WO2011081213A1 - 面実装部品のはんだ付け方法および面実装部品 - Google Patents

面実装部品のはんだ付け方法および面実装部品 Download PDF

Info

Publication number
WO2011081213A1
WO2011081213A1 PCT/JP2010/073849 JP2010073849W WO2011081213A1 WO 2011081213 A1 WO2011081213 A1 WO 2011081213A1 JP 2010073849 W JP2010073849 W JP 2010073849W WO 2011081213 A1 WO2011081213 A1 WO 2011081213A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder material
mass
die
soldering
temperature
Prior art date
Application number
PCT/JP2010/073849
Other languages
English (en)
French (fr)
Inventor
上島 稔
豊田 実
Original Assignee
千住金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千住金属工業株式会社 filed Critical 千住金属工業株式会社
Priority to CN201080059835.4A priority Critical patent/CN102714921B/zh
Priority to KR1020127016667A priority patent/KR20120123291A/ko
Priority to BR112012015939-9A priority patent/BR112012015939B1/pt
Priority to KR1020197034237A priority patent/KR20190132566A/ko
Priority to KR1020167035344A priority patent/KR20160148726A/ko
Priority to EP10841068.9A priority patent/EP2521429B1/en
Priority to ES10841068T priority patent/ES2822311T3/es
Priority to KR1020187034511A priority patent/KR102240216B1/ko
Priority to US13/519,217 priority patent/US10354944B2/en
Publication of WO2011081213A1 publication Critical patent/WO2011081213A1/ja
Priority to US14/724,665 priority patent/US10297539B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • H01L23/49582Metallic layers on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/49513Lead-frames or other flat leads characterised by the die pad having bonding material between chip and die pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3463Solder compositions in relation to features of the printed circuit board or the mounting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/085Material
    • H01L2224/08501Material at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2902Disposition
    • H01L2224/29026Disposition relative to the bonding area, e.g. bond pad, of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29109Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29301Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29311Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29399Coating material
    • H01L2224/294Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29438Coating material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29447Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/325Material
    • H01L2224/32501Material at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83193Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83399Material
    • H01L2224/834Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/83438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/83455Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85444Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01026Iron [Fe]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01083Bismuth [Bi]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0133Ternary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0134Quaternary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0135Quinary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/047Soldering with different solders, e.g. two different solders on two sides of the PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3421Leaded components

