WO2011075959A1 - 一种表面增强实木型材及其制造方法 - Google Patents

一种表面增强实木型材及其制造方法 Download PDF

Info

Publication number
WO2011075959A1
WO2011075959A1 PCT/CN2010/070453 CN2010070453W WO2011075959A1 WO 2011075959 A1 WO2011075959 A1 WO 2011075959A1 CN 2010070453 W CN2010070453 W CN 2010070453W WO 2011075959 A1 WO2011075959 A1 WO 2011075959A1
Authority
WO
WIPO (PCT)
Prior art keywords
wood
layer
solid wood
carbonization
profile according
Prior art date
Application number
PCT/CN2010/070453
Other languages
English (en)
French (fr)
Inventor
涂登云
潘成锋
章昕
倪月中
于学利
Original Assignee
浙江世友木业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江世友木业有限公司 filed Critical 浙江世友木业有限公司
Priority to KR1020117008634A priority Critical patent/KR101350645B1/ko
Priority to JP2011549422A priority patent/JP5775825B2/ja
Priority to EP10838525.3A priority patent/EP2517850B1/en
Publication of WO2011075959A1 publication Critical patent/WO2011075959A1/zh
Priority to US13/175,903 priority patent/US8221660B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27KPROCESSES, APPARATUS OR SELECTION OF SUBSTANCES FOR IMPREGNATING, STAINING, DYEING, BLEACHING OF WOOD OR SIMILAR MATERIALS, OR TREATING OF WOOD OR SIMILAR MATERIALS WITH PERMEANT LIQUIDS, NOT OTHERWISE PROVIDED FOR; CHEMICAL OR PHYSICAL TREATMENT OF CORK, CANE, REED, STRAW OR SIMILAR MATERIALS
    • B27K1/00Damping wood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27MWORKING OF WOOD NOT PROVIDED FOR IN SUBCLASSES B27B - B27L; MANUFACTURE OF SPECIFIC WOODEN ARTICLES
    • B27M1/00Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching
    • B27M1/02Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching by compressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27MWORKING OF WOOD NOT PROVIDED FOR IN SUBCLASSES B27B - B27L; MANUFACTURE OF SPECIFIC WOODEN ARTICLES
    • B27M1/00Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching
    • B27M1/06Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching by burning or charring, e.g. cutting with hot wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27MWORKING OF WOOD NOT PROVIDED FOR IN SUBCLASSES B27B - B27L; MANUFACTURE OF SPECIFIC WOODEN ARTICLES
    • B27M1/00Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching
    • B27M1/08Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching by multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/02Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board the layer being formed of fibres, chips, or particles, e.g. MDF, HDF, OSB, chipboard, particle board, hardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/04Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/13Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board all layers being exclusively wood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/04Tiles for floors or walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2471/00Floor coverings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24066Wood grain

