WO2011079808A1 - 倾斜感测器 - Google Patents

倾斜感测器 Download PDF

Info

Publication number
WO2011079808A1
WO2011079808A1 PCT/CN2010/080522 CN2010080522W WO2011079808A1 WO 2011079808 A1 WO2011079808 A1 WO 2011079808A1 CN 2010080522 W CN2010080522 W CN 2010080522W WO 2011079808 A1 WO2011079808 A1 WO 2011079808A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive element
opening
accommodating area
area
emitting diode
Prior art date
Application number
PCT/CN2010/080522
Other languages
English (en)
French (fr)
Inventor
赖律名
Original Assignee
亿广科技(上海)有限公司
亿光电子工业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亿广科技(上海)有限公司, 亿光电子工业股份有限公司 filed Critical 亿广科技(上海)有限公司
Priority to JP2012546345A priority Critical patent/JP2013516597A/ja
Priority to US13/519,893 priority patent/US20120281241A1/en
Publication of WO2011079808A1 publication Critical patent/WO2011079808A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/02Details
    • G01C9/06Electric or photoelectric indication or reading means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • G01C9/10Measuring inclination, e.g. by clinometers, by levels by using rolling bodies, e.g. spheres, cylinders, mercury droplets

Definitions

  • the present invention relates to a sensor, and in particular to a tilt sensor. Background technique
  • the tilt sensor on the market is mostly two-phase sensing, that is, it can only sense two tilt directions, and its volume is usually large.
  • the traditional tilt sensor is more difficult to apply.
  • the present invention provides a tilt sensor that can sense a plurality of tilt directions and has the advantages of thin size, low cost, and easy process.
  • the present invention provides a tilt sensor comprising a body, a light emitting diode, a first photosensitive element, a second photosensitive element, and a moving member.
  • the body is adapted to be tilted in a plurality of oblique directions.
  • the light emitting diode is disposed on the body and is adapted to provide a light beam.
  • the first photosensitive element is disposed on the body and located at a position opposite to the light emitting diode to directly transmit the light beam to the first photosensitive element.
  • the second photosensitive element is disposed on the body and located at one side of the light emitting diode.
  • the moving member is disposed on the body, wherein when the body is inclined to different oblique directions, the moving member moves to different oblique directions, and the light beam from the light emitting diode is directly transmitted to the first photosensitive element, or the light beam transmitted from the light emitting diode is blocked.
  • To the first photosensitive element At least one of the second photosensitive element or the light beam from the light emitting diode is transmitted to the second photosensitive element.
  • the first photosensitive element is opposite the second photosensitive element.
  • the body includes a moving area, a first accommodating area, a second accommodating area, and a third accommodating area.
  • the moving parts are located in the moving area.
  • the first accommodating area has a first opening, wherein the light emitting diode is located in the first accommodating area, and the first accommodating area communicates with the moving area through the first opening.
  • the second accommodating area has a second opening, wherein the first photosensitive element is located in the second accommodating area, and the second accommodating area is in communication with the moving area through the second opening.
  • the third accommodating area has a third opening, wherein the second photosensitive element is located in the third accommodating area, and the third accommodating area communicates with the moving area through the third opening.
  • the light beam of the light emitting diode is directly transmitted to the first photosensitive element through the first opening or is reflected by the moving member to be transmitted to the second photosensitive element.
  • the tilt sensor further includes a third photosensitive element disposed on the body and located on the other side of the light emitting diode.
  • the second photosensitive element is located at an opposite position of the third photosensitive element.
  • the body includes a moving area, a first accommodating area, a second accommodating area, a third accommodating area, and a fourth accommodating area.
  • the moving part is located in the moving area.
  • the first accommodating area has a first opening, wherein the light emitting diode is located in the first accommodating area, and the first accommodating area communicates with the moving area through the first opening.
  • the second accommodating area has a second opening, wherein the first photosensitive element is located in the second accommodating area, and the second accommodating area is in communication with the moving area through the second opening.
  • the third accommodating area has a third opening, wherein the second photosensitive element is located in the third accommodating area, and the third accommodating area communicates with the moving area through the third opening.
  • the fourth accommodating area has a fourth opening, wherein the third photosensitive element is located in the fourth accommodating area, and the fourth accommodating area communicates with the moving area through the fourth opening.
  • the light beam of the light emitting diode is directly transmitted to the first photosensitive element through the first opening, or the light beam is reflected by the moving member and transmitted to at least one of the second photosensitive element and the third photosensitive element.
  • the body has a substrate and a housing.
  • the housing is disposed on the substrate, and the housing has a recessed structure, and the moving area, the first accommodating area, the second accommodating area, the third accommodating area and the fourth accommodating area are defined with the substrate.
  • the moving piece has a larger size than the first opening, The width of the second opening, the third opening and the fourth opening.
  • the light emitting diode is a side-emitting type light emitting diode, and the light beam is infrared light.
  • the first photosensitive element and the second photosensitive element are photodiodes or photovoltaic crystals.
  • the light emitting diode, the first photosensitive element and the second photosensitive element are crystallized on the same plane.
  • the moving member is a ball
  • the size of the ball is substantially less than or equal to
  • 0.5mm is greater than 0.1mm
  • the tilt sensor can receive the state of the light beam through the photosensitive element, and can reverse the tilt direction of the tilt sensor. Further, since the moving member is thicker than 0.5 mm and larger than 0.1 mm, and the light emitting diode and the photosensitive member are solid crystal on the same plane, the tilt sensor has the advantage of being thinner in size.
  • FIG. 1 is a schematic view of a tilt sensor for sensing different tilt directions according to a first embodiment of the present invention
  • Figure 2 is a schematic illustration of the main components of the tilt sensor for sensing different tilt directions according to a second embodiment of the present invention:
  • Fig. 1 is a schematic view of a tilt sensor for sensing different tilt directions according to a first embodiment of the present invention.
  • the tilt sensor 100 of the present embodiment includes a body 110, a light emitting diode 120, a first photosensitive element 130, a second photosensitive element 140, and a moving member 150.
  • Light emitting diode 120 is disposed on body 110 and is adapted to provide a beam 122.
  • the first photosensitive element 130 is disposed on the body 110 and located at an opposite position of the light emitting diode 120 to directly transmit the light beam 122 to the first photosensitive element 130.
  • the second photosensitive element 140 is disposed on the body 110 and located at one side of the LED 120.
  • the body 110 is adapted to be tilted in a plurality of oblique directions P1, P2, P3, P4.
  • the body 110 includes a moving area 112, a first accommodating area 114, a second accommodating area 116, and a third accommodating area 118.
  • the moving member 150 is located in the moving area 112.
  • the first accommodating area 114 has a first opening 114a, wherein the light emitting diode 120 is located in the first accommodating area 114, and the first accommodating area 114 communicates with the moving area 112 through the first opening 114a.
  • the second accommodating area 116 has a second opening 116a, wherein the first photosensitive element 130 is located in the second accommodating area 116, and the second accommodating area 116 communicates with the moving area 112 through the second opening 116a.
  • the third accommodating area 118 has a third opening 118a, wherein the second photosensitive element 140 is located in the third accommodating area 118, and the third accommodating area 118 communicates with the moving area 112 through the third opening 118a.
  • the second opening 116a of the second accommodating area 116 is opposite to the third opening 118a of the third accommodating area 118, as shown in FIG.
  • the width of the first opening 114a is greater than or equal to the size of the first accommodating area 114
  • the width of the second opening 116a is greater than or equal to the size of the second accommodating area 116
  • the width of the third opening 118a is greater than or equal to the first The size of the three-receiving area 118.
  • the housing is disposed on the substrate, and the housing has a recessed structure (not shown) to define the moving area 112, the first accommodating area 114, the second accommodating area 116 and the Three accommodation area 118.
  • the housing may be fabricated using injection molding or stamping techniques, and the substrate may be a printed circuit board, wherein when the housing is completed, the sealing or related bonding technique is used to fit the shell.
  • the body and the substrate that is, the fabrication of the body 110 described above.
  • the first photosensitive element 130 since the first photosensitive element 130 is located at the opposite position of the light emitting diode 120, the light beam 122 of the light emitting diode 120 located in the first accommodating area 114 can be directly transmitted through the first opening 114a to the second receiving position.
  • the light beam 122 of the light emitting diode 120 located in the first accommodating area 114 can also be reflected by the moving member 150 and transmitted to the second photosensitive element 140, which will be described in detail later.
