WO2011074361A1 - Iii族窒化物結晶基板、エピ層付iii族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法 - Google Patents

Iii族窒化物結晶基板、エピ層付iii族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法 Download PDF

Info

Publication number
WO2011074361A1
WO2011074361A1 PCT/JP2010/070290 JP2010070290W WO2011074361A1 WO 2011074361 A1 WO2011074361 A1 WO 2011074361A1 JP 2010070290 W JP2010070290 W JP 2010070290W WO 2011074361 A1 WO2011074361 A1 WO 2011074361A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal substrate
group iii
plane
iii nitride
main surface
Prior art date
Application number
PCT/JP2010/070290
Other languages
English (en)
French (fr)
Inventor
石橋 恵二
祐介 善積
周吾 美濃部
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP10837390.3A priority Critical patent/EP2514858A4/en
Priority to CN2010800576603A priority patent/CN102666945A/zh
Publication of WO2011074361A1 publication Critical patent/WO2011074361A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3202Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
    • H01S5/320275Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth semi-polar orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/04MOCVD or MOVPE
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0287Facet reflectivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2009Confining in the direction perpendicular to the layer structure by using electron barrier layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Definitions

  • the present invention relates to a group III nitride crystal substrate, a group III nitride crystal substrate with an epi layer, and a semiconductor device and a method for manufacturing the same, and particularly, preferably used as a substrate for epitaxial crystal growth of a semiconductor layer in manufacturing a semiconductor device.
  • Group III nitride crystal substrate preferably used as a substrate for epitaxial crystal growth of a semiconductor layer in manufacturing a semiconductor device.
  • nitride semiconductor crystals for example, group III nitride semiconductor crystals
  • nitride semiconductor light emitting devices for example, Group III nitride semiconductor light-emitting devices
  • a plurality of nitride semiconductor layers are epitaxially grown on a substrate.
  • the crystal quality of the epitaxially grown nitride semiconductor layer is affected by the state of the surface layer of the substrate used for the epitaxial growth, and affects the performance of the semiconductor device including the nitride semiconductor layer. Therefore, when a nitride semiconductor crystal is used as such a substrate, it is desirable that at least the main surface of the substrate serving as the base for epitaxial growth does not contain distortion and is smooth.
  • the main surface of the nitride semiconductor substrate used for epitaxial growth is generally subjected to smoothing processing and distortion removal processing.
  • the gallium nitride semiconductor is relatively hard among the compound semiconductors, and the surface smoothing process is not easy, and the distortion removing process after the smoothing process is not easy.
  • Patent Document 1 when a substrate is produced from an (AlGaIn) N bulk crystal grown by vapor phase epitaxy on an (AlGaIn) N seed crystal, the surface of the substrate polished mechanically is used. A method of forming a substrate surface having an RMS (root mean square) surface roughness of 1 nm or less by removing surface damage by performing CMP (Chemical Mechanical Polishing), etching or the like on the substrate is disclosed.
  • the CMP treating agent includes Al 2 O 3 abrasive grains, SiO 2 abrasive grains, a pH adjuster, and an oxidizing agent.
  • a GaN substrate having a substrate surface finished by removing a work-affected layer during mechanical polishing is obtained by mechanically polishing a GaN crystal and then performing CMP treatment or dry etching.
  • the CMP process has a low processing speed and has a problem in cost and productivity.
  • dry etching there is a problem of surface roughness.
  • the finishing method by CMP of the Si substrate and the polishing agent in that method are not suitable for a hard nitride semiconductor substrate, and slow the removal rate of the surface layer.
  • GaN is chemically stable and difficult to perform wet etching, so that CMP processing is not easy.
  • the surface of the nitride semiconductor can be removed by dry etching, there is no effect of flattening the surface in the horizontal direction, so that surface smoothing cannot be obtained.
  • Patent Document 3 a nitride crystal substrate and a semiconductor device using the substrate are subjected to CMP under predetermined conditions after mechanically polishing a GaN crystal or an AlN crystal, Nitride in which at least one of uniform strain, non-uniform strain and plane orientation deviation of crystal surface layer evaluated by X-ray diffraction measurement changing X-ray penetration depth from the surface of the crystal is within a predetermined range It has been proposed that a crystal substrate is suitable for the manufacture of semiconductor devices.
  • the substrates exemplified in the above-mentioned US Pat. No. 6,596,079 (Patent Document 1), US Pat. No. 6,488,767 (Patent Document 2) and JP-A-2007-005526 (Patent Document 3) are as follows: These are hexagonal wurtzite group III nitride crystals, and their main surface is the (0001) plane.
  • the main surface of the semiconductor layer is also the (0001) plane, and the (0001) plane is Since it is a polar surface whose polarity changes in the normal direction of the surface, the blue confinement of emission due to the increase in current injection amount increases due to the quantum confined Stark effect caused by piezo polarization due to such polarity, and the emission intensity decreases.
  • the polarity of the main surface of the substrate used for manufacturing the light emitting device is reduced, that is, the main surface of the substrate is a surface other than the (0001) plane. It is necessary to.
  • the substrate suitable for manufacturing a light emitting device in which the blue shift of light emission is suppressed the plane orientation of the main surface, the surface roughness of the main surface, the crystallinity of the surface layer, etc. are completely unknown.
  • the present invention provides a group III nitride crystal substrate, a group III nitride crystal substrate with an epi layer, a semiconductor device, and a method for manufacturing the same suitable for manufacturing a light emitting device in which blue shift of light emission is suppressed. Objective.
  • the group III nitride crystal substrate according to an aspect of the present invention changes the X-ray penetration depth from the main surface of the crystal substrate while satisfying the X-ray diffraction conditions of any specific parallel crystal lattice plane of the group III nitride crystal substrate.
  • the plane spacing at the X-ray penetration depth of 0.3 ⁇ m is expressed as d 1 and the plane spacing at the X-ray penetration depth of 5 ⁇ m is expressed as d 2.
  • / d 2 is 1.7 ⁇ 10 ⁇ 3 or less, and the plane orientation of the main surface is c It has an inclination angle of ⁇ 10 ° to 10 ° in the [0001] direction from the plane including the axis.
  • the group III nitride crystal substrate according to another aspect of the present invention has an X-ray penetration depth from the main surface of the crystal substrate while satisfying the X-ray diffraction conditions of any specific parallel crystal lattice plane of the group III nitride crystal substrate.
  • the half-value width v 1 of the diffraction intensity peak at an X-ray penetration depth of 0.3 ⁇ m and the diffraction intensity peak at an X-ray penetration depth of 5 ⁇ m The non-uniform distortion of the surface layer of the crystal substrate represented by the value of
  • the group III nitride crystal substrate according to still another aspect of the present invention changes the X-ray penetration depth from the main surface of the crystal substrate with respect to the X-ray diffraction of any specific parallel crystal lattice plane of the group III nitride crystal substrate.
  • is 300 arcsec or less, and the plane orientation of the main surface is [0001] from the plane including the c-axis of the crystal substrate.
  • the direction has an inclination angle of ⁇ 10 ° to 10 °.
  • the main surface can have a surface roughness Ra of 5 nm or less.
  • the plane orientation of the main surface is such that the tilt angle is 0 ° or more and 0.1 ° with respect to any of the ⁇ 10-10 ⁇ , ⁇ 11-20 ⁇ , and ⁇ 21-30 ⁇ planes of the crystal substrate. Less than or substantially parallel.
  • the plane orientation of the main surface is such that the tilt angle from any one of the ⁇ 10-10 ⁇ plane, ⁇ 11-20 ⁇ plane and ⁇ 21-30 ⁇ plane of the crystal substrate is 0.1 ° or more and 10 ° or less. It can be.
  • the concentration of oxygen present on the main surface can be 2 atomic% or more and 16 atomic% or less.
  • the dislocation density on the main surface can be set to 1 ⁇ 10 7 cm ⁇ 2 or less.
  • the group III nitride crystal substrate can have a diameter of 40 mm or more and 150 mm or less.
  • the group III nitride crystal substrate with an epi layer includes at least one semiconductor layer formed by epitaxial growth on the main surface of the group III nitride crystal substrate.
  • a semiconductor device includes the above-described group III nitride crystal substrate with an epi layer.
  • the semiconductor layer included in the group III nitride crystal substrate with an epi layer may include a light emitting layer that emits light having a peak wavelength of 430 nm or more and 550 nm or less.
  • a method for manufacturing a semiconductor device wherein an X-ray penetration depth from a main surface of a crystal substrate is set while satisfying an X-ray diffraction condition of an arbitrary specific parallel crystal lattice plane of a group III nitride crystal substrate.
  • the plane spacing at the X-ray penetration depth of 0.3 ⁇ m is represented as d 1
  • the plane spacing at the X-ray penetration depth of 5 ⁇ m is represented as d 2 .
  • / d 2 is 1.7 ⁇ 10 ⁇ 3 or less, and the plane orientation of the main surface is c of the crystal substrate.
  • a method for manufacturing a semiconductor device wherein an X-ray penetration depth from a main surface of a crystal substrate is set while satisfying an X-ray diffraction condition of an arbitrary specific parallel crystal lattice plane of a group III nitride crystal substrate.
  • the half-value width v 1 of the diffraction intensity peak at an X-ray penetration depth of 0.3 ⁇ m and the diffraction intensity peak at an X-ray penetration depth of 5 ⁇ m The non-uniform strain of the surface layer of the crystal substrate expressed by the value of
  • a method for manufacturing a semiconductor device by changing an X-ray penetration depth from a main surface of a crystal substrate with respect to X-ray diffraction of an arbitrary specific parallel crystal lattice plane of a group III nitride crystal substrate.
  • the semiconductor layer includes a light emitting layer, and the light emitting layer emits light having a peak wavelength of 430 nm or more and 550 nm or less. Can be formed.
  • the group III nitride crystal substrate suitable for manufacture of the light-emitting device with which the blue shift of light was suppressed and emitted light intensity increased the group III nitride crystal substrate with an epi layer, a semiconductor device, and its manufacturing method can be provided.
  • FIG. 3B is a schematic diagram showing the spacing between specific parallel crystal lattice planes in the diffraction intensity profile of the X-ray diffraction method related to the uniform strain of the crystal lattice of the group III nitride crystal substrate of FIG. 3A.
  • Group III nitride crystal substrate In crystal geometry, crystal axes are set to describe a crystal system. In a hexagonal crystal such as a group III nitride crystal forming a group III nitride crystal substrate, an a 1 axis, an a 2 axis and three axes extending in three directions at an angle of 120 ° from the origin on the same plane a 3 axis, c axis perpendicular to the plane including these three axes is set.
  • a plane including at least one of the a 1 axis, a 2 axis, a 3 axis, and c axis or a plane parallel to the plane has no intercept of those axes, and the Miller index corresponding to these axes is 0. It is represented by For example, the plane orientation of the plane including the c axis and the plane parallel to the c axis is represented by (hki0), and examples thereof include (10-10), (11-20), and (21-30).
  • This plane (hkil) plane is called (hkil) plane.
  • the individual plane orientation is represented by (hkil)
  • the generic plane orientation including (hkil) and the plane orientation equivalent to the crystal geometry is represented by ⁇ hkil ⁇ .
  • each direction is represented by [hkil], and [hkil] and a direction including a crystal geometrically equivalent direction is represented by ⁇ hkil>.
  • Negative indices are generally expressed by adding “-” (bar) on the number representing the index in the crystal geometry, but in this specification, before the number representing the index. Represented with a negative sign (-).
  • the group III nitride crystal has polarity in the ⁇ 0001> direction because the group III element atomic plane and the nitrogen atomic plane are alternately arranged in the ⁇ 0001> direction.
  • the crystal axes are set so that the group III element atomic plane is the (0001) plane and the nitrogen atomic plane is the (000-1) plane.
  • the crystallinity in the surface layer of the group III nitride crystal substrate can be directly evaluated without destroying the crystal.
  • the evaluation of crystallinity means evaluating the degree of crystal distortion, and specifically, evaluating the degree of crystal lattice distortion and crystal plane misalignment. That means.
  • the crystal lattice distortion includes a uniform strain in which the crystal lattice is uniformly distorted and a non-uniform strain in which the crystal lattice is distorted non-uniformly.
  • the crystal orientation deviation of the crystal lattice plane refers to the magnitude of variation in which the plane orientation of the lattice plane of each crystal lattice is deviated from the average orientation of the plane orientation of the crystal plane of the entire crystal lattice.
  • a group III nitride crystal substrate 1 is formed by cutting a group III nitride crystal from a main surface 1s of the crystal substrate by processing such as cutting, grinding or polishing from a group III nitride crystal body. At least one of a uniform distortion, a non-uniform distortion and a plane orientation deviation of the crystal lattice occurs (FIG. 1 shows a case where a uniform distortion, a non-uniform distortion and a plane orientation deviation of the crystal lattice occur in the surface layer 1p. ).
  • the surface adjacent layer 1q adjacent to the surface layer 1p may have at least one of a uniform distortion of the crystal lattice, a non-uniform distortion of the crystal lattice, and a plane orientation shift of the crystal lattice (FIG. 1 shows the surface adjacent layer 1q). This shows the case where the crystal lattice is misaligned.) Further, the inner layer 1r inside the surface adjacent layer 1q is considered to have the original crystal structure of the crystal. The state and thickness of the surface layer 1p and the surface adjacent layer 1q vary depending on the grinding or polishing method and degree in the surface processing.
  • the crystallinity of the surface layer can be directly and reliably evaluated by evaluating the uniform strain, nonuniform strain and / or plane orientation deviation of the crystal lattice in the depth direction from the main surface of the crystal substrate. it can.
  • the X-ray diffraction measurement for evaluating the crystallinity of the surface layer of the group III nitride crystal substrate is performed while satisfying the X-ray diffraction conditions of any specific parallel crystal lattice plane of the group III nitride crystal substrate.
  • the X-ray penetration depth from the main surface is changed.
  • the X-ray penetration depth refers to the distance in the vertical depth direction from the main surface 1s of the crystal substrate when the intensity of the incident X-ray is 1 / e (e is the base of natural logarithm).
  • this X-ray penetration depth T corresponds to the X-ray absorption coefficient ⁇ of group III nitride crystal substrate 1, the tilt angle ⁇ of main surface 1s of the crystal substrate, and the main surface 1s of crystal substrate.
  • the X-ray incident angle ⁇ and the Bragg angle ⁇ are expressed as in Expression (1).
  • the ⁇ axis 21 is in the plane formed by the incident X-ray 11 and the outgoing X-ray 12, and the ⁇ axis 22 (2 ⁇ axis) is perpendicular to the plane formed by the incident X-ray 11 and the outgoing X-ray 12.
  • the ⁇ axis 23 is perpendicular to the main surface 1s of the crystal substrate.
  • the rotation angle ⁇ indicates the rotation angle within the main surface 1s of the crystal substrate.
  • the X-ray penetration depth T can be continuously set. Can be changed.
  • the specific parallel crystal lattice plane 1d and the main surface 1s of the crystal substrate are not parallel. It is necessary. If the specific parallel crystal lattice plane and the main surface of the crystal substrate are parallel, the Bragg angle ⁇ , which is an angle between the specific parallel crystal lattice plane 1d and the incident X-ray 11, and the main surface 1s of the crystal substrate and the incident X-ray 11 The X-ray incident angle ⁇ , which is the angle formed by the above, becomes the same, and the X-ray penetration depth cannot be changed in the specific parallel crystal lattice plane 1d.
  • the specific parallel crystal lattice plane is not particularly limited except that it is not parallel to the main surface of the crystal substrate, but from the viewpoint of easy evaluation by X-ray diffraction at a desired penetration depth ( 10-10) plane, (10-11) plane, (10-13) plane, (10-15) plane, (11-20) plane, (22-41) plane, (11-21) plane, (11 ⁇ 22), (11-24), (10-1-1), (10-1-3), (10-1-5), (22-4-1), (11 The (2-1) plane, (11-2-2) plane, (11-2-4) plane, etc. are preferably used.
  • the X-ray penetration depth is changed to irradiate an arbitrary specific parallel crystal lattice plane of the crystal substrate with X-rays, and the uniform distortion of the crystal lattice is determined from the change in the interplanar spacing in the diffraction intensity profile for the specific parallel crystal lattice plane.
  • the crystal lattice non-uniform distortion is evaluated from the change in half-value width of the diffraction intensity peak in the diffraction intensity profile, and the plane orientation shift of the crystal lattice is evaluated from the change in half-value width of the diffraction intensity peak in the rocking curve.
  • the plane orientation of main surface 1s is ⁇ 10 ° in the [0001] direction from plane 1v including c-axis 1c of the crystal substrate.
  • the inclination angle ⁇ is not less than 10 °.
  • the plane orientation of the main surface 1s is inclined from the plane 1v including the c axis toward the [0001] direction, that is, the (0001) plane, and the inclination angle ⁇ is negative.
  • the plane orientation of the main surface 1s is inclined from the plane 1v including the c-axis toward the [000-1] direction, that is, the (000-1) plane.
  • the plane orientation of the main surface 1s of the group III nitride crystal substrate 1 has an inclination angle of ⁇ 10 ° to 10 ° in the [0001] direction from the surface 1v including the c-axis 1c of the crystal substrate.
  • a light-emitting device that is a semiconductor device including at least one semiconductor layer epitaxially grown on the main surface, the piezoelectric polarization of the light-emitting layer in the semiconductor layer is suppressed, and the quantum confined Stark effect is reduced. Since recombination becomes easy and the light emission transition probability increases, the blue shift of the light emitting device is reduced and the integrated intensity of light emission is increased.
  • the inclination angle ⁇ of the plane orientation of the main surface 1s from the plane 1v including the c-axis 1c to the [0001] direction in the group III nitride crystal substrate is preferably ⁇ 9 ° to 9 °, and ⁇ 6 ° It is more preferably 6 ° or less and more preferably ⁇ 3 ° or more and 3 ° or less.
  • the inclination angle ⁇ of the surface orientation of the main surface can be measured by an X-ray diffraction method or the like.
  • a group III nitride crystal substrate 1 is an arbitrary parallel crystal lattice of group III nitride crystal substrate 1.
  • the plane spacing of the specific parallel crystal lattice plane 1d obtained from the X-ray diffraction measurement changing the X-ray penetration depth from the main surface 1s the plane spacing at the X-ray penetration depth of 0.3 ⁇ m is d 1 (plane spacing d 1 and so on), and the surface spacing at the X-ray penetration depth of 5 ⁇ m is expressed as d 2 (surface spacing d 2 , the same shall apply hereinafter) as a value of
  • the uniform distortion of the surface layer 1p of the crystal substrate to be formed is 1.7 ⁇ 10 ⁇ 3 or less, and the plane orientation of the main surface 1s has an inclination angle ⁇ of ⁇ 10 ° to 10 ° in the [0001] direction from the plane 1v including the c-axis 1c of the crystal substrate.
  • the group III nitride crystal substrate 1 of the present embodiment has a uniform distortion of the surface layer 1p of 1.7 ⁇ 10 ⁇ 3 or less and a [0001] direction from the surface 1v including the c-axis 1c of the crystal substrate.
  • a light emission which is a semiconductor device including at least one semiconductor layer epitaxially grown on the main surface 1s of the crystal substrate when the inclination angle ⁇ of the surface orientation of the main surface 1s to the substrate is ⁇ 10 ° to 10 ° It is possible to reduce the blue shift of the device and increase the integrated intensity of light emission.
  • the uniform strain of the surface layer 1p is preferably 1.2 ⁇ 10 ⁇ 3 or less, more preferably 1.0 ⁇ 10 ⁇ 3 or less, further preferably 0.8 ⁇ 10 ⁇ 3 or less, 0.5 ⁇ 10 ⁇ 3 or less is particularly preferable.
  • the uniform distortion of the surface layer 1p is preferably as small as possible, and in this application as well, it is reduced to about 0.1 ⁇ 10 ⁇ 3 by adjusting the processing conditions of the main surface of the crystal substrate, as will be described later. ing.
  • the inclination angle ⁇ of the plane orientation of the main surface 1s is preferably ⁇ 8 ° or more and 8 ° or less, more preferably ⁇ 5 ° or more and 5 ° or less, further preferably ⁇ 2 ° or more and 2 ° or less, and ⁇ 1.5 It is particularly preferably from 0 ° to 0.1 ° or from 0.1 ° to 1.5 °.
  • the X-ray penetration depth of 0.3 ⁇ m corresponds to the distance from main surface 1s of group III nitride crystal substrate 1 to surface layer 1p, and the X-ray penetration depth of 5 ⁇ m is III. This corresponds to the distance from main surface 1s of group nitride crystal substrate 1 to the inside of inner layer 1r.
  • the interplanar spacing d 2 at the X-ray penetration depth of 5 ⁇ m is considered to be the spacing of the specific parallel crystal lattice plane inherent in the group III nitride crystal.
  • the interplanar spacing d 1 at 3 ⁇ m is uniform in the crystal lattice of the surface layer 1p due to the influence of the surface processing of the group III nitride crystal substrate 1 (for example, tensile stress 30 in a direction parallel to the specific parallel crystal lattice surface 1d). Reflecting the distortion, it takes a value different from the surface spacing d 2 at the X-ray penetration depth of 5 ⁇ m.
  • group III nitride crystal substrate 1 is an arbitrary parallel crystal of group III nitride crystal substrate 1.
  • the crystal substrate while satisfying the X-ray diffraction conditions of the lattice plane 1d (referred to as specific parallel crystal lattice planes 1d formed by the specific parallel crystal lattice planes 41d, 42d, and 43d of each crystal lattice; the same applies hereinafter).
  • the plane orientation of the surface 1s has a [0001] inclination angle of -10 ° to 10 ° in the direction ⁇ from the plane 1v including c-axis 1c of the crystal substrate.
  • the group III nitride crystal substrate 1 of this embodiment has a nonuniform strain of the surface layer 1p of 110 arcsec or less, and the main surface 1s in the [0001] direction from the plane 1v including the c-axis 1c of the crystal substrate.
  • the tilt angle ⁇ of the plane orientation is ⁇ 10 ° or more and 10 ° or less
  • the blue shift of the light-emitting device which is a semiconductor device including at least one semiconductor layer epitaxially grown on the main surface 1s of the crystal substrate is reduced.
  • the integrated intensity of light emission can be increased.
  • the nonuniform strain of the surface layer 1p is preferably 70 arcsec or less, more preferably 50 arcsec or less, and further preferably 20 arcsec or less.
  • the non-uniform distortion of the surface layer 1p is preferably as small as possible, and in this application as well, it is reduced to 0 arcsec by adjusting the processing conditions of the main surface of the crystal substrate, as will be described later.
  • the inclination angle ⁇ of the surface orientation of the main surface 1s is preferably ⁇ 7 ° or more and 7 ° or less, more preferably ⁇ 4 ° or more and 4 ° or less, further preferably ⁇ 1 ° or more and 1 ° or less, and more preferably ⁇ 1 ° or more. -0.1 ° or less or 0.1 ° or more and 1 ° or less is particularly preferable.
  • the X-ray penetration depth of 0.3 ⁇ m corresponds to the distance from main surface 1s of group III nitride crystal substrate 1 to surface layer 1p, and the X-ray penetration depth of 5 ⁇ m is III. This corresponds to the distance from main surface 1s of group nitride crystal substrate 1 to the inside of inner layer 1r.