Definitions

  • the present invention relates to a wood profile and a method of manufacturing the same, and more particularly to a cork material profile and a method of manufacturing the same.
  • Plantation wood mainly includes fir, masson pine, larch, poplar, paulownia and other tree species. It has the characteristics of fast growth, high yield and short harvesting cycle, due to its fast growth rate, poor material quality, low density and low surface hardness. Defects such as non-corrosion resistance, deformation resistance and easy cracking limit the scope of application.
  • the wood functional improvement method is an effective way to improve the physical and chemical properties of the wood of the plantation.
  • the treated wood density, surface hardness, wear resistance, corrosion resistance and dimensional stability are greatly improved, and can be widely applied to solid wood flooring and solid wood furniture. Industry and other building decoration materials.
  • Poplar, southern pine, and masson pine are common fast-growing tree species. However, due to the loose material and abundance of materials, there are many studies on the functional improvement of these fast-growing materials. There are many successes at home and abroad. experience.
  • Fang Guizhen studied the mechanism of action of Daqingyang and MF crosslinkers.
  • Fang Guizhen used different concentrations of PF prepolymer to treat the large poplar wood, and compressed it in the transverse direction during the heating process. The results were as follows: The sample treated with 10% PF prepolymer had an ASE of more than 60% and a MEE of 52%. The water was completely immersed in room temperature or boiling water to maintain its compression set.
  • Fang Guizhen and others used 1, 2, 3, 4-butanetetracarboxylic acid (BKA) as a cross-linking agent, NaH2P02 as a catalyst to treat Populus euphratica, and then compressed at a constant temperature of 15 (TC).
  • BKA 4-butanetetracarboxylic acid
  • Fang Guizhen et al. used low molecular weight. PF resin treatment of large poplar wood, improving the dimensional stability and mechanical strength of wood. In 2000, Fang Guizhen and others made a study on wood impregnation of low molecular weight low chroma phenolic resin and low molecular weight phenolic resin modified Daqing poplar .
  • the existing surface compression-cured wood is obtained by immersing the surface portion of the dried wood sawn timber in water for a predetermined depth of 5 to 6 hours. After infiltrating a certain amount of water, it is heated by microwave radiation, and then directly placed in hot pressing. The device is compressed, compacted, and dried to fix the compressed portion.
  • this technique has a surface water immersion, and the surface water is large. When evaporating in a short time, the surface shrinks rapidly due to evaporation of water, which generates a large internal stress, which makes the surface susceptible to cracking, and During the compression drying and solidification process, the surface internal stress of the wood is not sufficiently balanced, and the surface is not sufficiently plastically cured. It is easy to produce rebound during use.
  • the above method is treated with chemical reagents, which must produce exhaust gas or waste water discharge, high noise, environmental pollution, and the dimensional stability of the obtained profiles is poor, easy to bend and warp, corrosion resistance and weather resistance are not ideal, short service life, and the yield is not High disadvantages.
  • Chinese patent document CN101603623A discloses a technical patent of "surface-reinforced solid wood profile, floor and manufacturing method thereof", and the manufacturing method thereof comprises (1) drying a log profile; (2) compressing the log profile in a hot press at 210 to 250 °C (3) Keep the compressed log profiles for 20 ⁇ 60 minutes; (4) Control the moisture content of the logs to be between 6 and 9%.
  • the above solution is prone to shrinkage during the drying process, and is prone to fracturing and bursting in the subsequent compression process.
  • the wood loss is large, the yield is low, about 60-70%, and the treated wood is dark in color.
  • Charcoal taste, the floor obtained by the above process can only be used in dry weather conditions such as the north, but in the south, it will produce large deformation, and its corrosion resistance level can only reach grade III, and the corrosion resistance is poor.
  • Chinese patent document CN101214675A discloses a technical patent of "wood heat-pressing carbonization strengthening method", which comprises (1) drying: according to the density of wood, the moisture content of the wood in the drying kiln is controlled to 3 ⁇ 17%; (2) planing: The wood is shaved; (3) Hot-pressed carbonization: The planed wood is placed in a hot press at a temperature of 160 to 260 °C for hot pressing and carbonization, and the compression ratio of the wood is controlled at 5 to 50%. Insulation for 10 ⁇ 240 minutes; Cooling: Cool the charred wood to below 80%; (4) Finished product: Put the wood in natural conditions or in a temperature-controlled humidity room, adjust the moisture content of the wood according to the use of the wood. 5 ⁇ 10%.
  • the wood is easily fractured in the process of compression carbonization, and the yield is low, about 50-60%.
  • the wood treated by the above scheme has poor corrosion resistance (usually below grade III) and does not Stable, dimensional stability is poor, and some wood will be carbonized too much, dark color, burning charcoal.
  • Chinese patent document CN101486212A discloses a technical patent of "manufacturing method of compressed carbonized poplar three-layer solid wood composite floor", and the preparation of the surface layer material disclosed therein: cutting the fast-growing wood poplar saw into a sheet, drying, planing, according to the compression ratio ( The compression ratio is 30%, 40%, 50%, 60%) and the thickness of the panel is 2 ⁇ 4 ⁇ processed into a poplar sheet with a water content of 20 ⁇ 40%, the plate is compressed in the press to the required compression ratio
  • the compression temperature is 70 ⁇ 110 ° C
  • the applied pressure is determined according to the compression ratio of the thin plate design; the compressed plate is carbonized and fixed under a certain pressure condition or in a special fixture, and the carbonization process is in the hot press.
  • the carbonization temperature is 190 ⁇ 220 ° C
  • the time is 1.5 ⁇ 5 hours
  • the carbonization device is equipped with a venting hole
  • the temperature of the poplar sheet is lowered under a certain pressure condition 40 ⁇ 60 °C, remove the poplar sheet, use the wide-band sander sand to go to the outer layer of darker color, the thickness of the poplar sheet after sanding is 2 ⁇ 4 ⁇ .
  • the moisture content of the poplar is large, and the shrinkage rate of the wood after drying at 70 to 110 ° C under the condition of the fiber saturation point causes the residual stress of the wood to be large, and then at 190 ⁇ 220 °.
  • the wood Under the condition of carbonization, the wood is easy to crack, and the wood has a large compression ratio, which forms an overall compression, and the wood loss rate is large.
  • the venting hole provided in the carbonization device causes the uneven surface of the compressed wood surface to be uneven. After sanding, the location of these points will reduce the hardness of this area, and the moisture content adjustment process will not be carried out later, which will cause the wood to be deformed due to moisture absorption during use; such a process cannot be industrialized. Operation.
  • the invention solves the above problems of the prior art, and provides a solid wood profile which has low density, high surface strength, corrosion resistance grade of class II or above, and stable water content and can be adapted to various climates.
  • a surface-enhanced solid wood profile comprising a compression layer and a natural layer connected thereto, having an overall density of 350 to 750 kg/m 3 and a water content of 5 ⁇ 12%, its corrosion resistance level is above II, and the weight loss is 24%.
  • the above profiles are free of glue, wherein the natural layer is an uncompressed wood structure, but may affect the structure of the natural layer during surface compression, but the above effects are negligible relative to the amount of compression of the compression layer.
  • the density of the above-mentioned compression layer is gradually reduced from the surface layer to the surface layer thickness of 0.6 to 4 ⁇ to the natural density of the wood, and the natural fiber is connected between the compression layer and the natural layer, which is different from the existing plywood.
  • the above connection is firm and pollution-free, and the manufacturing process is simple.
  • the surface film hardness of the above compression layer can reach 3 ⁇ 6H.
  • the material of the present invention is a soft material having an air dry density of 700 kg/m 3 or less, and most of which are fast-growing materials.
  • the moisture content of solid wood profiles is 5-12%.
  • Moisture content is the percentage of the moisture content of the wood and the weight of the wood after drying, defined as the moisture content of the wood.
  • the moisture-absorbing equilibrium moisture content under atmospheric conditions refers to the moisture-stable stable moisture content or the desorption-stable moisture content of the wood obtained under a certain temperature and humidity state, which is called the equilibrium moisture content of wood.
  • the equilibrium moisture content of the wood is different in different places.
  • the annual average moisture content of the Guangzhou area is 15.1%, while that of the Beijing area is 11.4%. It is suitable for wood to be dried to 11% of wood for use in Beijing. It can be used in Guangzhou to absorb moisture and deform.
  • the profile not only improves the surface hardness of the fast-growing material, but also achieves a good fixing effect, and also greatly reduces the hygroscopicity thereof, thereby greatly reducing the temperature and humidity changes of the different seasons of the use.
  • the effect of dimensional stability, improved service life, no need to adjust the water content under different climatic conditions, can adapt to the use of different regional climatic conditions.
  • the surface hardness of the profile is more than 1500 N or more according to GB 1941-91 Wood Hardness Test Method, which is more than 2.0 times of the natural layer.
  • the use of the equilibrium moisture content is much lower than that of the prior art, and the moisture content fluctuation of the profile is small during use, so that the dimensional stability is greatly improved.
  • the existing compressed wood has a large amount of chemical reagents because the compression layer needs to be sealed, and the above surface-enhanced solid wood profile of the present invention does not contain the above-mentioned chemical reagents of the prior art.
  • the surface-enhanced solid wood profile has excellent anti-corrosion performance.
  • the GB/T 13942. 1-1992 Wood Natural Durability Test Method for Wood Natural Corrosion Resistance Laboratory Test Method the preferred tree species sample of the present invention is tested and its corrosion resistance is applied. Level II or above, weight loss 24%
  • the raw materials of the surface-enhanced solid wood profiles are fast-growing materials, such as poplar, Chinese fir, masson pine, southern pine, larch, paulownia, etc., when they are untreated, their mechanical properties are poor, anti-corrosion and moisture-proof performance is not ideal, and the stability is poor. It is easily attacked by fungi and is prone to cracking and deformation.
  • the corrosion resistance level is above one.
  • the compacted layer has a thickness of 1 to 2
  • the water content is from 6. 5 to 10%, more preferably from 7 to 9%.
  • the density of the compacted layer is 1. 3 ⁇ 3 times, the density of the compact layer is 1. 3 ⁇ 3 times,
  • the fast-growing material is poplar
  • the overall density is 380 ⁇ 550 kg / m 3
  • the water content is 6 ⁇ 12%
  • the thickness of the compacted layer is 0.6 ⁇ 4 ⁇
  • the density of the compacted layer is The natural layer density is 1. 5 ⁇ 3 times.
  • the fast-growing material is southern pine, having an overall density of 500 to 720 kg/m 3 and a water content of 5 to 11%, and the thickness of the compacted layer is 0.6 to 3 inches, and the density of the compacted layer is The density of the natural layer is 1.3 to 2 times.
  • the fast-growing material is Pinus massoniana
  • the overall density of 480 ⁇ 680kg / m 3 water content of 5 ⁇ 10%
  • the thickness of the compacted layer is 0. 6 ⁇ 2.
  • 5 ⁇ , compressed compact layer The density is 1. 3 ⁇ 2 times the density of the natural layer.
  • Thickness density distribution The density of the compacted layer is 0.6 to 1 ⁇ 2 m, and its density is 1. 3 to 3 times that of the natural layer.
  • Hygroscopicity 45% or more lower than the material
  • the invention provides a method for manufacturing the above surface-enhanced solid wood profile, which solves the defects of soft material, low density, easy cracking deformation and the like by the physical wood functional improvement method, and solves the problem that the prior art processing compressed wood has rebound, wood
  • the disadvantages of large loss, impregnating resin pollution environment, poor dimensional stability, poor corrosion resistance, easy deformation, low yield, etc. also solve the disadvantages of complicated production engineering and high energy consumption.
  • the method for manufacturing the above surface-reinforced solid wood profile of the present invention may comprise the following steps: (1) drying step: drying the wood having a dry density of less than 700 Kg/m 3 to a water content of 5 to 12%;
  • a compression step a step of compressing the surface of the wood
  • Charring step a step of carbonization of wood.
  • the drying step adopts a high-temperature and high-humidity drying method, which is beneficial for preventing the wood from shrinking during the drying process, preventing moldy or blue change of the wood, and ensuring the final product quality of the wood to make the moisture content thereof. Drop to 5 ⁇ 12%.
  • Another preferred method is to dry the wood indoors for more than 5 days and then heat and dry, and to remove some of the water by drying to prevent cracking during hot pressing.
  • the resin-containing wood is dried to a moisture content of 8 to 12%, and the resin-free wood is dried to 5 to 8%.
  • the wood moisture content is 3 to 5%, the wood becomes brittle, and in the process of compression carbonization, the wood is easily fractured and the yield is low. If the moisture content of wood is too high, it is 20 ⁇ 40%.
  • the moisture in the wood will form superheated steam, the water content is high, and the partial pressure of superheated steam in the wood is very large.
  • the compressed carbonized wood used is usually a soft material with small density and fast growth speed.
  • the superheated steam is easily larger than the bonding strength between the fibers in the wood, so that the wood is prone to bursting and bursting, and the wood loss is large. It has been proved by practice that the treatment of wood by the above method can achieve a product yield of more than 98%.
  • the compression step is to use a hot press, and the upper and lower pressure plates form a temperature difference to soften and soften the surface layer of the wood, and the pressure of the hot press is controlled to be 6 ⁇ 18 MPa, preferably 8 ⁇ 15 Mpa, so that the surface of the wood is only 1 ⁇ 5 ⁇ is compressed, after compression, the temperature difference between the upper and lower plates is lowered, preferably the temperature difference is less than 30 ° C, and most preferably the temperature is the same;
  • the pressure is 20 to 120 minutes, preferably 30 to 90 minutes, and most preferably 45 to 90 minutes. That is, a compact layer of 0.6 to 4 inches is formed on the surface of the fast-growing solid wood, and the density of the compacted layer is 1.3 to 3 times the density of the natural layer.