  • the moving member 150 is disposed on the body 110, wherein when the body 110 is inclined to different oblique directions, the moving member 150 moves to different oblique directions, and the light beam 122 from the light emitting diode 120 is directly transmitted to the first photosensitive element 130, or The light beam 122 from the light emitting diode 120 is transmitted to at least one of the first photosensitive element 130 and the second photosensitive element 140, or is reflected by the light beam 122 from the light emitting diode 120 to be transmitted to the second photosensitive element 140.
  • FIG. 1 shows a schematic diagram of the moving member 150 moving to different positions in the different tilt directions pi, P2, P3, P4 when the tilt sensor 100 is placed in a horizontal plane.
  • the moving member 150 located in the moving area 112 is affected by gravity and moves toward the direction of the light emitting diode 120, and is formed as shown in FIG. Schematic diagram of state 1.
  • the moving member 150 shields the first opening 114a, and the light beam 122 excited by the LED 120 is blocked by the moving member 150, and thus cannot be transmitted to the first A photosensitive element 130 and a second photosensitive element 140.
  • the moving member 150 located in the moving area 112 is moved toward the first photosensitive element 130 due to the influence of gravity, and is formed as shown in FIG. Schematic diagram of state 2.
  • the moving member 150 shields the second opening 116a, so that the light beam 122 of the light emitting diode 120 cannot be transmitted to the first photosensitive element 130, and only the light beam 122 can be reflected and transmitted to the second photosensitive element 140, and then when the body 110 is in the When the tilt direction P2 is tilted downward, only the second photosensitive element 140 can receive the light beam 122, and the first photosensitive element 130 cannot receive the light beam 122.
  • the moving member 150 located in the moving area 112 is moved away from the oblique direction P3 of the light emitting diode 120 to form a schematic view of the state 3 as shown in FIG.
  • the moving member 150 is moved away from the light emitting diode 120, and the moving member 150 does not cover the first opening 114a, the second opening 116a, and the third opening 118a.
  • the partial light beam 122 of the light emitting diode 120 can be directly transmitted to the first photosensitive element 130, and the partial light beam 122 can be reflected by the moving member 150 and transmitted to the second photosensitive element 140, so that the body 110 is inclined downward in the oblique direction P3.
  • Both the first photosensitive element 130 and the second photosensitive element 140 can receive the light beam 122.
  • the moving member 150 located in the moving area 112 is pressed against the oblique direction P4 of the second photosensitive element 140 due to the influence of gravity, and is formed as shown in the figure.
  • a schematic diagram of state 4 shown in FIG. In detail, in the state 4, the moving member 150 bears against the oblique direction P4 of the second photosensitive member 140. At this time, the moving member 150 shields the third opening 118a, so that only the first photosensitive member 130 can receive directly.
  • the light beam 112 from the light emitting diode 120, the second photosensitive element 140 is unable to receive the light beam 122.
  • the tilt sensor 100 of the present embodiment can receive the light beam 122 through the first photosensitive element 130 and the second photosensitive element 140, thereby tilting the tilt direction of the body 110.
  • the size of the moving member 150 is larger than the widths of the first opening 114a, the second opening 116a and the third opening 118a.
  • the moving member 150 may be a ball, wherein the size of the ball
  • the material is substantially less than or equal to 0.5 mm and greater than 0.1 mm, and the material of the ball is mainly the light beam 122 of the reflective LED 120.
  • the material of the ball can be slightly adjusted according to the needs of the user. The invention is not limited to this.
  • the light emitting diode 120, the first photosensitive element 130 and the second photosensitive element 140 are The solid crystals are on the same plane, that is, the LED 120, the first photosensitive element 130 and the second photosensitive element 140 are formed on the same plane, and the LED 120 is designed to be effectively reduced by the design of the side-emitting LED.
  • This tilt sensor 100 has a thickness of up to 0.8 mm, or even less.
  • the tilt sensor 100 described above is placed on a horizontal surface and tilted in different directions as an example.
  • the tilt sensor 100 of the present invention may also be applied to the sense vertical type.
  • the direction of rotation such as the common upper and lower identification functions of digital cameras.
  • the tilt sensor 100 in the state 3, can be regarded as being placed on a vertical surface, and the moving member 150 moves in a direction away from the light emitting diode 120 due to gravity.
  • the first Both the photosensitive element 130 and the second photosensitive element 140 can receive the light beam 122, and the direction can be determined to be an upright direction.
  • the tilt sensor 100 is rotated clockwise by 90, 180, and 270 degrees in a direction parallel to the vertical plane, the moving member 150 is sequentially moved to form the state 4, the state 1 and the state 2, respectively. .
  • the first photosensitive member 130 and the second photosensitive member 140 have different photosensitive combinations, as explained above.
  • the tilt sensor 100 can infer the state in which the tilt sensor 100 is in accordance with the case where the first photosensitive element 130 and the second photosensitive element 140 receive the light beam 122.
  • the tilt sensor 100 of the present embodiment can directly illuminate the light beam 122 of the light emitting diode 120 to the first photosensitive element 130 by directly designing the structure of the body 110, but cannot directly illuminate the second photosensitive element 140, and A moving member 150 is disposed in the body 110.
  • the moving member 150 is tilted with the tilt sensor 100 in different tilt directions, the moving member 150 located in the body 110 is moved in different directions by the influence of gravity. At this time, the shielding effect of the moving member 150 can be utilized.
  • the moving member 150 can reflect the characteristics of the light beam 122 to the second photosensitive element 140, so that the body 110 can produce the first photosensitive element 130 and the second photosensitive element 140 of different light receiving combinations in different oblique directions.
  • the tilt sensor 100 of the present embodiment can receive the state of the light beam 122 through the first photosensitive element 130 and the second photosensitive element 140, thereby reversing the tilt direction of the body 110.
  • the moving member 150 is a ball size substantially less than or equal to 0.5 mm and greater than 0.1 mm, the light emitting diode 120, the first photosensitive element 130 and the second photosensitive element 140 are solid crystal on the same plane, thereby being effective
  • the thickness of the tilt sensor 100 is reduced to 0.8 mm, or even smaller, and has the characteristics of being light, thin, and short.
  • Fig. 2 is a schematic view of a tilt sensor for sensing different tilt directions according to a second embodiment of the present invention.
  • the tilt sensor 200 of the present embodiment includes a body 210, a light emitting diode 220, a first photosensitive element 230, a second photosensitive element 240, a third photosensitive element 260, and a moving member 250.
  • the LED 220 is disposed on the body 210 and is adapted to provide a light beam 222.
  • the first photosensitive element 230 is disposed on the body 210 and located at an opposite position of the light emitting diode 220 to directly transmit the light beam 222 to the first photosensitive element 230.
  • the second photosensitive element 240 is disposed on the body 210 and located at one side of the LED 220.
  • the third photosensitive element 260 is disposed on the body 210 and located on the other side of the light emitting diode 220, and the second photosensitive element 240 is located at the opposite position of the third photosensitive element 260, as shown in FIG.
  • the light emitting diode 220 can be a side-emitting type light emitting diode
  • the light beam 222 can be an infrared light.
  • the first photosensitive element 230, the second photosensitive element 240 and the third photosensitive element 260 may use a photodiode or a photoelectric crystal.
  • the body 210 is adapted to be tilted in a plurality of oblique directions P1, P2, P3, P4.
  • the body 210 includes a moving area 211, a first accommodating area 213, a second accommodating area 215, a third accommodating area 217, and a fourth accommodating area 219.
  • the moving member 250 is located in the moving area 211.
  • the first accommodating area 213 has a first opening 213a, wherein the light emitting diode 220 is located at the first receiving area.
  • the first accommodating area 213 is in communication with the moving area 211 through the first opening 213a.
  • the second accommodating area 215 has a second opening 215a, wherein the first photosensitive element 230 is located in the second accommodating area 215, and the second accommodating area 215 is in communication with the moving area 211 through the second opening 215a.
  • the third accommodating area 217 has a third opening 217a, wherein the second photosensitive element 240 is located in the third accommodating area 217, and the third accommodating area 217 is in communication with the moving area 211 through the third opening 217a.
  • the fourth accommodating area 219 has a fourth opening 219a, wherein the third photosensitive element 260 is located in the fourth accommodating area 219, and the fourth accommodating area 219 is in communication with the moving area 211 through the fourth opening 219a.
  • the first opening 213a of the first accommodating area 213 is opposite to the second opening 215a of the second accommodating area 215, and the third opening 217a of the third accommodating area 217 is the fourth accommodating area.
  • the fourth opening 219a of 219 is opposite, as shown in FIG.
  • the width of the first opening 213a is greater than or equal to the size of the first accommodating area 213