  • the half-value width v 2 of the diffraction intensity peak at the X-ray penetration depth of 5 ⁇ m is considered to be the original half-value width of the group III nitride crystal, but at the X-ray penetration depth of 0.3 ⁇ m.
  • the half-value width v 1 of the diffraction intensity peak is a non-uniform distortion of the crystal lattice of the surface layer 1p due to the influence of the surface processing of the group III nitride crystal substrate 1 (for example, the spacing between the crystal lattice planes is d 3 , d 4 reflecting the different) and ⁇ d 5, d 6, take half width v 2 different values of the diffraction intensity peak at the X-ray penetration depth of 5 [mu] m.
  • the uneven strain of the surface layer 1p can be expressed by the value of
  • group III nitride crystal substrate 1 which is another embodiment of the present invention is an arbitrary parallel crystal of group III nitride crystal substrate 1.
  • the main surface of the crystal substrate with respect to the X-ray diffraction of the lattice plane 1d (referring to the specific parallel crystal lattice plane 1d formed by the specific parallel crystal lattice planes 51d, 52d, 53d of each crystal lattice; the same applies hereinafter).
  • the half-value width w 1 of the diffraction intensity peak at an X-ray penetration depth of 0.3 ⁇ m and the diffraction intensity peak at an X-ray penetration depth of 5 ⁇ m The plane orientation deviation of the specific parallel crystal lattice plane of the surface layer 1p of the crystal substrate expressed by the value of
  • the plane orientation deviation of the specific parallel crystal lattice plane of the surface layer 1p is 300 arcsec or less, and from the plane 1v including the c-axis 1c of the crystal substrate [0001]
  • the semiconductor device includes at least one semiconductor layer epitaxially grown on the main surface 1s of the crystal substrate when the inclination angle ⁇ of the surface orientation of the main surface 1s in the direction is ⁇ 10 ° to 10 °.
  • the blue shift of the light emitting device can be reduced and the integrated intensity of light emission can be increased.
  • the plane orientation deviation of the specific parallel crystal lattice plane of the surface layer 1p is preferably 220 arcsec or less, more preferably 140 arcsec or less, and further preferably 70 arcsec or less.
  • the specific crystal of the surface layer 1p is preferably as small as possible. Also in the present application, as will be described later, by adjusting the processing conditions of the main surface of the crystal substrate, the specific crystal is reduced to 0 arcsec.
  • the inclination angle ⁇ of the plane orientation of the main surface 1s is preferably ⁇ 8 ° or more and 8 ° or less, more preferably ⁇ 5 ° or more and 5 ° or less, further preferably ⁇ 2 ° or more and 2 ° or less, and ⁇ 1.5 It is particularly preferably from 0 ° to 0.1 ° or from 0.1 ° to 1.5 °.
  • the X-ray penetration depth of 0.3 ⁇ m corresponds to the distance from main surface 1s of group III nitride crystal substrate 1 to surface layer 1p, and the X-ray penetration depth of 5 ⁇ m is III. This corresponds to the distance from main surface 1s of group nitride crystal substrate 1 to the inside of inner layer 1r.
  • the half-value width w 2 of the diffraction intensity peak at the X-ray penetration depth of 5 ⁇ m is considered to be the original half-value width of the group III nitride crystal, but at the X-ray penetration depth of 0.3 ⁇ m.
  • the full width at half maximum w 1 of the diffraction intensity peak is the crystal orientation misalignment of the surface layer 1p due to the surface processing of the group III nitride crystal substrate 1 (for example, specific parallel crystal lattice planes 51d, 52d, 53d of each crystal lattice).
  • specific parallel crystal lattice planes 51d, 52d, 53d of each crystal lattice are different from the full width at half maximum w 2 at the X-ray penetration depth of 5 ⁇ m.
  • the plane orientation deviation of the specific parallel crystal lattice plane of the crystal surface layer can be expressed by the value of
  • main surface 1s preferably has a surface roughness Ra of 5 nm or less.
  • the surface roughness Ra means the arithmetic average roughness Ra specified in JIS B 0601-1994.
  • Such surface roughness Ra can be measured by an AFM (atomic force microscope), an optical interference type roughness meter, or the like.
  • AFM atomic force microscope
  • an optical interference type roughness meter or the like.
  • the surface roughness Ra of the main surface of the group III nitride crystal substrate is more preferably 3 nm or less, and further preferably 1 nm or less.
  • the surface roughness Ra of the main surface of the group III nitride crystal substrate is preferably 1 nm or more. Therefore, from the viewpoint of achieving both high quality and high productivity of the group III nitride crystal substrate and the semiconductor device, the surface roughness Ra of the main surface of the group III nitride crystal substrate is preferably 1 nm to 3 nm.
  • the main surface 1s preferably has a surface roughness Ry of 50 nm or less.
  • the surface roughness Ry means the maximum height Ry defined in JIS B 0601-1994.
  • the surface roughness Ry is extracted from the roughness curved surface by a 10 ⁇ m square as a reference area in the direction of the average surface. This is the sum of the height from the average surface of the extracted portion to the highest peak and the depth to the lowest valley bottom.
  • Such surface roughness Ry can be measured by an AFM (atomic force microscope), an optical interference roughness meter, or the like.
  • the surface roughness Ry of the main surface of the group III nitride crystal substrate is more preferably 30 nm or less, and further preferably 10 nm or less. Moreover, 10 nm or more and 30 nm or less are preferable from a viewpoint of making high quality and high productivity compatible.
  • the plane orientation of main surface 1s is the plane 1v including c-axis 1c of the crystal substrate.
  • the inclination angle ⁇ from any one of the ⁇ 10-10 ⁇ plane, ⁇ 11-20 ⁇ plane, and ⁇ 21-30 ⁇ plane is preferably 0 ° or more and 10 ° or less.
  • the inclination angle ⁇ is 0 ° or more and less than 0.1 ° with respect to any of the ⁇ 10-10 ⁇ , ⁇ 11-20 ⁇ , and ⁇ 21-30 ⁇ planes of the main surface 1s. Is substantially parallel, the In (indium) uptake concentration in the well layer in the light emitting layer included in at least one semiconductor layer epitaxially grown on the main surface 1s can be increased. Growth of a desired composition can be performed without lowering, and the crystallinity of the well layer can be improved. For this reason, the light-emitting device (semiconductor device) obtained has a favorable light emission characteristic.
  • the plane orientation of the main surface 1s is such that the tilt angle from any one of the ⁇ 10-10 ⁇ plane, ⁇ 11-20 ⁇ plane and ⁇ 21-30 ⁇ plane of the crystal substrate is 0.1 ° or more and 10 ° or less. Even so, as described above, the tilt angle ⁇ is 0 ° with respect to any of the ⁇ 10-10 ⁇ , ⁇ 11-20 ⁇ , and ⁇ 21-30 ⁇ planes of the main surface 1s. As a result, a semiconductor device having good light-emitting characteristics substantially the same as when it is substantially parallel to less than 0.1 ° can be obtained.
  • the plane orientation of the main surface 1s is such that the tilt angle from any one of the ⁇ 10-10 ⁇ plane, ⁇ 11-20 ⁇ plane and ⁇ 21-30 ⁇ plane of the crystal substrate is 0.1 ° or more and 10 ° or less.
  • the morphology of the semiconductor layer to be grown is improved, so that the resulting light emitting device (semiconductor device) has good light emitting characteristics.
  • the tilt angle of the plane orientation of the main surface 1s from any one of the ⁇ 10-10 ⁇ plane, ⁇ 11-20 ⁇ plane, and ⁇ 21-30 ⁇ plane of the crystal substrate is 0.1 ° or more and 2 ° or less.
  • good light emission characteristics can be obtained in a light emitting device which is a semiconductor device by reducing the half width of the light emission peak appearing in the light emission spectrum by improving the crystallinity of the well layer.
  • the plane orientation of the main surface 1s is not less than ⁇ 3 ° and not more than 3 ° in the [0001] direction with respect to any one of the ⁇ 10-10 ⁇ plane, the ⁇ 11-20 ⁇ plane, and the ⁇ 21-30 ⁇ plane. It may have an inclination angle.
  • the inclination angle in the [0001] direction is preferably ⁇ 2 ° or more and ⁇ 0.1 ° or less or 0.1 ° or more and 2 ° or less.
  • the concentration of oxygen present on main surface 1s is 2 atomic% or more and 16 atomic% or less.
  • the oxygen existing on the main surface 1s means oxygen taken in by the main surface 1s being oxidized, oxygen attached to the main surface 1s, and the like.
  • the concentration of oxygen present on main surface 1s of group III nitride crystal substrate 1 is lower than 2 atomic%, the gap between the crystal substrate in the formed semiconductor device and the semiconductor layer formed by epitaxial growth on the crystal substrate. The interface resistance increases, and the integrated intensity of light emission decreases.
  • the concentration of oxygen present on the main surface 1s of the crystal substrate is higher than 16 atomic%, the crystallinity of the semiconductor layer epitaxially grown on the main surface of the crystal substrate is lowered, so that the integrated intensity of light emission is lowered.
  • the concentration of oxygen present on the main surface 1s is more preferably 3 atomic percent or more and 10 atomic percent or less.
  • the concentration of oxygen present on the main surface is measured by AES (Auger atomic spectroscopy), XPS (X-ray photoelectron spectroscopy), or the like.
  • oxygen present on the main surface 1s in the present invention is taken into the main surface 1s by oxygen adhering to the main surface 1s and oxidation of the crystal substrate.
  • dislocation density on main surface 1s is 1 ⁇ 10 7 cm ⁇ 2 or less for group III nitride crystal substrates 1 of the above-described first to third embodiments.
  • the dislocation density at the main surface of the crystal substrate is higher than 1 ⁇ 10 7 cm ⁇ 2 , the crystallinity of the semiconductor layer epitaxially grown on the main surface of the crystal substrate is lowered, so that the integrated intensity of light emission is lowered.
  • the dislocation density on the main surface 1s is more preferably 1 ⁇ 10 6 cm ⁇ 2 or less, and further preferably 1 ⁇ 10 5 cm ⁇ 2 or less. From the viewpoint of increasing cost and efficiency in the production of semiconductor devices, the dislocation density on the main surface 1s is preferably 1 ⁇ 10 2 cm ⁇ 2 or more.
  • the diameter of the group III nitride crystal substrate is preferably 40 mm or more, more preferably 50 mm or more, and even more preferably 75 mm or more.
  • the diameter of the substrate is large, the number of devices that can be manufactured from one substrate increases.
  • the diameter of the base substrate can be increased, a thick crystal can be grown, cut out at a desired angle, and processed.
  • a plurality of substrates of group III nitride crystals having a small diameter are arranged so that their side surfaces are adjacent to each other, and a group III nitride crystal is grown on the main surface of each of the plurality of substrates.
  • the group III nitride crystals are bonded to each other and grown as a single crystal, and the obtained group III nitride crystal can be processed into a large-diameter group III nitride crystal substrate.
  • the diameter of the group III nitride crystal substrate is preferably 150 mm or less, and more preferably 100 mm or less.
  • the shape of the main surface of the group III nitride crystal substrate is not limited to a circle as long as it has a size capable of manufacturing a device, and may be a polygon such as a rectangle.
  • the length of the shortest side is preferably 5 mm or more and more preferably 10 mm or more from the viewpoint of increasing the cost and efficiency in the production of semiconductor devices. Further, from the viewpoint of improving shape accuracy such as reducing warpage and thickness distribution, the length of the longest side is preferably 150 mm or less, and more preferably 100 mm or less.
  • the main surface is, for example, 5 mm ⁇ 15 mm, 10 mm ⁇ 10 mm, 10 mm ⁇ 30 mm, 18 mm ⁇ 18 mm, 30 mm ⁇ 50 mm.
  • the impurity (dopant) added to the group III nitride crystal substrate is not particularly limited, but the following are preferably used from the viewpoint of producing a conductive substrate and an insulating substrate.
  • the specific resistance is 5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm or more and 0.5 ⁇ ⁇ cm or less (preferably 5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm or more and 0.05 ⁇ ⁇ cm or less), and the carrier concentration is 1 ⁇ 10 16 cm ⁇ 3 or more and 1 In an n-type conductive substrate within the range of ⁇ 10 20 cm ⁇ 3 or less (preferably 1 ⁇ 10 17 cm ⁇ 3 or more and 1 ⁇ 10 19 cm ⁇ 3 or less), the crystallinity is maintained and the desired range is maintained.
  • the impurity added to the substrate is preferably O or Si.
  • the impurities added to the substrate are preferably C and Fe.
  • the specific resistance of the substrate can be measured by a four-probe method, a two-probe method, or the like.
  • the carrier concentration of the substrate can be measured by a Hall measurement method, a CV measurement method, or the like.
  • the manufacturing method of the group III nitride crystal substrate of the above-described first to third embodiments is not particularly limited.
  • a step of growing a group III nitride crystal, a group III nitride crystal, The crystal body is cut from a plane including the c-axis in the [0001] direction by cutting out a plurality of planes parallel to a plane having an inclination angle ⁇ in the [0001] direction from the plane including the c-axis to ⁇ 10 ° to 10 °.
  • the production method of the group III nitride crystal is not particularly limited, and includes a vapor phase growth method such as an HVPE (hydride vapor phase growth) method and a sublimation method, a liquid phase growth method such as a flux method and an ammonothermal method.
  • a vapor phase growth method such as an HVPE (hydride vapor phase growth) method and a sublimation method
  • a liquid phase growth method such as a flux method and an ammonothermal method.
  • an HVPE method, a flux, an ammonothermal method, or the like is preferably used for manufacturing a GaN crystal
  • an HVPE method, a sublimation method, or the like is preferably used for manufacturing an AlN crystal.
  • the HVPE method or the like is preferably used for the production of the AlGaN crystal body and the InGaN crystal body.
  • group III nitride crystal In the production of the above group III nitride crystal, there is no particular limitation on the base substrate, but a group III nitride crystal with high crystallinity and small crystal lattice mismatch with the group III nitride crystal is grown. From the point of view, a GaAs substrate, a sapphire substrate, a SiC substrate, or the like is preferably used.
  • the group III nitride crystal produced as described above has a plurality of parallel parallel to a plane having an inclination angle ⁇ in the [0001] direction from the plane including the c-axis of the crystal to ⁇ 10 ° to 10 °.
  • Various cutting methods such as a wire saw, an inner peripheral blade, an outer peripheral blade, laser processing, electric discharge processing, and a water jet, can be used.
  • the main surface processing method for flattening the main surface of the group III nitride crystal substrate formed as described above and reducing the work-affected layer is not particularly limited, but both the surface roughness and the work-affected layer are reduced. From the viewpoint of reduction, it is preferable to perform chemical mechanical polishing (CMP) after mechanical processing of either grinding or mechanical polishing.
  • CMP chemical mechanical polishing
  • the main surface can be modified by annealing before the semiconductor layer is epitaxially grown. Annealing before the growth of the semiconductor layer rearranges the crystals in the surface layer of the crystal substrate, thereby enabling the epitaxial growth of the semiconductor layer with good crystallinity.
  • the relationship between the pH value X and the oxidation-reduction potential value Y (mV) has the following formulas (2) and (3): Y ⁇ ⁇ 50X + 1400 (2) Y ⁇ ⁇ 50X + 1700 (3) Is preferably satisfied.
  • Y ⁇ 50X + 1400 the polishing rate becomes low, and the mechanical load during CMP increases, so that the surface quality of the group III nitride crystal substrate decreases.
  • Y> ⁇ 50X + 1700 the corrosive action on the polishing pad and the polishing apparatus becomes large, and stable polishing becomes difficult.
  • acids such as hydrochloric acid, sulfuric acid, and nitric acid, and alkalis such as KOH and NaOH are added to the CMP slurry, but these acids and / or alkali alone oxidize the surface of chemically stable gallium nitride.
  • alkalis such as KOH and NaOH
  • the oxidizing agent added to the CMP slurry is not particularly limited, but from the viewpoint of increasing the polishing rate, chlorinated isocyanuric acid such as hypochlorous acid and trichloroisocyanuric acid, and chlorinated isocyanuric acid such as sodium dichloroisocyanurate.
  • chlorinated isocyanuric acid such as hypochlorous acid and trichloroisocyanuric acid
  • chlorinated isocyanuric acid such as sodium dichloroisocyanurate.
  • Salt permanganate such as potassium permanganate, dichromate such as potassium dichromate, bromate such as potassium bromate, thiosulfate such as sodium thiosulfate, nitric acid, sulfuric acid, hydrochloric acid, hydrogen peroxide water Ozone and the like are preferably used.
  • these oxidizing agents may be used independently or may use 2 or more together.
  • the pH of the CMP slurry is preferably 6 or less or 8 or more.
  • the polishing rate can be increased by bringing an acidic slurry having a pH of 6 or less or a basic slurry having a pH of 8 or more into contact with the group III nitride crystal and etching away the work-affected layer of the group III nitride crystal.
  • the pH of the slurry is more preferably 4 or less or 10 or more.
  • the acid and base used to adjust the pH of the slurry for example, inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, citric acid, malic acid, tartaric acid
  • inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, oxalic acid, citric acid, malic acid, tartaric acid
  • organic acids such as succinic acid, phthalic acid, and fumaric acid
  • bases such as KOH, NaOH, NH 4 OH, and amines, salts of the above inorganic acids or organic acids, and salts such as carbonates can be used.
  • pH can also be adjusted by addition of the said oxidizing agent.
  • the CMP slurry preferably contains abrasive grains from the viewpoint of increasing the polishing rate.
  • the polishing rate can be further increased by the abrasive grains.
  • the abrasive grains included in the slurry are not particularly limited, and low-hardness abrasive grains having a hardness lower than the hardness of the group III nitride crystal substrate can be used. By using low-hardness abrasive grains, the surface roughness of the main surface of the crystal substrate and the work-affected layer can be reduced.
  • the low-hardness abrasive grains are not particularly limited as long as they are abrasive grains having a hardness lower than the hardness of the group III nitride crystal as the object to be polished, but SiO 2 , CeO 2 , TiO 2 , MgO, MnO 2 Fe 2 O 3 , Fe 3 O 4 , NiO, ZnO, CoO, Co 3 O 4 , CuO, Cu 2 O, GeO 2 , CaO, Ga 2 O 3 , In 2 O 3 Abrasive grains containing two materials are preferred.
  • the abrasive grains are not limited to oxides containing a single metal element, but are oxides containing two or more metal elements (for example, those having a structure such as ferrite, perovskite, spinel or ilmenite). Also good. Also, nitrides such as AlN, GaN and InN, carbonates such as CaCO 3 and BaCO 3 , metals such as Fe, Cu, Ti and Ni, and carbon (specifically, carbon black, carbon nanotube, C60, etc.) It can also be used.
  • the abrasive grains are secondary particles bonded with primary particles. It is preferable.
  • the ratio (D 2 / D 1 ratio) of the average particle diameter D 2 of the secondary particles to the average particle diameter D 1 of the primary particles is preferably 1.6 or more, and the average particle diameter D 2 of the secondary particles is It is preferably 200 nm or more, and the shape of the secondary particles is preferably at least one of a saddle shape, a block shape, and a chain shape, and the primary particles are chemically formed of fumed silica or colloidal silica.
  • SiO 2 abrasive grains that are bonded secondary particles are preferred.
  • the primary particle diameter can be evaluated from the adsorption specific surface area by the gas adsorption method, and the secondary particles can be evaluated by the dynamic light scattering method.
  • the CMP slurry does not contain abrasive grains from the viewpoint of reducing uniform distortion, non-uniform distortion and / or plane orientation deviation of the surface layer of the group III nitride crystal substrate and further reducing the surface roughness.
  • the pH value X and the oxidation-reduction potential value Y (mV) in the slurry used for CMP are 1.2 ⁇ 10 ⁇ 6 m or more and 1.8 ⁇ 10 ⁇ 6 m or less.
  • the contact coefficient C is more preferably 1.4 ⁇ 10 ⁇ 6 m or more and 1.6 ⁇ 10 ⁇ 6 m or less.
  • the contact coefficient C is expressed by the following formula using the viscosity of the slurry as ⁇ (unit: mPa ⁇ s), the peripheral speed V (unit: m / s) in CMP, and the pressure P (unit: kPa) in CMP. 5)
  • C ⁇ ⁇ V / P (5) It is expressed as
  • the contact coefficient C of the slurry is smaller than 1.2 ⁇ 10 ⁇ 6 m, the load on the group III nitride crystal substrate is increased in CMP, so that the surface layer of the group III nitride crystal substrate is uniformly strained and non-uniform. Distortion and / or plane orientation deviation increases.
  • the polishing rate decreases, so that the surface roughness of the main surface of the group III nitride crystal substrate, the uniform strain of the surface layer, the nonuniform strain and / Or misorientation increases.
  • the viscosity of the slurry can be adjusted by adding a high-viscosity organic compound such as ethylene glycol or an inorganic compound such as boehmite, and can be measured using a B-type viscometer, Ostwald-type viscometer, or the like.
  • a group III nitride crystal was further grown on the main surface 1s of the group III nitride crystal substrate 1 of one or more of the first to third embodiments obtained as described above, and was grown.
  • a group III nitride crystal substrate is produced by cutting a group III nitride crystal in a plane parallel to the main surface 1s of the crystal substrate, and the main surface of the group III nitride crystal substrate is surface-treated in the same manner as described above. As a result, the Group III nitride crystal substrates of Embodiments 1 to 3 can be further manufactured.
  • the group III nitride crystal substrate used as the base substrate for the further growth (repeated growth) of the group III nitride crystal is not necessarily a single crystal substrate, and a plurality of small size crystal substrates may be used. . It can be joined to form a single crystal during repeated growth. A large-diameter group III nitride crystal substrate can be obtained by bonding during repeated growth. Further, a crystal substrate cut out from a group III nitride crystal bonded by repeated growth can be used as a base substrate and can be repeatedly grown again. Thus, the production cost can be reduced by repeatedly using the group III nitride crystal for growth.
  • the method for further growing the group III nitride crystal on the main surface 1s of the group III nitride crystal substrate 1 of the first to third embodiments is not particularly limited, and includes an HVPE method, a sublimation method, and the like.
  • a liquid phase growth method such as a vapor phase growth method, a flux method, or an ammonothermal method is preferably used.
  • an HVPE method, a flux method, an ammonothermal method, or the like is preferably used for manufacturing a GaN crystal
  • an HVPE method, a sublimation method, or the like is preferably used for manufacturing an AlN crystal.
  • the HVPE method or the like is preferably used for the production of the AlGaN crystal and the InGaN crystal.
  • Group III nitride crystal substrate with epi layer Referring to FIG. 10, one embodiment of a group III nitride crystal substrate with an epi layer according to the present invention is formed by epitaxial growth on main surface 1s of group III nitride crystal substrate 1 of embodiments 1 to 3. And at least one semiconductor layer 2.
  • the semiconductor layer 2 is epitaxially grown on the main surface 1s of the group III nitride crystal substrate 1, and therefore the plane orientation of the main surface 2s of the semiconductor layer 2 Is the same as the plane orientation of the main surface 1 s of the group III nitride crystal substrate 1.
  • the plane orientation of the main surface 1s of the group III nitride crystal substrate 1 of the first to third embodiments has an inclination angle of ⁇ 10 ° to 10 ° in the [0001] direction from the plane 1v including the c-axis 1c
  • the plane orientation of the main surface 2s of the semiconductor layer 2 has an inclination angle of ⁇ 10 ° to 10 ° in the [0001] direction from the plane including the c-axis.
  • a physical crystal substrate is obtained.
  • vapor phase growth such as MOCVD (metal organic chemical vapor deposition) method, MBE (molecular beam epitaxy) method, etc.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • one embodiment of a semiconductor device according to the present invention includes a group III nitride crystal substrate 3 with an epi layer according to a fourth embodiment.