  • the compression step is: the pressing speed is controlled at 0.5 to 4. Omm/s, and the compression ratio of the wood is 10 to 25%.
  • the temperature of the hot press of the hot press is 140 to 200 ° C, and the temperature of the low temperature press plate is lower than the temperature of the high temperature press plate by 100 ° C or more. Further preferably, the temperature of the hot press of the hot press is 150 to 170 °C.
  • the carbonization step is to carry out carbonization heat treatment of wood for 3 to 5 hours under conditions of 170 to 23 (TC) for charring heat treatment of wood for 1 to 5 hours, preferably at 190 to 210 ° C, and the other
  • the wood is carbonized and heat treated at 170 to 190 ° C for 1 to 3 hours, so that the compressed portion is sufficiently plasticized to release the internal stress generated during the compression process, and after cooling, the fixed shape is obtained. Then, the moisture content of the wood treated by the humidity control is restored to 5-12%, and the moisture content is required.
  • the carbonization step further comprises a pre-charring step, in which the wood is pre-carbonized at a temperature of 125 to 150 ° C for 1 to 4 hours, preferably at a temperature of 125 to 135 ° C. ⁇ 4 hours, another preferably preheated at a temperature of 130 ⁇ 150 ° C for 1 ⁇ 3 hours.
  • a pre-charring step in which the wood is pre-carbonized at a temperature of 125 to 150 ° C for 1 to 4 hours, preferably at a temperature of 125 to 135 ° C. ⁇ 4 hours, another preferably preheated at a temperature of 130 ⁇ 150 ° C for 1 ⁇ 3 hours.
  • it further comprises a step of adjusting the moisture content of the wood by 5 to 12% after the carbonization step.
  • the carbonization step uses an atmospheric carbonization kiln, and the carbonization heat treatment of the wood is performed at 170 to 230 ° C for 1 to 5 hours, preferably 190 ⁇ .
  • the wood was carbonized and heat treated at 210 ° C for 3 to 5 hours; after heat treatment, the moisture content of the wood was adjusted to 5 to 12%.
  • a pre-charring step is preceded by a carbonization step of the atmospheric carbonization kiln, that is, the wood is subjected to a pre-charging heat treatment at 125 to 150 ° C for 1 to 4 hours, preferably at 125 to 135 ° C. Pre-charging heat treatment for 2 to 4 hours. This helps prevent carbonization defects in the charring process of the wood and guarantees the quality of the final product.
  • the carbonization step is a pressurized carbonization tank, wherein the pressure in the tank is 0.15 to 0.6 MPa, and the wood is carbonized and heat treated at 170 to 230 ° C for 1 to 5 hours, preferably 170 ⁇ .
  • the wood is carbonized and heat treated at 190 ° C for 1-3 hours; after heat treatment, the moisture content of the wood is adjusted to 5 ⁇ 12%.
  • a pre-charring step is performed before the carbonization step of the pressurized carbonization tank, and the pre-charring step is to carry out pre-charging heat treatment of the wood at 125 to 150 ° C for 1 to 4 hours, preferably 130 to 150.
  • the pre-charging heat treatment is carried out for 1 to 3 hours under the condition of °C. Under the condition of high temperature and high humidity under the pressure of the carbonization tank, the fixed layer of the compacted compact layer is more favorable, and the dimensional stability of the product is ensured.
  • the method of the present invention further comprises the step of coating with a pressure roller after carbonization, wherein the step of applying the pressure roller is to infiltrate the UV resin into the compression layer at a pressure of 0.5 to 1. ⁇ pa. After 0.15mm, it is cured by UV.
  • the invention presses the UV resin into the compression layer, can further contact the wood fiber on the surface of the profile with the cross-linking curing reaction, and can achieve both hardness and flexibility of the paint film, and increase various properties of the fast-burning wood compression wood. .
  • the present invention has the following beneficial effects:
  • surface-enhanced solid wood profiles can be made of fast-growing materials, rich in resources and low in price.
  • the surface is subjected to compression and compact carbonization treatment, and has excellent natural micro-environmental properties and physical and mechanical properties of precious tree species.
  • the present invention adopts a single-molded composite wood physical functional improvement technology, that is, a compression carbonization technology directly obtains a profile. Elimination of multiple components such as gluing and impregnation, which enhances the mechanical properties of the profile and maintains the natural properties of the wood while saving costs;
  • the surface-enhanced solid wood profile has small equilibrium moisture content and small fluctuation, high dimensional stability, strong corrosion resistance and weather resistance, and small rebound in the direction of compression compaction.
  • the produced product can be directly applied without adjusting the water content.
  • the surface-enhanced solid wood compression layer is connected with the natural layer fiber. There is no technical problem such as gluing and separation between them, and after compression, carbonization is carried out, and the compacted layer is fixed at a high temperature to form a soft bottom layer.
  • a new characteristic of flexible wood It has unique advantages when used as solid wood flooring. It is made of solid wood flooring, wood grain appears, and the foot feels comfortable without any harmful gas emissions. It takes into account the unification of sight, touch and smell, and is especially suitable for the use of the family with the elderly or children, which is unmatched by ordinary solid wood flooring;
  • the color of the profile can be increased from yellow to brown by controlling the carbonization temperature and time, making the wood precious.
  • the high-grade feeling of wood, and the carbonization method used is essentially different from the existing method. This method is developed on the basis of fully studying the properties of the wood obtained by compaction and compaction of the present invention, and has heat treatment. The time is short, the product is beautiful in color. If this method is used to replace the existing carbonization method, the carbonized wood will all be cracked or cracked.
  • the chemical method has the essential characteristics of good energy saving and consumption reduction;
  • the method used is simple, which is conducive to industrial operation.
  • the key steps involved in the present invention are mainly a drying step, a compression step, and a carbonization step, as long as each step ensures that the equipment is in good condition, the process is suitable, and the process is properly implemented to obtain a product having excellent quality;
  • the UV curable resin is pressed into the surface layer of the compression layer by a pressure coating method to form a permanent solidification, thereby permanently sealing the pores of the compression layer, thereby effectively reducing the moisture absorption capacity of the compressed dense layer. Further strengthen the dimensional stability of the wood to prevent rebound;
  • the invention has a process cartridge, does not add any chemicals during the carbonization process after compression, does not emit exhaust gas and waste water, has high heat utilization efficiency, is energy-saving and environmentally friendly, overcomes the inherent defects of wood, and solves the prior art.
  • the problem of rebound and environmental protection is not conducive to the implementation of industrialization.
  • FIG. 1 is a cut-off electron micrograph of the poplar of the compression carbonization technique of Example 2;
  • FIG. 2 is a cutaway electron micrograph of the poplar material of Example 2.
  • FIG. 3 is a density distribution diagram of the poplar material of Example 2 in the thickness direction
  • FIG. 4 is a thickness of the product obtained by the compression carbonization technique of the poplar material of Example 2. Density map in the direction;
  • Figure 1 and Figure 2 show the cut-off electron micrographs of the final product and poplar material. It can be seen from the two figures that the cell structure of Figure 2 is evenly distributed. Figure 1 can be clearly seen from the compressed surface. The compacted layer of 2 ⁇ 3 ⁇ in the inside is very dense, and the original structure of the original wood is maintained.
  • Figures 3 and 4 show the density distribution in the thickness direction of the material and the final product. Each experiment has 3 samples. It can be found that the surface of the product after surface compression is significantly increased in density by 2 to 3 inches.
  • Embodiment 1 A method for manufacturing a southern pine wood floor, wherein the fast-growing material is selected from the material of southern pine wood, and the wood sawing material of the same specification is prepared by a method of material production, which is convenient for drying and hot pressing in the later stage.
  • the heat treatment process after the wood is piled up, the weight of the wood dome is added, and the piled wood is stacked in a steam heating top-type drying kiln to dry and dry, and the moisture is controlled to be about 8-12%.
  • the surface of the dried block wood was polished with a power four-sided planer (model: U2 3EL), and a polished surface was selected as the surface to be compacted so that the polished surface was parallel to the fiber direction of the wood.
  • the obtained polished wood having a thickness of 25 mm was placed in a three-layer hot press, and the temperature of the hot press plate opposite to the surface to be compressed of the hot press was 140 ° C, and the hot press was opposite to the uncompressed surface of the wood.
  • the temperature difference of the pressure plate is greater than 100 ° C
  • the pressing speed of the control hot plate is 4 ⁇ / s
  • the wood in the compression hot press is 21 mm thick
  • the pressure of the hot press is about 15 MPa when pressed, pressing
  • the temperature difference between the two pressure plates is reduced, or kept consistent, and the pressure is kept for 30 minutes. After the end, the pressure is slowly released, and the obtained wood is naturally cooled in the room.
  • the cooled wood is placed in a carbonization kiln,
  • the carbonization kiln is a high temperature vessel filled with superheated steam.
  • the pre-charging heat treatment was carried out for 4 hours under the condition of raising the temperature to 1 35 ° C, and then the carbonized heating medium was heated to 170 ° C to carbonize the wood for 3 hours.
  • the low-viscosity UV resin is extruded under pressure of IMpa into the compression layer by about 0.1 Torr, and after UV curing, the compression layer is reinforced again.
  • These resin reinforced layers also serve to isolate the compressed layer from moisture exchange with the outside world, re-solidify the compression layer, and improve wood stability.
  • the moisture content adjustment of the wood can be carried out by placing the wood in the humidity control room and taking it out after being placed in the humidity control room for 3 to 5 days.
  • the relative humidity in the humidity control room is about 90% and the temperature is 50 °. C or so. After removal, the moisture content of the wood is about 8 ⁇ 12%.
  • the wood with the moisture adjustment is put on for a period of time, and then the steps of the tongue-and-groove, surface sanding, surface finishing, etc. can be obtained.
  • the surface of the above-mentioned wooden floor is compressed inwardly and the hardness of the portion is significantly enhanced.
  • the natural layer of the floor has a loose fiber structure, which can better absorb sound and shock, and has a good foot feeling, inheriting the advantages of soft materials.
  • the wood floor is carbonized, its surface is yellow, the color is consistent, its moisture absorption capacity is significantly reduced, and its equilibrium moisture content is stable at 8 ⁇ 12%.
  • the hardness of the film of the compression layer is 2H ⁇ 6H.
  • Example 2 A method for manufacturing a poplar fast-growing wood floor, selecting a fast-growing material as a material of poplar wood, and forming a batch of the same-sized wood sawn timber by a material saw to facilitate the later drying and processing.
  • the poplar wood is in the form of a block.
  • the wood dome is weighted.
  • the forked wood is placed in a steam-heated top-type drying kiln to dry and control the moisture. 6 ⁇ 7 % or so.
  • the surface of the dried block wood was polished with a power four-sided planer (model: U23 EL), and a polished surface was selected as the surface to be compacted so that the polished surface was parallel to the fiber direction of the wood.
  • the obtained polished wood having a thickness of 30 mm is placed in a three-layer hot press, and the temperature of the hot press plate opposite to the surface to be compressed of the hot press is 200 ° C, and the hot press is opposed to the non-compressed surface of the wood.
  • the temperature difference between the pressure plate is greater than 130 ° C
  • the pressing speed of the control hot plate is 0.6 mm / s
  • the wood in the compression hot press is 24 mm thick
  • the pressure of the hot press is about 18 MPa when pressed, the pressing is completed.
  • the temperature of the upper and lower pressure plates is made uniform, and the pressure is kept for 120 minutes. After the end, the pressure is gradually released, and the obtained wood is naturally cooled in the room.
  • the cooled wood is placed in a pressurized carbonization tank, and the carbonization tank is first pre-carbonized, and the pressure in the carbonization tank is 0.15 to 0.3 Mpa, and pre-carbonized at 135 ° C for 3 hours. After the pre-carbonization is completed, the temperature is raised to 180 ° C, and after carbonization for 3 hours, the kiln is cooled and humidity-reduced, and the moisture content of the wood is adjusted to 6 to 10%.
  • the surface coating adopts a high-pressure roll coating technique, and the low-viscosity UV resin is extruded under a pressure of 0.5 MPa into a compression layer of about 0.15 Torr, and after being cured by UV, the compression layer is reinforced again. These resin reinforced layers also serve to isolate the compressed layer from the outside water exchange, re-solidify the compression layer, and improve wood stability.
  • the surface of the above-mentioned wooden floor is inwardly 2.5 cm thick and the hardness of the portion is remarkably enhanced.
  • the fiber gap space of the compression layer is almost completely compressed, so that the hardness is high, and the strength requirements of various floors can be met, and the defects of the fast-growing material are overcome.
  • the natural layer of the floor has a loose fiber structure, which can better absorb sound and shock, and has a good foot feeling, which inherits the advantages of fast-growing materials.
  • the hardness of the film of the compression layer is 2H ⁇ 6H.
  • Example 3 The differences from Example 1 are listed in the following table. Project Example 1 Example 2 Example 3 Example 4 Example 5 Material Southern Pinewood Pine Masson Pine Paulownia Hot Press Pressure 15Mpa 18Mpa lOMpa 16Mpa 6Mpa Hot Press Pressure Plate Temperature 140°C 200°C 170°C 150° C 190°C Compression distance 4 mm 6 mm 6 mm 3 mm 2 mm Compression layer thickness 3 mm 4 mm 4 mm 2 mm 0.6mm After compression, holding time 30min 120min 20min 120min lOOmin Pre-carbonization temperature 135°C 135°C 140°C 125°C 150°C Pre-charging time 4 hours 3 hours 2 hours 2 hours 1 hour Carbonization temperature 170°C 180°C 190°C 210°C 230°C Charring time 3 hours 3 hours 2 hours 5 hours 1 Hour carbonization type carbonization kiln carbonization tank carbonization tank carbonization kiln carbonization tank moisture content 8 -12% 6- 10% 5 - 7% 6 -
  • UV coating pressure IMpa 0.5Mpa 0.6Mpa 0.7Mpa 0.8Mpa
  • UV resin penetrates into the compression layer thickness 0.1mm 0.15mm 0.1mm 0.05mm 0.07mm surface paint film hardness 2H-6H 2H-6H 2H ⁇ 6H 2H-5H 2H-4H
  • Wood corrosion resistance grade is greater than II Greater than II Greater than II Greater than II Greater than II Weight loss ⁇ 10% ⁇ 15% ⁇ 12% ⁇ 14% ⁇ 8 %

