revendications précédentes,
b) éventuellement empiler différents matériaux selon l'une des revendications précédentes et éventuellement les solidariser sous la forme d'une préforme,
c) ajouter, par infusion ou injection, une résine thermodurcissable, d) consolider la pièce souhaitée par une étape de polymérisation/réticulation suivant un cycle défini en température et sous pression, suivi d'un refroidissement.
20 - Procédé selon la revendication 19 caractérisé en ce que la résine thermodurcissable est ajoutée au(x) matériau(x) par infusion sous pression réduite, notamment sous une pression inférieure à la pression atmosphérique, notamment inférieure à 1 bar et de préférence comprise entre 0,1 et 1 bar. 21 - Pièce composite susceptible d'être obtenue selon le procédé de la revendication 19 ou 20.
22 - Pièce composite selon la revendication 21 caractérisée en ce qu'elle présente un taux volumique de fibres de 50 à 63%, de préférence de 53 à 60%.
23 - Pièce composite selon la revendication 21 ou 22 caractérisée en ce qu'elle présente une valeur de contrainte à rupture de compression après impact (CAI), mesurée selon la norme prEN 6038 sous un impact d'énergie de 25 J, supérieure à 200 MPa.
PCT/FR2010/052779 2009-12-22 2010-12-17 Nouveaux materiaux intermediaires realises par entrecroisement avec entrelacement de fils voiles WO2011086266A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012545380A JP5765788B2 (ja) 2009-12-22 2010-12-17 ベール糸を重ね合わせ織り交ぜることによって形成された新規な中間材料
CA2780855A CA2780855C (fr) 2009-12-22 2010-12-17 Nouveaux materiaux intermediaires realises par entrecroisement avec entrelacement de fils voiles
RU2012131371/05A RU2551514C2 (ru) 2009-12-22 2010-12-17 Новые промежуточные материалы, полученные скрещиванием с переплетением тонких нитей
US13/513,914 US9914267B2 (en) 2009-12-22 2010-12-17 Intermediate materials produced by means of intertwinning by interlacing voile yarns
BR112012014358A BR112012014358B1 (pt) 2009-12-22 2010-12-17 material intermediário composto de um conjunto de fitas sobrepostas e entrelaçadas, método de produzir uma peça composta e peça composta
EP20100807607 EP2516138B1 (fr) 2009-12-22 2010-12-17 Nouveaux materiaux intermediaires realises par entrecroisement avec entrelacement de fils voiles
ES10807607T ES2465993T3 (es) 2009-12-22 2010-12-17 Nuevos materiales intermedios realizados por reticulación con entrelazado de hilos de tipo velo
CN201080064521.3A CN102770260B (zh) 2009-12-22 2010-12-17 通过重叠和交织搭并纱线制造的新型中间材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0959428A FR2954356B1 (fr) 2009-12-22 2009-12-22 Nouveaux materiaux intermediaires realises par entrecroisement avec entrelacement de fils voiles
FR0959428 2009-12-22

Publications (1)

Publication Number Publication Date
WO2011086266A1 true WO2011086266A1 (fr) 2011-07-21

Family

ID=42062438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/052779 WO2011086266A1 (fr) 2009-12-22 2010-12-17 Nouveaux materiaux intermediaires realises par entrecroisement avec entrelacement de fils voiles

Country Status (10)