  • the plane orientation of the main surface 1s is ⁇ 10 ° or more and 10 ° or less in the [0001] direction from the plane including the c-axis.
  • the characteristics of the semiconductor device of this embodiment are enhanced.
  • the piezoelectric polarization is suppressed and the quantum confined Stark effect is suppressed, so that the blue shift of light emission is suppressed and the light emission intensity is improved. Therefore, the light emitting layer 210 that emits light having a peak wavelength of 430 nm or more and 550 nm or less with high efficiency can be formed in the semiconductor layer 2.
  • the emission intensity of light in the green region having a wavelength of 500 nm to 550 nm is significantly improved.
  • the semiconductor device of the present embodiment includes a group III nitride crystal substrate 3 with an epi layer of the fourth embodiment.
  • Epi-layer III-nitride crystal substrate 3 has a tilt angle of ⁇ 10 ° or more and 10 ° or less in the [0001] direction from the plane including the c-axis of the main surface 1s.
  • a group nitride crystal substrate 1 is included.
  • the epitaxial layer group III nitride crystal substrate 3 is an n-type layer having a thickness of 1000 nm which is sequentially formed as at least one semiconductor layer 2 on one main surface 1s of the group III nitride crystal substrate 1.
  • GaN layer 202 n-type In x1 Al y1 Ga 1-x1-y1 N (0 ⁇ x1, 0 ⁇ y1, x1 + y1 ⁇ 1) cladding layer 204 having a thickness of 1200 nm, n-type GaN guide layer 206 having a thickness of 200 nm, thickness 65 nm thick undoped In x2 Ga 1 -x2 N (0 ⁇ x2 ⁇ 1) guide layer 208, 15 nm thick GaN barrier layer and 3 nm thick In x3 Ga 1 -x3 N (0 ⁇ x3 ⁇ 1) well
  • a light emitting layer 210 having a three-period MQW (multiple quantum well) structure composed of layers, an undoped In x4 Ga 1-x4 N (0 ⁇ x4 ⁇ 1) guide layer 222 having a thickness of 65 nm, and a p having a thickness of 20 nm -type Al x5 Ga 1-x5 N ( ⁇ X5 ⁇ 1) blocking layer
  • a 300 nm thick SiO 2 insulating layer 300 is partially formed on the p-type GaN contact layer 230, and the p-side electrode 400 is formed on the exposed p-type GaN contact layer 230 and a part of the SiO 2 insulating layer 300. Is formed.
  • An n-side electrode 500 is formed on the other main surface of group III nitride crystal substrate 1.
  • a semiconductor device manufacturing method includes a step of preparing group III nitride crystal substrates of embodiments 1 to 3, and at least a main surface 1s of the crystal. Forming a group III nitride crystal substrate with an epi layer by growing one semiconductor layer 2. With this manufacturing method, a semiconductor device having high characteristics in which the quantum confined Stark effect due to piezoelectric polarization of the semiconductor layer is suppressed can be obtained.
  • the inclusion of the light emitting layer 210 in the semiconductor layer 2 suppresses the quantum confined Stark effect due to piezoelectric polarization of the light emitting layer 210, thereby suppressing the blue shift of light emission and light emission (for example, the peak wavelength is 430 nm or more and 550 nm).
  • a light emitting device having a high integrated intensity of the following light emission is obtained.
  • group III nitride crystal substrate 1 of embodiments 1 to 3 is first prepared. Preparation of group III nitride crystal substrate 1 is as described in [Group III nitride crystal substrate] and [Method of manufacturing group III nitride crystal substrate], and will not be repeated.
  • At least one semiconductor layer 2 is grown on the main surface 1s of the prepared group III nitride crystal substrate 1 to form a group III nitride crystal substrate 3 with an epi layer.
  • the growth method of the semiconductor layer 2 is not particularly limited, but from the viewpoint of epitaxially growing a semiconductor layer with high crystallinity, vapor phase growth such as MOCVD (metal organic chemical vapor deposition) method, MBE (molecular beam epitaxy) method, etc. The method is preferably used.
  • n-type GaN layer 202 having a thickness of 1000 nm and n-type In x1 having a thickness of 1200 nm are formed by, for example, MOCVD.
  • a 300 nm thick SiO 2 insulating layer 300 is formed on the p-type GaN contact layer 230 by vapor deposition.
  • a stripe window having a width of 10 ⁇ m is formed by photolithography and wet etching.
  • a laser stripe is provided parallel to the direction in which the ⁇ 0001> direction axis (c-axis) is projected onto the main surface of the semiconductor layer.
  • a Ni / Au electrode is formed as a p-side electrode 400 on the stripe window and a part of the SiO 2 insulating layer 300 by vapor deposition.
  • a Ti / Al / Ti / Au electrode is formed as the n-side electrode 500 on the other main surface of the group III nitride crystal substrate by vapor deposition.
  • Example I Production of Group III Nitride Crystal Using a GaAs crystal substrate having a diameter of 50 mm as a base substrate, a GaN crystal (group III nitride crystal) having a thickness of 50 mm was grown by the HVPE method. That is, by heating a boat containing metal Ga to 800 ° C. in an atmospheric pressure HVPE reactor and introducing a mixed gas of HCl gas and carrier gas (H 2 gas) into the boat, Reaction with HCl gas produced GaCl gas. At the same time, by introducing a mixed gas of NH 3 gas and carrier gas (H 2 gas) into the HVPE reactor, GaCl gas and NH 3 gas are reacted to form GaAs installed in the HVPE reactor.
  • a mixed gas of HCl gas and carrier gas H 2 gas
  • a GaN crystal was grown on a crystal substrate (underlying substrate).
  • the growth temperature of the GaN crystal was 1050 ° C.
  • the HCl gas partial pressure in the HVPE reactor was 2 kPa
  • the NH 3 gas partial pressure was 30 kPa.
  • GaN crystal (Group III nitride crystal) obtained above is tilted between ⁇ 10 ° and 10 ° in the [0001] direction with respect to the plane including the c-axis.
  • a GaN crystal substrate (group III nitride crystal substrate) having the main surface shown in Table 1 was manufactured by slicing along a plane parallel to the plane having ⁇ .
  • the sign is positive
  • the inclination angle ⁇ indicates that the plane orientation of the main surface is inclined in the [0001] direction (that is, toward the (0001) plane) from the plane including the c-axis.
  • group III nitride crystal substrate The main surface of the GaN crystal substrate (group III nitride crystal substrate) obtained above is lapped (mechanically polished), and then subjected to CMP (chemical mechanical polishing) to produce a semiconductor.
  • a GaN crystal substrate for devices was obtained.
  • three types of diamond abrasive grains having an abrasive grain size of 2 ⁇ m, 3 ⁇ m, and 9 ⁇ m are prepared, and the grain size of the diamond abrasive grains is gradually reduced using a copper surface plate or a tin surface plate. I went.
  • CMP includes colloidal silica (primary particle size is 90 nm, secondary particle size is 210 nm) in which primary particles are chemically bonded as abrasive grains to form secondary particles, tartaric acid as a pH regulator, Using a slurry containing trichloroisocyanuric acid as an oxidizing agent and adjusting the pH and redox potential (ORP) to the values shown in Table 1, the contact coefficient C was adjusted to the values shown in Table 1.
  • the X-ray penetration depth was controlled by changing at least one of the X-ray incident angle ⁇ with respect to the crystal surface, the tilt angle ⁇ of the crystal surface, and the rotation angle ⁇ within the crystal surface. From the viewpoint of facilitating the evaluation by X-ray diffraction at the X-ray penetration depth, in Examples I-1 and I-2, the (10-13) plane is used as the specific parallel crystal lattice plane. In 13 to I-15, the (10-11) plane was used as the specific parallel crystal lattice plane.
  • the specific resistance of another GaN crystal substrate obtained by the same manufacturing method and surface processing method as in this example was 1 ⁇ 10 ⁇ 2 ⁇ ⁇ cm as measured by the four-probe method, and its carrier The concentration was 2 ⁇ 10 18 cm ⁇ 3 as measured by the Hall measurement method.
  • At least one semiconductor layer is formed by MOCVD on one main surface 1s of a GaN crystal substrate (Group III nitride crystal substrate 1) for a semiconductor device obtained above.
  • a GaN crystal substrate Group III nitride crystal substrate 1
  • a 300 nm thick SiO 2 insulating layer 300 was formed on the p-type GaN contact layer 230 by vapor deposition.
  • a stripe window having a width of 10 ⁇ m was formed by photolithography and wet etching.
  • a laser stripe is provided parallel to the direction in which the ⁇ 10-10> direction axis (m-axis) is projected onto the main surface of the semiconductor layer, and in other examples, the ⁇ 0001> direction axis ( A laser stripe was provided in parallel to the direction projected on the main surface of the semiconductor layer.
  • a Ni / Au electrode was formed as the p-side electrode 400 on the stripe window and a part of the SiO 2 insulating layer 300 by vapor deposition.
  • the other main surface of the GaN crystal substrate (Group III nitride crystal substrate 1) was mirror-finished by lapping (mechanical polishing).
  • a Ti / Al / Ti / Au electrode was formed as the n-side electrode 500 by vapor deposition on the mirror-finished main surface of the GaN crystal substrate.
  • the thickness and thickness of each layer of the wafer were measured using a contact film thickness meter or by observing the wafer cross section including the substrate using an optical microscope or SEM (scanning electron microscope).
  • a laser scriber using a YAG laser having a peak wavelength of 355 nm was used for manufacturing the resonator mirror for the laser stripe.
  • the conditions for forming the scribe grooves were a laser beam output of 100 mW and a scanning speed of 5 mm / s.
  • the formed scribe groove was, for example, a groove having a length of 30 ⁇ m, a width of 10 ⁇ m, and a depth of 40 ⁇ m.
  • a scribe groove was formed by directly irradiating the main surface of the semiconductor layer with a laser beam through an insulating film opening portion of the substrate at a pitch of 800 ⁇ m.
  • the resonator length was 600 ⁇ m.
  • a resonant mirror was prepared by cleaving.
  • a laser bar was produced by breaking on the back side of the substrate by pressing.
  • a dielectric multilayer film was coated on the end face of the laser bar by vacuum deposition.
  • the dielectric multilayer film was formed by alternately laminating SiO 2 and TiO 2 .
  • the film thickness was adjusted in the range of 50 nm to 100 nm, respectively, so that the peak wavelength of the reflectance was in the range of 500 nm to 530 nm.
  • the reflection surface of one end face was set to 10 periods, the design value of reflectivity was designed to about 95%, the reflection surface of the other end face was set to 6 periods, and the design value of reflectivity was about 80%.
  • the semiconductor device obtained as described above was evaluated by energization at room temperature (25 ° C.) as follows.
  • a pulse power source having a pulse width of 500 ns and a duty ratio of 0.1% was used to energize the surface electrode by dropping a needle.
  • the current density was 100 A / cm 2 .
  • the LED mode light was observed by placing an optical fiber on the main surface side of the laser bar and measuring the emission spectrum emitted from the main surface.
  • Table 1 shows the integrated intensities of emission peaks in the wavelength range of 500 nm to 550 nm of the emission spectrum of LED mode light.
  • Table 1 summarizes the full width at half maximum of the emission peak in the wavelength range of 500 nm to 550 nm of the emission spectrum of the LED mode light.
  • the laser beam was observed by placing an optical fiber on the end face side of the laser bar and measuring the emission spectrum emitted from the end face.
  • the emission peak wavelength of the LED mode light was 500 nm to 550 nm.
  • the oscillation peak wavelength of the laser beam was 500 nm to 530 nm.
  • the surface layer has a uniform strain of 1.7 ⁇ 10 ⁇ 3 or less, the surface layer has a non-uniform strain of 110 arcsec or less, and / or a specific parallel crystal of the surface layer.
  • the plane orientation deviation of the lattice plane is 300 arcsec or less and the plane orientation of the main surface has an inclination angle of ⁇ 10 ° or more and 10 ° or less in the [0001] direction from the plane including the c-axis, such a crystal
  • the integrated intensity of the emission peak in the wavelength range of 500 nm to 550 nm of the emission spectrum of the LED mode light of the semiconductor device using the substrate was increased.
  • Example I-2 the blue shift was evaluated from the measurement of the emission wavelength of LED mode light at current densities of 1 A / cm 2 and 100 A / cm 2 , respectively.
  • the blue shift in Example I-2 was 40 nm
  • the blue shift in Example I-8 was 10 nm
  • the blue shift in Example I-18 was 8 nm.
  • the uniform distortion of the surface layer is 1.7 ⁇ 10 ⁇ 3 or less
  • the nonuniform distortion of the surface layer is 110 arcsec or less
  • / or the plane orientation deviation of the specific parallel crystal lattice plane of the surface layer is 300 arcsec.
  • the blue of a semiconductor device using such a crystal substrate is used.
  • the shift was very small.
  • Example II CMP includes colloidal silica (primary particle diameter is 15 nm, secondary particle diameter is 40 nm) in which primary particles are chemically bonded as abrasive grains as primary particles, and malic acid and oxidation are used as pH regulators. Except for adjusting the contact coefficient C to the value shown in Table 2 using a slurry containing trichloroisocyanuric acid as the agent and adjusting the pH and redox potential (ORP) to the values shown in Table 2.
  • Example I which manufactures a GaN crystal substrate (Group III nitride crystal substrate) and a semiconductor device, and the surface layer of the surface processed GaN crystal substrate has uniform strain, nonuniform strain, and crystal lattice plane
  • the integrated intensity and half width of the emission peak in the wavelength range of 500 nm to 550 nm of the emission spectrum of the LED mode light of the semiconductor device were measured.
  • the (10-11) plane was used as the specific parallel crystal lattice plane. The results are summarized in Table 2.
  • the plane orientation of the main surface has a tilt angle of ⁇ 10 ° to 10 ° in the [0001] direction from the plane including the c-axis.
  • the emission spectrum of the LED mode light of the semiconductor device using such a crystal substrate has a wavelength of 500 nm to 550 nm. The integrated intensity of the emission peak in the range increased.
  • Example III The surface orientation of the main surface of the GaN crystal substrate (group III nitride crystal substrate) is set to a tilt angle ⁇ from the (21-30) plane, which is one of the planes including the c-axis, of 0.2, and CMP is applied to abrasive grains.
  • spherical colloidal silica particle size shown in Table 3 (excluding abrasive grains in Example III-1), sodium tartrate and sodium carbonate as pH adjusters, and sodium dichloroisocyanurate as oxidants.
  • Example I except that the contact coefficient C was adjusted to the value shown in Table 3 using the slurry having the pH and redox potential (ORP) adjusted to the values shown in Table 3.
  • a GaN crystal substrate group III nitride crystal substrate
  • a semiconductor device is manufactured, and the surface layer of the surface-processed GaN crystal substrate has uniform strain, non-uniform strain, and crystal plane misalignment.
  • integrated intensities and half-value width of the emission peak in the wavelength range of 500 nm ⁇ 550 nm of the emission spectrum of the LED-mode light from the semiconductor device are summarized in Table 3.
  • the uniform distortion of the surface layer is 1.7 ⁇ 10 ⁇ 3 or less
  • the nonuniform distortion of the surface layer is 110 arcsec or less
  • / or the specific parallel crystal of the surface layer
  • the plane orientation deviation of the lattice plane is 300 arcsec or less and the plane orientation of the main surface has an inclination angle of ⁇ 10 ° to 10 ° in the [0001] direction from the plane including the c-axis
  • the surface roughness Ra, Ry decreases, the integrated intensity of the emission peak in the wavelength range of 500 nm to 550 nm of the emission spectrum of the LED mode light of the semiconductor device using such a crystal substrate increases.
  • Example IV The plane orientation of the main surface of the GaN crystal substrate (Group III nitride crystal substrate) is the plane orientation of the main surface, and the tilt angle ⁇ from the (21-30) plane, which is one of the planes including the c-axis, is 0.2. , Including colloidal silica (primary particle diameter is 35 nm, secondary particle diameter is 70 nm) in which primary particles are chemically bonded as secondary particles as abrasive grains, and nitric acid and oxidation are used as pH regulators.
  • colloidal silica primary particle diameter is 35 nm
  • secondary particle diameter is 70 nm
  • Example 4 Using a slurry containing hydrogen peroxide water and trichloroisocyanuric acid as agents and adjusting the pH and redox potential (ORP) to the values shown in Table 4, the contact coefficient C was adjusted to the values shown in Table 4.
  • a GaN crystal substrate group III nitride crystal substrate
  • a semiconductor device were manufactured and the surface layer of the surface processed GaN crystal substrate was uniformly strained and non-uniform.
  • Strain and crystal lattice plane With evaluating the position deviation was measured integrated intensities and half-value width of the emission peak in the wavelength range of 500 nm ⁇ 550 nm of the emission spectrum of the LED-mode light from the semiconductor device.
  • the (10-11) plane was used as the specific parallel crystal lattice plane in Examples IV-1 to IV-7. The results are summarized in Table 4.
  • the surface layer has a uniform strain of 1.7 ⁇ 10 ⁇ 3 or less, the surface layer has a non-uniform strain of 110 arcsec or less, and / or a specific parallel crystal of the surface layer.
  • the plane orientation deviation of the lattice plane is 300 arcsec or less, and the plane orientation of the main surface has an inclination angle of ⁇ 10 ° or more and 10 ° or less in the [0001] direction from the plane including the c-axis.
  • the concentration of oxygen present on the main surface was measured by AES (Auger atomic spectroscopy), and when it was 2 atomic% or more and 16 atomic% or less, emission of LED mode light of a semiconductor device using such a crystal substrate The integrated intensity of the peak increased.
  • Example V Production of Group III Nitride Crystal and Group III Nitride Crystal Substrate
  • the plane orientation of the main surface produced in Example I-4 of Example I as the base substrate was (10-10
  • the GaN crystal body was grown by the flux method using the GaN crystal substrate (Group III nitride crystal substrate). That is, a GaN crystal substrate (underlying substrate), metal Ga as a Ga raw material, and metal Na as a flux were accommodated in a crucible so that Ga: Na was 1: 1 in terms of molar ratio. Subsequently, the crucible was heated to obtain an 800 ° C. Ga—Na melt in contact with the (10-10) main surface of the GaN crystal substrate.
  • the growth by the HVPE method was carried out by using a GaN crystal substrate (Group III) having a surface orientation of (10-10) of the main surface produced in Example I-4 of Example I as a base substrate.
  • a GaN crystal substrate having a thickness of 5 mm was grown by HVPE.
  • the growth conditions of the GaN crystal by the HVPE method were the same as in Example I.
  • the dislocation density decreased.
  • the dislocation density of the main surface of the GaN crystal substrate was adjusted by the difference in the position of the GaN crystal substrate taken from the GaN crystal (see Table 5).
  • the contact coefficient C is a value shown in Table 2 using a slurry that contains citric acid as a pH adjuster, potassium permanganate as an oxidizing agent, and adjusted to pH and redox potential (ORP) values shown in the table.
  • a GaN crystal substrate for a semiconductor device was obtained by surface-treating a GaN crystal substrate (Group III nitride crystal substrate) in the same manner as in Example I except that the adjustment was performed so that The uniform strain and non-uniform strain of the surface layer of the GaN crystal substrate for semiconductor devices (surface-processed GaN crystal substrate) thus obtained were evaluated in the same manner as in Example I.
  • the surface layer has a uniform strain of 1.7 ⁇ 10 ⁇ 3 or less, the surface layer has a non-uniform strain of 110 arcsec or less, and / or a specific parallel crystal of the surface layer.
  • the plane orientation deviation of the lattice plane is 300 arcsec or less, and the plane orientation of the main surface has an inclination angle of ⁇ 10 ° or more and 10 ° or less in the [0001] direction from the plane including the c-axis.
  • the dislocation density on the main surface of the group III nitride crystal substrate for example, the dislocation density is 1 ⁇ 10 7 cm ⁇ 2 or less, 1 ⁇ 10 6 cm ⁇ 2 or less, and further 1 ⁇ 10 5 cm ⁇ 2.
  • the integrated intensity of the emission peak in the wavelength range of 500 nm to 550 nm of the emission spectrum of the LED mode light of the semiconductor device using such a crystal substrate increased. Even when a plurality of GaN crystal substrates were used as the base substrate and a single GaN crystal joined from the base substrate was grown by the flux method or the HVPE method, the same result as above was obtained. .
  • Example VI CMP includes spherical colloidal silica (particle size: 30 nm) as abrasive grains, hydrochloric acid as a pH regulator, hydrogen peroxide and hypochlorous acid as oxidizing agents, pH, redox potential (ORP) and viscosity
  • slurry was adjusted to the values shown in Table 6 and the CMP peripheral speed, the CMP pressure, and the contact coefficient C were adjusted to the values shown in Table 6.
  • a GaN crystal substrate (Group III nitride crystal substrate) was surface processed.
  • the pH value X and the redox potential value Y (mV) are ⁇ 50X + 1400 ⁇ Y ⁇ ⁇ 50X + 1700
  • CMP is performed so that the contact coefficient C is 1.2 ⁇ 10 ⁇ 6 m or more and 1.8 ⁇ 10 ⁇ 6 m or less, so that the surface orientation of the main surface is Even in a group III nitride crystal substrate having a tilt angle of ⁇ 10 ° to 10 ° in the [0001] direction from the plane including the c-axis, the surface layer has a uniform strain of 1.7 ⁇ 10 ⁇ 3 or less.
  • the nonuniform strain of the surface layer may be 110 arcsec or less, and / or the plane orientation deviation of the specific parallel crystal lattice plane ((11-22) plane or (10-11) plane) of the surface layer may be 300 arcsec or less. did it.
  • the oxidation-reduction potential ORP
  • the action of oxidizing the main surface of the group III nitride crystal substrate becomes weak, so the mechanical action during CMP becomes strong, and the surface of the group III nitride crystal substrate becomes strong.
  • the uniform strain, non-uniform strain and plane orientation deviation of the layer increased.
  • the oxidation-reduction potential was high, stable polishing became difficult, and uniform distortion, non-uniform distortion, and plane orientation deviation of the surface layer of the group III nitride crystal substrate increased.
  • Example VII A GaN crystal substrate (group III nitride crystal substrate) having a tilt angle of 0.2 ° in the [0001] direction from the (21-30) plane of the main surface produced in Example III-4 was cut to 5 mm. A plurality of small piece substrates having a size of ⁇ 20 mm to 5 mm ⁇ 45 mm were obtained. A plurality of such small-piece substrates have their main surfaces (all of which have an inclination angle of 0.2 ° in the [0001] direction from the (21-30) plane).
  • a GaN crystal (Group III nitride crystal) is grown by HVPE on each of the main surfaces of the small substrate.
  • the group III nitride crystals were joined to each other and the outer peripheral portion was processed to obtain a GaN crystal (group III nitride crystal) of a desired size.
  • the obtained GaN crystal was cut out parallel to the main surface of the base substrate, and in the same manner as in Example III-4, a GaN crystal substrate and a semiconductor device of 18 mm ⁇ 18 mm, 30 mm ⁇ 50 mm, diameter 40 mm, diameter 100 mm, diameter 150 mm were manufactured. did.
  • Both the GaN crystal substrate and the semiconductor device obtained substrate characteristics and device characteristics equivalent to those in Example III-4. Furthermore, using these GaN crystal substrates (group III nitride crystal substrates) as base substrates, the crystals were repeatedly grown by the HVPE method to obtain GaN crystals of 18 mm ⁇ 18 mm, 30 mm ⁇ 50 mm, 40 mm in diameter, 100 mm in diameter, and 150 mm in diameter ( Group III nitride crystals) were obtained. By processing this GaN crystal in the same manner as described above, a GaN crystal substrate and a semiconductor device having characteristics equivalent to those of Example III-4 were obtained.
  • 1 Group III nitride crystal substrate 1c c-axis, 1d, 31d, 32d, 33d, 41d, 42d, 43d, 51d, 52d, 53d
  • Specific parallel crystal lattice plane 1p surface layer, 1q surface adjacent layer, 1r inner layer, 1s , 2s main surface, plane including 1v c axis, 2 semiconductor layer, 3 group III nitride crystal substrate with epi layer, 4 semiconductor device, 11 incident X-ray, 12 outgoing X-ray, 21 ⁇ axis, 22 ⁇ axis (2 ⁇ Axis), 23 ⁇ axis, 30 tensile stress, 202 n-type GaN layer, 204 n-type In x1 Al y1 Ga 1-x1-y1 N clad layer, 206 n-type GaN guide layer, 208 In x2 Ga 1-x2 N guide Layer, 210 light emitting layer, 222 In x4 Ga 1-x4 N guide layer, 224 p-type Al x