  • the width of the second opening 215a is greater than or equal to the size of the second accommodating area 215
  • the width of the third opening 217a is greater than or equal to the third.
  • the size of the accommodating area 217, and the width of the fourth opening 219a is greater than or equal to the size of the fourth accommodating area 219.
  • the body 210 may include a substrate (not shown) and a casing (not shown).
  • the casing is disposed on the substrate, and the casing has a recessed structure (not shown).
  • the mobile area 211, the first accommodating area 213, the second accommodating area 215, the third accommodating area 217 and the fourth accommodating area 219 are defined.
  • the housing may be fabricated using injection molding or stamping techniques, and the substrate may be a printed circuit board, wherein when the housing is completed, the sealing or related bonding technique is used to fit the shell.
  • the body and the substrate that is, the fabrication of the body 210 described above.
  • the first photosensitive element 230 since the first photosensitive element 230 is located opposite to the light emitting diode 220, the light beam 222 of the light emitting diode 220 located in the first accommodating area 213 can be directly transmitted through the first opening 213a to the second accommodating area.
  • the first photosensitive element 230 in 215.
  • the light beam 222 of the LED 220 located in the first accommodating area 213 can also be reflected by the moving member 250 and transmitted to at least one of the second photosensitive element 240 and the third photosensitive element 260, which will be described in detail later.
  • the moving member 250 is disposed on the body 210, wherein when the body 210 is inclined to different oblique directions, the moving member 250 moves to different oblique directions, and the light beam 222 from the light emitting diode 220 is caused.
  • Fig. 2 shows a schematic view of the moving member 250 moving to different positions in the different tilt directions pi, P2, P3, P4 when the tilt sensor 200 is placed in a horizontal plane.
  • the moving member 250 located in the moving area 211 is affected by gravity and moves toward the oblique direction P1 of the LED 220, and is formed as shown in FIG. 2.
  • the moving member 250 shields the first opening 213a, and the light beam 222 excited by the LED 220 is blocked by the moving member 250, and thus cannot be transmitted to the first photosensitive element 230, the second photosensitive element 240, and the third photosensitive Element 260.
  • the moving member 250 shields the third opening 217a, so that the light beam 222 of the light emitting diode 220 cannot be delivered to the second photosensitive element 240.
  • the moving member 250 reflects the partial beam 222 and transmits the beam 222 to the third photosensitive member 260 located opposite the second photosensitive member 240, and the partial beam 222 is directly transmitted to the first photosensitive member 230. That is, when the body 210 is inclined downward in the oblique direction P2, only the first photosensitive member 230 and the third photosensitive member 260 can sense the light beam 222, and the second photosensitive member 240 cannot sense the light beam 222.
  • the moving member 250 located in the moving area 211 is moved away from the oblique direction P3 of the light emitting diode 220 to form a schematic view of the state 3 as shown in FIG.
  • the moving member 250 moves away from the oblique direction P3 of the light emitting diode 220, and the moving member 250 shields the second opening 215a.
  • the light beam 222 of the light emitting diode 220 cannot be transmitted to the first The photosensitive element 230, and the light beam 222 is reflected by the moving member 250 and transmitted to the second photosensitive element 240 and the third photosensitive element 260, respectively. That is, when the body 210 is inclined downward in the oblique direction P3, only the second photosensitive element 240 and the third photosensitive element 260 may be The beam 222 is sensed and the first photosensitive element 230 is unable to sense the beam 222.
  • the moving member 250 located in the moving area 211 is moved to the oblique direction P4 of the third photosensitive element 260 due to the influence of gravity, and is formed as shown in the figure.
  • 2 is a schematic diagram of state 4 shown.
  • the moving member 250 moves toward the oblique direction P4 of the third photosensitive element 260, and the moving member 250 shields the fourth opening 219a.
  • the light beam 222 of the light emitting diode 220 cannot be transmitted to the first Three photosensitive elements 260.
  • the moving member 250 reflects the partial light beam 222 and transmits the light beam 222 to the second photosensitive element 240 located opposite the third photosensitive member 260, and the partial light beam 222 is directly transmitted to the first photosensitive element 230. That is, when the body 210 is inclined downward in the oblique direction P4, only the first photosensitive element 230 and the second photosensitive element 240 can sense the light beam 222, and the third photosensitive element 260 cannot sense the light beam 222.
  • the tilt sensor 200 of the present embodiment can sense the state of the light beam 222 through the first photosensitive element 230, the second photosensitive element 240, and the third photosensitive element 260, so as to reverse the tilt of the body 210. Tilt in direction.
  • the size of the moving member 250 is larger than the widths of the first opening 213a, the second opening 215a, the third opening 217a, and the fourth opening 219a.
  • the moving member 250 may be a ball, wherein the size of the ball is substantially less than or equal to 0.5 mm and greater than 0.1 mm, and the material of the ball is mainly the light beam 222 of the reflective LED 220. In other embodiments, the ball is used. The material can be adjusted slightly depending on the needs of the user, and the present invention is not limited thereto.
  • the light emitting diode 220, the first photosensitive element 230, and the second photosensitive element 240 are The third photosensitive element 260 is solid crystal on the same plane, that is, the light emitting diode 220, the first photosensitive element 230, the second photosensitive element 240 and the third photosensitive element 260 are formed on the same plane, and the light emitting diode 220 is used.
  • the design of the side-emitting type light-emitting diodes can effectively reduce the thickness of the tilt sensor 200 to 0.8 mm or even smaller.
  • the tilt sensor 200 described above is placed on a horizontal surface and tilted in different directions as an example.
  • the tilt sensor 200 of the present invention may also be applied. Sensing the upright direction of rotation, such as the up and down recognition of common digital cameras.
  • the tilt sensor 200 in the state 3, can be regarded as being placed on a vertical surface, and the moving member 250 moves in a direction away from the light emitting diode 220 due to gravity.
  • the second Both the photosensitive element 240 and the third photosensitive element 260 can receive the reflected light beam 222 by the moving member 250.
  • the direction can be determined to be an upright direction.
  • the tilt sensor 200 is rotated clockwise by 90, 180, or 270 degrees in a direction parallel to the vertical plane, the moving member 250 will sequentially move to form the state 4, the state 1 and the state 2, respectively. .
  • the first photosensitive element 230, the second photosensitive element 240, and the third photosensitive element 260 have different photosensitive combinations, as explained above.
  • the tilt detector 200 can receive the light beam 222 according to the first photosensitive element 230, the second photosensitive element 240, and the third photosensitive element 260, and can predict which rotation state the tilt sensor 200 is in.
  • the tilt sensor 200 of the present embodiment can appropriately illuminate the light beam 222 of the light emitting diode 220 to the first photosensitive element 230 by properly designing the structure of the body 210, but cannot directly illuminate the second photosensitive element 240 and the first
  • the three photosensitive elements 260 are provided with a moving member 250 in the body 210.
  • the moving member 250 is tilted with the tilt sensor 200 in different tilt directions, the moving member 150 located in the body 210 is moved in different directions by the influence of gravity.
  • the shielding effect of the moving member 250 and the moving member 250 can reflect the characteristics of the light beam 222 to the second photosensitive element 240 and the third photosensitive element 260, so that the body 210 can generate different light receiving combinations in different oblique directions.
  • the tilt sensor 200 of the present embodiment can receive the state of the light beam 222 through the first photosensitive element 230, the second photosensitive element 240, and the third photosensitive element 260, thereby reversing the tilt direction of the body 210.
  • the moving member 250 is a ball size substantially equal to or smaller than 0.5 mm and larger than 0.1 mm, the light emitting diode 220, the first photosensitive element 230, the second photosensitive element 240 and the third photosensitive element 260 are crystallized on the same plane.
  • the thickness of the tilt sensor 200 can be effectively reduced to 0.8 mm, or even smaller, and the characteristics are light, thin and short.
  • the tilt sensor of the present invention has at least the following advantages.
  • the moving member is inclined with respect to the tilting direction of the tilting sensor, and is moved in different directions by the relationship of gravity, and is tilted by the blocking effect of the moving member and the characteristic that the light beam is reflected by the moving member.
  • the detectors generate different light-receiving photosensitive elements in different oblique directions, and then receive the state of the light beam through the photosensitive elements, thereby reversing the inclination direction of the tilt sensor.
  • the moving member is a ball having a diameter of 0.5 mm or more and more than 0.1 mm, and the light emitting diode and the photosensitive member are fixed on the same plane, so that the thickness of the tilt sensor can be effectively reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Studio Devices (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Description

