WO2011081135A1 - ホスファチジン酸ホスファターゼ遺伝子とその利用 - Google Patents
ホスファチジン酸ホスファターゼ遺伝子とその利用 Download PDFInfo
- Publication number
- WO2011081135A1 WO2011081135A1 PCT/JP2010/073565 JP2010073565W WO2011081135A1 WO 2011081135 A1 WO2011081135 A1 WO 2011081135A1 JP 2010073565 W JP2010073565 W JP 2010073565W WO 2011081135 A1 WO2011081135 A1 WO 2011081135A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- protein
- sequence
- activity
- nucleic acid
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8247—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/64—Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/64—Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
- C12P7/6436—Fatty acid esters
- C12P7/6445—Glycerides
- C12P7/6463—Glycerides obtained from glyceride producing microorganisms, e.g. single cell oil
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/03—Phosphoric monoester hydrolases (3.1.3)
- C12Y301/03004—Phosphatidate phosphatase (3.1.3.4)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a novel phosphatidic acid phosphatase gene and use thereof.
- Fatty acids containing two or more unsaturated bonds are collectively referred to as polyunsaturated (PUFA), and arachidonic acid, dihomo gamma linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, and the like are known. Some of these highly unsaturated fatty acids cannot be synthesized in the animal body, and such highly unsaturated fatty acids need to be taken from food as essential fatty acids. Polyunsaturated fatty acids are widely distributed. For example, arachidonic acid is separated from lipids extracted from the adrenal glands and livers of animals.
- microorganisms belonging to the genus Mortierella are known as microorganisms that produce highly unsaturated fatty acid-containing lipids such as arachidonic acid.
- polyunsaturated fatty acids constitute storage lipids such as triacylglycerol (also referred to as triglyceride, TG) and accumulate in microbial cells or plant seeds.
- triacylglycerol also referred to as triglyceride, TG
- Triacylglycerol a storage lipid, is produced in vivo as follows. An acyl group is transferred to glycerol-3-phosphate by glycerol-3-phosphate acyltransferase to produce lysophosphatidic acid, and an acyl group is transferred to lysophosphatidic acid by lysophosphatidic acid acyltransferase to phosphatidic acid Phosphatidic acid is dephosphorylated by phosphatidic acid phosphatase to give diacylglycerol, and acyl group is transferred to diacylglycerol by diacylglycerol acyltransferase to give triacylglycerol.
- phosphatidic acid phosphatidic acid, hereinafter sometimes referred to as “PA” and sometimes 1,2-diacyl-sn-glycerol-3-phosphate
- PA phosphatidic acid
- 1,2-diacyl-sn-glycerol-3-phosphate is triacyl. It is a precursor of glycerol and a biosynthetic precursor of diacyl glycerophospholipid.
- CDP diacylglycerol CDP-DG
- CTP cytidine 5'-3 phosphate
- Phosphatidic acid phosphatase EC 3.1.3.4, phosphatidic acid phosphatase, hereinafter “ It may be described as “PAP”. This PAP is known to exist in all organisms from bacteria to vertebrates.
- Non-Patent Documents 1, 2, and 7 In yeast (Saccharomyces cerevisiae), two types of PAP are known (Non-Patent Documents 1, 2, and 7). One is Mg 2+ dependent PAP (PAP1) and the other is Mg 2+ independent PAP (PAP2).
- the PAH1 gene is known as a gene encoding PAP1 (Non-patent Documents 3-5). Since the pah1 ⁇ mutant has PAP1 activity, there are other genes responsible for PAP1 activity. It is considered. In the pah1 ⁇ mutant, it is known that the nuclear membrane and ER membrane are abnormally expanded, and the expression of genes that are key to phospholipid biosynthesis is abnormally increased (Non-patent Document 6).
- DGPP diacylglycerol pyrophosphate
- lysophosphatidic acid lysophosphatidic acid
- sphingoid-based phosphate isoprenoid phosphate
- dephosphorylate dephosphorylate
- Mortierella alpina which is a lipid-producing bacterium
- the MaPAP1 gene which is an Mg 2+ -independent PAP2 homolog, is known (Patent Document 1).
- An object of the present invention is to provide proteins and nucleic acids that can be produced or expressed in host cells to produce fats and oils having a target fatty acid composition or to increase the content of the target fatty acid. is there.
- the present inventor has intensively studied to solve the above problems.
- PAP1 Mg 2+ -dependent phosphatidic acid phosphatase
- the gene is introduced into a host cell having a high growth ability such as yeast, the protein encoded by the cloned cDNA has phosphatidic acid phosphatase activity, and the introduction of the cDNA results in triacylglycerol as a storage lipid in yeast It has been found that the production volume is improved. Thereby, the gene relating to the novel phosphatidic acid phosphatase (PAP) was successfully cloned, and the present invention was completed. That is, the present invention is as follows.
- nucleic acid according to any one of the following (a) to (g).
- A a nucleotide sequence consisting of an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 or SEQ ID NO: 7 and encoding a protein having phosphatidic acid phosphatase activity
- B a nucleic acid comprising a nucleotide sequence complementary to the nucleotide sequence consisting of SEQ ID NO: 1 or SEQ ID NO: 6 and hybridizing under stringent conditions and encoding a protein having phosphatidic acid phosphatase activity
- C Nucleic acid containing a base sequence
- c A nucleic acid comprising a base sequence that is 70% or more identical to the base sequence consisting of SEQ ID NO: 1 or SEQ ID NO: 6 and that encodes a protein having phosphatidic acid phosphatase activity
- d an amino acid sequence consisting of SEQ ID NO: 2 or SEQ ID NO
- nucleic acid according to (1) which is any of the following (a) to (g): (A) a nucleotide sequence consisting of an amino acid sequence in which 1 to 130 amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2 or 7 and encoding a protein having phosphatidic acid phosphatase activity (B) a nucleic acid comprising a nucleotide sequence complementary to the nucleotide sequence consisting of SEQ ID NO: 1 or SEQ ID NO: 6 and hybridizing under conditions of 2 ⁇ SSC and 50 ° C.
- Nucleic acid comprising a base sequence encoding protein (c) Base sequence encoding a protein consisting of a base sequence consisting of 90% or more of the base sequence consisting of SEQ ID NO: 1 or SEQ ID NO: 6 and having phosphatidic acid phosphatase activity A nucleic acid (d) containing the same amino acid sequence consisting of SEQ ID NO: 2 or SEQ ID NO: 7 A nucleic acid comprising a nucleotide sequence encoding a protein having a phosphatidic acid phosphatase activity, comprising an amino acid sequence having a sex of 90% or more (e) a base encoding a protein consisting of the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 7 A nucleic acid comprising a base sequence that hybridizes with a nucleic acid comprising a base sequence complementary to the sequence under conditions of 2 ⁇ SSC and 50 ° C.
- nucleic acid SEQ ID NO: 5 or A base sequence having an exon which hybridizes with a nucleic acid comprising a base sequence complementary to the base sequence comprising SEQ ID NO: 10 under conditions of 2 ⁇ SSC and 50 ° C. and which encodes a protein having phosphatidic acid phosphatase activity
- Nucleic acid Nucleic acid (g) nucleotide sequence comprising SEQ ID NO: 5 or SEQ ID NO: 10 Nucleic acid comprising a nucleotide sequence having exon identity is 90% or more of the nucleotide sequences, and, which encodes a protein having phosphatidic acid phosphatase activity and
- nucleic acid according to any one of the following (a) to (d).
- A a nucleic acid comprising the base sequence represented by SEQ ID NO: 1 or SEQ ID NO: 6 or a partial sequence thereof
- b a base sequence encoding a protein comprising the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 7 or a partial sequence thereof
- Nucleic acid containing c) Nucleic acid containing the base sequence shown in SEQ ID NO: 4 or SEQ ID NO: 9 or a partial sequence thereof
- d Nucleic acid containing the base sequence shown in SEQ ID NO: 5 or SEQ ID NO: 10 or a partial sequence thereof
- nucleic acid consisting of an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2 or 7, and from phosphatidic acid (PA) in a PAH1-deficient strain of yeast
- a nucleic acid comprising a base sequence encoding a protein having an activity of improving the diacylglycerol (DG) and / or triglyceride (TG) generating activity of (b) a base complementary to the base sequence consisting of SEQ ID NO: 1 or SEQ ID NO: 6
- a nucleic acid comprising a base sequence encoding a protein that hybridizes with a nucleic acid comprising a sequence under stringent conditions and encodes a protein having an activity to improve DG and / or TG production activity from PA in a PAH1-deficient strain of yeast
- nucleic acid according to (4) which is any of the following (a) to (g): (A) consisting of an amino acid sequence in which 1 to 130 amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 or 7 and from phosphatidic acid (PA) in a PAH1-deficient strain of yeast
- a nucleic acid comprising a base sequence encoding a protein having an activity of improving the diacylglycerol (DG) and / or triglyceride (TG) generating activity of (b) a base complementary to the base sequence consisting of SEQ ID NO: 1 or SEQ ID NO: 6
- a nucleotide sequence that encodes a protein that hybridizes with a nucleic acid comprising a sequence under conditions of 2 ⁇ SSC and 50 ° C.
- nucleic acid to be contained (c) Base sequence having 90% or more identity with the base sequence consisting of SEQ ID NO: 1 or And a nucleic acid comprising a base sequence encoding a protein having an activity of improving DG and / or TG generation activity from PA in a PAH1-deficient strain of yeast (d) an amino acid sequence comprising SEQ ID NO: 2 or SEQ ID NO: 7
- a nucleic acid (e) sequence comprising a base sequence encoding a protein comprising an amino acid sequence having an identity of 90% or more and having an activity of improving DG and / or TG production activity from PA in a PAH1-deficient strain of yeast Hybridizes with a nucleic acid consisting of a base sequence complementary to the base sequence encoding the protein consisting of the amino acid sequence shown in No.
- nucleotide encoding a protein having an activity to improve DG and / or TG production activity from PA in a strain (F) a nucleic acid comprising a nucleotide sequence complementary to the nucleotide sequence consisting of SEQ ID NO: 5 or SEQ ID NO: 10 and hybridizing under conditions of 2 ⁇ SSC and 50 ° C., and in a PAH1-deficient strain of yeast
- a nucleic acid comprising a base sequence having an exon that encodes a protein having an activity of improving DG and / or TG generation activity from PA (g) 90% or more in identity with the base sequence consisting of SEQ ID NO: 5 or SEQ ID NO: 10
- DG diacylglycerol
- PA phosphatidic acid
- TG triglyceride
- a protein comprising an amino acid sequence having 70% or more identity with the amino acid sequence comprising SEQ ID NO: 2 or SEQ ID NO: 7, and yeast Protein having an activity to improve DG and / or TG production activity from PA in PAH1-deficient strain
- DG diacylglycerol
- PA phosphatidic acid
- TG triglyceride
- yeast a protein comprising an amino acid sequence having 90% or more identity with the amino acid sequence comprising SEQ ID NO: 2 or SEQ ID NO: 7, and yeast A protein having an activity of improving the activity of improving DG and / or TG production from PA in a PAH1-deficient strain of
- a protein consisting of the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 7.
- a method for producing a fatty acid composition comprising collecting a fatty acid or a lipid from a culture obtained by culturing the transformant according to (12).
- the PAP of the present invention can improve the ability to produce fatty acids and stored lipids in cells into which it has been introduced. For this reason, it is preferable as what improves the productivity of highly unsaturated fatty acid in microorganisms and plants.
- the PAP of the present invention can produce a fatty acid composition having a different composition in the host as compared with a fatty acid composition produced by a host into which PAP has not been introduced.
- a lipid having desired characteristics and effects can be provided, which is useful as a product applicable to foods, cosmetics, pharmaceuticals, soaps and the like.
- FIG. 1-1 is a diagram comparing the genome sequence (SEQ ID NO: 5) and ORF (SEQ ID NO: 1) of MaPAH1.1 derived from M. alpina 1S-4 strain.
- FIG. 1-2 is a continuation of FIG. 1-1.
- FIG. 1-3 is a continuation of FIG. 1-2.
- 1-4 is a continuation of FIG. 1-3.
- FIG. 2-1 is a diagram comparing the genome sequence (SEQ ID NO: 10) and ORF (SEQ ID NO: 6) of MaPAH1.2 derived from M. alpina 1S-4 strain.
- FIG. 2-2 is a continuation of FIG. 2-1.
- FIG. 2-3 is a continuation of FIG. 2-2.
- FIG. 2-4 is a continuation of FIG. 2-3.
- FIG. 1-1 is a diagram comparing the genome sequence (SEQ ID NO: 5) and ORF (SEQ ID NO: 1) of MaPAH1.1 derived from M. alpina 1S-4 strain.
- FIG. 1-2 is a continuation
- FIG. 3-1 is a diagram showing MaPAH1.1 cDNA (SEQ ID NO: 4) derived from M. alpina 1S-4 strain and a deduced amino acid sequence (SEQ ID NO: 2) derived therefrom.
- FIG. 3-2 is a continuation of FIG. 3-1.
- FIG. 3-3 is a continuation of FIG. 3-2.
- FIG. 4-1 is a diagram showing MaPAH1.2 cDNA (SEQ ID NO: 9) derived from M. alpina 1S-4 strain and a deduced amino acid sequence (SEQ ID NO: 7) derived therefrom.
- FIG. 4B is a continuation of FIG. 4-1.
- 5-1 shows the deduced amino acid sequence of MaPAH1.1 (SEQ ID NO: 2) and the deduced amino acid sequence of MaPAH1.2 (SEQ ID NO: 7) from the M. alpina 1S-4 strain, and the phosphatidic acid phosphatase of the PAP1 family. It is the figure which compared the amino acid sequence (sequence number 20) of ScPAH1 protein (sequence number 19) derived from a certain yeast Saccharomyces cerevisiae and mouse-derived Lipin. In the PAP1 family of phosphatidic acid phosphatases, the N-terminal part is well conserved, and it is said to be a lipin N-terminal conserved region (pfam04571).
- FIG. 5-2 is a continuation of FIG. 5-1.
- FIG. 5-1 is a continuation of FIG. 5-1.
- FIG. 6-1 is a diagram comparing the CDS sequence (SEQ ID NO: 3) of MaPAH1.1 and the CDS sequence (SEQ ID NO: 8) of MaPAH1.2 derived from M. alpina 1S-4 strain.
- FIG. 6B is a continuation of FIG.
- FIG. 6C is a continuation of FIG.
- Fig. 7 is a diagram comparing the deduced amino acid sequence (SEQ ID NO: 2) of MaPAH1.1 derived from M. alpina 1S-4 strain and the deduced amino acid sequence (SEQ ID NO: 7) of MaPAH1.2.
- the present invention relates to a novel phosphatidic acid phosphatase gene derived from the genus Mortierella, characterized in that phosphatidic acid is dephosphorylated to produce diacylglycerol.
- the phosphatidic acid phosphatase of the present invention is an enzyme that catalyzes a reaction of dephosphorylating phosphatidic acid to produce diacylglycerol.
- the substrate of the PAP of the present invention is usually phosphatidic acid, but is not limited thereto.
- Nucleic acids encoding phosphatidic acid phosphatases of the invention include MaPAH1.1 and MaPAH1.2.
- the correspondence relationship between cDNA, CDS, ORF and deduced amino acid sequence encoding MaPAH1.1 and MaPAH1.2 is summarized in Table 1 below.
- SEQ ID NO: 2 which is the amino acid sequence of MaPAH1.1
- SEQ ID NO: 1 which is the sequence indicating the ORF region of MaPAH1.1
- the sequence which indicates the region of the CDS Examples include SEQ ID NO: 3 and SEQ ID NO: 4 which is the base sequence of the cDNA.
- SEQ ID NO: 3 corresponds to the 1st-3985th base sequence of SEQ ID NO: 4
- SEQ ID NO: 1 is the 1st-3882th base sequence of SEQ ID NO: 4
- the 1st-3882th base sequence of SEQ ID NO: 3 Corresponds to the base sequence.
- SEQ ID NO: 5 is exemplified as a genomic base sequence encoding MaPAH1.1 of the present invention.
- the genome sequence of SEQ ID NO: 5 consists of 11 exons and 10 introns, and the exon regions are the first to 182nd, 370 to 584th, 690 to 1435th, 1536 to 1856th of SEQ ID NO: 5, 1946 to 2192nd, 2292 to 2403th, 2490 to 2763th, 2847 to 3077th, 3166 to 3555th, 3648 to 3862th, 3981 to 5034th.