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 本III族窒化物結晶基板(1)は、III族窒化物結晶基板(1)の任意の特定平行結晶格子面のX線回折条件を満たしながら結晶基板の主表面(1s)からのX線侵入深さを変化させるX線回折測定から得られる特定平行結晶格子面の面間隔において、0.3μmのX線侵入深さにおける面間隔をd1と表わし5μmのX線侵入深さにおける面間隔をd2と表したときに|d1-d2|/d2の値で表される結晶基板の表面層の均一歪みが1.7×10-3以下であり、主表面(1s)の面方位が、結晶基板のc軸(1c)を含む面(1v)から[0001]方向に-10°以上10°以下の傾斜角を有する。これにより、発光のブルーシフトが抑制された発光デバイスの製造に好適なIII族窒化物結晶基板、エピ層付III族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法が提供される。

Description

III族窒化物結晶基板、エピ層付III族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法
 本発明は、III族窒化物結晶基板、エピ層付III族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法に関し、特に半導体デバイスを作製する際の半導体層のエピタキシャル結晶成長用の基板として好ましく用いられるIII族窒化物結晶基板に関する。
 周知のように、近年では窒化物半導体結晶(たとえば、III族窒化物半導体結晶)を利用した種々の半導体デバイスが作製されており、そのような半導体デバイスの典型例として窒化物半導体発光デバイス(たとえば、III族窒化物半導体発光デバイス)が作製されている。
 窒化物半導体デバイスの作製においては、一般に、基板上に複数の窒化物半導体層(たとえば、III族窒化物半導体層)がエピタキシャルに結晶成長させられる。エピタキシャル成長した窒化物半導体層の結晶品質はそのエピタキシャル成長に用いられた基板の表面層の状態に影響され、その窒化物半導体層を含む半導体デバイスの性能に影響を及ぼす。したがって、そのような基板として窒化物半導体結晶を用いる場合、少なくともエピタキシャル成長の下地となる基板の主表面は歪みを含まずかつ平滑であることが望ましい。
 すなわち、エピタキシャル成長に用いられる窒化物半導体基板の主表面は、一般に、その平滑化処理がなされるとともに歪み除去処理がなされる。この場合に、化合物半導体のなかでも窒化ガリウム系半導体は比較的硬質であり、表面平滑化処理が容易ではなく、その平滑化処理後の歪み除去処理も容易ではない。
 米国特許第6596079号明細書(特許文献1)では、(AlGaIn)N種結晶上に気相エピタキシによって育成された(AlGaIn)Nバルク結晶から基板を作製する場合において、機械的研磨された基板表面に対してCMP(化学機械的研磨)やエッチングなどを施すことによって、表面ダメージが除去されて1nm以下のRMS(2乗平均)表面粗さを有する基板面を形成する方法が開示されている。米国特許第6488767号明細書(特許文献2)では、CMP処理によって0.15nmのRMS表面粗さを有するAlxGayInzN(0<y≦1、x+y+z=1)基板が開示されており、そのCMPの処理剤にはAl23砥粒、SiO2砥粒、pH調整剤、および酸化剤が含められる。
 従来では、上述のように、GaN結晶を機械研磨した後にCMP処理またはドライエッチングすることによって、機械研磨時の加工変質層を除去して基板面を仕上げたGaN基板を得ている。しかし、CMP処理は処理速度が遅く、コストや生産性に問題がある。また、ドライエッチングでは、表面粗さの問題が生じる。
 すなわち、Si基板のCMPによる仕上げ方法やその方法における研磨剤は、硬質の窒化物半導体基板には不向きであって、表面層の除去速度を遅くする。特に、GaNは化学的に安定であり、ウェットエッチングされにくいのでCMP処理が容易でない。また、ドライエッチングによって窒化物半導体表面を除去することはできるが、その表面を水平方向に平坦化する効果がないので、表面平滑化が得られない。
 また、上述のように、基板の主表面上に良好な結晶質の化合物半導体層をエピタキシャル成長させるためには、加工ダメージが少なく歪みの少ない良好な結晶品質の表面層を有する基板面を用いることが必要である。しかし、基板の主表面において必要とされる表面層の結晶品質が明らかでない。
 そこで、特開2007-005526号公報(特許文献3)では、窒化物結晶基板およびその基板を用いた半導体デバイスに関して、GaN結晶またはAlN結晶を機械研磨した後所定の条件でCMPを行って、基板の結晶の表面からのX線侵入深さを変化させるX線回折測定により評価された結晶の表面層の均一歪み、不均一歪みおよび面方位ずれの少なくともいずれかが所定の範囲内である窒化物結晶基板が半導体デバイスの製造に好適であることが提案されている。
米国特許第6596079号明細書 米国特許第6488767号明細書 特開2007-005526号公報
 ここで、上記の米国特許第6596079号明細書(特許文献1)、米国特許第6488767号明細書(特許文献2)および特開2007-005526号公報(特許文献3)に例示されている基板は、いずれも六方晶系のウルツ鉱型のIII族窒化物結晶でありその主表面が(0001)面である。このため、かかる結晶基板の主表面上にエピタキシャル成長させた少なくとも1層の半導体層を形成した半導体デバイスである発光デバイスは、半導体層の主表面も(0001)面であり、かかる(0001)面はその面の法線方向に極性が変化する極性面であるため、かかる極性によるピエゾ分極によって生じる量子閉じ込めシュタルク効果により、電流注入量増加にともなう発光のブルーシフトが大きくなり、発光強度が低下する。
 一方、発光のブルーシフトが抑制された発光デバイスを製造するためには、発光デバイスの製造に用いる基板の主表面の極性を低減すること、すなわち、基板の主表面を(0001)面以外の面とする必要がある。
 しかし、発光のブルーシフトが抑制された発光デバイスの製造に好適な基板に関して、その主表面の面方位、その主表面の面粗さ、その表面層の結晶性などが全く不明である。
 そこで、本発明は、発光のブルーシフトが抑制された発光デバイスの製造に好適なIII族窒化物結晶基板、エピ層付III族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法を提供することを目的とする。
 本発明のある局面に従うIII族窒化物結晶基板は、III族窒化物結晶基板の任意の特定平行結晶格子面のX線回折条件を満たしながら結晶基板の主表面からのX線侵入深さを変化させるX線回折測定から得られる特定平行結晶格子面の面間隔において、0.3μmのX線侵入深さにおける面間隔をd1と表わし5μmのX線侵入深さにおける面間隔をd2と表わしたときに|d1-d2|/d2の値で表される結晶基板の表面層の均一歪みが1.7×10-3以下であり、主表面の面方位が、結晶基板のc軸を含む面から[0001]方向に-10°以上10°以下の傾斜角を有する。
 本発明の別の局面に従うIII族窒化物結晶基板は、III族窒化物結晶基板の任意の特定平行結晶格子面のX線回折条件を満たしながら結晶基板の主表面からのX線侵入深さを変化させるX線回折測定から得られる特定平行結晶格子面の回折強度プロファイルにおいて、0.3μmのX線侵入深さにおける回折強度ピークの半値幅v1と5μmのX線侵入深さにおける回折強度ピークの半値幅v2とから得られる|v1-v2|の値で表される結晶基板の表面層の不均一歪みが110arcsec以下であり、主表面の面方位が、結晶基板のc軸を含む面から[0001]方向に-10°以上10°以下の傾斜角を有する。
 本発明のさらに別の局面に従うIII族窒化物結晶基板は、III族窒化物結晶基板の任意の特定平行結晶格子面のX線回折に関して結晶基板の主表面からのX線侵入深さを変化させて測定されたロッキングカーブにおいて、0.3μmのX線侵入深さにおける回折強度ピークの半値幅w1と5μmのX線侵入深さにおける回折強度ピークの半値幅w2とから得られる|w1-w2|の値で表される結晶基板の表面層の特定平行結晶格子面の面方位ずれが300arcsec以下であり、主表面の面方位が、結晶基板のc軸を含む面から[0001]方向に-10°以上10°以下の傾斜角を有する。
 上記のIII族窒化物結晶基板において、主表面は5nm以下の表面粗さRaを有することができる。また、主表面の面方位は、結晶基板の{10-10}面、{11-20}面および{21-30}面のいずれかの面に対して傾斜角が0°以上0.1°未満と実質的に平行とすることができる。また、主表面の面方位は、結晶基板の{10-10}面、{11-20}面および{21-30}面のいずれかの面からの傾斜角が0.1°以上10°以下とすることができる。また、主表面に存在する酸素の濃度を2原子%以上16原子%以下とすることができる。また、主表面における転位密度を1×107cm-2以下とすることができる。また、III族窒化物結晶基板は、直径が40mm以上150mm以下とすることができる。
 本発明のさらに別の局面に従うエピ層付III族窒化物結晶基板は、上記のIII族窒化物結晶基板の主表面上にエピタキシャル成長により形成されている少なくとも1層の半導体層を含む。
 本発明のさらに別の局面に従う半導体デバイスは、上記のエピ層付III族窒化物結晶基板を含む。上記の半導体デバイスにおいて、エピ層付III族窒化物結晶基板に含まれる半導体層は、ピーク波長が430nm以上550nm以下の光を発する発光層を含むことができる。
 本発明のさらに別の局面に従う半導体デバイスの製造方法は、III族窒化物結晶基板の任意の特定平行結晶格子面のX線回折条件を満たしながら結晶基板の主表面からのX線侵入深さを変化させるX線回折測定から得られる特定平行結晶格子面の面間隔において、0.3μmのX線侵入深さにおける面間隔をd1と表わし5μmのX線侵入深さにおける面間隔をd2と表わしたときに|d1-d2|/d2の値で表される結晶基板の表面層の均一歪みが1.7×10-3以下であり、主表面の面方位が結晶基板のc軸を含む面から[0001]方向に-10°以上10°以下の傾斜角を有する結晶基板を準備する工程と、結晶基板の主表面上に少なくとも1層の半導体層をエピタキシャル成長させることによりエピ層付III族窒化物結晶基板を形成する工程と、を含む。
 本発明のさらに別の局面に従う半導体デバイスの製造方法は、III族窒化物結晶基板の任意の特定平行結晶格子面のX線回折条件を満たしながら結晶基板の主表面からのX線侵入深さを変化させるX線回折測定から得られる特定平行結晶格子面の回折強度プロファイルにおいて、0.3μmのX線侵入深さにおける回折強度ピークの半値幅v1と5μmのX線侵入深さにおける回折強度ピークの半値幅v2とから得られる|v1-v2|の値で表される結晶基板の表面層の不均一歪みが110arcsec以下であり、主表面の面方位が結晶基板のc軸を含む面から[0001]方向に-10°以上10°以下の傾斜角を有する結晶基板を準備する工程と、結晶基板の主表面上に少なくとも1層の半導体層をエピタキシャル成長させることによりエピ層付III族窒化物結晶基板を形成する工程と、を含む。
 本発明のさらに別の局面に従う半導体デバイスの製造方法は、III族窒化物結晶基板の任意の特定平行結晶格子面のX線回折に関して結晶基板の主表面からのX線侵入深さを変化させて測定されたロッキングカーブにおいて、0.3μmのX線侵入深さにおける回折強度ピークの半値幅w1と5μmのX線侵入深さにおける回折強度ピークの半値幅w2とから得られる|w1-w2|の値で表される結晶基板の表面層の特定平行結晶格子面の面方位ずれが300arcsec以下であり、主表面の面方位が結晶基板のc軸を含む面から[0001]方向に-10°以上10°以下で傾斜している結晶基板を準備する工程と、結晶基板の主表面上に少なくとも1層の半導体層をエピタキシャル成長させることによりエピ層付III族窒化物結晶基板を形成する工程と、を含む。
 上記の半導体デバイスの製造方法におけるエピ層付III族窒化物結晶基板を形成する工程において、上記の半導体層は、発光層を含み、その発光層がピーク波長430nm以上550nm以下の光を発するように形成することができる。
 本発明によれば、光のブルーシフトが抑制され、発光強度が増大した発光デバイスの製造に好適なIII族窒化物結晶基板、エピ層付III族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法を提供することができる。
III族窒化物結晶基板の主表面から深さ方向の結晶の状態を示す概略断面図である。 本発明に用いられるX線回折法における測定軸、測定角を示す概略図である。 III族窒化物結晶基板の結晶格子の均一歪みの一例を示す概略図である。 図3AのIII族窒化物結晶基板の結晶格子の均一歪みに関するX線回折法の回折強度プロファイルにおける特定平行結晶格子面の面間隔を示す概略図である。 III族窒化物結晶基板の結晶格子の不均一歪の一例を示す概略図である。 図4AのIII族窒化物結晶基板の結晶格子の不均一歪みに関するX線回折の回折強度プロファイルにおける回折強度ピークの半価幅を示す概略図である。 III族窒化物結晶基板の特定平行結晶格子面の面方位ずれの一例を示す概略図である。 図5AのIII族窒化物結晶基板の特定平行結晶格子面の面方位ずれに関するX線回折のロッキングカーブにおける回折強度ピークの半価幅を示す概略図である。 本発明にかかるIII族窒化物結晶基板の一例を示す概略図である。 本発明にかかるIII族窒化物結晶基板における主表面の面方位のc軸を含む面から[0001]方向への傾斜の一例を示す概略図である。 本発明にかかるIII族窒化物結晶基板における主表面の面方位のc軸を含む面から[0001]方向への傾斜の他の例を示す概略図である。 本発明にかかるIII族窒化物結晶基板における主表面の面方位のc軸を含む面から[0001]方向への傾斜のさらに他の例を示す概略図である。 本発明にかかるエピ層付III族窒化物結晶基板の一例を示す概略断面図である。 本発明にかかる半導体デバイスの一例を示す概略断面図である。
 [III族窒化物結晶基板]
 結晶幾何学においては、結晶系を記述するために結晶軸が設定される。III族窒化物結晶基板を形成するIII族窒化物結晶などの六方晶系の結晶においては、原点から同一平面上に互いに120°の角をなして3方向に広がるa1軸、a2軸およびa3軸、これらの3つの軸を含む平面に垂直なc軸が設定される。かかる結晶軸において、a1軸、a2軸、a3軸およびc軸の切片がそれぞれ1/h、1/k、1/iおよび1/lである結晶面の面方位は、(hkil)の表示(ミラー表示と呼ばれる)で表される。
 上記ミラー表示(hkil)において、h、k、iおよびlはミラー指数と呼ばれる整数であり、i=-(h+k)の関係を有する。また、a1軸、a2軸、a3軸およびc軸の少なくともいずれかを含む面またはかかる面に平行な面は、それらの軸の切片がなく、それらの軸に対応するミラー指数が0で表わされる。たとえば、c軸を含む面およびc軸に平行な面の面方位は、(hki0)で表わされ、たとえば(10-10)、(11-20)、(21-30)などが挙げられる。
 この面方位(hkil)の面を(hkil)面という。本明細書中においては、個別の面方位を(hkil)で表わし、(hkil)およびそれに結晶幾何学的に等価な面方位を含む総称的な面方位を{hkil}で表わす。また、個別の方向を[hkil]で表わし、[hkil]およびそれに結晶幾何学的に等価な方向を含む方向を<hkil>で表わす。また、負の指数については、結晶幾何学上は「-」(バー)を指数を表す数字の上に付けて表わすのが一般的であるが、本明細書中では指数を表す数字の前に負の符号(-)を付けて表わす。
 ここで、III族窒化物結晶は、<0001>方向にIII族元素原子面および窒素原子面が交互に配列するため、<0001>方向に極性を有する。本願においては、III族元素原子面が(0001)面となり、窒素原子面が(000-1)面となるように、結晶軸が設定される。
 本発明においては、X線回折法を用いることにより、III族窒化物結晶基板の表面層における結晶性を、結晶を破壊することなく直接評価することができる。ここで、結晶性の評価とは、結晶の歪みがどの程度あるかを評価することをいい、具体的には、結晶格子の歪み、結晶格子面の面方位ずれがどの程度あるかを評価することをいう。また、結晶格子の歪みには、結晶格子が均一に歪んでいる均一歪みと、結晶格子が不均一に歪んでいる不均一歪みとがある。結晶格子面の面方位ずれとは、結晶格子全体の格子面の面方位の平均方位から各々の結晶格子の格子面の面方位がずれているばらつきの大きさをいう。
 図1に示すように、III族窒化物結晶基板1は、III族窒化物結晶体からの切り出し、研削または研磨などによる加工によって、結晶基板の主表面1sから一定の深さ方向の表面層1pに結晶格子の均一歪み、不均一歪みおよび面方位ずれの少なくともいずれかが生じる(図1は、表面層1pに結晶格子の均一歪み、不均一歪みおよび面方位ずれが生じている場合を示す。)。また、表面層1pに隣接する表面隣接層1qにも、結晶格子の均一歪み、不均一歪みおよび結晶格子の面方位ずれの少なくともいずれかが生じる場合もある(図1は、表面隣接層1qに結晶格子の面方位ずれが生じている場合を示す。)。さらに、表面隣接層1qよりも内側の内層1rでは、その結晶本来の結晶構造を有するものと考えられる。なお、表面加工における研削または研磨の方法、程度などにより、表面層1p、表面隣接層1qの状態、厚さが異なる。
 ここで、結晶基板の主表面からその深さ方向に、結晶格子の均一歪み、不均一歪みおよび/または面方位ずれを評価することにより、表面層の結晶性を直接かつ確実に評価することができる。
 本発明においてIII族窒化物結晶基板の表面層の結晶性を評価するためのX線回折測定は、III族窒化物結晶基板の任意の特定平行結晶格子面のX線回折条件を満たしながら結晶基板の主表面からのX線侵入深さを変化させるものである。
 ここで、図1および図2を参照して、任意の特定平行結晶格子面1dの回折条件とは、任意に特定されたその平行結晶格子面によってX線が回折される条件をいい、Bragg角をθ、X線の波長をλ、特定平行結晶格子面1dの面間隔をdとすると、Braggの条件式(2dsinθ=nλ、ここでnは整数)を満たす平行結晶格子面でX線が回折される。
 また、X線侵入深さとは、入射X線の強度が1/e(eは自然対数の底)になるときの結晶基板の主表面1sからの垂直深さ方向への距離をいう。このX線侵入深さTは、図2を参照して、III族窒化物結晶基板1におけるX線の線吸収係数μ、結晶基板の主表面1sの傾き角χ、結晶基板の主表面1sに対するX線入射角ω、Bragg角θによって、式(1)のように表わされる。なお、χ軸21は入射X線11と出射X線12とにより作られる面内にあり、ω軸22(2θ軸)は入射X線11と出射X線12とにより作られる面に垂直であり、φ軸23は結晶基板の主表面1sに垂直である。回転角φは結晶基板の主表面1s内の回転角を示す。
Figure JPOXMLDOC01-appb-M000001
 したがって、上記の特定平行結晶格子面に対する回折条件を満たすように、傾き角χ、X線入射角ωおよび回転角φの少なくともいずれかを調整することにより、連続的にX線侵入深さTを変えることができる。
 なお、特定平行結晶格子面1dにおける回折条件を満たすように、連続的にX線侵入深さTを変化させるためには、その特定平行結晶格子面1dと結晶基板の主表面1sとは平行でないことが必要である。特定平行結晶格子面と結晶基板の主表面とが平行であると、特定平行結晶格子面1dと入射X線11とのなす角度であるBragg角θと結晶基板の主表面1sと入射X線11とのなす角度であるX線入射角ωとが同じになり、特定平行結晶格子面1dにおいてX線侵入深さを変えることができなくなる。上記のように、特定平行結晶格子面には、結晶基板の主表面と平行でないこと以外には特に制限はないが、所望の進入深さでのX線回折による評価が容易な観点から、(10-10)面、(10-11)面、(10-13)面、(10-15)面、(11-20)面、(22-41)面、(11-21)面、(11-22)面、(11-24)面、(10-1-1)面、(10-1-3)面、(10-1-5)面、(22-4-1)面、(11-2-1)面、(11-2-2)面、(11-2-4)面などが好ましく用いられる。