Definitions

  • the present invention relates to a surface mount component obtained by bonding and fixing a circuit element such as a semiconductor element (Si die / SiC die) to a die pad electrode portion using a die bonding solder material, and a circuit board using the mounting solder material.
  • the present invention relates to a method for soldering a surface mount component to be soldered to the surface and the like and a surface mount component.
  • semiconductor packaging is a process in which a circuit element is die-bonded and bonded (brazed) to a die pad electrode portion (island portion) of a lead frame, and then resin-molded.
  • solder hereinafter referred to as a solder material
  • a solder material is used as a brazing material for die bonding.
  • solder material based on the (Sn—Pb) system has been used as this solder material.
  • a solder material having a relatively high melting point of about 300 ° C. is used in the vicinity of (Pb-5 mass% Sn) (in the notation representing an alloy, hereinafter mass% is omitted).
  • mass% in the notation representing an alloy, hereinafter mass% is omitted.
  • the circuit element and the die pad electrode part of the lead frame have different coefficients of thermal expansion, so the joint of the solder material is subjected to repeated strain due to temperature changes due to the difference in coefficient of thermal expansion. Fatigue can cause cracks in the solder material joints. Therefore, along with the progress of the crack, the reliability of the electrical connection at the solder material joint may be lowered.
  • solder materials are required to reduce environmental pollution. For this reason, lead-free solder materials (Pb-free solder materials) have recently been used as mounting solder materials used when surface-mounting components are surface-mounted on a circuit board such as a printed circuit board.
  • solder material for die bonding used for joining a semiconductor element to a die pad electrode portion of a lead frame
  • a lead-containing solder material containing 85 mass% or more of Pb (Pb-Sn ) -Based solder materials, etc.
  • Pb-free solder materials is also required in this die-bonding solder material.
  • the solidus temperature is often 260 ° C. or more and the temperature is relatively high. Therefore, there is an adverse effect on circuit elements such as semiconductor elements. Conceivable.
  • the heating temperature used in the reflow furnace is higher than the solidus temperature (260 ° C)
  • cracks occur in the solder material joint and die pad electrode, and peeling occurs at the interface between the lead frame and the mold. This is because the soldering process is performed in a state in which, for example, the occurrence of the soldering occurs.
  • solder materials having a solidus temperature lower than that of lead-containing solder materials As lead-free solder materials having a solidus temperature lower than that of lead-containing solder materials, (Sn—Ag) solder materials, (Sn—Cu) solder materials, (Sn—Sb) solder materials, and the like are known. However, among these, a (Sn—Sb) high melting point solder material is known as a high melting point solder material having a solidus temperature higher than the heating temperature in the reflow furnace (Patent Document 1).
  • the (Sn-Sb) high melting point solder material disclosed in Patent Document 1 is a high melting point solder material joint used at the time of die bonding even at a heating temperature when mounting a surface mount component (IC package) on a printed circuit board.
  • the composition ratio is devised so that voids and the like are not generated.
  • the high melting point solder material disclosed in the above-mentioned Technical Document 1 has a particularly large Sb content.
  • Sb content is large, the solidus temperature tends to increase, but on the other hand, cracks and the like tend to occur, and it has been confirmed by various experiments that the mechanical reliability of the solder material tends to decrease. .
  • the above (Sn-Sb) solder material has a lower solidus temperature than the lead-containing solder material, but the temperature difference from the processing temperature (heating temperature) used in the reflow furnace is not so large. It is necessary to use a solder material having a solidus temperature as low as possible. At the same time, when the (Sn—Sb) solder material is used, the following problems are also caused.
  • the solidus temperature of the solder material is reduced by about 10 to 20 ° C.
  • the (Sn-10Sb) solder material has a solidus temperature of 243 ° C.
  • the (Sn-10Sb) solder material containing Cu tends to decrease the solidus temperature by about 10 ° C. It is in.
  • the lead frame when the lead frame is mainly composed of Cu, the lead frame is heated during reflow soldering, so that the main component of Cu is eluted (about 0.1 to 2% by mass), which is used for die bonding. Mix in solder material.
  • the decrease in the solidus temperature means that when the surface mount component is soldered to the circuit board as described above, the heat is absorbed by the die bonding solder material, and the heat is sufficiently applied to the surface mount component and the mounting solder material.
  • the wettability of the mounting solder material is deteriorated, thereby causing voids. For this reason, the reliability when the surface-mounted component is mounted on the circuit board is lowered, which is not preferable from the relationship with the heating temperature of the reflow furnace.
  • the present invention solves such a conventional problem, and includes a solder material that does not contain a component that lowers the solidus temperature as much as possible, and that does not exceed a predetermined value even if it is included. And a component that lowers the solidus temperature during the solder material joining step is prevented from eluting.
  • the die bonding solder material is melted by soldering the surface mount component using the die bonding solder material and the mounting solder material that increase the solidus temperature difference between the die bonding solder material and the mounting solder material. Can be prevented.
  • the surface mounting component soldering method provides a circuit element having an electrode surface on which a Ni plating layer is formed and a lead on which the Ni plating layer is formed.
  • a surface mount component soldered using a (Sn-Sb) based solder material containing Sn as a main component and having a Cu content of a predetermined value or less is applied to the substrate terminal portion of the circuit board on the die pad electrode surface of the frame Soldering is performed using the (Sn-Ag-Cu-Bi) -based solder material or the (Sn-Ag-Cu-Bi-In) -based solder material as a mounting solder material.
  • the surface mount component according to the present invention described in claim 9 includes a die pad electrode portion on which a circuit element is placed and a lead portion joined to the circuit board, and a Ni plating layer is formed on the die pad electrode portion.
  • the Ni plating layer is bonded to the lead frame and the die pad electrode portion through a (Sn—Sb) based solder material containing Sn as a main component with a Cu content of a predetermined value or less.
  • the circuit element and the lead part are land parts constituting the substrate terminal part via the (Sn-Ag-Cu-Bi) solder material or the (Sn-Ag-Cu-Bi-In) solder material. And a circuit board bonded to the substrate.
  • solder material is used as a solder material for die bonding.
  • ⁇ Cu content of (Sn-Sb) solder material to be used is kept below a predetermined value.
  • the default value of Cu is 0.01% by mass or less, preferably 0.005% by mass or less. It has been confirmed that when the Cu content is not more than the predetermined value, a decrease in the solidus temperature can be avoided.
  • the die pad electrode portion (island portion serving as the solder material joint surface) serving as the circuit element fixing surface on which the circuit element is placed and fixed is plated.
  • a lead frame in which the die pad electrode portion is plated with Ni is used.
  • the Ni plating layer prevents elution of Cu components when joining the solder material.
  • a Ni plating layer is also formed on the electrode surface side of the circuit element.
  • the temperature (maximum endothermic reaction temperature) showing the maximum endothermic reaction is 215 ° C. or less in the (Sn—Ag—Cu—Bi) type solder material (see Table 4).
  • the temperature is 210 ° C. (see Table 5).
  • the maximum endothermic reaction temperature was measured by DSC (Differential Scanning Calorimetry) measurement.
  • the solidus temperature of the (Sn—Sb) -based solder material itself used as the die bonding solder material is 245 ° C.
  • the mounting solder material described above if used, the die bonding solder material and the mounting solder material are used. And the solidus temperature difference between. As a result, solderability at the solder material joints of all mounted surface-mounted components is improved, so that the die bonding solder material does not melt even if the temperature distribution in the circuit board increases.
  • the original solidus temperature of the (Sn-Sb) solder material in addition to lowering the solidus temperature than in the past, the original solidus temperature of the (Sn-Sb) solder material can be maintained as it is, and as a result, the influence of the heating temperature on the circuit element is avoided. it can.
  • a reflow furnace can be obtained by using a (Sn-Ag-Cu-Bi) solder material having a low solidus temperature or a (Sn-Ag-Cu-Bi-In) solder material as a solder material for mounting.
  • the minimum heating temperature (minimum reflow temperature) that can be soldered can be lowered as compared with the prior art, and the solidus temperature difference from the die bonding solder material can be increased.
  • solderability at the solder material joints of all mounted surface-mounted components is improved, so that the die-bonding solder material does not melt even if the temperature distribution in the circuit board increases, and the surface-mounted component Bonding strength is increased, and mechanical reliability can be increased.
  • a Ni plating layer 14 is formed on an electrode surface 12 serving as a die bonding surface in a semiconductor element (IC chip) 10.
  • the Ni plating layer 14 is formed in the entire region (all electrode surfaces) of the surface to be die bonded.
  • An Sn plating layer or an Au plating layer 16 is further formed on the surface layer of the Ni plating layer 14.
  • the Au plating layer 16 is formed as necessary.
  • the Sn plating layer or the Au plating layer 16 only needs to have the Sn plating layer or the Au plating layer 16 formed on the soldering surface side (outermost surface) located in the die bonding solder material 30.
  • a layer other than the Ni plating layer such as Cu or Ti may be interposed between the IC chip 10 and the Ni plating layer 14.
  • a die pad electrode portion (die bond joint portion) 22 which is an island portion of the lead frame 20 is a circuit element fixing portion, a heat sink 38 is attached to the lower surface, and the upper surface 22a is connected to the die pad electrode surface. Become. Therefore, the die pad electrode surface 22a functions as an electrode surface for fixing a circuit element.
  • An Ni plating layer 24 is applied to the die pad electrode surface 22a facing the electrode surface 12 of the IC chip 10.
  • An Au plating layer 26 is further formed on the surface of the Ni plating layer 24. The Au plating layer 26 is provided as necessary.
  • the die bonding solder material 30 is supplied to the surface layer of the die pad electrode surface 22a.
  • the die bonding solder material 30 is applied to the upper layer of the Au plating layer 26 (solder paste processing).
  • solder material 30 a high melting point solder material as described later is used.
  • the lead frame 20 is mainly composed of Cu, in this invention, the die pad electrode surface 22a of the lead frame 20 is covered with the Ni plating layer 24.
  • the lead frame 20 is heated during the soldering process of the IC chip 10, and even if Cu is about to elute, Cu is difficult to elute and even if it is eluted, it is in the die-bonding solder material 30. Do not mix in.
  • the solidus temperature of the die-bonding solder material 30 itself (245 ° C. in this example as will be described later) is lowered. According to experiments, the temperature drops to about 229 to 236 ° C.
  • the solidus temperature of the die bonding solder material 30 itself can be maintained at 245 ° C.
  • the electrode surface 12 of the IC chip 10 is placed and temporarily fixed on the surface of the applied high melting point die-bonding solder material 30. Then, it is conveyed in an oven reflow furnace (not shown) and heat-treated. By this heat treatment, the Au plating layers 16 and 26 are dissolved as shown in FIG. 1C.
  • the circuit element as shown in FIG. 1C is obtained by soldering the die pad electrode surface 22a using the die bonding solder material 30.
  • the internal terminal portion (internal electrode portion) 34a and the IC chip 10 of the leads 34 constituting the circuit element and the IC chip 10 are connected (wire bonding) by the electrode wire 40, and then the wire bonded IC chip 10 and The lead frame 20 is molded with the resin 42 to obtain a known surface mount component 50 shown in FIG. 1D.
  • SOP Small Outline Package
  • QFN Quadrature Non-Lead
  • QFP Quad Flat Package
  • the surface-mounted component 50 is mounted on a printed circuit board 60 that functions as a circuit board as shown in FIG. 1E. Therefore, the board terminal portion (land) 62 formed on the printed board 60 and the external terminal portion 34b of the lead 34 are soldered by the Pb-free mounting solder material 70, and the mounting process is completed.
  • the lead 34 constituting the lead frame 20 is plated in advance by Sn plating, Sn-Bi plating, Sn-Cu plating, Sn-Ag plating, or the like.
  • the mounting process described above is performed in an oven reflow furnace.
  • the mounting solder material 70 a material having a lower solidus temperature and liquidus temperature than a conventionally used (Sn—Ag—Cu) based solder material is used as described later.
  • solder material 30 As the die bonding solder material 30, a solder material that does not contain a component that lowers the solidus temperature as much as possible, or that does not exceed a predetermined value even if included, is used during the solder material joining step.
  • the components that lower the solidus temperature are prevented from eluting.
  • the surface mount component is soldered by using the die bonding solder material 30 and the mounting solder material 70 that increase the solidus temperature difference between the die bonding solder material 30 and the mounting solder material 70. Is. (Table 1) It demonstrates with reference to the following.
  • Table 1 shows an inappropriate example for comparison with the present invention.
  • the mounting solder material 70 an alloy solder material (Sn-3Ag-0.5Cu) of M705 standard conventionally used is exemplified. Its solidus temperature is 217 ° C and its liquidus temperature is 220 ° C.