Country Link
US (1) US9914267B2 (fr)
EP (1) EP2516138B1 (fr)
JP (1) JP5765788B2 (fr)
CN (1) CN102770260B (fr)
BR (1) BR112012014358B1 (fr)
CA (1) CA2780855C (fr)
ES (1) ES2465993T3 (fr)
FR (1) FR2954356B1 (fr)
RU (1) RU2551514C2 (fr)
WO (1) WO2011086266A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013041712A1 (fr) 2011-09-23 2013-03-28 Hexcel Composites Limited Structure composite ou stratifié conducteur
WO2013150223A2 (fr) 2012-04-02 2013-10-10 Hexcel Reinforcements Materiau aux proprietes de conductivite ameliorees pour la realisation de pieces composites en association avec une resine
WO2013160604A1 (fr) 2012-04-27 2013-10-31 Hexcel Reinforcements Utilisation, dans la fabrication d'une piece composite, d'une operation de penetration, pour ameliorer la conductivite electrique transverse de la piece composite
WO2014076433A1 (fr) 2012-11-19 2014-05-22 Hexcel Reinforcements Procédé de dépôt d'un matériau intermédiaire permettant d'assurer la cohésion de ce dernier, procédé de constitution d'un empilement destiné a la fabrication de pièces composites et matériau intermédiaire
CN104494169B (zh) * 2014-11-21 2016-08-24 亚东工业(苏州)有限公司 一种低旦尼高模量聚酯帘子布的制备方法
WO2019102136A1 (fr) 2017-11-22 2019-05-31 Hexcel Reinforcements Materiau de renfort comprenant une couche poreuse en un polymere thermoplastique partiellement reticule et procedes associes
WO2021181050A1 (fr) 2020-03-11 2021-09-16 Hexcel Reinforcements Matériau de renfort à fils de carbone torsadés pour la constitution de pièces composites, procédés et utilisation
FR3108056A1 (fr) 2020-03-11 2021-09-17 Hexcel Reinforcements Nouveaux matériaux de renfort à grammage élevé, adaptés à la constitution de pièces composites, procédés et utilisation
WO2021214410A1 (fr) 2020-04-22 2021-10-28 Hexcel Reinforcements Élément composite intermédiaire, procédé de fabrication et pièce composite
WO2022189744A1 (fr) 2021-03-11 2022-09-15 Hexcel Reinforcements Nouveaux matériaux de renfort à base de fils torsadés s et z, adaptés à la constitution de pièces composites, procédés et utilisation
WO2023067282A1 (fr) 2021-10-21 2023-04-27 Hexcel Reinforcements Materiau de renfort comprenant une couche poreuse en un polymere thermoplastique reactif et procedes associes
FR3128399A1 (fr) 2021-10-21 2023-04-28 Hexcel Reinforcements Procédé de fabrication de pièces composites à partir d’un matériau de renfort comprenant une couche poreuse en un polymère thermoplastique réactif et d’une résine thermodurcissable
FR3128398A1 (fr) 2021-10-21 2023-04-28 Hexcel Reinforcements Matériau de renfort comprenant une couche poreuse en un polymère thermoplastique réactif et procédés associés

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5931057B2 (ja) * 2011-05-16 2016-06-08 三井化学株式会社 歯科材料、歯科材料組成物、歯科修復材料および硬化物
EP2529909A1 (fr) * 2011-06-04 2012-12-05 Klaus Szukat Procédé de fabrication de laminés et d'amélioration de drapages de textiles techniques comme méthode de fixation, composites et structures de renforcement
GB201206885D0 (en) * 2012-04-19 2012-06-06 Cytec Tech Corp Composite materials
FR3002928B1 (fr) * 2013-03-08 2015-05-01 Hexcel Reinforcements Procede et machine d'etalement d'une nappe textile de type tissu et tissus obtenus
ITRA20130020A1 (it) * 2013-07-19 2015-01-20 Grassi Enrico Laminato
DE102013017450A1 (de) * 2013-10-22 2015-04-23 Airbus Defence and Space GmbH Verfahren zur Herstellung von Faserverbund-Halbzeugen
GB201414363D0 (en) 2014-08-13 2014-09-24 Cytec Ind Inc Hybrid woven textile for composite reinforcement
TW201637464A (zh) * 2015-04-09 2016-10-16 Haka Ohara 喇叭振動片布材及其製作方法
TWI578803B (zh) * 2016-01-20 2017-04-11 正崴精密工業股份有限公司 喇叭音膜及其製作方法
TWI608742B (zh) * 2016-02-24 2017-12-11 Method for preventing elastic wave deformation
US11525195B2 (en) * 2020-05-27 2022-12-13 Jhih Huei Trading Co., Ltd. Woven textile for bag and bag
US20230191656A1 (en) * 2021-12-20 2023-06-22 Raytheon Technologies Corporation Ribbonized tows for optimized improved composite performance

