WO2011074132A1 - 内燃機関の空燃比気筒間インバランス判定装置 - Google Patents

内燃機関の空燃比気筒間インバランス判定装置 Download PDF

Info

Publication number
WO2011074132A1
WO2011074132A1 PCT/JP2009/071717 JP2009071717W WO2011074132A1 WO 2011074132 A1 WO2011074132 A1 WO 2011074132A1 JP 2009071717 W JP2009071717 W JP 2009071717W WO 2011074132 A1 WO2011074132 A1 WO 2011074132A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel ratio
imbalance
value
ratio sensor
Prior art date
Application number
PCT/JP2009/071717
Other languages
English (en)
French (fr)
Inventor
靖志 岩﨑
裕 澤田
寛史 宮本
文彦 中村
圭一郎 青木
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP09852321.0A priority Critical patent/EP2514957B1/en
Priority to JP2011503260A priority patent/JP4968492B2/ja
Priority to CN200980152326.3A priority patent/CN102265016B/zh
Priority to US13/516,841 priority patent/US8401765B2/en
Priority to PCT/JP2009/071717 priority patent/WO2011074132A1/ja
Publication of WO2011074132A1 publication Critical patent/WO2011074132A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/14Timing of measurement, e.g. synchronisation of measurements to the engine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness

Definitions

  • the present invention is applied to a multi-cylinder internal combustion engine, and an air-fuel ratio imbalance of an air-fuel mixture supplied to each cylinder (air-fuel ratio imbalance among cylinders, air-fuel ratio variation among cylinders, air-fuel ratio non-uniformity among cylinders).
  • the present invention relates to an “air-fuel ratio imbalance among cylinders determination apparatus for an internal combustion engine” capable of determining (monitoring / detecting) that has become excessively large.
  • An air-fuel ratio control device including (67) and a downstream air-fuel ratio sensor (68) is widely known.
  • This air-fuel ratio control device adjusts the output of the upstream air-fuel ratio sensor and the output of the downstream air-fuel ratio sensor so that the air-fuel ratio of the air-fuel mixture supplied to the engine (the air-fuel ratio of the engine) matches the stoichiometric air-fuel ratio. Based on this, an “air-fuel ratio feedback amount for making the air-fuel ratio of the engine coincide with the stoichiometric air-fuel ratio” is calculated, and the air-fuel ratio of the engine is feedback-controlled based on the air-fuel ratio feedback amount.
  • an air-fuel ratio feedback amount for making the engine air-fuel ratio coincide with the theoretical air-fuel ratio is calculated, and the air-fuel ratio of the engine is feedback-controlled by the air-fuel ratio feedback amount.
  • Air-fuel ratio control devices are also widely known.
  • the air-fuel ratio feedback amount used in such an air-fuel ratio control device is a control amount common to all cylinders.
  • an electronic fuel injection type internal combustion engine is provided with at least one fuel injection valve (39) in each cylinder or an intake port communicating with each cylinder. Accordingly, when the characteristic of the fuel injection valve of a specific cylinder becomes “a characteristic of injecting an amount of fuel that is larger than the instructed fuel injection amount”, the air-fuel ratio of the air-fuel mixture supplied to that specific cylinder (that Only the air-fuel ratio of the specific cylinder) greatly changes to the rich side. That is, the non-uniformity of air-fuel ratio among cylinders (air-fuel ratio variation among cylinders, air-fuel ratio imbalance among cylinders) increases. In other words, an imbalance occurs between the “cylinder air-fuel ratio” that is the air-fuel ratio of the air-fuel mixture supplied to each cylinder.
  • the average air-fuel ratio of the air-fuel mixture supplied to the entire engine becomes an air-fuel ratio richer than the stoichiometric air-fuel ratio. Therefore, the air-fuel ratio of the specific cylinder is changed to the lean side so that the air-fuel ratio of the specific cylinder approaches the stoichiometric air-fuel ratio by the air-fuel ratio feedback amount common to all the cylinders. It is made to change to the lean side so that it may be kept away from. As a result, the average of the air-fuel ratio of the air-fuel mixture supplied to the entire engine is made substantially coincident with the theoretical air-fuel ratio.
  • the air-fuel ratio of the specific cylinder is still richer than the stoichiometric air-fuel ratio, and the air-fuel ratios of the remaining cylinders are leaner than the stoichiometric air-fuel ratio.
  • the combustion state becomes a combustion state different from complete combustion.
  • the amount of emissions discharged from each cylinder increases.
  • the three-way catalyst cannot completely purify the increased emission, and as a result, the emission may be deteriorated.
  • the air-fuel ratio imbalance condition between cylinders detecting that the air-fuel ratio non-uniformity among cylinders is excessive (the air-fuel ratio imbalance condition between cylinders) is detected, and taking some measures will worsen the emissions. It is important not to let it.
  • the air-fuel ratio imbalance among cylinders also occurs when the characteristic of the fuel injection valve of a specific cylinder becomes “a characteristic for injecting an amount of fuel that is less than the instructed fuel injection amount”.
  • One of the conventional devices for determining whether or not such an air-fuel ratio imbalance state between cylinders has occurred is an air-fuel ratio sensor (the above-mentioned upstream) disposed in an exhaust collecting portion where exhaust gases from a plurality of cylinders collect.
  • the trajectory length of the output value (output signal) of the side air-fuel ratio sensor 67) is acquired, the trajectory length is compared with the “reference value that changes according to the engine speed”, and the air-fuel ratio cylinder is based on the comparison result. It is determined whether or not an imbalance condition has occurred (see, for example, US Pat. No. 7,152,594).
  • the air-fuel ratio imbalance among cylinders is occurring means that the difference between the cylinder-by-cylinder air-fuel ratios (the cylinder-by-cylinder air-fuel ratio difference) is greater than or equal to the allowable value. In other words, it means that an excessive air-fuel ratio imbalance state between the cylinders is generated such that unburned materials and / or nitrogen oxides exceed a specified value. “Determining whether or not an air-fuel ratio imbalance state between cylinders has occurred” is also simply referred to as “air-fuel ratio imbalance determination between cylinders or imbalance determination”.
  • a cylinder that is supplied with an air-fuel mixture that deviates from the air-fuel ratio (for example, approximately the stoichiometric air-fuel ratio) of the air-fuel mixture supplied to the remaining cylinders is also referred to as an “imbalance cylinder”.
  • the air-fuel ratio of the air-fuel mixture supplied to the imbalance cylinder is also referred to as “the air-fuel ratio of the imbalance cylinder”.
  • the remaining cylinders (cylinders other than the imbalance cylinder) are also referred to as “normal cylinders” or “non-imbalance cylinders”.
  • the air-fuel ratio of the air-fuel mixture supplied to the normal cylinder is also referred to as “normal cylinder air-fuel ratio” or “non-imbalance cylinder air-fuel ratio”.
  • the air-fuel ratio fluctuation index amount is “a value obtained based on the output value of the air-fuel ratio sensor” so that the absolute value thereof increases as the fluctuation of the air-fuel ratio of the exhaust gas reaching the air-fuel ratio sensor increases. is there.
  • the imbalance determination parameter is a parameter that increases as the variation of the air-fuel ratio of the exhaust gas that passes through the portion where the air-fuel ratio sensor is disposed increases.
  • the imbalance determination parameter is compared with an imbalance determination threshold value in order to execute imbalance determination.
  • the known air-fuel ratio sensor has at least a “solid electrolyte layer (671), exhaust gas side electrode layer (672), atmosphere side electrode layer (673), diffusion resistance layer”. (674) and a heater (678) ".
  • the exhaust gas side electrode layer (672) is formed on one surface of the solid electrolyte layer (671).
  • the exhaust gas side electrode layer (672) is covered with a diffusion resistance layer (674).
  • the exhaust gas in the exhaust passage reaches the outer surface of the diffusion resistance layer (674), passes through the diffusion resistance layer (674), and reaches the exhaust gas side electrode layer (672).
  • the atmosphere side electrode layer (673) is formed on the other surface of the solid electrolyte layer (671).
  • the atmosphere side electrode layer (673) is exposed to the atmosphere chamber (67A) into which the atmosphere is introduced.
  • the heater (678) generates heat when energized, and adjusts the temperature of the sensor element unit.
  • the sensor element section includes at least a solid electrolyte layer (671), an exhaust gas side electrode layer (672), and an atmosphere side electrode layer (673).
  • a “limit current that varies depending on the air-fuel ratio of the exhaust gas” is present between the exhaust gas side electrode layer (672) and the atmosphere side electrode layer (673).
  • a voltage (Vp) for generating the voltage is applied. This voltage is generally applied so that the potential of the atmosphere side electrode layer (673) is higher than the potential of the exhaust gas side electrode layer (672).
  • the exhaust gas that has passed through the diffusion resistance layer (674) and reached the exhaust gas side electrode layer (672) contains excessive oxygen (that is, the exhaust gas side electrode layer).
  • the air-fuel ratio of the exhaust gas that has reached is leaner than the stoichiometric air-fuel ratio
  • the oxygen is converted from the exhaust gas-side electrode layer (672) to the atmosphere side as oxygen ions by the voltage and the oxygen pump characteristics of the solid electrolyte layer (671). It leads to an electrode layer (673).
  • the amount of movement of such oxygen ions is limited to a value according to the “air-fuel ratio of exhaust gas reaching the outer surface of the diffusion resistance layer (674)” due to the presence of the diffusion resistance layer (674).
  • the current generated by the movement of oxygen ions becomes a value corresponding to the air-fuel ratio (A / F) of the exhaust gas (that is, the limit current Ip) (see FIG. 3).
  • the air-fuel ratio sensor is based on this limit current (current flowing through the solid electrolyte layer by applying a voltage between the exhaust gas side electrode layer and the atmosphere side electrode layer).
  • An output value Vabyfs corresponding to the “air-fuel ratio of exhaust gas passing through” is output.
  • the output value Vabyfs is generally converted into a detected air-fuel ratio abyfs based on the “relationship between the output value Vabyfs and the air-fuel ratio shown in FIG. 4” obtained in advance.
  • the output value Vabyfs is substantially proportional to the detected air-fuel ratio abyfs.
  • the air-fuel ratio fluctuation index amount that is “the data that is the basis for the imbalance determination parameter” is not limited to the locus length of “the output value Vabyfs of the air-fuel ratio sensor or the detected air-fuel ratio abyfs”. Any value that reflects the state of fluctuation of the air-fuel ratio of the exhaust gas that passes through the portion (for example, the width of fluctuation in a predetermined period) may be used. Hereinafter, this point will be described.
  • the exhaust gas from each cylinder reaches the air-fuel ratio sensor in the ignition order (accordingly, the exhaust order).
  • the air-fuel ratios of the exhaust gas discharged from each cylinder are substantially the same. Accordingly, when the air-fuel ratio imbalance state between cylinders does not occur, as indicated by the broken line C1 in FIG. 5B, the waveform of the output value Vabyfs of the air-fuel ratio sensor (detected in FIG. 5B).
  • the air-fuel ratio abyfs waveform is substantially flat.
  • an “air-fuel ratio imbalance state between cylinders (specific cylinder rich deviation imbalance state)” in which only the air-fuel ratio of a specific cylinder (for example, the first cylinder) is shifted to the rich side from the stoichiometric air-fuel ratio occurs.
  • the air-fuel ratio of the exhaust gas of the specific cylinder and the air-fuel ratio of the exhaust gas of the cylinders other than the specific cylinder (remaining cylinders) are greatly different.
  • the waveform of the output value Vabyfs of the air-fuel ratio sensor when the specific cylinder rich shift imbalance state occurs is 720 ° crank angle in the case of a four-cylinder, four-cycle engine (the combustion stroke of each time in all the cylinders exhausting exhaust gas reaching one air-fuel ratio sensor). It fluctuates greatly every time (crank angle required for completion).
  • crank angle required for completion The “period in which the crank angle required to complete each combustion stroke in all the cylinders exhausting exhaust gas reaching one air-fuel ratio sensor” is referred to as “unit combustion Also called “cycle period”.
  • the amplitude of the output value Vabyfs of the air-fuel ratio sensor and the detected air-fuel ratio abyfs increases, and these values fluctuate more greatly.
  • the detected air-fuel ratio abyfs when the magnitude of the difference between the air-fuel ratio of the imbalance cylinder and the air-fuel ratio of the non-imbalance cylinder is the first value changes as indicated by a solid line C2 in FIG.
  • the detected air-fuel ratio abyfs when the magnitude of the difference between the air-fuel ratio of the imbalance cylinder and the air-fuel ratio of the non-imbalance cylinder is “a second value larger than the first value” is shown in FIG. B) It changes like the one-dot chain line C2a.
  • the amount of change per unit time of the “air-fuel ratio sensor output value Vabyfs or the detected air-fuel ratio abyfs” (that is, the first-order differential value for the time of the “air-fuel ratio sensor output value Vabyfs or the detected air-fuel ratio abyfs”, 5 (B) angles ⁇ 1 and ⁇ 2) when the cylinder-by-cylinder air-fuel ratio difference is small, the angle fluctuates as shown by the broken line C3 in FIG. 5C, and when the cylinder-by-cylinder air-fuel ratio difference is large. As shown by the solid line C4 in FIG.
  • the differential value d (Vabyfs) / dt and the differential value d (abyfs) / dt increase in absolute value as the degree of the air-fuel ratio imbalance state between cylinders increases (the cylinder-by-cylinder air-fuel ratio difference increases).
  • the “maximum value or average value” of the absolute values of “differential value d (Vabyfs) / dt or differential value d (abyfs) / dt” acquired in a unit combustion cycle period is an air-fuel ratio fluctuation index.
  • an air-fuel ratio fluctuation index amount itself or an average value of such air-fuel ratio fluctuation index amounts for a plurality of unit combustion cycle periods can be adopted as an imbalance determination parameter.
  • the amount of change in the amount of change per unit time of “the output value Vabyfs of the air-fuel ratio sensor or the detected air-fuel ratio abyfs” (second-order differential value d 2 (Vabyfs) / dt 2 Or, the second-order differential value d 2 (abyfs) / dt 2 ) ”hardly changes as indicated by the broken line C5 when the cylinder-by-cylinder air-fuel ratio difference is small, but is indicated by the solid line C6 when the cylinder-by-cylinder air-fuel ratio difference increases. It fluctuates greatly.
  • such an air-fuel ratio fluctuation index amount itself or an average value of such air-fuel ratio fluctuation index amounts for a plurality of unit combustion cycle periods can be adopted as an imbalance determination parameter.
  • the air-fuel ratio imbalance determining apparatus determines whether or not the imbalance determination parameter obtained as described above is larger than a predetermined threshold (imbalance determination threshold). It is determined whether an imbalance state has occurred.
  • the air-fuel ratio sensor element temperature is the temperature of the sensor element portion (solid electrolyte layer, exhaust gas side electrode layer and atmosphere side electrode layer) including the solid electrolyte layer of the air / fuel ratio sensor.
  • FIG. 6 is a graph showing the relationship between the air-fuel ratio sensor element temperature and the responsiveness of the air-fuel ratio sensor.
  • the response time t representing the responsiveness of the air-fuel ratio sensor is, for example, “the first air-fuel ratio richer than the stoichiometric air-fuel ratio” at a specific point in time “the air-fuel ratio of exhaust gas existing in the vicinity of the air-fuel ratio sensor”.
  • “14)” is changed to “a second air / fuel ratio leaner than the stoichiometric air / fuel ratio (for example, 15)”
  • the detected air / fuel ratio abyfs is a difference between the first air / fuel ratio and the second air / fuel ratio from the specific time”.
  • one of the objects of the present invention is to determine the air-fuel ratio imbalance among cylinders using the “air-fuel ratio fluctuation index amount and imbalance determination parameter acquired based on the output value of the air-fuel ratio sensor” as described above.
  • the present invention is to provide a device (hereinafter simply referred to as “the device of the present invention”) that can perform the determination of the air-fuel ratio imbalance among cylinders with higher accuracy.
  • the apparatus of the present invention estimates the air-fuel ratio sensor element temperature and determines the imbalance determination parameter by correcting the air-fuel ratio fluctuation index amount based on the estimated air-fuel ratio sensor element temperature, or An imbalance determination threshold is determined based on the estimated air-fuel ratio sensor element temperature.
  • one aspect of the apparatus of the present invention is applied to a multi-cylinder internal combustion engine having a plurality of cylinders, and includes an air-fuel ratio sensor, a plurality of fuel injection valves, and an imbalance determining means.
  • the air-fuel ratio sensor is configured to collect exhaust gas discharged from at least two or more (preferably three or more) cylinders of the plurality of cylinders, or to collect exhaust gas from an exhaust passage of the engine, or to the exhaust gas from the exhaust passage. It arrange
  • the air-fuel ratio sensor includes a solid electrolyte layer, an exhaust gas side electrode layer formed on one surface of the solid electrolyte layer, a diffusion resistance layer that covers the exhaust gas side electrode layer and reaches the exhaust gas, and the other surface of the solid electrolyte layer And an air-fuel ratio detector having an atmosphere-side electrode layer exposed to the atmosphere chamber.
  • the air-fuel ratio sensor is based on “the air-fuel ratio based on the“ limit current that flows through the solid electrolyte layer when a predetermined voltage is applied between the exhaust gas-side electrode layer and the atmosphere-side electrode layer ”. An output value corresponding to the “air-fuel ratio of exhaust gas passing through the portion where the sensor is disposed” is output.
  • Each of the plurality of fuel injection valves is disposed corresponding to each of the at least two or more cylinders and injects fuel contained in an air-fuel mixture supplied to each combustion chamber of the two or more cylinders. . That is, one or more fuel injection valves are provided for one cylinder. Each fuel injection valve injects fuel into the cylinder corresponding to the fuel injection valve.
  • the imbalance determination means (1) In a parameter acquisition period, which is “a period during which a predetermined parameter acquisition condition is satisfied”, the sky becomes larger as the fluctuation of the air-fuel ratio of “exhaust gas passing through the portion where the air-fuel ratio sensor is disposed” increases.
  • the air-fuel ratio fluctuation index amount is, for example, the “maximum value” in a predetermined period (for example, the unit combustion cycle period) of the absolute value of “differential value d (Vabyfs) / dt or differential value d (abyfs) / dt” described above.
  • average value “second-order differential value d 2 (Vabyfs) / dt 2, or second-order differential value d 2 (abyfs) / dt 2 ” in the predetermined period (for example, the unit combustion cycle period)
  • the average value the locus length of“ output value Vabyfs or detected air-fuel ratio abyfs ”in a predetermined period (for example, the unit combustion cycle period), or a value based on these may be used, but is not limited thereto.
  • the imbalance determination means includes element temperature estimation means and pre-comparison preparation means.
  • the element temperature estimation means estimates an air-fuel ratio sensor element temperature that is a temperature of the solid electrolyte layer in the parameter acquisition period.
  • the pre-comparison preparation means is a. Correction that decreases the obtained air-fuel ratio fluctuation index amount as the estimated air-fuel ratio sensor element temperature becomes higher than the specific temperature, and / or the estimated air-fuel ratio sensor element temperature is lower than the specific temperature.
  • the correction for increasing the acquired air-fuel ratio fluctuation index amount is performed to obtain the “air-fuel ratio fluctuation index amount correction value by applying to the acquired air-fuel ratio fluctuation index amount”, and the air-fuel ratio fluctuation index amount correction value Determining an imbalance determination parameter for determining a value according to the imbalance determination parameter; b.
  • the imbalance determination threshold decreases as the estimated air-fuel ratio sensor element temperature decreases (so that the imbalance determination threshold increases as the estimated air-fuel ratio sensor element temperature increases). Determining an imbalance determination threshold value for determining the imbalance determination threshold value based on the estimated air-fuel ratio sensor element temperature; At least one of these determinations is made before the comparison between the imbalance determination parameter and the imbalance determination threshold is performed.
  • the air-fuel ratio fluctuation index amount correction value is obtained by applying a correction that increases the acquired air-fuel ratio fluctuation index amount to the acquired air-fuel ratio fluctuation index amount as the value becomes lower, and the air-fuel ratio fluctuation index amount correction value (For example, the air-fuel ratio fluctuation index amount correction value itself or a value obtained by multiplying the air-fuel ratio fluctuation index amount correction value by a positive constant) is determined as the imbalance determination parameter.
  • the imbalance determination parameter becomes “a value obtained when the air-fuel ratio sensor element temperature is the specific temperature (that is, when the response of the air-fuel ratio sensor is the specific response)”.
  • the imbalance determination can be performed with high accuracy regardless of the air-fuel ratio sensor element temperature.
  • the imbalance determination threshold is determined based on the estimated air-fuel ratio sensor element temperature so that the estimated imbalance determination threshold decreases as the estimated air-fuel ratio sensor element temperature decreases, an imbalance is determined.
  • the determination threshold value takes into account the responsiveness of the air-fuel ratio sensor. As a result, the imbalance determination can be performed with high accuracy regardless of the air-fuel ratio sensor element temperature.
  • the above aspect includes not only an aspect in which the determination of the imbalance determination parameter in a and the determination of the imbalance determination threshold in the above b are performed, but also an aspect in which both of these are performed. Can be included.
  • the air-fuel ratio sensor includes a heater that generates heat when an electric current flows and heats a sensor element unit including the solid electrolyte layer, the exhaust gas side electrode layer, and the atmosphere side electrode layer.
  • the actual admittance of the solid electrolyte layer increases as the air-fuel ratio sensor element temperature increases (see FIG. 15).
  • the actual impedance of the solid electrolyte layer decreases as the air-fuel ratio sensor element temperature increases. Therefore, the air-fuel ratio imbalance among cylinders determination apparatus sets the heating value of the heater so that a difference between a value corresponding to the actual “admittance or impedance” of the solid electrolyte layer and a predetermined target value becomes small.
  • Heater control means for controlling is provided.
  • the element temperature estimation means is configured to estimate the air-fuel ratio sensor element temperature based on at least a value corresponding to the amount of current flowing through the heater.
  • the air-fuel ratio sensor changes with time as the air-fuel ratio sensor is used for a long time.
  • the admittance of the air-fuel ratio sensor that has changed with time is smaller than the admittance of the air-fuel ratio sensor before the change with time (see the solid line Y1).
  • the air-fuel ratio sensor element temperature is higher than when the air-fuel ratio sensor has not changed over time. However, it becomes higher when the air-fuel ratio sensor changes with time. For this reason, even if the actual admittance matches the “target admittance that is the target value” by the heater control, the air-fuel ratio sensor element temperature differs depending on whether or not the air-fuel ratio sensor changes with time. Accordingly, when the air-fuel ratio sensor element temperature is estimated based on admittance, the estimated air-fuel ratio sensor element temperature is different from the actual air-fuel ratio sensor element temperature.
  • the imbalance determination threshold is a value that accurately considers the responsiveness of the air-fuel ratio sensor. There is a high possibility that it will not.
  • the element temperature estimation means is configured to estimate the air-fuel ratio sensor element temperature based on at least a value corresponding to the amount of current flowing through the heater.
  • the “current flowing through the heater” may be an actual measurement value of the current flowing through the heater, or an instruction value of the current flowing through the heater (for example, duty signal duty).
  • the correlation with the air-fuel ratio sensor element temperature is strong. Therefore, by estimating the air-fuel ratio sensor element temperature based on a value corresponding to the amount of current flowing through the heater, the air-fuel ratio sensor element temperature is accurately estimated regardless of whether the air-fuel ratio sensor has changed over time. can do. As a result, the “imbalance determination parameter or imbalance determination threshold” can be correctly determined.
  • the element temperature estimating means is further configured to estimate the air-fuel ratio sensor element temperature based on an operation parameter of the engine having a correlation with the temperature of the exhaust gas.
  • the air-fuel ratio sensor element temperature also depends on the exhaust gas temperature, according to the above configuration, the air-fuel ratio sensor element temperature can be estimated more accurately. As a result, the “imbalance determination parameter or imbalance determination threshold” can be correctly determined.
  • the imbalance determination means is “sensor element temperature rise control for making the temperature of the sensor element part in the parameter acquisition period higher than the temperature of the sensor element part in a period other than the parameter acquisition period (parameter non-acquisition period)” Is configured to instruct the heater control means to execute during the parameter acquisition period,
  • the heater control means includes When instructed to execute the sensor element temperature rise control, the target value is made different from a value when the execution of the element temperature rise control is not instructed. It can be configured to implement control.
  • the target value is higher than when the sensor element temperature increase control is not performed during the sensor element temperature increase control.
  • the target value is lower than when the sensor element temperature increase control is not performed during the sensor element temperature increase control.
  • This sensor element temperature increase control improves the responsiveness of the air-fuel ratio sensor when acquiring the air-fuel ratio fluctuation index amount. Therefore, the air-fuel ratio fluctuation index amount is acquired based on the output value of the air-fuel ratio sensor when the output value of the air-fuel ratio sensor can follow the fluctuation of the air-fuel ratio of the exhaust gas without excessive delay. As a result, since the air-fuel ratio fluctuation index amount becomes a value that accurately represents the cylinder-by-cylinder air-fuel ratio difference, it is possible to accurately determine whether or not an air-fuel ratio imbalance among cylinders has occurred.
  • the air-fuel ratio sensor element temperature in the parameter non-acquisition period is controlled to a temperature lower than the air-fuel ratio sensor element temperature in the parameter acquisition period.
  • FIG. 1 is a schematic plan view of an internal combustion engine to which an air-fuel ratio imbalance among cylinders determination device according to each embodiment of the present invention is applied.
  • 2A to 2C are schematic cross-sectional views of an air-fuel ratio detection unit provided in the air-fuel ratio sensor (upstream air-fuel ratio sensor) shown in FIG.
  • FIG. 3 is a graph showing the relationship between the air-fuel ratio of exhaust gas and the limit current value of the air-fuel ratio sensor.
  • FIG. 4 is a graph showing the relationship between the air-fuel ratio of exhaust gas and the output value of the air-fuel ratio sensor.
  • FIG. 5 is a time chart showing the behavior of each value related to the imbalance determination parameter when the air-fuel ratio imbalance state between cylinders occurs and when the same state does not occur.
  • FIG. 1 is a schematic plan view of an internal combustion engine to which an air-fuel ratio imbalance among cylinders determination device according to each embodiment of the present invention is applied.
  • 2A to 2C are schematic cross-sectional views of an air-fuel ratio
  • FIG. 6 is a graph showing the relationship between the air-fuel ratio sensor element temperature and the responsiveness of the air-fuel ratio sensor.
  • FIG. 7 is a sectional view of the internal combustion engine shown in FIG.
  • FIG. 8 is a partial schematic perspective view (perspective view) of the air-fuel ratio sensor (upstream air-fuel ratio sensor) shown in FIGS. 1 and 7.
  • FIG. 9 is a partial cross-sectional view of the air-fuel ratio sensor shown in FIGS. 1 and 7.
  • FIG. 10 is a graph showing the relationship between the air-fuel ratio of exhaust gas and the output value of the downstream air-fuel ratio sensor shown in FIGS.
  • FIG. 11 is a graph showing changes in the air-fuel ratio fluctuation index amount with respect to the air-fuel ratio sensor element temperature.
  • FIG. 12 is a flowchart showing a routine executed by the CPU of the air-fuel ratio imbalance among cylinders determination apparatus (first determination apparatus) according to the first embodiment of the present invention.
  • FIG. 13 is a flowchart showing a routine executed by the CPU of the first determination apparatus.
  • FIG. 14 is a flowchart showing a routine executed by the CPU of the first determination apparatus.
  • FIG. 15 is a graph showing the relationship between the admittance of the air-fuel ratio sensor and the air-fuel ratio sensor element temperature.
  • FIG. 16 is a table that is referred to when the CPU of the first determination apparatus determines a correction value for the air-fuel ratio fluctuation index amount.
  • FIG. 17 is a flowchart showing a routine executed by the CPU of the air-fuel ratio imbalance among cylinders determination device (second determination device) according to the second embodiment of the present invention.
  • FIG. 18 is a table that is referred to when the CPU of the second determination apparatus determines the imbalance determination threshold value.
  • FIG. 19 is a graph showing the relationship between “the admittance of the air-fuel ratio sensor before change with time and the admittance of the air-fuel ratio sensor after change with time” and the air-fuel ratio sensor element temperature.
  • FIG. 20 is a flowchart showing a routine executed by the CPU of the air-fuel ratio imbalance among cylinders determination device (third determination device) according to the third embodiment of the present invention.
  • FIG. 20 is a flowchart showing a routine executed by the CPU of the air-fuel ratio imbalance among cylinders determination device (third determination device) according to the third embodiment of the present invention.