  • the die bonding solder material 30 is a (Sn—Sb) based solder material containing Sn as a main component.
  • Table 1 shows two kinds of solder materials that contain Cu and other kinds of solder materials that contain (Sn—Sb) based solder materials.
  • the (Sn-10Sb) based solder material contains 0.1 mass% or less of impurities.
  • the (Sn-10Sb) -based solder material itself has a solidus temperature of 245 ° C. and a liquidus temperature of 268 ° C.
  • Table 1 shows the composition ratio of the die-bonding solder material 30, the solidus temperature at the composition ratio, the liquidus temperature, and the melting rate of the die-bonding solder material 30 itself at 245 ° C. or lower. Further, the solidus temperature, liquidus temperature, and melting rate at 245 ° C. or lower in the die pad electrode part 22 that is a joining part are determined depending on whether the die pad electrode part 22 is not plated or plated. The experimental values are shown separately.
  • the minimum reflow oven heating temperature (minimum reflowable temperature) is set to a temperature about 10 ° C. higher than the liquidus temperature of the mounting solder material 70, and this reflow minimum temperature is used as a reference. Pass / fail at heating temperatures of 20 ° C. and 25 ° C. was also confirmed by experiments.
  • solder materials shown in (Table 1) cannot be said to be an appropriate combination.
  • Table 2 shows an experimental example for explaining the present invention.
  • (Sn-10Sb) -based solder material is used as the die-bonding solder material 30, and (Sn-Ag-Cu-Bi) -based solder material is used as the mounting solder material 70. .
  • Sb is 10% by mass or less, the solidus temperature cannot satisfy 245 ° C. and becomes 245 ° C. or less.
  • Sb is 13% by mass or more, the solder material becomes hard and cracks are easily generated, and the mechanical reliability after the solder material is solid is lowered. Therefore, Sb is preferably 10 to 13% by mass, and more preferably 10 to 11% by mass of Sn in order to suppress the occurrence of cracks and ensure mechanical reliability.
  • the purity of Sn which is the main component of the solder material, is preferably 99.9% by mass or more, and among them, the content of Cu contained in impurities of 0.1% by mass or less is 0.01% by mass. % Or less is preferable, and 0.005 mass% or less is more preferable. This is because the higher the Cu content, the lower the original solidus temperature (245 ° C.).
  • the (Sn—Ag—Cu—Bi) based solder material used as a mounting solder material is 3 to 3.4 mass% Ag, 0.5 to 1.1 mass% Cu, and 3 to 7 Bi.
  • the solder material which consists of Sn by mass and the balance is shown. There is a disagreement that the solidus temperature increases as the amount of Ag added increases. Therefore, about 3.0 mass% is preferable.
  • Cu also increases the solidus temperature, so it is preferable to add it in the range of (0.55 to 0.85) mass%.
  • Bi like Cu, increases the solidus temperature and decreases the mechanical strength. Therefore, Bi is preferably added in the range of (3 to 5) mass%.
  • a (Sn-3Ag-0.8Cu-3Bi) based solder material was used.
  • the solidus temperature and liquidus temperature of the die bonding solder material 30 itself do not change, and the plating material in the die pad electrode portion 22 is Ni.
  • the melting rate at 245 ° C. or less in the die pad electrode portion 22 is about 12 to 15%, but when the reflow furnace temperature is in the range of 220 to 240 ° C., it is 245 ° C. or less at the die pad electrode portion 22.
  • the melting rate at 0 is 0%.
  • the reason why the minimum reflow furnace temperature is set to 220 ° C. is that the liquidus temperature when the mounting solder material 70 having the composition ratio described above is used is as low as 215 ° C.
  • the reflow furnace temperature is raised to 245 ° C., the melting rate at 245 ° C. or less in the die pad electrode portion 22 is 12 to 15%.
  • the lead frame 20 having the Ni-plated layer on the die pad electrode surface 22a is used, and a (Sn—Ag—Cu—Bi) based solder material is used as the mounting solder material 70, and the die bonding solder material is used.
  • a solder material of 30 (Sn-10Sb) based solder in which the content of Cu contained in impurities of 0.1% by mass or less is suppressed to 0.01% by mass or less, reflow is performed. It can be seen that good results are obtained when the furnace heating temperature is up to 240 ° C.
  • solder material 30 for die bonding in the die pad electrode portion 22 is determined to be rejected when 1% is melted.
  • (Sn-10Cu) based solder material that has been used in the past is also illustrated in (Table 2). Further, combinations when Cu is contained in an amount of 0.02% by mass or more are listed as comparative examples.
  • Table 3 shows a preferred example of the present invention.
  • the example of (Table 3) is a case where (Sn—Ag—Cu—Bi—In) based solder material to which In is added in addition to the components shown in (Table 2) is used as the mounting solder material 70. .
  • the solidus temperature is 189 ° C. and the liquidus temperature is 210 ° C. Thus, it can be made lower than when Bi is added. Of course, both the solidus temperature and the liquidus temperature can be made lower than the M705 standard solder material.
  • the solder material 30 for die bonding is a (Sn-10Sb) type solder material as in (Table 2), and the content of Cu contained in impurities of 0.1% by mass or less is suppressed to 0.01% by mass or less. Solder material. As a precaution, the data are also listed for the solder material 30 for die bonding containing 0.02% by mass or more of Cu as in (Table 2).
  • the solidus temperature and the liquidus temperature of the die-bonding solder material 30 itself do not change as in the case of (Table 2), and are 245 ° C. and 268 ° C.
  • the plating material of the die pad electrode part 22 made of Cu material is most preferably Ni material, and the solidus temperature at the die pad electrode part 22 when the Cu content is 0.01% by mass or less is 239 to 245 ° C. The value was the same as or very close to the solidus temperature (245 ° C.) of the solder material 30 itself.
  • the liquidus temperature at the die pad electrode portion 22 does not change and remains at 268 ° C.
  • the melting rate of the die-bonding solder material 30 itself at 245 ° C. or less is in the range of about 12 to 27.5% when the Cu content is 0.01% by mass or less.
  • the melting rate is 50% or more.
  • the liquidus temperature is as low as 210 ° C. as described above. Since the (minimum heating temperature) is also lowered, the minimum reflowable temperature can be set to about 215 ° C. Therefore, even if the temperature of the reflow furnace was raised (heated) to 230 to 235 ° C., it was experimentally confirmed that none of the die bonding solder material 30 in the die pad electrode portion 22 melted as shown in (Table 3).
  • Table 4 is an example when a (Sn—Ag—Cu—Bi) based solder material is used.
  • Examples 1 to 6 are (Sn-Ag-Cu-Bi) based solder materials, and Examples 7 to 9 are further a kind of specific metal (Ni, Fe, Co)). It is an Example when added.
  • Examples 10 to 11 are examples when a solder material not containing Cu is used, and Examples 12 to 16 are examples when a specific metal (Ni or Co or both) is added. It is an example.
  • Comparative Example 1 is data when using M705 standard solder material. This is used as reference data.
  • Table 4 shows the melting point at the maximum endothermic reaction point in addition to the solidus temperature and liquidus temperature as the composition ratio and melting point of the solder material. In addition, the mechanical joint strength and the quality of the solder material surface state are shown.
  • Examples of the heating temperature of the reflow furnace are 220 ° C. in Examples 1 to 9, 230 ° C. in Comparative Example 1, and 220 ° C. in Comparative Examples 2 to 6.
  • solder material surface state used solder material particles as shown in FIG. FIG. 2 illustrates a chip part (sample number “000”) before the heat treatment. As shown in FIG. 3, it can be seen that solder material particles are mixed over the entire surface of the electrode by enlarging a part thereof. A predetermined amount of solder material particles are heated and heated at the temperature of the reflow furnace.
  • FIG. 4 shows a state where the solder material particles are not sufficiently dissolved even at the heating temperature of the reflow furnace
  • FIG. 5 is a partially enlarged view thereof. It can be seen that some particles of the solder material have not yet melted sufficiently.
  • FIG. 6 shows a state where the solder material particles are completely dissolved
  • FIG. 7 shows an enlarged view thereof.
  • a dissolved state in which solder material particles remain on the surface as shown in FIG. 4 is not preferable.
  • the state shown in FIGS. 6 and 7 is an ideal dissolved state to be obtained.
  • the bonding strength is determined by a heat cycle test.
  • a chip resistor component is illustrated.
  • a solder paste of (Sn—Ag—Cu—Bi) based solder material is printed and applied to a soldering pattern (1.6 ⁇ 1.2 mm) of the printed board at a thickness of 150 ⁇ m.
  • a chip resistance component (3.2 ⁇ 1.6 ⁇ 0.6 mm) is placed and soldered in a reflow furnace having a heating temperature of 220 ° C., and then the printed circuit board on which the chip resistance component is mounted is ⁇ 55 ° C.
  • the bonding strength (N) is shown when 1000 cycles are performed with the operation of holding at + 125 ° C. for 30 minutes each as one cycle.
  • the bonding strength has a high average value, preferably a minimum value of 20 ° C. or higher, and more preferably has a small absolute value.
  • the solidus temperature is 210 ° C. or lower.
  • the liquidus temperature is also approximately 215 ° C. or lower. Since the surface condition of the solder material is good (completely dissolved state in FIG. 6), the bonding strength is also satisfactory. In some examples, the liquidus temperature exceeds 220 ° C., but the solder material surface state and the bonding strength are sufficiently satisfactory values.
  • Comparative Example 2 to Comparative Example 6 have contents exceeding Comparative Example 1, they are inferior in terms of solder material surface state (partially insoluble state) and bonding strength as in Examples 1 to 9. . Therefore, it can be said that a composition ratio that falls within the above-described range is preferable as the (Sn—Ag—Cu—Bi) -based solder material.
  • Table 5 is an experimental example (Example) when a (Sn—Ag—Cu—Bi—In) based solder material is used.
  • the comparative example 1 is data when using a solder material of M705 standard, and this is used as reference data.
  • Table 5 also shows the melting point at the maximum endothermic reaction point in addition to the solidus temperature and the liquidus temperature as the composition ratio and melting point of the solder material, as in (Table 4). Indicates the quality of the solder material surface.
  • the surface condition of the solder material is the same as in FIGS.
  • the joint strength test is the same as in (Table 4). However, the experiment was performed by changing the heating temperature of the reflow furnace to 215 ° C.
  • the standard solder material is an alloy solder material of M705 standard as in (Table 4), and various properties of this solder material are used as standard data.
  • the solidus temperature is 200 ° C. or lower.
  • the liquidus temperature is also approximately 215 ° C. Since the surface state of the solder material is good (completely dissolved state in FIGS. 6 and 7), the bonding strength is also a value that satisfies. Some examples have a liquidus temperature exceeding 215 ° C., but the solder material surface state and bonding strength are sufficiently satisfactory values.
  • Comparative Example 7 to Comparative Example 14 have contents that exceed Comparative Example 1, in terms of the solder material surface state (partially insoluble state) and bonding strength compared to Examples 17 to 24. It turns out that it is inferior. Therefore, it can be said that a composition ratio that falls within the above-described range is preferable as the (Sn—Ag—Cu—Bi—In) -based solder material.
  • the die-bonding solder material 30 is a (Sn-10Sb) -based solder material in which the content of Cu contained in impurities of 0.1% by mass or less is suppressed to 0.01% by mass or less. Material is preferred. In particular, the Cu content is preferably 0.005% by mass or less, more preferably 0.001% by mass or less.
  • Ni material is suitable as the plating material in the die pad electrode portion 22 to be used, and the heating temperature of the reflow furnace is preferably set to 245 ° C. or lower, preferably 240 ° C. or lower.
  • P can also be added to this. If a small amount of P is further added to the above-described (Sn—Sb) -based solder material, it leads to improvement of voids as well as wettability.
  • One or more components of (Ni, Fe, Co) can be further added to the (Sn—Sb) -based solder material of (3) described above. Instead of P, one or more components of (Ni, Fe, Co) may be added.
  • the addition of one or more components of (Ni, Fe, Co) suppresses the dissolution of the Ni plating layers 14 and 24 during the solder material joining process, and the Ni plating generated during the solder material joining. This is to suppress the growth of the reaction amount.
  • Ni, Fe, Co one or more components of (Ni, Fe, Co) are added within a range where the total amount is 0.01 to 0.1% by mass. When added alone (one kind), 0.1% by mass for Ni, 0.05% by mass for Fe, and 0.05% by mass for Co are preferable. As a combination of these components, (Ni + Co) and (Ni + Fe + Co) can be considered.
  • the die bonding solder material and the mounting solder material that increase the solidus temperature difference between the die bonding solder material and the mounting solder material of the present invention are used. It has been found that even if there is no Cu component, it can be achieved in order to achieve the object of preventing the dissolution of the solder material for die bonding by soldering the surface mounting component. The results are shown in Examples 10 to 16 in (Table 4) and Examples 25 to 27 in (Table 5).
  • Example 15 and Example 16 of (Table 4) seemed to have no problem in appearance, but there were many voids, so the result was rejected.
  • (Sn- (4-5) Bi-3Ag) -based solder material or (Sn- (4-5) Bi-3Ag) -based solder material is combined with (0.02-0.1) wt% Ni.
  • Example 10 As shown in Examples 25 to 27 in (Table 5), even in the case of (Sn- (3-5) In- (2-4) Bi-3Ag) based solder material, Examples 10 to The result is equivalent to Example 16.
  • the addition amount of Ag should just be in the range of 2.8 mass% to 3.3 mass%.
  • the present invention is a series of surface mounting component manufacturing processes in which a semiconductor element (IC chip) is die-bonded, the die-bonded semiconductor element is packaged, and then surface-mounted on a printed circuit board, etc., and the surface mounting manufactured by this manufacturing process Applicable to parts.
  • IC chip semiconductor element