 ここで、X線侵入深さを変えて結晶基板の任意の特定平行結晶格子面にX線を照射し、この特定平行結晶格子面についての回折強度プロファイルにおける面間隔の変化から結晶格子の均一歪みを、回折強度プロファイルにおける回折強度ピークの半値幅の変化から結晶格子の不均一歪みを、ロッキングカーブにおける回折強度ピークの半値幅の変化から結晶格子の面方位ずれを評価する。
 また、図6を参照して、本発明にかかるIII族窒化物結晶基板1は、その主表面1sの面方位が、結晶基板のc軸1cを含む面1vから[0001]方向に-10°以上10°以下の傾斜角αを有する。ここで、傾斜角αが正の場合は、主表面1sの面方位がc軸を含む面1vから[0001]方向すなわち(0001)面に向かって傾いていることを示し、傾斜角αが負の場合は、主表面1sの面方位がc軸を含む面1vから[000-1]方向すなわち(000-1)面に向かって傾いていることを示す。
 III族窒化物結晶基板1の主表面1sの面方位が、結晶基板のc軸1cを含む面1vから[0001]方向に-10°以上10°以下の傾斜角を有することにより、結晶基板の主表面上にエピタキシャル成長させた少なくとも1層の半導体層を含む半導体デバイスである発光デバイスにおいて、半導体層中の発光層のピエゾ分極が抑制され量子閉じ込めシュタルク効果が低減されることにより、ホールと電子の再結合が容易になり発光遷移確率が高くなるため、発光デバイスのブルーシフトが低減されるとともに発光の積分強度が高くなる。かかる観点から、III族窒化物結晶基板におけるc軸1cを含む面1vから[0001]方向への主表面1sの面方位の傾斜角αは、-9°以上9°以下が好ましく、-6°以上6°以下がより好ましく、-3°以上3°以下がさらに好ましい。ここで、主表面の面方位の傾斜角αは、X線回折法などにより測定することができる。
 (実施形態1)
 図1、図2、図3AおよびB、ならびに図6を参照して、本発明の一実施形態であるIII族窒化物結晶基板1は、III族窒化物結晶基板1の任意の特定平行結晶格子面1d(各結晶格子の特定平行結晶格子面31d,32d,33dにより形成される特定平行結晶格子面1dをいう。本実施形態において、以下同じ。)のX線回折条件を満たしながら結晶基板の主表面1sからのX線侵入深さを変化させるX線回折測定から得られる特定平行結晶格子面1dの面間隔において、0.3μmのX線侵入深さにおける面間隔をd1(面間隔d1、以下同じ。)と表わし5μmのX線侵入深さにおける面間隔をd2(面間隔d2、以下同じ。)と表したときに|d1-d2|/d2の値で表される結晶基板の表面層1pの均一歪みが1.7×10-3以下であり、主表面1sの面方位が、結晶基板のc軸1cを含む面1vから[0001]方向に-10°以上10°以下の傾斜角αを有する。
 本実施形態のIII族窒化物結晶基板1は、その表面層1pの均一歪みが1.7×10-3以下であり、かつ、その結晶基板のc軸1cを含む面1vから[0001]方向への主表面1sの面方位の傾斜角αが-10°以上10°以下であることにより、その結晶基板の主表面1s上にエピタキシャル成長させた少なくとも1層の半導体層を含む半導体デバイスである発光デバイスのブルーシフトを低減するとともに発光の積分強度を高くすることができる。かかる観点から、表面層1pの均一歪みは、1.2×10-3以下が好ましく、1.0×10-3以下がより好ましく、0.8×10-3以下がさらに好ましく、0.5×10-3以下が特に好ましい。ここで、表面層1pの均一歪みは、小さいほど好ましく、本願においても、後述するように、結晶基板の主表面の加工条件を調整することにより、0.1×10-3程度までに低減されている。また、主表面1sの面方位の傾斜角αは、-8°以上8°以下が好ましく、-5°以上5°以下がより好ましく、-2°以上2°以下がさらに好ましく、-1.5°以上-0.1°以下または0.1°以上1.5°以下が特に好ましい。
 ここで、図1を参照して、X線侵入深さ0.3μmはIII族窒化物結晶基板1の主表面1sから表面層1p内までの距離に相当し、X線侵入深さ5μmはIII族窒化物結晶基板1の主表面1sから内層1r内までの距離に相当する。このとき、図3Aを参照して、X線侵入深さ5μmにおける面間隔d2はそのIII族窒化物結晶本来の特定平行結晶格子面の面間隔と考えられるが、X線侵入深さ0.3μmにおける面間隔d1は、III族窒化物結晶基板1の表面加工の影響(たとえば、その特定平行結晶格子面1dに平行な方向への引張応力30など)による表面層1pの結晶格子の均一歪みを反映して、X線侵入深さ5μmにおける面間隔d2と異なる値をとる。
 上記の場合、図3Bを参照して、III族窒化物結晶基板の図3Aに示す特定平行結晶格子面1dについての回折強度プロファイルにおいて、X線侵入深さ0.3μmにおける面間隔d1とX線侵入深さ5μmにおける面間隔d2とが現れる。したがって、d2に対するd1とd2の差の割合である|d1-d2|/d2の値によって、表面層の均一歪みを表わすことができる。
 (実施形態2)
 図1、図2、図4AおよびB、ならびに図6を参照して、本発明の他の実施形態であるIII族窒化物結晶基板1は、III族窒化物結晶基板1の任意の特定平行結晶格子面1d(各結晶格子の特定平行結晶格子面41d,42d,43dにより形成される特定平行結晶格子面1dをいう。本実施形態において、以下同じ。)のX線回折条件を満たしながら結晶基板の主表面1sからのX線侵入深さを変化させるX線回折測定から得られる特定平行結晶格子面1dの回折強度プロファイルにおいて、0.3μmのX線侵入深さにおける回折強度ピークの半値幅v1と5μmのX線侵入深さにおける回折強度ピークの半値幅v2とから得られる|v1-v2|の値で表される結晶基板の表面層1pの不均一歪みが110arcsec以下であり、主表面1sの面方位が、結晶基板のc軸1cを含む面1vから[0001]方向に-10°以上10°以下の傾斜角αを有する。
 本実施形態のIII族窒化物結晶基板1は、その表面層1pの不均一歪みが110arcsec以下であり、かつ、その結晶基板のc軸1cを含む面1vから[0001]方向への主表面1sの面方位の傾斜角αが-10°以上10°以下であることにより、その結晶基板の主表面1s上にエピタキシャル成長させた少なくとも1層の半導体層を含む半導体デバイスである発光デバイスのブルーシフトを低減するとともに発光の積分強度を高くすることができる。かかる観点から、表面層1pの不均一歪みは、70arcsec以下が好ましく、50arcsec以下がより好ましく、20arcsec以下がさらに好ましい。ここで、表面層1pの不均一歪みは、小さいほど好ましく、本願においても、後述するように、結晶基板の主表面の加工条件を調整することにより、0arcsecまでに低減されている。また、主表面1sの面方位の傾斜角αは、-7°以上7°以下が好ましく、-4°以上4°以下がより好ましく、-1°以上1°以下がさらに好ましく、-1°以上-0.1°以下または0.1°以上1°以下が特に好ましい。
 ここで、図1を参照して、X線侵入深さ0.3μmはIII族窒化物結晶基板1の主表面1sから表面層1p内までの距離に相当し、X線侵入深さ5μmはIII族窒化物結晶基板1の主表面1sから内層1r内までの距離に相当する。このとき、図4Aを参照して、X線侵入深さ5μmにおける回折強度ピークの半値幅v2はそのIII族窒化物結晶本来の半値幅と考えられるが、X線侵入深さ0.3μmにおける回折強度ピークの半値幅v1は、III族窒化物結晶基板1の表面加工の影響による表面層1pの結晶格子の不均一歪み(たとえば、各結晶格子面の面間隔が、d3、d4~d5、d6とそれぞれ異なる)を反映して、X線侵入深さ5μmにおける回折強度ピークの半値幅v2と異なる値をとる。
 上記の場合、図4Bを参照して、III族窒化物結晶基板の図4Aに示す特定平行結晶格子面1dについての回折強度プロファイルにおいて、X線侵入深さ0.3μmにおける回折強度ピークの半値幅v1とX線侵入深さ5μmにおける回折強度ピークの半値幅v2とが現れる。したがって、v1とv2の差である|v1-v2|の値によって、表面層1pの不均一歪みを表わすことができる。
 (実施形態3)
 図1、図2、図5AおよびB、ならびに図6を参照して、本発明の他の実施形態であるIII族窒化物結晶基板1は、III族窒化物結晶基板1の任意の特定平行結晶格子面1d(各結晶格子の特定平行結晶格子面51d,52d,53dにより形成される特定平行結晶格子面1dをいう。本実施形態において、以下同じ。)のX線回折に関して結晶基板の主表面1sからのX線侵入深さを変化させて測定されたロッキングカーブにおいて、0.3μmのX線侵入深さにおける回折強度ピークの半値幅w1と5μmのX線侵入深さにおける回折強度ピークの半値幅w2とから得られる|w1-w2|の値で表される結晶基板の表面層1pの特定平行結晶格子面の面方位ずれが300arcsec以下であり、主表面1sの面方位が、結晶基板のc軸1cを含む面1vから[0001]方向に-10°以上10°以下の傾斜角αを有する。
 本実施形態のIII族窒化物結晶基板1は、その表面層1pの特定平行結晶格子面の面方位ずれが300arcsec以下であり、かつ、その結晶基板のc軸1cを含む面1vから[0001]方向への主表面1sの面方位の傾斜角αが-10°以上10°以下であることにより、その結晶基板の主表面1s上にエピタキシャル成長させた少なくとも1層の半導体層を含む半導体デバイスである発光デバイスのブルーシフトを低減するとともに発光の積分強度を高くすることができる。かかる観点から、表面層1pの特定平行結晶格子面の面方位ずれは、220arcsec以下が好ましく、140arcsec以下がより好ましく、70arcsec以下がさらに好ましい。ここで、表面層1pの特定結晶は、小さいほど好ましく、本願においても、後述するように、結晶基板の主表面の加工条件を調整することにより、0arcsecまでに低減されている。また、主表面1sの面方位の傾斜角αは、-8°以上8°以下が好ましく、-5°以上5°以下がより好ましく、-2°以上2°以下がさらに好ましく、-1.5°以上-0.1°以下または0.1°以上1.5°以下が特に好ましい。
 ここで、図1を参照して、X線侵入深さ0.3μmはIII族窒化物結晶基板1の主表面1sから表面層1p内までの距離に相当し、X線侵入深さ5μmはIII族窒化物結晶基板1の主表面1sから内層1r内までの距離に相当する。このとき、図5Aを参照して、X線侵入深さ5μmにおける回折強度ピークの半値幅w2はそのIII族窒化物結晶本来の半値幅と考えられるが、X線侵入深さ0.3μmにおける回折強度ピークの半値幅w1は、III族窒化物結晶基板1の表面加工の影響による表面層1pの結晶格子の面方位ずれ(たとえば、各結晶格子の特定平行結晶格子面51d,52d,53dの面方位がそれぞれ異なる)を反映して、X線侵入深さ5μmにおける半値幅w2と異なる値をとる。
 上記の場合、図5Bを参照して、III族窒化物結晶の図5Aに示す特定平行結晶格子面についてのロッキングカーブにおいて、X線侵入深さ0.3μmにおける回折強度ピークの半値幅w1とX線侵入深さ5μmにおける回折強度ピークの半値幅w2とが現れる。したがって、w1とw2との差である|w1-w2|の値によって、結晶表面層の特定平行結晶格子面の面方位ずれを表わすことができる。
 上記の実施形態1~実施形態3のIII族窒化物結晶基板1において、主表面1sは、5nm以下の表面粗さRaを有することが好ましい。ここで、表面粗さRaとは、JIS B 0601-1994に規定される算術平均粗さRaを意味し、具体的には、粗さ曲面から、その平均面の方向に基準面積として10μm角(10μm×10μm=100μm2、以下同じ)だけ抜き取り、この抜き取り部分の平均面から測定曲面までの偏差の絶対値(すなわち、距離)を合計してそれを基準面積で平均した値をいう。かかる表面粗さRaは、AFM(原子間力顕微鏡)、光干渉式粗さ計などにより測定することができる。III族窒化物結晶基板の主表面の表面粗さRaを5nm以下とすることにより、このIII族窒化物結晶基板の主表面上に転位密度が低く結晶性の良好な半導体層をエピタキシャル成長させることができ、発光の積分強度が高い発光デバイスなど特性のよい半導体デバイスが得られる。かかる観点から、III族窒化物結晶基板の主表面の表面粗さRaは、3nm以下がより好ましく、1nm以下がさらに好ましい。
 一方、III族窒化物結晶基板および半導体デバイスの生産性を高める観点からは、III族窒化物結晶基板の主表面の表面粗さRaは、1nm以上が好ましい。したがって、III族窒化物結晶基板ならびに半導体デバイスの高品質および高生産性を両立させる観点から、III族窒化物結晶基板の主表面の表面粗さRaは、1nm以上3nm以下が好ましい。
 また、上記の実施形態1~実施形態3のIII族窒化物結晶基板1において、主表面1sは、50nm以下の表面粗さRyを有することが好ましい。ここで、表面粗さRyとは、JIS B 0601-1994に規定される最大高さRyを意味し、具体的には、粗さ曲面から、その平均面の方向に基準面積として10μm角だけ抜き取り、この抜き取り部分の平均面から最も高い山頂までの高さと最も低い谷底までの深さとの和をいう。かかる表面粗さRyは、AFM(原子間力顕微鏡)、光干渉式粗さ計などにより測定することができる。III族窒化物結晶基板の主表面の表面粗さRyを50nm以下とすることにより、このIII族窒化物結晶基板の主表面上に転位密度が低く結晶性の良好な半導体層をエピタキシャル成長させることができ、発光の積分強度の高い発光デバイスなど特性のよい半導体デバイスが得られる。かかる観点から、III族窒化物結晶基板の主表面の表面粗さRyは、30nm以下がより好ましく、10nm以下がさらに好ましい。また、高品質、および高生産性を両立させる観点から、10nm以上30nm以下が好ましい。
 また、図7~図9を参照して、上記の実施形態1~実施形態3のIII族窒化物結晶基板1において、主表面1sの面方位は、結晶基板のc軸1cを含む面1vである{10-10}面、{11-20}面および{21-30}面のいずれかの面からの傾斜角αが0°以上10°以下であることが好ましい。
 ここで、主表面1sの面方位が{10-10}面、{11-20}面および{21-30}面のいずれかの面に対して傾斜角αが0°以上0.1°未満と実質的に平行であると、主表面1s上にエピタキシャル成長させる少なくとも1層の半導体層に含まれる発光層中の井戸層におけるIn(インジウム)の取り込み濃度を高くすることができるため、成長温度を低下させることなく所望の組成の成長ができ、井戸層の結晶性を向上することができる。このため、得られる発光デバイス(半導体デバイス)は、良好な発光特性を有する。
 また、主表面1sの面方位が結晶基板の{10-10}面、{11-20}面および{21-30}面のいずれかの面からの傾斜角が0.1°以上10°以下であっても、上記のように主表面1sの面方位が{10-10}面、{11-20}面および{21-30}面のいずれかの面に対して傾斜角αが0°以上0.1°未満と実質的に平行である場合とほぼ同様の良好な発光特性を有する半導体デバイスが得られる。また、主表面1sの面方位が結晶基板の{10-10}面、{11-20}面および{21-30}面のいずれかの面からの傾斜角が0.1°以上10°以下である場合は、成長させる半導体層(発光層が含まれる)のモフォロジーがよくなるため、得られる発光デバイス(半導体デバイス)は良好な発光特性を有する。特に、結晶基板の{10-10}面、{11-20}面および{21-30}面のいずれかの面からの主表面1sの面方位の傾斜角が0.1°以上2°以下である場合は、半導体デバイスである発光デバイスにおいて、井戸層の結晶性の向上により発光スペクトルに現れる発光ピークの半値幅を低減することにより、良好な発光特性が得られる。
 さらに、主表面1sの面方位が{10-10}面、{11-20}面および{21-30}面のいずれかの面に対して[0001]方向に-3°以上3°以下の傾斜角を有していてもよい。ここで、かかる[0001]方向の傾斜角は、-2°以上-0.1°以下または0.1°以上2°以下が好ましい。
 また、図1を参照して、上記の実施形態1~実施形態3のIII族窒化物結晶基板1において、主表面1sに存在する酸素の濃度が2原子%以上16原子%以下であることが好ましい。ここで、主表面1sに存在する酸素とは、主表面1sが酸化することにより取り込まれている酸素および主表面1sに付着している酸素などを意味する。III族窒化物結晶基板1の主表面1sに存在する酸素の濃度が2原子%よりも低いと、形成された半導体デバイスにおける結晶基板とその結晶基板上にエピタキシャル成長により形成された半導体層との間の界面の抵抗が大きくなり、発光の積分強度が低下する。結晶基板の主表面1sに存在する酸素の濃度が16原子%より高いと、結晶基板の主面上にエピタキシャル成長させる半導体層の結晶性が低下するため、発光の積分強度が低下する。かかる観点から、主表面1sに存在する酸素の濃度は3原子%以上10原子%以下がより好ましい。ここで、主表面に存在する酸素の濃度は、AES(オージェ原子分光法)、XPS(X線光電子分光法)などにより測定される。
 すなわち、上記のAESおよびXPSによって測定ができる観点から、本願発明における主表面1sに存在する酸素とは、主表面1sに付着している酸素および結晶基板の酸化などにより主表面1sに取り込まれている酸素、主表面から通常5nm程度まででたかだか10nm程度までの深さまでの領域に取り込まれている酸素をいう。
 また、図1を参照して、上記の実施形態1~実施形態3のIII族窒化物結晶基板1について、主表面1sにおける転位密度が1×107cm-2以下であることが好ましい。結晶基板の主表面における転位密度が1×107cm-2より高くなると、結晶基板の主面上にエピタキシャル成長させる半導体層の結晶性が低下するため、発光の積分強度が低下する。かかる観点から、主表面1sにおける転位密度が1×106cm-2以下がより好ましく、1×105cm-2以下がさらに好ましい。半導体デバイスの生産におけるコストおよび効率を高める観点から、主表面1sにおける転位密度は、1×102cm-2以上が好ましい。
 半導体デバイスの生産におけるコストおよび効率を高める観点から、III族窒化物結晶基板の直径は、40mm以上が好ましく、50mm以上がより好ましく、75mm以上がさらに好ましい。基板の直径が大きい場合には、1枚の基板から作製できるデバイスの個数が増加する。大口径の基板を作製するためには、下地基板の直径を大きくし、厚みの厚い結晶を成長し、所望の角度で切り出して加工することができる。また、直径の小さいIII族窒化物結晶の複数枚の基板をそれらの側面が互いに隣接するように配置して、それらの複数枚の基板の主面上に、それぞれIII族窒化物結晶を成長させる際にそれらのIII族窒化物結晶を互いに接合させて単一の結晶として成長させ、得られた単一のIII族窒化物結晶を大口径のIII族窒化物結晶基板に加工することができる。
 また、反りおよび厚み分布を小さくするなどの形状精度を向上させる観点から、III族窒化物結晶基板の直径は、150mm以下が好ましく、100mm以下がより好ましい。
 なお、III族窒化物結晶基板の主表面の形状は、デバイスを作製することができる大きさを有するものであれば、円形に限定されず、四角形などの多角形であってもよい。主表面の形状が多角形である場合は、半導体デバイスの生産におけるコストおよび効率を高める観点から、最短辺の長さは、5mm以上が好ましく、10mm以上がより好ましい。また、反りおよび厚み分布を小さくするなどの形状精度を向上させる観点から、最長辺の長さは、150mm以下が好ましく、100mm以下がより好ましい。主表面が長方形または正方形などのすべての角が直角である四角形のIII族窒化物結晶基板としては、主表面がたとえば、5mm×15mm、10mm×10mm、10mm×30mm、18mm×18mm、30mm×50mmなどが挙げられる。
 なお、III族窒化物結晶基板に添加される不純物(ドーパント)は、特に制限はないが、導電性基板、絶縁性基板を作製する観点から、以下のものが好ましく用いられる。比抵抗が5×10-5Ω・cm以上0.5Ω・cm以下(好ましくは5×10-4Ω・cm以上0.05Ω・cm以下)でキャリア濃度が1×1016cm-3以上1×1020cm-3以下(好ましくは1×1017cm-3以上1×1019cm-3以下)の範囲内のn型導電性基板では、結晶性を維持してかかる範囲内で所望の導電性が得られる観点から、基板に添加される不純物はO、Siが好ましい。比抵抗が1×104Ω・cm以上1×1011Ω・cm以下(好ましくは1×106Ω・cm以上1×1010Ω・cm以下)の範囲内の絶縁性基板では、結晶性を維持してかかる範囲内で所望の絶縁性が得られる観点から、基板に添加される不純物はC、Feが好ましい。ここで、基板の比抵抗は、四探針法、二探針法などにより測定することができる。また、基板のキャリア濃度は、ホール測定法、C-V測定法などにより測定することができる。