- SEQ ID NO: 7 which is the amino acid sequence of MaPAH1.2
- SEQ ID NO: 6 which is the sequence indicating the ORF region of MaPAH1.2
- SEQ ID NO: 9 which is the base sequence of the cDNA.
- SEQ ID NO: 8 corresponds to the 72-3791st nucleotide sequence of SEQ ID NO: 9
- SEQ ID NO: 6 corresponds to the 72-3788th nucleotide sequence of SEQ ID NO: 9
- SEQ ID NO: 10 can be mentioned as a genomic base sequence encoding MaPAH1.2 of the present invention.
- the genome sequence of SEQ ID NO: 10 consists of 8 exons and 7 introns, and the exon regions are 1st to 454th, 674 to 1006th, 1145 to 1390th, 1479 to 1583th of SEQ ID NO: 10, 1662 to 1804th, 1905 to 2143th, 2243 to 3409th, 3520 to 4552th.
- the nucleic acid of the present invention includes not only single-stranded and double-stranded DNA but also its RNA complement, which may be naturally derived or artificially produced.
- DNA include genomic DNA, cDNA corresponding to the genomic DNA, chemically synthesized DNA, DNA amplified by PCR, a combination thereof, and a hybrid of DNA and RNA. It is not limited.
- Preferred embodiments of the nucleic acid of the present invention encode (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 1 or SEQ ID NO: 6, and (b) a protein comprising the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 7.
- Examples include a nucleic acid including a base sequence, (c) a nucleic acid including a base sequence represented by SEQ ID NO: 4 or SEQ ID NO: 9, or (d) a nucleic acid including a base sequence represented by SEQ ID NO: 5 or SEQ ID NO: 10.
- a base sequence encoding a protein having homology with a protein having a known PAP activity can be searched from the base sequence data of an organism having PAP activity or genomic DNA.
- the organism having PAP activity is preferably a lipid-producing bacterium, and examples of the lipid-producing bacterium include, but are not limited to, M. ⁇ alpina.
- a cDNA library is first prepared.
- a method for preparing a cDNA library "Molecular Cloning, A Laboratory Manual 3rd ed.” (Cold Spring Harbor Press (2001)) can be referred to.
- a commercially available cDNA library preparation kit may also be used. Examples of a method for preparing a cDNA library suitable for the present invention include the following methods. That is, an appropriate strain of M. alpina, which is a lipid-producing bacterium, is inoculated into an appropriate medium and pre-cultured for an appropriate period.
- Examples of culture conditions suitable for this pre-culture include, for example, 1.8% glucose, 1% yeast extract, pH 6.0 as a medium composition, a culture period of 3 to 4 days, and a culture temperature of 28 ° C. There are conditions. Thereafter, the preculture is subjected to main culture under appropriate conditions.
- a medium composition suitable for the main culture for example, 1.8% glucose, 1% soybean flour, 0.1% olive oil, 0.01% adecanol, 0.3% KH 2 PO 4 , 0.1% Na 2 SO 4 , 0.05% CaCl 2 ⁇ 2H 2 O, 0.05% MgCl 2 ⁇ 6H 2 O, pH 6.0.
- Examples of culture conditions suitable for the main culture include conditions of aeration and agitation culture at 300 rpm, 1 vvm, and 26 ° C. for 8 days. An appropriate amount of glucose may be added during the culture period. Timely cultures are collected during the main culture, and the cells are collected therefrom to prepare total RNA. For preparation of total RNA, a known method such as guanidine hydrochloride / CsCl method can be used. Poly (A) + RNA can be purified from the obtained total RNA using a commercially available kit. Furthermore, a cDNA library can be prepared using a commercially available kit.
- the base sequence of an arbitrary clone of the prepared cDNA library can be determined using a primer designed to determine the base sequence of the insert portion on the vector to obtain an EST.
- a primer designed to determine the base sequence of the insert portion on the vector can be determined using a primer designed to determine the base sequence of the insert portion on the vector to obtain an EST.
- a cDNA library is prepared using the ZAP-cDNA GigapackIII Gold Cloning Kit (STRATAGENE)
- directional cloning can be performed.
- genomic DNA When analyzing genomic DNA, cells of an organism having PAP activity are cultured, and genomic DNA is prepared from the cells. The base sequence of the obtained genomic DNA is determined, and the determined base sequence is assembled. A sequence encoding an amino acid sequence having high homology with the amino acid sequence of a protein having a known PAP activity is searched from the finally obtained supercontig sequence. Primers are prepared from the hit supercontig sequences as coding for such amino acid sequences, PCR is performed using the cDNA library described above as a template, and the resulting DNA fragment is incorporated into a plasmid and cloned. Using the cloned plasmid as a template, a probe is prepared by performing PCR using the above-mentioned primers. A cDNA library is screened using the prepared probe.
- the present invention also includes the nucleotide sequence represented by SEQ ID NO: 1 or 6 (sometimes referred to as “the nucleotide sequence of the present invention”) and the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 7 (“A nucleic acid having a function equivalent to that of a nucleic acid containing a base sequence encoding a protein consisting of a protein consisting of “the amino acid sequence of the present invention”. “Having an equivalent function” means that the protein encoded by the base sequence of the present invention and the protein comprising the amino acid sequence of the present invention have phosphatidic acid phosphatase (PAP) activity.
- PAP phosphatidic acid phosphatase
- “having an equivalent function” means that when a protein encoded by the nucleotide sequence of the present invention or a protein comprising the amino acid sequence of the present invention is expressed in a PAH1-deficient strain of yeast, the phosphatidine in the defective strain.
- the activity to improve the activity of producing diacylglycerol (DG) and / or triglyceride (TG) from acid (PA) is also included.
- Activity to enhance the production activity of the DG and / or TG from PA in PAH1 deficient strain of PAP activity and yeast proteins of the present invention may be a Mg 2+ dependent, may be Mg 2+ -independent .
- the activity of the protein of the invention is Mg 2+ dependent.
- Such a nucleic acid having a function equivalent to that of the nucleic acid of the present invention includes a nucleic acid containing the base sequence described in any of the following (a) to (g).
- the above activity of the present invention means “the activity of improving the PAP activity and / or the activity of generating DG and / or TG from PA in a PAH1-deficient strain of yeast”. "Means.
- nucleic acid containing sequence The base sequence contained in the nucleic acid of the present invention consists of an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 7, and It includes a base sequence encoding the protein having the above activity of the present invention.
- amino acid sequences shown in SEQ ID NO: 2 or SEQ ID NO: 7 preferably one or several (for example, 1 to 400, 1 to 200, 1 to 130, 1 to 100) 1 to 75, 1 to 50, 1 to 30, 1 to 25, 1 to 20, 1 to 15, more preferably 10, 9, 8, 7, 6, 5, 4, 3 2, or 1)) amino acid sequence deleted
- amino acid sequence deleted preferably one or a plurality of amino acid sequences shown in SEQ ID NO: 2 or SEQ ID NO: 7 (preferably one or several (for example, 1 to 400, 1 to 200, 1 to 130, 1 to 100) 1 to 75, 1 to 50, 1 to 30, 1 to 25, 1 to 20, 1 to 15, more preferably 10, 9, 8, 7, 6, 5, 4, 3 Amino acid sequence wherein 2 or 1)) amino acid is substituted with another amino acid
- amino acid sequences shown in SEQ ID NO: 2 or SEQ ID NO: 7 preferably one or several (for example, 1 to 400, 1 to 200, 1 to 130, 1 to 100) amino acid sequences shown in SEQ ID NO: 2 or SEQ
- substitution is preferably a conservative substitution.
- a conservative substitution is the replacement of a particular amino acid residue with a residue having similar physicochemical characteristics, but any substitution that does not substantially change the structural characteristics of the original sequence.
- any substitution may be made so long as the substituted amino acid does not destroy the helix present in the original sequence or other types of secondary structures characterizing the original sequence.
- non-natural amino acid residue may be included in the substituent, and the reversed type or the same region in which the non-substituted region is reversed in the peptidomimetic or amino acid sequence is reversed. Inverted types are also included.
- amino acid residues are classified and exemplified for each substitutable residue, but the substitutable amino acid residues are not limited to those described below.
- Group A leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine and cyclohexylalanine
- Group B aspartic acid, glutamic acid, isoaspartic acid, Isoglutamic acid, 2-aminoadipic acid and 2-aminosuberic acid group
- C asparagine and glutamine group
- D lysine, arginine, ornithine, 2,4-diaminobutanoic acid and 2,3-diaminopropionic acid group
- E proline, 3 -Hydroxyproline and 4-hydroxyproline group
- F serine, threonine and homos
- one member of the above types can be exchanged with another type of member, in this case, in order to preserve the biological function of the protein of the present invention. It is preferable to consider the hydropathic index of amino acids (hydropathic amino acid index) (Kyte et al., J. Mol. Biol., 157: 105-131 (1982)).
- amino acid substitution can be performed based on hydrophilicity.
- the amino acid residue corresponding to the 80th amino acid in SEQ ID NO: 2 or 7 is preferably glycine.
- the portion corresponding to the 819-823th amino acid of SEQ ID NO: 2 or the 737-741th amino acid of SEQ ID NO: 7 is preferably DXDX (T / V) (X is an arbitrary amino acid).
- Stereoisomers of the above amino acids such as D-amino acids, unnatural amino acids such as ⁇ , ⁇ -disubstituted amino acids, N-alkyl amino acids, lactic acid, and other unconventional amino acids also constitute the protein of the present invention.
- the protein notation used in the present specification is based on the standard usage and the notation commonly used in the art, the left direction is the amino terminal direction, and the right direction is the carboxy terminal direction.
- the left end of a single-stranded polynucleotide sequence is the 5 'end, and the left direction of the double-stranded polynucleotide sequence is the 5' direction.
- Those skilled in the art can design and prepare appropriate mutants of the proteins described herein using techniques known in the art. For example, in a protein molecule that can change its structure without damaging the biological activity of the protein of the present invention by targeting a region that is considered to be less important for the biological activity of the protein of the present invention. Appropriate regions can be identified. It is also possible to identify molecular residues and regions that are conserved among similar proteins. In addition, conservative amino acid substitutions are introduced into regions believed to be important for the biological activity or structure of the protein of the invention without compromising biological activity and without adversely affecting the polypeptide structure of the protein. You can also
- N a lipin, N-terminal conserved region (pfam04571) in the Mg 2+ -dependent phosphatidic acid phosphatase (PAP1) family of enzymes.
- PAP1 Mg 2+ -dependent phosphatidic acid phosphatase
- the amino acid sequence of about 100 amino acids at the terminal portion is relatively well conserved.
- DXDX (T / V) catalytic site motif which is a conserved motif of haloacid dehalogenase-like protein superfamily enzymes.
- the DIDGT sequences (residues 819 to 823 of SEQ ID NO: 2 and residues 737 to 741 of SEQ ID NO: 7, respectively) indicated by double underlining in FIG. 5 correspond to the above motif.
- the mutant of the present invention may be any mutant as long as the conserved motif is preserved and the activity of the present invention is not impaired. There is a report that PAP activity is lost when a mutation occurs in this conserved motif in PAP1 of yeast (J. Biol. Chem., 282 (51): 37026-37035, (2007)).
- a person skilled in the art identifies residues of peptides that are important for the biological activity or structure of the protein of the invention and are similar to the peptides of the proteins, and compares the amino acid residues of the two peptides, A so-called structure-function study can be performed to predict which residues of a protein similar to the protein of the invention are amino acid residues corresponding to amino acid residues important for biological activity or structure. . Furthermore, by selecting a chemically similar amino acid substitution of the amino acid residue predicted in this way, a mutant that retains the biological activity of the protein of the present invention can also be selected. Those skilled in the art can also analyze the three-dimensional structure and amino acid sequence of the mutant of this protein.
- amino acid residues predicted to be on the protein surface may be involved in important interactions with other molecules, but those skilled in the art will be able to do this based on the analysis results described above.
- Mutants can be made that do not change the amino acid residues predicted to be on the surface of various proteins.
- those skilled in the art can also produce mutants that substitute only one amino acid residue among the amino acid residues constituting the protein of the present invention. Such mutants can be screened by known assay methods and information on individual mutants can be collected.
- a protein comprising an amino acid sequence in which one or more amino acids are deleted, substituted, or added in the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 7 is “Molecular Cloning, A Laboratory Manual 3rd ed”. (Cold Spring Harbor Press (2001)), Current Protocols in Molecular Biology (John Wiley & Sons (1987-1997), Kunkel (1985) Proc. Natl. Acad. Sci. USA 82: 488-92, Kunkel (1988) Method. Enzymol.85: 2763-6 etc. can be prepared according to the method such as site-directed mutagenesis etc. Mutations in which such mutations such as deletion, substitution or addition of amino acids have been made.
- the body is prepared by, for example, a mutation introduction kit using site-directed mutagenesis by a known method such as Kunkel method or Gapped duplex method, for example, QuikChange TM Site-Directed Mutagenesis Kit (Stratagene), GeneTailor TM Site-Directed Mutagenesis System Invitrogen), TaKaRa Site-Directed Mutagenesis System (Mutan-K, Mutan-Super Express Km, etc .: Takara Bio Inc.) and the like can be carried out using.
- a mutation introduction kit using site-directed mutagenesis by a known method such as Kunkel method or Gapped duplex method, for example, QuikChange TM Site-Directed Mutagenesis Kit (Stratagene), GeneTailor TM Site-Directed Mutagenesis System Invitrogen), TaKaRa Site-Directed Mutagenesis System (Mutan-K, Mutan-Super Express Km, etc .: Takara Bio Inc.) and the like can
- a gene can be mutated as a method for introducing deletion, substitution or addition of one or more amino acids into a protein amino acid sequence while maintaining its activity. And a method of ligation after selective cleavage of a gene to remove, substitute or add selected nucleotides.
- the base sequence contained in the nucleic acid of the present invention preferably consists of an amino acid sequence in which 1 to 130 amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 or SEQ ID NO: 7, and PAP It is a base sequence encoding a protein having activity.
- the base sequence contained in the nucleic acid of the present invention preferably comprises an amino acid sequence in which 1 to 130 amino acids are deleted, substituted or added in SEQ ID NO: 2 or SEQ ID NO: 7, and A base sequence encoding a protein having the above activity is also included.
- the number of amino acid mutations or modifications, or the site of mutation or modification in the protein of the present invention retains the activity of improving PAP activity or DG and / or TG production activity from PA in a PAH1-deficient strain of yeast. There is no limit.
- the activity of improving the PAP activity of the present invention or the DG and / or TG production activity from PA in a PAH1-deficient strain of yeast can be measured using a known method.
- a known method for example, reference can be made to the following document: J. Biol. Chem., 273, 143143-14338 (1998).
- the “PAP activity” of the present invention may be measured as follows.
- the transformed cells expressing the PAP of the present invention are crushed, the cell lysate is centrifuged, and the supernatant is recovered to obtain a crude enzyme solution.
- the crude enzyme solution may be further purified for the PAP of the present invention.
- the crude enzyme solution containing the PAP of the present invention or the purified PAP of the present invention is added to the reaction solution, 0.5 mM phosphatidic acid, 10 mM 2-mercaptoethanol, 50 mM Tris-HCl (pH 7.5), Reaction is carried out at 25-28 ° C. for an appropriate time, and the reaction is stopped by adding chloroform: methanol, followed by extraction of lipids, fractionation of the obtained lipids by thin layer chromatography or the like, and production of diacylglycerol The amount can be quantified.
- the “activity for improving DG and / or TG production activity from PA in a PAH1-deficient strain of yeast” of the present invention may be measured, for example, as follows.
- yeast Sacchariae
- the ScPAH1 gene is disrupted to obtain a PAH1-deficient strain of yeast.
- transformation is performed using a vector containing a nucleic acid encoding the PAP of the present invention.
- the cells are collected by centrifuging the culture, washed with water, and lyophilized.
- Chloroform methanol is added to the dried cells, the cells are destroyed with glass beads, and lipids are extracted with a solvent.
- the extracted lipid is fractionated by thin layer chromatography or the like, and the amount of DG and / or TG produced is measured.
- a PAH1-deficient strain of yeast transformed with a vector containing no nucleic acid encoding the PAP of the present invention is compared as a control.
- the amount of DG and / or TG produced is improved when a yeast PAH1-deficient strain is transformed with a vector containing a nucleic acid encoding the PAP of the present invention, the PAP is expressed as “in a yeast PAH1-deficient strain. It is judged to have the activity of improving DG and / or TG production activity from PA.