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Die Bonding (AREA)
  • Wire Bonding (AREA)

Abstract

 ダイボンド用はんだ材料を使用して形成された面実装部品を、実装用はんだ材料を使用してプリント基板にはんだ付けするときでも、ダイボンド用はんだ材料の溶解が起きないようにした。 ダイパット用はんだ材料30として、Cuの含有量が所定値以下のSnを主成分とする(Sn-Sb)系の高融点はんだ材料を使用して形成された面実装部品を、回路基板の基板端子部に塗布された実装用はんだ材料70として、(Sn-Ag-Cu-Bi)系はんだ材料を用いてはんだ付けする。ダイボンド用はんだ材料30の固相線温度は243℃であり、実装用はんだ材料70の液相線温度は215~220℃程度であるので、リフロー炉の加熱温度(240℃以下)によってもダイボンド用はんだ材料30は溶解しない。

Description

面実装部品のはんだ付け方法および面実装部品
 この発明は、半導体素子(Siダイ/SiCダイ)などの回路素子をダイボンド用はんだ材料を用いてダイパット電極部に接合固定して得られた面実装部品を、実装用はんだ材料を用いて回路基板等にはんだ付けする面実装部品のはんだ付け方法および面実装部品に関する。
 一般に半導体のパッケージングは、回路素子をリードフレームのダイパット電極部(アイランド部)にダイボンディングして接合(ろう付け)したのち、樹脂成形されたものである。熱発生の大きい半導体素子などの回路素子の場合、ダイボンディングにはろう材としてはんだ(以下はんだ材料という。)が用いられている。
 このはんだ材料として従来から(Sn−Pb)系を基本としたはんだ材料が用いられている。この中でも(Pb−5質量%Sn)(合金を表す表記では、以後質量%は省略して示す。)近傍で、融点が300℃前後となる比較的高温であるはんだ材料が使用されている。この理由は面実装部品をプリント基板に実装するときのはんだ材料(実装用はんだ材料)の加熱条件が240~260℃で、しかも数~100秒間加熱処理されるため、ダイボンド用はんだ材料が溶け出さないようにする必要があるからである。
 回路素子が動作しているときは温度が上昇し、非動作状態のときは常温となるので、はんだ材料の接合部は大きな温度変化を受けることになる。一方、回路素子とリードフレームのダイパット電極部とは熱膨張係数が相違するので、その熱膨張係数の違いに起因してはんだ材料の接合部は温度変化に伴う繰り返し歪みを受け、繰り返されるこの歪みによる疲労によって、はんだ材料接合部に亀裂が発生することがある。したがってこの亀裂の進展に伴って、はんだ材料接合部における電気的接続の信頼性を低下させる場合がある。
 このような理由から、近年(Pb−5Sn)近傍の組成に、Ag,In,Bi,Cu等の金属を微量含有させたはんだ材料が提案されている。
しかしながら、これらをダイボンド用はんだ材料として用いて熱膨張係数が大きく異なる部材を接合した場合でも、はんだ接合部にかかる歪みが過大となり、熱サイクル性能に顕著な改善効果が見られないという問題があった。
 これに加えて、最近では(Pb−Sn)系はんだ材料に含まれているPbの人体への影響に関心が集まり、Pbを含む製品を廃棄することによる地球環境の汚染、生物への影響を低減することが課題になっている。
 環境汚染等を低減するために、無鉛はんだ材料が求められている。そのため面実装部品をプリント基板などの回路基板に面実装する際に使用される実装用はんだ材料としては、近年無鉛はんだ材料(Pbフリーはんだ材料)が使用されている。
 また、最近までは、半導体素子をリードフレームのダイパット電極部に接合する際に使用されているダイボンド用はんだ材料としては、鉛入りはんだ材料(Pbを85質量%以上含有している(Pb−Sn)系はんだ材料など)が使用されていたが、このダイボンド用はんだ材料においても、Pbフリーはんだ材料の使用が要求されている。
 ここで、Pbを85質量%以上含有する鉛入りはんだ材料の場合には、その固相線温度が260℃以上のものが多く比較的高温であるため、半導体素子などの回路素子への悪影響が考えられる。それは、この場合リフロー炉で使用する加熱温度は、固相線温度(260℃)以上になるため、はんだ材料接合部やダイパット電極部に亀裂が発生したり、リードフレームとモールドとの界面で剥離が発生した等の状態ではんだ付け処理されることになるからである。
 このような観点から回路素子とリードフレームとの接合に使用するダイボンド用はんだ材料としても、低溶融温度でしかもPbフリーのはんだ材料を使用できるように研究がなされている。
 鉛入りはんだ材料よりも固相線温度の低い無鉛はんだ材料としては、(Sn−Ag)系はんだ材料、(Sn−Cu)系はんだ材料、(Sn−Sb)系はんだ材料などが知られているが、そのうち、リフロー炉内の加熱温度よりも高い固相線温度の高融点はんだ材料としては、(Sn−Sb)系高融点はんだ材料が知られている(特許文献1)。
 特許文献1に開示された(Sn−Sb)系高融点はんだ材料は、面実装部品(ICパッケージ)をプリント基板に実装する際の加熱温度でも、ダイボンディング時に使用した高融点のはんだ材料接合部にボイドなどが生成しないように、その組成比を工夫したものである。
特開2001−284792号公報
 しかし、上述の技術文献1に開示されている高融点はんだ材料では、特にSbの含有量が多い。Sbの含有量が多いと固相線温度が上昇する傾向にあるが、その反面クラックなどを起こしやすくなり、はんだ材料の機械的信頼性が低下する傾向にあることが諸種の実験により確認された。
 すなわち、面実装部品を回路基板にはんだ付けする際に、ダイボンド用はんだ材料などによって内部潜熱として吸熱されるので、熱が十分に面実装部品や実装用はんだ材料に伝わらず、加熱不足という現象が起き易い。この結果、実装用はんだの濡れ性が悪くなり、ボイド発生を引き起こすことになり、面実装部品を回路基板に実装する場合の信頼性も揺らぐことになるからである。
 上述の(Sn−Sb)系はんだ材料は、確かに鉛入りはんだ材料よりもその固相線温度が低いが、リフロー炉において使用する処理温度(加熱温度)との温度差はさほどないので、実装用はんだ材料としてはできるだけその固相線温度が低いはんだ材料を使用する必要がある。これと共に、(Sn−Sb)系はんだ材料を使用するときには以下のような問題も惹起する。
 (Sn−Sb)系はんだ材料成分中にCuなどの不純物が含まれていると、はんだ材料の固相線温度が10~20℃程度低下してしまう。
 例えば、(Sn−10Sb)系はんだ材料ではその固相線温度が243℃であるのに対し、Cuを含有した(Sn−10Sb)系はんだ材料ではその固相線温度が10℃ほど低下する傾向にある。
 はんだ材料の主成分であるSnとして99.9%の純度のSnを使用したとしても残りの0.1%は不純物である。したがって含有する不純物がCuであったときには当然ながら固相線温度の低下を招来することがある。Cuの含有量を示すJIS規格は、0.02%であるが、0.02%程度のCu含有においても固相線温度は極端に低下することが知られている。
 同様に、半導体素子をリードフレームのダイパット電極部(はんだ接合部)にはんだ付けする工程においては、リードフレーム中よりCuが溶出して接合はんだ材料中に混入し易い環境下にあるので、これによってもはんだ材料の固相線温度が低下することになる。
 例えば、リードフレームがCuを主成分とするものであるとき、リフローはんだ付け時にリードフレームが加熱されるので、主成分のCuが溶出(0.1~2質量%程度)して、これがダイボンド用はんだ材料中に混入する。
 溶解したダイボンド用はんだ材料中にCuなどが溶出すると、Cuを含有したはんだ材料を使用したのと同じ結果となるので、その固相線温度が低下してしまう。
 固相線温度が低下することは、上述のように面実装部品を回路基板にはんだ付けするときに、ダイボンド用はんだ材料に吸熱されてしまい、熱が十分に面実装部品や実装用はんだ材料に伝わらず、これによって実装用はんだ材料の濡れ性が悪くなってボイド発生を引き起こすことになる。そのため、面実装部品を回路基板に実装する場合の信頼性が低下してしまうので、リフロー炉の加熱温度との関係から好ましくない。
 そこで、この発明はこのような従来の課題を解決したものであって、固相線温度を低下させる成分をできるだけ含まない、含んだとしても既定値以下となるようなはんだ材料をダイボンド用はんだ材料として使用すると共に、はんだ材料接合工程中に固相線温度を低下させる成分が溶出しないようにしたものである。
 さらにダイボンド用はんだ材料と実装用はんだ材料との固相線温度差が大きくなるようなダイボンド用はんだ材料と実装用はんだ材料を使用して面実装部品をはんだ付けすることでダイボンド用はんだ材料の溶解を防止できるようにしたものである。
 上述した課題を解決するため、請求項1に記載したこの発明にかかる面実装部品のはんだ付け方法は、Niメッキ層が形成された電極面を有する回路素子が、Niメッキ層が形成されたリードフレームのダイパット電極面に、Cuの含有量が所定値以下のSnを主成分とする(Sn−Sb)系はんだ材料を用いてはんだ付けされた面実装部品を、回路基板の基板端子部に塗布された(Sn−Ag−Cu−Bi)系はんだ材料若しくは(Sn−Ag−Cu−Bi−In)系はんだ材料を実装用はんだ材料として用いてはんだ付けすることを特徴とする。
 また、請求項9に記載したこの発明に係る面実装部品は、回路素子が載置されるダイパット電極部と回路基板に接合されるリード部からなり、上記ダイパット電極部にはNiメッキ層が形成されたリードフレームと、ダイパット電極部に対して、Cuの含有量が所定値以下のSnを主成分とする(Sn−Sb)系はんだ材料を介して接合される、Niメッキ層をその接合面とする回路素子と、リード部が、(Sn−Ag−Cu−Bi)系はんだ材料、若しくは(Sn−Ag−Cu−Bi−In)系はんだ材料を介して、基板端子部を構成するランド部に接合される回路基板とからなることを特徴とする。
 この発明ではダイボンド用はんだ材料として(Sn−Sb)系はんだ材料が使用される。
 使用する(Sn−Sb)系はんだ材料のCu含有量は既定値以下に抑える。Cuの既定値としては0.01質量%以下好ましくは0.005質量%以下である。Cuの含有量が既定値以下であるときは、固相線温度の低下を回避し得ることが確認された。
 リードフレームはCuを主成分とするものであるから、回路素子が載置固定される回路素子固定面となるダイパット電極部(はんだ材料接合面となるアイランド部)はメッキしたものが使用される。特にダイパット電極部がNiメッキされたリードフレームが使用される。Niメッキ層によってはんだ材料接合時におけるCu成分の溶出を防止する。同時に、回路素子の電極面側もNiメッキ層を形成する。
 こうすることで、回路素子をリードフレームに載置してはんだ材料で接合する場合でも、Cu成分の溶出がなくなり、固相線温度の低下を回避できる。
 実装用はんだ材料としては、(Sn−Ag−Cu−Bi)系はんだ材料か、(Sn−Ag−Cu−Bi−In)系はんだ材料が使用される。所定の組成比となるように選定することで、最大吸熱反応を示す温度(最大吸熱反応温度)は、(Sn−Ag−Cu−Bi)系はんだ材料では215℃以下となり(表4参照)、(Sn−Ag−Cu−Bi−In)系はんだ材料では210℃となる(表5参照)。その結果、リフロー炉のはんだ付けできる最小加熱温度が従来よりも下がる。なお、最大吸熱反応温度の測定方法としては、DSC(Differential Scanning Calorimetry;示差走査熱量)測定で行った。
 ダイボンド用はんだ材料として使用する(Sn−Sb)系はんだ材料それ自身の固相線温度は、245℃であるので、上述した実装用はんだ材料を使用すれば、ダイボンド用はんだ材料と実装用はんだ材料との固相線温度差が大きくなる。その結果、実装されたすべての面実装部品のはんだ材料接合部におけるはんだ付け性が良好となるため、回路基板内温度分布が大きくなってもダイボンド用はんだ材料は溶解しない。
 この発明によれば従来よりも固相線温度を下げられることに加え、(Sn−Sb)系はんだ材料本来の固相線温度もそのまま保持でき、結果として加熱温度が回路素子に与える影響を回避できる。