倾斜感测器
技术领域
本发明涉及一种感测器, 且特别涉及一种倾斜感测器。 背景技术
一般来说, 市面上的倾斜感测器多为两相感应, 即其仅可感应两个倾斜 方向, 且其体积通常较为庞大。 对于现今消费性电子产品, 如手机, 讲求轻 薄短 、的特点, 传统的倾斜感测器便较难应用于其上。
此外, 若欲使用四相感应的倾斜感测器, 其中四相例如是指上下左右的 方向, 通常需要两组两相感应器的搭配。 然而, 如此一来, 便无法有效地达 到降低成本、 缩小体积以及缩减制程步骤的目的。
因此, 如何设计一种尺寸极小、 成本低廉以及可适用于轻薄及低成本的 消费电子产品上的倾斜感测器, 实为目前一项重要的课题。 发明内容
本发明提供一种倾斜感测器, 其可感测多个倾斜方向, 并具有尺寸薄、 成本低及制程容易的优点。
本发明提出一种倾斜感测器, 其包括本体、 发光二极管、 第一感光元件、 第二感光元件以及移动件。 本体适于在多个倾斜方向上倾斜。 发光二极管配 置于本体, 并适于提供光束。 第一感光元件配置于本体, 并位于发光二极管 的对向位置, 以使光束直接传递至第一感光元件。 第二感光元件配置于本体, 并位于发光二极管的一侧。 移动件配置于本体, 其中当本体往不同的倾斜方 向倾斜时, 移动件会往不同的倾斜方向移动, 而使来自发光二极管的光束直 接传递至第一感光元件, 或遮挡来自发光二极管的光束传递至第一感光元件 与第二感光元件至少其一, 或反射来自发光二极管的光束而传递至第二感光 元件。
在本发明的一实施例中, 第一感光元件相对于第二感光元件。 另外, 本 体包括移动区、 第一容置区、 第二容置区以及第三容置区。 移动件位于移动 区内。 第一容置区具有第一开口, 其中发光二极管位于第一容置区内, 且第 一容置区通过第一开口与移动区连通。 第二容置区具有第二开口, 其中第一 感光元件位于第二容置区内, 且第二容置区通过第二开口而与移动区连通。 第三容置区具有第三开口, 其中第二感光元件位于第三容置区内, 且第三容 置区通过第三开口而与移动区连通。 在本发明的一实施例中, 发光二极管的 光束会通过第一开口而直接传递至第一感光元件, 或被移动件反射而传递至 第二感光元件。
在本发明的一实施例中, 倾斜感测器还包括第三感光元件, 配置于本体, 并位于发光二极管的另一侧。 第二感光元件位于第三感光元件的对向位置。 在本发明的一实施例中, 本体包括移动区、 第一容置区、 第二容置区、 第三 容置区以及第四容置区。 移动件位于移动区内。 第一容置区具有第一开口, 其中发光二极管位于第一容置区内, 且第一容置区通过第一开口与移动区连 通。 第二容置区具有第二开口, 其中第一感光元件位于第二容置区内, 且第 二容置区通过第二开口而与移动区连通。 第三容置区具有第三开口, 其中第 二感光元件位于第三容置区内,且第三容置区通过第三开口而与移动区连通。 第四容置区具有第四开口, 其中第三感光元件位于第四容置区内, 且第四容 置区通过第四开口而与移动区连通。 在本发明的一实施例中, 发光二极管的 光束会通过第一开口而直接传递至第一感光元件, 或光束会被移动件反射而 传递至第二感光元件与第三感光元件至少其一。
在本发明的一实施例中, 本体具有基板与壳体。 壳体配置于基板上, 且 壳体具有凹陷结构, 与基板定义出移动区、 第一容置区、 第二容置区、 第三 容置区与第四容置区。 在本发明的一实施例中, 移动件的尺寸大于第一开口、 第二开口、 第三开口与第四开口的宽度。
在本发明的一实施例中, 发光二极管为侧射型发光二极管, 且光束为红 外光。 第一感光元件与第二感光元件为光二极管或光电晶体。
在本发明的一实施例中, 发光二极管、 第一感光元件与第二感光元件固 晶于同一平面上。
在本发明的一实施例中, 移动件为滚珠, 且滚珠的大小实质上小于等于
0.5mm大于 0.1mm„
在本发明的一实施例中, 倾斜感测器可通过感光元件接受光束的状态, 即可反推倾斜感测器是往何种倾斜方向倾斜。 此外, 由于移动件是釆用小于 等于 0.5mm大于 0.1mm的厚度,且发光二极管与感光元件是固晶于同一平面 上, 因此倾斜感测器具有尺寸较薄的优点。
为让本发明的上述特征和优点能更明显易懂, 下文特举多个实施例, 并 配合附图, 作详细说明如下。 附图说明
图 1 为本发明第一实施例的倾斜感测器用于感测不同倾斜方向的示意 图;
图 2 为本发明第二实施例的倾斜感测器用于感测不同倾斜方向的示意 附图中主要元件符号说明:
1、 2、 3、 4-状态; 100、 200-
110、 210-本体; 112、 211-移动区;
114、 213-第一容置区: 114a, 213a-第一开口
116、 215-第二容置区 116a, 215a-第二开口
118、 217-第三容置区 118a, 217a-第三开口
120、 220-发光二极管: 122、 222-光束; 130、 230-第一感光元件; 140、 240-第二感光元件;
150、 250-移动件; 219-第四容置区;
219a-第四开口; 260-第三感光元件;
Pl、 P2、 P3、 P4 -倾斜方向。 具体实施方式
图 1 为本发明第一实施例的倾斜感测器用于感测不同倾斜方向的示意 图。请参考图 1 , 本实施例的倾斜感测器 100包括本体 110、发光二极管 120、 第一感光元件 130、 第二感光元件 140以及移动件 150。 发光二极管 120配置 于本体 110, 并适于提供光束 122。 第一感光元件 130配置于本体 110, 并位 于发光二极管 120的对向位置, 以使光束 122直接传递至第一感光元件 130。 第二感光元件 140配置于本体 110, 并位于发光二极管 120的一侧。 在本实 施例中, 第一感光元件 130相对于第二感光元件 140, 如图 1所示。 此外, 发光二极管 120可以是一侧射型发光二极管, 而光束 122可以是一红外光。 在本实施例中, 第一感光元件 130与第二感光元件 140可以是釆用一光二极 管或一光电晶体。
本体 110适于在多个倾斜方向 Pl、 P2、 P3、 P4上倾斜。 在本实施例中, 本体 110包括一移动区 112、 一第一容置区 114、 一第二容置区 116以及一第 三容置区 118。 详细而言, 移动件 150位于移动区 112 内。 第一容置区 114 具有一第一开口 114a, 其中发光二极管 120位于第一容置区 114内, 且第一 容置区 114通过第一开口 114a与移动区 112连通。 第二容置区 116具有一第 二开口 116a, 其中第一感光元件 130位于第二容置区 116内, 且第二容置区 116通过第二开口 116a而与移动区 112连通。 第三容置区 118具有一第三开 口 118a, 其中第二感光元件 140位于第三容置区 118内, 且第三容置区 118 通过第三开口 118a而与移动区 112连通。 此外, 上述的第二容置区 116的第二开口 116a是与第三容置区 118的第 三开口 118a正相对的, 如图 1所示。 在本实施例中, 第一开口 114a的宽度 大于等于第一容置区 114的尺寸, 第二开口 116a的宽度大于等于第二容置区 116的尺寸, 而第三开口 118a的宽度大于等于第三容置区 118的尺寸。
在本实施例中, 上述的本体 110可以包括有一基板(未示出)与一壳体
(未示出), 壳体配置于基板上, 且壳体具有一凹陷结构 (未示出), 以定义 出上述的移动区 112、 第一容置区 114、 第二容置区 116与第三容置区 118。 详细而言, 壳体可以是使用射出成型或冲压成型技术来进行制作, 而基板可 以是一印刷电路板, 其中当壳体制作完成后, 再以封胶或相关贴合技术, 以 贴合壳体与基板, 即而可完成上述本体 110的制作。
承上述结构, 由于第一感光元件 130位于发光二极管 120的对向位置, 因此位于第一容置区 114内的发光二极管 120的光束 122可以直接通过第一 开口 114a而传递至位于第二容置区 116内的第一感光元件 130。 此外, 位于 第一容置区 114内的发光二极管 120的光束 122也可被移动件 150反射而传 递至第二感光元件 140, 此部分将于之后详述。