- the base sequence contained in the nucleic acid of the present invention hybridizes under stringent conditions with a nucleic acid comprising a base sequence complementary to the base sequence comprising SEQ ID NO: 1 or SEQ ID NO: 6, and the present invention.
- the above nucleotide sequence is prepared by preparing a probe using an appropriate fragment by a method known to those skilled in the art, and using this probe by a known hybridization method such as colony hybridization, plaque hybridization, Southern blotting, etc. And a genomic library.
- hybridization conditions The strength of hybridization conditions is mainly determined by hybridization conditions, more preferably, hybridization conditions and washing conditions.
- stringent conditions include moderately or highly stringent conditions.
- moderately stringent conditions include, for example, hybridization conditions of 1 ⁇ SSC to 6 ⁇ SSC, 42 ° C. to 55 ° C., more preferably 1 ⁇ SSC to 3 ⁇ SSC, 45
- the conditions are from 50 ° C. to 50 ° C., most preferably, 2 ⁇ SSC, 50 ° C.
- the hybridization solution contains, for example, about 50% formamide, a temperature 5 to 15 ° C. lower than the above temperature is adopted.
- Cleaning conditions include 0.5 ⁇ SSC to 6 ⁇ SSC, 40 ° C. to 60 ° C. During hybridization and washing, 0.05% to 0.2%, preferably about 0.1% SDS may generally be added.
- Highly stringent conditions include hybridization and / or washing at higher temperatures and / or lower salt concentrations than moderately stringent conditions.
- the hybridization conditions are 0.1 ⁇ SSC to 2 ⁇ SSC, 55 ° C. to 65 ° C., more preferably 0.1 ⁇ SSC to 1 ⁇ SSC, 60 ° C. to 65 ° C., most preferably , 0.2 ⁇ SSC, 63 ° C.
- the washing conditions include 0.2 ⁇ SSC to 2 ⁇ SSC, 50 ° C. to 68 ° C., and more preferably 0.2 ⁇ SSC, 60 to 65 ° C.
- hybridization conditions used in the present invention for example, prehybridization is performed in 5 ⁇ SSC, 1% SDS, 50 mM Tris-HCl (pH 7.5) and 50% formamide at 42 ° C., and then the probe is used. And overnight at 42 ° C. to allow hybridization, followed by washing in 0.2 ⁇ SSC, 0.1% SDS at 65 ° C. for 20 minutes three times. It is not limited.
- a commercially available hybridization kit that does not use a radioactive substance for the probe can be used. Specific examples include hybridization using a DIG nucleic acid detection kit (Roche Diagnostics), ECL direct labeling & detection system (Amersham).
- the base sequence included in the present invention preferably hybridizes with a nucleic acid comprising a base sequence complementary to the base sequence comprising SEQ ID NO: 1 or SEQ ID NO: 6 under the conditions of 2 ⁇ SSC and 50 ° C., and And a base sequence encoding a protein having PAP activity.
- (C) a nucleic acid comprising a base sequence having 70% or more identity with the base sequence consisting of SEQ ID NO: 1 or SEQ ID NO: 6 and comprising a base sequence encoding the protein having the above activity of the present invention.
- the contained nucleotide sequence comprises a nucleotide sequence having at least 70% identity to the nucleotide sequence shown in SEQ ID NO: 1 or SEQ ID NO: 6, and encodes a protein having the above activity of the present invention including.
- it is at least 75% or more, more preferably 80% or more (for example, 85% or more, even more preferably 90% or more, further 95%, 98% or more with respect to the base sequence shown in SEQ ID NO: 1 or SEQ ID NO: 6. % Or 99% or more) and a nucleotide sequence encoding a protein having the above activity of the present invention.
- the percent identity between two base sequences can be determined by visual inspection or mathematical calculation, but is preferably determined by comparing the sequence information of two nucleic acids using a computer program.
- sequence comparison computer program include the BLASTN program (Altschul et al. (Altschul et al.) Available from the website of the National Library of Medicine: http://www.ncbi.nlm.nih.gov/blast/bl2seq/bls.html. 1990) J. Mol. Biol. 215: 403-10: Version 2.2.7, WU-BLAST 2.0 algorithm or the like. Standard default parameter settings for WU-BLAST 2.0 can be those described in the following Internet site: http://blast.wustl.edu.
- the base sequence included in the sequence includes an amino acid sequence that is 70% or more identical to the amino acid sequence consisting of SEQ ID NO: 2 or SEQ ID NO: 7, and includes a base sequence that encodes the protein having the activity of the present invention.
- the protein encoded by the nucleic acid of the present invention may be a protein identical to the amino acid sequence of MaPAH1.1 or MaPAH1.2 as long as it has a function equivalent to that of the protein having the activity of the present invention.
- the base sequence contained in the nucleic acid of the present invention preferably encodes an amino acid sequence having 90% or more identity with the amino acid sequence consisting of SEQ ID NO: 2 or SEQ ID NO: 7, and the protein having the above activity of the present invention.
- the base sequence to be encoded More preferably, it is a base sequence that encodes an amino acid sequence having 95% or more identity with the amino acid sequence consisting of SEQ ID NO: 2 or SEQ ID NO: 7 and that encodes the protein having the activity of the present invention.
- the percent identity between two amino acid sequences can be determined by visual inspection and mathematical calculation.
- the percent identity can also be determined using a computer program.
- Examples of such computer programs include BLAST, FASTA (Altschul et al., J. Mol. Biol., 215: 403-410 (1990)), ClustalW, and the like.
- various conditions (parameters) for identity search using the BLAST program are described in Altschul et al. (Nucl. Acids. Res., 25, p. 3389-3402, 1997), and the National Center for Biotechnology Information (NCBI) ) And DNA Data Bank of Japan (DDBJ) website (BLAST Manual, Altschul et al.
- a specific alignment scheme that juxtaposes multiple amino acid sequences can also show a match of a specific short region of the sequence, so even if there is no significant relationship between the full length sequences of the sequences used, In such a region, a region having a very high specific sequence identity can also be detected.
- the BLAST algorithm can use the BLOSUM62 amino acid scoring matrix, but the following can be used as selection parameters: (A) Segments of query sequences with low composition complexity (Wootton and Federhen's SEG program (ComputersCompand Chemistry, 1993); Wootton and Federhen, 1996 "Analysis ofpositionalpositionbiased regions in sequence databases” Methods Enzymol., 266: 544-71 Including filters to mask segments that consist of short-period internal repeats (determined by the XNU program of Claverie and States (Computers and Chemistry, 1993)), and (B) the database Statistical significance threshold for reporting fit to sequence, or E Expected probability of fit found simply by chance, according to a statistical model of scores (Karlin and Altschul, 1990); if the statistical significance difference due to a fit is greater than the E-score threshold, this fit is not reported .
- nucleic acid hybridizes under stringent conditions with a nucleic acid comprising a base sequence complementary to a base sequence encoding a protein comprising the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 7, and the above of the present invention
- Nucleic acid containing a base sequence encoding a protein having activity The base sequence contained in the nucleic acid of the present invention is a base sequence complementary to the base sequence encoding the protein consisting of the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 7.
- a nucleotide sequence encoding the protein having the above activity of the present invention.
- the protein consisting of the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 7 and the hybridization conditions are as described above.
- the nucleotide sequence contained in the nucleic acid of the present invention is a hybrid under stringent conditions with a nucleic acid comprising a nucleotide sequence complementary to the nucleotide sequence encoding the protein comprising the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 7. Examples thereof include a base sequence encoding a protein that is soybean and has the above activity of the present invention.
- nucleic acids containing the nucleotide sequences having The nucleotide sequences consisting of SEQ ID NO: 5 and SEQ ID NO: 10 are genomic DNA sequences encoding MaPAH1.1 and MaPAH1.2 of the present invention, respectively.
- the base sequence contained in the nucleic acid of the present invention hybridizes with a nucleic acid comprising a base sequence complementary to the base sequence comprising SEQ ID NO: 5 or SEQ ID NO: 10 under stringent conditions, and the activity of the present invention
- the above base sequence is prepared by preparing a probe using an appropriate fragment by a method known to those skilled in the art, and using this probe by a known hybridization method such as colony hybridization, plaque hybridization, Southern blotting, etc. It can be obtained from rally etc.
- the hybridization conditions are as described above.
- nucleic acid comprising a base sequence having an exon encoding a protein having the above activity of the present invention, the base sequence having 70% or more identity with the base sequence consisting of SEQ ID NO: 5 or 10
- the nucleotide sequence contained in the nucleic acid comprises a nucleotide sequence having at least 70% identity to the nucleotide sequence consisting of SEQ ID NO: 5 or SEQ ID NO: 10, and encodes the protein having the above activity of the present invention.
- the percent identity between two base sequences can be determined as described above.
- the genomic DNA sequence of SEQ ID NO: 5 consists of 11 exons and 10 introns, and the exon regions are the first to 182nd, 370 to 584th, 690 to 1435th, 1536 to 1536 of SEQ ID NO: 5.
- 1856th, 1946th to 2192nd, 2292th to 2403th, 2490th to 2763th, 2847th to 3077th, 3166th to 3555th, 3648th to 3862th, 3981th to 5034th is there.
- the genomic DNA sequence of SEQ ID NO: 10 consists of 8 exons and 7 introns, and the exon regions are 1st to 454th, 674 to 1006th, 1145 to 1390th, 1479th to 1479th of SEQ ID NO: 10. 1583, 1662 to 1804th, 1905 to 2143th, 2243 to 3409th, 3520 to 4552th.
- the nucleotide sequence contained in the nucleic acid of the present invention is a genomic DNA sequence represented by SEQ ID NO: 5 or SEQ ID NO: 10, and the nucleotide sequence of the intron region is relative to the sequence represented by SEQ ID NO: 5 or SEQ ID NO: 10.
- the base sequence of the exon region is at least 70% or more, preferably 75% or more, more preferably 80% or more (for example, 85% or more) relative to the sequence shown in SEQ ID NO: 5 or SEQ ID NO: 10. %, More preferably 90% or more, further 95% or more, 98% or more, 99% or more), and an exon encoding a protein having the above activity of the present invention.
- the base sequence which has is mentioned.
- the base sequence contained in the nucleic acid of the present invention is the genomic DNA sequence shown in SEQ ID NO: 5 or SEQ ID NO: 10
- the base sequence of the exon region is the sequence shown in SEQ ID NO: 5 or SEQ ID NO: 10.
- nucleotide sequence of the intron region is at least 70% or more, preferably 75% or more, more preferably 80% or more with respect to the sequence shown in SEQ ID NO: 5 or SEQ ID NO: 10 (for example, 85% or more, more preferably 90% or more, further 95% or more, 98% or more, 99% or more), and the intron region can be removed by splicing,
- region connects and has the said activity of this invention by these is mentioned.
- nucleotide sequence contained in the nucleic acid of the present invention is the genomic DNA sequence shown in SEQ ID NO: 5 or SEQ ID NO: 10
- nucleotide sequence of the intron region is the sequence shown in SEQ ID NO: 5 or SEQ ID NO: 10.
- the base sequence of the exon region is at least 70% or more, preferably 75% or more, more preferably 80% or more (for example, 85% or more, even more preferably 90% or more, further 95% or more, 98% or more, 99% or more)
- the base sequence of the exon region is at least 70% or more, preferably 75% or more, more preferably 80% or more with respect to the sequence shown in SEQ ID NO: 5 or SEQ ID NO: 10 (for example, 85% or more, more preferably 90% or more, further 95% or more, 98% or more, 99% or more) Seen, and intron regions by splicing are possible desorption, it exon region linked by encodes a protein having the above activity of the present invention, the base sequence.
- the percent identity between two base sequences can be determined by the method described above.
- nucleic acid of the present invention comprises a base sequence in which one or more bases are deleted, substituted or added in the base sequence consisting of SEQ ID NO: 1 or SEQ ID NO: 6, and has the above-described activity of the present invention.
- Nucleic acids containing a base sequence encoding a protein are also included.
- nucleotide sequences shown in SEQ ID NO: 1 or SEQ ID NO: 6 preferably one or several (eg, 1-1000, 1-1000, 1-750, 1-500) 1 to 400, 1 to 300, 1 to 250, 1 to 200, 1 to 150, 1 to 100, 1 to 50, 1 to 30, 1 to 25, 1 to 20 , 1-15, more preferably 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1))
- nucleotide sequences shown in SEQ ID NO: 1 or SEQ ID NO: 6 preferably one or several (eg, 1-1000, 1-1000, 1-750, 1-500) 1 to 400, 1 to 300, 1 to 250, 1 to 200, 1 to 150, 1 to 100, 1 to 50, 1 to 30, 1 to 25, 1 to 20 1 to 15, more preferably 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1)
- a base sequence substituted with another base preferably one or more (preferably one or several (for example, 1-1,200, 1-
- a preferred embodiment of the nucleic acid of the present invention includes a nucleic acid containing a fragment of the base sequence described in any of the following (a) to (d).
- (c) represented by SEQ ID NO: 4 or SEQ ID NO: 9 Base sequence
- A a base sequence represented by SEQ ID NO: 1 or SEQ ID NO: 6,
- b a base sequence encoding a protein comprising the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 7,
- c SEQ ID NO: 4 or SEQ ID NO: 9
- the base sequence represented by is as described in Table 1.
- the base sequence represented by SEQ ID NO: 5 or SEQ ID NO: 10 is also as described above. Fragments of the above sequence include ORFs, CDSs, biologically active regions, regions used as primers as described below, and regions that can be used as probes, and are naturally derived. Or may be artificially produced.
- the nucleic acids of the present invention also include the following nucleic acids.
- nucleic acid according to any one of the following (a) to (g).
- A a nucleic acid comprising a base sequence encoding a protein consisting of an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 or SEQ ID NO: 7
- B SEQ ID NO: 1
- c at least 70% identical to the base sequence consisting of SEQ ID NO: 1 or SEQ ID NO: 6
- D a nucleic acid containing a base sequence encoding a protein consisting of an amino acid sequence 70% or more identical to the amino acid sequence consisting of SEQ ID NO: 2 or SEQ ID NO: 7
- Complementary to the base sequence encoding the protein consisting of the amino acid sequence shown in SEQ ID NO: 2 or SEQ ID NO: 7 Nucleic acid that hybridizes
- nucleic acid according to (1) which is any of the following (a) to (g): (A) a nucleic acid comprising a base sequence encoding a protein consisting of an amino acid sequence in which 1 to 130 amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 or SEQ ID NO: 7 (b) SEQ ID NO: 1 Or a nucleic acid that hybridizes with a nucleic acid complementary to the base sequence consisting of SEQ ID NO: 6 with 2 ⁇ SSC at 50 ° C.
- nucleic acid having a base sequence complementary to the base sequence consisting of SEQ ID NO: 5 or SEQ ID NO: 10 under conditions of 2 ⁇ SSC and 50 ° C.
- Nucleic acid (g) Nucleic acid comprising a nucleotide sequence consisting of a nucleotide sequence having 90% or more identity with the nucleotide sequence consisting of SEQ ID NO: 5 or SEQ ID NO: 10
- the phosphatidic acid phosphatase protein of the present invention includes a protein comprising the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 7 and a protein having a function equivalent to that of the protein, It may be artificially produced.
- the protein consisting of the amino acid sequence represented by SEQ ID NO: 2 or 7 is as described above.
- the “protein having an equivalent function” means a protein having “the above activity of the present invention” as described in the section “Nucleic acid encoding the phosphatidic acid phosphatase of the present invention” above.
- examples of the protein having the same function as the protein consisting of the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 7 include the proteins described in either of the following (a) or (b).
- an amino acid sequence in which one or more amino acids are deleted, substituted or added in SEQ ID NO: 2 or SEQ ID NO: 7, or an amino acid sequence having 70% or more identity with the amino acid sequence consisting of SEQ ID NO: 2 Is as described above in the section “Nucleic acid encoding phosphatidic acid phosphatase of the present invention”.
- the “protein having the activity of the present invention” is a variant of a protein encoded by a nucleic acid containing the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 6, or the amino acid shown in SEQ ID NO: 2 or SEQ ID NO: 7.
- Proteins in which one or more amino acids in the sequence are mutated by many types of modifications such as substitution, deletion or addition, modified proteins whose amino acid side chains are modified, or fusion proteins with other proteins
- a protein having an activity of improving PAP activity and / or diacylglycerol (DG) and / or triglyceride (TG) generation activity from phosphatidic acid (PA) in a PAH1-deficient strain of yeast is also included.
- the protein of the present invention may be artificially prepared.
- chemical synthesis such as Fmoc method (fluorenylmethyloxycarbonyl method), tBoc method (t-butyloxycarbonyl method), etc. It can also be manufactured by the law.