 また、実装用はんだ材料として、固相線温度の低い(Sn−Ag−Cu−Bi)系はんだ材料か、(Sn−Ag−Cu−Bi−In)系はんだ材料を使用することで、リフロー炉のはんだ付けできる最小加熱温度(リフロー可能最小温度)を従来よりも下げることができると共に、ダイボンド用はんだ材料との固相線温度差を大きくすることができる。
 その結果、実装されたすべての面実装部品のはんだ材料接合部におけるはんだ付け性が良好となるため、回路基板内温度分布が大きくなってもダイボンド用はんだ材料が溶解することなくなり、面実装部品の接合強度が高くなって機械的信頼性を高めることができる。
ICチップをダイボンディングするときの概略工程を示す図である。 ICチップをダイボンディングするときの概略工程を示す図である。 ICチップをダイボンディングするときの概略工程を示す図である。 ICチップをダイボンディングするときの概略工程を示す図である。 ICチップをダイボンディングするときの概略工程を示す図である。 はんだ材料粒子の加熱前の状態を示す拡大写真である。 図2の一部をさらに拡大した写真である。 加熱不足によって、はんだ材料の融合が不完全な状態を示す拡大写真である。 図4の一部をさらに拡大した写真である。 本発明において、はんだ材料の融合が完全な状態を示す拡大写真である。 図6の一部をさらに拡大した写真である。
 続いて、この発明を実施するための形態を、図を参照しながら説明する。
以下に示す実施例では、回路素子としてウエハから切り出された半導体素子(ICチップ)を面実装する場合について説明する。したがって回路基板としてはプリント基板が使用されている。
 まず、面実装部品のはんだ付け方法について図1A~図1Eを参照して説明するが、このはんだ付け工程自体は周知の工程であるので、その概略を説明する。
 図1Aに示すように、この発明では半導体素子(ICチップ)10のうちダイボンディング面となる電極面12にはNiメッキ層14が形成される。Niメッキ層14は、ダイボンディングされる面の全領域(全電極面)に形成される。Niメッキ層14の表層にはSnメッキ層またはAuメッキ層16がさらに形成される。Auメッキ層16は必要に応じて形成される。
 これらのSnメッキ層またはAuメッキ層16は、この状態において、ダイボンド用はんだ材料30に位置するはんだ付け面側(最表面)にSnメッキ層またはAuメッキ層16が形成されていれば良いものであって、ICチップ10とNiメッキ層14の間に例えばCu、TiなどNiメッキ層以外の層が介在しても良い。
 図1Aのように、リードフレーム20のアイランド部となるダイパット電極部(ダイボンド接合部)22が回路素子固定部であり、その下面には放熱板38が取り付けられ、その上面22aがダイパット電極面となる。したがって、ダイパット電極面22aは回路素子固定用の電極面として機能する。
 ICチップ10の電極面12と対向するこのダイパット電極面22aにはNiメッキ層24が施される。Niメッキ層24の表層にAuメッキ層26がさらに形成される。Auメッキ層26は必要に応じて設けられる。
 そして、このダイパット電極面22aの表層にダイボンド用はんだ材料30が供給される。この例では表層にAuメッキ層26が形成されているので、このAuメッキ層26の上層にダイボンド用はんだ材料30が塗布される(ソルダペースト処理)。ダイボンド用はんだ材料30としては、後述するような高融点はんだ材料が使用される。
 ここで、リードフレーム20はCuを主成分とするものであるから、この発明ではNiメッキ層24によってリードフレーム20のダイパット電極面22aを被覆する。
 Niメッキ層24を被覆すれば、ICチップ10のはんだ付け工程中にリードフレーム20が加熱され、Cuが溶出しようとしても、Cuが溶出しにくくなると共に、溶出したとしてもダイボンド用はんだ材料30中には混入しない。
 ダイボンド用はんだ材料30中に溶出したCuが混入すると、このダイボンド用はんだ材料30そのものの固相線温度(後述するように本例では245℃)を低下させてしまう。実験によると229~236℃程度まで低下してしまう。Niメッキ層24を用いることでダイボンド用はんだ材料30それ自身の固相線温度を245℃に維持することができる。
 図1Bに示すように、塗布された高融点のダイボンド用はんだ材料30の面にICチップ10の電極面12が対峙するように載置されて仮固定される。その後、オーブンリフロー炉(図示はしない)内に搬送されて加熱処理される。この加熱処理によって図1CのようにAuメッキ層16と26は溶解する。
 ダイパット電極面22aにダイボンド用はんだ材料30を用いてはんだ付けすることで図1Cのような回路素子となる。実際には、この回路素子を構成するリード34のうち内部端子部(内部電極部)34aとICチップ10とが電極ワイヤ40によって結線(ワイヤボンディング)された後、ワイヤボンディングされたICチップ10とリードフレーム20とが樹脂42によってモールド処理されて、図1Dに示す周知の面実装部品50が得られる。
 面実装部品50としては、周知のようにSOP(Small Outline Package),QFN(Quad Flat Non−Lead)や、QFP(Quad Flat Package)などが考えられる。
 面実装部品50は、図1Eに示すように回路基板として機能するプリント基板60に実装される。そのため、プリント基板60に形成された基板端子部(ランド)62とリード34の外部端子部34bとがPbフリーの実装用はんだ材料70によってはんだ付けされて、実装処理が完成する。
 なお、リードフレーム20を構成するリード34は予めその全体に亘りSnメッキか、Sn−Biメッキ、Sn−Cuメッキ、Sn−Agメッキなどによるメッキ加工が施されている。
 上述した実装処理は、オーブンリフロー炉内で行われる。実装用はんだ材料70としては、後述するように従来から使用されている(Sn−Ag−Cu)系はんだ材料よりもその固相線温度および液相線温度が低いものが使用される。
 続いて、この発明において使用したダイボンド用はんだ材料30と実装用はんだ材料70について説明する。
 この発明においては、ダイボンド用はんだ材料30としては、固相線温度を低下させる成分をできるだけ含まない、含んだとしても既定値以下となるようなはんだ材料を使用すると共に、はんだ材料接合工程中に固相線温度を低下させる成分が溶出しないようにしたものである。
 また、ダイボンド用はんだ材料30と実装用はんだ材料70との固相線温度差が大きくなるようなダイボンド用はんだ材料30と実装用はんだ材料70を使用して面実装部品をはんだ付けするようにしたものである。(表1)以下を参照して説明する。
1.(表1)について
Figure JPOXMLDOC01-appb-T000001
(表1)は、この発明と比較するための不適切な例を示す。実装用はんだ材料70としては従来から用いられているM705規格の合金はんだ材料(Sn−3Ag−0.5Cu)を例示する。その固相線温度は217℃であり、液相線温度は220℃である。
 これに対してダイボンド用はんだ材料30としては(表1)に示すように
Snを主成分とする(Sn−Sb)系はんだ材料である。
(表1)には、(Sn−Sb)系はんだ材料として、Cuを含有するものと、そうでない2種類のはんだ材料を示す。(Sn−10Sb)系はんだ材料は、0.1質量%以下の不純物を含む。また、(Sn−10Sb)系はんだ材料それ自身の固相線温度は245℃であり、液相線温度は268℃である。
 (表1)にはダイボンド用はんだ材料30の組成比、その組成比での固相線温度、液相線温度およびダイボンド用はんだ材料30そのものの245℃以下での溶融率を示す。また、接合部であるダイパット電極部22における固相線温度、液相線温度およびそこでの245℃以下での溶融率は、ダイパット電極部22における無メッキの場合と、メッキ加工を施した場合を分けて実験した値を示す。
 そして、リフロー炉の加熱温度を変えたときに、ダイパット電極部22における溶融状態がどのように変化するかを合否(適否)で示した。ここに、ダイパット電極部22におけるダイボンド用はんだ材料30の溶融による合否は、1質量%でも溶融した場合には不合格とした。
 リフロー炉の最小加熱温度(リフロー可能最小温度)は、実装用はんだ材料70の液相線温度を基準に、これよりも10℃程度高めの温度を設定し、このリフロー可能最小温度を基準にして20℃および25℃高めの加熱温度での合否も実験により確認した。
 (表1)のように、(Sn−10Sb)系はんだ材料の場合には、ダイボンド用はんだ材料30それ自体の245℃以下での溶融率は12%となった。また、Sbが10質量%以下では、(表1)に示すようにダイパット電極部22における固相線温度は245℃以下に低下する。この値は、ダイパット電極部22におけるメッキ層によって相違するも、ダイボンド用はんだ材料30そのものの固相線温度よりも低い。
 結論としては、ダイボンド用はんだ材料30に含有するCuの含有量を加減調整してもダイパット電極部22における溶融が起きることが確認できた。したがって、(表1)に示すはんだ材料は、適切な組み合わせとは言えない。
2.(表2)について
Figure JPOXMLDOC01-appb-T000002
 (表2)は、この発明の説明に供する実験例を示す。
 (表2)では、ダイボンド用はんだ材料30として(Sn−10Sb)系のはんだ材料を使用し、実装用はんだ材料70として(Sn−Ag−Cu−Bi)系のはんだ材料を使用した場合である。
 ダイボンド用はんだ材料30にあって、Sbが10質量%以下では、固相線温度として245℃を満足することができず、245℃以下となってしまう。これに対して、Sbが13質量%以上であると今度ははんだ材料が硬くなってクラックが入りやすくなり、はんだ材料固形後の機械的信頼性が低下してしまう。したがって、Sbは10~13質量%が好ましく、クラックの発生を抑止し、機械的信頼性を確保するには、10~11質量%のSnがより好ましい。
 また、はんだ材料の主成分であるSnの純度は、99.9質量%以上であるのが好ましく、そのうちでも0.1質量%以下の不純物中に含有するCuの含有量は、0.01質量%以下が好ましく、0.005質量%以下がさらに好ましい。Cuの含有率が高くなると、それだけ本来の固相線温度(245℃)を低下させることになるからである。
 実装用はんだ材料として使用される(Sn−Ag−Cu−Bi)系はんだ材料としては、Agが3~3.4質量%、Cuが0.5~1.1質量%、Biが3~7質量%、残余がSnからなるはんだ材料を示す。Agの添加量が多くなると固相線温度が高くなる嫌いがある。したがって好ましくは3.0質量%程度がよい。
 Cuも、固相線温度を高めることになるから、(0.55~0.85)質量%の範囲内で添加するのが好ましい。BiもCuと同じく固相線温度を高めることになったり、機械的強度が落ちることになるので、好ましくは(3~5)質量%の範囲内で添加する。この例では、(Sn−3Ag−0.8Cu−3Bi)系はんだ材料を使用した。
 Biを添加した(Sn−Ag−Cu−Bi)系の実装用はんだ材料70を使用すると、その固相線温度は205℃となり、液相線温度は215℃となるため、M705規格のはんだ材料よりも固相線温度、液相線温度とも低くすることができる。
 一方(表2)のように、Cuを含有することによっては、ダイボンド用はんだ材料30それ自身の固相線温度と液相線温度はそれぞれ変化せず、またダイパット電極部22におけるメッキ材料がNi材であるときには、ダイパット電極部22における245℃以下での溶融率は12~15%程度となるが、リフロー炉温度が220~240℃の範囲内であるときには、ダイパット電極部22における245℃以下での溶融率は0%となる。
 ここで、最小のリフロー炉温度を220℃に設定したのは、上述した組成比の実装用はんだ材料70を使用したときの液相線温度が、215℃と低いためである。なお、リフロー炉温度を245℃まで昇温すると、ダイパット電極部22における245℃以下での溶融率は、12~15%となる。
 その結果、ダイパット電極面22aにNiメッキ層が施されたリードフレーム20を使用すると共に、実装用はんだ材料70として(Sn−Ag−Cu−Bi)系のはんだ材料を使用し、ダイボンド用はんだ材料30として(Sn−10Sb)系のはんだ材料であって、0.1質量%以下の不純物に含まれるCuの含有量が0.01質量%以下に抑えたはんだ材料を使用した場合には、リフロー炉の加熱温度が240℃までであるときには良好な結果が得られることがわかる。