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2580003A1 (fr) * 1985-04-04 1986-10-10 Chomarat & Cie
WO1992015740A1 (fr) 1991-03-04 1992-09-17 U.S. Composites Corp. Tressage asymetrique de produits renforces par fibres ameliores
WO1994012708A1 (fr) 1992-11-30 1994-06-09 Brochier S.A. Tissu chaine et trame a base de fils techniques multifilaments a predominance sans torsion et procede d'obtention
WO1998046817A1 (fr) 1997-04-14 1998-10-22 Ab Grundstenen Materiau tisse comprenant une chaine et une trame de type bandes et auxiliaire permettant de produire ce materiau
EP1046666A1 (fr) * 1999-03-23 2000-10-25 Hexcel Corporation Tissus avec une resistance amelioree a l'ecrasement de l'ame et preimpregne pour corp alveolaires renforces
FR2800100A1 (fr) * 1999-10-25 2001-04-27 Chomarat Ets Materiau textile en nappe pour usages techniques
EP1464743A1 (fr) * 2001-12-19 2004-10-06 Toray Industries, Inc. Tissu tisse renforce en fibre de carbone, pre-impregne et procede de production dudit pre-impregne
WO2005047581A1 (fr) * 2003-11-06 2005-05-26 Hexcel Corporation Tissu a double armure a verrouillage et ses procedes de production et d'utilisation
WO2006075961A1 (fr) 2005-01-17 2006-07-20 Tape Weaving Sweden Ab Procede et appareil de tissage de chaine et de trame en forme de bande et materiau ainsi realise
US20070066171A1 (en) * 2005-01-12 2007-03-22 Kazak Composites, Incorporated Impact resistant, thin ply composite structures and method of manufacturing same
EP1798428A1 (fr) 2005-12-13 2007-06-20 EADS Deutschland GmbH Pièce composite fabriquée par tissage
US20070193439A1 (en) 2004-04-06 2007-08-23 Eads Deutschland Gmbh Method For Producing Fiber Composite Semi-Finished Products By Means Of A Round Braiding Technique

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935279A (en) * 1988-01-27 1990-06-19 W. H. Brady Co. Pultruded composite sign and process therefor
GB9606200D0 (en) * 1996-03-25 1996-05-29 Daton Lovett Andrew J An extendible member
US6096669A (en) 1997-10-28 2000-08-01 Gkn Westland Aerospace Inc. Unidirectional fiber-random mat preform
CA2333151C (fr) * 1999-03-23 2009-08-18 Toray Industries, Inc. Materiau de fibre renforce complexe, preforme, et procede de fabrication de fibres de plastiques renforcees
IL154130A0 (en) * 2000-07-28 2003-07-31 Univ Brigham Young Iso-truss structure
US6503856B1 (en) * 2000-12-05 2003-01-07 Hexcel Corporation Carbon fiber sheet materials and methods of making and using the same
JP4126978B2 (ja) * 2001-07-06 2008-07-30 東レ株式会社 プリフォームおよびそれからなるfrpならびにfrpの製造方法
JP4324649B2 (ja) * 2001-11-28 2009-09-02 福井県 繊維強化熱可塑性樹脂シート及びそれを用いた構造材並びに繊維強化熱可塑性樹脂シートの製造方法
US7344667B2 (en) * 2002-04-23 2008-03-18 Toray Industries, Inc. Prepreg, production process thereof, and molded article
US20020192467A1 (en) 2002-06-21 2002-12-19 Secrist Duane R. Method for the manufacture of a sheet of reinforcing fibers and the product obtained thereby
US20040219855A1 (en) 2003-05-02 2004-11-04 Tsotsis Thomas K. Highly porous interlayers to toughen liquid-molded fabric-based composites
JP2005272526A (ja) * 2004-03-23 2005-10-06 Toray Ind Inc 複合材料および複合材料の製造方法
US7435693B2 (en) 2005-01-07 2008-10-14 The Boeing Company Toughened, non-crimped unidirectional fabric apparatus and method of making same
JP5081812B2 (ja) 2005-05-09 2012-11-28 サイテク・テクノロジー・コーポレーシヨン 複合材料用樹脂可溶熱可塑性ベール
BRPI0920374B1 (pt) 2008-10-23 2019-10-22 Hexcel Reinforcements material intermediário destinado a ser associado a uma resina termoestável para a fabricação de peças compósitas
FR2939069B1 (fr) 2008-11-28 2013-03-01 Hexcel Reinforcements Nouveau materiau intermediaire de largeur constante pour la realisation de pieces composites par procede direct.
US8302522B2 (en) * 2009-04-27 2012-11-06 Marquez Transtech Ltée Composite material, composite part and methods for making such
US9868265B2 (en) 2010-05-27 2018-01-16 Hexcel Composites, Limited Structured thermoplastic in composite interleaves
GB201018706D0 (en) 2010-11-05 2010-12-22 Hexcel Composites Ltd Improvements in composite materials