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Veneer Processing And Manufacture Of Plywood (AREA)

Description

说 明 书
一种表面增强实木型材及其制造方法 技术领域
本发明涉及一种木质型材及其制造方法,尤其涉及软木素材型材 及其制造方法。
背景技术
随着天然林资源的枯竭和国家天然林保护工程的实施, 人工林木 材将成为今后緩解国内外木材市场供需矛盾的主要材种。人工林木材 主要包括杉木、 马尾松、 落叶松、 杨木、 泡桐等树种, 它具有生长速 度快、 产量高、 采伐周期短等特点, 由于其生长速度快、 材质较差、 密度及表面硬度低, 不耐腐不耐候、 易变形易开裂等缺陷限制了其应 用范围。
木材功能性改良方法是改善人工林木材理化性能的有效途径, 经 过处理后的木材密度、 表面硬度、 耐磨性、 防腐性和尺寸稳定性都大 幅度提高, 可广泛应用于实木地板、 实木家具行业及其他建筑装饰材 料。
有一种途径提高型材的力学性能是采用压缩的方法。
杨木、 南方松、 马尾松等是常见的速生树种, 但由于其材质疏 松, 材质各向异性非常大, 所以对这些速生材进行功能性改良的研究 很多, 国内外都有很多值得借鉴的成功经验。
但是压缩木的回弹严重, 尤其是在有水条件下更为严重。 为了改进压缩木的缺点,常采用蒸汽或树脂固定压缩木回弹的方 法。 例如, 1 996 年方桂珍等使用不同浓度的低分子量三聚氰胺一甲 醛 (MF)树脂为固定木材压缩变形的交联剂浸渍大青杨,处理材 ASE为 47 % , MEE为 36 % , 经浓度为 1 0 %的交联剂处理的试件,压密后室温 下浸水可完全保持其固定变形; 17. 5 %和 25 %浓度的交联剂处理的 试件, 在沸水中也保可持其变形。 1 997 年方桂珍等研究了大青杨与 MF交联剂的作用机理。 1 998年方桂珍等又采用不同浓度的 PF预聚体 处理大青杨木材, 并在加热过程中作横纹方向的压缩处理。 结果为: 经 10 %的 PF预聚体处理的试材, ASE达 60 %以上, MEE为 52 % , 在 室温或沸水中浸水均可完全保持其压缩变形。 1998年方桂珍等以 1 , 2 , 3 , 4-丁烷基四甲酸(BKA)为交联剂, NaH2P02 为催化剂处理大青 杨, 然后在 1 5 (TC下恒温压缩。 方桂珍等人用低分子量 PF树脂处理 大青杨木材, 提高了木材的尺寸稳定性和力学强度。 2000 年方桂珍 等人做了木材浸渍低分子量低色度酚醛树脂的研究以及低分子量酚 酸树脂改性大青杨木研究。
现有的表面压缩固化木材,是将干燥的木材锯材的表面部分浸泡 在水中 5 ~ 6h预定的深度, 当渗入一定的量的水以后, 用微波辐射加 热, 然后将其直接放置在热压装置上压缩、 压密, 再经干燥使压缩部 分固定。 但这一技术存在着表面浸泡水后, 表面水很大, 当在很短时 间内蒸发时,其表面由于水分的蒸发而快速收缩,产生很大的内应力, 使表面容易产生开裂, 而且由于在压缩干燥固化过程中, 没有使木材 的表面内应力充分地平衡掉, 也没有使表面得到充分的塑性固化, 在 使用过程中很容易产生回弹现象。
上述方法采用化学试剂处理, 其必定产生废气或废水排放, 噪声 大, 污染环境, 而且所得型材的尺寸稳定性差, 易弯曲翘曲变形, 耐 腐耐候性不理想, 使用寿命短, 出材率不高等缺点。
中国专利文献 CN101603623A公开了 "表面强化实木型材、地板及 其制造方法" 技术专利, 其制造方法包括(1 )干燥原木型材; (2) 将原木型材在 210~ 250°C的热压机中压缩; (3)将压缩后的原木型 材保温 20~60分钟; (4)控制原木型材的含水率在 6~9%之间。 上 述方案, 在干燥过程中, 容易产生皱缩, 在后续的压缩过程中容易产 生压裂爆裂, 木材损耗大, 出材率低, 约为 60~70%, 而且处理出来 的木材颜色深,有烧焦味, 上述工艺获得的地板只能在北方等干燥气 候条件下能用, 而在南方使用则会产生较大的变形, 同时其耐腐等级 只能达到 III级, 防腐性能较差。
中国专利文献 CN101214675A公开了 "木材热压炭化强化方法"技 术专利, 其包括(1 )干燥: 根据木材密度, 将木材在干燥窑中把含 水率控制在 3 ~ 17%; ( 2 ) 刨光: 对木材进行了刨光处理; ( 3 )热压 炭化: 将刨光的木材放入温度为 160~ 260°C的热压机中进行热压炭 化, 木材的压缩比控制在 5 ~ 50%, 保温 10 ~ 240分钟; 冷却: 将炭 化后的木材冷却至 80%以下; (4)成品: 将木材的放在自然条件或调 温调湿房内, 根据木材的用途把木材的含水率调到 5 ~10%。 上述方 案在压缩炭化过程中,木材很容易被压裂, 出材率低, 约为 50~60%; 同时上述方案处理得到的木材耐腐性能差(通常在 III级以下)且不 稳定、 尺寸稳定性差, 同时也有些木材就会被炭化过度, 材色深, 有 烧焦味。
中国专利文献 CN101486212A公开了 "压缩炭化杨木三层实木复 合地板的生产方法"技术专利, 其公开的面层材料的制备: 将速生材 杨木锯剖成板材, 经干燥、 刨削、 根据压缩率 (压缩率 30%、 40%、 50%、 60%)和面板的厚度为 2 ~ 4匪 加工成含水率为 20 ~ 40%的杨木 薄板,板在压机中被压缩到所需的压缩率,压缩时的温度 70 ~ 110°C, 施加的压力根据薄板设计的压缩率而确定;压缩后的板在一定的压力 条件下或在特制的夹具中进行炭化固定,炭化过程在热压机中进行或 在特制的夹具中进行, 炭化温度为 190 ~ 220°C, 时间 1.5 ~ 5小时, 炭化装置设有排气孔; 炭化处理结束后, 在一定的压力条件下将杨木 薄板温度降至 40 ~ 60°C, 取出杨木薄板, 用宽带砂光机砂去颜色变 深的外层, 砂光后的杨木薄板厚度在 2 ~ 4匪。 现有技术的上述方案, 杨木的含水率大, 在纤维饱和点左右, 在 70 ~ 110°C的条件下进行干 燥后木材收缩率很大会导致木材的残余应力也很大,然后在 190 ~ 220 °。条件下炭化时, 使得木材很容易开裂, 而且木材压缩率大, 形成了 整体压缩, 木材损耗率大, 炭化装置设有的排气孔, 会使得压缩出来 的木材表面出现凹凸不平的点, 经砂光后, 这些点所在的位置会使得 这一区域硬度降低, 而且后期又没有进行含水率调湿处理, 会使得木 材在使用过程中因吸湿而产生变形;这样的工艺也不能利于产业化的 运作。
发明内容 本发明解决了现有技术的上述问题, 提供了一种密度小、 表面强 度高, 耐腐等级达到 I I级以上, 且含水率稳定可适合各种气候的实 木型材。
本发明的上述技术方案是通过以下技术方案得以实现的: 一种表面增强实木型材, 包括压缩层和与之纤维连接的自然层, 其整体密度为 350 ~ 750kg/m3,含水率为 5 ~ 12%, 其耐腐等级达 I I以 上, 重量损失 24%。
上述型材无胶, 其中自然层为未经压缩的木材结构, 但可能在表 面压缩的过程中对自然层的结构造成影响,但上述影响相对于压缩层 被压缩的量可以忽略不计。上述压缩层的密度由表层到距表层厚度为 0. 6 ~ 4匪逐渐减小到木材自然密度, 在压缩层与自然层之间自然纤 维连接, 与现有的胶合板不同。 上述连接牢固、 无污染, 制作工序筒 单。 上述压缩层的表面漆膜硬度可达 3 ~ 6H。
本发明的素材为软材,其气干密度为 700kg/m3以下, 大多数为速 生材。
实木型材的含水率为 5 ~ 12%。 含水率是指木材中所含水分的重 量与绝干后木材重量的百分比, 定义为木材含水率。 在大气条件下的 吸湿平衡含水率是指木材在一定的温度湿度状态下,最后所达到的吸 湿稳定含水率或解吸稳定含水率, 叫做木材的平衡含水率。 一般, 木 材在不同地方的平衡含水率不同, 例如, 广州地区年平均的平衡含水 率为 15. 1%, 北京地区却为 11. 4%。 木材干燥到 11%的木材用于北京 是合适的, 可用于广州将会吸湿膨胀, 产生变形。 所以说, 通常木材 的最终含水率要与使用地的平衡含水率接近或相同,才能保证木制品 的使用稳定性。 本型材经过压缩炭化处理后, 不但提高了速生材的表 面硬度, 并达到很好的固定作用, 而且也大大降低了其吸湿性, 从而 大大减小了使用地不同季节的温度和湿度变化对其尺寸稳定性的影 响, 提高使用寿命, 在不同的气候条件下无需调整含水率, 能够适应 于不同地域气候条件的使用。