 ここに、ダイパット電極部22におけるダイボンド用はんだ材料30は、1%でも溶融した場合には不合格として判定していることは、(表1)の場合と同じである。
 なお、念のため、(表2)には従来から使用されている(Sn−10Cu)系はんだ材料も例示してある。またCuが0.02質量%以上含む場合の組み合わせについても比較例として列挙してある。
3.(表3)について
Figure JPOXMLDOC01-appb-T000003
(表3)は、この発明の好適な一例を示す。
(表3)の例は、実装用はんだ材料70として(表2)に示した成分の他にInを添加した(Sn−Ag−Cu−Bi−In)系のはんだ材料を使用した場合である。
 Biが(2~5)質量%であるとき、Inは(3~5)質量%添加される。好ましい添加量はBiが3質量%のとき、Inは3~4質量%であり、Biが4質量%であるときには、Inは3質量%が好適である。Inは液相線温度を下げる働きがある。この例では、(Sn−3Ag−0.8Cu−2Bi−5In)系はんだ材料を使用した。
 実装用はんだ材料70としてInをさらに添加した(Sn−3Ag−0.5Cu−3Bi−3In)のはんだ材料を使用すると、その固相線温度は189℃で、液相線温度は210℃となって、Biを添加した場合よりもさらに低くすることができる。もちろん、M705規格のはんだ材料よりもその固相線温度、液相線温度を共に低くすることができる。
 ダイボンド用はんだ材料30としては(表2)と同じく(Sn−10Sb)系のはんだ材料であって、0.1質量%以下の不純物に含まれるCuの含有量が0.01質量%以下に抑えたはんだ材料である。念のため、(表2)と同じく、0.02質量%以上Cuを含有するダイボンド用はんだ材料30についてもそのデータを列挙してある。
 Cuを含有することによっては、(表2)の場合と同じくダイボンド用はんだ材料30それ自身の固相線温度と液相線温度は変化せず、245℃と268℃である。
 またCu材より構成されるダイパット電極部22のメッキ材料はNi材が最も好ましく、Cuの含有量が0.01質量%以下におけるダイパット電極部22での固相線温度は239~245℃とダイボンド用はんだ材料30そのものの固相線温度(245℃)と同じか、極めて近い値となった。ダイパット電極部22における液相線温度は変化せず268℃のままである。
 ダイボンド用はんだ材料30そのものの245℃以下での溶融率は、0.01質量%以下のCu含有量であるときには12~27.5%程度の範囲である。因みに、従来ダイボンド用はんだ材料30(Cuが0.02質量%以上含有する場合を含む)を使用した場合には、50%以上の溶融率となる。
 一方、実装用はんだ材料70として(Sn−Ag−Cu−Bi−In)系のはんだ材料の場合には、上述したようにその液相線温度が210℃と低くなるため、リフロー炉における最小温度(最小加熱温度)も低くなるから、215℃程度にリフロー可能最小温度を設定できる。したがってリフロー炉温度が230~235℃まで昇温(加熱)したとしても、(表3)に示すように何れもダイパット電極部22におけるダイボンド用はんだ材料30は溶融しないことが実験により確認された。
 続いて、実装用はんだ材料70の組成比を変えたときの実施例(実験例)を(表4)および(表5)に示す。ダイボンド用はんだ材料30は(Sn−10Sb)系はんだ材料を使用した場合である。
4.(表4)について
Figure JPOXMLDOC01-appb-T000004
 (表4)は(Sn−Ag−Cu−Bi)系はんだ材料を使用したときの実施例である。実施例1~実施例6までは、(Sn−Ag−Cu−Bi)系はんだ材料で、実施例7~実施例9までは、さらに特定の金属(Ni,Fe,Co)のうち一種)を添加したときの実施例である。また、実施例10~11はCuを含まないはんだ材料を使用したときの実施例であり、実施例12~16はさらに特定の金属(Ni,Coのいずれか又は双方)を添加したときの実施例である。
 比較例1は、M705規格のはんだ材料を使用したときのデータである。これを基準データとして用いている。
 (表4)は、はんだ材料の組成比、融点として固相線温度、液相線温度の他に最大吸熱反応点における融点を示す。また、この他に機械的接合強度と、はんだ材料表面状態の良否を示す。リフロー炉の加熱温度としては、実施例1~実施例9では220℃、比較例1では230℃、そして比較例2~比較例6では220℃をそれぞれ例示する。
 はんだ材料表面状態は、図2に示すようなはんだ材料粒子(はんだ材料粒)を使用した。図2は加熱処理される前の図であって、チップ部品(試料番号「000」)を例示した。図3のようにその一部を拡大することによって、はんだ材料の粒子が電極全面に亘って混在しているのが判る。所定量のはんだ材料粒子を盛り上げた状態でリフロー炉の温度で加熱する。
 そうした場合、リフロー炉の加熱温度でもまだ充分にはんだ材料粒子が溶解していない状態が図4(試料番号は「103」)であり、その一部拡大図が図5である。はんだ材料の一部の粒子がまだ充分に溶けていないのが判る。
 はんだ材料の粒子が完全に溶解した状態が図6であり、その拡大図が図7である。図4のように表面にはんだ材料粒子が残るような溶解状態は好ましくない。図6及び図7の状態が求めようとする理想的な溶解状態である。
 接合強度は、ヒートサイクル試験によって行う。この例では、チップ抵抗部品を例示する。プリント基板のはんだ付けパターン(1.6×1.2mm)に(Sn−Ag−Cu−Bi)系はんだ材料のソルダペーストを150μmの厚さで印刷塗布する。その後、(3.2×1.6×0.6mm)のチップ抵抗部品を載せて、加熱温度が220℃のリフロー炉ではんだ付けした後チップ抵抗部品が実装されたプリント基板を−55℃~+125℃にそれぞれ30分ずつ保持する操作を1サイクルとして、1000サイクル行ったときの接合強度(N)を示す。
 接合強度は、平均値が高く、最小値が20℃以上が好ましく、そのうちでもその絶対値が小さいものがさらに好ましい。
 実施例1~実施例9から明らかなように、固相線温度は210℃以下である。液相線温度も概ね215℃以下である。はんだ材料表面状態は何れも良好(図6の完全溶解状態)であるから、接合強度も満足する値となっている。一部、液相線温度が220℃を超えている実施例もあるが、はんだ材料表面状態および接合強度は十分満足した値を示している。
 比較例2~比較例6までは、比較例1を超える内容のものもあるが、実施例1~実施例9のようにはんだ材料表面状態(一部不溶解状態)と接合強度の点で劣る。したがって、(Sn−Ag−Cu−Bi)系はんだ材料としては、上述したような範囲内に収まる組成比が好ましいと言える。
5.(表5)について
Figure JPOXMLDOC01-appb-T000005
 (表5)は(Sn−Ag−Cu−Bi−In)系はんだ材料を使用したときの実験例(実施例)である。比較例1は、M705規格のはんだ材料を使用したときのデータで、これを基準データとして用いている。
 (表5)も(表4)と同じように、はんだ材料の組成比、融点として固相線温度、液相線温度の他に最大吸熱反応点における融点を示し、さらに機械的接合強度と、はんだ材料表面状態の良否を示す。はんだ材料表面状態は、図3~図6と同様である。接合強度の試験も(表4)と同じである。ただし、リフロー炉の加熱温度は215℃に変更して実験した。
 基準となるはんだ材料としては、(表4)の場合と同じくM705規格の合金はんだ材料であって、このはんだ材料の諸特性を基準データとして用いている。
 実施例17~実施例24から明らかなように、固相線温度は200℃以下である。液相線温度も概ね215℃である。はんだ材料表面状態は何れも良好(図6及び図7の完全溶解状態)であるから、接合強度も満足する値となっている。一部、液相線温度が215℃を超えている実施例もあるが、はんだ材料表面状態および接合強度は十分満足した値を示している。
 比較例7~比較例14にあっては比較例1を超える内容のものもあるが、実施例17~実施例24に比べてはんだ材料表面状態(一部不溶解状態)と接合強度の点で劣ることが判る。したがって、(Sn−Ag−Cu−Bi−In)系はんだ材料としては、上述したような範囲内に収まる組成比が好ましいと言える。
 したがって(表1)~(表5)までの実験結果から明らかなように、この発明においては、
(1)実装用はんだ材料70としては、(表2)以下に示す組成比となされた(Sn−Ag−Cu−Bi)系のはんだ材料若しくはこれにInを添加した(表3)以下に示す組成比となされた(Sn−Ag−Cu−Bi−In)系のはんだ材料が好適である。
(2)ダイボンド用はんだ材料30としては、(Sn−10Sb)系のはんだ材料であって、0.1質量%以下の不純物に含まれるCuの含有量が0.01質量%以下に抑えたはんだ材料が好適である。特にCuの含有量が0.005質量%以下、好ましくは0.001質量%以下であることが好ましい。
 この場合使用するダイパット電極部22におけるメッキ材としてはNi材が好適であり、リフロー炉の加熱温度は245℃以下、好ましくは240℃以下に設定されるのが好ましいことが判明した。
(3)なお、上述した(Sn−Sb)系はんだ材料をダイボンド用はんだ材料30として使用するとき、これにPを添加することもできる。上述した(Sn−Sb)系はんだ材料にさらに、Pを微量に添加すると、濡れ性と共にボイドの改善に繋がる。
(4)上述した(3)の(Sn−Sb)系はんだ材料に、さらに(Ni,Fe,Co)の一種以上の成分を添加することもできる。Pの代わりに(Ni,Fe,Co)の一種以上の成分を添加してもよい。
 (Ni,Fe,Co)の一種以上の成分を添加するのは、はんだ材料接合工程中で、Niメッキ層14,24が溶解するのを抑制すると共に、はんだ材料接合中に生成されるNiメッキの反応量の成長を抑制するためである。
 (Ni,Fe,Co)の一種以上の成分は、総量が0.01~0.1質量%となる範囲内で添加される。単独(一種類)で添加するときは、Niでは0.1質量%、Feでは0.05質量%、Coでは0.05質量%が好ましい。これら成分の組み合わせとしては、(Ni+Co)、(Ni+Fe+Co)が考えられる。
 その後、本件出願人が鋭意検討を行った結果、本願発明のダイボンド用はんだ材料と実装用はんだ材料との固相線温度差が大きくなるようなダイボンド用はんだ材料と実装用はんだ材料を使用して面実装部品をはんだ付けすることでダイボンド用はんだ材料の溶解を防止できるようにするための課題達成のためには、Cu成分が無くとも、達成できることが判明した。その結果を(表4)の実施例10~実施例16及び(表5)の実施例25~27に示す。
 (表4)の実施例15及び実施例16は外観上問題ないように見えるが、ボイドが多かったので、結果として不合格とした。結果として、(Sn−(4~5)Bi−3Ag)系はんだ材料または(Sn−(4~5)Bi−3Ag)系はんだ材料に、(0.02~0.1)重量%のNiか、(01~0.1)重量%のCoのいずれかを添加するか、またはNiとCoの双方を添加することによって、実施例1~実施例9と同等な結果が得られた。
 また、(表5)の実施例25~実施例27に示すように、(Sn−(3~5)In−(2~4)Bi−3Ag)系はんだ材料の場合でも、実施例10~実施例16と同等であるという結果が得られた。Agの添加量は、2.8質量%から3.3質量%の範囲内であればよい。
 この発明は、半導体素子(ICチップ)をダイボンディングし、ダイボンディングされた半導体素子をパッケージ化したのちプリント基板などに面実装する一連の面実装部品製造工程およびこの製造工程により作製された面実装部品に適用できる。
10・・・半導体素子(ICチップ)
14,24・・・Niメッキ層
16,26・・・Auメッキ層
20・・・リードフレーム
22・・・ダイパット電極部(アイランド部)
34・・・リード部
34a・・・内部端子部
34b・・・外部端子部
30・・・ダイボンド用はんだ材料
38・・・放熱板
40・・・電極ワイヤ
50・・・面実装部品
60・・・プリント基板
62・・・基板端子部(ランド)
70・・・実装用はんだ材料