 [III族窒化物結晶基板の製造方法]
 上記の実施形態1~実施形態3のIII族窒化物結晶基板の製造方法は、特に制限はないが、たとえば、III族窒化物結晶体を成長させる工程と、III族窒化物結晶体を、その結晶体のc軸を含む面から[0001]方向への傾斜角αが-10°以上10°以下の面に平行な複数の面で切り出すことにより、c軸を含む面から[0001]方向への傾斜角αが-10°以上10°以下の面の主表面を有するIII族窒化物結晶基板を形成する工程と、III族窒化物結晶基板の主表面を加工する工程と、を備えることができる。
 (III族窒化物結晶体の製造工程)
 III族窒化物結晶体の製造方法には、特に制限はなく、HVPE(ハイドライド気相成長)法、昇華法などの気相成長法、フラックス法、アモノサーマル法などの液相成長法などが好適に用いられる。たとえば、GaN結晶体の製造には、HVPE法、フラックス、アモノサーマル法などが好適に用いられ、AlN結晶体の製造には、HVPE法、昇華法などが好適に用いられ、InN結晶体、AlGaN結晶体およびInGaN結晶体の製造には、HVPE法などが好適に用いられる。
 上記のIII族窒化物結晶体の製造において、下地基板には、特に制限はないが、III族窒化物結晶体との結晶格子の不整合が小さく結晶性の高いIII族窒化物結晶体を成長させる観点から、GaAs基板、サファイア基板、SiC基板などが好適に用いられる。
 (III族窒化物結晶基板の形成工程)
 上記のようにして製造されたIII族窒化物結晶体を、その結晶体のc軸を含む面から[0001]方向への傾斜角αが-10°以上10°以下の面に平行な複数の面で切り出す方法には、特に制限はなく、ワイヤソー、内周刃、外周刃、レーザ加工、放電加工、ウォータージェットなどの各種切断方法を用いることができる。
 (III族窒化物結晶基板の主表面加工工程)
 上記のようにして形成されたIII族窒化物結晶基板の主表面を平坦化し加工変質層を低減するための主表面加工方法は、特に制限はないが、表面粗さおよび加工変質層の両方を低減する観点から、研削および機械的研磨のいずれかの機械的加工の後、CMP(化学機械的研磨)を行うことが好ましい。なお、III族窒化物結晶基板の加工変質層は完全に除去する必要はなく、半導体層をエピタキシャル成長させる前にアニール処理により主表面の改質を行うこともできる。半導体層成長前のアニールにより結晶基板の表面層における結晶の再配列が行なわれ、結晶性のよい半導体層のエピタキシャル成長が可能となる。
 主表面の面方位がc軸を含む面から[0001]方向に-10°以上10°以下の傾斜角αを有するIII族窒化物結晶基板の主表面の表面粗さおよび加工変質層の両方を効率的に低減するために好適なCMPについて以下に説明する。
 CMPに用いられるスラリーは、pHの値Xと酸化還元電位の値Y(mV)との関係が、以下の式(2)および(3)
    Y≧-50X+1400             (2)
    Y≦-50X+1700             (3)
を満たしていることが好ましい。Y<-50X+1400であると、研磨速度が低くなり、CMP時の機械的な負荷が増加するために、III族窒化物結晶基板の表面品質が低下する。Y>-50X+1700であると、研磨パッドおよび研磨装置への腐食作用が大きくなり、安定した研磨が困難となる。
 また、研磨速度をさらに向上させ、III族窒化物結晶基板の表面品質を向上させる観点から、さらに以下の式(4)
    Y≧-50X+1500             (4)
の関係をも満たすことが好ましい。
 CMPのスラリーには、通常、塩酸、硫酸、硝酸などの酸、KOH、NaOHなどのアルカリが添加されているが、これらの酸および/またはアルカリのみでは化学的に安定な窒化ガリウムの表面を酸化する効果が小さい。そこで、さらに、酸化剤の添加により酸化還元電位を増加させて、上記式(2)および式(3)または上記式(3)および式(4)の関係を満たすようにすることが好ましい。
 CMPのスラリーに添加される酸化剤としては、特に制限はないが、研磨速度を高める観点から、次亜塩素酸、トリクロロイソシアヌル酸などの塩素化イソシアヌル酸、ジクロロイソシアヌル酸ナトリウムなどの塩素化イソシアヌル酸塩、過マンガン酸カリウムなどの過マンガン酸塩、ニクロム酸カリウムなどのニクロム酸塩、臭素酸カリウムなどの臭素酸塩、チオ硫酸ナトリウムなどのチオ硫酸塩、硝酸、硫酸、塩酸、過酸化水素水、オゾンなどが好ましく用いられる。なお、これらの酸化剤は、単独で用いても、2以上を併用してもよい。
 CMPのスラリーのpHは、6以下または8以上であることが好ましい。pHが6以下の酸性スラリーまたはpHが8以上の塩基性スラリーをIII族窒化物結晶に接触させて、III族窒化物結晶の加工変質層をエッチング除去することにより、研磨速度を高めることができる。かかる観点から、スラリーのpHは4以下または10以上であることがより好ましい。
 ここで、スラリーのpHの調整に用いられる酸および塩基には特に制限はなく、たとえば、塩酸、硝酸、硫酸、リン酸などの無機酸、ギ酸、酢酸、シュウ酸、クエン酸、リンゴ酸、酒石酸、コハク酸、フタル酸、フマル酸などの有機酸、KOH、NaOH、NH4OH、アミンなどの塩基の他、上記無機酸または有機酸の塩、炭酸塩などの塩を用いることができる。また、上記酸化剤の添加により、pHを調整することもできる。
 CMPのスラリーには、研磨速度を高める観点から、砥粒が含まれることが好ましい。この砥粒により研磨速度をより高めることができる。スラリーに含められる砥粒には、特に制限はなく、III族窒化物結晶基板の硬度以下に硬度の低い低硬度砥粒を用いることができる。低硬度砥粒を用いることにより結晶基板の主表面の表面粗さおよび加工変質層を低減することができる。
 ここで、低硬度砥粒は、被研磨物であるIII族窒化物結晶の硬度以下に硬度の低い砥粒であれば特に制限はないが、SiO2、CeO2、TiO2、MgO、MnO2、Fe23、Fe34、NiO、ZnO、CoO、Co34、CuO、Cu2O、GeO2、CaO、Ga23、In23からなる群から選ばれる少なくとも1つの材質を含む砥粒であることが好ましい。
 なお、砥粒は、単一の金属元素を含む酸化物に限定されず、2種類以上の金属元素を含む酸化物(たとえば、フェライト、ペロブスカイト、スピネルまたはイルメナイトなどの構造を有するもの)であってもよい。また、AlN、GaN、InNなどの窒化物、CaCO3、BaCO3などの炭酸化物、Fe、Cu、Ti、Niなどの金属、炭素(具体的には、カーボンブラック、カーボンナノチューブ、C60など)を用いることもできる。
 また、III族窒化物結晶基板の主表面を、スクラッチを発生させずに短時間でその表面粗さRa,Ryを低減する観点から、砥粒は、1次粒子が結合した2次粒子とすることが好ましい。1次粒子の平均粒径D1に対する2次粒子の平均粒径D2の比(D2/D1比)が1.6以上であることが好ましく、2次粒子の平均粒径D2が200nm以上であることが好ましく、2次粒子の形状が繭形、塊状形および鎖形の少なくともいずれかの形状であることが好ましく、ヒュームドシリカ、コロイダルシリカであって1次粒子が化学的に結合した2次粒子となっているSiO2砥粒であることが好ましい。1次粒子径はガス吸着法による吸着比表面積から評価することができ、2次粒子は動的光散乱法で評価することができる。
 一方、III族窒化物結晶基板の表面層の均一歪み、不均一歪みおよび/または面方位ずれを低減し、さらに表面粗さを低減する観点から、CMPスラリーは砥粒を含まないことが好ましい。
 また、III族窒化物結晶基板の表面層の均一歪み、不均一歪みおよび/または面方位ずれを低減する観点から、CMPに用いられるスラリーにおけるpHの値Xと酸化還元電位の値Y(mV)との関係は-50X+1400≦Y≦-50X+1700、かつ、CMPにおける接触係数C(単位:10-6m)は1.2×10-6m以上1.8×10-6m以下であることが好ましい。また、かかる接触係数Cは1.4×10-6m以上1.6×10-6m以下であることがより好ましい。ここで、接触係数Cは、スラリーの粘度をη(単位:mPa・s)、CMPにおける周速度V(単位:m/s)およびCMPにおける圧力P(単位:kPa)を用いて、次式(5)
    C=η×V/P                 (5)
と表わされる。スラリーの接触係数Cが1.2×10-6mより小さい場合は、CMPにおいてIII族窒化物結晶基板への負荷が大きくなるため、III族窒化物結晶基板の表面層の均一歪み、不均一歪みおよび/または面方位ずれが大きくなる。スラリーの接触係数Cが1.8×10-6mより大きい場合は、研磨速度が低下するため、III族窒化物結晶基板の主表面の表面粗さ、表面層の均一歪み、不均一歪みおよび/または面方位ずれが大きくなる。なお、スラリーの粘度は、エチレングルコールなどの高粘度の有機化合物、ベーマイトなどの無機化合物の添加により調整することができ、B型粘度計、オストワルド型粘度計などにより測定できる。
 さらに、このようにして得られた、1つ以上の実施形態1~実施形態3のIII族窒化物結晶基板1の主表面1s上に、さらにIII族窒化物結晶を成長させて、成長させたIII族窒化物結晶を結晶基板の主表面1s上に平行な面で切り出してIII族窒化物結晶基板を製造し、かかるIII族窒化物結晶基板の主表面を上記と同様にして表面加工することにより、さらに実施形態1~実施形態3のIII族窒化物結晶基板を製造することができる。上記のIII族窒化物結晶のさらなる成長(繰り返し成長)の下地基板として用いるIII族窒化物結晶基板は、必ずしも1枚の結晶基板でなくてよく、小サイズの結晶基板を複数枚用いても良い。繰り返し成長時に接合して単一の結晶とすることができる。繰り返し成長時の接合により、大口径のIII族窒化物結晶基板を得ることができる。更に繰り返し成長で接合したIII族窒化物結晶から切り出した結晶基板を下地基板として用い、再度繰り返し成長することもできる。このように、III族窒化物結晶を繰り返し使用して成長することにより、生産コストを削減することができる。
 ここで、実施形態1~実施形態3のIII族窒化物結晶基板1の主表面1s上に、さらにIII族窒化物結晶を成長させる方法には、とくに制限はなく、HVPE法、昇華法などの気相成長法、フラックス法、アモノサーマル法などの液相成長法などが好適に用いられる。たとえば、GaN結晶体の製造には、HVPE法、フラックス法、アモノサーマル法などが好適に用いられ、AlN結晶体の製造には、HVPE法、昇華法などが好適に用いられ、InN結晶体、AlGaN結晶体およびInGaN結晶体の製造には、HVPE法などが好適に用いられる。
 [エピ層付III族窒化物結晶基板]
 (実施形態4)
 図10を参照して、本発明にかかるエピ層付III族窒化物結晶基板の一実施形態は、実施形態1~実施形態3のIII族窒化物結晶基板1の主表面1s上にエピタキシャル成長により形成されている少なくとも1層の半導体層2を含む。
 本実施形態のエピ層付III族窒化物結晶基板3において、半導体層2はIII族窒化物結晶基板1の主表面1s上にエピタキシャル成長されていることから、半導体層2の主表面2sの面方位はIII族窒化物結晶基板1の主表面1sの面方位と同一である。実施形態1~実施形態3のIII族窒化物結晶基板1の主表面1sの面方位はc軸1cを含む面1vから[0001]方向に-10°以上10°以下の傾斜角を有するため、半導体層2の主表面2sの面方位はc軸を含む面から[0001]方向に-10°以上10°以下の傾斜角を有する。このようにして、結晶性が高く主表面2sの面方位がc軸を含む面から[0001]方向に-10°以上10°以下の傾斜角を有する半導体層2を含むエピ層付III族窒化物結晶基板が得られる。
 半導体層2の形成方法には、特に制限はないが、結晶性の高い半導体層をエピタキシャル成長させる観点から、MOCVD(有機金属化学気相堆積)法、MBE(分子線エピタキシー)法などの気相成長法が好ましく用いられる。
 [半導体デバイス]
 (実施形態5)
 図11を参照して、本発明にかかる半導体デバイスの一実施形態は、実施形態4のエピ層付III族窒化物結晶基板3を含む。
 本実施形態の半導体デバイスに含まれる実施形態4のエピ層付III族窒化物結晶基板3は、主表面1sの面方位がc軸を含む面から[0001]方向に-10°以上10°以下の傾斜角を有する実施形態1~実施形態3のIII族窒化物結晶基板1の主表面1s上にエピタキシャル成長により形成されている1層以上の半導体層2を含む。かかる半導体層2は、結晶性が高く、その主表面の面方位がc軸を含む面から[0001]方向に-10°以上10°以下の傾斜角を有するため、ピエゾ分極が抑制されて量子閉じ込めシュタルク効果も抑制されることにより、本実施形態の半導体デバイスの特性が高くなる。たとえば、上記半導体層2中に発光層210が含まれる発光デバイスにおいては、ピエゾ分極が抑制されて量子閉じ込めシュタルク効果が抑制されるため、発光のブルーシフトが抑制され、発光強度が向上する。このため、半導体層2中にピーク波長が430nm以上550nm以下の光を高い効率で発する発光層210を形成することができる。特に、波長500nm~550nmの緑色領域の光の発光強度が顕著に向上する。
 図11を参照して、本実施形態の半導体デバイスは、実施形態4のエピ層付III族窒化物結晶基板3を含む。エピ層III族窒化物結晶基板3は、主表面1sの面方位がc軸を含む面から[0001]方向に-10°以上10°以下の傾斜角を有する実施形態1~実施形態3のIII族窒化物結晶基板1を含む。また、エピ層III族窒化物結晶基板3は、上記III族窒化物結晶基板1の一方の主表面1s上に、少なくとも1層の半導体層2として、順次形成されている厚さ1000nmのn型GaN層202、厚さ1200nmのn型Inx1Aly1Ga1-x1-y1N(0<x1、0<y1、x1+y1<1)クラッド層204、厚さ200nmのn型GaNガイド層206、厚さ65nmのアンドープのInx2Ga1-x2N(0<x2<1)ガイド層208、厚さ15nmのGaN障壁層および厚さ3nmのInx3Ga1-x3N(0<x3<1)井戸層から構成される3周期のMQW(多重量子井戸)構造を有する発光層210、厚さ65nmのアンドープのInx4Ga1-x4N(0<x4<1)ガイド層222、厚さ20nmのp型Alx5Ga1-x5N(0<x5<1)ブロック層224、厚さ200nmのp型GaN層226、厚さ400nmのp型Inx6Aly6Ga1-x6-y6N(0<x6、0<y6、x6+y6<1)クラッド層228、および厚さ50nmのp型GaNコンタクト層230を含む。p型GaNコンタクト層230上に部分的に厚さ300nmのSiO2絶縁層300が形成され、露出しているp型GaNコンタクト層230上およびSiO2絶縁層300の一部上にp側電極400が形成されている。III族窒化物結晶基板1の他方の主表面上にn側電極500が形成されている。
 [半導体デバイスの製造方法]
 図11を参照して、本発明にかかる半導体デバイスの製造方法の実施形態としては、実施形態1~実施形態3のIII族窒化物結晶基板を準備する工程と、結晶の主表面1s上に少なくとも1層の半導体層2を成長させることによりエピ層付III族窒化物結晶基板を形成する工程とを含む。かかる製造方法により、半導体層のピエゾ分極による量子閉じ込めシュタルク効果が抑制された特性の高い半導体デバイスが得られる。たとえば、上記半導体層2中に発光層210を含めることにより、発光層210のピエゾ分極による量子閉じ込めシュタルク効果が抑制されることにより発光のブルーシフトが抑制され、発光(たとえばピーク波長が430nm以上550nm以下の発光、特にピーク波長が500nm~550nmの緑色領域の発光)強度の積分強度が高い発光デバイスが得られる。
 図11を参照して、本実施形態の半導体デバイス4の製造方法は、具体的には、まず、実施形態1~実施形態3のIII族窒化物結晶基板1を準備する。かかるIII族窒化物結晶基板1の準備については、[III族窒化物結晶基板]および[III族窒化物結晶基板の製造方法]に記載したとおりであり、繰り返さない。
 次に、準備されたIII族窒化物結晶基板1の主表面1s上に少なくとも1層の半導体層2を成長させてエピ層付III族窒化物結晶基板3を形成する。半導体層2の成長方法には、特に制限はないが、結晶性の高い半導体層をエピタキシャル成長させる観点から、MOCVD(有機金属化学気相堆積)法、MBE(分子線エピタキシ)法などの気相成長法が好ましく用いられる。
 たとえば、III族窒化物結晶基板1の一方の主表面1s上に、少なくとも1層の半導体層2として、たとえばMOCVD法により、厚さ1000nmのn型GaN層202、厚さ1200nmのn型Inx1Aly1Ga1-x1-y1Nクラッド層204、厚さ200nmのn型GaNガイド層206、厚さ65nmのアンドープのInx2Ga1-x2Nガイド層208、厚さ15nmのGaN障壁層および厚さ3nmのInx3Ga1-x3N井戸層から構成される3周期のMQW(多重量子井戸)構造を有する発光層210、厚さ65nmのアンドープのInx4Ga1-x4Nガイド層222、厚さ20nmのp型Alx5Ga1-x5Nブロック層224、厚さ200nmのp型GaN層226、厚さ400nmのp型Inx6Aly6Ga1-x6-y6Nクラッド層228、および厚さ50nmのp型GaNコンタクト層230を順次成長させる。
 次に、p型GaNコンタクト層230上に、蒸着法により、厚さ300nmのSiO2絶縁層300を形成する。次いで、フォトリソグラフィー法およびウェットエッチング法により、幅10μmのストライプ窓を形成する。<0001>方向軸(c軸)を半導体層の主表面に投影した方向に平行にレーザストライプを設ける。次いで、このストライプ窓上およびSiO2絶縁層300の一部上に、蒸着法により、p側電極400としてNi/Au電極を形成する。III族窒化物結晶基板の他方の主表面上に、蒸着法により、n側電極500としてTi/Al/Ti/Au電極を形成する。
 (実施例I)
 1.III族窒化物結晶体の製造
 下地基板として直径50mmのGaAs結晶基板を用いて、HVPE法により、厚さ50mmのGaN結晶体(III族窒化物結晶体)を成長させた。すなわち、大気圧のHVPE反応炉内で、金属Gaを収容したボートを800℃に加熱し、このボートにHClガスとキャリアガス(H2ガス)との混合ガスを導入することにより、金属GaとHClガスとを反応させて、GaClガスを生成させた。これとともに、HVPE反応炉内にNH3ガスとキャリアガス(H2ガス)との混合ガスを導入することにより、GaClガスとNH3ガスとを反応させて、HVPE反応炉内に設置されたGaAs結晶基板(下地基板)上にGaN結晶体を成長させた。ここで、GaN結晶体の成長温度は1050℃、HVPE反応炉内のHClガス分圧は2kPa、NH3ガス分圧は30kPaとした。
 2.III族窒化物結晶基板の製造
 上記で得られたGaN結晶体(III族窒化物結晶体)を、c軸を含む面に対して[0001]方向に-10°~10°の間の傾斜角αを有する面に平行な面でスライスすることにより、表1に示す主表面を有するGaN結晶基板(III族窒化物結晶基板)を製造した。ここで、傾斜角αは、符号が正の場合は主表面の面方位がc軸を含む面から[0001]方向に(すなわち(0001)面に向かって)傾斜していることを示し、符号が負の場合は主表面の面方位がc軸を含む面から[000-1]方向に(すなわち(000-1)面に向かって)傾斜していることを示す。
 3.III族窒化物結晶基板の表面加工
 上記で得られたGaN結晶基板(III族窒化物結晶基板)主表面を、ラッピング(機械的研磨)した後、CMP(化学機械的研磨)することにより、半導体デバイス用GaN結晶基板を得た。ここで、ラッピングは、砥粒径が2μm、3μmおよび9μmの3種類のダイヤモンド砥粒を準備して、銅定盤または錫定盤を用いて、ダイヤモンド砥粒の粒径を段階的に小さくさせて行った。ラッピング圧力は100gf/cm2~500gf/cm2(9.8kPa~49.0kPa)、GaN結晶基板および定盤の回転数は30rpm(回転/min)~60rpmとした。また、CMPは、砥粒として1次粒子が化学的に結合して2次粒子となったコロイダルシリカ(1次粒子径が90nm、2次粒子径が210nm)を含み、pH調節剤として酒石酸、酸化剤としてトリクロロイソシアヌル酸を含み、pHおよび酸化還元電位(ORP)を表1に示す値に調製したスラリーを用いて、接触係数Cを表1に示す値になるように調整して行った。