本发明的上述表面增强实木型材, 按照 《GB 1941-91 木材硬度 试验方法》测定型材表面硬度大于 1500N以上, 是其自然层的 2. 0倍 以上。 同时, 其使用平衡含水率大大低于现有技术的压缩型材, 且在 使用过程中型材的含水率波动小, 使尺寸稳定性大大提高。 现有的压 缩木由于压缩层需要被封死, 而采用了大量的化学试剂, 本发明的上 述表面增强实木型材不含现有技术的上述化学试剂。 另外, 上述表面 增强实木型材防腐性能优异, 按照《GB/T 13942. 1-1992 木材天然耐 久性试验方法 木材天然耐腐性实验室试验方法》标准, 对本发明优 选树种样品进行实验, 其耐腐等级达 I I以上, 重量损失 24%
上述表面增强实木型材的原料是速生材, 例如杨木、 杉木、 马尾 松、 南方松、 落叶松、 泡桐等, 它们未经处理时, 力学性能较差, 防 腐防潮性能不理想, 稳定性差, 很容易受到菌虫的侵害, 容易开裂变 形。
作为优选, 其耐腐等级达 I以上。
作为优选, 压缩密实层的厚度为 1 ~ 2
作为优选, 上述含水率为 6. 5 ~ 10%, 更为优选的是 7 ~ 9% 作为优选, 压缩密实层的厚度为 0. 6 ~ ½m, 压缩密实层的密度 为自然层密度的 1. 3 ~ 3倍,
作为上述方案的优选, 速生材为杨木, 其整体密度为 380 ~ 550kg/m3,含水率为 6 ~ 12%,压缩密实层的厚度为 0. 6 ~ 4匪, 压缩密 实层的密度为自然层密度的 1. 5 ~ 3倍。
作为上述方案的优选, 速生材为南方松, 其整体密度为 500 ~ 720kg/m3,含水率为 5 ~ 11%,压缩密实层的厚度为 0. 6 ~ 3匪, 压缩密 实层的密度为自然层密度的 1. 3 ~ 2倍。
作为上述方案的优选, 速生材为马尾松, 其整体密度为 480 ~ 680kg/m3,含水率为 5 ~ 10%,压缩密实层的厚度为 0. 6 ~ 2. 5匪,压缩密 实层的密度为自然层密度的 1. 3 ~ 2倍。
上述表面增强实木型材具有如下优点:
( 1 ) 厚度密度分布: 压缩密实层厚为 0. 6 ~ ½m的, 其密度是自 然层 1. 3 ~ 3倍。
( 2 ) 吸湿性: 与素材相比, 降氏 45%以上;
( 3 ) 尺寸稳定性: 与其素材相比提高 55%以上。
本发明提供了上述表面增强实木型材的制造方法, 通过物理木材 功能性改良方法, 解决速生材的材质软, 密度小, 容易开裂变形等缺 陷, 同时解决现有技术处理压缩木有回弹, 木材损耗大, 浸渍树脂污 染环境,尺寸稳定性差,耐腐耐候性差, 易变形, 出材率低等的缺点, 同时也解决了生产工程复杂, 能耗高的缺点。
本发明的上述表面增强实木型材的制造方法可以包含以下步骤: ( 1 )干燥步骤: 将气干密度小于 700Kg/m3的木材干燥至含水率 为 5 ~ 12%;
( 2 )压缩步骤: 木材经表面压缩的步骤;
( 3 )炭化步骤: 木材经炭化的步骤。
作为优选, 所述的干燥步骤采用的是高温高湿干燥方法, 这样有 利于防止木材在干燥过程中产生皱缩, 防止木材霉变或蓝变, 以保 证木材的最终产品质量,使其含水率降到 5 ~ 12%。另外一种优选是, 将木材在室内晾干 5天以上后再经加热干燥, 通过晾干除掉部分水 分后可防止在热压的过程中开裂。
作为优选,干燥步骤中,对有树脂的木材将其干燥至含水率为 8 ~ 12%, 对无树脂的木材干燥至 5 ~ 8%。 在木材含水率为 3 ~ 5%时, 由 于木材变脆, 在压缩炭化过程中, 木材很容易被压裂, 出材率低。 如木材含水率过高是 20 ~ 40%, 木材在压缩炭化过程中, 由于木材 里的水分会形成过热水蒸汽, 含水率高, 木材里的过热水蒸汽分压 力就很大, 又因所用压缩炭化的木材通常是一些密度小、 生长速度 快的软材, 所以过热蒸汽很容易大于木材的里纤维间的结合强度, 使得木材^艮容易发生爆裂炸裂, 木材损耗大。 经实践证明, 采用上 述方法处理木材, 可以使得到的产品得材率高达到 98%以上。
所述的压缩步骤是采用热压机, 上下压板形成温差, 使木材表层 升温软化, 并通过控制热压机的压力为 6 ~ 18Mpa, 优选 8 ~ 15 Mpa, 使木材单面表层仅有 1 ~ 5匪得到压缩,压缩后使上下压板温差降低, 优选温差小于 30°C, 最为优选的是两者温度相同; 压缩后保温、 保 压 20 ~ 120min, 优选 30 ~ 90min, 最为优选的是 45- 90min。 即在速 生实木表层形成 0.6 ~ 4匪 的压缩密实层, 压缩密实层的密度为自然 层密度的 1. 3 ~ 3倍。
作为上述方案的进一步优选, 所述的压缩步骤是: 压合速度控制 在 0.5 ~4. Omm/s, 木材的压缩率在 10 ~ 25%。
作为上述技术方案的优选, 热压机高温压板的温度为 140 ~ 200°C, 低温压板的温度比高温压板的温度低 100°C以上。 作为进一步优选, 热压机高温压板的温度为 150 ~ 170°C。
作为优选, 所述的炭化步骤是在 170 ~ 23(TC的条件下对木材进行 炭化热处理 1 ~ 5小时, 优选 190 ~ 210°C的条件下对木材进行炭化热 处理 3 ~ 5小时, 另一种优选 170 ~ 190°C的条件下对木材进行炭化热 处理 1 ~ 3小时, 这样可以使得压缩的部分得到充分的塑化, 释放其 在压缩过程中采生的内应力, 经冷却后得到固定成形, 再通过调湿处 理木材的含水率恢复到 5 ~ 12%, 达到含水率的要求。
作为优选, 所述的炭化步骤前还包括一个预炭化步骤, 具体是将木 材在 125 ~ 150°C的条件下进行预炭化热处理 1 ~4小时, 优选 125 ~ 135 °C的温度预炭化热处理 2 ~ 4小时,另一种优选 130 ~ 150°C的温度 中预炭化热处理 1 ~ 3小时。
作为优选,它还包括一个在炭化步骤后调整木材的含水率为 5 ~ 12% 的步骤。
作为上述方案的优选, 所述的炭化步骤采用常压炭化窑, 是在 170 ~ 230°C的条件下对木材进行炭化热处理 1 ~ 5 小时, 优选 190 ~ 210°C的条件下对木材进行炭化热处理 3 ~ 5小时;热处理后调整木材 的含水率为 5 ~ 12%。
作为上述方案的进一步优选,在常压炭化窑炭化步骤前有预炭化 步骤,即将木材在 125 ~ 150°C的条件下进行预炭化热处理 1 ~ 4小时, 优选 125 ~ 135 °C的条件下进行预炭化热处理 2 ~ 4小时。 这有利于防 止木材炭化过程中产生炭化缺陷, 保证最终产品的质量。
作为上述方案的优选, 所述的炭化步骤采用加压炭化罐, 是在罐 内压力为 0.15 ~ 0.6MPa, 在 170 ~ 230°C的条件下对木材进行炭化热 处理 1 ~ 5小时,优选 170 ~ 190°C的条件下对木材进行炭化热处理 1 ~ 3小时; 热处理后调整木材的含水率为 5 ~ 12%。
作为上述方案的优选, 在加压炭化罐炭化步骤前有预炭化步骤, 所述的预炭化步骤是将木材在 125 ~ 150°C的条件下进行预炭化热处 理 1 ~4小时, 优选 130 ~ 150°C的条件下进行预炭化热处理 1 ~ 3小 时,在炭化罐的带压高温高湿的条件下更有利于压缩密实层的固定成 形, 保证产品的尺寸稳定性。
作为本发明方法的优选,它还包括一个在炭化后用压辊涂装的步 骤, 所述压辊涂装步骤是将 UV树脂在 0.5 ~ 1.幌 pa的压力挤压渗透 入压缩层 0.05 ~ 0.15mm后经 UV固化。本发明将 UV树脂压入压缩层, 能进一步将涂料与型材表面的木纤维接触,发生交联固化反应, 能达 到漆膜硬度与柔韧性二者兼顾, 增加了速生材压缩木的各种性能。
综上所述, 本发明具有以下有益效果:
1、 表面增强实木型材可采用速生材, 具有资源丰富, 价格低廉 的特点,表面经过压缩密实炭化处理后, 具备珍贵树种天然的优良的 木材微环境特性和物理力学性能,同时本发明采用一次成型复合式木 材物理功能性改良技术, 即压缩炭化技术直接得到型材, 省去了多个 组坯胶合浸渍等环节,在节省成本的同时增强了型材的力学性能和保 持木材的天然特性;
2、表面增强实木型材的平衡含水率小且波动小, 尺寸稳定性高, 耐腐耐候性强,压缩密实方向上的回弹小, 生产出来的产品无需再调 整含水率,就可以直接应用于各种室外、地热等各种不同的环境条件;
3、 表面增强实木型材压缩层与自然层纤维连接, 它们之间不存 在胶合、 分开等技术问题, 而且压缩后再经炭化, 对压缩密实层进行 高温固定处理, 使其形成表层硬底软这样一种有弹性的木材新特性, 用做实木地板时具有独特的优势, 做成的实木地板, 木纹显现, 脚感 舒适, 无任何有害气体排放。 兼顾了视感、 触觉、 嗅觉的统一, 特别 适合于有老年人或小孩的家庭用作地板,这是现在普通实木地板所不 能比拟的;