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2580003A1 (fr) * 1985-04-04 1986-10-10 Chomarat & Cie
WO1992015740A1 (fr) 1991-03-04 1992-09-17 U.S. Composites Corp. Tressage asymetrique de produits renforces par fibres ameliores
WO1994012708A1 (fr) 1992-11-30 1994-06-09 Brochier S.A. Tissu chaine et trame a base de fils techniques multifilaments a predominance sans torsion et procede d'obtention
EP0670921A1 (fr) 1992-11-30 1995-09-13 Brochier S.A. Tissu chaine et trame a base de fils techniques multifilaments a predominance sans torsion et procede d'obtention
WO1998046817A1 (fr) 1997-04-14 1998-10-22 Ab Grundstenen Materiau tisse comprenant une chaine et une trame de type bandes et auxiliaire permettant de produire ce materiau
EP1046666A1 (fr) * 1999-03-23 2000-10-25 Hexcel Corporation Tissus avec une resistance amelioree a l'ecrasement de l'ame et preimpregne pour corp alveolaires renforces
FR2800100A1 (fr) * 1999-10-25 2001-04-27 Chomarat Ets Materiau textile en nappe pour usages techniques
EP1464743A1 (fr) * 2001-12-19 2004-10-06 Toray Industries, Inc. Tissu tisse renforce en fibre de carbone, pre-impregne et procede de production dudit pre-impregne
WO2005047581A1 (fr) * 2003-11-06 2005-05-26 Hexcel Corporation Tissu a double armure a verrouillage et ses procedes de production et d'utilisation
US20070193439A1 (en) 2004-04-06 2007-08-23 Eads Deutschland Gmbh Method For Producing Fiber Composite Semi-Finished Products By Means Of A Round Braiding Technique
US20070066171A1 (en) * 2005-01-12 2007-03-22 Kazak Composites, Incorporated Impact resistant, thin ply composite structures and method of manufacturing same
WO2006075961A1 (fr) 2005-01-17 2006-07-20 Tape Weaving Sweden Ab Procede et appareil de tissage de chaine et de trame en forme de bande et materiau ainsi realise
EP1798428A1 (fr) 2005-12-13 2007-06-20 EADS Deutschland GmbH Pièce composite fabriquée par tissage

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013041712A1 (fr) 2011-09-23 2013-03-28 Hexcel Composites Limited Structure composite ou stratifié conducteur
WO2013150223A2 (fr) 2012-04-02 2013-10-10 Hexcel Reinforcements Materiau aux proprietes de conductivite ameliorees pour la realisation de pieces composites en association avec une resine
JP2015518069A (ja) * 2012-04-02 2015-06-25 ヘクセル ランフォルセマン 樹脂と組み合わされた複合部品の製造のための、改良された導電性を有する材料
US9508471B2 (en) 2012-04-02 2016-11-29 Hexcel Reinforcements Material with improved conductivity properties for the production of composite parts in combination with a resin
US9922757B2 (en) 2012-04-02 2018-03-20 Hexcel Reinforcements Process for making material with improved conductivity properties for the production of composite parts
WO2013160604A1 (fr) 2012-04-27 2013-10-31 Hexcel Reinforcements Utilisation, dans la fabrication d'une piece composite, d'une operation de penetration, pour ameliorer la conductivite electrique transverse de la piece composite
WO2014076433A1 (fr) 2012-11-19 2014-05-22 Hexcel Reinforcements Procédé de dépôt d'un matériau intermédiaire permettant d'assurer la cohésion de ce dernier, procédé de constitution d'un empilement destiné a la fabrication de pièces composites et matériau intermédiaire
US10576697B2 (en) 2012-11-19 2020-03-03 Hexcel Reinforcements Method of applying an intermediate material making it possible to ensure the cohesion thereof, method of forming a stack intended for the manufacture of composite components and intermediate material
CN104494169B (zh) * 2014-11-21 2016-08-24 亚东工业(苏州)有限公司 一种低旦尼高模量聚酯帘子布的制备方法
WO2019102136A1 (fr) 2017-11-22 2019-05-31 Hexcel Reinforcements Materiau de renfort comprenant une couche poreuse en un polymere thermoplastique partiellement reticule et procedes associes
WO2021181050A1 (fr) 2020-03-11 2021-09-16 Hexcel Reinforcements Matériau de renfort à fils de carbone torsadés pour la constitution de pièces composites, procédés et utilisation
FR3108056A1 (fr) 2020-03-11 2021-09-17 Hexcel Reinforcements Nouveaux matériaux de renfort à grammage élevé, adaptés à la constitution de pièces composites, procédés et utilisation
FR3108057A1 (fr) 2020-03-11 2021-09-17 Hexcel Reinforcements Matériau de renfort à fils de carbone torsadés pour la constitution de pièces composites, procédés et utilisation
WO2021214410A1 (fr) 2020-04-22 2021-10-28 Hexcel Reinforcements Élément composite intermédiaire, procédé de fabrication et pièce composite
FR3109557A1 (fr) 2020-04-22 2021-10-29 Hexcel Reinforcements Elément composite intermédiaire, procédé de fabrication et pièce composite
WO2022189744A1 (fr) 2021-03-11 2022-09-15 Hexcel Reinforcements Nouveaux matériaux de renfort à base de fils torsadés s et z, adaptés à la constitution de pièces composites, procédés et utilisation
FR3120563A1 (fr) 2021-03-11 2022-09-16 Hexcel Reinforcements Nouveaux matériaux de renfort à base de fils torsadés S et Z, adaptés à la constitution de pièces composites, procédés et utilisation
WO2023067282A1 (fr) 2021-10-21 2023-04-27 Hexcel Reinforcements Materiau de renfort comprenant une couche poreuse en un polymere thermoplastique reactif et procedes associes
FR3128399A1 (fr) 2021-10-21 2023-04-28 Hexcel Reinforcements Procédé de fabrication de pièces composites à partir d’un matériau de renfort comprenant une couche poreuse en un polymère thermoplastique réactif et d’une résine thermodurcissable
FR3128398A1 (fr) 2021-10-21 2023-04-28 Hexcel Reinforcements Matériau de renfort comprenant une couche poreuse en un polymère thermoplastique réactif et procédés associés