 こうして表面加工されたGaN結晶基板について、(11-22)面(本測定における特定平行結晶格子面)からの回折X線を、X線侵入深さを0.3μmから5μmまで変えて測定することにより、回折強度プロファイルにおける(11-22)面の面間隔および回折強度ピークの半値幅ならびにロッキングカーブにおける回折強度ピークの半値幅を求め、これらの値からGaN結晶基板の表面層の均一歪み、不均一歪みおよび結晶格子面の面方位ずれを評価した。X線回折測定には、平行光学系、CuKα1のX線波長を用いた。また、X線侵入深さは、結晶表面に対するX線入射角ω、結晶表面の傾き角χおよび結晶表面内の回転角φの少なくともいずれかを変えることにより制御した。なお、上記X線侵入深さでのX線回折による評価を容易にする観点から、例I-1およびI-2においては特定平行結晶格子面として(10-13)面を用い、例I-13~I-15においては特定平行結晶格子面として(10-11)面を用いた。
 なお、本実施例と同様の製造方法および表面加工方法により得られた別のGaN結晶基板について、その比抵抗は四探針法により測定したところ1×10-2Ω・cmであり、そのキャリア濃度はホール測定法により測定したところ2×1018cm-3であった。
 4.半導体デバイスの製造
 図11を参照して、上記で得られた半導体デバイス用のGaN結晶基板(III族窒化物結晶基板1)の一方の主表面1s上に、MOCVD法により、少なくとも1層の半導体層2として、厚さ1000nmのn型GaN層202、厚さ1200nmのn型Inx1Aly1Ga1-x1-y1N(x1=0.03、y1=0.14)クラッド層204、厚さ200nmのn型GaNガイド層206、厚さ65nmのアンドープのInx2Ga1-x2N(x2=0.03)ガイド層208、厚さ15nmのGaN障壁層および厚さ3nmのInx3Ga1-x3N(x3=0.2~0.3)井戸層から構成される3周期のMQW(多重量子井戸)構造を有する発光層210、厚さ65nmのアンドープのInx4Ga1-x4N(x4=0.03)ガイド層222、厚さ20nmのp型Alx5Ga1-x5N(x5=0.11)ブロック層224、厚さ200nmのp型GaN層226、厚さ400nmのp型Inx6Aly6Ga1-x6-y6N(x6=0.03、y6=0.14)クラッド層228、および厚さ50nmのp型GaNコンタクト層230を順次成長させた。
 次に、p型GaNコンタクト層230上に、蒸着法により、厚さ300nmのSiO2絶縁層300を形成した。次いで、フォトリソグラフィー法およびウェットエッチング法により、幅10μmのストライプ窓を形成した。例I-1およびI-2においては<10-10>方向軸(m軸)を半導体層の主表面に投影した方向と平行にレーザストライプを設け、その他の例においては<0001>方向軸(c軸)を半導体層の主表面に投影した方向に平行にレーザストライプを設けた。次いで、このストライプ窓上およびSiO2絶縁層300の一部上に、蒸着法により、p側電極400としてNi/Au電極を形成した。次いで、GaN結晶基板(III族窒化物結晶基板1)の他方の主表面をラッピング(機械的研磨)により鏡面とした。次いで、GaN結晶基板の鏡面化された他の主表面上に、蒸着法により、n側電極500としてTi/Al/Ti/Au電極を形成した。このとき、接触式膜厚計を用いてまたは光学顕微鏡またはSEM(走査型電子顕微鏡)を用いた基板を含むウエハ断面の観察により、上記ウエハの各層および全体の厚みを測定した。
 レーザストライプに対する共振器ミラーの作製には、ピーク波長355nmのYAGレーザを用いるレーザスクライバを用いた。レーザスクライバを用いてブレイクした場合には、ダイヤモンドスクライブを用いた場合と比較して、発振チップ歩留まりを向上させることが可能である。スクライブ溝の形成条件は、レーザ光出力100mW、走査速度5mm/sとした。形成されたスクライブ溝は、たとえば、長さ30μm、幅10μm、深さ40μmの溝であった。800μmピッチで基板の絶縁膜開口箇所を通して半導体層の主表面に直接レーザ光を照射することによって、スクライブ溝を形成した。共振器長は600μmとした。ブレードを用いて、共振ミラーを割断により作製した。基板裏側に押圧によりブレイクすることによって、レーザバーを作製した。
 次に、レーザバーの端面に真空蒸着法によって誘電体多層膜をコーティングした。誘電体多層膜は、SiO2とTiO2を交互に積層して構成した。膜厚はそれぞれ、50nm~100nmの範囲で調整して、反射率のピーク波長が500nm~530nmの範囲になるように設計した。一方の端面の反射面を10周期とし、反射率の設計値を約95%に設計し、他方の端面の反射面を6周期とし、反射率の設計値を約80%とした。
 上記のようにして得られた半導体デバイスの通電による評価を、室温(25℃)にて、以下のようにして行った。電源として、パルス幅500ns、デューティ比0.1%のパルス電源を用いて、表面電極に針を落として通電した。電流密度は100A/cm2とした。LEDモード光の観察は、光ファイバをレーザバーの主表面側に配置して、主表面から放出される発光スペクトルを測定することにより行った。LEDモード光の発光スペクトルの波長500nm~550nmの範囲における発光ピークの積分強度を表1にまとめた。また、LEDモード光の発光スペクトルの波長500nm~550nmの範囲における発光ピークの半値幅を表1にまとめた。レーザ光の観測は、光ファイバをレーザバー端面側に配置して、端面から放出される発光スペクトルを測定することにより行った。LEDモード光の発光ピーク波長は、500nm~550nmであった。レーザ光の発振ピーク波長は500nm~530nmであった。
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、III族窒化物結晶基板について、表面層の均一歪みが1.7×10-3以下、表面層の不均一歪みが110arcsec以下、および/または表面層の特定平行結晶格子面の面方位ずれが300arcsec以下であって、かつ、主表面の面方位がc軸を含む面から[0001]方向に-10°以上10°以下の傾斜角を有する場合には、かかる結晶基板を用いた半導体デバイスのLEDモード光の発光スペクトルの波長500nm~550nmの範囲における発光ピークの積分強度が大きくなった。
 例I-2、I-8およびI-18について、それぞれ電流密度1A/cm2および100A/cm2におけるLEDモード光の発光波長の測定から、ブルーシフトを評価した。例I-2におけるブルーシフトは40nmであり、例I-8におけるブルーシフトは10nmであり、例I-18におけるブルーシフトは8nmであった。III族窒化物結晶基板について、表面層の均一歪みが1.7×10-3以下、表面層の不均一歪みが110arcsec以下、および/または表面層の特定平行結晶格子面の面方位ずれが300arcsec以下であって、かつ、主表面の面方位がc軸を含む面から[0001]方向に-10°以上10°以下の傾斜角を有する場合には、かかる結晶基板を用いた半導体デバイスのブルーシフトは極めて小さかった。
 (実施例II)
 CMPを、砥粒として1次粒子が化学的に結合して2次粒子となったコロイダルシリカ(1次粒子径が15nm、2次粒子径が40nm)を含み、pH調節剤としてリンゴ酸、酸化剤としてトリクロロイソシアヌル酸を含み、pHおよび酸化還元電位(ORP)を表2に示す値に調製したスラリーを用いて、接触係数Cを表2に示す値になるように調整して行ったこと以外は、実施例Iと同様にして、GaN結晶基板(III族窒化物結晶基板)および半導体デバイスを製造して、表面加工されたGaN結晶基板の表面層の均一歪み、不均一歪みおよび結晶格子面の面方位ずれを評価するとともに、半導体デバイスのLEDモード光の発光スペクトルの波長500nm~550nmの範囲における発光ピークの積分強度および半値幅を測定した。ここで、X線回折による評価を容易にする観点から、例II-1~II-8においては特定平行結晶格子面として(10-11)面を用いた。結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000003
 表2から明らかなように、III族窒化物結晶基板について、主表面の面方位が主表面の面方位がc軸を含む面から[0001]方向に-10°以上10°以下の傾斜角を有する場合において、表面層の均一歪み、不均一歪みおよび/または特定平行結晶格子面の面方位ずれが小さくなるほど、かかる結晶基板を用いた半導体デバイスのLEDモード光の発光スペクトルの波長500nm~550nmの範囲における発光ピークの積分強度が大きくなった。
 (実施例III)
 GaN結晶基板(III族窒化物結晶基板)の主表面の面方位をc軸を含む面の一つである(21-30)面からの傾斜角αを0.2とし、CMPを、砥粒として球状のコロイダルシリカ(表3に示す粒子径)を含み(ただし、例III-1には砥粒を含めなかった)、pH調節剤として酒石酸ナトリウムおよび炭酸ナトリウム、酸化剤としてジクロロイソシアヌル酸ナトリウムを含み、pHおよび酸化還元電位(ORP)を表3に示す値に調製したスラリーを用いて、接触係数Cを表3に示す値になるように調整して行ったこと以外は、実施例Iと同様にして、GaN結晶基板(III族窒化物結晶基板)および半導体デバイスを製造して、表面加工されたGaN結晶基板の表面層の均一歪み、不均一歪みおよび結晶格子面の面方位ずれを評価するとともに、半導体デバイスのLEDモード光の発光スペクトルの波長500nm~550nmの範囲における発光ピークの積分強度および半値幅を測定した。結果を表3にまとめた。
Figure JPOXMLDOC01-appb-T000004
 表3から明らかなように、III族窒化物結晶基板について、表面層の均一歪みが1.7×10-3以下、表面層の不均一歪みが110arcsec以下、および/または表面層の特定平行結晶格子面の面方位ずれが300arcsec以下であって、かつ、主表面の面方位がc軸を含む面から[0001]方向に-10°以上10°以下の傾斜角を有する場合において、主表面の面粗さRa,Ryが小さくなるほど、かかる結晶基板を用いた半導体デバイスのLEDモード光の発光スペクトルの波長500nm~550nmの範囲における発光ピークの積分強度が大きくなった。
 (実施例IV)
 GaN結晶基板(III族窒化物結晶基板)の主表面の面方位を主表面の面方位をc軸を含む面の一つである(21-30)面からの傾斜角αを0.2とし、CMPを、砥粒として1次粒子が化学的に結合して2次粒子となったコロイダルシリカ(1次粒子径が35nm、2次粒子径が70nm)を含み、pH調節剤として硝酸、酸化剤として過酸化水素水およびトリクロロイソシアヌル酸を含み、pHおよび酸化還元電位(ORP)を表4に示す値に調製したスラリーを用いて、接触係数Cを表4に示す値になるように調整して行ったこと以外は、実施例Iと同様にして、GaN結晶基板(III族窒化物結晶基板)および半導体デバイスを製造して、表面加工されたGaN結晶基板の表面層の均一歪み、不均一歪みおよび結晶格子面の面方位ずれを評価するとともに、半導体デバイスのLEDモード光の発光スペクトルの波長500nm~550nmの範囲における発光ピークの積分強度および半値幅を測定した。ここで、X線回折による評価を容易にする観点から、例IV-1~IV-7において特定平行結晶格子面として(10-11)面を用いた。結果を表4にまとめた。
Figure JPOXMLDOC01-appb-T000005
 表4から明らかなように、III族窒化物結晶基板について、表面層の均一歪みが1.7×10-3以下、表面層の不均一歪みが110arcsec以下、および/または表面層の特定平行結晶格子面の面方位ずれが300arcsec以下であって、かつ、主表面の面方位が主表面の面方位がc軸を含む面から[0001]方向に-10°以上10°以下の傾斜角を有する場合において、主表面に存在する酸素の濃度について、AES(オージェ原子分光法)により測定したところ、2原子%以上16原子%以下のとき、かかる結晶基板を用いた半導体デバイスのLEDモード光の発光ピークの積分強度が大きくなった。
 (実施例V)
 1.III族窒化物結晶体およびIII族窒化物結晶基板の製造
 例V-1およびV-2については、下地基板として実施例Iの例I-4で製造した主表面の面方位が(10-10)のGaN結晶基板(III族窒化物結晶基板)を用いて、フラックス法によりGaN結晶体を成長させた。すなわち、GaN結晶基板(下地基板)と、Ga原料としての金属Gaと、フラックスとしての金属Naとを、モル比でGa:Naが1:1となるように坩堝に収容した。ついで、坩堝を加熱することにより、GaN結晶基板の(10-10)主表面に接触する800℃のGa-Na融液を得た。このGa-Na融液に、N原料として5MPaのN2ガスを溶解させて、GaN結晶基板の(10-10)主表面上に、厚さ2mmのGaN結晶を成長させた。結晶成長が進行するに従って、転位密度が減少した。GaN結晶からのGaN結晶基板の取り位置の違いにより、GaN結晶基板の主表面の転位密度を調整した(表5を参照)。
 例V-3~V-6については、HVPE法での成長は、下地基板として実施例Iの例I-4で製造した主表面の面方位が(10-10)のGaN結晶基板(III族窒化物結晶基板)を用いて、HVPE法により厚さ5mmのGaN結晶体を成長させた。HVPE法によるGaN結晶の成長条件は、実施例Iと同様とした。結晶成長が進行するに従って、転位密度が減少した。GaN結晶からのGaN結晶基板の取り位置の違いにより、GaN結晶基板の主表面の転位密度を調整した(表5を参照)。
 2.III族窒化物結晶基板の表面加工
 CMPを、砥粒として1次粒子が鎖状に化学結合して2次粒子となったヒュームドシリカ(1次粒子径が20nm、2次粒子径が150nm)を含み、pH調節剤としてクエン酸、酸化剤として過マンガン酸カリウムを含み、pHおよび酸化還元電位(ORP)を表に示す値に調製したスラリーを用いて、接触係数Cを表2に示す値になるように調整して行ったこと以外は、実施例Iと同様にして、GaN結晶基板(III族窒化物結晶基板)を表面加工して、半導体デバイス用GaN結晶基板を得た。こうして得られた半導体デバイス用GaN結晶基板(表面加工されたGaN結晶基板)の表面層の均一歪み、不均一歪みおよび結晶格子面の面方位ずれを、実施例Iと同様にして、評価した。
 3.半導体デバイスの製造
 上記で得られた半導体デバイス用のGaN結晶基板を用いて、実施例Iと同様にして半導体デバイスを製造して、半導体デバイスのLEDモード光の発光スペクトルの波長500nm~550nmの範囲における発光ピークの積分強度および半値幅を測定した。結果を表5にまとめた。
Figure JPOXMLDOC01-appb-T000006
 表5から明らかなように、III族窒化物結晶基板について、表面層の均一歪みが1.7×10-3以下、表面層の不均一歪みが110arcsec以下、および/または表面層の特定平行結晶格子面の面方位ずれが300arcsec以下であって、かつ、主表面の面方位が主表面の面方位がc軸を含む面から[0001]方向に-10°以上10°以下の傾斜角を有する場合において、III族窒化物結晶基板の主表面の転位密度が小さくなるほど、たとえば、転位密度が1×107cm-2以下、1×106cm-2以下、さらに1×105cm-2以下と小さくなるにしたがって、かかる結晶基板を用いた半導体デバイスのLEDモード光の発光スペクトルの波長500nm~550nmの範囲における発光ピークの積分強度が大きくなった。なお、下地基板に複数のGaN結晶基板を用い、フラックス法、HVPE法での成長で下地基板から接合した単一のGaN結晶体を成長させた場合においても、上記と同等の結果が得られた。
 (実施例VI)
 CMPを、砥粒として球状のコロイダルシリカ(粒子径が30nm)を含み、pH調節剤として塩酸、酸化剤として過酸化水素水および次亜塩素酸を含み、pH、酸化還元電位(ORP)および粘度を表6に示す値に調製したスラリーを用いて、CMP周速度、CMP圧力および接触係数Cを表6に示す値になるように調整して行ったこと以外は、実施例Iと同様にして、GaN結晶基板(III族窒化物結晶基板)を表面加工した。こうして表面加工されたGaN結晶基板の表面層の均一歪み、不均一歪みおよび結晶格子面の面方位ずれを、実施例Iと同様にして、評価した。ここで、X線回折による評価を容易にする観点から、例VI-10~VI-12においては特定平行結晶格子面として(10-11)面を用いた。結果を表6にまとめた。
Figure JPOXMLDOC01-appb-T000007
 表6から明らかなように、pHの値Xと酸化還元電位の値Y(mV)とが、
    -50X+1400≦Y≦-50X+1700
の関係を有するスラリーを用いて、接触係数Cが1.2×10-6m以上1.8×10-6m以下となるようにCMPを行うことにより、主表面の面方位が主表面の面方位がc軸を含む面から[0001]方向に-10°以上10°以下の傾斜角を有するIII族窒化物結晶基板においても、その表面層の均一歪みを1.7×10-3以下、その表面層の不均一歪みを110arcsec以下、および/またはその表面層の特定平行結晶格子面((11-22)面または(10-11)面)の面方位ずれを300arcsec以下とすることができた。
 ここで、酸化還元電位(ORP)が低い場合には、III族窒化物結晶基板の主表面を酸化する作用が弱くなるためCMP時における機械的作用が強くなり、III族窒化物結晶基板の表面層の均一歪み、不均一歪みおよび面方位ずれが大きくなった。酸化還元電位が高い場合には、安定した研磨が困難になり、III族窒化物結晶基板の表面層の均一歪み、不均一歪みおよび面方位ずれが大きくなった。接触係数が小さい場合には、CMP時におけるIII族窒化物結晶基板への負荷が強くなり、III族窒化物結晶基板の表面層の均一歪み、不均一歪みおよび面方位ずれが大きくなった。接触係数が大きい場合には、CMP速度が大きく低下して表面改質の効果が小さくなり、III族窒化物結晶基板の表面層の均一歪み、不均一歪みおよび面方位ずれが大きくなった。
 (実施例VII)
 例III-4で作製した主表面の面方位が(21-30)面から[0001]方向に0.2°の傾斜角を有するGaN結晶基板(III族窒化物結晶基板)を切断し、5mm×20mm~5mm×45mmのサイズの複数の小片基板を得た。かかる複数の小片基板を、それらの主面(かかる主面は、いずれも、面方位が(21-30)面から[0001]方向に0.2°の傾斜角を有する。)が互いに平行になるように、かつ、それらの側面が互いに隣接するように並べて所望のサイズの下地基板とし、それらの小片基板の主面のそれぞれにHVPE法でGaN結晶(III族窒化物結晶)を成長させて、それらのIII族窒化物結晶を互いに接合し、外周部を加工することにより、所望のサイズのGaN結晶(III族窒化物結晶)を得た。得られたGaN結晶を下地基板の主面に平行に切り出し、例III-4と同様にして、18mm×18mm、30mm×50mm、直径40mm、直径100mm、直径150mmのGaN結晶基板および半導体デバイスを製造した。かかるGaN結晶基板および半導体デバイスは、いずれも例III-4の場合と同等の基板特性およびデバイス特性が得られた。さらに、これらのGaN結晶基板(III族窒化物結晶基板)を下地基板とし、HVPE法により繰り返し結晶成長して、それぞれ18mm×18mm、30mm×50mm、直径40mm、直径100mm、直径150mmのGaN結晶(III族窒化物結晶)を得た。かかるGaN結晶を上記と同様に加工することにより、例III-4と同等の特性を有するGaN結晶基板および半導体デバイスが得られた。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。
 1 III族窒化物結晶基板、1c c軸、1d,31d,32d,33d,41d,42d,43d,51d,52d,53d 特定平行結晶格子面、1p 表面層、1q 表面隣接層、1r 内層、1s,2s 主表面、1v c軸を含む面、2 半導体層、3 エピ層付III族窒化物結晶基板、4 半導体デバイス、11 入射X線、12 出射X線、21 χ軸、22 ω軸(2θ軸)、23 φ軸、30 引張応力、202 n型GaN層、204 n型Inx1Aly1Ga1-x1-y1Nクラッド層、206 n型GaNガイド層、208 Inx2Ga1-x2Nガイド層、210 発光層、222 Inx4Ga1-x4Nガイド層、224 p型Alx5Ga1-x5Nブロック層、226 p型GaN層、228 p型Inx6Aly6Ga1-x6-y6Nクラッド層、230 p型GaNコンタクト層、300 SiO2絶縁層、400 p側電極、500 n側電極。