4、 表面增强实木型材的制造方法中, 在保证型材回弹小, 保证 型材的物理力学性能的同时,通过控制炭化温度和时间可以使得型材 的颜色由黄到棕褐色依次增加, 使得木材具有珍贵木材的高级感, 而 且所采用的炭化方法, 与现有的方法有着本质的区别, 采用本方法是 在充分研究本发明压缩密实得到的木材性质的基础上,为其独自开发 出来的, 具有热处理时间短, 产品色泽美观, 如采用本方法用于替代 现有的炭化方法, 会使得炭化出来的木材全部出现表裂或内裂; 本炭 化方法具有好的节能降耗的实质特点;
5、 表面增强实木型材的制造方法中, 通过在压缩前设置干燥步 骤, 可防止木材发生霉变或蓝变、 影响木材的表面美观度, 同时还可 以防止在后续压缩密实过程中木材产生开裂或爆裂,损伤机器或爆伤 工人, 提高产品的出材率和保证产品的质量;
6、 表面增强实木型材的制造方法中, 采用的方法筒单, 利于实 现产业化运作。 本发明涉及的关键步骤主要是干燥步骤、 压缩步骤、 炭化步骤, 只要这每一步都保证设备完好, 工艺合适, 并保证工艺得 到正确的实施就能得到质量过硬的产品;
7、木材的制造方法中, 在通过压力涂装的方法将 UV固化树脂压 入压缩层的表层中, 形成永久的固化, 从而永久封住压缩层的纹孔, 有效降低压缩密实层吸湿能力, 进一步强化了木材的尺寸稳定性, 防 止回弹;
8、 本发明具有工艺筒单, 在进行压缩后进行炭化过程中不添加 任何化学药剂, 不排放废气和废水, 热利用效率高, 节能环保, 克服 了木材的固有缺陷, 解决了现有技术的回弹与环保二者不兼顾的难 题, 利于产业化的实施。
附图说明
图 1是实施例 2压缩炭化技术杨木的剖切电镜照片图; 图 2是实施例 2杨木素材的剖切电镜照片图;
图 3是实施例 2杨木素材在厚度方向上的密度分布图; 图 4是实施例 2由杨木素材经压缩炭化技术后得到的产品在厚度 方向上的密度分布图;
图 1和图 2分别显示了最终产品和杨木素材的剖切电镜照片图, 从两张图明显可以看出, 图 2素材细胞结构分布均匀, 图 1可以明显 的看到, 从压缩表面往里 2 ~ 3匪左右的压缩密实层的密实程度非常 明显, 再往里就保持原木材均匀结构。
图 3和图 4分别是素材和最终产品的厚度方向上的密度分布图, 每个实验有 3 个样品, 可以发现经过表面压缩后的产品的表面向内 2 ~ 3匪密度显著增强。
具体实施方式
实施例 1 : 一种南方松木材地板的制造方法, 选取速生材为南方 松实木的素材, 通过制材的方法锯制成具批量的同规格木材锯材,便 于后期的烘干、 热压、 热处理过程, 将其木材堆垛好后, 在木材垛顶 加重物 ,用叉车把垛好的木材堆放到蒸汽加热顶风型干燥窑中烘干干 燥, 控制其水分在 8 ~ 12 %左右。 用威力四面刨铣机(型号: U2 3EL) 对烘干后的块状木材表面进行抛光,选择一个抛光的表面作为待压实 面, 使得所述的抛光面与木材的纤维方向平行。将所得抛光的厚度为 25mm木材放入三层热压机中, 所述的热压机与木材待压缩面相对的 热压板的温度为 140 °C , 热压机与木材的非压缩面相对的压板的温度 差大于 1 00 °C , 控制热压板的压合速度为 4匪 / s , 压缩热压机中的木 材至 21mm厚, 压合时热压机的压强约为 15MPa , 压合完成后, 将两 压板温度差缩小, 或者保持一致, 并保压保温 30分钟, 结束后緩慢 泄压, 所得木材置室内自然冷却。 冷却后的木材放入炭化窑中, 所述 的炭化窑就是处于充满过热水蒸汽条件的高温容器。 先升温到 1 35 °C 的条件下进行预炭化热处理 4小时,然后再把炭化的加热介质高温过 热水蒸气升到 170 °C对木材炭化 3小时。 采用高压辊涂装技术, 使低粘度 UV树脂在 IMpa的压力下挤 压渗透入压缩层 0. 1匪左右, 经 UV固化后, 使压缩层再次增强。 这些树脂增强层还能起到隔离压缩层与外界的水份交换, 再次固化 压缩层, 并提高木材稳定性。
木材的含水率调整可以这样进行: 将木材置于调湿控制室中, 在调湿控制室中放置 3 ~ 5 天后取出, 所述调湿控制室内的相对湿 度为 90%左右, 温度为 50 °C左右。 取出后, 木材的含水率为 8 ~ 12 %左右。 将水分调节完毕的木材陈放一段时间, 再对其进行企口、 表面砂光、 表面涂饰等步骤即可得实木地板。 上述木地板被压缩的 表面向内 2匪厚部分硬度显著增强。 图 1是本实施例的压缩层的剖 面电子显敫镜照片, 可以看出, 其纤维间隙空间几乎被全部压缩, 因此其硬度高、能够满足各种地板的强度要求,克服了软材的缺陷。 地板的自然层的纤维结构松散, 能起到较好的吸音、 防震作用, 脚 感好, 继承了软材的优点。
木地板经过炭化处理, 其表面呈黄色, 颜色均勾一致, 其吸 湿能力显著下降, 在使用时其平衡含水率稳定在 8 ~ 12%。压缩层的 漆膜硬度为 2H ~ 6H。
实施例 2 : —种杨木速生材地板的制造方法, 选取速生材为杨 木实木的素材, 通过制材锯制成具批量的同规格木材锯材, 便于后 期的烘干和处理过程。制材后的杨木材成块状,将其木材堆垛好后, 在木材垛顶加重物, 用叉车把垛好的木材垛放到蒸汽加热顶风型干 燥窑中烘干干燥,控制其水分在 6 ~ 7 %左右。用威力四面刨铣机 (型 号: U23 EL)对烘干后的块状木材表面进行抛光, 选择一个抛光的 表面作为待压实面, 使得所述的抛光面与木材的纤维方向平行。 将 所得抛光的厚度为 30mm木材放入三层热压机中, 所述的热压机与 木材待压缩面相对的热压板的温度为 200°C, 热压机与木材的非压 缩面相对的压板的温度差大于 130°C以上, 控制热压板的压合速度 为 0.6mm/ s, 压缩热压机中的木材至 24mm厚, 压合时热压机的压强 约为 18MPa, 压合完成后, 然后使上下压板的温度一致, 保压保温 120分钟, 结束后緩慢泄压, 所得木材置室内自然冷却。 冷却后的 木材放入带压炭化罐中, 在炭化罐中首先进行预炭化, 炭化罐中压 力为 0.15 ~ 0. 3Mpa, 在 135°C预炭化 3小时。 预炭化结束后再升温 到 180°C, 继续炭化 3小时后,经降温调湿出窑, 调湿即调整木材的 含水率为 6 ~ 10%。
取出后, 在室内陈放一段时间, 再对其进行企口、 表面砂光、 表面涂饰等步骤即可得实木地板。
所述的表面涂饰采用高压辊涂装技术, 使低粘度 UV树脂在 0.5Mpa的压力下挤压渗透入压缩层 0.15匪左右, 经 UV固化后, 使 压缩层再次增强。 这些树脂增强层还能起到隔离压缩层与外界的水 份交换, 再次固化压缩层, 并提高木材稳定性。
上述木地板被压缩的表面向内 2.5匪厚部分硬度显著增强, 压缩层的纤维间隙空间几乎被全部压缩, 因此其硬度高、 能够满足 各种地板的强度要求, 克服了速生材的缺陷。 地板的自然层的纤维 结构松散, 能起到较好的吸音、 防震作用, 脚感好, 继承了速生材 的优点。 压缩层的漆膜硬度为 2H~ 6H。
实施例 3 ~ 5: 与实施例 1不同的地方都列在下表中 项目 实施例 1 实施例 2 实施例 3 实施例 4 实施例 5 素材 南方松 杨木 杉木 马尾松 泡桐 热压机压力 15Mpa 18Mpa lOMpa 16Mpa 6Mpa 热压机压板温度 140°C 200°C 170°C 150°C 190°C 压缩距离 4 mm 6 mm 6 mm 3 mm 2 mm 压缩层厚度 3 mm 4 mm 4 mm 2 mm 0.6mm 压缩后保温、 保压时间 30min 120min 20min 120min lOOmin 预炭化温度 135°C 135°C 140°C 125°C 150°C 预炭化时间 4小时 3小时 2小时 2小时 1小时 炭化温度 170°C 180°C 190°C 210°C 230°C 炭化时间 3小时 3小时 2小时 5小时 1小时 炭化类型 炭化窑 炭化罐 炭化罐 炭化窑 炭化罐 含水率 8 -12% 6- 10% 5 - 7% 6 - 9% 5 - 8%
UV涂装压力 IMpa 0.5Mpa 0.6Mpa 0.7Mpa 0.8Mpa
UV树脂渗入压缩层厚度 0.1mm 0.15mm 0.1mm 0.05mm 0.07mm 表面漆膜硬度 2H-6H 2H-6H 2H~ 6H 2H-5H 2H-4H
500 - 380 ~ 550Kg/ 380 - 550Kg/ 500 ~ 680Kg/ 400 - 整体密度
720Kg/M3 M3 M3 M3 600Kg/ M3
450 - 350 ~ 450Kg/ 320 ~ 420Kg/ 480 ~ 600Kg/ 300 - 素材密度
620Kg/M3 M3 M3 M3 400Kg/ M3
480 - 480 - 400 - 550 - 450 - 压缩层密度
1350Kg/M3 1200Kg/M3 1100Kg/M3 1350Kg/M3 1000Kg/M3 木材耐腐等级 大于 II 大于 II 大于 II 大于 II 大于 II 重量损失 <10% <15% < 12% <14% <8%