Also Published As

Publication number Publication date
FR2954356A1 (fr) 2011-06-24
JP5765788B2 (ja) 2015-08-19
US9914267B2 (en) 2018-03-13
CA2780855C (fr) 2017-01-03
FR2954356B1 (fr) 2012-01-13
RU2012131371A (ru) 2014-01-27
CA2780855A1 (fr) 2011-07-21
BR112012014358B1 (pt) 2020-01-14
ES2465993T3 (es) 2014-06-09
EP2516138B1 (fr) 2014-03-19
EP2516138A1 (fr) 2012-10-31
BR112012014358A2 (pt) 2016-06-07
JP2013515124A (ja) 2013-05-02
CN102770260A (zh) 2012-11-07
CN102770260B (zh) 2014-09-17
RU2551514C2 (ru) 2015-05-27
US20120237707A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
EP2516138B1 (fr) Nouveaux materiaux intermediaires realises par entrecroisement avec entrelacement de fils voiles
EP2491175B1 (fr) Empilement multiaxial solidarisé par des soudures ponctuelles réalisées grace à des voiles thermoplastiques intercalaires
EP2342073B1 (fr) Nouveaux materiaux de renfort, adaptes a la constitution de pieces composites
EP2595795B1 (fr) Nouveau materiau intermediaire de renfort constitue d&#39;un ensemble de fils voiles espaces, procede de fabrication a partir d&#39;un tel materiau et pieces composites obtenues par un tel procede
EP2358516B1 (fr) Materiau intermediaire de largeur constante pour la realisation de pieces composites par procede direct et procédé correspondant
EP2919969B1 (fr) Procede de depot d&#39;un materiau intermediaire permettant d&#39;assurer la cohesion de ce dernier et materiau intermediaire
CA2687830C (fr) Procede de fabrication de pieces composites presentant au moins une courbe
EP3713759B1 (fr) Materiau de renfort comprenant une couche poreuse en un polymere thermoplastique partiellement reticule et procedes associes
FR2975939A1 (fr) Ruban voile presentant une resistance au delaminage amelioree
CA3033317A1 (fr) Procede de realisation de pieces en materiau composite par impregnation d&#39;une preforme particuliere
EP1466045B1 (fr) Structure fibreuse pour la realisation de materiaux composites
FR2937583A1 (fr) Nouveaux materiaux de renfort, adaptes a la constitution de pieces composites
EP4117878B1 (fr) Matériau de renfort à fils de carbone torsadés pour la constitution de pièces composites, procédés et utilisation
WO2022189744A1 (fr) Nouveaux matériaux de renfort à base de fils torsadés s et z, adaptés à la constitution de pièces composites, procédés et utilisation
FR3108056A1 (fr) Nouveaux matériaux de renfort à grammage élevé, adaptés à la constitution de pièces composites, procédés et utilisation
FR2918920A1 (fr) Procede de fabrication de pieces composites presentant au moins une zone courbe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064521.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10807607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2780855

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13513914

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010807607

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012545380

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 6354/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012131371

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012014358

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012014358

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120613