Claims (9)

  1.  Niメッキ層が形成された電極面を有する回路素子が、Niメッキ層が形成されたリードフレームのダイパット電極面に、Cuの含有量が所定値以下のSnを主成分とする(Sn−Sb)系はんだ材料を用いて、はんだ付けされた面実装部品を、回路基板の基板端子部に塗布された(Sn−Ag−Cu−Bi)系はんだ材料を実装用はんだ材料として用いてはんだ付けする
    ことを特徴とする面実装部品のはんだ付け方法。
  2.  上記(Sn−Sb)系はんだ材料中のSbは10~13質量%、好ましくは10~11質量%で、上記Cuは0.01質量%以下、好ましくは0.005質量%以下である
    ことを特徴とする請求項1記載の面実装部品のはんだ付け方法。
  3.  上記(Sn−Sb)系はんだ材料に、さらにP又はおよび1種以上のNi,Co,Feからなる機械的強度改善成分が添加された
    ことを特徴とする請求項1または請求項2記載の面実装部品のはんだ付け方法。
  4.  添加される上記Pは0.0001~0.01質量%であり、上記Ni,Co,Feは0.01~0.1質量%である
    ことを特徴とする請求項3記載の面実装部品のはんだ付け方法。
  5.  上記面実装部品に使用されるリードフレームのリード部は、Snメッキ層又はSn−Biメッキ層で被覆されてなる
    ことを特徴とする請求項1記載の面実装部品のはんだ付け方法。
  6.  上記実装用はんだ材料として、Agが3~3.5質量%、Cuが0.5~1.0質量%、Biが3~7質量%好ましくは3~5質量%、残部がSnである(Sn−Ag−Cu−Bi)系はんだ材料が使用される
    ことを特徴とする請求項1記載の面実装部品のはんだ付け方法。
  7.  上記実装用はんだ材料として、さらにInが添加された
    ことを特徴とする請求項1および6記載の面実装部品のはんだ付け方法。
  8.  上記Biは2~5質量%であって、上記Inは3~5質量%である
    ことを特徴とする請求項7記載の面実装部品のはんだ付け方法。
  9.  回路素子が載置されるダイパット電極部と回路基板に接合されるリード部からなり、上記アイランド部にはNiメッキ層が形成されたリードフレームと、
     上記ダイパット電極部に対して、Cuの含有量が所定値以下のSnを主成分とする(Sn−Sb)系はんだ材料を介して接合される、Niメッキ層をその接合面とする回路素子と、
     上記リード部が、(Sn−Ag−Cu−Bi)系はんだ材料、若しくは(Sn−Ag−Cu−Bi−In)系はんだ材料を介して、基板端子部を構成するランド部に接合される回路基板とからなる
    ことを特徴とする面実装部品。
PCT/JP2010/073849 2009-12-28 2010-12-22 面実装部品のはんだ付け方法および面実装部品 WO2011081213A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201080059835.4A CN102714921B (zh) 2009-12-28 2010-12-22 面安装部件的软钎焊方法以及面安装部件
KR1020127016667A KR20120123291A (ko) 2009-12-28 2010-12-22 면 실장 부품의 솔더링 방법 및 면 실장 부품
BR112012015939-9A BR112012015939B1 (pt) 2009-12-28 2010-12-22 Método para soldagem de um componente para montagem em superfície e componente para montagem em superfície
KR1020197034237A KR20190132566A (ko) 2009-12-28 2010-12-22 면 실장 부품의 솔더링 방법 및 면 실장 부품
KR1020167035344A KR20160148726A (ko) 2009-12-28 2010-12-22 면 실장 부품의 솔더링 방법 및 면 실장 부품
EP10841068.9A EP2521429B1 (en) 2009-12-28 2010-12-22 Method for soldering surface-mount component and surface-mount component
ES10841068T ES2822311T3 (es) 2009-12-28 2010-12-22 Método para soldar un componente de montaje superficial y componente de montaje superficial
KR1020187034511A KR102240216B1 (ko) 2009-12-28 2010-12-22 면 실장 부품의 솔더링 방법 및 면 실장 부품
US13/519,217 US10354944B2 (en) 2009-12-28 2010-12-22 Method for soldering surface-mount component and surface-mount component
US14/724,665 US10297539B2 (en) 2009-12-28 2015-05-28 Electronic device including soldered surface-mount component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009298932A JP2011138968A (ja) 2009-12-28 2009-12-28 面実装部品のはんだ付け方法および面実装部品
JP2009-298932 2009-12-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/519,217 A-371-Of-International US10354944B2 (en) 2009-12-28 2010-12-22 Method for soldering surface-mount component and surface-mount component
US14/724,665 Division US10297539B2 (en) 2009-12-28 2015-05-28 Electronic device including soldered surface-mount component