- Chemical synthesis using peptide synthesizers such as Advanced Chemtech, PerkinElmer, Pharmacia, Protein Technology Instruments, Syntheselvega, Perceptive, Shimadzu, etc. You can also.
- the protein of the present invention also includes the following proteins.
- (1) (a) a protein consisting of an amino acid sequence in which one or more amino acids are deleted, substituted or added in SEQ ID NO: 2 or SEQ ID NO: 7 (b) identical to the amino acid sequence consisting of SEQ ID NO: 2 or SEQ ID NO: 7 A protein comprising an amino acid sequence having a sex of 80% or more (2) The protein according to any one of the following (a) and (b).
- A a protein comprising an amino acid sequence in which 1 to 200 amino acids have been deleted, substituted or added in SEQ ID NO: 2 or SEQ ID NO: 7 (b) identity with the amino acid sequence comprising SEQ ID NO: 2 or SEQ ID NO: 7 % Protein consisting of amino acid sequences
- the PAP nucleic acid of the present invention can be cloned, for example, by screening from a cDNA library using an appropriate probe. Moreover, it can clone by amplifying by PCR reaction using a suitable primer, and ligating to a suitable vector. Furthermore, it can be subcloned into another vector.
- plasmids such as pBlue-Script TM SK (+) (Stratagene), pGEM-T (Promega), pAmp (TM: Gibco-BRL), p-Direct (Clontech), pCR2.1-TOPO (Invitrogene) Vectors can be used.
- pBlue-Script TM SK (+) (Stratagene)
- pGEM-T Promega
- pAmp TM: Gibco-BRL
- p-Direct Clontech
- pCR2.1-TOPO Invitrogene
- any part of the base sequence shown in SEQ ID NO: 4 or the like can be used as a primer.
- NotI-PAH1-1-F 5′-GCGGCCGCATGCAGTCCGTGGGAAG-3 ′ (SEQ ID NO: 15)
- MaPAH1-1-10R 5′-TTCTTGAGTAGCTGCTGTTGTTCG-3 ′ (SEQ ID NO: 16), Etc.
- the above primer, DNA polymerase and the like are allowed to act on cDNA prepared from M. alpina cells to carry out a PCR reaction.
- the above method can be easily carried out by those skilled in the art according to “Molecular Cloning, A Laboratory Manual 3rd ed.” (Cold Spring Harbor Press (2001)), etc. For example, the following conditions can be given. Denaturation temperature: 90-95 ° C Annealing temperature: 40-60 °C Elongation temperature: 60-75 ° C Number of cycles: 10 times or more
- a known method can be used to purify the obtained PCR product.
- a kit such as GENECLEAN, QIAquick) PCR purification Kits (QIAGEN), ExoSAP-IT (GE Healthcare Bioscience), a method using DEAE-cellulose filter paper, a method using a dialysis tube, and the like.
- GENECLEAN, QIAquick PCR purification Kits
- ExoSAP-IT GE Healthcare Bioscience
- DEAE-cellulose filter paper a method using DEAE-cellulose filter paper
- a method using a dialysis tube and the like.
- the base sequence of the cloned nucleic acid can be determined using a base sequencer.
- the present invention also provides a recombinant vector containing a nucleic acid encoding the PAP of the present invention.
- the present invention further provides a transformant transformed with the above recombinant vector.
- Such a recombinant vector and transformant can be obtained as follows. That is, a plasmid having a nucleic acid encoding the PAP of the present invention is digested with a restriction enzyme. Examples of restriction enzymes used include, but are not limited to, EcoRI, KpnI, BamHI, and SalI. The ends may be smoothed by treating with T4 polymerase. The digested DNA fragment is purified by agarose gel electrophoresis. A PAP expression vector can be obtained by incorporating this DNA fragment into an expression vector using a known method. This expression vector is introduced into a host to produce a transformant and used for expression of the target protein.
- a restriction enzyme include, but are not limited to, EcoRI, KpnI, BamHI, and SalI.
- the ends may be smoothed by treating with T4 polymerase.
- the digested DNA fragment is purified by agarose gel electrophoresis.
- a PAP expression vector can be obtained by incorporating this DNA fragment
- the expression vector and the host are not particularly limited as long as the target protein can be expressed, and examples of the host include fungi, bacteria, plants, animals, or cells thereof.
- fungi include filamentous fungi such as M. alpina, which are lipid-producing bacteria, and yeasts such as Saccharomyces cerevisiae.
- bacteria include Escherichia coli and Bacillus subtilis.
- plants include oil plants such as rapeseed, soybean, cotton, safflower and flax.
- a strain described in MYCOTAXON, Vol.XLIV, NO.2, pp.257-265 (1992) can be used, and specifically, a Mortierella genus.
- the nucleic acid of the present invention is preferably capable of autonomous replication in the host or has a structure that can be inserted into the chromosome of the fungus.
- a structure including a promoter and a terminator is preferable.
- examples of expression vectors include pD4, pDuraSC, pDura5 and the like.
- the promoter any promoter that can be expressed in the host may be used. For example, histonH4.1 gene promoter, GAPDH (glyceraldehyde 3-phosphate dehydrogenase) gene promoter, TEF (Translation elongation factor) gene A promoter derived from M. alpina such as a promoter is used.
- Examples of methods for introducing a recombinant vector into filamentous fungi such as M. alpina include electroporation, spheroplast, particle delivery, and direct microinjection of DNA into the nucleus.
- a transformed strain can be obtained by selecting a strain that grows on a selective medium lacking the nutrient.
- a drug resistance marker gene is used for transformation, cell colonies exhibiting drug resistance can be obtained by culturing in a selective medium containing the drug.
- yeast When yeast is used as a host, examples of expression vectors include pYE22m. Commercially available yeast expression vectors such as pYES (Invitrogen) and pESC (STRATAGENE) may also be used. Suitable hosts for the present invention include, but are not limited to, Saccharomyces cerevisiae EH13-15 (trp1, MAT ⁇ ). As the promoter, for example, promoters derived from yeast such as GAPDH promoter, gal1 promoter, gal10 promoter, etc. are used.
- Examples of the method for introducing a recombinant vector into yeast include lithium acetate method, electroporation method, spheroplast method, dextran mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, polynucleotide in liposome ( Singular or plural) encapsulation, and direct microinjection of DNA into the nucleus.
- examples of the expression vector include Pharmacia pGEX and pUC18.
- the promoter for example, a promoter derived from Escherichia coli, phage or the like, such as trp promoter, lac promoter, PL promoter, PR promoter or the like is used.
- an electroporation method or a calcium chloride method can be used as a method for introducing a recombinant vector into bacteria.
- the present invention provides a method of producing a fatty acid composition from the transformant. That is, it is a method for producing a fatty acid composition from a culture obtained by culturing the transformant.
- a fatty acid composition is a composition comprising an aggregate of one or more fatty acids.
- the fatty acid may be a free fatty acid or may exist as a lipid containing a fatty acid such as triglyceride or phospholipid.
- the fatty acid composition of the present invention can be produced by the following method. However, the production method is not limited to this method, and can be carried out using other generally known methods.
- a medium used for culturing organisms expressing PAP has a suitable pH and osmotic pressure, and contains a nutrient solution necessary for the growth of each host, trace components, and biological materials such as serum and antibiotics ( Any culture solution can be used as long as it is a medium.
- a nutrient solution necessary for the growth of each host, trace components, and biological materials such as serum and antibiotics ( Any culture solution can be used as long as it is a medium.
- yeast is transformed to express PAP
- SC-Trp medium, YPD medium, YPD5 medium and the like can be used, but are not limited thereto.
- SC-Trp medium is exemplified as a specific medium composition: Yeastgnitro base w / o amino acids (DIFCO) 6.7g, glucose 20g, amino acid powder (1.25g of adenine sulfate, 0.6g of arginine per liter) Aspartic acid 3 g, Glutamic acid 3 g, Histidine 0.6 g, Leucine 1.8 g, Lysine 0.9 g, Methionine 0.6 g, Phenylalanine 1.5 g, Serine 11.25 g, Tyrosine 0.9 g, Valine 4.5 g, Threonine 6 g , Mixed with 0.6 g of uracil) 1.3 g.
- DIFCO Yeastgnitro base w / o amino acids
- the culture conditions may be any conditions as long as they are suitable for the growth of the host and are suitable for keeping the produced enzyme stable. Specifically, anaerobic degree, culture time, temperature, humidity, static Individual conditions such as stationary culture or shaking culture can be adjusted.
- the culture method may be culture under the same conditions (one-stage culture), or so-called two-stage culture or three-stage culture using two or more different culture conditions, but in the case of mass culture, the culture efficiency is good. Two-stage culture is preferred.
- the method for producing a fatty acid composition of the present invention can be performed as follows.
- a pre-culture colonies of the transformant are inoculated into the above SC-Trp medium or the like and subjected to shaking culture at 30 ° C. for 2 days.
- 500 ⁇ l of a preculture solution is added to 10 ml of YPD5 (2% yeast extract, 1% polypeptone, 5% glucose) medium, and shake culture is performed at 30 ° C. for 2 days.
- the present invention also provides a fatty acid composition that is an aggregate of one or more fatty acids in cells in which the PAP of the present invention is expressed.
- a fatty acid composition obtained by culturing a transformant in which the PAP of the present invention is expressed.
- the fatty acid may be a free fatty acid or may exist in the form of a lipid containing a fatty acid such as triglyceride or phospholipid.
- the fatty acid contained in the fatty acid composition of the present invention refers to a long-chain carbohydrate chain or branched monocarboxylic acid, such as myristic acid (tetradecanoic acid) (14: 0), myristoleic acid (tetradecenoic acid).
- the fatty acid composition of the present invention may be a composition comprising any number and any kind of fatty acids as long as it is a combination of one or more of the above fatty acids.
- the foodstuff etc. which contain the fatty acid composition of this invention Moreover, this invention provides the foodstuff containing the said fatty acid composition.
- the fatty acid composition of the present invention can be used for applications such as production of foods containing fats and oils, industrial raw materials (raw materials such as cosmetics, pharmaceuticals (for example, topical drugs for skin), soaps) according to conventional methods.
- Examples of the dosage form of the cosmetic (composition) or medicine (composition) include, but are not limited to, any dosage form such as solution, paste, gel, solid, and powder.
- a form of food such as a capsule, or a natural liquid food in which the fatty acid composition of the present invention is mixed with protein, saccharide, fat, trace element, vitamins, emulsifier, fragrance, etc., semi-digested Processing forms such as state nutrition foods, ingredient nutrition foods, drinks, enteral nutrients and the like can be mentioned.
- examples of the food of the present invention include, but are not limited to, nutritional supplements, health foods, functional foods, infant foods, infant formulas, premature infant formulas, and elderly foods.
- food refers to a generic term for solids, fluids, liquids, and mixtures thereof that can be consumed.
- Nutritional supplements are foods that are enriched with specific nutritional ingredients.
- the health food refers to food that is considered healthy or healthy, and includes nutritional supplements, natural foods, diet foods, and the like.
- Functional food means food for supplementing nutritional components that fulfill the body's regulatory functions, and is synonymous with food for specified health use.
- Infant food refers to food for children up to about 6 years old.
- the food for the elderly refers to food that has been processed so that it can be easily digested and absorbed as compared to untreated food.
- Infant formula refers to formula for feeding to children up to about 1 year old.
- Premature infant formula refers to formula that is given to premature infants until about 6 months after birth.
- These foods include natural foods such as meat, fish and nuts (treated with oils and fats); foods to which fats and oils are added when cooking Chinese food, ramen, soup, etc .; tempura, fries, fried chicken, fried rice, donuts, sugar sugar, etc. Foods that use fats and oils as a heat medium for cooking; fats and oils such as butter, margarine, mayonnaise, dressing, chocolate, instant ramen, caramel, biscuits, cookies, cakes, ice cream, etc. or processed foods with added fat during processing; The food etc. which sprayed or apply
- lifted can be mention
- the food of the present invention is not limited to foods containing fats and oils, such as bread, noodles, rice, confectionery (candy, chewing gum, gummi, tablet confectionery, Japanese confectionery), tofu and processed products thereof.
- Agricultural foods such as sake, medicinal liquor, mirin, vinegar, soy sauce and miso; livestock foods such as yogurt, ham, bacon and sausage; Beverages, alcoholic beverages, tea, etc. are listed.
- the present invention is also a method for evaluating or selecting a lipid-producing bacterium using the nucleic acid encoding PAP of the present invention or PAP protein.
- I will provide a. Specifically, it is as follows.
- Evaluation method As one embodiment of the present invention, a method for evaluating lipid-producing bacteria using the nucleic acid or PAP protein encoding the PAP of the present invention can be mentioned.
- Examples of the evaluation method of the present invention include a method for evaluating the activity of the present invention of a lipid-producing strain as a test strain using a primer or probe designed based on the base sequence of the present invention.
- a general method of such an evaluation method is known and described in, for example, International Patent Application Pamphlet WO01 / 040514, Japanese Patent Application Laid-Open No. 8-205900, and the like. Hereinafter, this evaluation method will be briefly described.
- the genome of the test strain is prepared.
- any known method such as Hereford method or potassium acetate method can be used (see, for example, Methods in Yeast Genetics, Cold Spring Harbor Laboratory Press, p130 (1990)).
- a primer or probe is designed based on the base sequence of the present invention, preferably SEQ ID NO: 1 or SEQ ID NO: 6. Any part of the base sequence of the present invention can be used as the primer or probe, and the design thereof can be performed using a known method.
- the number of bases of the polynucleotide used as a primer is usually 10 bases or more, preferably 15 to 25 bases. In addition, the number of bases in the sandwiched portion is usually 300 to 2000 bases.
- the primer or probe prepared above it is examined whether or not the base sequence of the present invention and a specific sequence are present in the genome of the test strain.
- the base sequence of the present invention and the specific sequence can be detected using a known method.
- a polynucleotide containing a part or all of a specific sequence in the base sequence of the present invention or a polynucleotide containing a base sequence complementary to the above base sequence is used as one primer, and this sequence is used as the other primer.
- Amplification of nucleic acid of test strain by, for example, PCR method using polynucleotide containing part or all of upstream or downstream sequence, or polynucleotide containing base sequence complementary to the above base sequence Then, the presence or absence of the amplified product, the size of the molecular weight of the amplified product, and the like can be measured.
- Reaction conditions of the PCR method suitable for the method of the present invention are not particularly limited, and examples thereof include the following conditions. Denaturation temperature: 90-95 ° C Annealing temperature: 40-60 °C Elongation temperature: 60-75 ° C Cycle number: Conditions such as 10 times or more.
- the obtained reaction product can be separated by electrophoresis using an agarose gel or the like, and the molecular weight of the amplified product can be measured. Thereby, the activity of the present invention of the test strain is predicted or evaluated by confirming whether the molecular weight of the amplified product is a size including a nucleic acid molecule corresponding to a region specific to the base sequence of the present invention. Can do. Further, by analyzing the base sequence of the amplification product by the above method or the like, the activity of the present invention can be predicted or evaluated more accurately. The method for evaluating the activity of the present invention is as described above.
- the test strain is cultured by measuring the expression level of PAP encoded by the base sequence of the present invention such as SEQ ID NO: 1 or SEQ ID NO: 6, etc.
- the activity of the invention can also be evaluated.
- the expression level of PAP can be measured by culturing the test strain under suitable conditions and quantifying the PAP mRNA or protein. Quantification of mRNA or protein can be performed using a known method. For example, mRNA quantification can be performed by Northern hybridization or quantitative RT-PCR, and protein quantification can be performed by, for example, Western blotting (Current Protocols in Molecular Molecular Biology, John Wiley & Sons 1994-2003).
- the test strain is cultured, the expression level of PAP encoded by the base sequence of the present invention such as SEQ ID NO: 1 or SEQ ID NO: 6 is measured, and the strain having the desired expression level is obtained.
- a strain having a desired activity can be selected.
- a reference strain is set, each of the reference strain and the test strain is cultured, the expression level of each strain is measured, the reference strain and the test strain are compared, and the desired strain is determined. You can also choose.
- the reference strain and the test strain are cultured under appropriate conditions, the expression level of each strain is measured, and the test strain has a higher or lower expression than the reference strain.
- a strain having a desired activity can be selected. Examples of the desired activity include a method of measuring the expression level of PAP and the composition of the fatty acid composition produced by PAP as described above.
- a test strain having a desired activity can be selected by culturing a test strain and selecting a strain having a high or low activity of the present invention.