Claims (16)

  1.  III族窒化物結晶基板(1)の任意の特定平行結晶格子面(1d)のX線回折条件を満たしながら前記結晶基板の主表面(1s)からのX線侵入深さを変化させるX線回折測定から得られる前記特定平行結晶格子面(1d)の面間隔において、0.3μmの前記X線侵入深さにおける前記面間隔をd1と表わし5μmの前記X線侵入深さにおける前記面間隔をd2と表したときに|d1-d2|/d2の値で表される前記結晶基板の表面層(1p)の均一歪みが1.7×10-3以下であり、
     前記主表面(1s)の面方位が、前記結晶基板のc軸(1c)を含む面(1v)から[0001]方向に-10°以上10°以下の傾斜角を有するIII族窒化物結晶基板。
  2.  III族窒化物結晶基板(1)の任意の特定平行結晶格子面(1d)のX線回折条件を満たしながら前記結晶基板の主表面(1s)からのX線侵入深さを変化させるX線回折測定から得られる前記特定平行結晶格子面(1d)の回折強度プロファイルにおいて、0.3μmの前記X線侵入深さにおける回折強度ピークの半値幅v1と5μmの前記X線侵入深さにおける回折強度ピークの半値幅v2とから得られる|v1-v2|の値で表される前記結晶基板の表面層(1p)の不均一歪みが110arcsec以下であり、
     前記主表面(1s)の面方位が、前記結晶基板のc軸(1c)を含む面(1v)から[0001]方向に-10°以上10°以下の傾斜角を有するIII族窒化物結晶基板。
  3.  III族窒化物結晶基板(1)の任意の特定平行結晶格子面(1d)のX線回折に関して前記結晶基板の主表面(1s)からのX線侵入深さを変化させて測定されたロッキングカーブにおいて、0.3μmの前記X線侵入深さにおける回折強度ピークの半値幅w1と5μmの前記X線侵入深さにおける回折強度ピークの半値幅w2とから得られる|w1-w2|の値で表される前記結晶基板の表面層(1p)の前記特定平行結晶格子面(1d)の面方位ずれが300arcsec以下であり、
     前記主表面(1s)の面方位が、前記結晶基板のc軸(1c)を含む面(1v)から[0001]方向に-10°以上10°以下の傾斜角を有するIII族窒化物結晶基板。
  4.  前記主表面(1s)は5nm以下の表面粗さRaを有する請求の範囲第1項に記載のIII族窒化物結晶基板。
  5.  前記主表面(1s)の面方位は、前記結晶基板の{10-10}面、{11-20}面および{21-30}面のいずれかの面に対して傾斜角が0°以上0.1°未満と実質的に平行である請求の範囲第1項に記載のIII族窒化物結晶基板。
  6.  前記主表面(1s)の面方位は、前記結晶基板の{10-10}面、{11-20}面および{21-30}面のいずれかの面からの傾斜角が0.1°以上10°以下である請求の範囲第1項に記載のIII族窒化物結晶基板。
  7.  前記主表面(1s)に存在する酸素の濃度が2原子%以上16原子%以下である請求の範囲第1項に記載のIII族窒化物結晶基板。
  8.  前記主表面(1s)における転位密度が1×107cm-2以下である請求の範囲第1項に記載のIII族窒化物結晶基板。
  9.  直径が40mm以上150mm以下である請求の範囲第1項に記載のIII族窒化物結晶基板。
  10.  請求の範囲第1項に記載のIII族窒化物結晶基板(1)の前記主表面(1s)上にエピタキシャル成長により形成されている少なくとも1層の半導体層(2)を含むエピ層付III族窒化物結晶基板。
  11.  請求の範囲第10項に記載のエピ層付III族窒化物結晶基板(3)を含む半導体デバイス。
  12.  前記エピ層付III族窒化物結晶基板(3)に含まれる前記半導体層(2)は、ピーク波長が430nm以上550nm以下の光を発する発光層(210)を含む請求の範囲第11項に記載の半導体デバイス。
  13.  III族窒化物結晶基板(1)の任意の特定平行結晶格子面(1d)のX線回折条件を満たしながら前記結晶基板の主表面(1s)からのX線侵入深さを変化させるX線回折測定から得られる前記特定平行結晶格子面(1d)の面間隔において、0.3μmの前記X線侵入深さにおける前記面間隔をd1と表わし5μmの前記X線侵入深さにおける前記面間隔をd2と表したときに|d1-d2|/d2の値で表される前記結晶基板の表面層(1p)の均一歪みが1.7×10-3以下であり、前記主表面(1s)の面方位が前記結晶基板のc軸(1c)を含む面(1v)から[0001]方向に-10°以上10°以下の傾斜角を有する前記結晶基板を準備する工程と、
     前記結晶基板の主表面(1s)上に少なくとも1層の半導体層(2)をエピタキシャル成長させることによりエピ層付III族窒化物結晶基板(3)を形成する工程と、を含む半導体デバイスの製造方法。
  14.  III族窒化物結晶基板(1)の任意の特定平行結晶格子面(1d)のX線回折条件を満たしながら前記結晶基板の主表面(1s)からのX線侵入深さを変化させるX線回折測定から得られる前記特定平行結晶格子面(1d)の回折強度プロファイルにおいて、0.3μmの前記X線侵入深さにおける回折強度ピークの半値幅v1と5μmの前記X線侵入深さにおける回折強度ピークの半値幅v2とから得られる|v1-v2|の値で表される前記結晶基板の表面層(1p)の不均一歪みが110arcsec以下であり、前記主表面(1s)の面方位が前記結晶基板のc軸(1c)を含む面(1v)から[0001]方向に-10°以上10°以下の傾斜角を有する前記結晶基板を準備する工程と、
     前記結晶基板の主表面(1s)上に少なくとも1層の半導体層(2)をエピタキシャル成長させることによりエピ層付III族窒化物結晶基板(3)を形成する工程と、を含む半導体デバイスの製造方法。
  15.  III族窒化物結晶基板(1)の任意の特定平行結晶格子面(1d)のX線回折に関して前記結晶基板の主表面(1s)からのX線侵入深さを変化させて測定されたロッキングカーブにおいて、0.3μmの前記X線侵入深さにおける回折強度ピークの半値幅w1と5μmの前記X線侵入深さにおける回折強度ピークの半値幅w2とから得られる|w1-w2|の値で表される前記結晶基板の表面層(1p)の前記特定平行結晶格子面(1d)の面方位ずれが300arcsec以下であり、前記主表面(1s)の面方位が前記結晶基板のc軸(1c)を含む面(1v)から[0001]方向に-10°以上10°以下の傾斜角を有する前記結晶基板を準備する工程と、
     前記結晶基板の主表面(1s)上に少なくとも1層の半導体層(2)をエピタキシャル成長させることによりエピ層付III族窒化物結晶基板(3)を形成する工程と、を含む半導体デバイスの製造方法。
  16.  前記エピ層付III族窒化物結晶基板(3)を形成する工程において、前記半導体層(2)は、発光層(210)を含み、前記発光層(210)がピーク波長430nm以上550nm以下の光を発するように形成される、請求の範囲第13項に記載の半導体デバイスの製造方法。
PCT/JP2010/070290 2009-12-18 2010-11-15 Iii族窒化物結晶基板、エピ層付iii族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法 WO2011074361A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10837390.3A EP2514858A4 (en) 2009-12-18 2010-11-15 GROUP III NITRIDE CRYSTAL SUBSTRATE, GROUP III NITRIDE CRYSTAL SUBSTRATE HAVING AN EPITAXIAL LAYER, SEMICONDUCTOR DEVICE, AND MANUFACTURING METHOD THEREOF
CN2010800576603A CN102666945A (zh) 2009-12-18 2010-11-15 Ⅲ族氮化物晶体衬底、包含外延层的ⅲ族氮化物晶体衬底、半导体器件及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009287590A JP4835749B2 (ja) 2009-12-18 2009-12-18 Iii族窒化物結晶基板、エピ層付iii族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法
JP2009-287590 2009-12-18

Publications (1)

Publication Number Publication Date
WO2011074361A1 true WO2011074361A1 (ja) 2011-06-23

Family

ID=44167125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070290 WO2011074361A1 (ja) 2009-12-18 2010-11-15 Iii族窒化物結晶基板、エピ層付iii族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法

Country Status (6)

Country Link
EP (1) EP2514858A4 (ja)
JP (1) JP4835749B2 (ja)
KR (1) KR20120106803A (ja)
CN (1) CN102666945A (ja)
TW (1) TWI499082B (ja)
WO (1) WO2011074361A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2011007939A (es) * 2011-07-13 2013-01-24 William J Odom Jr Aparato y metodo de iluminacion para casa de aves.
WO2013035539A1 (ja) * 2011-09-05 2013-03-14 旭硝子株式会社 研磨剤および研磨方法
JP2013177256A (ja) * 2012-02-28 2013-09-09 Mitsubishi Chemicals Corp 周期表第13族金属窒化物基板
JP2013247329A (ja) * 2012-05-29 2013-12-09 Mitsui Mining & Smelting Co Ltd 研摩材スラリー
EP3031958B1 (en) * 2013-08-08 2017-11-01 Mitsubishi Chemical Corporation Self-standing gan substrate and method for producing semiconductor device
WO2015107813A1 (ja) 2014-01-17 2015-07-23 三菱化学株式会社 GaN基板、GaN基板の製造方法、GaN結晶の製造方法および半導体デバイスの製造方法
JP6264990B2 (ja) * 2014-03-26 2018-01-24 日亜化学工業株式会社 窒化物半導体基板の製造方法
JP6243009B2 (ja) * 2014-03-31 2017-12-06 株式会社ノリタケカンパニーリミテド GaN単結晶材料の研磨加工方法
WO2016084682A1 (ja) * 2014-11-27 2016-06-02 Jsr株式会社 化学機械研磨用水系分散体および化学機械研磨方法
JP6366485B2 (ja) * 2014-12-04 2018-08-01 株式会社ディスコ ウエーハの生成方法
JP6366486B2 (ja) * 2014-12-04 2018-08-01 株式会社ディスコ ウエーハの生成方法
WO2016118862A1 (en) * 2015-01-22 2016-07-28 Sixpoint Materials, Inc. Seed selection and growth methods for reduced-crack group iii nitride bulk crystals
JP6999101B2 (ja) * 2017-02-16 2022-01-18 国立大学法人埼玉大学 エッチング方法
WO2018190780A1 (en) * 2017-04-12 2018-10-18 Ozyegin Universitesi Chemical mechanical planarization of gallium nitride
JP2021012900A (ja) * 2019-07-03 2021-02-04 パナソニックIpマネジメント株式会社 Iii族窒化物系半導体レーザ素子
WO2024181478A1 (ja) * 2023-02-28 2024-09-06 京セラ株式会社 単結晶基板の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6488767B1 (en) 2001-06-08 2002-12-03 Advanced Technology Materials, Inc. High surface quality GaN wafer and method of fabricating same
US6596079B1 (en) 2000-03-13 2003-07-22 Advanced Technology Materials, Inc. III-V nitride substrate boule and method of making and using the same
JP2004193371A (ja) * 2002-12-11 2004-07-08 Nec Corp Iii族窒化物自立基板およびそれを用いた半導体素子ならびにそれらの製造方法
JP2007005526A (ja) 2005-06-23 2007-01-11 Sumitomo Electric Ind Ltd 窒化物結晶、窒化物結晶基板、エピ層付窒化物結晶基板、ならびに半導体デバイスおよびその製造方法
JP2008285364A (ja) * 2007-05-17 2008-11-27 Sumitomo Electric Ind Ltd GaN基板、それを用いたエピタキシャル基板及び半導体発光素子
JP4305574B1 (ja) * 2009-01-14 2009-07-29 住友電気工業株式会社 Iii族窒化物基板、それを備える半導体デバイス、及び、表面処理されたiii族窒化物基板を製造する方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3968968B2 (ja) * 2000-07-10 2007-08-29 住友電気工業株式会社 単結晶GaN基板の製造方法
JP4792802B2 (ja) * 2005-04-26 2011-10-12 住友電気工業株式会社 Iii族窒化物結晶の表面処理方法
JP2008010835A (ja) * 2006-05-31 2008-01-17 Sumitomo Electric Ind Ltd 窒化物結晶の表面処理方法、窒化物結晶基板、エピタキシャル層付窒化物結晶基板および半導体デバイス、ならびにエピタキシャル層付窒化物結晶基板および半導体デバイスの製造方法
JP2008066355A (ja) * 2006-09-05 2008-03-21 Sumitomo Electric Ind Ltd 3族窒化物基板の製造方法、3族窒化物基板、エピタキシャル層付き3族窒化物基板、3族窒化物デバイス、エピタキシャル層付き3族窒化物基板の製造方法、および3族窒化物デバイスの製造方法。
JP2008235802A (ja) * 2007-03-23 2008-10-02 Rohm Co Ltd 発光装置
JP4333820B1 (ja) * 2009-01-19 2009-09-16 住友電気工業株式会社 化合物半導体基板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596079B1 (en) 2000-03-13 2003-07-22 Advanced Technology Materials, Inc. III-V nitride substrate boule and method of making and using the same
US6488767B1 (en) 2001-06-08 2002-12-03 Advanced Technology Materials, Inc. High surface quality GaN wafer and method of fabricating same
JP2004193371A (ja) * 2002-12-11 2004-07-08 Nec Corp Iii族窒化物自立基板およびそれを用いた半導体素子ならびにそれらの製造方法
JP2007005526A (ja) 2005-06-23 2007-01-11 Sumitomo Electric Ind Ltd 窒化物結晶、窒化物結晶基板、エピ層付窒化物結晶基板、ならびに半導体デバイスおよびその製造方法
JP2008285364A (ja) * 2007-05-17 2008-11-27 Sumitomo Electric Ind Ltd GaN基板、それを用いたエピタキシャル基板及び半導体発光素子
JP4305574B1 (ja) * 2009-01-14 2009-07-29 住友電気工業株式会社 Iii族窒化物基板、それを備える半導体デバイス、及び、表面処理されたiii族窒化物基板を製造する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2514858A4

Also Published As

Publication number Publication date
JP2011129752A (ja) 2011-06-30
CN102666945A (zh) 2012-09-12
EP2514858A1 (en) 2012-10-24
EP2514858A4 (en) 2013-11-13
KR20120106803A (ko) 2012-09-26
TWI499082B (zh) 2015-09-01
JP4835749B2 (ja) 2011-12-14
TW201125163A (en) 2011-07-16

Similar Documents

Publication Publication Date Title
JP4835749B2 (ja) Iii族窒化物結晶基板、エピ層付iii族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法
JP5724954B2 (ja) Iii族窒化物結晶基板、エピ層付iii族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法
US9499925B2 (en) Group III nitride crystal substrate, epilayer-containing group III nitride crystal substrate, semiconductor device and method of manufacturing the same
JP4277826B2 (ja) 窒化物結晶、窒化物結晶基板、エピ層付窒化物結晶基板、ならびに半導体デバイスおよびその製造方法
JP4333820B1 (ja) 化合物半導体基板
KR101621998B1 (ko) Ⅲ족 질화물 반도체 기판, 에피택셜 기판 및 반도체 디바이스
US10113248B2 (en) Group III nitride crystal substrate, epilayer-containing group III nitride crystal substrate, semiconductor device and method of manufacturing the same
JP5891390B2 (ja) 窒化物半導体構造、積層構造、および窒化物半導体発光素子
US20120223417A1 (en) Group iii nitride crystal substrate, epilayer-containing group iii nitride crystal substrate, semiconductor device and method of manufacturing the same
JP4337953B2 (ja) 窒化物結晶基板、エピ層付窒化物結晶基板および半導体デバイス
WO2011058870A1 (ja) Iii族窒化物結晶基板、エピ層付iii族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法
JP5565396B2 (ja) Iii族窒化物結晶基板、エピ層付iii族窒化物結晶基板、および半導体デバイス
JP2009124160A (ja) 窒化物結晶およびエピ層付窒化物結晶基板の製造方法
JP2012054563A (ja) 窒化物結晶およびエピ層付窒化物結晶基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080057660.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837390

Country of ref document: EP

Kind code of ref document: A1

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010837390

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010837390

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127018348

Country of ref document: KR

Kind code of ref document: A