Publications (1)

Publication Number Publication Date
WO2011081213A1 true WO2011081213A1 (ja) 2011-07-07

Family

ID=44226615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073849 WO2011081213A1 (ja) 2009-12-28 2010-12-22 面実装部品のはんだ付け方法および面実装部品

Country Status (8)

Country Link
US (2) US10354944B2 (ja)
EP (1) EP2521429B1 (ja)
JP (1) JP2011138968A (ja)
KR (4) KR20120123291A (ja)
CN (1) CN102714921B (ja)
BR (1) BR112012015939B1 (ja)
ES (1) ES2822311T3 (ja)
WO (1) WO2011081213A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839892B2 (ja) * 2011-08-30 2016-01-06 三菱電機株式会社 半田材および半導体装置
US8803302B2 (en) * 2012-05-31 2014-08-12 Freescale Semiconductor, Inc. System, method and apparatus for leadless surface mounted semiconductor package
JP6042680B2 (ja) * 2012-09-26 2016-12-14 株式会社タムラ製作所 無鉛はんだ合金、ソルダーペースト組成物及びプリント配線板
CN105103286B (zh) * 2013-10-30 2018-01-23 富士电机株式会社 半导体模块
US9764430B2 (en) * 2014-02-24 2017-09-19 Koki Company Limited Lead-free solder alloy, solder material and joined structure
JP6097253B2 (ja) * 2014-07-02 2017-03-15 住友電気工業株式会社 三色光光源
KR101985646B1 (ko) * 2014-07-21 2019-06-04 알파 어셈블리 솔루션스 인크. 솔더링용 저온 고신뢰성 주석 합금
CN106271181A (zh) * 2015-05-13 2017-01-04 广西民族大学 一种Sn-Sb-X系高温抗氧化无铅钎料
DE102015122259B4 (de) * 2015-12-18 2020-12-24 Infineon Technologies Austria Ag Halbleitervorrichtungen mit einer porösen Isolationsschicht
JP6872711B2 (ja) * 2016-09-27 2021-05-19 パナソニックIpマネジメント株式会社 半導体装置および製造方法
WO2021230623A1 (ko) * 2020-05-15 2021-11-18 주식회사 아모센스 파워모듈
EP3923321A1 (de) * 2020-06-08 2021-12-15 CeramTec GmbH Modul mit anschlusslaschen für zuleitungen
JP6936926B1 (ja) * 2021-03-10 2021-09-22 千住金属工業株式会社 はんだ合金、はんだ粉末、はんだペースト、およびはんだ継手

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035978A (ja) * 1999-07-22 2001-02-09 Hitachi Ltd 鉛フリーはんだ接続構造体
JP2001284792A (ja) 2000-03-30 2001-10-12 Tanaka Electronics Ind Co Ltd 半田材料及びそれを用いた半導体装置の製造方法
JP2002261104A (ja) * 2001-03-01 2002-09-13 Hitachi Ltd 半導体装置および電子機器
JP2004034134A (ja) * 2002-07-08 2004-02-05 Hitachi Ltd 線はんだおよび電子機器の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2615277B1 (fr) * 1987-05-11 1989-11-24 Inst Textile De France Dispositif de sechage par micro-onde d'une lisiere d'un materiau plan en defilement, notamment textile
FR2616000B1 (fr) * 1987-05-27 1993-01-08 Sgn Soc Gen Tech Nouvelle Dispositif permettant la coulee de verre radioactif en fusion dans un conteneur
US4888449A (en) * 1988-01-04 1989-12-19 Olin Corporation Semiconductor package
JP3220635B2 (ja) * 1996-02-09 2001-10-22 松下電器産業株式会社 はんだ合金及びクリームはんだ
JPH11317487A (ja) * 1998-05-01 1999-11-16 Nissan Motor Co Ltd 電子装置及び電子装置の実装方法
SG75958A1 (en) 1998-06-01 2000-10-24 Hitachi Ulsi Sys Co Ltd Semiconductor device and a method of producing semiconductor device
US6176947B1 (en) * 1998-12-31 2001-01-23 H-Technologies Group, Incorporated Lead-free solders
JP3892190B2 (ja) 1999-12-03 2007-03-14 株式会社日立製作所 混載実装構造体及び混載実装方法並びに電子機器
US20020155024A1 (en) * 2000-10-27 2002-10-24 H-Technologies Group, Inc. Lead-free solder compositions
CN100578778C (zh) * 2000-12-21 2010-01-06 株式会社日立制作所 电子器件
JP2002305213A (ja) * 2000-12-21 2002-10-18 Hitachi Ltd はんだ箔および半導体装置および電子装置
JP2002368293A (ja) * 2001-06-05 2002-12-20 Aisin Seiki Co Ltd 熱電モジュール、熱電モジュールの製造方法、熱電装置、ファイバ投光装置
US20030021718A1 (en) * 2001-06-28 2003-01-30 Osamu Munekata Lead-free solder alloy
US7105383B2 (en) * 2002-08-29 2006-09-12 Freescale Semiconductor, Inc. Packaged semiconductor with coated leads and method therefore
JP2005340268A (ja) 2004-05-24 2005-12-08 Renesas Technology Corp トランジスタパッケージ
US7320439B2 (en) * 2004-07-12 2008-01-22 Mosquito Coast Holdings, Llc Self-contained insect repelling and killing apparatus
JP2008238253A (ja) * 2007-03-29 2008-10-09 Hitachi Ltd Pbフリーはんだ接続材料及びこれを用いた半導体実装構造体の製造方法
US7932587B2 (en) * 2007-09-07 2011-04-26 Infineon Technologies Ag Singulated semiconductor package
US8133759B2 (en) 2009-04-28 2012-03-13 Macronix International Co., Ltd. Leadframe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035978A (ja) * 1999-07-22 2001-02-09 Hitachi Ltd 鉛フリーはんだ接続構造体
JP2001284792A (ja) 2000-03-30 2001-10-12 Tanaka Electronics Ind Co Ltd 半田材料及びそれを用いた半導体装置の製造方法
JP2002261104A (ja) * 2001-03-01 2002-09-13 Hitachi Ltd 半導体装置および電子機器
JP2004034134A (ja) * 2002-07-08 2004-02-05 Hitachi Ltd 線はんだおよび電子機器の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2521429A4

Also Published As

Publication number Publication date
BR112012015939B1 (pt) 2023-11-28
KR20190132566A (ko) 2019-11-27
CN102714921A (zh) 2012-10-03
US20150262926A1 (en) 2015-09-17
BR112012015939A2 (pt) 2017-07-11
US20120292087A1 (en) 2012-11-22
EP2521429A4 (en) 2016-08-31
US10354944B2 (en) 2019-07-16
KR20180130002A (ko) 2018-12-05
JP2011138968A (ja) 2011-07-14
ES2822311T3 (es) 2021-04-30
KR102240216B1 (ko) 2021-04-13
CN102714921B (zh) 2016-08-03
EP2521429A1 (en) 2012-11-07
EP2521429B1 (en) 2020-09-09
KR20120123291A (ko) 2012-11-08
KR20160148726A (ko) 2016-12-26
US10297539B2 (en) 2019-05-21
BR112012015939A8 (pt) 2018-07-17

Similar Documents

Publication Publication Date Title
WO2011081213A1 (ja) 面実装部品のはんだ付け方法および面実装部品
JP5280520B2 (ja) はんだ材料および電子部品接合体
EP1889684B1 (en) Lead-free solder alloy
JP6145164B2 (ja) 鉛フリーはんだ、鉛フリーはんだボール、この鉛フリーはんだを使用したはんだ継手およびこのはんだ継手を有する半導体回路
KR101738841B1 (ko) Bi-Sn계 고온 땜납 합금으로 이루어진 고온 땜납 이음
JP6477965B1 (ja) はんだ合金、はんだペースト、はんだボール、やに入りはんだおよびはんだ継手
JP5614507B2 (ja) Sn−Cu系鉛フリーはんだ合金
TWI681063B (zh) 混合合金焊料膏
JP2006035310A (ja) 無鉛はんだ合金
JP2003230980A (ja) 無鉛ハンダ合金、ハンダボール及びハンダバンプを有する電子部材
WO2008056676A1 (fr) Pâte à braser sans plomb, carte de circuit électronique utilisant cette pâte à braser sans plomb, et procédé de fabrication de carte de circuit électronique
JP6083451B2 (ja) 面実装部品のはんだ付け方法および面実装部品
JP5941036B2 (ja) 面実装部品のはんだ付け方法および面実装部品
JP6036905B2 (ja) 面実装部品のはんだ付け方法および面実装部品
JP2003094193A (ja) 鉛フリー半田ペースト
JP2006247690A (ja) ろう材、これを用いた半導体装置の製造方法および半導体装置
JP4168735B2 (ja) はんだペーストと電子回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059835.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10841068

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010841068

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13519217

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127016667

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 5746/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012015939

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012015939

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112012015939

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012015939

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120627