- the desired activity include a method of measuring the expression level of PAP and the composition of the fatty acid composition produced by PAP as described above.
- test strains or reference strains include strains into which the above-described vector of the present invention has been introduced, strains in which the expression of the nucleic acid of the present invention has been suppressed, strains that have been subjected to mutation treatment, naturally-mutated strains, etc. Although it can be used, it is not limited to these.
- the above activity of the present invention can be measured, for example, by the method described in the item “Nucleic acid encoding phosphatidic acid phosphatase of the present invention” in the present specification.
- mutation treatment examples include physical methods such as ultraviolet irradiation and radiation irradiation, and chemical methods using chemical treatment such as EMS (ethyl methanesulfonate) and N-methyl-N-nitrosoguanidine (for example, Oshima). Edited by Taiji, see Biochemical Experimental Method 39, Yeast Molecular Genetics Experimental Method, p.67-75, Academic Publishing Center, etc.).
- EMS ethyl methanesulfonate
- N-methyl-N-nitrosoguanidine for example, Oshima
- examples of the strain used as the reference strain or test strain of the present invention include, but are not limited to, the above lipid-producing bacteria and yeasts.
- the reference strain and the test strain may be used in combination with any strain belonging to different genera or species, and one or more strains may be used simultaneously as the test strain.
- Example 1 Genomic analysis of M. alpina M. alpina 1S-4 strain was inoculated into 100 ml of GY2: 1 medium (2% glucose, 1% yeast extract, pH 6.0) and shaken at 28 ° C. for 2 days. Cultured. The cells were collected by filtration, and genomic DNA was prepared using DNeasy (QIAGEN).
- the base sequence of the genomic DNA was determined using Roche 454 GS GS FLX Standard. At that time, the base sequence of the fragment library was determined for 2 runs, and the base sequence of the mate pair library was determined for 3 runs. By assembling the obtained base sequences, 300 super tigs were obtained.
- Example 2 Synthesis of cDNA and preparation of cDNA library M. alpina 1S-4 strain was inoculated into 100 ml of medium (1.8% glucose, 1% yeast extract, pH 6.0) at 28 ° C for 4 days. Cultured with shaking. The cells were collected by filtration, and total RNA was prepared by the guanidine hydrochloride / CsCl method.
- cDNA was synthesized by reverse transcription reaction using random hexamers by SuperScript II RT (Invitrogen).
- poly (A) + RNA was purified from total RNA using Oligotex-dT30 ⁇ Super> mRNA Purification Kit (Takara Bio).
- a cDNA library was prepared using ZAP-cDNA GigapackIII Gold Cloning Kit (STRATAGENE).
- Example 3 Search for PAH1 homologue derived from S. cerevisiae
- the amino acid sequence of PAH1 (YMR165C) (sometimes referred to as ScPAH1 in this specification), which is one of the genes responsible for the PAP1 activity of Saccharomyces cerevisiae
- the tblastn analysis was performed on the genomic base sequence of the 1S-4 strain. As a result, a super contig containing the sequences shown in SEQ ID NO: 5 and SEQ ID NO: 10 was hit.
- the gene according to SEQ ID NO: 5 was named MaPAH1.1
- the gene according to SEQ ID NO: 10 was named MaPAH1.2.
- Example 4 Cloning of MaPAH1.1 and MaPAH1.2 (1) Preparation of probe In order to clone cDNAs of MaPAH1.1 gene and MaPAH1.2 gene, SEQ ID NO: 5 and SEQ ID NO: 10 and the previous BLAST The following primers were prepared from the analysis results.
- MaPAH1-1-3F 5′-CGCCAATACATTGACGTTTTCAG-3 ′ (SEQ ID NO: 11)
- MaPAH1-1-5R 5′-AGTTCCAGTCATTGAACTCGGGTGC-3 ′
- MaPAH1-2-3F 5′-GAGCCCAGTTGACCTTTGAGGCATTC-3 ′
- MaPAH1-2-5R 5′-CACTGAGAACGAGACCGTGTTGGCG-3 ′ (SEQ ID NO: 14)
- PCR-MaPAH1.1-P is a plasmid having the nucleotide sequence 2352-3010 of SEQ ID NO: 4 obtained by the former primer combination and 1615-2201 of SEQ ID NO: 9 obtained by the latter primer combination.
- the plasmid having the second base sequence was designated as pCR-MaPAH1.2-P.
- probes were prepared by PCR using these plasmids as templates and the above primers.
- ExTaq (Takara Bio) was used, but instead of the attached dNTP mix, a PCR labeling mix (Roche Diagnostics) was used to prepare a probe in which the amplified DNA was labeled with digoxigenin (DIG), MaPAH1.1 probe and MaPAH1.2 probe were used.
- DIG digoxigenin
- MaPAH1.1 probe MaPAH1.2 probe were used.
- Each of these cDNA libraries was screened using these probes.
- Hybridization conditions are as follows. Buffer: 5 ⁇ SSC, 1% SDS, 50 mM Tris-HCl (pH 7.5), 50% formamide; Temperature: 42 ° C. (overnight); Washing conditions: 0.2 ⁇ SSC, 0.1% SDS solution (65 ° C.), 20 minutes ⁇ 3 times;
- Plasmids were excised from the phage clones obtained by screening by in vivo excitation to obtain each plasmid DNA.
- the plasmid with the longest insert length contains the sequence from the 1307th sequence of SEQ ID NO: 4 and was named plasmid pB-MaPAH1.1p.
- this plasmid pB-MaPAH1.1p was considered not to contain the region encoding the N-terminus of PAH1.1.
- NotI-PAH1-1-F 5′-GCGGCCGCATGCAGTCCGTGGGAAG-3 ′ (SEQ ID NO: 15)
- MaPAH1-1-10R 5′-TTCTTGAGTAGCTGCTGTTGTTCG-3 ′ (SEQ ID NO: 16)
- the plasmid with the longest insert length contained the nucleotide sequence of SEQ ID NO: 9.
- this plasmid was considered to have a cDNA containing the full-length ORF of MaPAH1.2.
- This plasmid was designated as pB-MaPAH1.2 cDNA.
- the cDNA sequence (SEQ ID NO: 4) of the MaPAH1.1 gene includes CDS (SEQ ID NO: 3) consisting of the first to 3987th base sequences, ORF consisting of the first to 3984th base sequences (sequences) Number 1) was included.
- the deduced amino acid sequence encoded by the MaPAH1.1 gene is shown in SEQ ID NO: 2.
- the genomic sequence and ORF sequence of the MaPAH1.1 gene were compared (FIG. 1).
- the genomic sequence of the MaPAH1.1 gene was considered to consist of 11 exons and 10 introns.
- the cDNA sequence (SEQ ID NO: 9) of the MaPAH1.2 gene includes CDS (SEQ ID NO: 8) consisting of the base sequence of the 72nd-3791st and ORF consisting of the base sequence of the 72nd-3788th (SEQ ID NO: 6).
- CDS SEQ ID NO: 8
- ORF base sequence of the 72nd-3788th
- the deduced amino acid sequence encoded by the MaPAH1.2 gene is shown in SEQ ID NO: 7.
- the genomic sequence and ORF sequence of the MaPAH1.2 gene were compared (FIG. 2).
- the genomic sequence of the MaPAH1.2 gene consisted of 8 exons and 7 introns.
- the identity of the amino acid sequence of the ScPAH1 protein whose function has been analyzed and the amino acid sequences of MaPAH1.1 and MaPAH1.2 derived from M. alpina of the present invention are 22.7%, It was 22.5%.
- the amino acid sequences of MaPAH1.1 and MaPAH1.2 derived from M. alpina of the present invention were compared with those of known ScPAH1 and mouse Lipin (FIG. 5).
- the amino acid sequence of the N-terminal part is well conserved and is called lipin, N-terminal conserved region (pfam04571). Also in MaPAH1.1 and MaPAH1.2 derived from M.
- the known enzyme and the N-terminal portion were relatively well preserved.
- the DIDGT sequence indicated by a double underline in FIG. 5 is identical to the motif of the DXDX (T / V) catalytic site conserved in haloacid dehalogenase (HAD) -like protein superfamily enzymes. I did it.
- Example 5 Expression of MaPAH1.1 and MaPAH1.2 in yeast Construction of expression vectors for MaPAH1.1 and MaPAH1.2: In order to express MaPAH1.1 in yeast, an expression vector was constructed as follows.
- yeast expression vector pYE22m (Biosci. Biotech. Biochem., 59, 1221-1228, 1995) was digested with the restriction enzyme EcoRI, followed by blunting with blunting Kit (Takara Bio). Subsequently, this was linked to Linker, pNotI, Phosphorylated (8mer) (Takara Bio) using ligation high (Toyobo), and the resulting vector was designated as vector pYE22mN.
- the vector pYE22mN was digested with restriction enzymes NotI and KpnI, and the plasmid pB-MaPAH1.1 cDNA was digested with restriction enzymes NotI and KpnI to ligate the approximately 4.2 kbp DNA fragment to obtain plasmid pYE-MaPAH1.1. It was.
- the vector pYE22mN was digested with restriction enzymes NotI and KpnI
- the plasmid pB-MaPAH1.2cDNA was digested with restriction enzymes NotI and KpnI, and an approximately 3.8 kbp DNA fragment was ligated to obtain plasmid pYE-MaPAH1.2.
- S. cerevisiae ⁇ Scpah1 URA3 strain: In order to clone the ScPAH1 gene derived from S. cerevisiae S288C strain, the following primers were prepared.
- Primer KpnI-PAH1-F 5′-GGTACCATGCAGTACGTAGGCAGAGCTC-3 ′ (SEQ ID NO: 17)
- Primer XhoI-PAH1-R 5′-CTCGAGTTAATCTTCGAATTCATCTTCG-3 ′ (SEQ ID NO: 18) S.
- YPD yeast extract 2%, polypeptone 1%, glucose 2%) liquid medium
- Gen Torkun for yeast
- the obtained DNA fragment of about 2.5 kbp was cloned using TOPO TA cloning Kit, and a clone having the correct base sequence was designated as pCR-ScPAH1.
- SC-Ura per liter, Yeast nitrogen base w / o amino acids (DIFCO) 6.7 g, glucose 20 g, amino acid powder (adenine sulfate 1.25 g, arginine 0.6 g, aspartic acid 3 g) , Glutamic acid 3 g, histidine 0.6 g, leucine 1.8 g, lysine 0.9 g, methionine 0.6 g, phenylalanine 1.5 g, serine 11.25 g, tyrosine 0.9 g, valine 4.5 g, threonine 6 g, tryptophan 1.
- DIFCO Yeast nitrogen base w / o amino acids
- ⁇ Scpah1 URA3 strain as a host, transformed with plasmids pYE22m, pYE-MaPAH1.1, pYE-MaPAH1.2, respectively, SC-Ura, Trp (Yeast nitrogen base w / o amino acids per liter (DIFCO 6.7 g, glucose 20 g, amino acid powder (adenine sulfate 1.25 g, arginine 0.6 g, aspartic acid 3 g, glutamic acid 3 g, histidine 0.6 g, leucine 1.8 g, lysine 0.9 g, methionine 0.6 g, 1.5 g of phenylalanine, 11.25 g of serine, 0.9 g of tyrosine, 4.5 g of valine, 6 g of threonine) 1.3 g, agar medium (2% agar)) transformation of strain that can grow on agar medium As selected.
- DIFCO 6.7
- any two strains control strains transformed with plasmid pYE22m were C1, C2, and strains transformed with plasmid pYE-MaPAH1.1 were MaPAH1.1-1, MaPAH1. .1-2, strains transformed with plasmid pYE-MaPAH1.2 (MaPAH1.2-1, MaPAH1.2-2) were used for the following experiments.
- Example 6 Measurement of Mg 2+ -dependent phosphatidic acid phosphatase activity (PAP1 activity)
- PAP1 activity Mg 2+ -dependent phosphatidic acid phosphatase activity
- buffer A 50 mM Tris-HCl (pH 7.5), 0.3 M sucrose, 10 mM mercaptoethanol, 0.5 mM phenylmethylsulfonyl fluoride (PMSF)
- PMSF phenylmethylsulfonyl fluoride
- PAP1 activity was measured as follows by modifying the method of Gil-Soo et al. (J. Biol. Chem., 282 (51), 37026-37035, (2007)). Since S. cerevisiae cannot synthesize linoleic acid, 1,2-Dilinoleoyl-sn-Glycero-3-phosphate (18: 2-PA) was used as a substrate for PAP.
- the reaction solution was 500 ⁇ L, and the composition was 100 ⁇ L of crude enzyme solution, 50 mM Tris-HCl (pH 7.5), 100 ⁇ g / ml 1,2-Dilinoleoyl-sn-Glycero-3-phosphate, Monosodium Salt (Avanti Polar Lipids, Inc.
- the diacylglycerol (DG) fraction was scraped and the fatty acid was derived into a methyl ester by the hydrochloric acid methanol method. Subsequently, fatty acid methyl ester was extracted with hexane, and hexane was distilled off, followed by analysis by gas chromatography.
- DG diacylglycerol
- Table 2 shows the amount of linoleic acid transferred into the DG fraction per crude enzyme solution protein.
- MaPAH1.1-1 and MaPAH1.1-2 that expressed MaPAH1.1 were approximately three times, and MaPAH1 that expressed MaPAH1.2. .2-1, MaPAH1.2-2 had approximately 1.2 times the activity of converting 18: 2-PA to dilinolein (18: 2-DG). This suggested that MaPAH1.1 and MaPAH1.2 have PAP activity.
- the reaction was performed as follows. That is, the reaction solution was 500 ⁇ L, and the composition was 100 ⁇ L of crude enzyme solution, 50 mM Tris-HCl (pH 7.5), 100 ⁇ g / ml 1,2-Dilinoleoyl-sn-Glycero-3-phosphate, Monosodium Salt (Avanti Polar Lipids, Inc.) 2 mM EDTA, 10 mM 2-mercaptoethanol, and other than that, the reaction was performed in the same manner as described above, and the analysis was performed. Table 3 shows the amount of linoleic acid transferred into the DG fraction per crude enzyme solution protein.
- Triacylglycerol (also referred to herein as triglyceride, TG), which is a storage lipid, is obtained by further acylating diacylglycerol, which is a product of PAP protein.
- TG Triacylglycerol
- the above transformant using yeast lacking ScPAH1 as a host was inoculated into 10 ml of SD-Ura, Trp liquid medium, and statically cultured at 30 ° C. for 3 days.
- the cells were collected by centrifuging the culture solution, washed with water, and lyophilized.
- Chloroform methanol (2: 1) was added to the dried cells, and the cells were repeatedly crushed with glass beads, and lipids were extracted with a total amount of 8 ml of solvent. In the same manner as described above, after fractionation by TLC, the TG fraction was scraped and analyzed. The results are shown in Table 4.
- the high expression strain of MaPAH1.1 was able to produce TG about 1.5 times that of the control, and the high expression strain of MaPAH1.2 was about 1.2 times.
- Example 8 Substrate specificity of MaPAH1.1 and MaPAH1.2 ⁇ Scpah1: URA3 strain was used as a host, and transformed with plasmids pYE22m, pYE-MaPAH1.1, and pYE-MaPAH1.2, respectively. Four arbitrary strains for each transformant were subjected to the following experiment. A strain transformed with plasmid pYE22m was used as a control.
- Each yeast transformant was inoculated into 10 ml of SC-Ura, Trp liquid medium, and cultured at 27.5 ° C. overnight.
- the obtained culture broth was inoculated in a volume of 1/10 to 40 ml of SC-Ura and Trp liquid medium, and each was inoculated and cultured at 27.5 ° C. for 2 days.
- a crude enzyme solution was prepared in the same manner as described in Example 6, and the protein concentration was measured.
- PAP1 activity was determined by using 1,2-Dilinoleoyl-sn-Glycero-3-phosphate (18: 2-PA) and 1,2-Dioleoyl-sn-Glycero-3-phosphate (18: 1-PA) as PAP substrates. The measurement was performed in the same manner as described in Example 6 except that it was used.
- Mortierella-derived MaPAH1.1 and MaPAH1.2 showed 1.9 times and 1.3 times the activity of the control, respectively.
- MaPAH1.1 showed an activity 1.9 times that of the control
- MaPAH1.2 showed an activity 1.1 times that of the control.
- 18: 1 is a fatty acid originally possessed by yeast, it originally exists in the DG of the crude enzyme solution.
- 18: 1 amount in DG in the crude enzyme solution when no substrate was added. Therefore, the difference between MaPAH1.1 and MaPAH1.2 shown in Table 6 and the control can be presumed to be the observation of the effect on 18: 1-PA added as a substrate.