Claims

权利要求书
1、 一种表面增强实木型材, 其特征在于: 包括压缩密实层和与之纤 维连接的自然层, 其整体密度为 350 ~ 750kg/m3, 含水率为 5 ~ 12%, 其耐腐等级达 II以上, 重量损失 24%。
2、 根据权利要求 1所述的一种表面增强实木型材, 其特征在于: 压 缩密实层的厚度为 0.6 ~ 4匪, 压缩密实层的密度为自然层密度的 1.3 ~ 3倍。
3、根据权利要求 1或 2所述的一种表面增强实木型材, 其特征在于, 速生材为杨木, 其整体密度为 380 ~ 550kg/m3, 含水率为 6 ~ 12%, 压 缩密实层的厚度为 0.6 ~4匪。
4、根据权利要求 1或 2所述的一种表面增强实木型材, 其特征在于, 速生材为南方松, 其整体密度为 500 ~ 720kg/m3, 含水率为 5 ~11%, 压缩密实层的厚度为 0.6 ~ 3匪。
5、根据权利要求 1或 2所述的一种表面增强实木型材, 其特征在于, 速生材为马尾松, 其整体密度为 480 ~ 680kg/m3, 含水率为 5 ~ 10%, 压缩密实层的厚度为 0.6 ~ 2.5匪。
6、根据权利要求 1 ~ 5所述的一种表面增强实木型材的制造方法, 其 特征在于, 它由以下步骤制得:
( 1 )干燥步骤: 将气干密度小于 700 kg/m3的木材干燥至含水 率为 5 ~ 12%;
(2)压缩步骤: 干燥的木材经表面压缩密实的步骤;
( 3)炭化步骤: 木材经炭化的步骤。
7、 根据权利要求 6所述的一种表面增强实木型材的制造方法, 其特 征在于, 所述的压缩步骤是: 上下压板形成温差, 使木材表层升温软 化, 通过控制热压机的压力为 6 ~ 18Mpa, 使木材表层的 1 ~ 5匪部分 得到压缩, 压缩后使上下压板的温差降低, 然后保温、 保压 20 ~ 120min。
8、 根据权利要求 6所述的一种表面增强实木型材的制造方法, 其特 征在于, 热压机高温压板的温度为 140~ 200°C, 低温压板的温度比 高温压板的温度低 100°C以上。
9、 根据权利要求 6所述的一种表面增强实木型材的制造方法, 其特 征在于, 所述的炭化步骤是在 170~23(TC的条件下对木材进行热处 理 1 ~ 5小时。
10、根据权利要求 6所述的一种表面增强实木型材的制造方法, 其特 征在于, 所述的炭化步骤前还包括一个预炭化步骤, 具体是将木材在 125 ~150°C的温度中炭化 2~4小时。
11、根据权利要求 6所述的一种表面增强实木型材的制造方法, 它还 包括一个在炭化步骤后调整木材的含水率为 5 ~ 12%的步骤。
PCT/CN2010/070453 2009-12-26 2010-02-01 一种表面增强实木型材及其制造方法 WO2011075959A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117008634A KR101350645B1 (ko) 2009-12-26 2010-02-01 표면강화 원목 성형재의 제조방법
JP2011549422A JP5775825B2 (ja) 2009-12-26 2010-02-01 表面強化型天然木型材及びその製造方法
EP10838525.3A EP2517850B1 (en) 2009-12-26 2010-02-01 Preparation method for a solid wood section with reinforced surface
US13/175,903 US8221660B2 (en) 2009-12-26 2011-07-04 Type of surface-reinforced solid wood section material and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101569911A CN102107446B (zh) 2009-12-26 2009-12-26 一种表面增强实木型材及其制造方法
CN200910156991.1 2009-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/175,903 Continuation US8221660B2 (en) 2009-12-26 2011-07-04 Type of surface-reinforced solid wood section material and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2011075959A1 true WO2011075959A1 (zh) 2011-06-30

Family

ID=44171783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070453 WO2011075959A1 (zh) 2009-12-26 2010-02-01 一种表面增强实木型材及其制造方法

Country Status (6)