移动件 150配置于本体 110, 其中当本体 110往不同的倾斜方向倾斜时, 移动件 150会往不同的倾斜方向移动, 而使来自发光二极管 120的光束 122 直接传递至第一感光元件 130, 或遮挡来自发光二极管 120的光束 122传递 至第一感光元件 130与第二感光元件 140至少其一, 或反射来自发光二极管 120的光束 122而传递至第二感光元件 140。
详细来说, 图 1示出了倾斜感测器 100置放于一水平面时, 其在不同的 倾斜方向 pi、 P2、 P3、 P4上所造成移动件 150移动至不同位置的示意图。 举例来说, 当本体 110是往倾斜方向 P1向下倾斜时, 则位于移动区 112内的 移动件 150便会受重力影响而往发光二极管 120的方向移靠过去, 而形成如 图 1所示状态 1的示意图。 此时, 移动件 150会遮蔽住第一开口 114a, 而使 发光二极管 120所激发的光束 122被移动件 150所遮挡, 进而无法传递至第 一感光元件 130与第二感光元件 140。
同样地, 当本体 110若是往倾斜方向 P2向下倾斜时, 位于移动区 112内 的移动件 150会因受重力影响而往第一感光元件 130的方向移靠过去, 而形 成如图 1所示状态 2的示意图。 此时, 移动件 150会遮蔽第二开口 116a, 使 发光二极管 120的光束 122无法传递至第一感光元件 130, 而仅能反射光束 122并传递至第二感光元件 140, 进而当本体 110在往倾斜方向 P2向下倾斜 时, 仅有第二感光元件 140可接受到光束 122, 而第一感光元件 130无法接 收到光束 122。
另夕卜, 当本体 110往倾斜方向 P3向下倾斜时, 位于移动区 112内的移动 件 150会往远离发光二极管 120的倾斜方向 P3移靠,而形成如图 1所示状态 3的示意图。 详细而言, 在状态 3时, 移动件 150是往远离发光二极管 120 的方向移靠, 此时移动件 150 并未遮蔽住上述的第一开口 114a、 第二开口 116a, 第三开口 118a, 如此, 发光二极管 120的部分光束 122便可直接传递 至第一感光元件 130, 且部分光束 122可被移动件 150反射而传递至第二感 光元件 140, 使得本体 110在往倾斜方向 P3向下倾斜时, 第一感光元件 130 与第二感光元件 140皆可接受到光束 122。
在本实施例中, 本体 110往倾斜方向 P4向下倾斜时, 位于移动区 112内 的移动件 150会因受重力影响而往第二感光元件 140的倾斜方向 P4承靠过 去, 而形成如图 1所示状态 4的示意图。 详细而言, 在状态 4时, 移动件 150 是往第二感光元件 140的倾斜方向 P4承靠, 此时, 移动件 150会遮蔽第三开 口 118a, 而使得仅第一感光元件 130可直接接收来自发光二极管 120的光束 112, 第二感光元件 140则无法接受到光束 122。 承上述可知, 本实施例的倾 斜感测器 100可通过第一感光元件 130与第二感光元件 140接受光束 122的 情况, 即可反推本体 110是往何种倾斜方向倾斜。
在本实施例中,移动件 150的尺寸大于上述第一开口 114a、第二开口 116a 与第三开口 118a的宽度。 此外, 移动件 150可以为一滚珠, 其中滚珠的大小 实质上小于等于 0.5mm大于 0.1mm, 且滚珠的材质主要是釆用可反射发光二 极管 120的光束 122为主, 在其他实施例中, 滚珠的材质可视使用者的需求 而略作调整, 本发明并不限于此。
另外, 为了可使倾斜感测器 100具有较薄的尺寸, 除了移动件 150是釆 用上述的大小外, 在本实施例中, 发光二极管 120、 第一感光元件 130与第 二感光元件 140是固晶于同一平面上的, 即发光二极管 120、 第一感光元件 130与第二感光元件 140制作于同一平面上, 且因发光二极管 120釆用侧射 型发光二极管的设计, 如此将可有效缩减此倾斜感测器 100 的厚度达至 0.8mm, 甚至更小。
值得一提的是, 上述的倾斜感测器 100是以置放于一水平面上并沿不同 方向倾斜作为实施范例的, 然而, 本发明的倾斜感测器 100也可以是应用于 感测直立式的旋转方向, 如常见的数码相机的上下辨识功能。 举例来说, 在 状态 3中, 可将倾斜感测器 100视为是置放于一铅直面上, 并因重力影响, 移动件 150会往远离发光二极管 120的方向移动, 此时, 第一感光元件 130 与第二感光元件 140皆可接受到光束 122, 进而可先判定此方向为直立方向。 接着, 若将此倾斜感测器 100沿平行此铅直面的方向而分别顺时钟旋转 90、 180、 270度, 则移动件 150便会依序地移动而分别形成状态 4、 状态 1与状 态 2。 在不同的状态下, 会使第一感光元件 130与第二感光元件 140具有不 同感光组合, 如前述的说明。 换言之, 倾斜感测器 100可根据第一感光元件 130与第二感光元件 140接受光束 122的情况, 而可推知倾斜感测器 100是 处于何种旋转状态。
承上述可知,本实施例的倾斜感测器 100通过适当设计本体 110的结构, 使发光二极管 120的光束 122可直接照射于第一感光元件 130, 但无法直接 照射于第二感光元件 140, 且本体 110内设置有移动件 150。 当移动件 150随 倾斜感测器 100往不同倾斜方向倾斜, 会使位于本体 110内的移动件 150受 重力影响的关系而往不同方向移动。 此时, 可通过移动件 150的遮挡作用以 及移动件 150可反射光束 122至第二感光元件 140的特性, 而使得本体 110 在不同的倾斜方向上, 会产生不同受光组合的第一感光元件 130与第二感光 元件 140。
换言之, 本实施例的倾斜感测器 100可通过第一感光元件 130与第二感 光元件 140接受光束 122的状态, 即可反推本体 110是往何种倾斜方向倾斜。 再者,由于移动件 150是釆用实质上小于等于 0.5mm大于 0.1mm的滚珠大小, 发光二极管 120、 第一感光元件 130与第二感光元件 140是固晶于同一平面 上, 进而可有效地缩减倾斜感测器 100的厚度达至 0.8mm, 甚至更小, 而具 有轻薄短小的特性。 第二实施例
图 2 为本发明第二实施例的倾斜感测器用于感测不同倾斜方向的示意 图。 请参考图 2, 本实施例的倾斜感测器 200包括一本体 210、 一发光二极管 220、 一第一感光元件 230、 一第二感光元件 240、 第三感光元件 260以及一 移动件 250。 发光二极管 220配置于本体 210, 并适于提供一光束 222。 第一 感光元件 230配置于本体 210, 并位于发光二极管 220的对向位置, 以使光 束 222直接传递至第一感光元件 230。 第二感光元件 240配置于本体 210, 并 位于发光二极管 220的一侧。 第三感光元件 260配置于本体 210, 并位于发 光二极管 220的另一侧, 且第二感光元件 240位于第三感光元件 260的对向 位置, 如图 2所示。 此外, 发光二极管 220可以是一侧射型发光二极管, 而 光束 222可以是一红外光。 在本实施例中, 第一感光元件 230、 第二感光元 件 240与第三感光元件 260可以釆用一光二极管或一光电晶体。
本体 210适于在多个倾斜方向 Pl、 P2、 P3、 P4上倾斜。 在本实施例中, 本体 210包括一移动区 211、 一第一容置区 213、 一第二容置区 215、 一第三 容置区 217 以及一第四容置区 219。 详细而言, 移动件 250位于移动区 211 内。 第一容置区 213具有一第一开口 213a, 其中发光二极管 220位于第一容 置区 213内, 且第一容置区 213通过第一开口 213a与移动区 211连通。 第二 容置区 215具有一第二开口 215a,其中第一感光元件 230位于第二容置区 215 内, 且第二容置区 215通过第二开口 215a而与移动区 211连通。 第三容置区 217具有一第三开口 217a, 其中第二感光元件 240位于第三容置区 217内, 且第三容置区 217通过第三开口 217a而与移动区 211连通。 第四容置区 219 具有一第四开口 219a, 其中第三感光元件 260位于第四容置区 219内, 且第 四容置区 219通过第四开口 219a而与移动区 211连通。
此外,上述的第一容置区 213的第一开口 213a是与第二容置区 215的第 二开口 215a正相对,而第三容置区 217的第三开口 217a是与第四容置区 219 的第四开口 219a正相对, 如图 2所示。 在本实施例中, 第一开口 213a的宽 度大于等于第一容置区 213的尺寸,第二开口 215a的宽度大于等于第二容置 区 215的尺寸, 第三开口 217a的宽度大于等于第三容置区 217的尺寸, 而第 四开口 219a的宽度大于等于第四容置区 219的尺寸。
在本实施例中, 上述的本体 210可以是包括有一基板(未示出)与一壳 体(未示出), 壳体配置于基板上, 且壳体具有一凹陷结构 (未示出), 以定 义出上述的移动区 211、 第一容置区 213、 第二容置区 215、 第三容置区 217 与第四容置区 219。 详细而言, 壳体可以是使用射出成型或冲压成型技术来 进行制作, 而基板可以是一印刷电路板, 其中当壳体制作完成后, 再以封胶 或相关贴合技术, 以贴合壳体与基板, 即而可完成上述本体 210的制作。
承上述结构, 由于第一感光元件 230位于发光二极管 220的对向, 因此 位于第一容置区 213内的发光二极管 220的光束 222可以直接通过第一开口 213a而传递至位于第二容置区 215内的第一感光元件 230。 此外, 位于第一 容置区 213内的发光二极管 220的光束 222也可被移动件 250反射而传递至 第二感光元件 240与第三感光元件 260至少其一, 此部分将于之后详述。
移动件 250配置于本体 210, 其中当本体 210往不同的倾斜方向倾斜时, 移动件 250会往不同的倾斜方向移动, 而使来自发光二极管 220的光束 222 直接传递至第一感光元件 230, 或遮挡来自发光二极管 220的光束 222传递 至第一感光元件 230、 第二感光元件 240与第三感光元件 260至少其一, 或 反射来自发光二极管 220的光束 222而传递至第二感光元件 240或第三感光 元件 260至少其一。
详细来说, 图 2示出了倾斜感测器 200置放于一水平面时, 其在不同的 倾斜方向 pi、 P2、 P3、 P4上所造成移动件 250移动至不同位置的示意图。 举例来说, 当本体 210是往倾斜方向 P1向下倾斜时, 则位于移动区 211内的 移动件 250便会受重力影响而往发光二极管 220的倾斜方向 P1移靠过去,而 形成如图 2所示状态 1的示意图。此时,移动件 250会遮蔽住第一开口 213a, 而使发光二极管 220所激发的光束 222被移动件 250所遮挡, 进而无法传递 至第一感光元件 230、 第二感光元件 240与第三感光元件 260。
同样地, 当本体 210若是往倾斜方向 P2向下倾斜时, 位于移动区 211内 的移动件 250会因受重力影响而往第二感光元件 240的倾斜方向移靠过去, 而形成如图 2所示状态 2的示意图。此时,移动件 250会遮蔽第三开口 217a, 使发光二极管 220的光束 222无法递至第二感光元件 240。 此外, 移动件 250 会反射部分光束 222并将光束 222传递至位于第二感光元件 240对向的第三 感光元件 260, 且部分光束 222会直接传递至第一感光元件 230。 即当本体 210在往倾斜方向 P2向下倾斜时,仅有第一感光元件 230与第三感光元件 260 可感测到光束 222 , 而第二感光元件 240无法感测到光束 222。
另夕卜, 当本体 210往倾斜方向 P3向下倾斜时, 位于移动区 211内的移动 件 250会往远离发光二极管 220的倾斜方向 P3移靠,而形成如图 2所示状态 3的示意图。 详细而言, 在状态 3时, 移动件 250往远离发光二极管 220的 倾斜方向 P3移靠, 而使移动件 250遮蔽住第二开口 215a, 此时, 发光二极 管 220的光束 222无法传递至第一感光元件 230,且光束 222会被移动件 250 所反射而分别传递至第二感光元件 240与第三感光元件 260。 即当本体 210 在往倾斜方向 P3向下倾斜时,仅有第二感光元件 240与第三感光元件 260可 感测到光束 222 , 而第一感光元件 230无法感测到光束 222。
在本实施例中, 本体 210往倾斜方向 P4向下倾斜时, 位于移动区 211内 的移动件 250会因受重力影响而往第三感光元件 260的倾斜方向 P4移靠过 去, 而形成如图 2所示状态 4的示意图。 详细而言, 在状态 4时, 移动件 250 往第三感光元件 260的倾斜方向 P4移靠, 而使移动件 250遮蔽住第四开口 219a,此时,发光二极管 220的光束 222无法传递至第三感光元件 260。此外, 移动件 250会反射部分光束 222并将光束 222传递至位于第三感光件 260对 向的第二感光元件 240, 且部分光束 222会直接传递至第一感光元件 230。 即 当本体 210在往倾斜方向 P4向下倾斜时,仅有第一感光元件 230与第二感光 元件 240可感测到光束 222 , 而第三感光元件 260无法感测到光束 222。
承上述可知, 本实施例的倾斜感测器 200可通过第一感光元件 230、 第 二感光元件 240与第三感光元件 260感测光束 222的状态,即可反推本体 210 是往何种倾斜方向倾斜。
在本实施例中, 上述的移动件 250的尺寸大于上述第一开口 213a、 第二 开口 215a、 第三开口 217a与第四开口 219a的宽度。 此外, 移动件 250可以 为一滚珠, 其中滚珠的大小实质上小于等于 0.5mm大于 0.1mm, 且滚珠的材 质主要是釆用可反射发光二极管 220的光束 222为主, 在其他实施例中, 滚 珠的材质可视使用者的需求而略作调整, 本发明并不限于此。
另外, 为了可使倾斜感测器 200具有较薄的尺寸, 除了移动件 250是釆 用上述的大小外, 在本实施例中, 发光二极管 220、 第一感光元件 230、 第二 感光元件 240与第三感光元件 260是固晶于同一平面上的,即发光二极管 220、 第一感光元件 230、 第二感光元件 240与第三感光元件 260制作于同一平面 上, 且因发光二极管 220是釆用侧射型发光二极管的设计, 如此将可有效缩 减此倾斜感测器 200的厚度达至 0.8mm, 甚至更小。
值得一提的是, 上述的倾斜感测器 200是以置放于一水平面上并沿不同 方向倾斜作为实施范例的, 然而, 本发明的倾斜感测器 200也可以是应用于 感测直立式的旋转方向, 如常见的数码相机的上下辨识功能。 举例来说, 在 状态 3中, 可将倾斜感测器 200视为是置放于一铅直面上, 并因重力影响, 移动件 250会往远离发光二极管 220的方向移动, 此时, 第二感光元件 240 与第三感光元件 260皆可接受到被移动件 250反射光束 222, 此时可先判定 此方向为直立方向。 接着, 若将此倾斜感测器 200沿平行此铅直面的方向而 分别顺时钟旋转 90、 180、 270度, 则移动件 250便会依序地移动而分别形成 状态 4、 状态 1与状态 2。 在不同的状态下, 会使第一感光元件 230、 第二感 光元件 240与第三感光元件 260具有不同感光组合, 如前述的说明。换言之, 倾斜侦测器 200可根据第一感光元件 230、 第二感光元件 240与第三感光元 件 260接受光束 222的情况,而可推知倾斜感测器 200是处于何种旋转状态。
承上述可知,本实施例的倾斜感测器 200通过适当设计本体 210的结构, 使发光二极管 220的光束 222可直接照射于第一感光元件 230, 但无法直接 照射于第二感光元件 240与第三感光元件 260, 且本体 210内设置有移动件 250。 当移动件 250随倾斜感测器 200往不同倾斜方向倾斜, 会使位于本体 210 内的移动件 150受重力影响的关系而往不同方向移动。 此时, 可通过移 动件 250的遮挡作用以及移动件 250可反射光束 222至第二感光元件 240与 第三感光元件 260的特性, 而使得本体 210在不同的倾斜方向上, 会产生不 同受光组合的第一感光元件 230、 第二感光元件 240与第三感光元件 260。
换言之, 本实施例的倾斜感测器 200可通过第一感光元件 230、 第二感 光元件 240与第三感光元件 260接受光束 222的状态, 即可反推本体 210是 往何种倾斜方向倾斜。 再者, 由于移动件 250是釆用实质上小于等于 0.5mm 大于 0.1mm的滚珠大小, 且发光二极管 220、 第一感光元件 230、 第二感光 元件 240与第三感光元件 260固晶于同一平面上, 进而可有效地缩减倾斜感 测器 200的厚度达至 0.8mm, 甚至更小, 而具有轻薄短小的特性。
综上所述, 本发明的倾斜感测器至少具有下列优点。 首先, 通过适当设 计本体的结构, 使发光二极管的光束可直接照射于一感光元件, 而被移动件 反射的光束则会照射至其他感光元件。 此外, 通过移动件会随倾斜感测器往 不同倾斜方向倾斜, 而使其受重力的关系而往不同方向移动, 并通过移动件 的遮挡作用及光束会被移动件反射的特性, 而使得倾斜侦测器在不同的倾斜 方向上, 会产生不同受光组合的感光元件, 进而通过感光元件接受光束的状 态, 即可反推倾斜感测器是往何种倾斜方向倾斜。 另外, 上述移动件是釆用 小于等于 0.5mm大于 0.1mm的滚珠,且发光二极管与感光元件是固晶于同一 平面上, 因此可有效缩小倾斜感测器的厚度。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要求
1、 一种倾斜感测器, 包括:
本体, 适于在多个倾斜方向上倾斜;
发光二极管, 配置于本体, 并适于提供光束;
第一感光元件, 配置于本体, 并位于发光二极管的对向位置, 以使光束 直接传递至第一感光元件;
第二感光元件, 配置于本体, 并位于发光二极管的一侧; 以及
移动件, 配置于本体, 其中当本体往不同的倾斜方向倾斜时, 移动件会 往本体倾斜方向移动, 而遮挡发光二极管的光束传递, 使第一感光元件与第 二感光元件接收不到光束, 或遮挡第一感光元件, 反射发光二极管的光束而 传递至第二感光组件, 或直接传递光束至第一感光元件, 并同时反射部分光 束至第二感光元件, 或遮挡第二感光元件, 使发光二极管的光束直接传递至 第一感光元件。
2、根据权利要求 1所述的倾斜感测器, 其中第一感光元件相对于第二感 光元件。
3、 根据权利要求 2所述的倾斜感测器, 其中本体包括:
移动区, 其中移动件位于移动区内;
第一容置区, 具有第一开口, 其中发光二极管位于第一容置区内, 且第 一容置区通过第一开口与移动区连通;
第二容置区, 具有第二开口, 其中第一感光元件位于第二容置区内, 且 第二容置区通过第二开口而与移动区连通; 以及
第三容置区, 具有第三开口, 其中第二感光元件位于第三容置区内, 且 第三容置区通过第三开口而与移动区连通,
其中发光二极管的光束会通过第一开口而直接传递至第一感光元件, 或 被移动件反射而传递至第二感光元件。
4、 根据权利要求 3所述的倾斜感测器, 其中本体具有一基板与一壳体, 壳体配置于基板上, 且壳体具有凹陷结构, 与基板定义出移动区、 第一容置 区、 第二容置区与第三容置区。
5、根据权利要求 3所述的倾斜感测器, 其中第一开口的宽度大于等于第 一容置区的尺寸, 第二开口的宽度大于等于第二容置区的尺寸, 而第三开口 的宽度大于等于第三容置区的尺寸。
6、根据权利要求 3所述的倾斜感测器,其中移动件的尺寸大于第一开口、 第二开口与第三开口的宽度。
7、 根据权利要求 1所述的倾斜感测器, 还包括一第三感光元件, 配置于 本体, 并位于发光二极管的另一侧, 且第二感光元件位于第三感光元件的对 向位置。
8、 根据权利要求 7所述的倾斜感测器, 其中本体包括:
移动区, 其中移动件位于移动区内;
第一容置区, 具有第一开口, 其中发光二极管位于第一容置区内, 且第 一容置区通过第一开口与移动区连通;
第二容置区, 具有第二开口, 其中第一感光元件位于第二容置区内, 且 第二容置区通过第二开口而与移动区连通;
第三容置区, 具有第三开口, 其中第二感光元件位于第三容置区内, 且 第三容置区通过第三开口而与移动区连通; 以及
第四容置区, 具有第四开口, 其中第三感光元件位于第四容置区内, 且 第四容置区通过第四开口而与移动区连通,
其中发光二极管的光束会通过第一开口而直接传递第一感光元件, 或光 束会被移动件反射而传递至第二感光元件与第三感光元件至少其一。
9、 根据权利要求 8所述的倾斜感测器, 其中本体具有基板与壳体, 壳体 配置于基板上, 且壳体具有凹陷结构, 与基板定义出移动区、 第一容置区、 第二容置区、 第三容置区与第四容置区。
10、 根据权利要求 8所述的倾斜感测器, 其中第一开口的宽度大于等于 第一容置区的尺寸, 第二开口的宽度大于等于第二容置区的尺寸, 第三开口 的宽度大于等于第三容置区的尺寸, 而第四开口的宽度大于等于第四容置区 的尺寸。
11、 根据权利要求 8所述的倾斜感测器, 其中移动件的尺寸大于第一开 口、 第二开口、 第三开口与第四开口的宽度。
12、 根据权利要求 1所述的倾斜感测器, 其中发光二极管为一侧射型发 光二极管, 且光束为一红外光。
13、 根据权利要求 1所述的倾斜感测器, 其中第一感光元件与第二感光 元件为一光二极管或一光电晶体。
14、 根据权利要求 1所述的倾斜感测器, 其中发光二极管、 第一感光元 件与第二感光元件皆固晶于同一平面上。
15、 根据权利要求 1所述的倾斜感测器, 其中移动件为一滚珠, 且滚珠 的大小小于等于 0.5mm大于 0.1mm。
16、 一种倾斜感测器, 包括:
本体, 适于在多个倾斜方向上倾斜, 其中本体包括:
移动区;
第一容置区, 具有第一开口, 其中第一容置区通过第一开口与移动区连 通;
第二容置区, 具有第二开口, 其中第二容置区通过第二开口而与移动区 连通;
第三容置区, 具有第三开口, 其中第三容置区通过第三开口而与移动区 连通;
发光二极管, 配置第一容置区内, 并适于提供光束;
第一感光元件, 配置于第二容置区内, 并位于发光二极管的对向位置, 以使光束直接传递至第一感光元件; 第二感光元件, 配置于第三容置区内, 并位于第一感光元件的对向位置; 以及
移动件, 位于移动区内, 其中当本体往不同的倾斜方向倾斜时, 移动件 会往本体倾斜方向移动, 而遮挡发光二极管的光束传递至第二感光元件, 使 发光二极管的光束通过第一开口而直接传递至第一感光元件, 或遮挡发光二 极管的光束传递至第一感光元件, 使传递光束至第二感光元件, 或直接传递 至第一感光元件, 同时也反射发光二极管的光束而传递至第二感光元件。
17、 一种倾斜感测器, 包括:
本体, 适于在多个倾斜方向上倾斜, 其中本体包括:
移动区;
第一容置区, 具有第一开口, 其中第一容置区通过第一开口与移动区连 通;
第二容置区, 具有第二开口, 其中第二容置区通过第二开口而与移动区 连通;
第三容置区, 具有第三开口, 其中第三容置区通过第三开口而与移动区 连通;
第四容置区, 具有第四开口, 其中第四容置区通过第四开口而与移动区 连通;
发光二极管, 配置于第一容置区内, 并适于提供一光束;
第一感光元件, 配置于第二容置区内, 并位于发光二极管的对向位置, 以使光束直接传递至第一感光元件;
第二感光元件, 配置于第三容置区内, 并位于发光二极管的一侧; 第三感光元件, 配置于第四容置区内, 并位于发光二极管的另一侧, 且 第二感光元件位于第三感光元件的对向位置; 以及
移动件, 配置于移动区内, 其中当本体往不同的倾斜方向倾斜时, 移动 件会往本体倾斜方向移动, 而使发光二极管的光束会通过第一开口而直接传 递至第一感光元件, 或遮挡发光二极管的光束传递至第一感光元件、 第二感 光元件与第三感光元件至少其一, 或反射发光二极管的光束而传递至第二感 光元件或第三感光元件至少其一。
PCT/CN2010/080522 2009-12-31 2010-12-30 倾斜感测器 WO2011079808A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012546345A JP2013516597A (ja) 2009-12-31 2010-12-30 傾斜センサ
US13/519,893 US20120281241A1 (en) 2009-12-31 2010-12-30 Tilt sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910215391.8 2009-12-31
CN2009102153918A CN102116617A (zh) 2009-12-31 2009-12-31 倾斜感测器

Publications (1)

Publication Number Publication Date
WO2011079808A1 true WO2011079808A1 (zh) 2011-07-07

Family

ID=44215491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080522 WO2011079808A1 (zh) 2009-12-31 2010-12-30 倾斜感测器

Country Status (5)

Country Link
US (1) US20120281241A1 (zh)
JP (1) JP2013516597A (zh)
KR (1) KR20120117838A (zh)
CN (1) CN102116617A (zh)
WO (1) WO2011079808A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111256661A (zh) * 2020-03-02 2020-06-09 深圳九星印刷包装集团有限公司 一种倾斜指示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2469623B (en) * 2009-04-20 2011-10-26 Naseem Bari Submerged filter indicator
CN103854918B (zh) * 2012-12-04 2016-06-08 大日科技股份有限公司 夹层式倾斜开关
TWI627386B (zh) * 2016-06-03 2018-06-21 凌通科技股份有限公司 低成本位置感應裝置以及使用其之移動設備
US10317208B2 (en) 2017-03-03 2019-06-11 Philip Schafer Tilt sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351845A (ja) * 1998-06-05 1999-12-24 Citizen Electronics Co Ltd チルトセンサー
CN1320908A (zh) * 2000-03-28 2001-11-07 三星电机株式会社 倾斜检测器
US20060151685A1 (en) * 2005-01-12 2006-07-13 Ting-Chung Hsu Electrical product and tilting control device thereof
CN101313198A (zh) * 2005-11-21 2008-11-26 罗姆股份有限公司 倾斜传感器
CN101819037A (zh) * 2009-02-27 2010-09-01 亿光电子工业股份有限公司 倾斜传感器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9106217U1 (de) * 1991-05-21 1991-09-26 Nokia Unterhaltungselektronik (Deutschland) GmbH, 7530 Pforzheim Kugelschalter zur signalmäßigen Kennzeichnung von auswählbaren Neigungsrichtungen einer Basisebene
US6664534B2 (en) * 1999-06-28 2003-12-16 Pharmacia Ab Tilt sensing device and method for its operation
JP3649665B2 (ja) * 2000-10-25 2005-05-18 シャープ株式会社 光傾斜センサ
US7325322B2 (en) * 2005-02-01 2008-02-05 Delphi Technologies, Inc. Electric park brake inclinometer
JP5165459B2 (ja) * 2008-05-23 2013-03-21 ローム株式会社 傾斜センサ
JP5167056B2 (ja) * 2008-10-01 2013-03-21 ローム株式会社 傾斜センサ
JP2010177021A (ja) * 2009-01-29 2010-08-12 Rohm Co Ltd 傾斜センサ
TW201031897A (en) * 2009-02-27 2010-09-01 Everlight Electronics Co Ltd Tilt sensor
TW201111754A (en) * 2009-09-28 2011-04-01 Everlight Electronics Co Ltd Tilt sensor
TW201111753A (en) * 2009-09-29 2011-04-01 Everlight Electronics Co Ltd Tilt sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351845A (ja) * 1998-06-05 1999-12-24 Citizen Electronics Co Ltd チルトセンサー
CN1320908A (zh) * 2000-03-28 2001-11-07 三星电机株式会社 倾斜检测器
US20060151685A1 (en) * 2005-01-12 2006-07-13 Ting-Chung Hsu Electrical product and tilting control device thereof
CN101313198A (zh) * 2005-11-21 2008-11-26 罗姆股份有限公司 倾斜传感器
CN101819037A (zh) * 2009-02-27 2010-09-01 亿光电子工业股份有限公司 倾斜传感器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111256661A (zh) * 2020-03-02 2020-06-09 深圳九星印刷包装集团有限公司 一种倾斜指示装置
CN111256661B (zh) * 2020-03-02 2021-10-26 深圳九星印刷包装集团有限公司 一种倾斜指示装置

Also Published As

Publication number Publication date
US20120281241A1 (en) 2012-11-08
JP2013516597A (ja) 2013-05-13
CN102116617A (zh) 2011-07-06
KR20120117838A (ko) 2012-10-24

Similar Documents

Publication Publication Date Title
US9322901B2 (en) Multichip wafer level package (WLP) optical device
US8822925B1 (en) Proximity sensor device
TWI584452B (zh) 可回焊之光電模組
TWI567954B (zh) 光電模組
TWI467777B (zh) 光學裝置之封裝結構
US8056247B2 (en) Tilt sensor
CN105830233A (zh) 受光发光元件模块以及使用该受光发光元件模块的传感器装置
TWI502212B (zh) 光學裝置、使用微透鏡之感光元件及其製作方法
US9588224B2 (en) Proximity-sensing device
WO2011079808A1 (zh) 倾斜感测器
TWI685641B (zh) 光學感測系統、光學感測組件及其製造方法
TWI545335B (zh) 光學裝置及使用微透鏡之感光元件
TW201518688A (zh) 微光學方位感測器及相關方法
KR101137411B1 (ko) 근접센서
JP2010114114A (ja) 反射型フォトインタラプタ
JP2007109851A (ja) フォトインタラプタ
US10401216B2 (en) Combination lens including an ambient light sensor portion and a proximity sensor portion for proximity sensing and ambient light sensing
JP2010114196A (ja) 反射型フォトインタラプタ
JP2009016698A (ja) フォトリフレクタ
TW201224400A (en) Tilt sensor
JP3923659B2 (ja) チルトセンサー
JP2009152447A (ja) 光結合装置およびその製造方法
TWM560010U (zh) 整合型模組化光距感測元件
JP2006147944A (ja) フォトインタラプタ
JP2008258298A (ja) 光通信モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10840595

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012546345

Country of ref document: JP

Ref document number: 13519893

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010840595

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127019494

Country of ref document: KR

Kind code of ref document: A