- MaPAH1.1 increases 1.9 times both 18: 1 and 18: 2 compared to the control.
- MaPAH1.2 increased 18: 1 by 1.1 times compared to control and 18: 2 by 1.3 times compared with control. This means that MaPAH1.1 exerts its activity to the same extent against 18: 1-PA and 18: 2-PA, whereas MaPAH1.2 has an activity against 18: 2-PA of 18: 1 : Suggests higher activity than 1-PA.
- MaPAH1.1 and MaPAH1.2 have PAP activity.
- MaPAH1.2 had a higher activity on 18: 2-PA than 18: 1-PA, suggesting a higher activity on phosphatidic acid having a fatty acid moiety with a higher degree of unsaturation.
- Sequence number 11 Primer Sequence number 12: Primer Sequence number 13: Primer Sequence number 14: Primer Sequence number 15: Primer Sequence number 16: Primer Sequence number 17: Primer Sequence number 18: Primer
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Cell Biology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nutrition Science (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
Abstract
Description
(a)配列番号2又は配列番号7で示されるアミノ酸配列において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(b)配列番号1又は配列番号6からなる塩基配列に対し相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(c)配列番号1又は配列番号6からなる塩基配列と同一性が70%以上の塩基配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(d)配列番号2又は配列番号7からなるアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(e)配列番号2又は配列番号7で示されるアミノ酸配列からなるタンパク質をコードする塩基配列に対し相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(f)配列番号5又は配列番号10からなる塩基配列に対し相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードするエキソンを有する塩基配列を含む核酸
(g)配列番号5又は配列番号10からなる塩基配列と同一性が70%以上の塩基配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードするエキソンを有する塩基配列を含む核酸
(a)配列番号2又は配列番号7で示されるアミノ酸配列において1~130個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(b)配列番号1又は配列番号6からなる塩基配列に対し相補的な塩基配列からなる核酸と2×SSC、50℃の条件下でハイブリダイズし、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(c)配列番号1又は配列番号6からなる塩基配列と同一性が90%以上の塩基配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(d)配列番号2又は配列番号7からなるアミノ酸配列と同一性が90%以上のアミノ酸配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(e)配列番号2又は配列番号7で示されるアミノ酸配列からなるタンパク質をコードする塩基配列に対し相補的な塩基配列からなる核酸と2×SSC、50℃の条件下でハイブリダイズし、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(f)配列番号5又は配列番号10からなる塩基配列に対し相補的な塩基配列からなる核酸と2×SSC、50℃の条件下でハイブリダイズし、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードするエキソンを有する塩基配列を含む核酸
(g)配列番号5又は配列番号10からなる塩基配列と同一性が90%以上の塩基配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードするエキソンを有する塩基配列を含む核酸
(a)配列番号1又は配列番号6で示される塩基配列若しくはその部分配列を含む核酸
(b)配列番号2又は配列番号7で示されるアミノ酸配列からなるタンパク質をコードする塩基配列若しくはその部分配列を含む核酸
(c)配列番号4又は配列番号9で示される塩基配列若しくはその部分配列を含む核酸
(d)配列番号5又は配列番号10で示される塩基配列若しくはその部分配列を含む核酸
(a)配列番号2又は配列番号7で示されるアミノ酸配列において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、酵母のPAH1欠損株におけるホスファチジン酸(PA)からのジアシルグリセロール(DG)及び/又はトリグリセリド(TG)生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(b)配列番号1又は配列番号6からなる塩基配列に対し相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(c)配列番号1又は配列番号6からなる塩基配列と同一性が70%以上の塩基配列からなり、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(d)配列番号2又は配列番号7からなるアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(e)配列番号2又は配列番号7で示されるアミノ酸配列からなるタンパク質をコードする塩基配列に対し相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(f)配列番号5又は配列番号10からなる塩基配列に対し相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードするエキソンを有する塩基配列を含む核酸
(g)配列番号5又は配列番号10からなる塩基配列と同一性が70%以上の塩基配列からなり、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードするエキソンを有する塩基配列を含む核酸
(a)配列番号2又は配列番号7で示されるアミノ酸配列において1~130個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、酵母のPAH1欠損株におけるホスファチジン酸(PA)からのジアシルグリセロール(DG)及び/又はトリグリセリド(TG)生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(b)配列番号1又は配列番号6からなる塩基配列に対し相補的な塩基配列からなる核酸と2×SSC、50℃の条件下でハイブリダイズし、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(c)配列番号1又は配列番号6からなる塩基配列と同一性が90%以上の塩基配列からなり、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(d)配列番号2又は配列番号7からなるアミノ酸配列と同一性が90%以上のアミノ酸配列からなり、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(e)配列番号2又は配列番号7で示されるアミノ酸配列からなるタンパク質をコードする塩基配列に対し相補的な塩基配列からなる核酸と2×SSC、50℃の条件下でハイブリダイズし、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(f)配列番号5又は配列番号10からなる塩基配列に対し相補的な塩基配列からなる核酸と2×SSC、50℃の条件下でハイブリダイズし、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードするエキソンを有する塩基配列を含む核酸
(g)配列番号5又は配列番号10からなる塩基配列と同一性が90%以上の塩基配列からなり、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードするエキソンを有する塩基配列を含む核酸
(a)配列番号2又は配列番号7において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質
(b)配列番号2又は配列番号7からなるアミノ酸配列と同一性が70%以上のアミノ酸配列からなるタンパク質であり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質
(a)配列番号2又は配列番号7において1~130個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質
(b)配列番号2又は配列番号7からなるアミノ酸配列と同一性が90%以上のアミノ酸配列からなるタンパク質であり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質
(a)配列番号2又は配列番号7において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、酵母のPAH1欠損株におけるホスファチジン酸(PA)からのジアシルグリセロール(DG)及び/又はトリグリセリド(TG)生成活性を向上させる活性を有するタンパク質
(b)配列番号2又は配列番号7からなるアミノ酸配列と同一性が70%以上のアミノ酸配列からなるタンパク質であり、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質
(a)配列番号2又は配列番号7において1~130個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、酵母のPAH1欠損株におけるホスファチジン酸(PA)からのジアシルグリセロール(DG)及び/又はトリグリセリド(TG)生成活性を向上させる活性を有するタンパク質
(b)配列番号2又は配列番号7からなるアミノ酸配列と同一性が90%以上のアミノ酸配列からなるタンパク質であり、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を向上させる活性を有するタンパク質
本発明のホスファチジン酸ホスファターゼ(PAP)には、MaPAH1.1及びMaPAH1.2が含まれる。MaPAH1.1及びMaPAH1.2をコードするcDNA、CDS、ORF及び推定アミノ酸配列の対応関係を以下の表1に整理して記載した。
本発明の核酸に含まれる塩基配列は、配列番号2又は配列番号7で示されるアミノ酸配列において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、本発明の上記活性を有するタンパク質をコードする塩基配列を含む。
(i) 配列番号2又は配列番号7に示すアミノ酸配列のうち1個又は複数個(好ましくは1個又は数個(例えば、1~400個、1~200個、1~130個、1~100個、1~75個、1~50個、1~30個、1~25個、1~20個、1~15個、さらに好ましくは10、9、8、7、6、5、4、3、2、又は1個))のアミノ酸が欠失したアミノ酸配列、
(ii) 配列番号2又は配列番号7に示すアミノ酸配列のうち1個又は複数個(好ましくは1個又は数個(例えば、1~400個、1~200個、1~130個、1~100個、1~75個、1~50個、1~30個、1~25個、1~20個、1~15個、さらに好ましくは10、9、8、7、6、5、4、3、2、又は1個))のアミノ酸が他のアミノ酸で置換したアミノ酸配列、
(iii) 配列番号2又は配列番号7に示すアミノ酸配列において1個又は複数個(好ましくは1個又は数個(例えば、1~400個、1~200個、1~130個、1~100個、1~75個、1~50個、1~30個、1~25個、1~20個、1~15個、さらに好ましくは10、9、8、7、6、5、4、3、2、又は1個個))の他のアミノ酸が付加されたアミノ酸配列、又は
(iv) 上記(i)~(iii)を組み合わせたアミノ酸配列からなるタンパク質であって、かつ、本発明の上記活性を有するタンパク質をコードする塩基配列である。
A群:ロイシン、イソロイシン、ノルロイシン、バリン、ノルバリン、アラニン、2-アミノブタン酸、メチオニン、O-メチルセリン、t-ブチルグリシン、t-ブチルアラニン及びシクロヘキシルアラニン
B群:アスパラギン酸、グルタミン酸、イソアスパラギン酸、イソグルタミン酸、2-アミノアジピン酸及び2-アミノスベリン酸
C群:アスパラギン及びグルタミン
D群:リジン、アルギニン、オルニチン、2,4-ジアミノブタン酸及び2,3-ジアミノプロピオン酸
E群:プロリン、3-ヒドロキシプロリン及び4-ヒドロキシプロリン
F群:セリン、スレオニン及びホモセリン
G群:フェニルアラニン及びチロシン
本発明の核酸に含まれる塩基配列は、配列番号1又は配列番号6からなる塩基配列に対し相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、本発明の上記活性を有するタンパク質をコードする塩基配列を含む。
本発明の核酸に含まれる塩基配列は、配列番号1又は配列番号6に示される塩基配列に対して少なくとも70%以上の同一性を有する塩基配列からなり、かつ、本発明の上記活性を有するタンパク質をコードする塩基配列を含む。
本発明の核酸に含まれる塩基配列は、配列番号2又は配列番号7からなるアミノ酸配列と同一性が70%以上のアミノ酸配列をコードし、かつ、本発明の上記活性を有するタンパク質をコードする塩基配列を含む。本発明の核酸がコードするタンパク質は、本発明の上記活性を有するタンパク質と同等の機能を有する限り、MaPAH1.1又はMaPAH1.2のアミノ酸配列と同一性のあるタンパク質でもよい。
本発明の核酸に含まれる塩基配列は、配列番号2又は配列番号7で示されるアミノ酸配列からなるタンパク質をコードする塩基配列に対し相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、本発明の上記活性を有するタンパク質をコードする塩基配列を含む。
配列番号5及び配列番号10からなる塩基配列は、それぞれ本発明のMaPAH1.1及びMaPAH1.2をコードするゲノムDNA配列である。
本発明の核酸に含まれる塩基配列は、配列番号5又は配列番号10からなる塩基配列に対して少なくとも70%以上の同一性を有する塩基配列からなり、かつ、本発明の上記活性を有するタンパク質をコードする塩基配列を含む。好ましくは、配列番号5又は配列番号10に示される塩基配列に対して少なくとも75%以上、さらに好ましくは80%以上(例えば、85%以上、より一層好ましくは、90%以上、さらには95%、98%又は99%以上)の同一性を有する塩基配列を含み、かつ、本発明の上記活性を有するタンパク質をコードするエキソンを有する塩基配列が挙げられる。2つの塩基配列の同一性%は、上述したように決定することができる。
(i) 配列番号1又は配列番号6に示す塩基配列のうち1個又は複数個(好ましくは1個又は数個(例えば、1~1200個、1~1000個、1~750個、1~500個、1~400個、1~300個、1~250個、1~200個、1~150個、1~100個、1~50個、1~30個、1~25個、1~20個、1~15個、さらに好ましくは10、9、8、7、6、5、4、3、2、又は1個))の塩基が欠失した塩基配列、
(ii) 配列番号1又は配列番号6に示す塩基配列のうち1個又は複数個(好ましくは1個又は数個(例えば、1~1200個、1~1000個、1~750個、1~500個、1~400個、1~300個、1~250個、1~200個、1~150個、1~100個、1~50個、1~30個、1~25個、1~20個、1~15個、さらに好ましくは10、9、8、7、6、5、4、3、2、又は1個))の塩基が他の塩基で置換された塩基配列、
(iii) 配列番号1又は配列番号6に示す塩基配列において1個又は複数個(好ましくは1個又は数個(例えば、1~1200個、1~1000個、1~750個、1~500個、1~400個、1~300個、1~250個、1~200個、1~150個、1~100個、1~50個、1~30個、1~25個、1~20個、1~15個、さらに好ましくは10、9、8、7、6、5、4、3、2、又は1個))の他の塩基が付加された塩基配列、又は
(iv) 上記(i)~(iii)を組み合わせた塩基配列であって、かつ、本発明の上記活性を有するタンパク質をコードしている塩基配列を含む核酸を用いることもできる。
(a)配列番号1又は配列番号6で示される塩基配列
(b)配列番号2又は配列番号7で示されるアミノ酸配列からなるタンパク質をコードする塩基配列
(c)配列番号4又は配列番号9で示される塩基配列
(d)配列番号5又は配列番号10で示される塩基配列
(a)配列番号2又は配列番号7で示されるアミノ酸配列において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質をコードする塩基配列を含む核酸
(b)配列番号1又は配列番号6からなる塩基配列に対し相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズする核酸
(c)配列番号1又は配列番号6からなる塩基配列と同一性が70%以上の塩基配列からなるタンパク質をコードする塩基配列を含む核酸
(d)配列番号2又は配列番号7からなるアミノ酸配列と同一性が70%以上のアミノ酸配列からなるタンパク質をコードする塩基配列を含む核酸
(e)配列番号2又は配列番号7で示されるアミノ酸配列からなるタンパク質をコードする塩基配列に対し相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズする核酸、
(f)配列番号5又は配列番号10からなる塩基配列に対し相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズする核酸
(g)配列番号5又は配列番号10からなる塩基配列と同一性が70%以上の塩基配列からなるタンパク質をコードする塩基配列を含む核酸
(a)配列番号2又は配列番号7で示されるアミノ酸配列において1~130個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質をコードする塩基配列を含む核酸
(b)配列番号1又は配列番号6からなる塩基配列に対し相補的な塩基配列からなる核酸と2×SSC、50℃の条件下でハイブリダイズする核酸
(c)配列番号1又は配列番号6からなる塩基配列と同一性が90%以上の塩基配列からなる塩基配列を含む核酸
(d)配列番号2又は配列番号7からなるアミノ酸配列と同一性が90%以上のアミノ酸配列からなるタンパク質をコードする塩基配列を含む核酸
(e)配列番号2又は配列番号7で示されるアミノ酸配列からなるタンパク質をコードする塩基配列に対し相補的な塩基配列からなる核酸と2×SSC、50℃の条件下でハイブリダイズする核酸
(f)配列番号5又は配列番号10からなる塩基配列に対し相補的な塩基配列からなる核酸と2×SSC、50℃の条件下でハイブリダイズする核酸
(g)配列番号5又は配列番号10からなる塩基配列と同一性が90%以上の塩基配列からなる塩基配列を含む核酸
本発明のタンパク質は、配列番号2又は配列番号7で示されるアミノ酸配列からなるタンパク質及び前記タンパク質と同等の機能を有するタンパク質を含み、天然由来のものであっても、人工的に作製したものであってもよい。配列番号2又は配列番号7で示されるアミノ酸配列からなるタンパク質については、上記のとおりである。「同等の機能を有するタンパク質」とは、上記『本発明のホスファチジン酸ホスファターゼをコードする核酸』の項で説明したとおり、「本発明の上記活性」を有するタンパク質を意味する。
(a)配列番号2又は配列番号7において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、本発明の上記活性を有するタンパク質
(b)配列番号2又は配列番号7からなるアミノ酸配列と同一性が70%以上のアミノ酸配列からなるタンパク質であり、かつ、本発明の上記活性を有するタンパク質
(1)(a)配列番号2又は配列番号7において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質
(b)配列番号2又は配列番号7からなるアミノ酸配列と同一性が80%以上のアミノ酸配列からなるタンパク質
(2) 以下の(a)又は(b)のいずれかに記載のタンパク質。
(a)配列番号2又は配列番号7において1~200個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるタンパク質
(b)配列番号2又は配列番号7からなるアミノ酸配列と同一性が90%以上のアミノ酸配列からなるタンパク質
本発明のPAPの核酸は、例えば、適切なプローブを用いてcDNAライブラリーからスクリーニングすることにより、クローニングすることができる。また、適切なプライマーを用いてPCR反応により増幅し、適切なベクターに連結することによりクローニングすることができる。さらに、別のベクターにサブクローニングすることもできる。
上流側用プライマーとして、NotI-PAH1-1-F:5’-GCGGCCGCATGCAGTCCGTGGGAAG-3’(配列番号15)、
下流側用プライマーとして、MaPAH1-1-10R:5’-TTCTTGAGTAGCTGCTGTTGTTCG-3’(配列番号16)、