Country Link
US (1) US8221660B2 (zh)
EP (1) EP2517850B1 (zh)
JP (1) JP5775825B2 (zh)
KR (1) KR101350645B1 (zh)
CN (1) CN102107446B (zh)
WO (1) WO2011075959A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112847705A (zh) * 2020-12-31 2021-05-28 中国热带农业科学院橡胶研究所 一种装饰用实木面层板材制备方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102862198B (zh) * 2011-07-06 2016-05-25 福建秦朝木业科技有限公司 一种阻燃增强实木型材及其改良制造方法
CN102862201A (zh) * 2011-07-06 2013-01-09 潘平 一种速生材阻燃增强实木型材及其制造方法
CN103009448B (zh) * 2011-09-24 2016-08-03 朱林 一种表面阻燃增强实木及其制造方法
CN103009449B (zh) * 2011-09-25 2015-10-28 贵州金鸟木业有限责任公司 一种阻燃压缩实木材及其生产方法
CN102581901A (zh) * 2012-03-16 2012-07-18 开原圣意达木材干燥设备有限公司 一种木材炭化热处理工艺
CN102672771A (zh) * 2012-05-31 2012-09-19 浙江林碳木业科技有限公司 一种木材单面表层密实化处理方法及产品
CN103317567B (zh) * 2013-06-26 2016-01-20 重庆家和琴森木业有限公司 一种炭化复合木的生产方法
CN103552142B (zh) * 2013-10-29 2015-07-22 内蒙古农业大学 一种木材密实干燥炭化一体化处理方法
CN104626313A (zh) * 2014-12-26 2015-05-20 安徽宝庭门业有限公司 一种实木复合门防变形处理方法
CN106217566B (zh) * 2016-08-18 2019-08-20 中国林业科学研究院木材工业研究所 一种木材表层压缩层渐进增厚的生产方法
KR101975653B1 (ko) * 2017-04-18 2019-05-07 서울대학교산학협력단 과열수증기를 이용한 생재 건조-열처리 공정
CN107116627B (zh) * 2017-05-08 2019-10-29 中国林业科学研究院木材工业研究所 木材层状压缩的压缩层位置控制方法
CN107263657A (zh) * 2017-06-07 2017-10-20 中国林业科学研究院木材工业研究所 木材层状压缩的压缩层厚度控制方法
MY195808A (en) * 2017-07-17 2023-02-22 Univ Putra Malaysia A Method of Making Compreg Palm Wood
CN109304781A (zh) * 2017-07-27 2019-02-05 中山市大自然木业有限公司 实木板材的处理方法
CN116117952A (zh) 2017-12-29 2023-05-16 Ahf有限责任公司 用于形成地板组件的方法
CN108638273A (zh) * 2018-03-29 2018-10-12 华南农业大学 一种单侧表层压缩木及其制备方法
CN108673689A (zh) * 2018-03-29 2018-10-19 华南农业大学 一种单侧表层压缩木及其制备方法
CN108638277B (zh) * 2018-06-11 2023-04-18 南京林业大学 一种具有稳定耐久性木质结构材的制备方法及木质结构材
CN108705621A (zh) * 2018-07-25 2018-10-26 嘉善大王椰整体橱柜有限公司 一种抗开裂的免漆生态板及其制作工艺
CN110029791A (zh) * 2019-04-28 2019-07-19 谭宇 一种地暖用竹节式碳化实木地板及其制备方法
CN110281321B (zh) * 2019-05-16 2021-09-03 华南农业大学 一种环保稳定型木材及其表层热改性方法
CN110154169B (zh) * 2019-05-16 2021-05-11 华南农业大学 一种环保单侧表层强化稳定型木材及其制备方法
CN110385759B (zh) * 2019-08-26 2023-12-22 许珍 改性单板生产装置
CN113211587B (zh) * 2021-05-25 2022-03-18 久盛地板有限公司 表层压缩增强超稳定实木地采暖地板板材的生产方法
CN115709504A (zh) * 2022-11-04 2023-02-24 德尔未来科技控股集团股份有限公司 一种划痕或压痕木皮的修复方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB139421A (en) 1919-08-30 1920-03-04 William Oswald Harrap Improvements in or connected with sewing machines
GB194191A (en) 1922-04-25 1923-03-08 Harold Edgar Yarrow Improvements in superheaters for water tube boilers
JPH02227204A (ja) * 1989-02-28 1990-09-10 Sumitomo Ringyo Kk 焼杉板の製造方法
JP2006035792A (ja) * 2004-07-30 2006-02-09 Daiken Trade & Ind Co Ltd 炭化ボードの製造方法
CN101214675A (zh) 2008-01-08 2008-07-09 涂登云 木材热压炭化强化方法
CN101486212A (zh) 2009-02-25 2009-07-22 南京林业大学 压缩炭化杨木三层实木复合地板的生产方法
CN101570031A (zh) * 2009-05-29 2009-11-04 周发荣 木地板炭化加工方法
CN101603623A (zh) 2009-05-29 2009-12-16 浙江世友木业有限公司 表面强化实木型材、地板及其制造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751579B1 (fr) * 1996-07-26 1998-10-16 N O W New Option Wood Procede de traitement du bois a etape de transition vitreuse
KR100272767B1 (ko) * 1998-03-11 2000-12-01 안선태 통나무의 목질의 경도와 강도를 단단하게 하는 압축 가공방법
JP3002197B1 (ja) 1999-02-23 2000-01-24 株式会社山本鉄工所 木質材のプレス圧縮方法とこの方法に使用するプレス装置
JP2001315107A (ja) * 2000-05-12 2001-11-13 Rhombic Corp 炭化材製品及びその製造方法
FI117520B (fi) * 2001-02-09 2006-11-15 Arboreo Technologies Ltd Oy Menetelmä puun käsittelemiseksi ja kuivaamiseksi
KR20030012322A (ko) 2001-07-31 2003-02-12 신명수 목공예용 목재 제조방법
FI114785B (fi) * 2002-06-12 2004-12-31 Jaakko Kause Menetelmä lahon- ja säänkestävän sekä ominaisuuksiltaan jalopuunkaltaisen puutuotteen aikaansaamiseksi
NZ523295A (en) * 2002-12-20 2005-10-28 Jadewood Internat Ltd Forming compressed wood product from softwood by second heating compression step after coating and impregnating with fatty acid
JP4294641B2 (ja) * 2005-12-20 2009-07-15 オリンパス株式会社 木材の加工方法および電子機器用外装体
KR100970112B1 (ko) * 2006-09-26 2010-07-15 (주)엘지하우시스 열처리한 목재를 적용한 대칭구조 마루바닥재 및 그제조방법
CN101007415B (zh) * 2007-01-26 2012-12-19 浙江林学院 软材质实木强化板生产方法
KR100892394B1 (ko) 2008-07-15 2009-04-10 윤진한 합성 목재의 가공 방법
CN201320793Y (zh) 2008-11-20 2009-10-07 陈兆红 一种加工防水地板的压烫机
CN101602623B (zh) 2009-07-14 2012-07-11 武汉诚亿生物制品有限公司 一种微生物有机肥和复混肥及其制作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB139421A (en) 1919-08-30 1920-03-04 William Oswald Harrap Improvements in or connected with sewing machines
GB194191A (en) 1922-04-25 1923-03-08 Harold Edgar Yarrow Improvements in superheaters for water tube boilers
JPH02227204A (ja) * 1989-02-28 1990-09-10 Sumitomo Ringyo Kk 焼杉板の製造方法
JP2006035792A (ja) * 2004-07-30 2006-02-09 Daiken Trade & Ind Co Ltd 炭化ボードの製造方法
CN101214675A (zh) 2008-01-08 2008-07-09 涂登云 木材热压炭化强化方法
CN101486212A (zh) 2009-02-25 2009-07-22 南京林业大学 压缩炭化杨木三层实木复合地板的生产方法
CN101570031A (zh) * 2009-05-29 2009-11-04 周发荣 木地板炭化加工方法
CN101603623A (zh) 2009-05-29 2009-12-16 浙江世友木业有限公司 表面强化实木型材、地板及其制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GU, LIANBAI ET AL.: "Characteristic and Application of Thermowood.", CHINA WOOD-BASED PANELS., 2007, pages 30 - 32, 37, XP008172275 *
See also references of EP2517850A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112847705A (zh) * 2020-12-31 2021-05-28 中国热带农业科学院橡胶研究所 一种装饰用实木面层板材制备方法

Also Published As

Publication number Publication date
CN102107446A (zh) 2011-06-29
CN102107446B (zh) 2013-09-25
KR20120055491A (ko) 2012-05-31
KR101350645B1 (ko) 2014-01-10
US8221660B2 (en) 2012-07-17
US20110262685A1 (en) 2011-10-27
JP2012517364A (ja) 2012-08-02
JP5775825B2 (ja) 2015-09-09
EP2517850A4 (en) 2014-10-22
EP2517850B1 (en) 2015-11-04
EP2517850A1 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
WO2011075959A1 (zh) 一种表面增强实木型材及其制造方法
WO2011075960A1 (zh) 一种木质型材及其制备方法
CN102626941B (zh) 一种速生材表面增强制造方法及其型材
EP2255937B1 (en) Manufacturing method for a surface-strengthened solid wood floor board
CN102555005B (zh) 阻燃实木型材、阻燃实木地板及其生产方法
CN102626940B (zh) 一种实木型材改良方法及其型材
CN109591122B (zh) 一种木质材料真空压缩密实化的方法
CN102229170A (zh) 一种高品质杨木复合材料的制造方法
CN104647500B (zh) 一种橡胶木地热地板加工用浸渍液
US8221894B2 (en) Surface reinforced solid wood profiles, flooring and manufacturing method
US20190255731A1 (en) Reconstituted wood panel with natural wood grain and manufacturing method thereof
CN103009449B (zh) 一种阻燃压缩实木材及其生产方法
CN103009448B (zh) 一种表面阻燃增强实木及其制造方法
CN108340461A (zh) 一种新型重组木制造方法
CN108058254B (zh) 一种杨木缺氧热处理浸渍三聚氰胺尿素甲醛树脂增强处理的方法
CN110666901B (zh) 环保防潮木板及其制备方法和应用
CN101660342B (zh) 实木地板
CN114407150A (zh) 一种环保功能木材的节能制备方法
KR101261812B1 (ko) 열개질가공 나노 무기질 주입 가공처리 집성재 및 그 제조방법
CN102862198A (zh) 一种阻燃增强实木型材及其改良制造方法
CN117901220A (zh) 一种阻燃木墙板及其制备方法和应用
CN113370338A (zh) 一种油热单面表层压缩密实化纯实木地板的制备方法
CN102248559A (zh) 一种阻燃实木复合型材及其制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20117008634

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011549422

Country of ref document: JP

Ref document number: 2010838525

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10838525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE