WO2011077885A1 - 面発光装置 - Google Patents

面発光装置 Download PDF

Info

Publication number
WO2011077885A1
WO2011077885A1 PCT/JP2010/070916 JP2010070916W WO2011077885A1 WO 2011077885 A1 WO2011077885 A1 WO 2011077885A1 JP 2010070916 W JP2010070916 W JP 2010070916W WO 2011077885 A1 WO2011077885 A1 WO 2011077885A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting device
solid
state light
emitting elements
Prior art date
Application number
PCT/JP2010/070916
Other languages
English (en)
French (fr)
Inventor
信二 住ノ江
充 日根野
正人 尾上
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/383,785 priority Critical patent/US20120126711A1/en
Priority to CN2010800331771A priority patent/CN102474949A/zh
Publication of WO2011077885A1 publication Critical patent/WO2011077885A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133613Direct backlight characterized by the sequence of light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a surface light emitting device, and more particularly, to a surface light emitting device using a plurality of solid state light emitting elements as light sources.
  • the distribution density of the central LED is higher than that of the peripheral portion, or the LED disposed in the central portion is used in the peripheral portion.
  • a device that supplies a larger current than the LED disposed is known (for example, see Patent Document 1).
  • a surface light emitting device using a solid light emitting element such as an LED (Light Emitting Diode) is used.
  • LED Light Emitting Diode
  • the solid light emitting element Since the solid light emitting element generates heat by light emission, as in the surface light emitting device described in Patent Document 1 described above, the solid light emitting elements are arranged at equal intervals in the plane, or are concentrated in the center. If so, the temperature rise in the center with poor heat dissipation becomes significant. In particular, when used vertically in a state of being covered in a cabinet, such as a backlight unit of a liquid crystal display, the temperature rises from the center to the top of the center due to the influence of convection of warm air inside the cabinet. become.
  • Solid-state light emitting devices such as LEDs not only have low luminous efficiency and high power consumption when the temperature rises, but also the sealing resin deteriorates and the transmittance decreases, and the solder joints with the mounting board creep. There is a problem that the service life is shortened due to the phenomenon. For this reason, the method of simply increasing the distribution density of the solid state light emitting elements in the central portion or increasing the power supplied to the central portion causes the temperature of the solid state light emitting elements in the central portion to rise excessively, making it difficult to ensure reliability.
  • the present invention has been made in consideration of the above circumstances, and provides a highly reliable surface light emitting device capable of obtaining a desired luminance with a minimum required solid state light emitting element while maintaining a uniform temperature distribution. To do.
  • the present invention includes a planar substrate, a plurality of solid state light emitting devices distributed on the substrate, and a control circuit for controlling the magnitude of current supplied to the solid state light emitting device.
  • a surface that has a plurality of regions having different distribution densities of the solid state light emitting elements, and the control circuit controls the solid state light emitting elements in the region having the low distribution density so that a larger current is supplied than the solid state light emitting elements in the region having the high distribution density.
  • a light-emitting device is provided.
  • the present invention since a larger current is supplied to a solid state light emitting device having a low distribution density than a solid state light emitting device having a high distribution density, the temperature rise of the solid state light emitting device having a high distribution density is suppressed.
  • the solid state light emitting device in the region where the distribution density is low can emit light with high luminance. For this reason, by appropriately setting the distribution density of the solid light emitting elements and the magnitude of the supplied current, it becomes possible to obtain a desired luminance with the minimum necessary solid light emitting elements while maintaining a uniform temperature distribution.
  • a highly efficient surface light emitting device can be provided.
  • FIG. 1 is a side view of a surface light emitting device according to an embodiment of the present invention. It is the principal part enlarged view which looked at the LED mounting area of the surface emitting device shown by FIG. 1 from the upper surface side. It is explanatory drawing which shows the schematic structure of the liquid crystal display which used the surface emitting apparatus shown by FIG. 1 as a backlight.
  • a surface light-emitting device includes a planar base, a plurality of solid-state light-emitting elements distributed on the base, and a control circuit that controls the magnitude of a current supplied to the solid-state light-emitting element.
  • the substrate has a plurality of regions with different distribution densities of the solid state light emitting devices, and the control circuit is configured to supply a larger current to the solid state light emitting devices with the lower distribution density than the solid state light emitting devices with the higher distribution density. It is characterized by controlling to.
  • the base means a member for holding a plurality of solid state light emitting elements arranged in a distributed manner.
  • substrate For example, the chassis etc. which become the frame
  • Solid-state light-emitting elements mean light-emitting elements such as light-emitting diodes (LEDs) and semiconductor lasers (LDs), which are either chip-shaped or package-shaped with sealing and mounting terminals formed. Also good.
  • the control circuit is not particularly limited as long as it is a circuit that can control the magnitude of the current supplied to the solid state light emitting elements in accordance with the distribution density of the solid state light emitting elements.
  • the plurality of solid state light emitting elements are arranged so as to form a plurality of element rows arranged in parallel along the first direction, and adjacent element rows are orthogonal to the first direction.
  • the interval between the two directions may change according to the distribution density of the solid state light emitting devices. According to such a configuration, the distribution density of the solid state light emitting elements can be changed by changing the interval between the adjacent element rows in the second direction, and the distribution density can be easily set.
  • the plurality of solid state light emitting elements constituting each element row may be arranged at equal intervals along the first direction. According to such a configuration, since the intervals between the solid state light emitting elements along the first direction are equal, luminance unevenness hardly occurs as a whole.
  • the plurality of solid-state light emitting elements constituting each element row may be connected in series. According to such a configuration, the magnitude of the current supplied for each element row can be changed, and control becomes easy.
  • the base body has a central region and two peripheral regions adjacent to the central region, and each peripheral region may have a distribution density of solid state light emitting elements lower than that of the central region.
  • the distribution density of the solid state light emitting elements in each peripheral region is set lower than that in the central region, while a larger current is supplied to each peripheral region than in the central region. While suppressing the temperature rise of the solid state light emitting device in the poor central region, a large current can be supplied to each peripheral region having sufficient heat dissipation to obtain a desired luminance with a small number of solid state light emitting devices. This makes it possible to obtain a desired luminance with a smaller number of solid state light emitting elements while maintaining a uniform temperature distribution.
  • the luminance of the central region can be made higher than that in each peripheral region.
  • ergonomically it is recognized that the luminance of the entire light emitting surface is improved, and it is difficult to recognize luminance unevenness.
  • the substrate has a central region and two peripheral regions adjacent to the central region, and one peripheral region and the central region may have a lower distribution density of solid light emitting elements than the other peripheral region. Good.
  • the convection of the air heated in the casing is performed.
  • the distribution density of the solid state light emitting elements is set lower in the upper part of the surface light emitting device that is likely to become hot, that is, in one peripheral region and the central region excluding the other peripheral region, and the one peripheral region and the central region are lower than the other peripheral region. A large current is also supplied.
  • the desired luminance can be obtained by supplying a small number of solid state light emitting devices. This makes it possible to obtain a desired luminance with a smaller number of solid state light emitting elements while maintaining a uniform temperature distribution.
  • the luminance of the central region can be made higher than that in each peripheral region.
  • ergonomically it is recognized that the luminance of the entire light emitting surface is improved, and it is difficult to recognize luminance unevenness.
  • the surface light-emitting device may further include a light diffusing member that covers a plurality of solid-state light-emitting elements distributed on the substrate. According to such a configuration, it is possible to diffuse and emit light emitted from a plurality of distributed solid-state light emitting elements in various directions, so that occurrence of luminance unevenness can be effectively suppressed. .
  • the present invention also provides a liquid crystal display device using the above-described surface emitting device according to the present invention as a backlight.
  • the liquid crystal display device include a liquid crystal television and a liquid crystal display panel.
  • FIG. 1 is a side view of a surface light emitting device according to an embodiment of the present invention
  • FIG. 2 is an enlarged view of a main part of an LED mounting region of the surface light emitting device shown in FIG.
  • a surface light emitting device 11 includes a planar chassis (base body) 6 and a plurality of LEDs (solid state light emitting devices) distributed on the chassis 6.
  • the chassis 6 has a central region 6a and a peripheral region in which the distribution density of the LEDs 1 is lower than that of the central region 6a. 6b, 6c, and the driving substrate 4 is controlled so that a larger current is supplied to the LEDs 1 in the peripheral regions 6b, 6c having a low distribution density than in the LEDs 1 in the central region 6a having a high distribution density.
  • the surface light emitting device 11 includes a light diffusion plate (light diffusion member) 3 disposed so as to cover the LED 1.
  • the light diffusing plate 3 diffuses and emits light incident from the LED 1 in various directions, and suppresses the occurrence of uneven brightness.
  • the surface light emitting device 11 includes a plurality of elongated strip-shaped mounting substrates 2 for mounting the LEDs 1.
  • the mounting substrate 2 for example, an Al substrate, a glass epoxy substrate, a paper phenol substrate, or the like can be used, but in this embodiment, a relatively inexpensive and highly reliable glass epoxy substrate is used.
  • the material of the chassis 6 is preferably Al or the like excellent in thermal conductivity, but may be a resin such as a steel plate, carbon, or ABS resin.
  • the mounting substrate 2 has an LED 1 that is a solid light emitting element mounted on one surface thereof by solder bonding, and is fixed to the chassis 6 with screws, rivets, double-sided tape, or the like.
  • Each LED 1 has a form called an LED package in which one or a plurality of LED chips are mounted on a ceramic substrate and sealed with resin.
  • between the adjacent mounting substrates 2 may be connected by a connector or the like, or a resistor, a coil, a temperature sensor, a luminance sensor, an LED driving element, or the like may be mounted.
  • the LEDs 1 are mounted on each mounting substrate 2 at regular intervals in a line along the longitudinal direction of the mounting substrate 2 to form an element array 9.
  • the longitudinal direction of the mounting substrate 2 coincides with the direction F1 in which the boundary 10 between the central region 6a and each of the peripheral regions 6b and 6c extends (first direction or boundary direction) F1, and the direction F1 in which the boundary 10 extends.
  • the element rows 9 extend along the direction F1 of the boundary 10 and are arranged in parallel with a space in the direction F2 orthogonal to the direction F1 of the boundary 10.
  • the configuration of the mounting substrate 2 is common to each other.
  • the interval between the adjacent mounting substrates 2 the interval between the element rows 9 adjacent to each other is changed, and the distribution density of the LEDs 1 in the peripheral regions 6 b and 6 c becomes lower than the distribution density of the LEDs 1 in the central region 6 a.
  • the distribution density of the LEDs 1 is changed in the plane.
  • the distance between the adjacent mounting substrates 2 is L1, as it goes from the central region 6a to the peripheral regions 6b and 6c along the direction F2 orthogonal to the direction F1 of the boundary 10.
  • L2, L3, and L4 are arranged so as to gradually increase.
  • the intervals L1, L2, L3, and L4 have a relationship of L4>L3>L2> L1.
  • the spacing between the element rows 9 adjacent to the direction F2 perpendicular to the direction F1 of the boundary 10 is also set to D1, D2, D3, D4 from the central region 6a toward the peripheral regions 6b, 6c along the direction F2. And gradually getting bigger.
  • the distances D1, D2, D3, and D4 are also in a relationship of D4>D3>D2> D1.
  • the distribution density of the LEDs 1 can be adjusted by using the common mounting board 2 and adjusting the interval between the adjacent mounting boards 2, and the setting of the distribution density is very easy. Moreover, since the common mounting board 2 is used, it is possible to flexibly cope with a change in the specifications of the surface light emitting device 11. Furthermore, since the LEDs 1 are mounted at equal intervals along the longitudinal direction of each mounting substrate 2, the intervals of the LEDs 1 along the direction F1 of the boundary 10 are uniform in the entire area of the surface light emitting device 11. Uneven brightness is less likely to occur. Although not shown, it is preferable that the surface of the mounting substrate 2 excluding the mounting region of the chassis 6 and the LED 1 is covered with a reflective sheet in order to increase the light use efficiency.
  • a driving substrate 4 having a control circuit that controls the magnitude of the current supplied to the LEDs 1 according to the distribution density of the LEDs 1 is provided on the back side of the chassis 6, a driving substrate 4 having a control circuit that controls the magnitude of the current supplied to the LEDs 1 according to the distribution density of the LEDs 1 is provided.
  • the plurality of LEDs 1 constituting each element array 9 are connected in series on the mounting substrate 2, and the control circuit of the driving substrate 4 is configured to control the magnitude of the current supplied to each element array 9.
  • control is performed so that a larger current is supplied to a region where the distribution density of the LEDs 1 is lower.
  • the central element is arranged so that the magnitude of power supplied gradually increases from the central region 6a toward the peripheral regions 6b and 6c where the distribution density of the LEDs 1 is low.
  • Current values supplied from the column 9 toward the outer element column 9 gradually increase to I0, I1, I2, I3, and I4.
  • the current values I4, I3, I2, I1, and I0 have a relationship of I4>I3>I2>I1> I0.
  • FIG. 3 shows a liquid crystal display 21 using the surface light emitting device 11 according to the present embodiment as a backlight.
  • FIG. 3 is an explanatory diagram showing a schematic configuration of a liquid crystal display 21 using the surface light emitting device 11 according to the present embodiment as a backlight.
  • an optical sheet group 12 such as a prism sheet and a lens sheet is disposed on the light diffusion plate 3
  • a liquid crystal panel 5 is provided on the optical sheet group 12.
  • the optical sheet group 12 has various optical functions such as concentrating luminance in the front direction or transmitting only light in the same direction as the polarization axis of the liquid crystal to improve the transmittance of the liquid crystal.
  • a video processing substrate 8 for converting a video signal input from the outside into a signal suitable for liquid crystal or performing video processing.
  • a cabinet (housing) 7 is provided outside the surface so as to cover the surface light emitting device 11 and the liquid crystal panel 5 for the purpose of design, protection of the drive substrate 4 and the image processing substrate 8, and safety. It has been.
  • resins such as ABS resin, polycarbonate resin, acrylic resin, carbon, and composite materials thereof, or Al, magnesium alloy, sheet metal, and the like can be used.
  • the cabinet 7 is inexpensive and lightweight. Polycarbonate is used.
  • the surface light emitting device 11 is covered with the liquid crystal panel 5 and the cabinet 7 and thus has poor heat dissipation, and heat generated from the driving substrate 4 and the image processing substrate 8 is added to the temperature. Easy to rise.
  • the central region 6a of the surface light emitting device 11 is surrounded by the peripheral regions 6b and 6c, the heat conduction path becomes long and heat tends to accumulate.
  • the surface light-emitting device 11 gradually widens the distance between the adjacent mounting substrates 2 from L1 to L4 toward the peripheral regions 6b and 6c from the central region 6a.
  • the magnitude of the current supplied to the element array 9 is gradually increased as I0, I1, I2, I3, and I4 from the central region 6a toward the peripheral regions 6b and 6c,
  • the heat distribution can be made uniform, and the desired brightness can be obtained while reducing the number of LEDs 1 to the minimum necessary.
  • the intervals D1, D2, D3, and D4 of the element array 9 and the current values I0, I1, I2, I3, and I4 are set so that the luminance of the central region 6a is higher than that of the peripheral regions 6b and 6c.
  • a temperature difference of about 15 ° C. may occur between the central portion and the peripheral portion of the surface light emitting device.
  • the temperature of the mounting board on which the LED is mounted is at the maximum temperature in the central part. The temperature may rise by 30 to 35 ° C from the ambient temperature.
  • the temperature of the solder joint of the LED varies depending on the material of the mounting substrate and the LED package structure, but when a ceramic package LED with a thermal resistance of about 45 ° C./W when mounted on the substrate with relatively good thermal characteristics is used.
  • the thermal resistance between the mounting substrate and the LED terminal is about 25 ° C./W.
  • the thermal resistance is expressed by the following formula (1).
  • ⁇ T R ⁇ Q (1)
  • ⁇ T is the temperature difference (° C.) between the objects that transfer heat
  • R is the thermal resistance (° C./W)
  • Q is the heat flow (W).
  • the LEDs are arranged at equal intervals in the plane and a temperature difference of 15 ° C. occurs between the central part and the peripheral part, if the temperature of the mounting substrate in the central part is 35 ° C., The temperature of the mounting substrate in the peripheral portion is 20 ° C., and in the peripheral portion, a temperature increase of 25 ° C. is allowed up to 45 ° C. which is the upper limit temperature of the LED terminal. If this permissible temperature is calculated by substituting into the above equation (1) in the same manner as in the previous example, a simple addition of 1.0 W can be applied to the peripheral LEDs. Actually, if the amount of power input to the LED increases, the temperature of the mounting substrate itself also rises. However, even if this is taken into consideration, about 0.8 W can be input and a nearly double luminous flux can be obtained.
  • a light beam twice as large as that obtained under the conventional driving conditions can be obtained from the peripheral LED, for example, even if the distance between adjacent LEDs is increased, for example, the LED light beam is spread by a diffusion lens in the peripheral part. If measures are taken so as not to cause unevenness, and the distance in the vertical direction (direction perpendicular to the boundary direction) is doubled while keeping the distance in the horizontal direction (boundary direction between the central region and the peripheral region) the same, Even if the number of uses is reduced to 1 / ⁇ 2, that is, about 0.7 times, a predetermined luminance can be obtained.
  • the LED 1 in the peripheral regions 6b and 6c is large to compensate for the decrease in the distribution density.
  • a desired luminance can be obtained.
  • the interval between the adjacent mounting substrates 2 is gradually increased to L1, L2, L3, L4 from the central region 6a toward the peripheral regions 6b, 6c, and If the current supplied to the element array 9 is set to be gradually increased as I0, I1, I2, I3, and I4 from the central region 6a to the peripheral regions 6b and 6c, the heat distribution in the surface is obtained while obtaining a desired luminance. Can be made uniform.
  • the intervals L1, L2, L3, and L4 between the adjacent mounting boards 2 and the current values I0, I1, I2, I3, and I4 supplied to the respective element rows as appropriate, the minimum number of LEDs 1 can be obtained.
  • the surface light emitting device 11 has reviewed the current value that has been uniformly determined based on the LEDs 1 arranged in the central region 6a having poor heat dissipation, and the peripheral region 6b having sufficient heat dissipation. 6c, by setting the supplied current value large and setting the distribution density of the LEDs 1 low, the desired brightness can be obtained with the minimum number of LEDs 1 while achieving a uniform temperature distribution in the surface. It is what I did.
  • the intervals of the LEDs 1 along the direction F1 in which the boundary 10 between the central region 6a and each of the peripheral regions 6b and 6c extends are equal, and are orthogonal to the direction F1 in which the boundary 10 extends.
  • the distribution density of the LEDs 1 in the plane is changed by changing the interval between the adjacent mounting substrates 2 in the direction F2.
  • the method of changing the distribution density of the LEDs 1 is not limited to this.
  • the distance between the LEDs 1 along the F2 direction is set to be equal, and the distance between the LEDs 1 along the F1 direction is changed. You may change the distribution density of LED1 in the inside.
  • the mounting boards 2 are arranged so that their longitudinal directions are in the F2 direction and are arranged in parallel with the F1 direction so as to be spaced apart from each other, and the spacing in the F1 direction of the mounting boards 2 adjacent to each other is set.
  • the distribution density of the LEDs 1 in the plane may be changed.
  • the distance between the LEDs 1 may be changed in both the F1 direction and the F2 direction, and the LEDs 1 may be arranged so that the distribution density of the LEDs 1 in the peripheral region is lower than that in the central region.
  • the LEDs 1 may be mounted on the strip-shaped mounting board 2 at unequal intervals, and the interval between the mounting boards 2 adjacent to each other may be changed, or one or a plurality of large mounting boards may be used. You may mount LED1 so that it may become an unequal space
  • a wiring circuit is formed on the chassis 6, and the LEDs 1 are directly mounted on the chassis 6 at unequal intervals in the F1 and F2 directions without using the mounting substrate 2, and the distribution density of the LEDs 1 in the peripheral region is the center. You may arrange
  • the LEDs 1 are driven independently, and the drive substrate (control circuit) 4 is larger in a region where the distribution density of the LEDs 1 is lower.
  • the current value may be controlled so that a current is supplied.
  • adjacent LEDs 1 are arranged in a lattice form arranged in a line in both the F1 and F2 directions, but the arrangement of the LEDs 1 is not necessarily limited to this.
  • the LEDs 1 are arranged so that the distribution density of the LEDs 1 decreases from the central area 6a toward the peripheral areas 6b and 6c.
  • the distribution density of the LEDs 1 in the peripheral area 6b is increased, You may arrange
  • the driving substrate (control circuit) 4 has a current value such that a large current is gradually supplied to the LED 1 from the peripheral region 6b to the peripheral region 6c according to the distribution density of the LEDs 1 toward the peripheral region 6c. To control.
  • the warmed air in the cabinet is most convected.
  • the temperature rise of the upper part of the backlight, that is, the peripheral area 6b, while maintaining a predetermined luminance can be suppressed while the temperature rise of the upper part can be suppressed.
  • the number of LEDs 1 used is reduced and the temperature distribution in the surface is uniform. Can be achieved.
  • a larger current is supplied to a solid state light emitting device having a high distribution density than a solid state light emitting device having a high distribution density. While suppressing the temperature rise of the solid state light emitting device, the solid state light emitting device having a low distribution density can emit light with high luminance. For this reason, by appropriately setting the distribution density of the solid light emitting elements and the magnitude of the supplied current, it becomes possible to obtain a desired luminance with the minimum necessary solid light emitting elements while maintaining a uniform temperature distribution. A highly efficient surface light emitting device can be provided.

Abstract

 温度分布を均一に保ちつつ必要最小限の固体発光素子で所望の輝度を得ることができる信頼性の高い面発光装置を提供すること。 面発光装置は、平面状の基体と、前記基体上に分布して配置される複数の固体発光素子と、前記固体発光素子に供給される電流の大きさを制御する制御回路とを備え、基体は固体発光素子の分布密度が異なる複数の領域を有し、制御回路は分布密度が低い領域の固体発光素子に分布密度が高い領域の固体発光素子よりも大きな電流が供給されるように制御する。

Description

面発光装置
 この発明は面発光装置に関し、詳しくは、複数の固体発光素子を光源に用いた面発光装置に関する。
 この発明に関連する面発光装置としては、発光面の中心部の輝度を高めるために中央部のLEDの分布密度を周辺部分よりも高めたものや、中央部に配置されたLEDに周辺部分に配置されたLEDよりも大きい電流を供給するようにしたものが知られている(例えば、特許文献1参照)。
特開2007-317423号公報
 液晶テレビや液晶モニターなどの液晶ディスプレイのバックライトとして、LED(Light Emitting Diode)などの固体発光素子を利用した面発光装置が用いられている。
 このような面発光装置には、コスト削減および省電力化の観点からなるべく少ない数の固体発光素子で所望の輝度を得ることが望まれる。
 固体発光素子は発光により発熱するため、上述の特許文献1に記載の面発光装置のように、固体発光素子が面内に等間隔に配置されている場合や、中央に集中して配置されている場合には放熱性の悪い中央部の温度上昇が顕著になる。
 特に、液晶ディスプレイのバックライトユニットのようにキャビネットに覆われた状態で垂直に立てて使用されると、キャビネット内において温められた空気の対流による影響を受け、中央から中央上部の温度上昇が顕著になる。
 LEDのような固体発光素子は、温度が上昇すると発光効率が悪くなり消費電力が大きくなるばかりでなく、封止樹脂が劣化して透過率が低下したり、実装基板との半田接合部がクリープ現象により破断し寿命が短くなるという問題を有している。
 このため、単に中央部における固体発光素子の分布密度を高めたり、中央部への供給電力を大きくするといった手法では中央部における固体発光素子の温度が上がりすぎ、信頼性の確保が困難になる。
 この発明は以上のような事情を考慮してなされたものであり、温度分布を均一に保ちつつ必要最小限の固体発光素子で所望の輝度を得ることができる信頼性の高い面発光装置を提供するものである。
 この発明は、平面状の基体と、前記基体上に分布して配置される複数の固体発光素子と、前記固体発光素子に供給される電流の大きさを制御する制御回路とを備え、基体は固体発光素子の分布密度が異なる複数の領域を有し、制御回路は分布密度が低い領域の固体発光素子に分布密度が高い領域の固体発光素子よりも大きな電流が供給されるように制御する面発光装置を提供するものである。
 この発明によれば、分布密度が低い領域の固体発光素子に分布密度が高い領域の固体発光素子よりも大きな電流が供給されるので、分布密度が高い領域の固体発光素子の温度上昇を抑えつつ、分布密度が低い領域の固体発光素子を高い輝度で発光させることができる。このため、固体発光素子の分布密度と供給する電流の大きさを適切に設定することにより、温度分布を均一に保ちつつ必要最小限の固体発光素子で所望の輝度を得ることが可能となり、信頼性の高い面発光装置を提供できる。
この発明の実施形態に係る面発光装置の側面図である。 図1に示される面発光装置のLED搭載領域を上面側からみた要部拡大図である。 図1に示される面発光装置をバックライトとして用いた液晶ディスプレイの概略的な構成を示す説明図である。
 この発明による面発光装置は、平面状の基体と、前記基体上に分布して配置される複数の固体発光素子と、前記固体発光素子に供給される電流の大きさを制御する制御回路とを備え、基体は固体発光素子の分布密度が異なる複数の領域を有し、制御回路は分布密度が低い領域の固体発光素子に分布密度が高い領域の固体発光素子よりも大きな電流が供給されるように制御することを特徴とする。
 この発明による面発光装置において、基体とは分布して配置された複数の固体発光素子を保持する部材を意味する。
 基体としては、特に限定されるものではないが、例えば、面発光装置の骨格となるシャーシなどを挙げることができる。
 固体発光素子とは、発光ダイオード(LED)や半導体レーザ(LD)などの発光素子を意味し、チップ状のもの、或いは封止と実装用端子の形成が済んだパッケージ状のもののいずれであってもよい。
 制御回路は、固体発光素子に供給される電流の大きさを固体発光素子の分布密度に応じて制御できる回路であればよく、その構成は特に限定されるものではない。
 この発明による面発光装置において、複数の固体発光素子は第1の方向に沿って平行に並んだ複数の素子列を形成するように配置され、隣接する素子列は第1の方向と直交する第2の方向の間隔が固体発光素子の分布密度に応じて変化してもよい。
 このような構成によれば、隣接する素子列の第2の方向の間隔を変更することにより固体発光素子の分布密度を変化させることができ、分布密度の設定が容易になる。
 平行に並んだ複数の素子列が形成される上記構成において、各素子列を構成する複数の固体発光素子は第1の方向に沿って等間隔に配置されていてもよい。
 このような構成によれば、第1の方向に沿った固体発光素子の間隔が等しくなるため、全体として輝度ムラが生じ難くなる。
 平行に並んだ複数の素子列が形成される上記構成において、各素子列を構成する複数の固体発光素子は直列接続されていてもよい。
 このような構成によれば、素子列毎に供給する電流の大きさを変更でき、制御が容易になる。
 この発明による面発光装置において、基体は中央領域と中央領域に隣接する2つの周辺領域を有し、各周辺領域は中央領域よりも固体発光素子の分布密度が低くてもよい。
 このような構成によれば、各周辺領域における固体発光素子の分布密度が中央領域よりも低く設定される一方で、各周辺領域には中央領域よりも大きな電流が供給されるので、放熱性の悪い中央領域における固体発光素子の温度上昇を抑えつつ、放熱性に余裕のある各周辺領域には大きな電流を供給して少ない数の固体発光素子で所望の輝度を得ることができる。これにより、温度分布を均一に保ちつつ、より少ない数の固体発光素子で所望の輝度を得ることが可能となる。
 また、各周辺領域および中央領域における固体発光素子の分布密度と各領域に供給する電流の大きさとを適宜設定することにより、中央領域の輝度を各周辺領域よりも高くすることもできる。
 この場合、人間工学的には発光面全体の輝度が向上したように認識され、また輝度ムラも認識され難くなる。
 この発明による面発光装置において、基体は中央領域と中央領域に隣接する2つの周辺領域を有し、一方の周辺領域と中央領域は他方の周辺領域よりも固体発光素子の分布密度が低くてもよい。
 このような構成によれば、液晶表示装置のバックライトのように、面発光装置が液晶表示装置の筐体に覆われ垂直に立てて使用される場合に、筐体内において温められた空気の対流により高温となり易い面発光装置の上部、すなわち他方の周辺領域を除く一方の周辺領域と中央領域において固体発光素子の分布密度が低く設定され、一方の周辺領域と中央領域には他方の周辺領域よりも大きな電流が供給される。
 これにより、面発光装置が垂直に立てて使用される場合に放熱性が悪くなる他方の周辺領域における温度上昇を抑えつつ、放熱性に余裕のある一方の周辺領域と中央領域には大きな電流を供給して少ない数の固体発光素子で所望の輝度を得ることができる。これにより、温度分布を均一に保ちつつ、より少ない数の固体発光素子で所望の輝度を得ることが可能となる。
 また、各周辺領域および中央領域における固体発光素子の分布密度と各領域に供給する電流の大きさとを適宜設定することにより、中央領域の輝度を各周辺領域よりも高くすることもできる。
 この場合、人間工学的には発光面全体の輝度が向上したように認識され、また輝度ムラも認識され難くなる。
 この発明による面発光装置は、基体上に分布して配置された複数の固体発光素子を覆う光拡散部材をさらに備えていてもよい。
 このような構成によれば、分布して配置された複数の固体発光素子から出射した光を様々な方向に拡散させて放射することができるので輝度ムラの発生を効果的に抑制することができる。
 この発明は、別の観点からみると、この発明による上述の面発光装置をバックライトとして用いた液晶表示装置を提供するものでもある。
 ここで、液晶表示装置としては、例えば、液晶テレビや液晶ディスプレイパネルなどを挙げることができる。
 以下、この発明の実施形態に係る面発光装置について図面に基づいて詳細に説明する。
 図1は本発明の実施形態に係る面発光装置の側面図、図2は図1に示される面発光装置のLED搭載領域を上面側からみた要部拡大図である。
 図1および図2に示されるように、本発明の実施形態に係る面発光装置11は、平面状のシャーシ(基体)6と、シャーシ6上に分布して配置される複数のLED(固体発光素子)1と、LED1に供給される電流の大きさを制御する駆動用基板(制御回路)4とを備え、シャーシ6は中央領域6aと、中央領域6aよりもLED1の分布密度が低い周辺領域6b,6cとを有し、駆動用基板4は分布密度が低い周辺領域6b,6cのLED1に分布密度が高い中央領域6aのLED1よりも大きな電流が供給されるように制御する。
 面発光装置11は、LED1を覆うように配置された光拡散板(光拡散部材)3を備えている。光拡散板3はLED1から入射した光を様々な方向に拡散させて放射し、輝度ムラの発生を抑える。
 また、面発光装置11は、LED1を実装するための複数の細長い短冊状の実装基板2を備えている。ここで、実装基板2としては、例えば、Al基板、ガラスエポキシ基板、紙フェノール基板等が使用できるが、本実施形態では比較的安価で信頼性も高いガラスエポキシ基板を用いる。
 また、シャーシ6の材質は熱伝導性に優れるAl等が望ましいが、例えば、鋼板、カーボン、或いはABS樹脂等の樹脂でもよい。
 実装基板2は、その一方の表面に固体発光素子であるLED1を半田接合により実装し、シャーシ6にネジ、リベット、もしくは両面テープ等により固定されている。なお、各LED1はセラミック基板上に単数又は複数のLEDチップが実装され樹脂で封止されたLEDパッケージと呼ばれる形態のものである。
 また、図示しないが、隣接する実装基板2の間にはコネクタ等による接続があってもよいし、抵抗、コイル、温度センサー、輝度センサー、LED駆動素子等が搭載されていてもよい。
 本実施形態において、LED1は各実装基板2上に実装基板2の長手方向に沿って一列に等間隔に実装され素子列9を形成している。実装基板2はそれらの長手方向が、中央領域6aと各周辺領域6b,6cの境界10が延びる方向(第1の方向もしくは境界の方向)F1と一致し、かつ、前記境界10の延びる方向F1と直交する方向(第2の方向もしくは境界の方向と直交する方向)F2に互いに間隔を空けて平行に並ぶようにシャーシ6上に配置されている。これにより、素子列9は前記境界10の方向F1に沿って延び、かつ、前記境界10の方向F1と直交する方向F2に互いに間隔を空けて平行に並んでいる。本実施形態において実装基板2の構成は互いに共通である。
 そして、互いに隣接した実装基板2の間隔を変更することにより互いに隣接した素子列9の間隔を変更し、周辺領域6b,6cにおけるLED1の分布密度が中央領域6aにおけるLED1の分布密度よりも低くなるようにLED1の分布密度を面内で変化させている。
 具体的には、図2に示されるように、境界10の方向F1と直交する方向F2に沿って中央領域6aから各周辺領域6b,6cへ向かうにしたがって隣接する実装基板2の間隔がL1,L2,L3,L4と徐々に大きくなるように並べられている。間隔L1,L2,L3,L4はL4>L3>L2>L1の関係にある。
 これにより、境界10の方向F1と直交する方向F2に隣接する素子列9の間隔も、前記方向F2に沿って中央領域6aから各周辺領域6b,6cへ向かうにしたがってD1,D2,D3,D4と徐々に大きくなっている。間隔D1,D2,D3,D4もD4>D3>D2>D1の関係にある。
 つまり、本実施形態では、共通の実装基板2を用い、隣接する実装基板2の間隔を調整することによりLED1の分布密度を調整でき、分布密度の設定が非常に行い易くなっている。また、共通の実装基板2が使用されるので面発光装置11の仕様変更にも柔軟に対応できる。さらには、各実装基板2においてLED1はその長手方向に沿って等間隔に実装されているので、面発光装置11の全領域において前記境界10の方向F1に沿ったLED1の間隔は均一になり、輝度ムラが生じ難くなっている。
 なお、図示しないが、シャーシ6とLED1の実装領域を除く実装基板2の表面は光の利用効率を高めるために反射シートで覆われていることが好ましい。
 シャーシ6の裏側にはLED1に供給される電流の大きさをLED1の分布密度に応じて制御する制御回路を有する駆動用基板4が設けられている。
 各素子列9を構成する複数のLED1は実装基板2上で直列接続され、駆動用基板4の制御回路は素子列9毎に供給される電流の大きさを制御できるように構成されている。
 本実施形態では、面内におけるLED1の温度分布を均一にしつつ、より少ない数のLED1で所望の輝度を得るため、LED1の分布密度が低い領域ほど大きな電流が供給されるように制御される。
 具体的には、図2に示されるように、中央領域6aからLED1の分布密度が低い各周辺領域6b,6cへ向かうにしたがって供給される電力の大きさが徐々に大きくなるよう、中央の素子列9から外側の素子列9へ向かうにしたがって供給される電流値がI0,I1,I2,I3,I4と徐々に大きくなっている。電流値I4,I3,I2,I1,I0はI4>I3>I2>I1>I0の関係にある。
 本実施形態に係る面発光装置11をバックライトとして用いた液晶ディスプレイ21を図3に示す。図3は本実施形態に係る面発光装置11をバックライトとして用いた液晶ディスプレイ21の概略的な構成を示す説明図である。
 図3に示されるように、本実施形態に係る面発光装置11を液晶ディスプレイ21のバックライトとして使用する場合、光拡散板3上にプリズムシート、レンズシート等の光学シート群12が配置され、光学シート群12上に液晶パネル5が設けられる。
 光学シート群12は、輝度を正面方向に集中させたり、或いは液晶の偏光軸と同一方向の光のみを透過させて液晶での透過率を向上させる等の様々な光学的機能を有する。
 シャーシ6の裏側には外部から入力された映像信号を液晶に適した信号に変換したり、映像処理を行ったりする映像処理用基板8が設けられている。
 そして、その外部にはデザイン性、駆動用基板4および映像処理用基板8の保護、安全性確保等を目的に、キャビネット(筐体)7が面発光装置11および液晶パネル5を覆うように設けられている。
 キャビネット7には、ABS樹脂、ポリカーボネート樹脂、アクリル樹脂、カーボン、およびそれらの複合材等の樹脂類、或いは、Al、マグネシウム合金、板金等を用いることができるが、本実施形態では安価で軽量なポリカーボネートを用いる。
 このような構成からなる液晶ディスプレイ21において面発光装置11は、液晶パネル5およびキャビネット7に覆われるため放熱性が悪く、また、駆動用基板4や映像処理用基板8からの発熱が加わるため温度上昇し易い。
 しかも、面発光装置11の中央領域6aは周辺領域6b,6cに囲まれているため熱の伝導経路が長くなり熱が溜まり易い。
 しかし、本実施形態に係る面発光装置11は上述のとおり、隣接する実装基板2の間隔を中央領域6aから各周辺領域6b,6cへ向かうにしたがってL1,L2,L3,L4と徐々に広げ、かつ、素子列9に供給する電流の大きさを中央領域6aからから各周辺領域6b,6cへ向かうにしたがってI0,I1,I2,I3,I4と徐々に大きく設定しているので、面内における熱分布を均一にでき、しかもLED1の数を必要最小限に減らしつつ所望の輝度を得ることができる。また、素子列9の間隔D1,D2,D3,D4と、電流値I0,I1,I2,I3,I4は、中央領域6aの輝度が各周辺領域6b,6cよりも高くなるように設定されているので、発光面全体の輝度が高くなったような人間工学的な視覚効果も得られ、輝度ムラも認識され難くなっている。以下、具体例を用いて詳しく説明する。
 なお、以下の説明では本実施形態に係る面発光装置11とは異なる通常の面発光装置をバックライトとして用いた液晶ディスプレイを具体例に挙げて説明するので、符号を付さずに説明する。
 例えば、40インチサイズの液晶ディスプレイの場合、面発光装置の中央部と周辺部との間では15℃程度の温度差が発生することもある。
 また、投入電力にもよるが、200W(LED関係の消費電力160W+各種基板の消費電力40W)程度の電力が投入された場合、LEDを実装した実装基板の温度は、最高温度となる中央部で周囲の温度より30~35℃程度も上昇することがある。
 また、LEDの半田接合部の温度は実装基板の材質やLEDのパッケージ構造によって変わるが、比較的熱特性の良好な基板実装時の熱抵抗が45℃/W程度のセラミックパッケージLEDを用いた場合、実装基板とLED端子の熱抵抗は25℃/W程度である。
 熱抵抗は、次式(1)で表される。
 ΔT=R×Q   ・・・(1)
 ここで、ΔTは熱を授受する物体間の温度差(℃)であり、Rは熱抵抗(℃/W)であり、Qは熱流(W)である。
 一般的に、半田接合部の温度上昇は長期信頼性を考慮すると極力低く抑えることが望ましく、特に液晶ディスプレイでは数万時間の保障が求められ、1つのLEDでも破損があれば不良となるため、LED端子の温度は最高でも45℃程度に抑える必要がある。
 このため、実装基板のうちLEDの非駆動時に最高温度が35℃になる部分には、LEDの駆動時に10℃の温度上昇しか許容されないことになる。
 ここで、この許容温度を物体間の温度差ΔTとし、上述の配線基板とLED端子の熱抵抗25℃/Wを熱抵抗Rとして上記式(1)にそれぞれ代入して算出すると当該部分には0.4Wしか投入できないことになる。
 この条件で、面内を同一電流値に設定した場合、周辺部には投入電力に余裕があるにも係わらず、中央部における投入電力の制約のために投入電力を絞らなければならず、LEDから放射される光束も限られる。
 しかし、LEDが面内に等間隔に分布して配置され、中央部と周辺部との間で15℃の温度差が生じていた場合、中央部における実装基板の温度が35℃であれば、周辺部における実装基板の温度は20℃となり、当該周辺部ではLED端子の上限温度である45℃まで25℃の温度上昇が許容されることとなる。
 この許容温度を先の例と同様に上記式(1)に代入して算出すれば、周辺部のLEDには、単純に言えばさらに1.0W投入できることとなる。
 実際には、LEDへの投入電力量が増えれば実装基板自体の温度も上昇するが、それを考慮に入れても0.8W程度は投入でき、倍近くの光束を得ることができる。
 周辺部のLEDから従来の駆動条件で得られる光束の2倍の光束が得られるとすれば、例えば、周辺部においてLEDの光束を拡散レンズで広げるなど隣接するLEDの間隔が大きくなっても輝度ムラが生じないような対策をとり、横方向(中央領域と周辺領域の境界方向)の間隔を同一としたまま縦方向(前記境界方向と直交する方向)の間隔を倍に広げれば、LEDの使用数を1/√2、すなわち約0.7倍に減らしても所定の輝度を得ることができることになる。
 このため、本実施形態に係る面発光装置11のように、各周辺領域6b,6cではLED1の分布密度を低く設定しても、当該周辺領域6b,6cのLED1に分布密度の低下を補う大きい電流を供給することにより、所望の輝度を得ることが可能となる。
 そして、本実施形態に係る面発光装置11のように、隣接する実装基板2の間隔を中央領域6aから各周辺領域6b,6cへ向かうにしたがってL1,L2,L3,L4と徐々に広げ、かつ、素子列9に供給する電流を中央領域6aから周辺領域6b,6cへ向かうにしたがってI0,I1,I2,I3,I4と徐々に大きく設定すれば、所望の輝度を得つつ面内における熱分布を均一にできる。
 しかも、隣接する実装基板2の間隔L1,L2,L3,L4と、各素子列に供給される電流値I0,I1,I2,I3,I4を適宜設定することにより、必要最小限の数のLED1で中央領域6aの輝度が各周辺領域6b,6cよりも高められた状態を作り出すことができ、発光面全体の輝度が向上したかのように認識させる人間工学的な視覚効果も得ることができる。
 要するに、本実施形態に係る面発光装置11は、従来、放熱性の悪い中央領域6aに配置されたLED1を基準に一律に決定されていた電流値を見直し、放熱性に余裕のある周辺領域6b,6cについては供給する電流値を大きく設定すると共にLED1の分布密度を低く設定することにより、面内における温度分布の均一化を図りつつ、必要最小限の数のLED1で所望の輝度が得られるようにしたものである。
 なお、本実施形態では、上述の通り、中央領域6aと各周辺領域6b,6cとの境界10が延びる方向F1に沿ったLED1の間隔を等間隔とし、前記境界10が延びる方向F1と直交する方向F2における隣接する実装基板2の間隔を変更することにより、面内におけるLED1の分布密度を変化させている。
 しかし、LED1の分布密度を変化させる手法はこれに限られるものではなく、例えば、上記F2方向に沿ったLED1の間隔を等間隔とし、上記F1方向に沿ったLED1の間隔を変更することにより面内におけるLED1の分布密度を変化させてもよい。
 この場合、実装基板2をそれらの長手方向が上記F2方向に向き、かつ、上記F1方向に互いに間隔を空けて平行に並ぶように配置し、互いに隣接した実装基板2の上記F1方向の間隔を変更することにより、面内におけるLED1の分布密度を変化させればよい。
 また、上記F1方向と上記F2方向の両方向についてLED1の間隔をそれぞれ変更し、周辺領域におけるLED1の分布密度が中央領域よりも低くなるようにLED1を配置してもよい。
 この場合、短冊状の実装基板2にLED1を不等間隔で実装するとともに、互いに隣接する実装基板2の間隔を変更してもよいし、或いは、1枚又は複数枚の大きな実装基板を用い、F1およびF2方向のそれぞれについて不等間隔となるようにLED1を実装してもよい。
 さらには、シャーシ6上に配線回路を形成し、実装基板2を用いることなくシャーシ6上にLED1をF1およびF2方向のそれぞれについて不等間隔で直接実装し、周辺領域におけるLED1の分布密度が中央領域よりも低くなるようにLED1を配置してもよい。
 上記のようにLED1がF1およびF2の両方向についてそれぞれ不等間隔で配置される場合、各LED1は独立して駆動され、駆動用基板(制御回路)4は、LED1の分布密度が低い領域ほど大きな電流が供給されるように電流値を制御してもよい。
 また、本実施形態において隣接するLED1は、F1およびF2方向のいずれについても一列に並ぶ格子状に配置されているが、LED1の配置は必ずしもこれに限られるものではなく、例えば、隣接するLED1が互いにずれるように千鳥状に配置されていてもよい。
 さらに、本実施形態では、中央領域6aから各周辺領域6b,6cに向かうにしたがってLED1の分布密度が低くなるようにLED1を配置しているが、周辺領域6bにおけるLED1の分布密度を高め、周辺領域6bから中央領域6a、周辺領域6cへ向かうにしたがってLED1の分布密度が徐々に低くなるようにLED1を配置してもよい。この場合、駆動用基板(制御回路)4は、LED1の分布密度に応じ、周辺領域6bから中央領域6aを経て周辺領域6cへ向かうにしたがって徐々に大きな電流がLED1に供給されるように電流値を制御する。
 このような構成によれば、当該構成の面発光装置が液晶ディスプレイのバックライトとして用いられ、当該液晶ディスプレイが垂直に立てて用いられる場合に、キャビネット内で温められた空気が対流することにより最も高温となるバックライト上部、すなわち周辺領域6bにおいて所定の輝度を確保しつつ当該上部の温度上昇を抑えることができ、さらに面発光装置全体ではLED1の使用数を減らしつつ面内における温度分布の均一化を図ることができる。
 以上、詳細に説明したように、本発明によれば、分布密度が低い領域の固体発光素子に分布密度が高い領域の固体発光素子よりも大きな電流が供給されるので、分布密度が高い領域の固体発光素子の温度上昇を抑えつつ、分布密度が低い領域の固体発光素子を高い輝度で発光させることができる。このため、固体発光素子の分布密度と供給する電流の大きさを適切に設定することにより、温度分布を均一に保ちつつ必要最小限の固体発光素子で所望の輝度を得ることが可能となり、信頼性の高い面発光装置を提供できる。
 1 LED
 2 実装基板
 3 光拡散板
 4 駆動用基板
 5 液晶パネル
 6 シャーシ
 6a 中央領域
 6b,6c 周辺領域
 7 キャビネット
 8 映像処理用基板
 9 素子列
 10 境界
 11 面発光装置
 12 光学シート群
 21 液晶ディスプレイ
 D1,D2,D3,D4 隣接する素子列の間隔
 F1 境界の方向
 F2 境界の方向と直交する方向
 I0,I1,I2,I3,I4 電流値
 L1,L2,L3,L4 隣接する実装基板の間隔

Claims (11)

  1.  平面状の基体と、前記基体上に分布して配置される複数の固体発光素子と、前記固体発光素子に供給される電流の大きさを制御する制御回路とを備え、基体は固体発光素子の分布密度が異なる複数の領域を有し、制御回路は分布密度が低い領域の固体発光素子に分布密度が高い領域の固体発光素子よりも大きな電流が供給されるように制御する面発光装置。
  2.  複数の固体発光素子は第1の方向に沿って平行に並んだ複数の素子列を形成するように配置され、隣接する素子列は第1の方向と直交する第2の方向の間隔が固体発光素子の分布密度に応じて変化する請求項1に記載の面発光装置。
  3.  各素子列を構成する複数の固体発光素子は第1の方向に沿って等間隔に配置される請求項2に記載の面発光装置。
  4.  各素子列を構成する複数の固体発光素子が直列接続される請求項2に記載の面発光装置。
  5.  各素子列を構成する複数の固体発光素子が直列接続される請求項3に記載の面発光装置。
  6.  基体は中央領域と中央領域に隣接する2つの周辺領域を有し、各周辺領域は中央領域よりも固体発光素子の分布密度が低い請求項1~5のいずれか1つに記載の面発光装置。
  7.  基体は中央領域と中央領域に隣接する2つの周辺領域を有し、一方の周辺領域と中央領域は他方の周辺領域よりも固体発光素子の分布密度が低い請求項1~5のいずれか1つに記載の面発光装置。
  8.  基体上に分布して配置された複数の固体発光素子を覆う光拡散部材をさらに備える請求項1~5のいずれか1つに記載の面発光装置。
  9.  基体上に分布して配置された複数の固体発光素子を覆う光拡散部材をさらに備える請求項6に記載の面発光装置。
  10.  基体上に分布して配置された複数の固体発光素子を覆う光拡散部材をさらに備える請求項7記載の面発光装置。
  11.  請求項1~10のいずれか1つに記載の面発光装置をバックライトとして用いた液晶表示装置。
PCT/JP2010/070916 2009-12-22 2010-11-24 面発光装置 WO2011077885A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/383,785 US20120126711A1 (en) 2009-12-22 2010-11-24 Planar light emitting device
CN2010800331771A CN102474949A (zh) 2009-12-22 2010-11-24 面发光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009290836A JP2011134474A (ja) 2009-12-22 2009-12-22 面発光装置
JP2009-290836 2009-12-22

Publications (1)

Publication Number Publication Date
WO2011077885A1 true WO2011077885A1 (ja) 2011-06-30

Family

ID=44195424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070916 WO2011077885A1 (ja) 2009-12-22 2010-11-24 面発光装置

Country Status (5)

Country Link
US (1) US20120126711A1 (ja)
JP (1) JP2011134474A (ja)
CN (1) CN102474949A (ja)
TW (1) TW201133077A (ja)
WO (1) WO2011077885A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103206659A (zh) * 2012-01-13 2013-07-17 宁波正洋汽车部件有限公司 激光发光二级管车灯

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9075805B2 (en) 2004-02-04 2015-07-07 Sony Corporation Methods and apparatuses for synchronizing and tracking content
JP5952557B2 (ja) * 2011-12-26 2016-07-13 株式会社小糸製作所 発光モジュールおよび車両用灯具
DE112013003504T5 (de) * 2012-07-12 2015-05-07 Panasonic Intellectual Property Management Co., Ltd. Licht emittierendes Modul
KR102014090B1 (ko) * 2012-12-06 2019-10-21 엘지이노텍 주식회사 조명 장치
DE102013206390A1 (de) * 2013-04-11 2014-10-16 Zumtobel Lighting Gmbh LED-Modul sowie Anordnung zur Lichtabgabe
TWM479522U (zh) * 2014-01-27 2014-06-01 Chunghwa Picture Tubes Ltd 發光二極體封裝及照明裝置
CN104835477A (zh) * 2014-02-11 2015-08-12 珠海格力电器股份有限公司 显示模块整体亮度的控制方法及系统
JP6414485B2 (ja) 2015-02-27 2018-10-31 日亜化学工業株式会社 発光装置
TWI584245B (zh) * 2016-05-30 2017-05-21 松翰科技股份有限公司 發光裝置及發光二極體驅動電路
TWI589188B (zh) * 2016-05-30 2017-06-21 松翰科技股份有限公司 發光裝置及發光二極體驅動電路
CN108626640B (zh) 2017-03-24 2022-06-24 松下知识产权经营株式会社 照明装置和照明系统
TWI666788B (zh) * 2018-09-26 2019-07-21 鼎元光電科技股份有限公司 Laser package structure
JP6733716B2 (ja) * 2018-10-03 2020-08-05 日亜化学工業株式会社 発光装置
US11776460B2 (en) 2019-03-29 2023-10-03 Creeled, Inc. Active control of light emitting diodes and light emitting diode displays
US11694601B2 (en) 2019-03-29 2023-07-04 Creeled, Inc. Active control of light emitting diodes and light emitting diode displays
US11727857B2 (en) 2019-03-29 2023-08-15 Creeled, Inc. Active control of light emitting diodes and light emitting diode displays
US11695102B2 (en) 2020-06-19 2023-07-04 Creeled, Inc. Active electrical elements with light-emitting diodes
CN112505966B (zh) * 2020-12-02 2022-04-26 Tcl华星光电技术有限公司 背光模组及液晶显示面板
JP7384430B2 (ja) 2021-06-24 2023-11-21 エイテックス株式会社 Led照明装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005339881A (ja) * 2004-05-25 2005-12-08 Hitachi Displays Ltd 照明装置、照明モジュール及び液晶表示装置
JP2008158449A (ja) * 2006-12-26 2008-07-10 Toshiba Corp バックライト制御装置
JP2009021196A (ja) * 2007-07-13 2009-01-29 Necディスプレイソリューションズ株式会社 照明装置
JP2010049994A (ja) * 2008-08-22 2010-03-04 Panasonic Corp バックライト装置及び液晶表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005339881A (ja) * 2004-05-25 2005-12-08 Hitachi Displays Ltd 照明装置、照明モジュール及び液晶表示装置
JP2008158449A (ja) * 2006-12-26 2008-07-10 Toshiba Corp バックライト制御装置
JP2009021196A (ja) * 2007-07-13 2009-01-29 Necディスプレイソリューションズ株式会社 照明装置
JP2010049994A (ja) * 2008-08-22 2010-03-04 Panasonic Corp バックライト装置及び液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103206659A (zh) * 2012-01-13 2013-07-17 宁波正洋汽车部件有限公司 激光发光二级管车灯

Also Published As

Publication number Publication date
CN102474949A (zh) 2012-05-23
TW201133077A (en) 2011-10-01
US20120126711A1 (en) 2012-05-24
JP2011134474A (ja) 2011-07-07

Similar Documents

Publication Publication Date Title
WO2011077885A1 (ja) 面発光装置
JP4830436B2 (ja) ディスプレイ装置
JP4706206B2 (ja) 放熱装置及び表示装置
JP5506483B2 (ja) 液晶表示装置および照明装置
JP5074135B2 (ja) 液晶表示装置
JP5010684B2 (ja) 表示装置用照明装置、表示装置、テレビ受信装置
JP5267298B2 (ja) バックライト装置
JPWO2008132941A1 (ja) 発光装置、および表示装置
JP5619171B2 (ja) 放熱印刷回路基板とそれを備えたシャシー組立体
JP2011053238A (ja) 液晶表示装置及びバックライト装置
JP5530778B2 (ja) 液晶表示装置
JP4113832B2 (ja) 面状光源装置およびこれを用いた液晶表示装置
JP4842390B1 (ja) 照明装置及びそれを備えた画像表示装置
KR101774277B1 (ko) 액정표시장치
KR101687783B1 (ko) 액정표시장치
JP4862251B2 (ja) 放熱装置及び表示装置
US20120182496A1 (en) Lighting device, display device, and television receiver
JP2010251027A (ja) バックライト装置
JP2012032722A (ja) 液晶表示装置
KR20130003935A (ko) 액정표시장치
KR200384937Y1 (ko) 백라이트 유닛의 방열 접합구조
EP3030066B1 (en) Display device
JP2012084455A (ja) 液晶表示装置
JP5335058B2 (ja) 表示装置、及びテレビジョン受像機
JP2022128277A (ja) 画像表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033177.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839120

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13383785

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839120

Country of ref document: EP

Kind code of ref document: A1