等を、各々用いることができる。そして、M. alpina 菌体から調製したcDNAに、上記プライマー及びDNAポリメラーゼ等を作用させてPCR反応を行う。上記方法は、『Molecular Cloning, A Laboratory Manual 3rd ed.』(Cold Spring Harbor Press (2001))等に従い、当業者であれば容易に行うことができるが、本発明のPCR反応の条件としては、例えば以下の条件があげられる。
変性温度:90~95℃
アニーリング温度:40~60℃
伸長温度:60~75℃
サイクル数:10回以上
本発明はまた、本発明のPAPをコードする核酸を含有する組換えベクターを提供する。本発明は、さらに、上記組換えベクターによって形質転換された形質転換体も提供する。
本発明は、上記形質転換体から、脂肪酸組成物を製造する方法を提供する。すなわち、上記形質転換体を培養して得られる培養物から脂肪酸組成物を製造する方法である。脂肪酸組成物は、1又はそれ以上の脂肪酸の集合体を含む組成物である。ここで、脂肪酸は遊離脂肪酸であってもよく、トリグリセリドやリン脂質等の脂肪酸を含む脂質として存在していてもよい。本発明の脂肪酸組成物は、具体的には、以下の方法で製造することができる。しかし、本製造方法に関しては、当該方法に限られず、一般的な公知の他の方法を用いて行うこともできる。
本発明はまた、本発明のPAPが発現している細胞における1又はそれ以上の脂肪酸の集合体である脂肪酸組成物を提供する。好ましくは、本発明のPAPが発現している形質転換体を培養して得られる脂肪酸組成物である。脂肪酸は、遊離脂肪酸であってもよく、トリグリセリド、リン脂質等の脂肪酸を含む脂質の形で存在していてもよい。
また、本発明は、上記脂肪酸組成物を含む食品を提供する。本発明の脂肪酸組成物は、常法に従って、例えば、油脂を含む食品、工業原料(化粧料、医薬(例えば、皮膚外用薬)、石鹸等の原料)の製造等の用途に使用することができる。化粧料(組成物)又は医薬(組成物)の剤型としては、溶液状、ペースト状、ゲル状、固体状、粉末状等任意の剤型をあげることができるが、これらに限定されない。また、食品の形態としては、カプセル等の医薬製剤の形態、又はタンパク質、糖類、脂肪、微量元素、ビタミン類、乳化剤、香料等に本発明の脂肪酸組成物が配合された自然流動食、半消化態栄養食、及び成分栄養食、ドリンク剤、経腸栄養剤等の加工形態があげられる。
本発明はまた、本発明のPAPをコードする核酸又はPAPタンパク質を用いて、脂質生産菌の評価や選択を行う方法を提供する。具体的には以下のとおりである。
本発明の一態様として、本発明のPAPをコードする核酸又はPAPタンパク質を用いて、脂質生産菌の評価を行う方法があげられる。本発明の上記評価方法としては、まず、本発明の塩基配列に基づいて設計したプライマー又はプローブを用いて、被検菌株である脂質産生菌株の本発明の上記活性について評価する方法があげられる。このような評価方法の一般的手法は公知であり、例えば、国際特許出願パンフレットWO01/040514号、特開平8-205900号公報などに記載されている。以下、この評価方法について簡単に説明する。
変性温度:90~95℃
アニーリング温度:40~60℃
伸長温度:60~75℃、
サイクル数:10回以上
などの条件である。得られた反応生成物はアガロースゲルなどを用いた電気泳動法等により分離して、増幅産物の分子量を測定することができる。これにより、増幅産物の分子量が本発明の塩基配列と特異的な領域に相当する核酸分子を含む大きさか否かを確認することにより、被検菌株の本発明の上記活性を予測又は評価することができる。また、上記増幅産物の塩基配列を上記方法等で解析することによって、さらに本発明の上記活性をより正確に予測又は評価することができる。なお、本発明の上記活性の評価方法は、上記のとおりである。
本発明の他の態様として、本発明のPAPをコードする核酸又はPAPタンパク質を用いて、脂質生産菌の選択を行う方法があげられる。本発明の上記選択方法としては、被検菌株を培養し、配列番号1又は配列番号6等の本発明の塩基配列がコードするPAPの発現量を測定して、目的とする発現量の菌株を選択することにより、所望の活性を有する菌株を選択することができる。また、基準となる菌株を設定し、この基準菌株と被検菌株を各々培養し、各菌株の前記発現量を測定し、基準菌株と被検菌株の発現量を比較して、所望の菌株を選択することもできる。具体的には、例えば、基準菌株及び被検菌株を適当な条件で培養し、各菌株の発現量を測定し、基準菌株よりも被検菌株の方が高発現、又は低発現である被検菌株を選択することにより、所望の活性を有する菌株を選択することができる。所望の活性には、上記のように、PAPの発現量及びPAPが産生する脂肪酸組成物の組成を測定する方法があげられる。
M. alpina 1S-4株を100mlのGY2:1培地(2%グルコース、1%酵母エキス、pH6.0)に植菌し、28℃で2日間振とう培養した。濾過により菌体を集菌し、DNeasy(QIAGEN)を用いてゲノムDNAを調製した。
M. alpina 1S-4株を100mlの培地(1.8%グルコース、1%酵母エキス、pH6.0)に植菌し、4日間28℃で振とう培養した。菌体を濾過により回収し、塩酸グアニジン/CsCl法でトータルRNAを調製した。
Saccharomyces cerevisiae のPAP1活性を担う遺伝子の一つであるのPAH1 (YMR165C)(本明細書ではScPAH1と表記することもある)のアミノ酸配列をM.alpina 1S-4株のゲノム塩基配列に対し、tblastn解析した。その結果、配列番号5と配列番号10に示す配列を含むスーパーコンティグがヒットした。配列番号5に係る遺伝子をMaPAH1.1、配列番号10に係る遺伝子をMaPAH1.2と命名した。
(1)プローブの作製
MaPAH1.1遺伝子とMaPAH1.2遺伝子のcDNAをクローン化をするために、配列番号5及び配列番号10並びに、先のBLAST解析の結果より以下のプライマーを作製した。
MaPAH1-1-3F:5’-CGCCAATACATTGACGTTTTCAG-3’(配列番号11)
MaPAH1-1-5R:5’-AGTTCCAGTCATTGAACTCGGGTGC-3’(配列番号12)
MaPAH1-2-3F:5’-GAGCCCAGTTGACCTTTGAGGCATTC-3’(配列番号13)
MaPAH1-2-5R:5’-CACTGAGAACGAGACCGTGTTGGCG-3’(配列番号14)
バッファー:5xSSC、1%SDS、50mM Tris-HCl(pH7.5)、50%ホルムアミド;
温度:42℃(一晩);
洗浄条件:0.2x SSC、0.1%SDS溶液中(65℃)で、20分間×3回;
NotI-PAH1-1-F:5’-GCGGCCGCATGCAGTCCGTGGGAAG-3’(配列番号15)
MaPAH1-1-10R:5’-TTCTTGAGTAGCTGCTGTTGTTCG-3’(配列番号16)
MaPAH1.1遺伝子のcDNA配列(配列番号4)には、1番目-3987番目の塩基配列からなるCDS(配列番号3)、1番目-3984番目の塩基配列からなるORF(配列番号1)が含まれていた。MaPAH1.1遺伝子がコードする推定アミノ酸配列を配列番号2に示した。MaPAH1.1遺伝子のゲノム配列とORF配列を比較した(図1)。MaPAH1.1遺伝子のゲノム配列は、エキソン11個とイントロン10個からなっていると考えられた。
MaPAH1.1とMaPAH1.2の発現ベクターの構築:
MaPAH1.1を酵母で発現させるために、以下のとおり発現ベクターを構築した。
S. cerevisiae S288C株由来ScPAH1遺伝子をクローン化するために、以下のプライマーを作製した。
プライマーKpnI-PAH1-F:5’-GGTACCATGCAGTACGTAGGCAGAGCTC-3’(配列番号17)
プライマーXhoI-PAH1-R:5’-CTCGAGTTAATCTTCGAATTCATCTTCG-3’(配列番号18)
S.cerevisiae S288C株を、YPD(酵母エキス 2%、ポリペプトン 1%、グルコース 2%)液体培地、30℃で一晩培養し、その菌体から、Genとるくん(酵母用)(タカラバイオ)を使って、DNAを抽出した。得られたDNAを鋳型として、プライマーKpnI-PAH1-FとプライマーXhoI-PAH1-Rにより、ExTaqを用いたPCR反応によりScPAH1遺伝子を増幅した。得られた約2.5kbpのDNA断片をTOPO TA cloning Kitを用いてクローン化し、塩基配列の正しいクローンをpCR-ScPAH1とした。pCR-ScPAH1を、制限酵素EcoRIと制限酵素EcoRVで消化して得られた約0.4kbpのDNA断片と、制限酵素EcoRVと制限酵素XhoIで消化して得られた約2.1kbpのDNA断片を、制限酵素EcoRIと制限酵素XhoIで消化したベクターpBluescriptIISK+とライゲーションさせることにより、プラスミドpBScPAH1を得た。プラスミドpBScPAH1を制限酵素EcoRVと制限酵素HincIIで消化したものと、プラスミドpURA34(特開2001-120276)を制限酵素HindIIIで消化した後、末端を平滑化して得られた約1.2kbpのDNA断片をライゲーションさせ、ScPAH1遺伝子とURA3遺伝子の向きが同じものをプラスミドpBΔpah1:URA3とした。次に、プラスミドpBΔpah1:URA3を制限酵素EcoRIで消化て得られたDNA断片で、S.cerevisiae YPH499株(ura3-52 lys2-801amber ade2-101ochre trp1-Δ63 his3-Δ200 leu2-Δ1 a)(STARATAGENE)をホストとして形質転換し、SC-Ura(1Lあたり、Yeast nitrogen base w/o amino acids (DIFCO)6.7g、グルコース20g、アミノ酸パウダー(アデニン硫酸塩1.25g、アルギニン0.6g、アスパラギン酸3g、グルタミン酸3g、ヒスチジン0.6g、ロイシン1.8g、リジン0.9g、メチオニン0.6g、フェニルアラニン1.5g、セリン11.25g、チロシン0.9g、バリン4.5g、スレオニン6g、トリプトファン1.2gを混合したもの)1.3g、寒天培地(2%アガー))寒天培地上で生育するものを形質転換株として選抜した。PCRにてΔpah1:URA3コンストラクトが導入されScPAH1遺伝子が破壊されたことを確認し、ΔScpah1:URA3株とした。
ΔScpah1:URA3株をホストとして、プラスミドpYE22m、pYE-MaPAH1.1、pYE-MaPAH1.2でぞれぞれ形質転換し、SC-Ura、Trp(1Lあたり、Yeast nitrogen base w/o amino acids (DIFCO)6.7g、グルコース20g、アミノ酸パウダー(アデニン硫酸塩1.25g、アルギニン0.6g、アスパラギン酸3g、グルタミン酸3g、ヒスチジン0.6g、ロイシン1.8g、リジン0.9g、メチオニン0.6g、フェニルアラニン1.5g、セリン11.25g、チロシン0.9g、バリン4.5g、スレオニン6gを混合したもの)1.3g、寒天培地(2%アガー))寒天培地上で生育できる株を形質転換をとして選抜した。それぞれのプラスミドで形質転換された株のうち、任意の2株ずつ(プラスミドpYE22mで形質転換したコントロール株をC1,C2、プラスミドpYE-MaPAH1.1で形質転換した株をMaPAH1.1-1,MaPAH1.1-2、プラスミドpYE-MaPAH1.2で形質転換した株をMaPAH1.2-1,MaPAH1.2-2)を、以下の実験に使用した。
それぞれの酵母の形質転換株をSC-Ura、Trp液体培地100mlに植菌し、30℃にて1日間振とう培養した。得られた培養液より、以下のとおり粗酵素液を調製した。特に操作はすべて4℃又は氷中にて行った。まず培養液を遠心分離して菌体を回収し、水洗した。続いて、菌体にバッファーA(50mM Tris-HCl(pH7.5)、0.3Mスクロース、10mM メルカプトエタノール、0.5mM phenylmethylsulfonyl fluoride(PMSF))を5ml添加し、菌体を懸濁した。フレンチプレス(Thermo Fisher Scientific社)により、ミニセル、16kPaで3回処理することにより、菌体を破砕した。菌体破砕液を1,500xg、10分遠心分離して上清を回収し粗酵素液とした。粗酵素液中に含まれるタンパク質濃度は、Protein Assay CBB Solution(5x)(ナカライテスク)により測定した。
貯蔵脂質であるトリアシルグリセロール(本明細書においてトリグリセリド、TGとも表記する)は、PAPタンパク質の生成物であるジアシルグリセロールがさらにアシル化されたものである。本発明のMaPAH1.1やMaPAH1.2を高発現させた酵母の形質転換株のTG生成量を調べた。
ΔScpah1:URA3株をホストとして、プラスミドpYE22m、pYE-MaPAH1.1、及びpYE-MaPAH1.2で、それぞれ形質転換した。それぞれの形質転換株について任意の4株を、以下の実験に供した。なお、プラスミドpYE22mで形質転換した株をコントロールとして用いた。
配列番号12:プライマー
配列番号13:プライマー
配列番号14:プライマー
配列番号15:プライマー
配列番号16:プライマー
配列番号17:プライマー
配列番号18:プライマー
Claims (15)
- 以下の(a)~(g)のいずれかに記載の核酸。
(a)配列番号2又は配列番号7で示されるアミノ酸配列において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(b)配列番号1又は配列番号6からなる塩基配列に対し相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(c)配列番号1又は配列番号6からなる塩基配列と同一性が70%以上の塩基配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(d)配列番号2又は配列番号7からなるアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(e)配列番号2又は配列番号7で示されるアミノ酸配列からなるタンパク質をコードする塩基配列に対し相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(f)配列番号5又は配列番号10からなる塩基配列に対し相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードするエキソンを有する塩基配列を含む核酸
(g)配列番号5又は配列番号10からなる塩基配列と同一性が70%以上の塩基配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードするエキソンを有する塩基配列を含む核酸 - 以下の(a)~(g)のいずれかである、請求項1に記載の核酸。
(a)配列番号2又は配列番号7で示されるアミノ酸配列において1~130個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(b)配列番号1又は配列番号6からなる塩基配列に対し相補的な塩基配列からなる核酸と2×SSC、50℃の条件下でハイブリダイズし、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(c)配列番号1又は配列番号6からなる塩基配列と同一性が90%以上の塩基配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(d)配列番号2又は配列番号7からなるアミノ酸配列と同一性が90%以上のアミノ酸配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(e)配列番号2又は配列番号7で示されるアミノ酸配列からなるタンパク質をコードする塩基配列に対し相補的な塩基配列からなる核酸と2×SSC、50℃の条件下でハイブリダイズし、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードする塩基配列を含む核酸
(f)配列番号5又は配列番号10からなる塩基配列に対し相補的な塩基配列からなる核酸と2×SSC、50℃の条件下でハイブリダイズし、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードするエキソンを有する塩基配列を含む核酸
(g)配列番号5又は配列番号10からなる塩基配列と同一性が90%以上の塩基配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質をコードするエキソンを有する塩基配列を含む核酸 - 以下の(a)~(d)のいずれかに記載の核酸。
(a)配列番号1又は配列番号6で示される塩基配列若しくはその部分配列を含む核酸
(b)配列番号2又は配列番号7で示されるアミノ酸配列からなるタンパク質をコードする塩基配列若しくはその部分配列を含む核酸
(c)配列番号4又は配列番号9で示される塩基配列若しくはその部分配列を含む核酸
(d)配列番号5又は配列番号10で示される塩基配列若しくはその部分配列を含む核酸 - 以下の(a)~(g)のいずれかに記載の核酸。
(a)配列番号2又は配列番号7で示されるアミノ酸配列において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、酵母のPAH1欠損株におけるホスファチジン酸(PA)からのジアシルグリセロール(DG)及び/又はトリグリセリド(TG)生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(b)配列番号1又は配列番号6からなる塩基配列に対し相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(c)配列番号1又は配列番号6からなる塩基配列と同一性が70%以上の塩基配列からなり、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(d)配列番号2又は配列番号7からなるアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(e)配列番号2又は配列番号7で示されるアミノ酸配列からなるタンパク質をコードする塩基配列に対し相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(f)配列番号5又は配列番号10からなる塩基配列に対し相補的な塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードするエキソンを有する塩基配列を含む核酸
(g)配列番号5又は配列番号10からなる塩基配列と同一性が70%以上の塩基配列からなり、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードするエキソンを有する塩基配列を含む核酸 - 以下の(a)~(g)のいずれかである、請求項4に記載の核酸。
(a)配列番号2又は配列番号7で示されるアミノ酸配列において1~130個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、酵母のPAH1欠損株におけるホスファチジン酸(PA)からのジアシルグリセロール(DG)及び/又はトリグリセリド(TG)生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(b)配列番号1又は配列番号6からなる塩基配列に対し相補的な塩基配列からなる核酸と2×SSC、50℃の条件下でハイブリダイズし、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(c)配列番号1又は配列番号6からなる塩基配列と同一性が90%以上の塩基配列からなり、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(d)配列番号2又は配列番号7からなるアミノ酸配列と同一性が90%以上のアミノ酸配列からなり、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(e)配列番号2又は配列番号7で示されるアミノ酸配列からなるタンパク質をコードする塩基配列に対し相補的な塩基配列からなる核酸と2×SSC、50℃の条件下でハイブリダイズし、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードする塩基配列を含む核酸
(f)配列番号5又は配列番号10からなる塩基配列に対し相補的な塩基配列からなる核酸と2×SSC、50℃の条件下でハイブリダイズし、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードするエキソンを有する塩基配列を含む核酸
(g)配列番号5又は配列番号10からなる塩基配列と同一性が90%以上の塩基配列からなり、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質をコードするエキソンを有する塩基配列を含む核酸 - 以下の(a)又は(b)のいずれかに記載のタンパク質。
(a)配列番号2又は配列番号7において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質
(b)配列番号2又は配列番号7からなるアミノ酸配列と同一性が70%以上のアミノ酸配列からなるタンパク質であり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質 - 以下の(a)又は(b)のいずれかに記載のタンパク質。
(a)配列番号2又は配列番号7において1~130個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質
(b)配列番号2又は配列番号7からなるアミノ酸配列と同一性が90%以上のアミノ酸配列からなるタンパク質であり、かつ、ホスファチジン酸ホスファターゼ活性を有するタンパク質 - 以下の(a)又は(b)のいずれかに記載のタンパク質。
(a)配列番号2又は配列番号7において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、酵母のPAH1欠損株におけるホスファチジン酸(PA)からのジアシルグリセロール(DG)及び/又はトリグリセリド(TG)生成活性を向上させる活性を有するタンパク質
(b)配列番号2又は配列番号7からなるアミノ酸配列と同一性が70%以上のアミノ酸配列からなるタンパク質であり、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を有するタンパク質 - 以下の(a)又は(b)のいずれかに記載のタンパク質。
(a)配列番号2又は配列番号7において1~130個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなり、かつ、酵母のPAH1欠損株におけるホスファチジン酸(PA)からのジアシルグリセロール(DG)及び/又はトリグリセリド(TG)生成活性を向上させる活性を有するタンパク質
(b)配列番号2又は配列番号7からなるアミノ酸配列と同一性が90%以上のアミノ酸配列からなるタンパク質であり、かつ、酵母のPAH1欠損株におけるPAからのDG及び/又はTG生成活性を向上させる活性を向上させる活性を有するタンパク質 - 配列番号2又は配列番号7で示されるアミノ酸配列からなるタンパク質。
- 請求項1~5のいずれか1項に記載の核酸を含有する組換えベクター。
- 請求項11に記載の組換えベクターによって形質転換された形質転換体。
- 請求項12に記載の形質転換体を培養して得られる脂肪酸又は脂質を含む脂肪酸組成物。
- 請求項12に記載の形質転換体を培養して得られる培養物から脂肪酸又は脂質を採取することを特徴とする、脂肪酸組成物の製造方法。
- 請求項13に記載の脂肪酸組成物を含む食品。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011547690A JP5806617B2 (ja) | 2009-12-28 | 2010-12-27 | ホスファチジン酸ホスファターゼ遺伝子とその利用 |
RU2012132430/10A RU2528875C2 (ru) | 2009-12-28 | 2010-12-27 | Нуклеиноваяя кислота, обладающая активностью гена фосфатазы фосфатидной кислоты (варианты), белок, рекомбинантный вектор, трансформант и способ получения композиции жирной кислоты |
DK10840991.3T DK2520646T3 (en) | 2009-12-28 | 2010-12-27 | Phosphatidic acid phosphatase gene and its use |
AU2010339328A AU2010339328B2 (en) | 2009-12-28 | 2010-12-27 | Phosphatidic acid phosphatase gene and use thereof |
CA2785675A CA2785675C (en) | 2009-12-28 | 2010-12-27 | Phosphatidic acid phosphatase gene and use thereof |
CN201080060457.1A CN102918153B (zh) | 2009-12-28 | 2010-12-27 | 磷脂酸磷酸酶基因及其利用 |
US13/518,087 US9453212B2 (en) | 2009-12-28 | 2010-12-27 | Phosphatidic acid phosphatase gene and use thereof |
EP10840991.3A EP2520646B1 (en) | 2009-12-28 | 2010-12-27 | Phosphatidic acid phosphatase gene and use thereof |
KR1020127019677A KR101519704B1 (ko) | 2009-12-28 | 2010-12-27 | 포스파티딘산 포스파타아제 유전자와 그 이용 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-298551 | 2009-12-28 | ||
JP2009298551 | 2009-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011081135A1 true WO2011081135A1 (ja) | 2011-07-07 |
Family
ID=44226540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/073565 WO2011081135A1 (ja) | 2009-12-28 | 2010-12-27 | ホスファチジン酸ホスファターゼ遺伝子とその利用 |
Country Status (10)
Country | Link |
---|---|
US (1) | US9453212B2 (ja) |
EP (1) | EP2520646B1 (ja) |
JP (1) | JP5806617B2 (ja) |
KR (1) | KR101519704B1 (ja) |
CN (1) | CN102918153B (ja) |
AU (1) | AU2010339328B2 (ja) |
CA (1) | CA2785675C (ja) |
DK (1) | DK2520646T3 (ja) |
RU (1) | RU2528875C2 (ja) |
WO (1) | WO2011081135A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013018709A1 (ja) | 2011-07-29 | 2013-02-07 | サントリーホールディングス株式会社 | ホスファチジン酸ホスファターゼ遺伝子 |
CN103103211A (zh) * | 2013-01-16 | 2013-05-15 | 东华大学 | 一种tag代谢障碍型肥胖酵母模型的构建方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08205900A (ja) | 1995-02-01 | 1996-08-13 | Kirin Brewery Co Ltd | 酵母の凝集性判定用dna分子および凝集性判定方法 |
JP2001120276A (ja) | 1999-10-26 | 2001-05-08 | Suntory Ltd | 酵母の育種方法 |
WO2001040514A1 (fr) | 1999-11-30 | 2001-06-07 | Asahi Breweries, Ltd | Procede d'estimation des proprietes de floculation de la levure basse de brasserie |
WO2009008466A1 (ja) | 2007-07-11 | 2009-01-15 | Suntory Holdings Limited | ホスファチジン酸ホスファターゼホモログとその利用 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6476294B1 (en) * | 1998-07-24 | 2002-11-05 | Calgene Llc | Plant phosphatidic acid phosphatases |
RU2319709C2 (ru) * | 2001-07-17 | 2008-03-20 | Рисерч Дивелопмент Фаундейшн | Терапевтические агенты, содержащие проапоптозные белки |
UA108834C2 (ru) | 2008-05-23 | 2015-06-25 | Е. І. Дю Пон Де Немур Енд Компані | трансгенные семена сои, имеющие повышенное общее содержание жирных кислот |
-
2010
- 2010-12-27 CA CA2785675A patent/CA2785675C/en not_active Expired - Fee Related
- 2010-12-27 CN CN201080060457.1A patent/CN102918153B/zh not_active Expired - Fee Related
- 2010-12-27 DK DK10840991.3T patent/DK2520646T3/en active
- 2010-12-27 JP JP2011547690A patent/JP5806617B2/ja not_active Expired - Fee Related
- 2010-12-27 RU RU2012132430/10A patent/RU2528875C2/ru active
- 2010-12-27 US US13/518,087 patent/US9453212B2/en active Active
- 2010-12-27 WO PCT/JP2010/073565 patent/WO2011081135A1/ja active Application Filing
- 2010-12-27 AU AU2010339328A patent/AU2010339328B2/en not_active Ceased
- 2010-12-27 KR KR1020127019677A patent/KR101519704B1/ko active IP Right Grant
- 2010-12-27 EP EP10840991.3A patent/EP2520646B1/en not_active Not-in-force
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08205900A (ja) | 1995-02-01 | 1996-08-13 | Kirin Brewery Co Ltd | 酵母の凝集性判定用dna分子および凝集性判定方法 |
JP2001120276A (ja) | 1999-10-26 | 2001-05-08 | Suntory Ltd | 酵母の育種方法 |
WO2001040514A1 (fr) | 1999-11-30 | 2001-06-07 | Asahi Breweries, Ltd | Procede d'estimation des proprietes de floculation de la levure basse de brasserie |
WO2009008466A1 (ja) | 2007-07-11 | 2009-01-15 | Suntory Holdings Limited | ホスファチジン酸ホスファターゼホモログとその利用 |
Non-Patent Citations (31)
Title |
---|
"Biochemistry Experiments vol. 39, Experimental Protocols for Yeast Molecular Genetics", vol. 39, JAPAN SCIENTIFIC SOCIETIES PRESS, pages: 67 - 75 |
"Current Protocols in Molecular Biology", 1987, JOHN WILEY & SONS |
"Current Protocols in Molecular Biology", 1994, JOHN WILEY & SONS |
"DNA Cloning 1: Core Techniques, A Practical Approach", 1995 |
"Immunology--A Synthesis", 1991, SINAUER ASSOCIATES |
"Methods in Yeast Genetics", 1990, COLD SPRING HARBOR LABORATORY PRESS, pages: 130 |
"Molecular Cloning, A Laboratory Manual", 2001, COLD SPRING HARBOR PRESS |
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 10 |
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410 |
ALTSCHUL ET AL., NUCL. ACIDS. RES., vol. 25, 1997, pages 3389 - 3402 |
BIOCHEM. BIOPHYS. ACTA, vol. 1348, 1997, pages 45 - 55 |
BIOSCI. BIOTECH. BIOCHEM., vol. 59, 1995, pages 1221 - 1228 |
CARMAN GM ET AL.: "Roles of phosphatidate phosphatase enzymes in lipid metabolism.", TRENDS BIOCHEM SCI., vol. 31, no. 12, 2006, pages 694 - 699, XP025132570, DOI: doi:10.1016/j.tibs.2006.10.003 * |
CARMAN GM. ET AL.: "Phosphatidate phosphatases and diacylglycerol pyrophosphate phosphatases in Saccharomyces cerevisiae and Escherichia coli.", BIOCHIM BIOPHYS ACTA., vol. 1348, no. 1-2, 1997, pages 45 - 55, XP008161132 * |
COMPUTERS AND CHEMISTRY, 1993 |
EMBO J., vol. 24, 2005, pages 1931 - 1941 |
GIL-SOO ET AL., J. BIOL. CHEM., vol. 282, no. 51, 2007, pages 37026 - 37035 |
HAN GS ET AL.: "The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme.", J BIOL CHEM., vol. 281, no. 14, 2006, pages 9210 - 9218, XP008161130 * |
J. BID. CHEM., vol. 273, 1998, pages 14331 - 14338 |
J. BIOL. CHEM., vol. 281, no. 14, 2006, pages 9210 - 9218 |
J. BIOL. CHEM., vol. 281, no. 45, 2006, pages 34537 - 34548 |
J. BIOL. CHEM., vol. 282, no. 51, 2007, pages 37026 - 37035 |
J. BIOL. CHEM., vol. 284, no. 5, 2009, pages 2593 - 2597 |
KUNKEL, METHOD ENZYMOL., vol. 85, 1988, pages 2763 - 6 |
KUNKEL, PROC. NATL. ACAD. SCI. USA, vol. 82, 1985, pages 488 - 92 |
KYTE ET AL., J. MOL.BIOL., vol. 157, 1982, pages 105 - 131 |
MORIHISA FUJITA ET AL.: "Shishitsu Chikusekisei Biseibutsu ni Okeru Kayosei Phosphatidate-san Phosphatase no Kaiseki to Seisei", DAI 75 KAI ANNUAL MEETING OF THE JAPANESE BIOCHEMICAL SOCIETY HAPPYO SHOROKUSHU, 2002, pages 970(4P-013), XP008161133 * |
MYCOTAXON, vol. XLIV, no. 2, 1992, pages 257 - 265 |
TRENDS BIOCHEM. SCI., vol. 31, no. 12, 2006, pages 694 - 699 |
WOOTTON; FEDERHEN, COMPUTERS AND CHEMISTRY, 1993 |
WOOTTON; FEDERHEN: "Analysis of compositionally biased regions in sequence databases", METHODS ENZYMOL., vol. 266, 1996, pages 554 - 71 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013018709A1 (ja) | 2011-07-29 | 2013-02-07 | サントリーホールディングス株式会社 | ホスファチジン酸ホスファターゼ遺伝子 |
AU2012291107B2 (en) * | 2011-07-29 | 2014-07-10 | Suntory Holdings Limited | Phosphatidic acid phosphatase gene |
JP5576986B2 (ja) * | 2011-07-29 | 2014-08-20 | サントリーホールディングス株式会社 | ホスファチジン酸ホスファターゼ遺伝子 |
KR101496771B1 (ko) * | 2011-07-29 | 2015-03-02 | 산토리 홀딩스 가부시키가이샤 | 포스파티드산 포스파타아제 유전자 |
US9447393B2 (en) | 2011-07-29 | 2016-09-20 | Suntory Holdings Limited | Phosphatidic acid phosphatase gene |
RU2625025C2 (ru) * | 2011-07-29 | 2017-07-11 | Сантори Холдингз Лимитед | Ген фосфатазы фосфатидной кислоты |
CN103103211A (zh) * | 2013-01-16 | 2013-05-15 | 东华大学 | 一种tag代谢障碍型肥胖酵母模型的构建方法 |
CN103103211B (zh) * | 2013-01-16 | 2015-10-28 | 东华大学 | 一种tag代谢障碍型肥胖酵母模型的构建方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101519704B1 (ko) | 2015-05-21 |
US9453212B2 (en) | 2016-09-27 |
CN102918153B (zh) | 2015-01-21 |
EP2520646A1 (en) | 2012-11-07 |
AU2010339328B2 (en) | 2014-07-10 |
CN102918153A (zh) | 2013-02-06 |
CA2785675C (en) | 2018-04-03 |
RU2012132430A (ru) | 2014-02-10 |
EP2520646B1 (en) | 2017-10-18 |
RU2528875C2 (ru) | 2014-09-20 |
EP2520646A4 (en) | 2013-05-29 |
DK2520646T3 (en) | 2017-12-04 |
JPWO2011081135A1 (ja) | 2013-05-13 |
KR20120096598A (ko) | 2012-08-30 |
CA2785675A1 (en) | 2011-07-07 |
JP5806617B2 (ja) | 2015-11-10 |
US20120309950A1 (en) | 2012-12-06 |
AU2010339328A1 (en) | 2012-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5371749B2 (ja) | 新規なリゾホスファチジン酸アシル基転移酵素遺伝子 | |
JP5346290B2 (ja) | 新規な脂肪酸組成を有する脂肪酸組成物 | |
JP5539961B2 (ja) | 新規なリゾリン脂質アシル基転移酵素 | |
JP5451387B2 (ja) | グリセロール−3−リン酸アシル基転移酵素(gpat)ホモログとその利用 | |
JP5806617B2 (ja) | ホスファチジン酸ホスファターゼ遺伝子とその利用 | |
JP5451398B2 (ja) | 新規なatp:クエン酸リアーゼ遺伝子 | |
JP5576986B2 (ja) | ホスファチジン酸ホスファターゼ遺伝子 | |
JP5180960B2 (ja) | ホスファチジン酸ホスファターゼホモログとその利用 | |
JP5890687B2 (ja) | グリセロール−3−リン酸アシル基転移酵素ホモログとその利用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080060457.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10840991 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13518087 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2785675 Country of ref document: CA |
|
REEP | Request for entry into the european phase |
Ref document number: 2010840991 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011547690 Country of ref document: JP Ref document number: 2010840991 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010339328 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6266/CHENP/2012 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20127019677 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012132430 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: 2010339328 Country of ref document: AU Date of ref document: 20101227 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012015765 Country of ref document: BR |