  • FIG. 21 is a flowchart showing a routine executed by the CPU of the air-fuel ratio imbalance among cylinders determination device according to the fifth and sixth embodiments of the present invention.
  • FIG. 22 is a flowchart showing a routine executed by the CPU of the air-fuel ratio imbalance among cylinders determination device according to the seventh and eighth embodiments of the present invention.
  • FIG. 23 is a flowchart showing a routine executed by the CPU of the air-fuel ratio imbalance among cylinders determining apparatus according to the seventh embodiment of the present invention.
  • FIG. 24 is a flowchart showing a routine executed by the CPU of the air-fuel ratio imbalance among cylinders determining apparatus according to the seventh embodiment of the present invention.
  • FIG. 22 is a flowchart showing a routine executed by the CPU of the air-fuel ratio imbalance among cylinders determination device according to the seventh and eighth embodiments of the present invention.
  • FIG. 23 is a flowchart showing a routine executed by the CPU of the air-fuel ratio imbalance among cylinders determining apparatus according to
  • FIG. 25 is a flowchart showing a routine executed by the CPU of the air-fuel ratio imbalance determining apparatus for cylinders according to the eighth embodiment of the present invention.
  • FIG. 26 is a flowchart showing a routine executed by the CPU of the air-fuel ratio imbalance determining apparatus for cylinders according to the eighth embodiment of the present invention.
  • FIG. 27 is a graph illustrating a delay time table referred to by the CPU of the determination apparatus according to each embodiment.
  • This determination device is a part of an air-fuel ratio control device that controls the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine (the air-fuel ratio of the engine), and further includes a fuel injection amount control device that controls the fuel injection amount. It is also a department.
  • FIG. 7 shows a system in which the determination device according to the first embodiment (hereinafter also referred to as “first determination device”) is applied to a 4-cycle, spark ignition type, multi-cylinder (in-line 4-cylinder) internal combustion engine 10. The schematic structure of is shown. FIG. 7 shows only the cross section of the specific cylinder, but the other cylinders have the same configuration.
  • the internal combustion engine 10 includes a cylinder block portion 20 including a cylinder block, a cylinder block lower case, an oil pan, and the like, a cylinder head portion 30 fixed on the cylinder block portion 20, and a gasoline mixture to the cylinder block portion 20.
  • An intake system 40 for supplying and an exhaust system 50 for releasing exhaust gas from the cylinder block unit 20 to the outside are included.
  • the cylinder block unit 20 includes a cylinder 21, a piston 22, a connecting rod 23, and a crankshaft 24.
  • the piston 22 reciprocates in the cylinder 21, and the reciprocating motion of the piston 22 is transmitted to the crankshaft 24 through the connecting rod 23, whereby the crankshaft 24 rotates.
  • the wall surface of the cylinder 21 and the upper surface of the piston 22 form a combustion chamber 25 together with the lower surface of the cylinder head portion 30.
  • the cylinder head portion 30 includes an intake port 31 communicating with the combustion chamber 25, an intake valve 32 that opens and closes the intake port 31, an intake camshaft that drives the intake valve 32, and continuously changes the phase angle of the intake camshaft.
  • a variable exhaust timing control device 36 that continuously changes the phase angle of the exhaust camshaft, an actuator 36a of the variable exhaust timing control device 36, a spark plug 37, and an igniter 38 that includes an ignition coil that generates a high voltage applied to the spark plug 37.
  • fuel injection valve Fuel injection means, and a fuel supply means) 39.
  • One fuel injection valve 39 is provided for each combustion chamber 25.
  • the fuel injection valve 39 is provided in the intake port 31.
  • the fuel injection valve 39 injects “the fuel of the indicated fuel injection amount included in the injection instruction signal” into the corresponding intake port 31 when it is normal.
  • each of the plurality of cylinders includes the fuel injection valve 39 that supplies fuel independently of the other cylinders.
  • the intake system 40 includes an intake manifold 41, an intake pipe 42, an air filter 43, and a throttle valve 44.
  • the intake manifold 41 includes a plurality of branch portions 41a and a surge tank 41b as shown in FIG. One end of each of the plurality of branch portions 41a is connected to each of the plurality of intake ports 31 as shown in FIG. The other ends of the plurality of branch portions 41a are connected to the surge tank 41b. One end of the intake pipe 42 is connected to the surge tank 41b. The air filter 43 is disposed at the other end of the intake pipe 42.
  • the throttle valve 44 is provided in the intake pipe 42 so that the opening cross-sectional area of the intake passage is variable.
  • the throttle valve 44 is rotationally driven in the intake pipe 42 by a throttle valve actuator 44a (a part of the throttle valve driving means) made of a DC motor.
  • the exhaust system 50 includes an exhaust manifold 51, an exhaust pipe 52, an upstream catalyst 53 disposed in the exhaust pipe 52, and a downstream catalyst (not shown) disposed in the exhaust pipe 52 downstream of the upstream catalyst 53. I have.
  • the exhaust manifold 51 includes a plurality of branch portions 51a each having one end connected to the exhaust port, and the other ends of the plurality of branch portions 51a and all the branch portions 51a.
  • the collecting portion 51b is also referred to as an exhaust collecting portion HK because exhaust gas discharged from a plurality of (two or more, four in this example) cylinders gathers.
  • the exhaust pipe 52 is connected to the collecting portion 51b. As shown in FIG. 7, the exhaust port 34, the exhaust manifold 51, and the exhaust pipe 52 constitute an exhaust passage.
  • Each of the upstream catalyst 53 and the downstream catalyst is a so-called three-way catalyst device (exhaust purification catalyst) carrying an active component made of a noble metal (catalyst substance) such as platinum, rhodium and palladium.
  • Each catalyst has a function of oxidizing unburned components such as HC, CO, H 2 and reducing nitrogen oxides (NOx) when the air-fuel ratio of the gas flowing into each catalyst is the stoichiometric air-fuel ratio. This function is also called a catalyst function.
  • each catalyst has an oxygen storage function for storing (storing) oxygen, and even if the air-fuel ratio shifts from the stoichiometric air-fuel ratio by this oxygen storage function, unburned components and nitrogen oxides can be purified.
  • This oxygen storage function is provided by an oxygen storage material such as ceria (CeO 2 ) supported on the catalyst.
  • This system includes a hot-wire air flow meter 61, a throttle position sensor 62, a water temperature sensor 63, a crank position sensor 64, an intake cam position sensor 65, an exhaust cam position sensor 66, an upstream air-fuel ratio sensor 67, a downstream air-fuel ratio sensor 68, An accelerator opening sensor 69 is provided.
  • the air flow meter 61 outputs a signal corresponding to the mass flow rate (intake air flow rate) Ga of intake air flowing in the intake pipe 42. That is, the intake air flow rate Ga represents the amount of air taken into the engine 10 per unit time.
  • the throttle position sensor 62 detects the opening degree of the throttle valve 44 (throttle valve opening degree) and outputs a signal representing the throttle valve opening degree TA.
  • the water temperature sensor 63 detects the temperature of the cooling water of the internal combustion engine 10 and outputs a signal representing the cooling water temperature THW.
  • the crank position sensor 64 outputs a signal having a narrow pulse every time the crankshaft 24 rotates 10 ° and a wide pulse every time the crankshaft 24 rotates 360 °. This signal is converted into an engine speed NE by an electric control device 70 described later.
  • the intake cam position sensor 65 outputs one pulse every time the intake cam shaft rotates 90 degrees from a predetermined angle, then 90 degrees, and then 180 degrees.
  • the electric control device 70 described later acquires an absolute crank angle CA based on the compression top dead center of the reference cylinder (for example, the first cylinder) based on signals from the crank position sensor 64 and the intake cam position sensor 65. It has become.
  • This absolute crank angle CA is set to “0 ° crank angle” at the compression top dead center of the reference cylinder, and increases to 720 ° crank angle according to the rotation angle of the crank angle.
  • the exhaust cam position sensor 66 outputs one pulse every time the exhaust camshaft rotates 90 degrees from a predetermined angle, then 90 degrees, and further 180 degrees.
  • the upstream air-fuel ratio sensor 67 (the air-fuel ratio sensor in the present invention) is “at a position between the collecting portion 51 b (exhaust collecting portion HK) of the exhaust manifold 51 and the upstream catalyst 53. Any one of the exhaust manifold 51 and the exhaust pipe 52 (that is, the exhaust passage) ”is provided.
  • the upstream side air-fuel ratio sensor 67 is disclosed in, for example, “Limit current type wide area air-fuel ratio including diffusion resistance layer” disclosed in JP-A-11-72473, JP-A-2000-65782, JP-A-2004-69547, and the like. Sensor ".
  • the upstream air-fuel ratio sensor 67 has an air-fuel ratio detection unit 67a, an outer protective cover 67b, and an inner protective cover 67c.
  • the outer protective cover 67b is a hollow cylindrical body made of metal.
  • the outer protective cover 67b accommodates the inner protective cover 67c so as to cover the inner protective cover 67c.
  • the outer protective cover 67b has a plurality of inflow holes 67b1 on its side surface.
  • the inflow hole 67b1 is a through hole for allowing exhaust gas (exhaust gas outside the outer protective cover 67b) EX flowing in the exhaust passage to flow into the outer protective cover 67b.
  • the outer protective cover 67b has an outflow hole 67b2 on the bottom surface for allowing the exhaust gas inside the outer protective cover 67b to flow out (exhaust passage).
  • the inner protective cover 67c is a hollow cylindrical body made of metal and having a diameter smaller than that of the outer protective cover 67b.
  • the inner protective cover 67c accommodates the air-fuel ratio detection unit 67a so as to cover the air-fuel ratio detection unit 67a.
  • the inner protective cover 67c has a plurality of inflow holes 67c1 on its side surface.
  • the inflow hole 67c1 is a through-hole for allowing exhaust gas flowing into the “space between the outer protective cover 67b and the inner protective cover 67c” through the inflow hole 67b1 of the outer protective cover 67b to flow into the inner protective cover 67c. It is.
  • the inner protective cover 67c has an outflow hole 67c2 for allowing the exhaust gas inside the inner protective cover 67c to flow out to the outside.
  • the air-fuel ratio detector 67a includes a solid electrolyte layer 671, an exhaust gas side electrode layer 672, an atmosphere side electrode layer 673, a diffusion resistance layer 674, One wall portion 675, a catalyst portion 676, a second wall portion 677, and a heater 678 are included.
  • the solid electrolyte layer 671 is an oxygen ion conductive oxide sintered body.
  • the solid electrolyte layer 671 is a “stabilized zirconia element” in which CaO as a stabilizer is dissolved in ZrO 2 (zirconia).
  • the solid electrolyte layer 671 exhibits well-known “oxygen battery characteristics” and “oxygen pump characteristics” when its temperature is equal to or higher than the activation temperature.
  • the exhaust gas side electrode layer 672 is made of a noble metal having high catalytic activity such as platinum (Pt).
  • the exhaust gas side electrode layer 672 is formed on one surface of the solid electrolyte layer 671.
  • the exhaust gas side electrode layer 672 is formed by chemical plating or the like so as to have sufficient permeability (that is, in a porous shape).
  • the atmosphere side electrode layer 673 is made of a noble metal having high catalytic activity such as platinum (Pt).
  • the atmosphere-side electrode layer 673 is formed on the other surface of the solid electrolyte layer 671 so as to face the exhaust gas-side electrode layer 672 with the solid electrolyte layer 671 interposed therebetween.
  • the atmosphere-side electrode layer 673 is formed to have sufficient permeability (that is, in a porous shape) by chemical plating or the like.
  • the diffusion resistance layer (diffusion limiting layer) 674 is made of a porous ceramic (heat-resistant inorganic substance).
  • the diffusion resistance layer 674 is formed by, for example, a plasma spraying method or the like so as to cover the outer surface of the exhaust gas side electrode layer 672.
  • the first wall portion 675 is made of alumina ceramic that is dense and does not transmit gas.
  • the first wall portion 675 is formed so as to cover the diffusion resistance layer 674 except for a corner (a part) of the diffusion resistance layer 674. That is, the first wall portion 675 includes a penetration portion that exposes a part of the diffusion resistance layer 674 to the outside.
  • the catalyst part 676 is formed in the penetration part so as to close the penetration part of the first wall part 675. Similar to the upstream catalyst 53, the catalyst unit 676 carries a catalyst material that promotes a redox reaction and an oxygen storage material that exhibits an oxygen storage function.
  • the catalyst portion 676 is a porous body. Therefore, as indicated by the white arrows in FIGS. 2B and 2C, the exhaust gas (the exhaust gas flowing into the inner protective cover 67c described above) passes through the catalyst portion 676. The exhaust gas reaches the diffusion resistance layer 674, and the exhaust gas further passes through the diffusion resistance layer 674 and reaches the exhaust gas side electrode layer 672.
  • the second wall 677 is made of alumina ceramic that is dense and does not allow gas to pass therethrough.
  • the second wall portion 677 is configured to form an “atmosphere chamber 67 ⁇ / b> A” that is a space for accommodating the atmosphere-side electrode layer 673.
  • the atmosphere is introduced into the atmosphere chamber 67A.
  • a power source 679 is connected to the upstream air-fuel ratio sensor 67.
  • the heater 678 is embedded in the second wall portion 677.
  • the heater 678 generates heat when energized by the electric control device 70 described later, heats the solid electrolyte layer 671, the exhaust gas side electrode layer 672, and the atmosphere side electrode layer 673, and adjusts their temperatures.
  • the “solid electrolyte layer 671, exhaust gas side electrode layer 672, and atmosphere side electrode layer 673” heated by the heater 678 are also referred to as “sensor element portion or air-fuel ratio sensor element”. Accordingly, the heater 678 controls the “air-fuel ratio sensor element temperature” which is the temperature of the sensor element section. The greater the energization amount of the heater 678 (the current flowing through the heater 678), the greater the amount of heat generated by the heater 678.
  • the energization amount of the heater 678 is adjusted so as to increase as the duty signal output by the electric control device 70 (hereinafter also referred to as “heater duty duty”) increases.
  • the heater duty is 100%, the amount of heat generated by the heater 678 is maximized.
  • the heater duty is 0%, the energization to the heater 678 is cut off, and as a result, the heater 678 does not generate heat.
  • the air-fuel ratio sensor element temperature varies with the admittance Y of the solid electrolyte layer 671.
  • the air-fuel ratio sensor element temperature can be estimated based on the admittance Y.
  • the greater the admittance Y the higher the air-fuel ratio sensor element temperature.
  • the electric control device 70 periodically superimposes a “voltage such as a rectangular wave or a sine wave” on the “voltage applied by the power source 679” between the exhaust gas side electrode layer 672 and the atmosphere side electrode layer 673, Based on the current flowing through the solid electrolyte layer 671, the admittance Yact of the actual air-fuel ratio sensor 67 (solid electrolyte layer 671) is acquired.
  • the upstream side air-fuel ratio sensor 67 having such a structure has a diffusion resistance layer 674 when the air-fuel ratio of the exhaust gas is on the lean side of the stoichiometric air-fuel ratio.
  • the oxygen that passes through and reaches the exhaust gas side electrode layer 672 is ionized and passed through the atmosphere side electrode layer 673.
  • a current I flows from the positive electrode to the negative electrode of the power source 679.
  • the magnitude of the current I is proportional to the concentration of oxygen (oxygen partial pressure, exhaust gas air-fuel ratio) reaching the exhaust gas side electrode layer 672 when the voltage V is set to a predetermined value Vp or more. It becomes a constant value.
  • the upstream air-fuel ratio sensor 67 outputs a value obtained by converting this current (that is, the limit current Ip) into a voltage as an output value Vabyfs.
  • the upstream air-fuel ratio sensor 67 detects oxygen present in the atmospheric chamber 67A. Is ionized to be led to the exhaust gas side electrode layer 672, and unburned substances (HC, CO, H 2 and the like) reaching the exhaust gas side electrode layer 672 through the diffusion resistance layer 674 are oxidized. As a result, a current I flows from the negative electrode of the power source 679 to the positive electrode. As shown in FIG.
  • the magnitude of the current I is also proportional to the concentration of unburned matter (that is, the air-fuel ratio of the exhaust gas) reaching the exhaust gas side electrode layer 672 when the voltage V is set to a predetermined value Vp or more. It becomes a constant value.
  • the upstream air-fuel ratio sensor 67 outputs a value obtained by converting this current (that is, the limit current Ip) into a voltage as an output value Vabyfs.
  • the air-fuel ratio detection unit 67a flows through the position where the upstream air-fuel ratio sensor 67 is disposed, and passes through the inlet hole 67b1 of the outer protective cover 67b and the inlet hole 67c1 of the inner protective cover 67c.
  • An output value Vabyfs corresponding to the air-fuel ratio (upstream air-fuel ratio abyfs, detected air-fuel ratio abyfs) of the gas passing through and reaching the air-fuel ratio detector 67a is output as “air-fuel ratio sensor output”.
  • the output value Vabyfs increases as the air-fuel ratio of the gas reaching the air-fuel ratio detection unit 67a increases (lean).
  • the output value Vabyfs is substantially proportional to the air-fuel ratio of the exhaust gas that has reached the air-fuel ratio detector 67a. Note that the output value Vabyfs matches the stoichiometric air-fuel ratio equivalent value Vstoich when the detected air-fuel ratio abyfs is the stoichiometric air-fuel ratio.
  • the electric control device 70 stores the air-fuel ratio conversion table (map) Mapyfs shown in FIG. 4 and applies the output value Vabyfs of the air-fuel ratio sensor 67 to the air-fuel ratio conversion table Mapyfs, so The fuel ratio abyfs is detected (that is, the detected air-fuel ratio abyfs is acquired).
  • the upstream air-fuel ratio sensor 67 is arranged so that the outer protective cover 67 b is exposed to either the exhaust manifold 51 or the exhaust pipe 52 at a position between the exhaust manifold HK of the exhaust manifold 51 and the upstream catalyst 53. Established.
  • the air-fuel ratio sensor 67 has a bottom surface of the protective cover (67b, 67c) parallel to the flow of the exhaust gas EX, and the protective cover (67b, 67c).
  • the central axis CC is disposed in the exhaust passage so as to be orthogonal to the flow of the exhaust gas EX.
  • the exhaust gas EX flowing through the exhaust passage passes through the inflow hole 67b1 of the outer protective cover 67b as shown by the arrow Ar1 in FIGS. 8 and 9, and is located between the outer protective cover 67b and the inner protective cover 67c. Inflow.
  • the exhaust gas passes through the “inflow hole 67c1 of the inner protective cover 67c” as shown by the arrow Ar2 and then flows into the “inside of the inner protective cover 67c”, and then reaches the air-fuel ratio detection unit 67a. Thereafter, the exhaust gas flows out into the exhaust passage through the “outflow hole 67c2 of the inner protective cover 67c and the outflow hole 67b2 of the outer protective cover 67b” as indicated by an arrow Ar3.
  • the flow rate of the exhaust gas inside the “outer protective cover 67b and the inner protective cover 67c” is the flow rate of the exhaust gas EX flowing in the vicinity of the outflow hole 67b2 of the outer protective cover 67b (hence, the intake air amount per unit time). It varies according to the air flow rate Ga). In other words, the time from “when the exhaust gas having a certain air-fuel ratio (first exhaust gas) reaches the inflow hole 67b1” to “when the first exhaust gas reaches the air-fuel ratio detection unit 67a” is equal to the intake air flow rate Ga. Depends on the engine speed NE.
  • the output responsiveness (responsiveness) of the air-fuel ratio sensor 67 to “the air-fuel ratio of the exhaust gas flowing through the exhaust passage” is better as the flow rate (flow velocity) of the exhaust gas flowing near the outer protective cover 67 b of the air-fuel ratio sensor 67 is larger. become. This is also true when the upstream air-fuel ratio sensor 67 has only the inner protective cover 67c.
  • the downstream air-fuel ratio sensor 68 is the exhaust pipe 52 that is downstream of the upstream catalyst 53 and upstream of the downstream catalyst (that is, the upstream catalyst 53 and the downstream side). (Exhaust passage between catalyst).
  • the downstream air-fuel ratio sensor 68 is a known electromotive force type oxygen concentration sensor (a well-known concentration cell type oxygen concentration sensor using stabilized zirconia).
  • the downstream air-fuel ratio sensor 68 is an air-fuel ratio of the gas to be detected that is a gas that passes through a portion of the exhaust passage where the downstream air-fuel ratio sensor 68 is disposed (that is, the gas flows out of the upstream catalyst 53 and downstream.
  • the output value Voxs is generated in accordance with the air-fuel ratio of the gas flowing into the side catalyst, and hence the time average value of the air-fuel ratio of the air-fuel mixture supplied to the engine.
  • the output value Voxs becomes the maximum output value max (for example, about 0.9 V) when the air-fuel ratio of the detected gas is richer than the theoretical air-fuel ratio, and the air-fuel ratio of the detected gas is When the air-fuel ratio is leaner than the stoichiometric air-fuel ratio, the minimum output value min (for example, about 0.1 V) is obtained. (Intermediate voltage Vst, for example, about 0.5 V). Further, the output value Voxs suddenly changes from the maximum output value max to the minimum output value min when the air-fuel ratio of the gas to be detected changes from an air-fuel ratio richer than the stoichiometric air-fuel ratio to a lean air-fuel ratio. When the air-fuel ratio of the detection gas changes from an air-fuel ratio leaner than the stoichiometric air-fuel ratio to a rich air-fuel ratio, it suddenly changes from the minimum output value min to the maximum output value max.
  • the accelerator opening sensor 69 shown in FIG. 7 outputs a signal representing the operation amount Accp (accelerator pedal operation amount Accp) of the accelerator pedal 81 operated by the driver.
  • the accelerator pedal operation amount Accp increases as the opening of the accelerator pedal 81 (accelerator pedal operation amount) increases.
  • the electrical control device 70 is connected to each other by a bus “a CPU 71, a ROM 72 that stores a program executed by the CPU 71, a table (map, function), constants, and the like in advance, and a RAM 73 that the CPU 71 temporarily stores data as necessary. , And an interface 75 including a backup RAM 74 and an AD converter.
  • the backup RAM 74 is supplied with electric power from a battery mounted on the vehicle regardless of the position of an ignition key switch (not shown) of the vehicle on which the engine 10 is mounted (any one of an off position, a start position, an on position, etc.). It is like that.
  • the backup RAM 74 stores data (data is written) in accordance with an instruction from the CPU 71 and holds (stores) the data so that the data can be read.
  • the backup RAM 74 cannot retain data when power supply from the battery is interrupted, for example, when the battery is removed from the vehicle. Therefore, when the power supply to the backup RAM 74 is resumed, the CPU 71 initializes (sets to a default value) data to be held in the backup RAM 74.
  • the interface 75 is connected to the sensors 61 to 69, and supplies signals from these sensors to the CPU 71. Further, the interface 75 is provided with an actuator 33a of the variable intake timing control device 33, an actuator 36a of the variable exhaust timing control device 36, an igniter 38 of each cylinder, and a fuel injection valve provided corresponding to each cylinder in response to an instruction from the CPU 71. 39, a drive signal (instruction signal) is sent to the throttle valve actuator 44a, the heater 678 of the air-fuel ratio sensor 67, and the like.
  • the electric control device 70 sends an instruction signal to the throttle valve actuator 44a so that the throttle valve opening TA increases as the acquired accelerator pedal operation amount Accp increases. That is, the electric control device 70 changes the opening degree of the “throttle valve 44 disposed in the intake passage of the engine 10” according to the acceleration operation amount (accelerator pedal operation amount Accp) of the engine 10 changed by the driver. Throttle valve drive means is provided.
  • the air-fuel ratio imbalance determination between cylinders is a determination for determining whether or not the non-uniformity in air-fuel ratio between cylinders exceeds a warning required value due to a change in the characteristics of the fuel injection valve 39 or the like. is there.
  • the first determination device determines that the magnitude of the difference between the air-fuel ratio of the imbalance cylinder and the air-fuel ratio of the non-imbalance cylinder (cylinder air-fuel ratio difference) is greater than or equal to “a level unacceptable for emission”. Then, it is determined that the air-fuel ratio imbalance among cylinders has occurred.
  • the first determination device determines that “the air-fuel ratio represented by the output value Vabyfs of the air-fuel ratio sensor 67 (that is, the air-fuel ratio conversion table Mapfyfs shown in FIG. "Amount of change per unit time (constant sampling time ts)" of "detected air-fuel ratio abyfs) obtained by applying to”.
  • the “change amount per unit time of the detected air-fuel ratio abyfs” is said to be the time differential value d (abyfs) / dt of the detected air-fuel ratio abyfs when the unit time is an extremely short time of about 4 milliseconds, for example. You can also Therefore, the “change amount per unit time of the detected air-fuel ratio abyfs” is also referred to as “detected air-fuel ratio change rate ⁇ AF”.
  • the exhaust gas from each cylinder reaches the air-fuel ratio sensor 67 in the ignition order (hence, the exhaust order).
  • the air-fuel ratios of the exhaust gases exhausted from each cylinder and reach the air-fuel ratio sensor 67 are substantially the same. Accordingly, the detected air-fuel ratio abyfs when the air-fuel ratio imbalance among cylinders is not generated changes as indicated by the broken line C1 in FIG. 5B, for example. That is, when the air-fuel ratio imbalance among cylinders does not occur, the waveform of the output value Vabyfs of the air-fuel ratio sensor 67 is substantially flat. For this reason, as indicated by the broken line C3 in FIG. 5C, when the air-fuel ratio imbalance among cylinders does not occur, the absolute value of the detected air-fuel ratio change rate ⁇ AF does not increase.
  • the characteristic of the “fuel injection valve 39 for injecting fuel into a specific cylinder becomes “characteristic for injecting fuel larger than the indicated fuel injection amount” and the air-fuel ratio imbalance among cylinders
  • the air-fuel ratio of the exhaust gas of the specific cylinder (the air-fuel ratio of the imbalance cylinder) is greatly different from the air-fuel ratio of the exhaust gas of the cylinders other than the specific cylinder (the air-fuel ratio of the non-imbalance cylinder).
  • the detected air-fuel ratio abyfs when the air-fuel ratio imbalance among cylinders is occurring varies greatly for each unit combustion cycle period, for example, as shown by the solid line C2 in FIG. Therefore, when the air-fuel ratio imbalance state between cylinders is occurring, the absolute value of the detected air-fuel ratio change rate ⁇ AF becomes large as indicated by the solid line C4 in FIG.
  • the unit combustion cycle period in the case of an in-line four-cylinder, four-cycle engine is a period in which the 720 ° crank angle elapses. That is, in the unit combustion cycle period of the engine 10, each combustion stroke is completed in the first to fourth cylinders, which are all the cylinders that exhaust the exhaust gas that reaches one air-fuel ratio sensor 67. This is the period during which the required crank angle elapses.
  • of the detected air-fuel ratio change rate ⁇ AF varies greatly as the air-fuel ratio of the imbalance cylinder deviates from the air-fuel ratio of the non-imbalance cylinder.
  • the detected air-fuel ratio abyfs when the magnitude of the difference between the air-fuel ratio of the imbalance cylinder and the air-fuel ratio of the non-imbalance cylinder is the first value changes as indicated by a solid line C2 in FIG.
  • the detected air-fuel ratio abyfs when the magnitude of the difference between the air-fuel ratio of the imbalance cylinder and the air-fuel ratio of the non-imbalance cylinder is “a second value larger than the first value” is shown in FIG.
  • the first determination device detects the detected air-fuel ratio change rate ⁇ AF () every time the sampling time ts elapses during one unit combustion cycle period in a period in which a predetermined parameter acquisition condition is satisfied (parameter acquisition period).
  • First-order differential value d (abyfs) / dt) is acquired as a basic index amount.
  • the first determination device obtains an average value of absolute values
  • the first determination device obtains an average value of “absolute value of detected air-fuel ratio change rate ⁇ AF
  • the method of obtaining the air-fuel ratio fluctuation index amount is not limited to this, and can be obtained by various methods described later.
  • FIG. 6 is a graph showing the relationship between the air-fuel ratio sensor element temperature and the responsiveness of the air-fuel ratio sensor 67.
  • the higher the air-fuel ratio sensor element temperature the better the response of the air-fuel ratio sensor. This is presumably because the reaction (oxidation / reduction reaction, etc.) in the sensor element portion (particularly, the exhaust gas side electrode layer 672) becomes active.
  • the air-fuel ratio of the exhaust gas varies with a unit combustion cycle as one cycle. Therefore, if the air-fuel ratio sensor element temperature is relatively low, the response of the air-fuel ratio sensor is not sufficient with respect to fluctuations in the exhaust gas. Therefore, the output value Vabyfs of the air-fuel ratio sensor becomes “the fluctuation in the air-fuel ratio of the exhaust gas”. I can't follow up enough.
  • the air-fuel ratio fluctuation index amount AFD when the air-fuel ratio difference between cylinders is large enough to “determine that the air-fuel ratio imbalance among cylinders is occurring” is The lower the air-fuel ratio sensor element temperature, the smaller.
  • the cylinder-by-cylinder air-fuel ratio difference is not “0” and is small enough to be “not to be determined that an air-fuel ratio imbalance among cylinders has occurred”.
  • the air-fuel ratio fluctuation index amount AFD of the air-fuel ratio also decreases as the air-fuel ratio sensor element temperature decreases.
  • the air-fuel ratio fluctuation index amount obtained when the air-fuel ratio imbalance state between cylinders should be determined and the air-fuel ratio sensor element temperature is relatively low (see, for example, point A1) .)
  • a point A2 is represented by a point A2
  • the air-fuel ratio fluctuation index amount AFD is directly adopted as an imbalance determination parameter and the imbalance determination is executed based on a comparison between the imbalance determination parameter and the “constant imbalance determination threshold”, the imbalance There is a risk of misjudgment.
  • the first determination device addresses such a problem as follows.
  • -A 1st determination apparatus estimates the air fuel ratio sensor element temperature in a parameter acquisition period.
  • the first determination device uses a value (air-fuel ratio variation index amount correction value) obtained by correcting the air-fuel ratio variation index amount AFD based on the estimated air-fuel ratio sensor element temperature as an imbalance determination parameter X adopt.
  • the first determination device corrects and / or estimates to decrease the “acquired air-fuel ratio fluctuation index amount AFD” as the estimated air-fuel ratio sensor element temperature becomes higher than the specific temperature.
  • the air-fuel ratio fluctuation index amount correction value is obtained by applying to the acquired air-fuel ratio fluctuation index quantity a correction that increases the "acquired air-fuel ratio fluctuation index quantity AFD" as the air-fuel ratio sensor element temperature becomes lower than the specific temperature.
  • a value corresponding to the air-fuel ratio fluctuation index amount correction value for example, a value obtained by multiplying by a positive constant, where the positive constant may be “1”). Determine as.
  • the first determination device compares the imbalance determination parameter X with the imbalance determination threshold value Xth (a constant threshold value). When the imbalance determination parameter X is larger than the imbalance determination threshold value Xth, the first determination device determines that an air-fuel ratio imbalance among cylinders has occurred. In contrast, when the imbalance determination parameter X is smaller than the imbalance determination threshold value Xth, the first determination device determines that an air-fuel ratio imbalance among cylinders has not occurred.
  • the imbalance determination threshold value Xth a constant threshold value
  • the first determination device acquires the imbalance determination parameter X by correcting the air-fuel ratio fluctuation index amount AFD based on the “estimated air-fuel ratio sensor element temperature”. Accordingly, the imbalance determination parameter X is normalized to a value obtained when the element temperature of the air-fuel ratio sensor (and hence the air-fuel ratio sensor responsiveness) is a specific value (for example, the line in FIG. 11). (See L1hosei and line L2hosei.) As a result, imbalance determination can be executed with high accuracy regardless of the air-fuel ratio sensor element temperature during the parameter acquisition period.
  • the CPU 71 of the first determination device performs the “routine for calculating the commanded fuel injection amount Fi and commanding the fuel injection” shown in FIG. 12 according to a predetermined crank angle (for example, the crank angle of an arbitrary cylinder before the intake top dead center). , BTDC 90 ° CA), it is repeatedly executed for that cylinder (hereinafter also referred to as “fuel injection cylinder”). Accordingly, when the predetermined timing is reached, the CPU 71 starts processing from step 1200, and determines in step 1210 whether a fuel cut condition (hereinafter referred to as "FC condition”) is satisfied.
  • FC condition fuel cut condition
  • step 1210 determines “No” in step 1210, and sequentially performs the processing of steps 1220 to 1250 described below. Thereafter, the CPU 71 proceeds to step 1295 to end the present routine tentatively.
  • Step 1220 The CPU 71 determines that the “fuel injection cylinder” is based on “the intake air flow rate Ga measured by the air flow meter 61, the engine speed NE acquired based on the signal of the crank position sensor 64, and the lookup table MapMc”. “In-cylinder intake air amount Mc (k)” that is “the amount of air sucked into the cylinder” is acquired. The in-cylinder intake air amount Mc (k) is stored in the RAM while corresponding to each intake stroke. The in-cylinder intake air amount Mc (k) may be calculated by a well-known air model (a model constructed according to a physical law simulating the behavior of air in the intake passage).
  • Step 1230 The CPU 71 obtains the basic fuel injection amount Fbase by dividing the in-cylinder intake air amount Mc (k) by the target air-fuel ratio abyfr.
  • the target air-fuel ratio abyfr upstream target air-fuel ratio abyfr
  • the basic fuel injection amount Fbase is a feedforward amount of the fuel injection amount necessary for obtaining the target air-fuel ratio abyfr that is the stoichiometric air-fuel ratio stoich.
  • This step 1230 constitutes a feedforward control means (air-fuel ratio control means) for making the air-fuel ratio of the air-fuel mixture supplied to the engine coincide with the target air-fuel ratio abyfr.
  • Step 1240 The CPU 71 corrects the basic fuel injection amount Fbase with the main feedback amount DFi. More specifically, the CPU 71 calculates the command fuel injection amount (final fuel injection amount) Fi by adding the main feedback amount DFi to the basic fuel injection amount Fbase.
  • the main feedback amount DFi is an air-fuel ratio feedback amount for making the air-fuel ratio of the engine coincide with the target air-fuel ratio abyfr. A method for calculating the main feedback amount DFi will be described later.
  • Step 1250 The CPU 71 sends an injection instruction signal for injecting “the fuel of the indicated fuel injection amount Fi” from the “fuel injection valve 39 provided corresponding to the fuel injection cylinder” to the fuel injection valve 39. To do.
  • step 1220 to step 1250 are “the air-fuel ratio of the air-fuel mixture supplied to the combustion chamber 25 of two or more cylinders (all cylinders in this example) that exhaust the exhaust gas reaching the air-fuel ratio sensor 67.
  • the commanded fuel injection amount control means for controlling the commanded fuel injection amount Fi so that “” becomes the target air-fuel ratio abyfr.
  • step 1210 determines “Yes” in step 1210 and directly proceeds to step 1295 to end the present routine tentatively. In this case, since fuel injection by the process of step 1250 is not executed, fuel cut control (fuel supply stop control) is executed.
  • the CPU 71 repeatedly executes the “main feedback amount calculation routine” shown in the flowchart of FIG. 13 every elapse of a predetermined time. Therefore, when the predetermined timing comes, the CPU 71 starts processing from step 1300 and proceeds to step 1305 to determine whether or not the “main feedback control condition (upstream air-fuel ratio feedback control condition)” is satisfied.
  • the main feedback control condition is satisfied when all of the following conditions are satisfied.
  • (A1) The air-fuel ratio sensor 67 is activated.
  • (A2) The engine load (load factor) KL is less than or equal to the threshold KLth.
  • the load KL is obtained by the following equation (1).
  • an accelerator pedal operation amount Accp may be used.
  • Mc is the in-cylinder intake air amount
  • is the air density (unit is (g / l))
  • L is the exhaust amount of the engine 10 (unit is (l))
  • “4” is the engine.
  • the number of cylinders is 10.
  • KL (Mc / ( ⁇ ⁇ L / 4)) ⁇ 100% (1)
  • the CPU 71 makes a “Yes” determination at step 1305 to sequentially perform the processing from step 1310 to step 1340 described below, and proceeds to step 1395 to end the present routine tentatively.
  • Step 1310 The CPU 71 acquires the feedback control output value Vabyfc according to the following equation (2).
  • Vabyfs is an output value of the air-fuel ratio sensor 67
  • Vafsfb is a sub-feedback amount calculated based on the output value Voxs of the downstream air-fuel ratio sensor 68.
  • a method for calculating the sub feedback amount Vafsfb is well known.
  • the sub feedback amount Vafsfb is decreased, for example, when the output value Voxs of the downstream air-fuel ratio sensor 68 is a value indicating an air-fuel ratio richer than the value Vst corresponding to the theoretical air-fuel ratio, and the downstream air-fuel ratio sensor 68 is reduced.
  • the output value Voxs is increased when the air-fuel ratio is leaner than the value Vst corresponding to the stoichiometric air-fuel ratio.
  • the first determination device may not perform the sub feedback control by setting the sub feedback amount Vafsfb to “0”.
  • Vabyfc Vabyfs + Vafsfb (2)
  • Step 1315 The CPU 71 obtains the feedback control air-fuel ratio abyfsc by applying the feedback control output value Vabyfc to the table Mapyfs shown in FIG. 4 as shown in the following equation (3).
  • abyfsc Mapabyfs (Vabyfc) (3)
  • Step 1320 The CPU 71, according to the following equation (4), “in-cylinder fuel supply amount Fc (k ⁇ N)” that is “the amount of fuel actually supplied to the combustion chamber 25 at a time point N cycles before the current time point”. “ That is, the CPU 71 divides “the in-cylinder intake air amount Mc (k ⁇ N) at a point N cycles before the current point (ie, N ⁇ 720 ° crank angle)” by “the feedback control air-fuel ratio abyfsc”. Thus, the in-cylinder fuel supply amount Fc (k ⁇ N) is obtained.
  • Fc (k ⁇ N) Mc (k ⁇ N) / abyfsc (4)
  • the in-cylinder intake air amount Mc (k ⁇ N) N cycles before the current time is divided by the feedback control air-fuel ratio abyfsc. This is because “time corresponding to N cycles” is required until “exhaust gas generated by combustion of the air-fuel mixture in the combustion chamber 25” reaches the air-fuel ratio sensor 67.
  • Step 1330 The CPU 71 acquires the in-cylinder fuel supply amount deviation DFc according to the following equation (6). That is, the CPU 71 obtains the in-cylinder fuel supply amount deviation DFc by subtracting the in-cylinder fuel supply amount Fc (k ⁇ N) from the target in-cylinder fuel supply amount Fcr (k ⁇ N).
  • This in-cylinder fuel supply amount deviation DFc is an amount representing the excess or deficiency of the fuel supplied into the cylinder at the time point before the N stroke.
  • DFc Fcr (k ⁇ N) ⁇ Fc (k ⁇ N) (6)
  • Step 1335 The CPU 71 obtains the main feedback amount DFi according to the following equation (7).
  • Gp is a preset proportional gain
  • Gi is a preset integral gain.
  • the “value SDFc” in the equation (7) is “an integral value of the in-cylinder fuel supply amount deviation DFc”. That is, the CPU 71 calculates the “main feedback amount DFi” by proportional-integral control for making the feedback control air-fuel ratio abyfsc coincide with the target air-fuel ratio abyfr.
  • DFi Gp ⁇ DFc + Gi ⁇ SDFc (7)
  • Step 1340 The CPU 71 adds the in-cylinder fuel supply amount deviation DFc obtained in the above step 1330 to the integral value SDFc of the in-cylinder fuel supply amount deviation DFc at that time, so that a new in-cylinder fuel supply amount deviation is obtained. An integral value SDFc is obtained.
  • the main feedback amount DFi is obtained by proportional-integral control, and this main feedback amount DFi is reflected in the commanded fuel injection amount Fi by the processing of step 1240 in FIG.
  • step 1305 of FIG. 13 determines “No” in step 1305 and proceeds to step 1345 to set the value of the main feedback amount DFi to “0”. To "”.
  • step 1350 the CPU 71 stores “0” in the integral value SDFc of the in-cylinder fuel supply amount deviation. Thereafter, the CPU 71 proceeds to step 1395 to end the present routine tentatively.
  • the main feedback amount DFi is set to “0”. Accordingly, the basic fuel injection amount Fbase is not corrected by the main feedback amount DFi.
  • Air-fuel ratio imbalance determination between cylinders a process for executing the “air-fuel ratio imbalance determination between cylinders” will be described.
  • the CPU 71 executes an “air-fuel ratio imbalance among cylinders determination routine” shown by a flowchart in FIG. 14 every time 4 ms (a predetermined constant sampling time ts) elapses.
  • the CPU 71 starts processing from step 1400 and proceeds to step 1405 to determine whether or not the value of the parameter acquisition permission flag Xkyoka is “1”.
  • the value of the parameter acquisition permission flag Xkyoka is set to “1” when a parameter acquisition condition (an imbalance determination parameter acquisition permission condition) described later is satisfied when the absolute crank angle CA becomes 0 ° crank angle. It is set and immediately set to “0” when the parameter acquisition condition is not satisfied.
  • the parameter acquisition condition is satisfied when all of the following conditions (condition C1 to condition C6) are satisfied. Accordingly, the parameter acquisition condition is not satisfied when at least one of the following conditions (conditions C1 to C6) is not satisfied.
  • the conditions constituting the parameter acquisition conditions are not limited to the following conditions C1 to C6.
  • This condition C1 is also referred to as an imbalance determination execution request condition.
  • the condition C1 may be replaced with “the integrated value of the operating time of the engine 10 or the integrated value of the intake air flow rate Ga is a predetermined value or more” from the previous imbalance determination.
  • the intake air flow rate Ga acquired by the air flow meter 61 is within a predetermined range. That is, the intake air flow rate Ga is not less than the low threshold air flow rate GaLoth and not more than the high threshold air flow rate GaHith.
  • the engine speed NE is within a predetermined range.
  • the engine rotational speed NE is equal to or higher than the low-side threshold rotational speed NELoth and equal to or lower than the high-side threshold rotational speed NEHith.
  • the cooling water temperature THW is equal to or higher than the threshold cooling water temperature THWth.
  • the main feedback control condition is satisfied.
  • Fuel cut control is not being performed.
  • the CPU 71 makes a “Yes” determination at step 1405, proceeds to step 1410, and acquires “the output value Vabyfs of the air-fuel ratio sensor 67 at that time” by AD conversion.
  • the CPU 71 proceeds to step 1415 and applies the output value Vabyfs acquired in step 1410 to the air-fuel ratio conversion table Mapafs shown in FIG. 4 to acquire the current detected air-fuel ratio abyfs.
  • the CPU 71 stores the detected air-fuel ratio abyfs acquired when the routine is executed last time as the previous detected air-fuel ratio abyfsold before the process of step 1415. That is, the previous detected air-fuel ratio abyfsold is the detected air-fuel ratio abyfs at a time point 4 ms (sampling time ts) before the current time.
  • the initial value of the previous detected air-fuel ratio abyfsold is set to a value corresponding to the AD conversion value of the stoichiometric air-fuel ratio equivalent value Vstoich in the initial routine.
  • the initial routine is a routine executed by the CPU 71 when the ignition key switch of the vehicle on which the engine 10 is mounted is changed from OFF to ON.
  • step 1420 the CPU 71 proceeds to step 1420, (A) Obtain the detected air-fuel ratio change rate ⁇ AF, (B) updating the integrated value SAFD of the absolute value
  • the detected air-fuel ratio change rate ⁇ AF (differential value d (abyfs) / dt) is data (basic index amount) that is the original data of the air-fuel ratio fluctuation index amount AFD and the imbalance determination parameter X.
  • the CPU 71 acquires the detected air-fuel ratio change rate ⁇ AF by subtracting the previous detected air-fuel ratio abyfsold from the current detected air-fuel ratio abyfs.
  • ” is added to the integrated value SAFD is, as will be understood from FIGS. 5B and 5C, the detected air-fuel ratio change. This is because the rate ⁇ AF (n) can be a positive value or a negative value.
  • the integrated value SAFD is also set to “0” in the initial routine.
  • C Update of the integration number counter Cn to the integrated value SAFD of the absolute value
  • the CPU 71 increases the value of the counter Cn by “1” according to the following equation (10).
  • Cn (n) is the updated counter Cn
  • Cn (n ⁇ 1) is the updated counter Cn.
  • the value of the counter Cn is set to “0” in the above-described initial routine, and is also set to “0” in step 1475 described later. Therefore, the value of the counter Cn indicates the number of data of the absolute value
  • Cn (n) Cn (n ⁇ 1) +1 (10)
  • step 1425 determines whether or not the crank angle CA (absolute crank angle CA) based on the compression top dead center of the reference cylinder (first cylinder in this example) is a 720 ° crank angle. judge. At this time, if the absolute crank angle CA is less than the 720 ° crank angle, the CPU 71 makes a “No” determination at step 1425 to directly proceed to step 1495 to end the present routine tentatively.
  • the crank angle CA absolute crank angle CA
  • Step 1425 is a step of determining a minimum unit period for obtaining an average value of the absolute values
  • “720 ° crank angle which is a unit combustion cycle period” is determined. This corresponds to the minimum unit period.
  • the minimum unit period may be shorter than the 720 ° crank angle, but it is desirable that the minimum unit period be a period more than a multiple of the sampling time ts. That is, it is desirable that the minimum unit period is determined so that a plurality of detected air-fuel ratio change rates ⁇ AF are acquired within the minimum unit period.
  • step 1425 determines “Yes” in step 1425 and proceeds to step 1430.
  • step 1430 the CPU 71 (D) calculating an average value Ave ⁇ AF of the absolute value
  • (E) Update of the integrated value Save of the average value Ave ⁇ AF.
  • the CPU 71 calculates the current integrated value Save (n) according to the following equation (12). That is, the CPU 71 updates the integrated value Save by adding the calculated average value Ave ⁇ AF to the previous integrated value Save (n ⁇ 1) at the time of proceeding to Step 1430.
  • the value of the integrated value Save (n) is set to “0” in the above-described initial routine.
  • Save (n) Save (n ⁇ 1) + Ave ⁇ AF (12)
  • (F) Update of the cumulative number counter Cs.
  • the CPU 71 increases the value of the counter Cs by “1” according to the following equation (13).
  • Cs (n) is the updated counter Cs
  • Cs (n ⁇ 1) is the updated counter Cs.
  • the value of the counter Cs is set to “0” in the above-described initial routine. Therefore, the value of the counter Cs indicates the number of data of the average value Ave ⁇ AF integrated with the integrated value Save.
  • Cs (n) Cs (n ⁇ 1) +1 (13)
  • step 1435 determines whether or not the value of the counter Cs is equal to or greater than the threshold value Csth. At this time, if the value of the counter Cs is less than the threshold value Csth, the CPU 71 makes a “No” determination at step 1435 to directly proceed to step 1495 to end the present routine tentatively.
  • the threshold Csth is a natural number and is desirably 2 or more.
  • Steps 1460 are performed in order.
  • This air-fuel ratio fluctuation index amount AFD is a value obtained by averaging the average value of the absolute value
  • AFD Save / Csth (14)
  • Step 1445 The CPU 71 estimates the air-fuel ratio sensor element temperature (the temperature of the solid electrolyte layer 671 of the air-fuel ratio sensor 67) TempS based on the actual admittance Yact of the solid electrolyte layer 671. More specifically, the CPU 71 periodically superimposes a “detection voltage such as a rectangular wave or a sine wave” on the “voltage applied by the power source 679” between the exhaust gas side electrode layer 672 and the atmosphere side electrode layer 673.
  • a “detection voltage such as a rectangular wave or a sine wave”
  • the admittance Yact of the actual air-fuel ratio sensor 67 is acquired every elapse of a predetermined time.
  • the acquisition method of admittance is known, for example, it describes also in Unexamined-Japanese-Patent No. 2001-74693, Unexamined-Japanese-Patent No. 2002-48761, Unexamined-Japanese-Patent No. 2007-17191, etc. Yes.
  • the CPU 71 reads in step 1445 the air-fuel ratio sensor element temperature TempS at the time of proceeding to step 1445.
  • step 1445 the CPU 71 obtains the average value of the admittance Yact acquired every predetermined time in the period during which the air-fuel ratio fluctuation index amount AFD (more specifically, the detected air-fuel ratio change rate ⁇ AF) is acquired.
  • the air-fuel ratio sensor element temperature TempS may be estimated based on the above.
  • FIG. 15 is a graph showing the relationship between the air-fuel ratio sensor element temperature and the admittance Y of the solid electrolyte layer. This relationship is stored in the ROM 72 in the form of a lookup table. This table is referred to as an element temperature table MapTempS (Y).
  • MapTempS MapTempS
  • Step 1450 The CPU 71 applies a correction value kh (kh ⁇ 1.0) by applying the air-fuel ratio sensor element temperature TempS estimated in Step 1445 to the correction value calculation table Map kh (TempS) indicated by the solid line in FIG. ).
  • the correction value calculation table Map kh (TempS) is stored in the ROM 72 in the form of a lookup table.
  • the activation temperature for example, 700 ° C. which can be said to be the first specific temperature
  • an allowable upper limit temperature for example, 900 ° C. which can be said to be the second specific temperature
  • the correction value kh increases as the air-fuel ratio sensor element temperature TempS decreases in the region of 700 ° C. or lower, and the correction value kh decreases as the air-fuel ratio sensor element temperature TempS increases in the region of 900 ° C. or higher.
  • the correction value calculation table Map kh (TempS) may be configured (see the broken line).
  • the correction by the correction kh is a correction that decreases the acquired air-fuel ratio fluctuation index amount AFD as the estimated air-fuel ratio sensor element temperature TempS becomes higher than a specific temperature (700 ° C. in the example of FIG. 16). This is equivalent to applying to the air-fuel ratio fluctuation index amount AFD.
  • the CPU 71 further adds a positive value (air-fuel ratio fluctuation index amount correction value) obtained by multiplying “the air-fuel ratio fluctuation index amount AFD acquired in step 1440” by “the correction value kh acquired in step 1450”.
  • the constant Cp being “1” is synonymous with “determining the air-fuel ratio fluctuation index amount correction value itself as the imbalance determination parameter X” described above.
  • the imbalance determination parameter X is the air-fuel ratio fluctuation index amount AFD obtained in step 1440 so that the air-fuel ratio fluctuation index amount AFD becomes smaller as the estimated air-fuel ratio sensor element temperature TempS becomes higher. Any value (proportional value) corresponding to the corrected air-fuel ratio fluctuation index amount correction value may be used.
  • step 1460 the CPU 71 proceeds to step 1460 to determine whether or not the imbalance determination parameter X is larger than the imbalance determination threshold value Xth.
  • the CPU 71 determines “Yes” at step 1460 and proceeds to step 1465 to set the value of the imbalance occurrence flag XINB to “1”. Set. That is, the CPU 71 determines that an air-fuel ratio imbalance among cylinders has occurred. Further, at this time, the CPU 71 may turn on a warning lamp (not shown). The value of the imbalance occurrence flag XINB is stored in the backup RAM 74. Thereafter, the CPU 71 proceeds to step 1495 to end the present routine tentatively.
  • step 1460 determines “No” in step 1460 and proceeds to step 1470.
  • the value of the imbalance occurrence flag XINB is set to “2”. That is, “the air-fuel ratio imbalance among cylinders as a result of the imbalance determination between air-fuel ratios is determined to have been determined not to have occurred” is stored. Thereafter, the CPU 71 proceeds to step 1495 to end the present routine tentatively. Note that step 1470 may be omitted.
  • step 1405 the CPU 71 determines “No” in step 1405 and proceeds to step 1475.
  • step 1475 the CPU 71 sets (clears) each value (eg, ⁇ AF, SAFD, SABF, Cn, etc.) to “0”, and then proceeds directly to step 1495 to end the present routine tentatively.
  • the first determination device is applied to the multi-cylinder internal combustion engine 10 having a plurality of cylinders. Further, the first determination device includes an air-fuel ratio sensor 67, a plurality of fuel injection valves 39, and an imbalance determination means.
  • the air-fuel ratio fluctuation index amount AFD that becomes larger is acquired based on the output value Vabyfs of the air-fuel ratio sensor 67 (steps 1405 to 1440 in FIG. 14), and obtained based on the acquired air-fuel ratio fluctuation index amount AFD.
  • the imbalance determination parameter X is compared with a predetermined imbalance determination threshold value Xth (steps 1455 and 1460 in FIG.
  • Step 1465 determines that an air-fuel ratio imbalance state between cylinders has occurred (FIG. 14). Step 1465), and determines that the inter-cylinder air-fuel ratio imbalance state is smaller does not occur than the parameter X is imbalance determination imbalance determination threshold Xth (step in FIG. 14 1470).
  • the imbalance determining means includes Element temperature estimation means (step 1445 and FIG. 15 in FIG. 14) for estimating an air-fuel ratio sensor element temperature TempS that is the temperature of the solid electrolyte layer in the parameter acquisition period;
  • the acquired air-fuel ratio fluctuation index amount AFD is corrected to decrease the acquired air-fuel ratio fluctuation index amount AFD as the estimated air-fuel ratio sensor element temperature TempS becomes higher than a specific temperature (for example, 700 ° C.).
  • the determination of the imbalance determination parameter is performed to acquire the applied air-fuel ratio fluctuation index amount correction value and determine the value corresponding to the air-fuel ratio fluctuation index amount correction value as the imbalance determination parameter X (step 1450 and FIG. 14).
  • comparison preparation means for performing before the comparison between the imbalance determination parameter X and the imbalance determination threshold Xth (before step 1460); including.
  • the imbalance determination parameter X becomes “a value obtained when the air-fuel ratio sensor element temperature TempS is a specific temperature (that is, when the response of the air-fuel ratio sensor is a specific response)”.
  • the air-fuel ratio fluctuation index amount correction value is “the air-fuel ratio fluctuation index amount obtained when the air-fuel ratio sensor element temperature is a specific temperature”
  • the imbalance determination parameter X is “the air-fuel ratio sensor element temperature is a specific temperature”. It becomes a value according to the air / fuel ratio fluctuation index amount obtained in the case of.
  • the imbalance determination can be executed with high accuracy regardless of the air-fuel ratio sensor element temperature TempS.
  • the first determination device corrects the air-fuel ratio sensor element temperature TempS estimated in step 1445 by applying it to the correction value calculation table Map kh another (TempS) indicated by a one-dot chain line in FIG.
  • the value kh may be determined.
  • the correction value calculation table Map kh another (TempS) is stored in the ROM 72 in the form of a lookup table.
  • the correction value kh becomes smaller in the range of 1.0 or less as the air-fuel ratio sensor element temperature TempS becomes higher than a specific temperature (for example, 800 ° C.). Desired. That is, according to the correction value kh, the air-fuel ratio fluctuation index amount AFD is corrected to decrease as the estimated air-fuel ratio sensor element temperature TempS becomes higher than the specific temperature. Is obtained.
  • the correction value kh increases in the range of 1.0 or more as the air-fuel ratio sensor element temperature TempS becomes lower than a specific temperature (for example, 800 ° C.). Is required. That is, according to the correction value kh, the air-fuel ratio fluctuation index amount AFD is corrected to be increased as the estimated air-fuel ratio sensor element temperature TempS becomes lower than the specific temperature. Is obtained.
  • the air-fuel ratio fluctuation index amount AFD is also normalized by the correction value kh to “the air-fuel ratio fluctuation index amount obtained when the air-fuel ratio sensor element temperature is a specific temperature (for example, 800 ° C.)”. That is, the comparison preparation means included in the imbalance determination means of the first determination device is configured to obtain the acquired air-fuel ratio fluctuation index amount as the estimated air-fuel ratio sensor element temperature TempS becomes lower than a specific temperature (for example, 800 ° C.). A correction for increasing the AFD is performed on the air-fuel ratio fluctuation index amount AFD, and a correction for decreasing the acquired air-fuel ratio fluctuation index amount AFD as the estimated air-fuel ratio sensor element temperature TempS becomes higher than the specific temperature (800 ° C.).
  • the air-fuel ratio fluctuation index amount correction value may be obtained by applying to the air-fuel ratio fluctuation index amount AFD.
  • second determination apparatus a determination apparatus according to a second embodiment of the present invention (hereinafter simply referred to as “second determination apparatus”) will be described.
  • the second determination device employs the air-fuel ratio fluctuation index amount AFD as it is (that is, without correcting the air-fuel ratio fluctuation index amount AFD based on the air-fuel ratio sensor element temperature TempS) as the imbalance determination parameter X.
  • the second determination device determines the imbalance determination threshold value Xth based on the air-fuel ratio sensor element temperature TempS. That is, the second determination apparatus obtains the imbalance determination threshold value Xth based on the air-fuel ratio sensor element temperature TempS so that the imbalance determination threshold value Xth increases as the air-fuel ratio sensor element temperature TempS increases.
  • Other points are the same as those of the first determination apparatus.
  • the CPU 71 of the second determination device differs from the first determination device only in that the “air-fuel ratio imbalance determination routine” shown in FIG. 17 instead of FIG. 14 is executed every time the sampling time ts (4 ms) elapses. Is different. Therefore, hereinafter, this difference will be mainly described.
  • the routine shown in FIG. 17 differs from the routine shown in FIG. 14 only in that Steps 1450 and 1455 of the routine shown in FIG. 14 are replaced with Steps 1710 and 1720, respectively. Therefore, the processing of step 1710 and step 1720 will be described below. Note that, in the steps shown in FIG. 17, steps for performing the same processing as the steps already described are given the same reference numerals as those given to the steps already described.
  • the CPU 71 acquires the air-fuel ratio sensor element temperature TempS in step 1445, the CPU 71 proceeds to step 1710, and applies the acquired air-fuel ratio sensor element temperature TempS to the threshold value determination table MapXth (TempS) shown in FIG.
  • the threshold value Xth is determined.
  • the imbalance determination threshold value Xth is determined so as to increase as the air-fuel ratio sensor element temperature TempS increases.
  • the CPU 71 adds the air-fuel ratio sensor element temperature TempS acquired in step 1445 and the intake air flow rate Ga measured by the air flow meter 61 to the threshold value determination table MapXth (TempS, Ga) instead of the threshold value determination table MapXth (TempS). May be applied to determine the imbalance determination threshold value Xth.
  • the threshold value determination table MapXth (TempS, Ga)
  • the imbalance determination threshold value Xth is determined based not only on the air-fuel ratio sensor element temperature TempS but also on the intake air flow rate Ga because the responsiveness of the output value Vabyfs of the air-fuel ratio sensor 67 depends on the protective cover ( This is because the lower the intake air flow rate Ga, the lower it is due to the presence of 67b and 67c).
  • the CPU 71 proceeds to step 1720 and adopts the air-fuel ratio fluctuation index amount AFD obtained in step 1440 as the imbalance determination parameter X.
  • the CPU 71 may employ a value obtained by multiplying the air-fuel ratio fluctuation index amount AFD by a positive constant Cp as the imbalance determination parameter X.
  • the CPU 71 proceeds to step 1460 and the subsequent steps, and compares the imbalance determination parameter X acquired in step 1720 with the imbalance determination threshold value Xth determined in step 1710, whereby the first determination device.
  • the imbalance determination similar to that of the CPU 71 is executed. That is, if the imbalance determination parameter X is greater than the imbalance determination threshold value Xth, the CPU 71 determines that an air-fuel ratio imbalance state between cylinders has occurred, and the imbalance determination parameter X is greater than the imbalance determination threshold value Xth. If it is smaller, it is determined that the air-fuel ratio imbalance state between cylinders has not occurred.
  • the imbalance determination unit of the second determination device is a parameter acquisition period (parameter acquisition permission) that is a period during which a predetermined parameter acquisition condition is satisfied.
  • the air-fuel ratio fluctuation index amount AFD that increases as the air-fuel ratio fluctuation of the “exhaust gas that passes through the portion where the air-fuel ratio sensor 67 is disposed” becomes the output value Vabyfs of the air-fuel ratio sensor 67.
  • the imbalance determination parameter X is It is determined that an air-fuel ratio imbalance condition between cylinders has occurred when it is greater than the threshold value Xth (step 1465 in FIG. 17), and the air-fuel ratio cylinder when the imbalance determination parameter X is smaller than the imbalance determination threshold value Xth. It is determined that no imbalance state has occurred (step 1470 in FIG. 17).
  • the imbalance determination means of the second determination device instead of obtaining the air-fuel ratio fluctuation index amount correction value, so that the imbalance determination threshold value Xth increases as the estimated air-fuel ratio sensor element temperature TempS increases.
  • the imbalance determination threshold value Xth is determined based on the estimated air-fuel ratio sensor element temperature TempS (step 1710 in FIG. 17 and FIG. 18).
  • the lower the air-fuel ratio sensor element temperature TempS the lower the responsiveness of the air-fuel ratio sensor. Therefore, the lower the air-fuel ratio sensor element temperature TempS, the more the air-fuel ratio fluctuation acquired based on the output value Vabyfs of the air-fuel ratio sensor.
  • the index amount AFD becomes small. In other words, the higher the air-fuel ratio sensor element temperature TempS, the higher the response of the air-fuel ratio sensor. Therefore, the higher the air-fuel ratio sensor element temperature TempS, the higher the air-fuel ratio fluctuation index amount acquired based on the output value Vabyfs of the air-fuel ratio sensor. AFD increases.
  • the imbalance determination threshold value Xth in the second determination device is a value that takes into account “the influence of the responsiveness of the air-fuel ratio sensor that changes depending on the air-fuel ratio sensor element temperature TempS on the imbalance determination parameter X”. Become. As a result, the imbalance determination can be performed with high accuracy regardless of the air-fuel ratio sensor element temperature.
  • the third determination device is different from the first determination device only in the following points.
  • a heater control unit is provided for controlling the amount of heat generated by the heater 678 so that the difference between the actual admittance Yact of the solid electrolyte layer 671 and a predetermined target value (target admittance Ytgt) is reduced.
  • the first determination device “estimates the air-fuel ratio sensor element temperature TempS based on the actual admittance Yact of the solid electrolyte layer 671”, whereas the third determination device “depends on the amount of current flowing through the heater 678.
  • the point that the air-fuel ratio sensor element temperature TempS is estimated based on the “value”.
  • a solid line Y1 in FIG. 19 shows the relationship between the admittance Y of the air-fuel ratio sensor 67 (admittance Y of the solid electrolyte layer 671) and the air-fuel ratio sensor element temperature TempS before changing with time.
  • the admittance Y increases as the air-fuel ratio sensor element temperature TempS increases. Therefore, the electric control device 70 controls the heater 678 energization amount (current flowing through the heater 678) so that the difference between the actual admittance Yact of the air-fuel ratio sensor 67 and the predetermined target admittance Ytgt becomes small.
  • the amount of heat generated at 678 is controlled (heater control is performed).
  • the air-fuel ratio sensor 67 changes with time.
  • the admittance Y of the air-fuel ratio sensor 67 that has changed with time indicated by the broken line Y2 in FIG. 19 is smaller than “admittance Y of the air-fuel ratio sensor 67 that has changed with time” indicated by the solid line Y1.
  • the air-fuel ratio sensor element temperature differs depending on whether or not the air-fuel ratio sensor 67 changes with time. Accordingly, when the air-fuel ratio sensor element temperature is estimated based on the actual admittance Yact, the estimated air-fuel ratio sensor element temperature is different from the actual air-fuel ratio sensor element temperature.
  • the air-fuel ratio fluctuation index amount correction value (imbalance determination parameter) is acquired using the air-fuel ratio sensor element temperature TempS estimated based on the actual admittance Yact, the air-fuel ratio fluctuation index amount correction value (in It is highly possible that the balance determination parameter) does not accurately represent the cylinder-by-cylinder air-fuel ratio difference.
  • the third determination device estimates the air-fuel ratio sensor element temperature TempS based on “a value corresponding to the amount of current flowing through the heater 678”.
  • the CPU 71 of the third determination apparatus executes the routines shown in FIGS. 12 to 14 in the same manner as the CPU 71 of the first determination apparatus. Further, the CPU 71 of the third determination apparatus executes an “air-fuel ratio sensor heater control routine” shown by a flowchart in FIG. 20 every time a predetermined time elapses in order to control the air-fuel ratio sensor element temperature.
  • the CPU 71 starts processing from step 2000 in FIG. 20 and proceeds to step 2010 to set the target admittance Ytgt.
  • the target admittance Ytgt is set to a value corresponding to the first temperature (for example, 600 ° C.) before the completion of warming up of the engine 10 (cooling water temperature THW is equal to or lower than the threshold cooling water temperature THWth).
  • the second temperature is higher than the first temperature (for example, 750 ° C.) ”.
  • the CPU 71 proceeds to step 2020 and determines whether or not the actual admittance Yact is larger than “a value obtained by adding a positive predetermined value ⁇ to the target admittance Ytgt”.
  • step 2020 determines “Yes” in step 2020 and proceeds to step 2030 to decrease the heater duty Duty by a predetermined amount ⁇ D.
  • step 2040 energize the heater 678 based on the heater duty Duty.
  • the energization amount (current) to the heater 678 is reduced, and the heat generation amount of the heater 678 is reduced.
  • the CPU 71 proceeds to step 2095 to end the present routine tentatively.
  • step 2020 determines “No” in step 2020. And the process proceeds to step 2050.
  • step 2050 the CPU 71 determines whether or not the actual admittance Yact is smaller than “a value obtained by subtracting a predetermined positive value ⁇ from the target admittance Ytgt”.
  • Step 2050 determines “Yes” in Step 2050 and proceeds to Step 2060 to increase the heater duty Duty by a predetermined amount ⁇ D.
  • the CPU 71 proceeds to step 2040 to energize the heater 678 based on the heater duty Duty.
  • the energization amount (current amount) to the heater 678 is increased and the heat generation amount of the heater 678 is increased.
  • the CPU 71 proceeds to step 2095 to end the present routine tentatively.
  • the CPU 71 determines “No” in step 2050. Determine and proceed directly to step 2040. In this case, since the heater duty Duty does not change, the energization amount to the heater 678 also does not change. As a result, since the amount of heat generated by the heater 678 does not change, the air-fuel ratio sensor element temperature does not change greatly. Thereafter, the CPU 71 proceeds to step 2095 to end the present routine tentatively.
  • the actual admittance Yact is controlled within the range in the vicinity of the target admittance Ytgt (range from Ytgt- ⁇ to Ytgt + ⁇ ) by the heater control.
  • the air-fuel ratio sensor element temperature is the target admittance Ytgt. It is made to substantially agree with the value according to.
  • the CPU 71 of the third determination apparatus executes the same routine as the routine shown in FIG. However, when the CPU 71 proceeds to step 1445, the air-fuel ratio sensor element temperature TempS is estimated by a method different from the CPU 71 of the first determination device.
  • the CPU 71 of the third determination device acquires the annealing value SD of the heater duty duty every time a predetermined time (sampling time ts) elapses.
  • the heater duty Duty at the time of updating the annealing value SD is expressed as Duty (n)
  • the updated annealing value SD is SD (n)
  • the sampling time ts elapses is an arbitrary constant from 0 to 1.
  • SD (n) ⁇ ⁇ SD (n ⁇ 1) + (1 ⁇ ) ⁇ Duty (n) (15)
  • the CPU 71 reads the annealing value SD in step 1445, and estimates the air-fuel ratio sensor element temperature TempS based on the annealing value SD so that the air-fuel ratio sensor element temperature TempS increases as the annealing value SD increases.
  • the CPU 71 proceeds to step 1460 and subsequent steps, and executes imbalance determination based on a comparison between the imbalance determination parameter X and the imbalance determination threshold value Xth. That is, if the imbalance determination parameter X is greater than the imbalance determination threshold value Xth, the CPU 71 determines that an air-fuel ratio imbalance state between cylinders has occurred, and the imbalance determination parameter X is greater than the imbalance determination threshold value Xth. If it is smaller, it is determined that the air-fuel ratio imbalance state between cylinders has not occurred. The above is the actual operation of the third determination device.
  • the CPU 71 of the third determination device controls the amount of heat generated by the heater so that the difference between the actual impedance Zact of the solid electrolyte layer 671 and the target value (target impedance Ztgt) becomes small. May be. Since the impedance Z is the reciprocal of the admittance Y, the air-fuel ratio sensor element temperature TempS decreases as the impedance Z increases. Therefore, when the actual impedance Zact is larger than “the value obtained by adding a positive predetermined value ⁇ to the target impedance Ztgt”, the CPU 71 increases the heater duty Duty by a predetermined amount ⁇ D. Further, when the actual impedance Zact is smaller than “the value obtained by subtracting the positive predetermined value ⁇ from the target impedance Ztgt”, the CPU 71 decreases the heater duty Duty by a predetermined amount ⁇ D.
  • the CPU 71 of the third determination device is based on not only “a value corresponding to the amount of current flowing through the heater (an annealing value SD)” but also “an operation parameter of the engine 10 having a correlation with the exhaust gas temperature”.
  • the air-fuel ratio sensor element temperature TempS may be configured to be estimated.
  • the “operating parameters of the engine 10 having a correlation with the exhaust gas temperature” are, for example, the exhaust gas temperature detection value detected by the exhaust gas temperature sensor, the intake air flow rate Ga measured by the air flow meter 61, the load KL, the engine rotational speed NE, and the like. One or more are selected.
  • the CPU 71 estimates the air-fuel ratio sensor element temperature TempS so that the larger the value selected from these parameters, the higher the air-fuel ratio sensor element temperature TempS.
  • the air-fuel ratio sensor 67 generates heat when a current flows, and heats the “sensor element portion including the solid electrolyte layer 671, the exhaust gas side electrode layer 672, and the atmosphere side electrode layer 673”. 678. Furthermore, the third determination apparatus includes a heater control unit that controls the amount of heat generated by the heater 678 so that the difference between the actual admittance Yact of the solid electrolyte layer 671 and a predetermined target value (target admittance Ytgt) is reduced (FIG. 20).
  • the element temperature estimation means of the third determination apparatus is configured to estimate the air-fuel ratio sensor element temperature TempS based on at least “a value corresponding to the amount of current flowing through the heater 678 (an annealing value SD)”. (Step 1445 of FIG. 14 in the third determination apparatus).
  • the correlation with the air-fuel ratio sensor element temperature TempS is strong. Therefore, by estimating the air-fuel ratio sensor element temperature TempS based on a value (annealing value SD) corresponding to the amount of current flowing through the heater, regardless of whether the air-fuel ratio sensor 67 has changed over time, It is possible to accurately estimate the air-fuel ratio sensor element temperature. As a result, an accurate imbalance determination parameter X can be acquired, so that imbalance determination can be performed with high accuracy.
  • the element temperature estimation means can be configured to estimate the air-fuel ratio sensor element temperature TempS based on the operation parameter of the engine 10 having a correlation with the exhaust gas temperature.
  • the air-fuel ratio sensor element temperature also depends on the exhaust gas temperature. Therefore, according to the above configuration, the air-fuel ratio sensor element temperature TempS can be estimated with higher accuracy. As a result, an accurate imbalance determination parameter X can be acquired, so that imbalance determination can be performed with high accuracy.
  • the CPU 71 of the third determination device replaces the annealing value SD of the heater duty Duty with the annealing value SI of the actual current value (heater current) I flowing through the heater 678 according to “the amount of current flowing through the heater 678.
  • the air-fuel ratio sensor element temperature TempS may be estimated based on the value SI.
  • the fourth determination device is different from the third determination device only in the following points.
  • the third determination device determines the “imbalance determination parameter X” based on the air-fuel ratio sensor element temperature TempS estimated based on “a value corresponding to the amount of current flowing to the heater”.
  • the fourth determination device determines the “imbalance determination threshold value Xth” based on the air-fuel ratio sensor element temperature TempS estimated based on “a value corresponding to the amount of current flowing through the heater”.
  • the CPU 71 of the fourth determination apparatus executes the routines shown in FIGS. 12, 13, and 17 in the same manner as the CPU 71 of the second determination apparatus. Further, the CPU 71 of the fourth determination apparatus executes the routine shown in FIG. 20 in the same manner as the CPU 71 of the third determination apparatus.
  • step 1445 “the annealing value SD of the heater duty Duty calculated separately according to the above equation (15)” is acquired. Then, the CPU 71 estimates the air-fuel ratio sensor element temperature TempS based on the annealing value SD so that the air-fuel ratio sensor element temperature TempS increases as the annealing value SD increases.
  • the CPU 71 proceeds to step 1710 to apply the air-fuel ratio sensor element temperature TempS acquired based on the “annealing value SD” in step 1445 to the threshold value determination table MapXth (TempS) shown in FIG.
  • the imbalance determination threshold value Xth is determined. As the estimated air-fuel ratio sensor element temperature TempS decreases, the imbalance determination threshold value Xth decreases.
  • the CPU 71 proceeds to step 1720 and adopts the air-fuel ratio fluctuation index amount AFD obtained in step 1440 as the imbalance determination parameter X. Then, the CPU 71 proceeds to step 1460 and subsequent steps, and executes imbalance determination based on a comparison between the imbalance determination parameter X and the imbalance determination threshold value Xth. That is, if the imbalance determination parameter X is greater than the imbalance determination threshold value Xth, the CPU 71 determines that an air-fuel ratio imbalance state between cylinders has occurred, and the imbalance determination parameter X is greater than the imbalance determination threshold value Xth. If it is smaller, it is determined that the air-fuel ratio imbalance state between cylinders has not occurred. The above is the actual operation of the fourth determination apparatus.
  • the CPU 71 of the fourth determination device correlates not only with the “value corresponding to the amount of current flowing through the heater (annealing value SD)” but also with the above-mentioned “exhaust gas temperature”.
  • the air-fuel ratio sensor element temperature TempS can be estimated based on the “operating parameters of the engine 10 having”. Further, the fourth determination device replaces the smoothing value SD of the heater duty Duty with the smoothing value SI of the actual current value (heater current) I flowing through the heater 678 as “a value corresponding to the amount of current flowing through the heater 678. And the air-fuel ratio sensor element temperature TempS may be estimated based on the value SI.
  • the fourth determination device is similar to the third determination device in that the air-fuel ratio sensor element temperature is based on at least the “value corresponding to the amount of current flowing through the heater 678 (annealing values SD, SI)”.
  • Element temperature estimation means configured to estimate TempS is provided (step 1445 in FIG. 17). Therefore, the fourth determination apparatus can accurately estimate the air-fuel ratio sensor element temperature TempS regardless of whether the air-fuel ratio sensor 67 has changed with time.
  • an imbalance determination threshold value Xth taking into consideration “the influence of the responsiveness of the air / fuel ratio sensor that changes depending on the air / fuel ratio sensor element temperature TempS on the imbalance determination parameter X” is obtained. Can be executed with high accuracy.
  • the CPU 71 of the fifth determination device executes the “air-fuel ratio sensor heater control routine” shown in the flowchart of FIG. 21 instead of FIG. 20 every time a predetermined time elapses.
  • steps for performing the same processes as those already described are given the same reference numerals as those given to the steps already described.
  • the CPU 71 determines whether or not the value of the parameter acquisition permission flag Xkyoka is “0”.
  • the CPU 71 determines “Yes” in step 2110 and proceeds to step 2110 to set the target admittance Ytgt to the normal value Ytujo.
  • the normal value Ytujo is set to a value at which the output value Vabyfs becomes a value corresponding to the air-fuel ratio of the exhaust gas as long as the air-fuel ratio sensor 67 is in an active state and the air-fuel ratio of the exhaust gas is stable.
  • the normal value Ytujo is the admittance Y when the sensor element temperature is about 700 ° C.
  • the air-fuel ratio sensor element temperature corresponding to the normal value Ytujo is also referred to as “normal temperature and first temperature t1”. Thereafter, the CPU 71 proceeds to step 2020 and thereafter.
  • the CPU 71 determines “No” in step 2110 and proceeds to step 2130.
  • the admittance Ytgt is set to “a value obtained by adding a positive predetermined value ⁇ Y to the normal value Ytujo (Ytujo + ⁇ Y)”. That is, the CPU 71 increases the target admittance Ytgt beyond the normal value Ytujo. Thereafter, the CPU 71 proceeds to step 2020 and thereafter.
  • the increase value Ytup is set to a value at which the air-fuel ratio sensor 67 is in an active state and the responsiveness of the air-fuel ratio sensor 67 is “a degree that the output value Vabyfs can sufficiently follow the fluctuation of the air-fuel ratio of the exhaust gas”. Yes.
  • the increase value Ytup is the admittance Y when the sensor element temperature is about 850 ° C.
  • the sensor element temperature corresponding to the rise value Ytup is also referred to as “rise temperature and second temperature t2”.
  • the air-fuel ratio sensor during the period (parameter acquisition period) in which the CPU 71 performs the processing from step 2020 and thereafter acquires the basic index amount (detected air-fuel ratio change rate ⁇ AF) that is the original data of the air-fuel ratio fluctuation index amount AFD.
  • the element temperature becomes higher than the air-fuel ratio sensor element temperature at normal time (a parameter non-acquisition period in which the detected air-fuel ratio change rate ⁇ AF is not acquired). Therefore, the detected air-fuel ratio change rate ⁇ AF is acquired in “a state where the responsiveness of the air-fuel ratio sensor is high”. As a result, it is possible to obtain the air-fuel ratio fluctuation index amount AFD that more accurately represents the cylinder-by-cylinder air-fuel ratio difference.
  • the CPU 71 of the fifth determination device estimates the air-fuel ratio sensor element temperature TempS based on “a value corresponding to the amount of current flowing through the heater”.
  • the imbalance determination parameter X is “an imbalance determination parameter obtained when the response of the air-fuel ratio sensor 67 is a specific response. ".
  • the fifth determination apparatus performs imbalance determination based on a comparison between the imbalance determination parameter X and the imbalance determination threshold value Xth.
  • the imbalance determination unit of the fifth determination apparatus is configured so that the heater control unit determines that “the temperature of the sensor element unit during the parameter acquisition period is the temperature of the sensor element unit during the period other than the parameter acquisition period, It is configured to instruct the heater control means to execute the “sensor element temperature rise control to be higher” during the parameter acquisition period (see step 2110 in FIG. 21).
  • the heater value is set to the target value (target admittance Ytgt, target impedance Ztgt), and the element temperature increase control is not instructed.
  • the target value is the target impedance Ztgt
  • the value when the execution of the element temperature increase control is not instructed is the normal value Ztujo
  • the imbalance determination parameter X becomes a value representing the cylinder-by-cylinder air-fuel ratio difference with higher accuracy
  • the imbalance determination can be performed with higher accuracy.
  • the air-fuel ratio sensor element temperature is maintained at a relatively low temperature (normal temperature, first temperature t1) at normal times, the air-fuel ratio sensor element temperature is always kept at a relatively high temperature (rising temperature, second temperature t2). ), It is possible to prevent the deterioration (change with time) of the air-fuel ratio sensor 67 from being accelerated.
  • ixth determination apparatus a determination apparatus according to the sixth embodiment of the present invention (hereinafter simply referred to as “sixth determination apparatus”) will be described.
  • the sixth determination apparatus includes imbalance determination means for instructing the heater control means so that the heater control means executes “sensor element temperature increase control” in the parameter acquisition period, as in the fifth determination apparatus ( (See step 2110 in FIG. 21).
  • the target values (target admittance Ytgt, target impedance Ztgt) Is made different from a value when execution of the element part temperature increase control is not instructed, so that the sensor element part temperature increase control is realized (see steps 2120 and 2130 in FIG. 21). .)
  • the air-fuel ratio sensor during the period (parameter acquisition period) in which the CPU 71 performs the processing from step 2020 and thereafter acquires the basic index amount (detected air-fuel ratio change rate ⁇ AF) that is the original data of the air-fuel ratio fluctuation index amount AFD.
  • the element temperature becomes higher than the air-fuel ratio sensor element temperature at normal time (a parameter non-acquisition period in which the detected air-fuel ratio change rate ⁇ AF is not acquired). Therefore, the detected air-fuel ratio change rate ⁇ AF is acquired in “a state where the responsiveness of the air-fuel ratio sensor is high”.
  • the CPU 71 of the sixth determination device estimates the air-fuel ratio sensor element temperature TempS based on “a value corresponding to the amount of current flowing through the heater”.
  • the imbalance determination threshold value Xth is determined based on the air-fuel ratio sensor element temperature TempS.
  • the air-fuel ratio sensor element temperature TempS can be accurately estimated regardless of whether or not the air-fuel ratio sensor 67 changes with time.
  • an imbalance determination threshold value Xth taking into consideration “the influence of the responsiveness of the air / fuel ratio sensor that changes depending on the air / fuel ratio sensor element temperature TempS on the imbalance determination parameter X” is obtained. Can be executed with high accuracy.
  • the air-fuel ratio sensor element temperature is maintained at a relatively low temperature (normal temperature, first temperature t1) at normal times, the air-fuel ratio sensor element temperature is always kept at a relatively high temperature (rising temperature, second temperature t2). ), It is possible to prevent the deterioration (change with time) of the air-fuel ratio sensor 67 from being accelerated.
  • the target admittance Ytgt is maintained at the normal target admittance (normal value Ytujo) without changing, and the air-fuel ratio fluctuation index amount AFD is obtained in this state.
  • the seventh determination device estimates the air-fuel ratio sensor element temperature TempS based on a value corresponding to the amount of current flowing through the heater.
  • the seventh determination device obtains a value obtained by correcting the air-fuel ratio fluctuation index amount AFD by the “estimated air-fuel ratio sensor element temperature TempS” as a temporary air-fuel ratio fluctuation index amount correction value.
  • the provisional air-fuel ratio fluctuation index amount correction value is adopted as the provisional imbalance determination parameter X.
  • the seventh determination device determines that the air-fuel ratio imbalance among cylinders has occurred when the provisional imbalance determination parameter X is larger than the high-side threshold value XHith. When this determination is obtained, the seventh determination device does not set the target admittance Ytgt to the increase value Ytup until at least the parameter acquisition condition is satisfied after the engine 10 is started next time.
  • the seventh determination device determines that the air-fuel ratio imbalance state between cylinders does not occur when the temporary imbalance determination parameter X is smaller than the “low threshold XLoth smaller than the high threshold XHith”. To do. When this determination is obtained, the seventh determination device does not set the target admittance Ytgt to the increase value Ytup until at least the parameter acquisition condition is satisfied after the engine 10 is started next time.
  • the seventh determination device suspends issuing an imbalance determination result. Suspending the result of imbalance determination is also expressed as deferring imbalance determination.
  • the seventh determination device sets the target admittance Ytgt to the increase value Ytup and increases the air-fuel ratio sensor element temperature. Thereby, the responsiveness of the air-fuel ratio sensor 67 increases.
  • the CPU 71 of the seventh determination device executes the routines shown in FIGS. 12 and 13 in the same manner as other determination devices. Further, the CPU 71 of the seventh determination apparatus executes the routines shown in FIGS. 22 to 24 every time a predetermined time elapses. Since the routines of FIGS. 12 and 13 have been described, the routines of FIGS. 22 to 24 will be described. Of the steps shown in FIG. 22 to FIG. 24, steps for performing the same processing as the steps already described are given the same reference numerals as those given to the steps already described. .
  • the CPU 71 executes the air-fuel ratio sensor heater control routine shown in FIG. 22 to set the target admittance Ytgt to the increase value Ytup in step 2250 when all of the following conditions are satisfied.
  • the target admittance Ytgt is set to the normal value Ytujo.
  • the value of the parameter acquisition permission flag Xkyoka is “1” (see the determination of “No” in step 2210).
  • the imbalance determination result has not yet been obtained after the current start of the engine 10 (see the determination “Yes” in step 2220).
  • the imbalance determination is suspended (see the determination “Yes” in step 2230).
  • the CPU 71 executes heater control by the processing from step 2020 to step 2060.
  • the CPU 71 executes a “first imbalance determination routine” shown by a flowchart in FIG. 23 every time a predetermined sampling time ts elapses. According to this routine, the air-fuel ratio fluctuation index amount AFD is acquired in step 2320 when all of the following conditions are satisfied.
  • the processing in step 2320 includes the processing in steps 1410 to 1440 in FIG.
  • the value of the parameter acquisition permission flag Xkyoka is “1” (see the determination of “Yes” in step 2305).
  • the imbalance determination result has not yet been obtained after the current start of the engine 10 (see the determination “Yes” in step 2310).
  • the imbalance determination is not suspended (see the determination “Yes” at step 2315).
  • step 2325 when the CPU 71 confirms that the acquisition of the air-fuel ratio fluctuation index amount AFD is completed in step 2325, the CPU 71 sequentially performs the processing from step 2330 to step 2340 described below, and proceeds to step 2345.
  • Step 2330 The CPU 71 estimates the air-fuel ratio sensor element temperature TempS based on the annealing value SD of the heater duty Duty.
  • Step 2335 The CPU 71 applies the air-fuel ratio sensor element temperature TempS estimated in Step 2330 to the correction value calculation table Map kh (TempS) (or correction value calculation table Map kh another (TempS)) shown in FIG. By doing so, the correction value kh is determined.
  • the CPU 71 performs the following processing and proceeds to step 2395.
  • the provisional imbalance determination parameter X is larger than the high-side threshold value XHith, it is determined that an air-fuel ratio imbalance state between cylinders has occurred (steps 2345 and 2350).
  • the provisional imbalance determination parameter X is smaller than the low-side threshold value XLoth, it is determined that the air-fuel ratio imbalance state between cylinders has not occurred (steps 2355 and 2360).
  • the temporary imbalance determination parameter X is equal to or lower than the high threshold XHith and equal to or higher than the low threshold XLoth, the imbalance determination is suspended (Steps 2345, 2355, and 2365).
  • the CPU 71 executes a “second imbalance determination routine” shown by a flowchart in FIG. 24 every time a predetermined sampling time ts elapses. According to this routine, the air-fuel ratio fluctuation index amount AFD is acquired in step 2440 when all of the following conditions are satisfied.
  • the processing in step 2440 includes the processing in steps 1410 to 1440 in FIG.
  • the value of the parameter acquisition permission flag Xkyoka is “1” (see the determination of “Yes” in step 2410).
  • the imbalance determination result has not yet been obtained after the current start of the engine 10 (see the determination “Yes” in step 2420).
  • the imbalance determination is suspended (see determination “Yes” in step 2430).
  • step 2450 when the CPU 71 confirms that the acquisition of the air-fuel ratio fluctuation index amount AFD is completed in step 2450, the CPU 71 sequentially performs the processing from step 2460 to step 2480 described below, and proceeds to step 1460.
  • Step 2460 The CPU 71 estimates the air-fuel ratio sensor element temperature TempS based on the annealing value SD of the heater duty Duty.
  • Step 2470 The CPU 71 applies the air-fuel ratio sensor element temperature TempS estimated in Step 2460 to the correction value calculation table Map kh (TempS) (or correction value calculation table Map kh another (TempS)) shown in FIG. By doing so, the correction value kh is determined.
  • the final air-fuel ratio fluctuation index amount correction value itself is acquired (determined) as the final imbalance determination parameter X.
  • the CPU 71 proceeds to step 1460 and subsequent steps, and compares the final imbalance determination parameter X acquired in step 2480 with the imbalance determination threshold value Xth, whereby the third and fifth determination apparatuses.
  • the imbalance determination similar to that of the CPU 71 is executed. That is, if the imbalance determination parameter X is greater than the imbalance determination threshold value Xth, the CPU 71 determines that an air-fuel ratio imbalance among cylinders has occurred (steps 1460 and 1465), and the imbalance determination parameter X is If it is smaller than the imbalance determination threshold Xth, it is determined that the air-fuel ratio imbalance among cylinders has not occurred (steps 1460 and 1470).
  • the air-fuel ratio fluctuation index amount AFD is acquired in a state where the air-fuel ratio sensor element temperature is maintained at the normal temperature, and based on the value corresponding to the current flowing through the heater 678.
  • the air-fuel ratio sensor element temperature TempS is estimated, and the air-fuel ratio fluctuation index amount AFD is corrected based on the air-fuel ratio sensor element temperature TempS to obtain an air-fuel ratio fluctuation index amount correction value.
  • the CPU 71 acquires the air-fuel ratio fluctuation index amount correction value as a temporary imbalance determination parameter X, and performs the imbalance determination using the temporary imbalance determination parameter X.
  • the air-fuel ratio sensor element temperature is not raised to the elevated temperature. Therefore, early deterioration of the air-fuel ratio sensor 67 can be avoided.
  • the seventh determination device cannot determine whether or not the air-fuel ratio imbalance state between cylinders has occurred according to the provisional imbalance determination parameter X (when the imbalance determination is suspended), the air-fuel ratio sensor element The temperature is raised to the rising temperature, and the air-fuel ratio fluctuation index amount AFD is acquired in this state. Further, the air-fuel ratio sensor element temperature TempS when the air-fuel ratio fluctuation index amount AFD is obtained is estimated based on a value corresponding to the current flowing through the heater 678. The seventh determination device acquires the air-fuel ratio fluctuation index amount correction value by correcting the air-fuel ratio fluctuation index amount AFD based on the estimated air-fuel ratio sensor element temperature TempS, and the air-fuel ratio fluctuation index amount correction value is obtained.
  • the seventh determination device performs imbalance determination using the final imbalance determination parameter X. Therefore, as with the first, third, and fifth determination devices, the imbalance determination parameter X that accurately represents the cylinder-by-cylinder air-fuel ratio difference is obtained, so that the imbalance determination can be performed with high accuracy.
  • the eighth determination device performs the same air-fuel ratio sensor heater control as the seventh determination device. That is, when the parameter acquisition permission condition is satisfied when the imbalance determination result is not yet obtained after the current start of the engine 10 (when the parameter acquisition permission flag Xkyoka is set to “1”), the target admittance Ytgt is maintained at the normal target admittance (normal value Ytujo) without changing, and the air-fuel ratio fluctuation index amount AFD is obtained in this state. Then, the eighth determination device adopts the air-fuel ratio fluctuation index amount AFD as a temporary imbalance determination parameter X and responds to the current flowing through the heater 678 during the period when the air-fuel ratio fluctuation index amount AFD is acquired. The air-fuel ratio sensor element temperature TempS is estimated based on the value.
  • the eighth determination device determines the high side threshold value XHi based on the “estimated air-fuel ratio sensor element temperature TempS” and sets the low side threshold value XLoth smaller than the high side threshold value XHith as “estimated air-fuel ratio sensor element”. It is determined based on “TempS”.
  • the eighth determination device determines that an air-fuel ratio imbalance among cylinders has occurred. When this determination is obtained, the eighth determination device does not set the target admittance Ytgt to the increase value Ytup until at least the parameter acquisition condition is satisfied after the engine 10 is started next time.
  • the eighth determination device determines that the air-fuel ratio imbalance among cylinders has not occurred when the provisional imbalance determination parameter X is smaller than the low-side threshold value XLoth.
  • the eighth determination device does not set the target admittance Ytgt to the increase value Ytup until at least the parameter acquisition condition is satisfied after the engine 10 is started next time.
  • the eighth determination device suspends the imbalance determination.
  • the eighth determination device sets the target admittance Ytgt to the increase value Ytup when the parameter acquisition condition is satisfied when the imbalance determination result is deferred and the air-fuel ratio sensor element is set, as in the seventh determination device. Increase temperature. Thereby, the responsiveness of the air-fuel ratio sensor 67 increases.
  • the eighth determination device obtains the air-fuel ratio fluctuation index amount AFD as well as the fourth and sixth determination devices, and adopts the air-fuel ratio fluctuation index amount AFD as the imbalance determination parameter X. Further, the eighth determination apparatus estimates the air-fuel ratio sensor element temperature TempS based on “a value corresponding to the amount of current flowing through the heater 678” during the period when the air-fuel ratio fluctuation index amount AFD is acquired, and the estimation Based on the air-fuel ratio sensor element temperature TempS thus determined, an imbalance determination threshold value Xth is determined. Thereafter, as in the fourth and sixth determination devices, the eighth determination device performs imbalance determination based on a comparison between the imbalance determination parameter X and the imbalance determination threshold value Xth.
  • the CPU 71 of the eighth determination apparatus executes the routines shown in FIGS. 12 and 13 in the same manner as other determination apparatuses. Further, the CPU 71 of the eighth determination apparatus executes the routines shown in FIGS. 22, 25 and 26 every time a predetermined time elapses. Since the routines of FIGS. 12, 13 and 22 have been described, the routines of FIGS. 25 and 26 will be described. Of the steps shown in FIG. 25 and FIG. 26, steps for performing the same processing as the steps already described are given the same reference numerals as those given to the steps already described. .
  • the CPU 71 executes a “first imbalance determination routine” shown by a flowchart in FIG. 25 every time a predetermined sampling time ts elapses.
  • This routine differs from the routine of FIG. 23 only in that steps 2335 and 2340 of FIG. 23 are replaced with steps 2510 and 2520 of FIG.
  • step 2325 when it is confirmed in step 2325 that the acquisition of the air-fuel ratio fluctuation index amount AFD is completed, the CPU 71 proceeds to step 2330 and estimates the air-fuel ratio sensor element temperature TempS based on the annealing value SD of the heater duty Duty. To do.
  • the CPU 71 proceeds to step 2510 and acquires (determines) the “air-fuel ratio fluctuation index amount AFD acquired in step 2320” as a temporary imbalance determination parameter X as it is.
  • step 2520 the CPU 71 determines the high side threshold value XHith based on “the air-fuel ratio sensor element temperature TempS estimated in step 2330” and “the air-fuel ratio sensor element temperature TempS estimated in step 2330”. Based on this, the low threshold value XLoth is determined. At this time, the high side threshold value XHith and the low side threshold value XLoth are both determined so as to increase as the air-fuel ratio sensor element temperature TempS increases.
  • the CPU 71 performs the processing after step 2345 and proceeds to step 2395.
  • imbalance determination is performed based on the provisional imbalance determination parameter X, and when the provisional imbalance determination parameter X is equal to or lower than the high-side threshold value XHith and equal to or higher than the low-side threshold value XLoth. Balance judgment is suspended.
  • the CPU 71 executes a “second imbalance determination routine” shown by a flowchart in FIG. 26 every time a predetermined sampling time ts elapses.
  • This routine differs from the routine of FIG. 24 only in that steps 2470 and 2480 of FIG. 24 are replaced with steps 2610 and 2620 of FIG.
  • step 2450 when it is confirmed in step 2450 that the acquisition of the air-fuel ratio fluctuation index amount AFD is completed, the CPU 71 proceeds to step 2460 to estimate the air-fuel ratio sensor element temperature TempS based on the annealing value SD of the heater duty Duty. To do.
  • step 2610 the CPU 71 proceeds to step 2610 to acquire (determine) “the air-fuel ratio fluctuation index amount AFD acquired in step 2440” as the final imbalance determination parameter X as it is.
  • step 2620 the CPU 71 determines an imbalance determination threshold value Xth based on “the air-fuel ratio sensor element temperature TempS estimated in step 2460”. This step is the same as step 1710 in FIG. Accordingly, the imbalance determination threshold value Xth is determined so as to increase as the air-fuel ratio sensor element temperature TempS increases.
  • the CPU 71 performs the processing from step 1460 and compares the imbalance determination parameter X acquired in step 2610 with the imbalance determination threshold value Xth determined in step 2620, thereby imbalance. Make a decision. That is, if the imbalance determination parameter X is greater than the imbalance determination threshold value Xth, the CPU 71 determines that an air-fuel ratio imbalance among cylinders has occurred (steps 1460 and 1465), and the imbalance determination parameter X is If it is smaller than the imbalance determination threshold Xth, it is determined that the air-fuel ratio imbalance among cylinders has not occurred (steps 1460 and 1470).
  • the air-fuel ratio fluctuation index amount AFD is acquired in a state where the air-fuel ratio sensor element temperature is maintained at the normal temperature, and the air-fuel ratio fluctuation index amount AFD is temporarily stored. Acquired as a balance determination parameter X. Further, the eighth determination apparatus estimates the air-fuel ratio sensor element temperature TempS during the period when the air-fuel ratio fluctuation index amount AFD is acquired based on the value corresponding to the current flowing through the heater 678. In addition, the eighth determination device determines each of the high-side threshold value XHith and the low-side threshold value XLoth based on the estimated air-fuel ratio sensor element temperature TempS. Then, the eighth determination apparatus performs imbalance determination based on a comparison between the temporary imbalance determination parameter X and the high side threshold value XHith and the low side threshold value XLoth.
  • the air-fuel ratio sensor element temperature is not raised to the elevated temperature. Therefore, early deterioration of the air-fuel ratio sensor 67 can be avoided.
  • the eighth determination device cannot determine whether the imbalance state between the air-fuel ratios has occurred according to the provisional imbalance determination parameter X (when the imbalance determination is suspended), and the air-fuel ratio sensor element The temperature is raised to the rising temperature, and in that state, the air-fuel ratio fluctuation index amount AFD is acquired, and the air-fuel ratio fluctuation index amount AFD is acquired as the final imbalance determination parameter X. Further, the eighth determination apparatus estimates the air-fuel ratio sensor element temperature TempS during the period when the air-fuel ratio fluctuation index amount AFD is acquired based on the value corresponding to the current flowing through the heater 678. In addition, the eighth determination device determines an imbalance determination threshold value Xth based on the estimated air-fuel ratio sensor element temperature TempS.
  • the eighth determination apparatus performs imbalance determination using the final imbalance determination parameter X and the imbalance determination threshold value Xth. Accordingly, as in the second, fourth, and sixth determination devices, the imbalance determination parameter X that accurately represents the cylinder-by-cylinder air-fuel ratio difference is obtained, so that the imbalance determination can be performed with high accuracy.
  • the determination device estimates the air-fuel ratio sensor element temperature (the temperature of the solid electrolyte layer 671) having a strong correlation with the responsiveness of the air-fuel ratio sensor 67, and the The “imbalance determination parameter and / or imbalance determination threshold” is determined based on the air-fuel ratio sensor element temperature. Therefore, the imbalance determination parameter or the imbalance determination threshold value reflects the responsiveness of the air-fuel ratio sensor 67 that changes depending on the air-fuel ratio sensor element temperature. As a result, the determination apparatus according to each embodiment can accurately determine whether or not an air-fuel ratio imbalance among cylinders has occurred.
  • the air-fuel ratio fluctuation index amount AFD may be a parameter obtained as described below.
  • the air-fuel ratio fluctuation index amount AFD may be a value corresponding to the locus length (basic index amount) of the output value Vabyfs of the air-fuel ratio sensor 67 or the locus length (basic index amount) of the detected air-fuel ratio abyfs.
  • the locus length of the detected air-fuel ratio abyfs acquires the output value Vabyfs every time the constant sampling time ts elapses, converts the output value Vabyfs to the detected air-fuel ratio abyfs, and the detected air-fuel ratio abyfs is constant. It can be obtained by integrating the absolute value of the difference between the detected air-fuel ratio abyfs acquired before the sampling time ts.
  • This trajectory length is desirably obtained for each unit combustion cycle period.
  • An average value of trajectory lengths for a plurality of unit combustion cycle periods (that is, a value corresponding to the trajectory length) may be adopted as the air-fuel ratio fluctuation index amount AFD. Since the locus length of the output value Vabyfs and the locus length of the detected air-fuel ratio abyfs tend to increase as the engine speed NE increases, the imbalance determination parameter based on this locus length is used for imbalance determination. It is preferable to increase the imbalance determination threshold value Xth as the engine rotational speed NE increases.
  • the air-fuel ratio fluctuation index amount AFD is based on the change rate of the change rate of the “output value Vabyfs of the air-fuel ratio sensor 67 or the detected air-fuel ratio abyfs” (that is, the second-order differential value of these values with respect to time). It may be obtained as a value corresponding to the basic index amount.
  • the air-fuel ratio fluctuation index amount AFD is the maximum value in the unit combustion cycle period of the absolute value of “second-order differential value d 2 (Vabyfs) / dt 2 with respect to the time of the output value Vabyfs of the air-fuel ratio sensor 67” or “upstream
  • the absolute value of the second-order differential value d 2 (abyfs) / dt 2 ) regarding the time of the detected air-fuel ratio abyfs expressed by the output value Vabyfs of the side air-fuel ratio sensor 67 may be the maximum value in the unit combustion cycle period.
  • the change rate of the change rate of the detected air-fuel ratio abyfs can be obtained as follows.
  • the output value Vabyfs is acquired every time the constant sampling time ts elapses.
  • the output value Vabyfs is converted into a detected air-fuel ratio abyfs.
  • the difference between the detected air-fuel ratio abyfs and the detected air-fuel ratio abyfs acquired before the predetermined sampling time ts is acquired as the change rate of the detected air-fuel ratio abyfs.
  • the difference between the change rate of the detected air-fuel ratio abyfs and the change rate of the detected air-fuel ratio abyfs acquired before a certain sampling time ts is obtained as the change rate of the change rate of the detected air-fuel ratio abyfs (second derivative d 2 (abyfs)) / Dt 2 ).
  • a value whose absolute value is the maximum is selected as a representative value from “a change rate of a change rate of the detected air-fuel ratio abyfs obtained in a unit combustion cycle period”, and such a representative value is selected. May be obtained for a plurality of unit combustion cycle periods, and the average value of the absolute values of the obtained representative values may be adopted as the air-fuel ratio fluctuation index amount AFD.
  • each of the determination devices employs the differential value d (abyfs) / dt (detected air-fuel ratio change rate ⁇ AF) as a basic index amount, and a value based on an average value of the basic index amount in a unit combustion cycle period. Is adopted as the air-fuel ratio fluctuation index amount AFD.
  • each of the determination devices acquires a differential value d (abyfs) / dt (detected air-fuel ratio change rate ⁇ AF) as a basic index amount, and a plurality of differential values d (abyfs) obtained in a unit combustion cycle period.
  • the value P2 having the maximum absolute value may be acquired from the inside, and the larger of the absolute value of the value P1 and the absolute value of the value P2 may be adopted as the basic index amount.
  • each said determination apparatus may employ
  • each said determination apparatus is applicable also to a V-type engine, for example.
  • the V-type engine has a right bank upstream side catalyst (an exhaust passage of the engine and at least two of the plurality of cylinders of the plurality of cylinders) downstream of the exhaust collecting portion of the two or more cylinders belonging to the right bank.
  • Catalyst located in the downstream side of the exhaust collecting part where the exhaust gas discharged from the combustion chamber gathers), and the left bank upstream side catalyst downstream of the exhaust collecting part of two or more cylinders belonging to the left bank (In the exhaust passage of the engine, at a portion downstream of the exhaust collecting portion where exhaust gases discharged from the combustion chambers of the remaining two or more cylinders other than at least two of the plurality of cylinders collect Disposed catalyst).
  • the V-type engine further includes an upstream air-fuel ratio sensor and a downstream air-fuel ratio sensor for the right bank upstream and downstream of the right bank upstream catalyst, and an upstream for the left bank upstream and downstream of the left bank upstream catalyst.
  • a side air-fuel ratio sensor and a downstream air-fuel ratio sensor can be provided.
  • Each upstream air-fuel ratio sensor like the air-fuel ratio sensor 67, is disposed between the exhaust collection portion of each bank and the upstream catalyst of each bank.
  • the main feedback control and the sub feedback control for the right bank are executed based on “the output values of the upstream air-fuel ratio sensor and the downstream air-fuel ratio sensor for the right bank” and independently for the left bank.
  • the main feedback control and the sub feedback control are executed based on “the output values of the upstream air-fuel ratio sensor and the downstream air-fuel ratio sensor for the left bank”.
  • the determination device obtains the “imbalance determination parameter X according to the air-fuel ratio fluctuation index amount AFD” for the right bank based on the output value of the upstream air-fuel ratio sensor for the right bank, and uses it. It is possible to determine whether or not an air-fuel ratio imbalance among cylinders occurs between the cylinders belonging to the right bank.
  • the determination device obtains the “imbalance determination parameter X according to the air-fuel ratio fluctuation index amount AFD” for the left bank based on the output value of the upstream air-fuel ratio sensor for the left bank, and uses it. It can be determined whether or not an air-fuel ratio imbalance among cylinders is occurring between the cylinders belonging to the left bank.
  • each of the determination devices may change the imbalance determination threshold value Xth (including the high-side threshold value XHith and the low-side threshold value XLoth) so as to increase as the intake air flow rate Ga increases. This is because the responsiveness of the air-fuel ratio sensor 67 decreases as the intake air flow rate Ga decreases due to the presence of the protective covers 67b and 67c.
  • the high side threshold value XHith is a value equal to or greater than the imbalance determination threshold value Xth
  • the low side threshold value XLoth is a value smaller than the imbalance determination threshold value Xth.
  • the high side threshold value XHith is a value that can clearly determine that the air-fuel ratio imbalance among cylinders is occurring when the provisional imbalance determination parameter X is larger than the high side threshold value XHith
  • the value may be smaller than the imbalance determination threshold value Xth.
  • the low side threshold value XLoth only needs to be a value that can be clearly determined that the air-fuel ratio imbalance among cylinders does not occur when the provisional imbalance determination parameter X is smaller than the low side threshold value XLoth. .
  • each of the determination devices includes command fuel injection amount control means for controlling the command fuel injection amount so that the air-fuel ratio of the air-fuel mixture supplied to the combustion chambers of the two or more cylinders becomes the target air-fuel ratio ( The routine of FIG.12 and FIG.13).
  • This command fuel injection amount control means is based on the air-fuel ratio (detected air-fuel ratio abyfs) represented by the output value Vabyfs of the air-fuel ratio sensor 67 and the target air-fuel ratio abyfr so that they coincide with each other.
  • DFI air-fuel ratio feedback control means for determining (adjusting / controlling) the indicated fuel injection amount based on the air-fuel ratio feedback amount (DFi) is included (step 1240 in FIG. 12 and routine in FIG.
  • the command fuel injection amount control means does not include the air-fuel ratio feedback control means.
  • the feedforward control means may determine (control) the value obtained by dividing the air amount Mc) by the target air-fuel ratio abyfr as the indicated fuel injection amount. That is, the main feedback amount DFi of the routine of FIG. 12 may be set to “0”.
  • the heater control means of each of the determination devices sets the heater duty Duty to 100% (ie, When the actual admittance Yact is larger than “the value obtained by adding a positive predetermined value ⁇ to the target admittance Ytgt”, the heater duty Duty is set to “0”. (Ie, the energization amount to the heater 678 is set to the minimum value), and the actual admittance Yact is “a value obtained by subtracting a predetermined positive value ⁇ from the target admittance Ytgt” and “a predetermined positive value ⁇ to the target admittance Ytgt”.
  • the heater duty Duty is set to a predetermined value (for example, a value greater than 0 and less than 100%). It may be configured to set to 50%) ".
  • the imbalance determination means in each determination device described above After the elapse of a predetermined delay time Tdelay from “the time when the heater control means is instructed to execute the sensor element temperature increase control”, the “air-fuel ratio fluctuation index amount AFD (actually, the detected air-fuel ratio change rate ⁇ AF) It is desirable to be configured to “start acquisition”.
  • the air-fuel ratio fluctuation index amount AFD is output from the air-fuel ratio sensor 67 after the time when the air-fuel ratio sensor 67 becomes sufficiently high in response due to the increase in the air-fuel ratio sensor element temperature. It can be obtained based on the value Vabyfs. Therefore, the imbalance determination parameter X that represents the cylinder-by-cylinder air-fuel ratio difference with higher accuracy can be acquired.
  • the imbalance determining means may be configured to set the predetermined delay time Tdelay shorter as the exhaust gas temperature Tex is higher.
  • the higher the exhaust gas temperature Tex the faster the air-fuel ratio sensor element temperature rises. Therefore, the higher the exhaust gas temperature Tex, the shorter the delay time Tdelay can be set.
  • the exhaust gas temperature Tex may be acquired by an exhaust gas temperature detection sensor, and “an operation parameter of the engine 10 having a correlation with the exhaust gas temperature Tex (for example, the intake air flow rate Ga measured by the air flow meter 61, the load KL, and the engine rotational speed). NE etc.) ".
  • the imbalance determination means of each determination device may be configured to set the delay time Tdelay as shorter as the “intake air flow rate Ga or load KL” increases.
  • the fifth and sixth determination devices are configured to detect when the engine 10 has been warmed up after the engine 10 is started (when the complete warm-up is completed, specifically, the threshold coolant temperature at which the coolant temperature THW indicates complete warm-up). “When the THWth is reached,” the heater control means starts the “sensor element portion temperature rise control”, and “when the acquisition of the air-fuel ratio fluctuation index amount AFD is completed” It may be configured to cause the heater control means to end “control”.
  • the air-fuel ratio sensor 67 (hereinafter also referred to as “the air-fuel ratio sensor gets wet”), the temperature of the sensor element portion is raised by the sensor element portion temperature rise control.
  • the air-fuel ratio sensor 67 is actually wet, large temperature unevenness occurs in the sensor element portion, and the sensor element portion may be broken (damaged). Therefore, it is not a good idea to execute the sensor element temperature increase control immediately after the engine is started.
  • the air-fuel ratio sensor 67 is difficult to get wet. Therefore, even if the sensor element temperature increase control is started when the engine 10 is warmed up as in the above configuration, the possibility that the air-fuel ratio sensor 67 is damaged is low.
  • the frequency at which the air-fuel ratio sensor element temperature is sufficiently high at the time when the parameter acquisition condition is satisfied can be increased, the opportunity for acquiring an accurate imbalance determination parameter is increased. be able to.
  • the determination device of each of the above embodiments employs the air-fuel ratio fluctuation index amount correction value obtained by correcting the air-fuel ratio fluctuation index amount AFD based on the air-fuel ratio sensor element temperature TempS as the imbalance determination parameter X.
  • the determination of the imbalance determination threshold value Xth based on the air-fuel ratio sensor element temperature TempS may be performed together.
  • the air-fuel ratio fluctuation index amount correction value is obtained after obtaining the air-fuel ratio fluctuation index amount AFD.
  • each embodiment obtains the correction value kh every time the detected air-fuel ratio change rate ⁇ AF is obtained. Is used to correct the detected air-fuel ratio change rate ⁇ AF, and the air-fuel ratio fluctuation index amount AFD obtained based on the corrected detected air-fuel ratio change rate ⁇ AF is used as an air-fuel ratio fluctuation index amount correction value (that is, an imbalance determination parameter). It can also be configured to obtain.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

本発明による空燃比気筒間インバランス判定装置(判定装置)は、パラメータ取得期間において、空燃比センサ67が配設された部位を通過する排ガスの空燃比の変動が大きくなるほど大きくなる空燃比変動指標量AFDをその空燃比センサ67の出力値Vabyfsに基づいて求める。判定装置は、そのパラメータ取得期間における空燃比センサ67の応答性に強い相関を有する空燃比センサ素子温度TempSを推定し、推定した空燃比センサ素子温度TempSに基いて空燃比変動指標量AFDを補正することにより空燃比変動指標量補正値を得る。そして、判定装置は、その空燃比変動指標量補正値をインバランス判定用パラメータXとして採用し、そのインバランス判定用パラメータXとインバランス判定用閾値Xthとの比較に基いて空燃比気筒間インバランス状態が発生しているか否かを判定する。

Description

内燃機関の空燃比気筒間インバランス判定装置
 本発明は、多気筒内燃機関に適用され、各気筒に供給される混合気の空燃比の不均衡(空燃比気筒間インバランス、空燃比気筒間ばらつき、気筒間における空燃比の不均一性)が過度に大きくなったことを判定(監視・検出)することができる「内燃機関の空燃比気筒間インバランス判定装置」に関する。
 従来から、図1に示したように、内燃機関の排気通路に配設された三元触媒(53)と、その三元触媒(53)の上流及び下流にそれぞれ配置された上流側空燃比センサ(67)及び下流側空燃比センサ(68)と、を備えた空燃比制御装置が広く知られている。
 この空燃比制御装置は、機関に供給される混合気の空燃比(機関の空燃比)が理論空燃比と一致するように、上流側空燃比センサの出力と下流側空燃比センサの出力とに基いて「機関の空燃比を理論空燃比に一致させるための空燃比フィードバック量」を算出し、その空燃比フィードバック量により機関の空燃比をフィードバック制御するようになっている。更に、上流側空燃比センサの出力のみに基いて「機関の空燃比を理論空燃比に一致させるための空燃比フィードバック量」を算出し、その空燃比フィードバック量により機関の空燃比をフィードバック制御する空燃比制御装置も広く知られている。このような空燃比制御装置において使用される空燃比フィードバック量は、全気筒に対して共通する制御量である。
 ところで、一般に、電子燃料噴射式内燃機関は、各気筒又は各気筒に連通した吸気ポートに少なくとも一つの燃料噴射弁(39)を備えている。従って、ある特定の気筒の燃料噴射弁の特性が「指示された燃料噴射量よりも過大な量の燃料を噴射する特性」となると、その特定の気筒に供給される混合気の空燃比(その特定気筒の空燃比)のみが大きくリッチ側に変化する。即ち、気筒間における空燃比の不均一性(空燃比気筒間ばらつき、空燃比の気筒間インバランス)が大きくなる。換言すると、各気筒に供給される混合気の空燃比である「気筒別空燃比」の間に不均衡が生じる。
 この場合、機関全体に供給される混合気の空燃比の平均は、理論空燃比よりもリッチ側の空燃比となる。従って、全気筒に対して共通する空燃比フィードバック量により、上記特定の気筒の空燃比は理論空燃比に近づけられるようにリーン側へと変更され、同時に、他の気筒の空燃比は理論空燃比から遠ざけられるようにリーン側へと変更させられる。この結果、機関全体に供給される混合気の空燃比の平均は略理論空燃比に一致させられる。
 しかしながら、上記特定の気筒の空燃比は依然として理論空燃比よりもリッチ側の空燃比となり、残りの気筒の空燃比は理論空燃比よりもリーン側の空燃比となるから、各気筒における混合気の燃焼状態は完全燃焼とは相違した燃焼状態となる。この結果、各気筒から排出されるエミッションの量(未燃物の量及び/又は窒素酸化物の量)が増大する。このため、機関に供給される混合気の空燃比の平均が理論空燃比であったとしても、増大したエミッションを三元触媒が浄化しきれず、結果として、エミッションが悪化する虞がある。
 従って、気筒間における空燃比の不均一性が過大になっていること(空燃比気筒間インバランス状態が発生していること)を検出し、何らかの対策を講じさせるようにすることはエミッションを悪化させないために重要である。なお、空燃比気筒間インバランスは、特定の気筒の燃料噴射弁の特性が「指示された燃料噴射量よりも過小な量の燃料を噴射する特性」となった場合等にも発生する。
 このような空燃比気筒間インバランス状態が発生したか否かを判定する従来の装置の一つは、複数の気筒からの排ガスが集合する排気集合部に配設された空燃比センサ(上記上流側空燃比センサ67)の出力値(出力信号)の軌跡長を取得し、その軌跡長と「機関回転速度に応じて変化する参照値」とを比較し、その比較結果に基いて空燃比気筒間インバランス状態が発生したか否かを判定するようになっている(例えば、米国特許第7,152,594号を参照。)。
 なお、本明細書において、「空燃比気筒間インバランス状態が発生している」とは、気筒別空燃比の間の差(気筒別空燃比差)が許容値以上となっている状態が発生していること、換言すると、未燃物及び/又は窒素酸化物が規定値を超えるような過度の空燃比気筒間インバランス状態が発生していることを意味する。「空燃比気筒間インバランス状態が発生したか否かの判定」は、単に「空燃比気筒間インバランス判定、又は、インバランス判定」とも称呼される。更に、残りの気筒に供給される混合気の空燃比(例えば、略理論空燃比)から乖離した空燃比の混合気が供給されるようになった気筒は「インバランス気筒」とも称呼される。インバランス気筒に供給される混合気の空燃比は「インバランス気筒の空燃比」とも称呼される。残りの気筒(インバランス気筒以外の気筒)は、「正常気筒」又は「非インバランス気筒」とも称呼される。正常気筒に供給される混合気の空燃比は、「正常気筒の空燃比」又は「非インバランス気筒の空燃比」とも称呼される。
 加えて、上述した空燃比センサの出力値の軌跡長のように、気筒別空燃比差(インバランス気筒の空燃比と正常気筒の空燃比との差)の絶対値が大きいほど大きくなる値は、空燃比変動指標量とも称呼される。即ち、空燃比変動指標量は、上述した空燃比センサに到達する排ガスの空燃比の変動が大きくなるほどその絶対値が大きくなるように「上記空燃比センサの出力値に基いて求められる値」である。更に、その空燃比変動指標量の絶対値が大きいほど大きくなる値であって空燃比変動指標量に基いて取得される値は「インバランス判定用パラメータ」とも称呼される。換言すると、インバランス判定用パラメータは、上記空燃比センサが配設された部位を通過する排ガスの空燃比の変動が大きくなるほど大きくなるパラメータである。このインバランス判定用パラメータは、インバランス判定を実行するために、インバランス判定用閾値と比較される。
 ところで、周知の空燃比センサは、例えば図2の(A)に示したように、少なくとも「固体電解質層(671)、排ガス側電極層(672)、大気側電極層(673)、拡散抵抗層(674)及びヒータ(678)」を含む空燃比検出部を備える。
 排ガス側電極層(672)は固体電解質層(671)の一面に形成されている。排ガス側電極層(672)は拡散抵抗層(674)により覆われている。排気通路内の排ガスは、拡散抵抗層(674)の外側表面に到達し、拡散抵抗層(674)を通過して排ガス側電極層(672)に到達する。大気側電極層(673)は固体電解質層(671)の他面に形成されている。大気側電極層(673)は大気が導入される大気室(67A)に露呈している。ヒータ(678)は、通電されることにより発熱し、センサ素子部の温度を調節する。センサ素子部は、少なくとも、固体電解質層(671)、排ガス側電極層(672)及び大気側電極層(673)を含む。
 図2の(B)及び(C)に示したように、排ガス側電極層(672)と大気側電極層(673)との間には「排ガスの空燃比に応じて変化する限界電流」を発生させるための電圧(Vp)が印加されている。この電圧は、一般に、大気側電極層(673)の電位が排ガス側電極層(672)の電位よりも高くなるように印加される。
 図2の(B)に示したように、拡散抵抗層(674)を通過して排ガス側電極層(672)に到達した排ガスに過剰な酸素が含まれているとき(即ち、排ガス側電極層に到達した排ガスの空燃比が理論空燃比よりもリーンであるとき)、その酸素は前記電圧と固体電解質層(671)の酸素ポンプ特性とにより酸素イオンとして排ガス側電極層(672)から大気側電極層(673)へと導かれる。
 これに対し、図2の(C)に示したように、拡散抵抗層(674)を通過して排ガス側電極層(672)に到達した排ガスに過剰な未燃物が含まれているとき(即ち、排ガス側電極層に到達した排ガスの空燃比が理論空燃比よりもリッチであるとき)、大気室(67A)内の酸素は固体電解質層(671)の酸素電池特性により酸素イオンとして大気側電極層(673)から排ガス側電極層(672)へと導かれ、排ガス側電極層(672)の未燃物と反応する。
 このような酸素イオンの移動量は、拡散抵抗層(674)の存在により、「拡散抵抗層(674)の外側表面に到達した排ガスの空燃比」に応じた値に制限される。換言すると、酸素イオンの移動により生じる電流は排ガスの空燃比(A/F)に応じた値(即ち、限界電流Ip)となる(図3を参照。)。
 空燃比センサは、この限界電流(排ガス側電極層と大気側電極層との間に電圧が印加されることにより固体電解質層を流れる電流)に基いて「空燃比センサが配設された部位を通過する排ガスの空燃比」に応じた出力値Vabyfsを出力する。この出力値Vabyfsは、一般には、予め求められている「出力値Vabyfsと空燃比との図4に示した関係」に基いて検出空燃比abyfsに変換される。図4から理解されるように、出力値Vabyfsと検出空燃比abyfsとは実質的に比例する。
 一方、「インバランス判定用パラメータの基礎となるデータ」である空燃比変動指標量は、「空燃比センサの出力値Vabyfs又は検出空燃比abyfs」の軌跡長に限られず、空燃比センサが配設された部位を通過する排ガスの空燃比の変動の状態(例えば、所定期間における変動の幅)を反映した値であればよい。以下、この点について説明を加える。
 空燃比センサには、各気筒からの排ガスが点火順(従って、排気順)に到達する。空燃比気筒間インバランス状態が発生していない場合、各気筒から排出される排ガスの空燃比は互いに略同一である。従って、空燃比気筒間インバランス状態が発生していない場合、図5の(B)において破線C1により示したように、空燃比センサの出力値Vabyfsの波形(図5の(B)においては検出空燃比abyfsの波形)は略平坦である。
 これに対し、「特定気筒(例えば、第1気筒)の空燃比のみが理論空燃比よりもリッチ側に偏移した空燃比気筒間インバランス状態(特定気筒リッチずれインバランス状態)」が発生している場合、その特定気筒の排ガスの空燃比と、その特定気筒以外の気筒(残りの気筒)の排ガスの空燃比と、は大きく相違する。
 従って、例えば図5の(B)において実線C2により示したように、特定気筒リッチずれインバランス状態が発生している場合の空燃比センサの出力値Vabyfsの波形(図5の(B)においては検出空燃比abyfsの波形)は、4気筒・4サイクル・エンジンの場合に720°クランク角(一つの空燃比センサに到達する排ガスを排出している総ての気筒において各一回の燃焼行程が終了するのに要するクランク角)毎に大きく変動する。なお、「一つの空燃比センサに到達する排ガスを排出している総ての気筒において各一回の燃焼行程が終了するのに要するクランク角が経過する期間」は、本明細書において「単位燃焼サイクル期間」とも称呼される。
 更に、インバランス気筒の空燃比が正常気筒の空燃比から乖離するほど、空燃比センサの出力値Vabyfs及び検出空燃比abyfsの振幅は大きくなり、これらの値はより大きく変動する。例えば、インバランス気筒の空燃比と非インバランス気筒の空燃比との差の大きさが第1の値であるときの検出空燃比abyfsが図5(B)の実線C2のように変化するとすれば、インバランス気筒の空燃比と非インバランス気筒の空燃比との差の大きさが「第1の値の値よりも大きい第2の値」であるときの検出空燃比abyfsは図5(B)の一点鎖線C2aのように変化する。
 そのため、「空燃比センサの出力値Vabyfs又は検出空燃比abyfs」の単位時間あたりの変化量(即ち、「空燃比センサの出力値Vabyfs又は検出空燃比abyfs」の時間についての一階微分値、図5の(B)の角度α1,α2を参照。)は、気筒別空燃比差が小さいときには図5の(C)の破線C3により示したように小さく変動し、気筒別空燃比差が大きいときには図5の(C)の実線C4により示したように大きく変動する。即ち、微分値d(Vabyfs)/dt及び微分値d(abyfs)/dtは、空燃比気筒間インバランス状態の程度が大きくなる(気筒別空燃比差が大きくなる)につれてその絶対値が大きくなる。
 従って、例えば、単位燃焼サイクル期間において複数個取得される「微分値d(Vabyfs)/dt又は微分値d(abyfs)/dt」の絶対値の「最大値又は平均値」は、空燃比変動指標量として採用することができる。更に、そのような空燃比変動指標量そのもの、又は、複数の単位燃焼サイクル期間についてのそのような空燃比変動指標量の平均値は、インバランス判定用パラメータとして採用され得る。
 更に、図5の(D)に示したように、「空燃比センサの出力値Vabyfs又は検出空燃比abyfs」の単位時間あたりの変化量の変化量(二階微分値d(Vabyfs)/dt又は二階微分値d(abyfs)/dt)」は、気筒別空燃比差が小さい場合には破線C5により示したように殆ど変動しないが、気筒別空燃比差が大きくなると実線C6により示したように大きく変動する。
 従って、例えば、単位燃焼サイクル期間において複数個取得される「二階微分値d(Vabyfs)/dt及び二階微分値d(abyfs)/dt」の絶対値の「最大値又は平均値」は、空燃比変動指標量として採用することができる。更に、そのような空燃比変動指標量そのもの、又は、複数の単位燃焼サイクル期間についてのそのような空燃比変動指標量の平均値は、インバランス判定用パラメータとして採用され得る。
 そして、空燃比気筒間インバランス判定装置は、上記のようにして求められるインバランス判定用パラメータが所定の閾値(インバランス判定用閾値)よりも大きいか否かを判定することにより、空燃比気筒間インバランス状態が発生しているか否かを判定する。
 しかしながら、本発明者は、排ガスの空燃比の変動の程度(即ち、空燃比気筒間インバランス状態の程度を示す気筒別空燃比差)が一定であっても、インバランス判定用パラメータは空燃比センサ素子温度に依存して変化してしまうため、空燃比気筒間インバランス判定を精度良く行えない場合があるとの知見を得た。以下、この理由について説明する。なお、空燃比センサ素子温度は、空燃比センサの固体電解質層を含むセンサ素子部(固体電解質層、排ガス側電極層及び大気側電極層)の温度である。
 図6は、空燃比センサ素子温度と空燃比センサの応答性との関係を示したグラフである。図6において、空燃比センサの応答性を表す応答時間tは、例えば、「空燃比センサの近傍に存在する排ガスの空燃比」を特定時点において「理論空燃比よりもリッチな第1空燃比(例えば14)」から「理論空燃比よりもリーンな第2空燃比(例えば15)」へと変更させ、「その特定時点」から「検出空燃比abyfsが第1空燃比と第2空燃比との間の第3空燃比(例えば、14.63=14+0.63・(15−14))へと変化する時点」までの時間である。従って、応答時間tが短いほど空燃比センサの応答性は良好である(空燃比センサの応答性が高くなる)。
 図6から理解されるように、空燃比センサ素子温度が高いほど、空燃比センサの応答性は良好になる。これは、センサ素子部(特に、排ガス側電極層)における反応(酸化・還元反応等)が活発になるからであると考えられる。
 一方、前述したように、空燃比気筒間インバランス状態が発生すると、排ガスの空燃比は単位燃焼サイクルを一周期として激しく変動する。ところが、空燃比センサ素子温度が低いと空燃比センサの応答性が低く、そのため、空燃比センサの出力値が「その排ガスの空燃比の変動」に十分に追従できない。従って、空燃比変動指標量及びインバランス判定用パラメータが本来の値よりも小さくなる。その結果、空燃比気筒間インバランス判定を精度良く行えないのである(図11を参照。)。
 他方、空燃比センサ素子温度が常に高い温度に維持されるようにヒータの発熱量を調整すれば、精度の良いインバランス判定用パラメータを取得することができる。しかしながら、空燃比センサ素子温度が常に高い温度に維持されていると、空燃比センサが比較的早期に劣化(経時変化)する虞が生じる。
 従って、本発明の目的の一つは、上記のような「空燃比センサの出力値に基いて取得される空燃比変動指標量及びインバランス判定用パラメータ」を用いた空燃比気筒間インバランス判定を行う装置であって、空燃比気筒間インバランス判定をより精度良く行うことが可能な装置(以下、単に「本発明装置」とも称呼する。)を提供することにある。
 本発明装置は、空燃比センサ素子温度を推定するとともに、その推定された空燃比センサ素子温度に基づいて空燃比変動指標量を補正することによってインバランス判定用パラメータを決定するか、又は、その推定された空燃比センサ素子温度に基づいてインバランス判定用閾値を決定する。
 より具体的に述べると、本発明装置の一態様は、複数の気筒を有する多気筒内燃機関に適用され、空燃比センサと、複数の燃料噴射弁と、インバランス判定手段と、を備える。
 前記空燃比センサは、前記複数の気筒のうちの少なくとも2以上(好ましくは3以上)の気筒から排出された排ガスが集合する前記機関の排気通路の排気集合部、又は、前記排気通路の前記排気集合部よりも下流側の部位、に配設される。
 更に、前記空燃比センサは、固体電解質層、固体電解質層の一面に形成された排ガス側電極層、排ガス側電極層を覆うとともに前記排ガスが到達する拡散抵抗層、及び、固体電解質層の他面に形成されるとともに大気室内に露呈された大気側電極層、を有する空燃比検出部を含む。
 加えて、前記空燃比センサは、「前記排ガス側電極層と前記大気側電極層との間に所定の電圧が印加されることにより前記固体電解質層に流れる限界電流」に基いて「前記空燃比センサが配設された部位を通過する排ガスの空燃比」に応じた出力値を出力する。
 前記複数の燃料噴射弁のそれぞれは、前記少なくとも2以上の気筒のそれぞれに対応して配設されるとともに同2以上の気筒のそれぞれの燃焼室に供給される混合気に含まれる燃料を噴射する。即ち、燃料噴射弁は、一つの気筒に対して一つ以上設けられている。各燃料噴射弁は、その燃料噴射弁に対応する気筒に対して燃料を噴射する。
 前記インバランス判定手段は、
(1)「所定のパラメータ取得条件が成立している期間」であるパラメータ取得期間において、「前記空燃比センサが配設された部位を通過する排ガス」の空燃比の変動が大きくなるほど大きくなる空燃比変動指標量を「前記空燃比センサの出力値」に基づいて取得するとともに、
(2)「その取得された空燃比変動指標量に基いて求められるインバランス判定用パラメータ」と「所定のインバランス判定用閾値」との比較を実行し、
(3)そのインバランス判定用パラメータがそのインバランス判定用閾値よりも大きいとき「空燃比気筒間インバランス状態が発生した」と判定し、且つ、そのインバランス判定用パラメータがそのインバランス判定用閾値よりも小さいとき「空燃比気筒間インバランス状態が発生していない」と判定する。
 前記空燃比変動指標量は、例えば、前述した「微分値d(Vabyfs)/dt又は微分値d(abyfs)/dt」の絶対値の所定期間(例えば、前記単位燃焼サイクル期間)における「最大値又は平均値」、「二階微分値d(Vabyfs)/dt又は二階微分値d(abyfs)/dt」の絶対値の所定期間(例えば、前記単位燃焼サイクル期間)における「最大値又は平均値」、及び、所定期間(例えば、前記単位燃焼サイクル期間)における「出力値Vabyfs又は検出空燃比abyfs」の軌跡長等、或いは、これらに基く値であってよく、これらに限定されない。
 更に、前記インバランス判定手段は、素子温度推定手段と、比較前準備手段と、を含む。
 前記素子温度推定手段は、前記パラメータ取得期間における前記固体電解質層の温度である空燃比センサ素子温度を推定するようになっている。
 前記比較前準備手段は、
a.前記推定された空燃比センサ素子温度が特定温度よりも高くなるほど前記取得された空燃比変動指標量を減少させる補正、及び/又は、同推定された空燃比センサ素子温度が同特定温度よりも低くなるほど前記取得された空燃比変動指標量を増大させる補正、を「前記取得された空燃比変動指標量に施すことにより空燃比変動指標量補正値」を取得し、同空燃比変動指標量補正値に応じた値を前記インバランス判定用パラメータとして決定するインバランス判定用パラメータの決定と、
b.前記推定された空燃比センサ素子温度が低くなるほど前記インバランス判定用閾値が小さくなるように(前記推定された空燃比センサ素子温度が高くなるほど前記インバランス判定用閾値が大きくなるように)、前記推定された空燃比センサ素子温度に基いて前記インバランス判定用閾値を決定するインバランス判定用閾値の決定と、
 の少なくとも一方の決定を、前記インバランス判定用パラメータと前記インバランス判定用閾値との前記比較の実行前に行うようになっている。
 空燃比センサ素子温度が低いほど空燃比センサの応答性は低下するから、空燃比センサ素子温度が低いほど空燃比センサの出力値に基づいて取得される空燃比変動指標量は小さくなる。換言すると、空燃比センサ素子温度が高いほど空燃比センサの応答性は上昇するから、空燃比センサ素子温度が高いほど空燃比センサの出力値に基づいて取得される空燃比変動指標量が大きくなる。
 従って、前記推定された空燃比センサ素子温度が特定温度よりも高くなるほど前記取得された空燃比変動指標量を減少させる補正、及び/又は、前記推定された空燃比センサ素子温度が前記特定温度よりも低くなるほど前記取得された空燃比変動指標量を増大させる補正を、前記取得された空燃比変動指標量に施すことにより空燃比変動指標量補正値を取得し、その空燃比変動指標量補正値に応じた値(例えば、その空燃比変動指標量補正値そのもの又は空燃比変動指標量補正値を正の定数倍した値)を前記インバランス判定用パラメータとして決定する。
 これにより、インバランス判定用パラメータが「空燃比センサ素子温度が前記特定温度であるとき(即ち、空燃比センサの応答性が特定の応答性であるとき)に得られる値」となる。その結果、空燃比センサ素子温度に関わらず、インバランス判定を精度良く実行することができる。
 また、推定された空燃比センサ素子温度が低くなるほど前記インバランス判定用閾値が小さくなるように、前記推定された空燃比センサ素子温度に基いて前記インバランス判定用閾値を決定すれば、インバランス判定用閾値が空燃比センサの応答性を加味した値となる。その結果、空燃比センサ素子温度に関わらず、インバランス判定を精度良く実行することができる。
 なお、上記態様は、上記aのインバランス判定用パラメータの決定と、上記bのインバランス判定用閾値の決定と、の何れか一方のみを行う態様のみならず、これら両者を共に行う態様をも含むことができる。
 前記空燃比センサは、電流が流されることにより発熱し、前記固体電解質層と前記排ガス側電極層と前記大気側電極層とを含むセンサ素子部を加熱するヒータを備える。
 前記固体電解質層の実際のアドミタンスは空燃比センサ素子温度が高いほど大きくなる(図15を参照。)。前記固体電解質層の実際のインピーダンスは空燃比センサ素子温度が高いほど小さくなる。そこで、前記空燃比気筒間インバランス判定装置は、前記固体電解質層の実際の「アドミタンス又はインピーダンス」に応じた値と、所定の目標値と、の差が小さくなるように前記ヒータの発熱量を制御するヒータ制御手段を備える。
 この場合、前記素子温度推定手段は、少なくとも前記ヒータを流れる電流の量に応じた値に基いて前記空燃比センサ素子温度を推定するように構成されることが好適である。
 空燃比センサの使用時間が長くなると空燃比センサは経時変化する。その結果、図19に示したように、経時変化した空燃比センサのアドミタンス(破線Y2を参照。)は、経時変化する前の空燃比センサのアドミタンス(実線Y1を参照。)よりも小さくなる。
 従って、固体電解質層の実際のアドミタンスが「ある特定のアドミタンス(例えば、Y0)」に一致している場合であっても、空燃比センサ素子温度は、空燃比センサが経時変化していない場合よりも空燃比センサが経時変化した場合の方が高くなる。このため、ヒータ制御により実際のアドミタンスが「目標値である目標アドミタンス」に一致していたとしても、空燃比センサが経時変化しているか否かに応じて空燃比センサ素子温度は相違する。従って、空燃比センサ素子温度をアドミタンスに基づいて推定すると、その推定された空燃比センサ素子温度は実際の空燃比センサ素子温度と相違する。この結果、「実際のアドミタンスに基づいて推定された空燃比センサ素子温度」を用いてインバランス判定用パラメータを決定すると、そ値は気筒別空燃比差を精度の良く表す値とならない可能性が高い。同様に、「実際のアドミタンスに基づいて推定された空燃比センサ素子温度」を用いてインバランス判定用閾値を決定すると、そのインバランス判定用閾値は空燃比センサの応答性を精度良く加味した値にならない可能性が高い。
 同様に、ヒータ制御がインピーダンスに基づいて行われている場合、実際のインピーダンスが「目標値である目標インピーダンス」に一致していたとしても、空燃比センサが経時変化しているか否かに応じて空燃比センサ素子温度は相違する。従って、空燃比センサ素子温度をインピーダンスに基づいて推定すると、その推定された空燃比センサ素子温度は実際の空燃比センサ素子温度と相違する。この結果、「実際のインピーダンスに基づいて推定された空燃比センサ素子温度」を用いてインバランス判定用パラメータ又はインバランス判定用閾値を決定すると、それらの値は精度のよい値とならない可能性が高い。。
 そこで、このような場合、前記素子温度推定手段は、少なくとも前記ヒータを流れる電流の量に応じた値に基いて前記空燃比センサ素子温度を推定するように構成されることが好適である。「前記ヒータを流れる電流」は、ヒータを流れる電流の実測値であってもよく、ヒータを流れる電流の指示値(例えば、デューティ信号のDuty)であってもよい。
 ヒータを流れる電流の大きさはヒータの発熱量と強い相関を有するから、空燃比センサ素子温度との相関が強い。従って、ヒータを流れる電流の量に応じた値に基いて空燃比センサ素子温度を推定することにより、空燃比センサが経時変化しているか否かに依らず、空燃比センサ素子温度を精度良く推定することができる。その結果、「インバランス判定用パラメータ又はインバランス判定用閾値」を正しく決定することができる。
 前記素子温度推定手段は、更に、前記排ガスの温度に相関を有する前記機関の運転パラメータに基いて前記空燃比センサ素子温度を推定するように構成されることが好適である。
 空燃比センサ素子温度は排ガスの温度にも依存するから、上記構成によれば、より精度良く空燃比センサ素子温度を推定することができる。その結果、「インバランス判定用パラメータ又はインバランス判定用閾値」を正しく決定することができる。
 前記インバランス判定手段は、
 前記ヒータ制御手段が、「前記パラメータ取得期間における前記センサ素子部の温度を前記パラメータ取得期間以外の期間(パラメータ非取得期間)における前記センサ素子部の温度よりも高くするセンサ素子部温度上昇制御」をパラメータ取得期間において実行するように、前記ヒータ制御手段に指示するように構成され、
 前記ヒータ制御手段は、
 前記センサ素子部温度上昇制御を実行するように指示されたとき、前記目標値を、前記素子部温度上昇制御の実行を指示されていないときの値と相違させることにより、前記センサ素子部温度上昇制御を実現するように構成され得る。
 例えば、ヒータ制御が実際のアドミタンスに基づいて行われている場合、前記目標値(目標アドミタンス)は前記センサ素子部温度上昇制御中において前記センサ素子部温度上昇制御を行っていない場合よりも高められる。ヒータ制御が実際のインピーダンスに基づいて行われている場合、前記目標値は前記センサ素子部温度上昇制御中において前記センサ素子部温度上昇制御を行っていない場合よりも低められる。
 このセンサ素子部温度上昇制御により、空燃比変動指標量を取得する際の空燃比センサの応答性が高められる。従って、空燃比変動指標量は、空燃比センサの出力値が排ガスの空燃比の変動に過大な遅れなく追従できる場合に、その空燃比センサの出力値に基いて取得される。その結果、空燃比変動指標量が気筒別空燃比差を精度良く表す値となるので、空燃比気筒間インバランス状態が発生しているか否かを精度良く判定することができる。
 更に、上記構成によれば、パラメータ非取得期間における空燃比センサ素子温度は、パラメータ取得期間における空燃比センサ素子温度よりも低い温度に制御される。この結果、常に空燃比センサ素子温度を相対的に高い温度に維持しておく場合に比較して、空燃比センサの熱による劣化(経時変化)が早期化することを回避することができる。
図1は、本発明の各実施形態に係る空燃比気筒間インバランス判定装置が適用される内燃機関の概略平面図である。 図2の(A)~(C)のそれぞれは、図1に示した空燃比センサ(上流側空燃比センサ)が備える空燃比検出部の概略断面図である。 図3は、排ガスの空燃比と空燃比センサの限界電流値との関係を示したグラフである。 図4は、排ガスの空燃比と空燃比センサの出力値との関係を示したグラフである。 図5は、空燃比気筒間インバランス状態が発生した場合と同状態が発生していない場合のインバランス判定用パラメータに関連する各値の挙動を示したタイムチャートである。 図6は、空燃比センサ素子温度と空燃比センサの応答性との関係を示したグラフである。 図7は、図1に示した内燃機関の概略構成を示した同機関の断面図である。 図8は、図1及び図7に示した空燃比センサ(上流側空燃比センサ)の部分概略斜視図(透視図)である。 図9は、図1及び図7に示した空燃比センサの部分断面図である。 図10は、排ガスの空燃比と図1及び図7に示した下流側空燃比センサの出力値との関係を示したグラフである。 図11は、空燃比センサ素子温度に対する空燃比変動指標量の変化の様子を示したグラフである。 図12は、本発明の第1実施形態に係る空燃比気筒間インバランス判定装置(第1判定装置)のCPUが実行するルーチンを示したフローチャートである。 図13は、第1判定装置のCPUが実行するルーチンを示したフローチャートである。 図14は、第1判定装置のCPUが実行するルーチンを示したフローチャートである。 図15は、空燃比センサのアドミタンスと空燃比センサ素子温度との関係を示したグラフである。 図16は、第1判定装置のCPUが空燃比変動指標量の補正値を決定する際に参照するテーブルである。 図17は、本発明の第2実施形態に係る空燃比気筒間インバランス判定装置(第2判定装置)のCPUが実行するルーチンを示したフローチャートである。 図18は、第2判定装置のCPUがインバランス判定用閾値を決定する際に参照するテーブルである。 図19は、「経時変化前の空燃比センサのアドミタンス及び経時変化後の空燃比センサのアドミタンス」と空燃比センサ素子温度との関係を示したグラフである。 図20は、本発明の第3実施形態に係る空燃比気筒間インバランス判定装置(第3判定装置)のCPUが実行するルーチンを示したフローチャートである。 図21は、本発明の第5及び第6実施形態に係る空燃比気筒間インバランス判定装置のCPUが実行するルーチンを示したフローチャートである。 図22は、本発明の第7及び第8実施形態に係る空燃比気筒間インバランス判定装置のCPUが実行するルーチンを示したフローチャートである。 図23は、本発明の第7実施形態に係る空燃比気筒間インバランス判定装置のCPUが実行するルーチンを示したフローチャートである。 図24は、本発明の第7実施形態に係る空燃比気筒間インバランス判定装置のCPUが実行するルーチンを示したフローチャートである。 図25は、本発明の第8実施形態に係る空燃比気筒間インバランス判定装置のCPUが実行するルーチンを示したフローチャートである。 図26は、本発明の第8実施形態に係る空燃比気筒間インバランス判定装置のCPUが実行するルーチンを示したフローチャートである。 図27は、各実施形態の判定装置のCPUが参照する遅延時間テーブルを示すグラフである。
 以下、本発明の各実施形態に係る内燃機関の空燃比気筒間インバランス判定装置(以下、単に「判定装置」とも称呼する。)について図面を参照しながら説明する。この判定装置は、内燃機関に供給される混合気の空燃比(機関の空燃比)を制御する空燃比制御装置の一部であり、更に、燃料噴射量を制御する燃料噴射量制御装置の一部でもある。
<第1実施形態>
(構成)
 図7は、第1実施形態に係る判定装置(以下、「第1判定装置」とも称呼する。)を、4サイクル・火花点火式・多気筒(直列4気筒)・内燃機関10に適用したシステムの概略構成を示している。なお、図7は、特定気筒の断面のみを示しているが、他の気筒も同様な構成を備えている。
 この内燃機関10は、シリンダブロック、シリンダブロックロワーケース及びオイルパン等を含むシリンダブロック部20と、シリンダブロック部20の上に固定されるシリンダヘッド部30と、シリンダブロック部20にガソリン混合気を供給するための吸気系統40と、シリンダブロック部20からの排ガスを外部に放出するための排気系統50と、を含んでいる。
 シリンダブロック部20は、シリンダ21、ピストン22、コンロッド23及びクランク軸24を含んでいる。ピストン22はシリンダ21内を往復動し、ピストン22の往復動がコンロッド23を介してクランク軸24に伝達され、これにより同クランク軸24が回転するようになっている。シリンダ21の壁面及びピストン22の上面は、シリンダヘッド部30の下面とともに燃焼室25を形成している。
 シリンダヘッド部30は、燃焼室25に連通した吸気ポート31、吸気ポート31を開閉する吸気弁32、吸気弁32を駆動するインテークカムシャフトを含むとともに同インテークカムシャフトの位相角を連続的に変更する可変吸気タイミング制御装置33、可変吸気タイミング制御装置33のアクチュエータ33a、燃焼室25に連通した排気ポート34、排気ポート34を開閉する排気弁35、排気弁35を駆動するエキゾーストカムシャフトを含むとともに同エキゾーストカムシャフトの位相角を連続的に変更する可変排気タイミング制御装置36、可変排気タイミング制御装置36のアクチュエータ36a、点火プラグ37、点火プラグ37に与える高電圧を発生するイグニッションコイルを含むイグナイタ38及び燃料噴射弁(燃料噴射手段、燃料供給手段)39を備えている。
 燃料噴射弁39は、一つの燃焼室25に対して一つずつ配設されている。燃料噴射弁39は吸気ポート31に設けられている。燃料噴射弁39は、噴射指示信号に応答し、正常である場合に「その噴射指示信号に含まれる指示燃料噴射量の燃料」を対応する吸気ポート31内に噴射するようになっている。このように、複数の気筒のそれぞれは、他の気筒とは独立して燃料供給を行う燃料噴射弁39を備えている。
 吸気系統40は、インテークマニホールド41、吸気管42、エアフィルタ43、及び、スロットル弁44を備えている。
 インテークマニホールド41は、図1に示したように、複数の枝部41aとサージタンク41bとからなる。複数の枝部41aのそれぞれの一端は、図7に示したように、複数の吸気ポート31のそれぞれに接続されている。複数の枝部41aの他端はサージタンク41bに接続されている。吸気管42の一端はサージタンク41bに接続されている。エアフィルタ43は吸気管42の他端に配設されている。スロットル弁44は、吸気管42内にあって吸気通路の開口断面積を可変とするようになっている。スロットル弁44は、DCモータからなるスロットル弁アクチュエータ44a(スロットル弁駆動手段の一部)により吸気管42内で回転駆動されるようになっている。
 排気系統50は、エキゾーストマニホールド51、エキゾーストパイプ52、エキゾーストパイプ52に配設された上流側触媒53、及び、上流側触媒53よりも下流のエキゾーストパイプ52に配設された図示しない下流側触媒を備えている。
 エキゾーストマニホールド51は、図1に示したように、それぞれの一端が排気ポートに接続された複数の枝部51aと、その複数の枝部51aのそれぞれの他端であって総ての枝部51aが集合している集合部51bとを備えている。この集合部51bは、複数(2以上であり、本例では4つ)の気筒から排出された排ガスが集合するから、排気集合部HKとも称呼される。エキゾーストパイプ52は集合部51bに接続されている。図7に示したように、排気ポート34、エキゾーストマニホールド51及びエキゾーストパイプ52は、排気通路を構成している。
 上流側触媒53及び下流側触媒のそれぞれは、所謂、白金、ロジウム及びパラジウム等の貴金属(触媒物質)からなる活性成分を担持する三元触媒装置(排気浄化触媒)である。各触媒は、各触媒に流入するガスの空燃比が理論空燃比であるとき、HC,CO,Hなどの未燃成分を酸化するとともに窒素酸化物(NOx)を還元する機能を有する。この機能は触媒機能とも称呼される。更に、各触媒は、酸素を吸蔵(貯蔵)する酸素吸蔵機能を有し、この酸素吸蔵機能により空燃比が理論空燃比から偏移したとしても未燃成分及び窒素酸化物を浄化することができる。この酸素吸蔵機能は、触媒に担持されているセリア(CeO)等の酸素吸蔵材によってもたらされる。
 このシステムは、熱線式エアフローメータ61、スロットルポジションセンサ62、水温センサ63、クランクポジションセンサ64、インテークカムポジションセンサ65、エキゾーストカムポジションセンサ66、上流側空燃比センサ67、下流側空燃比センサ68、及び、アクセル開度センサ69を備えている。
 エアフローメータ61は、吸気管42内を流れる吸入空気の質量流量(吸入空気流量)Gaに応じた信号を出力するようになっている。即ち、吸入空気流量Gaは、単位時間あたりに機関10に吸入される空気量を表す。
 スロットルポジションセンサ62は、スロットル弁44の開度(スロットル弁開度)を検出し、スロットル弁開度TAを表す信号を出力するようになっている。
 水温センサ63は、内燃機関10の冷却水の温度を検出し、冷却水温THWを表す信号を出力するようになっている。
 クランクポジションセンサ64は、クランク軸24が10°回転する毎に幅狭のパルスを有するとともに同クランク軸24が360°回転する毎に幅広のパルスを有する信号を出力するようになっている。この信号は、後述する電気制御装置70によって機関回転速度NEに変換される。
 インテークカムポジションセンサ65は、インテークカムシャフトが所定角度から90度、次いで90度、更に180度回転する毎に一つのパルスを出力するようになっている。後述する電気制御装置70は、クランクポジションセンサ64及びインテークカムポジションセンサ65からの信号に基づいて、基準気筒(例えば第1気筒)の圧縮上死点を基準とした絶対クランク角CAを取得するようになっている。この絶対クランク角CAは、基準気筒の圧縮上死点において「0°クランク角」に設定され、クランク角の回転角度に応じて720°クランク角まで増大し、その時点にて再び0°クランク角に設定される。
 エキゾーストカムポジションセンサ66は、エキゾーストカムシャフトが所定角度から90度、次いで90度、更に180度回転する毎に一つのパルスを出力するようになっている。
 上流側空燃比センサ67(本発明における空燃比センサ)は、図1にも示したように、エキゾーストマニホールド51の集合部51b(排気集合部HK)と上流側触媒53との間の位置において「エキゾーストマニホールド51及びエキゾーストパイプ52の何れか(即ち、排気通路)」に配設されている。上流側空燃比センサ67は、例えば、特開平11−72473号公報、特開2000−65782号公報及び特開2004−69547号公報等に開示された「拡散抵抗層を備える限界電流式広域空燃比センサ」である。
 上流側空燃比センサ67は、図8及び図9に示したように、空燃比検出部67aと、外側保護カバー67bと、内側保護カバー67cと、を有している。
 外側保護カバー67bは金属からなる中空円筒体である。外側保護カバー67bは内側保護カバー67cを覆うように、内側保護カバー67cを内部に収容している。外側保護カバー67bは、流入孔67b1をその側面に複数備えている。流入孔67b1は、排気通路を流れる排ガス(外側保護カバー67bの外部の排ガス)EXを外側保護カバー67bの内部に流入させるための貫通孔である。更に、外側保護カバー67bは、外側保護カバー67bの内部の排ガスを外部(排気通路)に流出させるための流出孔67b2をその底面に有している。
 内側保護カバー67cは、金属からなり、外側保護カバー67bの直径よりも小さい直径を有する中空円筒体である。内側保護カバー67cは、空燃比検出部67aを覆うように空燃比検出部67aを内部に収容している。内側保護カバー67cは流入孔67c1をその側面に複数備えている。この流入孔67c1は、外側保護カバー67bの流入孔67b1を通して「外側保護カバー67bと内側保護カバー67cとの間の空間」に流入した排ガスを、内側保護カバー67cの内部に流入させるための貫通孔である。更に、内側保護カバー67cは、内側保護カバー67cの内部の排ガスを外部に流出させるための流出孔67c2をその底面に有している。
 図2の(A)~(C)に示したように、空燃比検出部67aは、固体電解質層671と、排ガス側電極層672と、大気側電極層673と、拡散抵抗層674と、第一壁部675と、触媒部676と、第二壁部677と、ヒータ678と、を含んでいる。
 固体電解質層671は酸素イオン導電性酸化物焼結体である。本例において、固体電解質層671は、ZrO(ジルコニア)にCaOを安定剤として固溶させた「安定化ジルコニア素子」である。固体電解質層671は、その温度が活性温度以上であるとき、周知の「酸素電池特性」及び「酸素ポンプ特性」を発揮する。
 排ガス側電極層672は、白金(Pt)等の触媒活性の高い貴金属からなる。排ガス側電極層672は、固体電解質層671の一つの面上に形成されている。排ガス側電極層672は、化学メッキ等により浸透性を十分に有するように(即ち、多孔質状に)形成されている。
 大気側電極層673は、白金(Pt)等の触媒活性の高い貴金属からなる。大気側電極層673は、固体電解質層671の他の面上であって、固体電解質層671を挟んで排ガス側電極層672に対向するように形成されている。大気側電極層673は、化学メッキ等により浸透性を十分に有するように(即ち、多孔質状に)形成されている。
 拡散抵抗層(拡散律速層)674は、多孔質セラミック(耐熱性無機物質)からなる。拡散抵抗層674は、排ガス側電極層672の外側表面を覆うように、例えば、プラズマ溶射法等により形成されている。
 第一壁部675は、緻密であってガスを透過させないアルミナセラミックスからなる。第一壁部675は拡散抵抗層674の角部(一部)を除いて拡散抵抗層674を覆うように形成されている。即ち、第一壁部675は拡散抵抗層674の一部を外部に露呈させる貫通部を備えている。
 触媒部676は、第一壁部675の貫通部を閉じるように貫通部に形成されている。触媒部676は、上流側触媒53と同様、酸化還元反応を促進する触媒物質及び酸素吸蔵機能を発揮する酸素吸蔵材を担持している。触媒部676は多孔質体である。従って、図2の(B)及び図2の(C)に白抜きの矢印により示したように、排ガス(前述した内側保護カバー67cの内部に流入した排ガス)は、触媒部676を通過して拡散抵抗層674に到達し、その排ガスは更に拡散抵抗層674を通過して排ガス側電極層672に到達する。
 第二壁部677は、緻密であってガスを透過させないアルミナセラミックスからなる。第二壁部677は大気側電極層673を収容する空間である「大気室67A」を形成するように構成されている。大気室67Aには大気が導入されている。
 上流側空燃比センサ67には電源679が接続されている。電源679は、大気側電極層673側が高電位となり、排ガス側電極層672が低電位となるように、電圧V(=Vp)を印加する。
 ヒータ678は第二壁部677に埋設されている。ヒータ678は後述する電気制御装置70によって通電されたときに発熱し、固体電解質層671、排ガス側電極層672及び大気側電極層673を加熱し、それらの温度を調整するようになっている。以下、ヒータ678により加熱される「固体電解質層671、排ガス側電極層672及び大気側電極層673」を「センサ素子部、又は、空燃比センサ素子」とも称呼する。従って、ヒータ678は、センサ素子部の温度である「空燃比センサ素子温度」を制御するようになっている。ヒータ678の通電量(ヒータ678を流れる電流)が大きいほど、ヒータ678の発熱量は大きくなる。ヒータ678の通電量は、電気制御装置70が出力するデューティ信号(以下、「ヒータデューティDuty」とも称呼する。)が大きいほど大きくなるように調整される。ヒータデューティDutyが100%であるときヒータ678の発熱量は最大となる。ヒータデューティDutyが0%であるときヒータ678への通電は遮断され、その結果、ヒータ678は発熱しない。
 空燃比センサ素子温度は固体電解質層671のアドミタンスYとともに変化する。換言すると、アドミタンスYに基いて空燃比センサ素子温度を推定することができる。一般に、アドミタンスYが大きいほど空燃比センサ素子温度は高くなる。電気制御装置70は、排ガス側電極層672と大気側電極層673との間に、「矩形波又は正弦波等の電圧」を「電源679による印加電圧」に周期的に重畳させ、その際に固体電解質層671に流れる電流に基いて、実際の空燃比センサ67(固体電解質層671)のアドミタンスYactを取得するようになっている。
 このような構造を有する上流側空燃比センサ67は、図2の(B)に示したように、排ガスの空燃比が理論空燃比よりもリーン側の空燃比であるとき、拡散抵抗層674を通って排ガス側電極層672に到達した酸素をイオン化して大気側電極層673へと通過させる。この結果、電源679の正極から負極へと電流Iが流れる。この電流Iの大きさは、図3に示したように、電圧Vを所定値Vp以上に設定すると、排ガス側電極層672に到達した酸素の濃度(酸素分圧、排ガスの空燃比)に比例した一定値となる。上流側空燃比センサ67は、この電流(即ち、限界電流Ip)を電圧に変換した値を出力値Vabyfsとして出力する。
 これに対し、図2の(C)に示したように、排ガスの空燃比が理論空燃比よりもリッチ側の空燃比であるとき、上流側空燃比センサ67は、大気室67Aに存在する酸素をイオン化して排ガス側電極層672へと導き、拡散抵抗層674を通って排ガス側電極層672に到達する未燃物(HC,CO及びH等)を酸化する。この結果、電源679の負極から正極へと電流Iが流れる。この電流Iの大きさも、図3に示したように、電圧Vを所定値Vp以上に設定すると、排ガス側電極層672に到達した未燃物の濃度(即ち、排ガスの空燃比)に比例した一定値となる。上流側空燃比センサ67は、この電流(即ち、限界電流Ip)を電圧に変換した値を出力値Vabyfsとして出力する。
 即ち、空燃比検出部67aは、図4に示したように、上流側空燃比センサ67の配設位置を流れ、且つ、外側保護カバー67bの流入孔67b1及び内側保護カバー67cの流入孔67c1を通って空燃比検出部67aに到達しているガスの空燃比(上流側空燃比abyfs、検出空燃比abyfs)に応じた出力値Vabyfsを「空燃比センサ出力」として出力する。出力値Vabyfsは、空燃比検出部67aに到達しているガスの空燃比が大きくなるほど(リーンとなるほど)増大する。即ち、出力値Vabyfsは、空燃比検出部67aに到達している排ガスの空燃比に実質的に比例する。なお、出力値Vabyfsは、検出空燃比abyfsが理論空燃比であるとき、理論空燃比相当値Vstoichに一致する。
 電気制御装置70は、図4に示した空燃比変換テーブル(マップ)Mapabyfsを記憶していて、空燃比センサ67の出力値Vabyfsを空燃比変換テーブルMapabyfsに適用することにより、実際の上流側空燃比abyfsを検出する(即ち、検出空燃比abyfsを取得する)。
 ところで、上流側空燃比センサ67は、エキゾーストマニホールド51の排気集合部HKと上流側触媒53との間の位置においてエキゾーストマニホールド51及びエキゾーストパイプ52の何れかに外側保護カバー67bが露呈するように配設される。
 より具体的には、空燃比センサ67は、図8及び図9に示したように、保護カバー(67b、67c)の底面が排ガスEXの流れと平行であり、保護カバー(67b、67c)の中心軸線CCが排ガスEXの流れと直交するように排気通路内に配設される。これにより、外側保護カバー67bの流入孔67b1に到達した排気通路内の排ガスEXは、外側保護カバー67bの流出孔67b2近傍を流れる排気通路内の排ガスEXの流れにより、外側保護カバー67b及び内側保護カバー67cの内部へと吸い込まれる。
 従って、排気通路を流れる排ガスEXは、図8及び図9において矢印Ar1により示したように外側の保護カバー67bの流入孔67b1を通って外側の保護カバー67bと内側の保護カバー67cとの間に流入する。次いで、その排ガスは、矢印Ar2に示したように「内側の保護カバー67cの流入孔67c1」を通って「内側の保護カバー67cの内部」に流入した後に、空燃比検出部67aに到達する。その後、その排ガスは、矢印Ar3に示したように「内側の保護カバー67cの流出孔67c2及び外側の保護カバー67bの流出孔67b2」を通って排気通路に流出する。
 このため、「外側保護カバー67b及び内側保護カバー67c」の内部における排ガスの流速は、外側保護カバー67bの流出孔67b2近傍を流れる排ガスEXの流速(従って、単位時間あたりの吸入空気量である吸入空気流量Ga)に応じて変化する。換言すると、「ある空燃比の排ガス(第1排ガス)が流入孔67b1に到達した時点」から「その第1排ガスが空燃比検出部67aに到達する時点」までの時間は、吸入空気流量Gaに依存するが機関回転速度NEには依存しない。従って、空燃比センサ67の「排気通路を流れる排ガスの空燃比」に対する出力応答性(応答性)は、空燃比センサ67の外側保護カバー67bの近傍を流れる排ガスの流量(流速)が大きいほど良好になる。このことは、上流側空燃比センサ67が内側保護カバー67cのみを有する場合にも成立する。
 再び、図7を参照すると、下流側空燃比センサ68は、エキゾーストパイプ52であって上流側触媒53よりも下流側であり且つ下流側触媒よりも上流側(即ち、上流側触媒53と下流側触媒との間の排気通路)に配設されている。下流側空燃比センサ68は、周知の起電力式の酸素濃度センサ(安定化ジルコニアを用いた周知の濃淡電池型の酸素濃度センサ)である。下流側空燃比センサ68は、排気通路であって下流側空燃比センサ68が配設されている部位を通過するガスである被検出ガスの空燃比(即ち、上流側触媒53から流出し且つ下流側触媒に流入するガスの空燃比、従って、機関に供給される混合気の空燃比の時間的平均値)に応じた出力値Voxsを発生するようになっている。
 この出力値Voxsは、図10に示したように、被検出ガスの空燃比が理論空燃比よりもリッチのとき最大出力値max(例えば、約0.9V)となり、被検出ガスの空燃比が理論空燃比よりもリーンのとき最小出力値min(例えば、約0.1V)となり、被検出ガスの空燃比が理論空燃比であるとき最大出力値maxと最小出力値minの略中間の電圧Vst(中間電圧Vst、例えば、約0.5V)となる。更に、この出力値Voxsは、被検出ガスの空燃比が理論空燃比よりもリッチな空燃比からリーンな空燃比へと変化する際に最大出力値maxから最小出力値minへと急変し、被検出ガスの空燃比が理論空燃比よりもリーンな空燃比からリッチな空燃比へと変化する際に最小出力値minから最大出力値maxへと急変する。
 図7に示したアクセル開度センサ69は、運転者によって操作されるアクセルペダル81の操作量Accp(アクセルペダル操作量Accp)を表す信号を出力するようになっている。アクセルペダル操作量Accpは、アクセルペダル81の開度(アクセルペダル操作量)が大きくなるとともに大きくなる。
 電気制御装置70は、互いにバスで接続された「CPU71、CPU71が実行するプログラム、テーブル(マップ、関数)及び定数等を予め記憶したROM72、CPU71が必要に応じてデータを一時的に格納するRAM73、及び、バックアップRAM74並びにADコンバータを含むインターフェース75等」からなる周知のマイクロコンピュータである。
 バックアップRAM74は、機関10を搭載した車両の図示しないイグニッション・キー・スイッチの位置(オフ位置、始動位置及びオン位置等の何れか)に関わらず、車両に搭載されたバッテリから電力の供給を受けるようになっている。バックアップRAM74は、バッテリから電力の供給を受けている場合、CPU71の指示に応じてデータを格納する(データが書き込まれる)とともに、そのデータを読み出し可能となるように保持(記憶)する。バックアップRAM74は、バッテリが車両から取り外される等によりバッテリからの電力供給が遮断されると、データを保持することができない。そこで、CPU71は、バックアップRAM74への電力供給が再開されたとき、バックアップRAM74に保持されるべきデータを初期化(デフォルト値に設定)するようになっている。
 インターフェース75は、センサ61~69と接続され、CPU71にそれらのセンサからの信号を供給するようになっている。更に、インターフェース75は、CPU71の指示に応じて可変吸気タイミング制御装置33のアクチュエータ33a、可変排気タイミング制御装置36のアクチュエータ36a、各気筒のイグナイタ38、各気筒に対応して設けられた燃料噴射弁39、スロットル弁アクチュエータ44a及び空燃比センサ67のヒータ678等に駆動信号(指示信号)を送出するようになっている。
 なお、電気制御装置70は、取得されたアクセルペダルの操作量Accpが大きくなるほどスロットル弁開度TAが大きくなるように、スロットル弁アクチュエータ44aに指示信号を送出するようになっている。即ち、電気制御装置70は、運転者により変更される機関10の加速操作量(アクセルペダル操作量Accp)に応じて「機関10の吸気通路に配設されたスロットル弁44」の開度を変更するスロットル弁駆動手段を備えている。
(空燃比気筒間インバランス判定の概要)
 次に、第1判定装置が採用した空燃比気筒間インバランス判定方法の概要について説明する。空燃比気筒間インバランス判定は、燃料噴射弁39の特性が変化すること等に起因して気筒間における空燃比の不均一性が警告必要値以上となったか否かを判定するための判定である。換言すると、第1判定装置は、インバランス気筒の空燃比と非インバランス気筒の空燃比との差の大きさ(気筒別空燃比差)が「エミッション上許容できない程度」以上となっている場合、空燃比気筒間インバランス状態が発生したと判定する。
 第1判定装置は、空燃比気筒間インバランス判定を行うために、「空燃比センサ67の出力値Vabyfsにより表される空燃比(即ち、出力値Vabyfsを図4に示した空燃比変換テーブルMapabyfsに適用することにより得られる検出空燃比abyfs)」の「単位時間(一定のサンプリング時間ts)当たりの変化量」を取得する。この「検出空燃比abyfsの単位時間当たりの変化量」は、その単位時間が例えば4m秒程度の極めて短い時間であるとき、検出空燃比abyfsの時間微分値d(abyfs)/dtであると言うこともできる。従って、「検出空燃比abyfsの単位時間当たりの変化量」は「検出空燃比変化率ΔAF」とも称呼される。
 空燃比センサ67には、各気筒からの排ガスが点火順(故に、排気順)に到達する。空燃比気筒間インバランス状態が発生していない場合、各気筒から排出され且つ空燃比センサ67に到達する排ガスの空燃比は互いに略同一である。従って、空燃比気筒間インバランス状態が発生していない場合の検出空燃比abyfsは、例えば、図5の(B)において破線C1により示したように変化する。即ち、空燃比気筒間インバランス状態が発生していない場合、空燃比センサ67の出力値Vabyfsの波形は略平坦である。このため、図5の(C)において破線C3により示したように、空燃比気筒間インバランス状態が発生していない場合、検出空燃比変化率ΔAFの絶対値は大きくならない。
 一方、「特定気筒(例えば、第1気筒)に対して燃料を噴射する燃料噴射弁39」の特性が「指示燃料噴射量よりも多い燃料を噴射する特性」となって空燃比気筒間インバランス状態が発生すると、その特定気筒の排ガスの空燃比(インバランス気筒の空燃比)と、その特定気筒以外の気筒の排ガスの空燃比(非インバランス気筒の空燃比)と、は大きく相違する。
 従って、空燃比気筒間インバランス状態が発生している場合の検出空燃比abyfsは、例えば図5の(B)の実線C2により示したように、単位燃焼サイクル期間毎に大きく変動する。このため、空燃比気筒間インバランス状態が発生している場合、図5の(C)において実線C4により示したように、検出空燃比変化率ΔAFの絶対値は大きくなる。なお、直列4気筒・4サイクル・エンジンの場合における単位燃焼サイクル期間は、720°クランク角が経過する期間である。即ち、機関10の単位燃焼サイクル期間は、一つの空燃比センサ67に到達する排ガスを排出している総ての気筒である第1~第4気筒において各一回の燃焼行程が終了するのに要するクランク角が経過する期間である。
 しかも、検出空燃比変化率ΔAFの絶対値|ΔAF|は、インバランス気筒の空燃比が非インバランス気筒の空燃比から乖離するほど大きく変動する。例えば、インバランス気筒の空燃比と非インバランス気筒の空燃比との差の大きさが第1の値であるときの検出空燃比abyfsが図5(B)の実線C2のように変化するとすれば、インバランス気筒の空燃比と非インバランス気筒の空燃比との差の大きさが「第1の値の値よりも大きい第2の値」であるときの検出空燃比abyfsは図5(B)の一点鎖線C2aのように変化する。従って、検出空燃比変化率ΔAFの絶対値は、インバランス気筒の空燃比が非インバランス気筒の空燃比から乖離するほど大きくなる。
 そこで、第1判定装置は、所定のパラメータ取得条件が成立している期間(パラメータ取得期間)において、一つの単位燃焼サイクル期間中にサンプリング時間tsが経過する毎に、検出空燃比変化率ΔAF(一階微分値d(abyfs)/dt)を基本指標量として取得する。第1判定装置は、一つの単位燃焼サイクル期間において取得された複数の検出空燃比変化率ΔAFの絶対値|ΔAF|の平均値を求める。そして、第1判定装置は、複数の単位燃焼サイクル期間のそれぞれに対して求めた「検出空燃比変化率ΔAFの絶対値|ΔAF|の平均値」の平均値を求め、その値を空燃比変動指標量AFDとして採用する。但し、空燃比変動指標量の求め方はこれに限定されることはなく、後述する種々の方法により取得され得る。
 一方、図6は、空燃比センサ素子温度と空燃比センサ67の応答性との関係を示したグラフである。図6から理解されるように、空燃比センサ素子温度が高いほど、空燃比センサの応答性は良好になる。これは、センサ素子部(特に、排ガス側電極層672)における反応(酸化・還元反応等)が活発になるからであると考えられる。
 他方、気筒別空燃比差が「0」でない限り、排ガスの空燃比は単位燃焼サイクルを一周期として変動する。従って、空燃比センサ素子温度が相対的に低いと、空燃比センサの応答性が排ガスの変動に対して十分ではないので、空燃比センサの出力値Vabyfsが「その排ガスの空燃比の変動」に十分に追従できない。
 従って、図11の実線L1に示したように、気筒別空燃比差が「空燃比気筒間インバランス状態が発生していると判定すべき程度」に大きい場合の空燃比変動指標量AFDは、空燃比センサ素子温度が低いほど小さくなる。同様に、図11の破線L2に示したように、気筒別空燃比差が「0」ではなく且つ「空燃比気筒間インバランス状態が発生していると判定すべきではない程度」に小さい場合の空燃比変動指標量AFDも、空燃比センサ素子温度が低いほど小さくなる。
 このため、空燃比気筒間インバランス状態が発生していると判定すべき場合であって且つ空燃比センサ素子温度が相対的に低い場合に得られる空燃比変動指標量(例えば、点A1を参照。)は、空燃比気筒間インバランス状態が発生していないと判定すべき場合であって且つ空燃比センサ素子温度が相対的に高い場合に得られる空燃比変動指標量(例えば、点A2を参照。)よりも、小さくなる場合が生じる。従って、空燃比変動指標量AFDをインバランス判定用パラメータとしてそのまま採用し、そのインバランス判定用パラメータと「一定のインバランス判定用閾値」との比較に基いてインバランス判定を実行すると、インバランス判定を誤る虞がある。
 そこで、第1判定装置は、係る問題に以下のようにして対処する。
・第1判定装置は、パラメータ取得期間における空燃比センサ素子温度を推定する。
・第1判定装置は、その推定された空燃比センサ素子温度に基いて空燃比変動指標量AFDを補正して得た値(空燃比変動指標量補正値)を、インバランス判定用パラメータXとして採用する。
 より具体的に述べると、第1判定装置は、推定された空燃比センサ素子温度が特定温度よりも高くなるほど「取得された空燃比変動指標量AFD」を減少させる補正、及び/又は、推定された空燃比センサ素子温度が特定温度よりも低くなるほど「取得された空燃比変動指標量AFD」を増大させる補正、を前記取得された空燃比変動指標量に施すことによって空燃比変動指標量補正値を取得し、その空燃比変動指標量補正値に応じた値(例えば、正の定数を乗じた値、但し、正の定数は「1」であってもよい。)をインバランス判定用パラメータXとして決定する。
 第1判定装置は、インバランス判定用パラメータXを決定すると、そのインバランス判定用パラメータXとインバランス判定用閾値Xth(一定の閾値)とを比較する。第1判定装置は、インバランス判定用パラメータXがインバランス判定用閾値Xthよりも大きいとき、空燃比気筒間インバランス状態が発生したと判定する。これに対し、第1判定装置は、インバランス判定用パラメータXがインバランス判定用閾値Xthよりも小さいとき、空燃比気筒間インバランス状態が発生していないと判定する。以上が、第1判定装置が採用した空燃比気筒間インバランス判定方法の概要である。
 このように、第1判定装置は、空燃比変動指標量AFDを「推定された空燃比センサ素子温度」に基いて補正することにより、インバランス判定用パラメータXを取得する。従って、インバランス判定用パラメータXは、空燃比センサの素子温度(従って、空燃比センサの応答性)が特定の値であるときに得られる値へと規格化される(例えば、図11の線L1hosei及び線L2hoseiを参照。)。その結果、パラメータ取得期間における空燃比センサ素子温度に関わらず、インバランス判定を精度良く実行することができる。
 (実際の作動)
<燃料噴射量制御>
 第1判定装置のCPU71は、図12に示した「指示燃料噴射量Fiの計算及び燃料噴射の指示を行うルーチン」を、任意の気筒のクランク角が吸気上死点前の所定クランク角度(例えば、BTDC90°CA)となる毎に、その気筒(以下、「燃料噴射気筒」とも称呼する。)に対して繰り返し実行するようになっている。従って、所定のタイミングになると、CPU71はステップ1200から処理を開始し、ステップ1210にてフューエルカット条件(以下、「FC条件」と表記する。)が成立しているか否かを判定する。
 いま、FC条件が成立してないと仮定する。この場合、CPU71は、ステップ1210にて「No」と判定し、以下に述べるステップ1220乃至ステップ1250の処理を順に行う。その後、CPU71は、ステップ1295に進んで本ルーチンを一旦終了する。
 ステップ1220:CPU71は、「エアフローメータ61により計測された吸入空気流量Ga、クランクポジションセンサ64の信号に基いて取得された機関回転速度NE、及び、ルックアップテーブルMapMc」に基いて「燃料噴射気筒に吸入される空気量」である「筒内吸入空気量Mc(k)」を取得する。筒内吸入空気量Mc(k)は、各吸気行程に対応されながらRAM内に記憶される。筒内吸入空気量Mc(k)は、周知の空気モデル(吸気通路における空気の挙動を模した物理法則に従って構築されたモデル)により算出されてもよい。
 ステップ1230:CPU71は、筒内吸入空気量Mc(k)を目標空燃比abyfrで除することにより基本燃料噴射量Fbaseを求める。目標空燃比abyfr(上流側目標空燃比abyfr)は、始動後及び高負荷時等の特殊な場合を除き、理論空燃比stoich(例えば、14.6)に設定されている。従って、基本燃料噴射量Fbaseは、理論空燃比stoichである目標空燃比abyfrを得るために必要な燃料噴射量のフィードフォワード量である。このステップ1230は、機関に供給される混合気の空燃比を目標空燃比abyfrに一致させるためのフィードフォワード制御手段(空燃比制御手段)を構成している。
 ステップ1240:CPU71は、基本燃料噴射量Fbaseをメインフィードバック量DFiにより補正する。より具体的には、CPU71は、基本燃料噴射量Fbaseにメインフィードバック量DFiを加えることにより、指示燃料噴射量(最終燃料噴射量)Fiを算出する。メインフィードバック量DFiは、機関の空燃比を目標空燃比abyfrに一致させるための空燃比フィードバック量である。メインフィードバック量DFiの算出方法については後述する。
 ステップ1250:CPU71は、「指示燃料噴射量Fiの燃料」を「燃料噴射気筒に対応して設けられている燃料噴射弁39」から噴射させるための噴射指示信号を、その燃料噴射弁39に送出する。
 この結果、機関の空燃比を目標空燃比abyfrに一致させるために必要な量の燃料が燃料噴射気筒の燃料噴射弁39から噴射させられる。即ち、ステップ1220乃至ステップ1250は、「空燃比センサ67に到達する排ガスを排出している2以上の気筒(本例においては総ての気筒)の燃焼室25に供給される混合気の空燃比」が目標空燃比abyfrとなるように指示燃料噴射量Fiを制御する指示燃料噴射量制御手段を構成している。
 一方、CPU71がステップ1210の処理を実行する時点において、FC条件が成立していると、CPU71はそのステップ1210にて「Yes」と判定し、ステップ1295に直接進んで本ルーチンを一旦終了する。この場合、ステップ1250の処理による燃料噴射が実行されないので、フューエルカット制御(燃料供給停止制御)が実行される。
<メインフィードバック量の算出>
 CPU71は図13にフローチャートにより示した「メインフィードバック量算出ルーチン」を所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU71はステップ1300から処理を開始し、ステップ1305に進んで「メインフィードバック制御条件(上流側空燃比フィードバック制御条件)」が成立しているか否かを判定する。
 メインフィードバック制御条件は以下の総ての条件が成立したときに成立する。
(A1)空燃比センサ67が活性化している。
(A2)機関の負荷(負荷率)KLが閾値KLth以下である。
(A3)フューエルカット制御中でない。
 なお、負荷KLは、ここでは下記の(1)式により求められる。この負荷KLに代え、アクセルペダル操作量Accpが用いられても良い。(1)式において、Mcは筒内吸入空気量であり、ρは空気密度(単位は(g/l))、Lは機関10の排気量(単位は(l))、「4」は機関10の気筒数である。
 KL=(Mc/(ρ・L/4))・100% …(1)
 いま、メインフィードバック制御条件が成立しているものとして説明を続ける。この場合、CPU71はステップ1305にて「Yes」と判定して以下に述べるステップ1310乃至ステップ1340の処理を順に行い、ステップ1395に進んで本ルーチンを一旦終了する。
 ステップ1310:CPU71は、下記(2)式に従ってフィードバック制御用出力値Vabyfcを取得する。(2)式において、Vabyfsは空燃比センサ67の出力値、Vafsfbは下流側空燃比センサ68の出力値Voxsに基づいて算出されるサブフィードバック量である。サブフィードバック量Vafsfbの算出方法は周知である。サブフィードバック量Vafsfbは、例えば、下流側空燃比センサ68の出力値Voxsが理論空燃比に相当する値Vstよりもリッチ側の空燃比を示す値であるとき減少させられ、下流側空燃比センサ68の出力値Voxsが理論空燃比に相当する値Vstよりもリーン側の空燃比を示す値であるとき増大させられる。第1判定装置は、サブフィードバック量Vafsfbを「0」に設定することにより、サブフィードバック制御を実行しなくてもよい。
 Vabyfc=Vabyfs+Vafsfb  …(2)
 ステップ1315:CPU71は、下記(3)式に示したように、上記フィードバック制御用出力値Vabyfcを図4に示したテーブルMapabyfsに適用することにより、フィードバック制御用空燃比abyfscを得る。
 abyfsc=Mapabyfs(Vabyfc)  …(3)
 ステップ1320:CPU71は、下記(4)式に従って、「現時点よりもNサイクル前の時点において燃焼室25に実際に供給された燃料の量」である「筒内燃料供給量Fc(k−N)」を求める。即ち、CPU71は、「現時点よりもNサイクル(即ち、N・720°クランク角)前の時点における筒内吸入空気量Mc(k−N)」を「上記フィードバック制御用空燃比abyfsc」により除すことにより、筒内燃料供給量Fc(k−N)を求める。
 Fc(k−N)=Mc(k−N)/abyfsc  …(4)
 このように、筒内燃料供給量Fc(k−N)を求めるために、現時点からNサイクル前の筒内吸入空気量Mc(k−N)をフィードバック制御用空燃比abyfscで除すのは、「燃焼室25内での混合気の燃焼により生成された排ガス」が空燃比センサ67に到達するまでに「Nサイクルに相当する時間」を要しているからである。
 ステップ1325:CPU71は、下記(5)式に従って、「現時点よりもNサイクル前の時点において燃焼室25に供給されるべきであった燃料の量」である「目標筒内燃料供給量Fcr(k−N)」を求める。即ち、CPU71は、現時点からNサイクル前の筒内吸入空気量Mc(k−N)を目標空燃比abyfrで除すことにより、目標筒内燃料供給量Fcr(k−N)を求める。
 Fcr=Mc(k−N)/abyfr  …(5)
 ステップ1330:CPU71は、下記(6)式に従って、筒内燃料供給量偏差DFcを取得する。即ち、CPU71は、目標筒内燃料供給量Fcr(k−N)から筒内燃料供給量Fc(k−N)を減じることにより、筒内燃料供給量偏差DFcを求める。この筒内燃料供給量偏差DFcは、Nストローク前の時点で筒内に供給された燃料の過不足分を表す量となる。
 DFc=Fcr(k−N)−Fc(k−N)  …(6)
 ステップ1335:CPU71は、下記(7)式に従って、メインフィードバック量DFiを求める。この(7)式において、Gpは予め設定された比例ゲイン、Giは予め設定された積分ゲインである。更に、(7)式の「値SDFc」は「筒内燃料供給量偏差DFcの積分値」である。つまり、CPU71は、フィードバック制御用空燃比abyfscを目標空燃比abyfrに一致させるための比例積分制御により「メインフィードバック量DFi」を算出する。
 DFi=Gp・DFc+Gi・SDFc  …(7)
 ステップ1340:CPU71は、その時点における筒内燃料供給量偏差DFcの積分値SDFcに上記ステップ1330にて求められた筒内燃料供給量偏差DFcを加えることにより、新たな筒内燃料供給量偏差の積分値SDFcを取得する。
 以上により、メインフィードバック量DFiが比例積分制御により求められ、このメインフィードバック量DFiが前述した図12のステップ1240の処理により指示燃料噴射量Fiに反映される。
 一方、図13のステップ1305の判定時において、メインフィードバック制御条件が不成立であると、CPU71はそのステップ1305にて「No」と判定してステップ1345に進み、メインフィードバック量DFiの値を「0」に設定する。次いで、CPU71は、ステップ1350にて筒内燃料供給量偏差の積分値SDFcに「0」を格納する。その後、CPU71は、ステップ1395に進んで本ルーチンを一旦終了する。このように、メインフィードバック制御条件が不成立であるとき、メインフィードバック量DFiは「0」に設定される。従って、基本燃料噴射量Fbaseのメインフィードバック量DFiによる補正は行わない。
<空燃比気筒間インバランス判定>
 次に、「空燃比気筒間インバランス判定」を実行するための処理について説明する。CPU71は、4ms(所定の一定サンプリング時間ts)が経過する毎に、図14にフローチャートにより示した「空燃比気筒間インバランス判定ルーチン」を実行するようになっている。
 従って、所定のタイミングになると、CPU71はステップ1400から処理を開始してステップ1405に進み、パラメータ取得許可フラグXkyokaの値が「1」であるか否かを判定する。
 このパラメータ取得許可フラグXkyokaの値は、絶対クランク角CAが0°クランク角になった時点において後述するパラメータ取得条件(インバランス判定用パラメータ取得許可条件)が成立しているときに「1」に設定され、パラメータ取得条件が不成立になった時点において直ちに「0」に設定される。
 パラメータ取得条件は、以下の総ての条件(条件C1乃至条件C6)が成立したときに成立する。従って、パラメータ取得条件は、以下の総ての条件(条件C1乃至条件C6)のうちの少なくとも一つが不成立であるとき、成立しない。勿論、パラメータ取得条件を構成する条件は、以下の条件C1乃至条件C6に限定されることはない。
(条件C1)今回の機関10の始動後、空燃比気筒間インバランス判定の最終的な結果が得られていない。この条件C1は、インバランス判定実施要求条件とも称呼される。条件C1は、前回のインバランス判定からの「機関10の運転時間の積算値、又は、吸入空気流量Gaの積算値、が所定値以上である。」ことに置換されてもよい。
(条件C2)エアフローメータ61により取得される吸入空気流量Gaが、所定範囲内である。即ち、吸入空気流量Gaが、低側閾値空気流量GaLoth以上であり且つ高側閾値空気流量GaHith以下である。
(条件C3)機関回転速度NEが所定範囲内である。即ち、機関回転速度NEが、低側閾値回転速度NELoth以上であり且つ高側閾値回転速度NEHith以下である。
(条件C4)冷却水温THWが閾値冷却水温THWth以上である。
(条件C5)メインフィードバック制御条件が成立している。
(条件C6)フューエルカット制御中でない。
 いま、パラメータ取得許可フラグXkyokaの値が「1」であると仮定する。この場合、CPU71はステップ1405にて「Yes」と判定し、ステップ1410に進んで「その時点の空燃比センサ67の出力値Vabyfs」をAD変換することにより取得する。
 次に、CPU71はステップ1415に進み、ステップ1410にて取得した出力値Vabyfsを図4に示した空燃比変換テーブルMapabyfsに適用することにより、今回の検出空燃比abyfsを取得する。なお、CPU71は、ステップ1415の処理の前に、本ルーチンを前回実行したときに取得した検出空燃比abyfsを前回の検出空燃比abyfsoldとして記憶する。即ち、前回の検出空燃比abyfsoldは、現時点から4ms(サンプリング時間ts)前の時点における検出空燃比abyfsである。前回の検出空燃比abyfsoldの初期値は、イニシャルルーチンにおいて理論空燃比相当値VstoichのAD変換値に相当する値に設定されている。イニシャルルーチンは、機関10が搭載された車両のイグニッション・キー・スイッチがオフからオンに変更されたときにCPU71により実行されるルーチンである。
 次に、CPU71はステップ1420に進んで、
(A)検出空燃比変化率ΔAFを取得し、
(B)検出空燃比変化率ΔAFの絶対値|ΔAF|の積算値SAFDを更新し、且つ、
(C)検出空燃比変化率ΔAFの絶対値|ΔAF|の、積算値SAFDへの積算回数カウンタCnを更新する。
 以下、これらの更新方法について具体的に説明する。
(A)検出空燃比変化率ΔAFの取得。
 検出空燃比変化率ΔAF(微分値d(abyfs)/dt)は、空燃比変動指標量AFD及びインバランス判定用パラメータXの元データとなるデータ(基本指標量)である。CPU71は、この検出空燃比変化率ΔAFを、今回の検出空燃比abyfsから前回の検出空燃比abyfsoldを減じることによって取得する。即ち、今回の検出空燃比abyfsをabyfs(n)、前回の検出空燃比abyfsoldをabyfs(n−1)と表記すると、CPU71はステップ1420にて「今回の検出空燃比変化率ΔAF(n)」を下記の(8)式に従って求める。
 ΔAF(n)=abyfs(n)−abyfs(n−1)  …(8)
(B)検出空燃比変化率ΔAFの絶対値|ΔAF|の積算値SAFDの更新。
 CPU71は今回の積算値SAFD(n)を下記の(9)式に従って求める。即ち、CPU71は、ステップ1420に進んだ時点における前回の積算値SAFD(n−1)に上記算出した今回の検出空燃比変化率ΔAF(n)の絶対値|ΔAF(n)|を加えることにより、積算値SAFDを更新する。
 SAFD(n)=SAFD(n−1)+|ΔAF(n)| …(9)
 積算値SAFDに「今回の検出空燃比変化率の絶対値|ΔAF(n)|」を積算する理由は、図5の(B)及び(C)からも理解されるように、検出空燃比変化率ΔAF(n)は正の値にも負の値にもなるからである。なお、積算値SAFDも、イニシャルルーチンにおいて「0」に設定されるようになっている。
(C)検出空燃比変化率ΔAFの絶対値|ΔAF|の、積算値SAFDへの積算回数カウンタCnの更新。
 CPU71は、下記の(10)式に従って、カウンタCnの値を「1」だけ増大する。Cn(n)は更新後のカウンタCnであり、Cn(n−1)は更新前のカウンタCnである。このカウンタCnの値は上述したイニシャルルーチンにおいて「0」に設定されるとともに、後述するステップ1475にても「0」に設定される。従って、カウンタCnの値は、積算値SAFDに積算された検出空燃比変化率ΔAFの絶対値|ΔAF|のデータ数を示す。
 Cn(n)=Cn(n−1)+1 …(10)
 次に、CPU71はステップ1425に進み、基準気筒(本例では第1気筒)の圧縮上死点を基準としたクランク角CA(絶対クランク角CA)が720°クランク角になっているか否かを判定する。このとき、絶対クランク角CAが720°クランク角未満であると、CPU71はステップ1425にて「No」と判定してステップ1495に直接進み、本ルーチンを一旦終了する。
 なお、ステップ1425は、検出空燃比変化率ΔAFの絶対値|ΔAF|の平均値を求めるための最小単位の期間を定めるステップであり、ここでは「単位燃焼サイクル期間である720°クランク角」がその最小単位の期間に相当する。勿論、この最小単位の期間は720°クランク角よりも短くてもよいが、サンプリング時間tsの複数倍の長さ以上の期間であることが望ましい。即ち、最小単位の期間内に複数個の検出空燃比変化率ΔAFが取得されるように、その最小単位の期間が定められていることが望ましい。
 一方、CPU71がステップ1425の処理を行う時点において、絶対クランク角CAが720°クランク角になっていると、CPU71はそのステップ1425にて「Yes」と判定し、ステップ1430に進む。
 CPU71は、ステップ1430にて、
(D)検出空燃比変化率ΔAFの絶対値|ΔAF|の平均値AveΔAFを算出し、
(E)平均値AveΔAFの積算値Saveを更新し、且つ、
(F)積算回数カウンタCsを更新する。
以下、これらの更新方法について具体的に説明する。
(D)検出空燃比変化率ΔAFの絶対値|ΔAF|の平均値AveΔAFの算出。
 CPU71は、下記の(11)式に示したように、積算値SAFDをカウンタCnの値により除することにより、検出空燃比変化率ΔAFの絶対値|ΔAF|の平均値AveΔAFを算出する。この後、CPU71は積算値SAFDを「0」に設定する。
 AveΔAF=SAFD/Cn  …(11)
(E)平均値AveΔAFの積算値Saveの更新。
 CPU71は今回の積算値Save(n)を下記の(12)式に従って求める。即ち、CPU71は、ステップ1430に進んだ時点における前回の積算値Save(n−1)に上記算出した今回の平均値AveΔAFを加えることにより、積算値Saveを更新する。この積算値Save(n)の値は上述したイニシャルルーチンにおいて「0」に設定される。
 Save(n)=Save(n−1)+AveΔAF  …(12)
(F)積算回数カウンタCsの更新。
 CPU71は、下記の(13)式に従って、カウンタCsの値を「1」だけ増大する。Cs(n)は更新後のカウンタCsであり、Cs(n−1)は更新前のカウンタCsである。このカウンタCsの値は上述したイニシャルルーチンにおいて「0」に設定される。従って、カウンタCsの値は、積算値Saveに積算された平均値AveΔAFのデータ数を示す。
 Cs(n)=Cs(n−1)+1 …(13)
 次に、CPU71はステップ1435に進み、カウンタCsの値が閾値Csth以上であるか否かを判定する。このとき、カウンタCsの値が閾値Csth未満であると、CPU71はそのステップ1435にて「No」と判定し、ステップ1495に直接進んで本ルーチンを一旦終了する。なお、閾値Csthは自然数であり、2以上であることが望ましい。
 一方、CPU71がステップ1435の処理を行う時点において、カウンタCsの値が閾値Csth以上であると、CPU71はそのステップ1435にて「Yes」と判定し、以下に述べるステップ1440乃至ステップ1455の処理を順に行い、ステップ1460に進む。
 ステップ1440:CPU71は、下記(14)式に従って積算値SaveをカウンタCsの値(=Csth)によって除することにより、空燃比変動指標量AFDを取得する。この空燃比変動指標量AFDは、検出空燃比変化率ΔAFの絶対値|ΔAF|の各単位燃焼サイクル期間における平均値を、複数(Csth分)の単位燃焼サイクル期間について平均した値である。
 AFD=Save/Csth  …(14)
 ステップ1445:CPU71は、空燃比センサ素子温度(空燃比センサ67の固体電解質層671の温度)TempSを、固体電解質層671の実際のアドミタンスYactに基いて推定する。より具体的に述べると、CPU71は、排ガス側電極層672と大気側電極層673との間に、「矩形波又は正弦波等の検知電圧」を「電源679による印加電圧」に周期的に重畳させ、その際に固体電解質層671に流れる電流(前記検知電圧印加から所定時間が経過した時点における排ガス側電極層672と大気側電極層673との間の電圧により求められる電流)と検知電圧とに基いて、実際の空燃比センサ67のアドミタンスYactを所定時間の経過毎に取得している。なお、アドミタンス(アドミタンスの逆数であるインピーダンス)の取得方法は周知であり、例えば、特開2001−74693号公報、特開2002−48761号公報及び特開2007−17191号公報等にも記載されている。そして、CPU71は、ステップ1445に進んだ時点における空燃比センサ素子温度TempSをそのステップ1445にて読み込む。
 また、CPU71は、ステップ1445にて、空燃比変動指標量AFD(より具体的には検出空燃比変化率ΔAF)を取得している期間において所定時間の経過毎に取得されたアドミタンスYactの平均値に基いて空燃比センサ素子温度TempSを推定してもよい。
 図15は、空燃比センサ素子温度と固体電解質層のアドミタンスYとの関係を示したグラフである。この関係は、ROM72内にルックアップテーブルの形式にて記憶されている。このテーブルは、素子温度テーブルMapTempS(Y)と称呼される。CPU71は取得した実際のアドミタンスYactをこの素子温度テーブルMapTempS(Y)に適用することにより、空燃比センサ素子温度TempS(=MapTempS(Yact))を推定する。
 ステップ1450:CPU71は、ステップ1445にて推定した空燃比センサ素子温度TempSを、図16に実線により示した補正値算出テーブルMap kh(TempS)に適用することにより補正値kh(kh≦1.0)を決定する。補正値算出テーブルMap kh(TempS)は、ROM72内にルックアップテーブルの形式にて記憶されている。
 この補正値算出テーブルMap kh(TempS)によれば、空燃比センサ素子温度TempSが高くなるほど、補正値(補正係数)khは1.0以下の範囲において小さくなるように求められる。更に、補正値算出テーブルMap kh(TempS)によれば、空燃比センサ素子温度TempSが活性温度(例えば、第1の特定温度とも言える700℃)以下であるとき、及び、空燃比センサ素子温度TempSが許容される上限温度(例えば、第2の特定温度とも言える900℃)以上であるとき、補正値khは1.0に維持される。但し、空燃比センサ素子温度TempSが700℃以下の領域において低下するに従って補正値khは増大し、空燃比センサ素子温度TempSが900℃以上の領域において増加するに従って補正値khは減少するように、補正値算出テーブルMap kh(TempS)が構成されていてもよい(破線を参照。)。
 ステップ1455:CPU71は、「ステップ1440にて取得した空燃比変動指標量AFD」に「ステップ1450にて取得した補正値kh」を乗じた値(=kh・AFD)を空燃比変動指標量補正値として取得するとともに、その空燃比変動指標量補正値そのものをインバランス判定用パラメータXとして取得(決定)する。
 この補正khによる補正は、推定された空燃比センサ素子温度TempSが特定温度(図16の例においては700℃)よりも高くなるほど、取得された空燃比変動指標量AFDを減少させる補正を、その空燃比変動指標量AFDに施すことと等価である。
 更に、CPU71は、「ステップ1440にて取得した空燃比変動指標量AFD」に「ステップ1450にて取得した補正値kh」を乗じた値(空燃比変動指標量補正値)に、更に、正の定数Cpを乗じた値(=Cp・kh・AFD)をインバランス判定用パラメータXとして取得してもよい。なお、定数Cpが「1」でることは、上述した「空燃比変動指標量補正値そのものをインバランス判定用パラメータXとして決定する」ことと同義である。
 このように、インバランス判定用パラメータXは、推定された空燃比センサ素子温度TempSが高くなるほど空燃比変動指標量AFDが小さくなるように、ステップ1440にて得られた空燃比変動指標量AFDを補正した空燃比変動指標量補正値に応じた値(比例した値)であればよい。
 その後、CPU71はステップ1460に進み、インバランス判定用パラメータXがインバランス判定用閾値Xthよりも大きいか否かを判定する。
 そして、インバランス判定用パラメータXがインバランス判定用閾値Xthよりも大きいと、CPU71はステップ1460にて「Yes」と判定してステップ1465に進み、インバランス発生フラグXINBの値を「1」に設定する。即ち、CPU71は空燃比気筒間インバランス状態が発生していると判定する。更に、このとき、CPU71は図示しない警告ランプを点灯してもよい。なお、インバランス発生フラグXINBの値はバックアップRAM74に格納される。その後、CPU71はステップ1495に進んで本ルーチンを一旦終了する。
 これに対し、CPU71がステップ1460の処理を行う時点において、インバランス判定用パラメータXがインバランス判定用閾値Xth以下であると、CPU71はステップ1460にて「No」と判定してステップ1470に進み、インバランス発生フラグXINBの値を「2」に設定する。即ち、「空燃比気筒間インバランス判定の結果、空燃比気筒間インバランス状態が発生していないと判定された旨」を記憶する。その後、CPU71はステップ1495に進んで本ルーチンを一旦終了する。なお、ステップ1470は省略されてもよい。
 一方、CPU71がステップ1405に進んだ際にパラメータ取得許可フラグXkyokaの値が「1」でなければ、CPU71はそのステップ1405にて「No」と判定してステップ1475に進む。そして、CPU71はステップ1475にて各値(例えば、ΔAF,SAFD,SABF,Cn等)を「0」に設定(クリア)し、その後、ステップ1495に直接進んで本ルーチンを一旦終了する。
 以上、説明したように、第1判定装置は、複数の気筒を有する多気筒内燃機関10に適用される。更に、第1判定装置は、空燃比センサ67と、複数の燃料噴射弁39と、インバランス判定手段とを備える。
 前記インバランス判定手段は、
 所定のパラメータ取得条件が成立している期間であるパラメータ取得期間(パラメータ取得許可フラグXkyoka=1)において、「空燃比センサ67が配設された部位を通過する排ガス」の空燃比の変動が大きくなるほど大きくなる空燃比変動指標量AFDを、空燃比センサ67の出力値Vabyfsに基づいて取得するとともに(図14のステップ1405乃至ステップ1440)、その取得された空燃比変動指標量AFDに基いて求められるインバランス判定用パラメータXと所定のインバランス判定用閾値Xthとの比較を実行し(図14のステップ1455及びステップ1460)、インバランス判定用パラメータXがインバランス判定用閾値Xthよりも大きいとき空燃比気筒間インバランス状態が発生したと判定し(図14のステップ1465)、且つ、インバランス判定用パラメータXがインバランス判定用閾値Xthよりも小さいとき空燃比気筒間インバランス状態が発生していないと判定する(図14のステップ1470)。
 加えて、前記インバランス判定手段は、
 前記パラメータ取得期間における前記固体電解質層の温度である空燃比センサ素子温度TempSを推定する素子温度推定手段(図14のステップ1445及び図15)と、
 前記推定された空燃比センサ素子温度TempSが特定温度(例えば、700℃)よりも高くなるほど前記取得された空燃比変動指標量AFDを減少させる補正を、前記取得された空燃比変動指標量AFDに施した空燃比変動指標量補正値を取得し、その空燃比変動指標量補正値に応じた値を前記インバランス判定用パラメータXとして決定するインバランス判定用パラメータの決定(図14のステップ1450及び1455)を、インバランス判定用パラメータXとインバランス判定用閾値Xthとの前記比較の実行前(ステップ1460の前)に行う比較準備手段と、
 を含む。
 これにより、インバランス判定用パラメータXが「空燃比センサ素子温度TempSがある特定温度であるとき(即ち、空燃比センサの応答性が特定の応答性であるとき)に得られる値」となる。換言すると、空燃比変動指標量補正値は「空燃比センサ素子温度が特定温度である場合に得られる空燃比変動指標量」となり、インバランス判定用パラメータXは「空燃比センサ素子温度が特定温度である場合に得られる空燃比変動指標量」に応じた値となる。その結果、空燃比センサ素子温度TempSに関わらず、インバランス判定を精度良く実行することができる。
 なお、第1判定装置は、ステップ1450において、ステップ1445にて推定した空燃比センサ素子温度TempSを、図16に一点鎖線により示した補正値算出テーブルMap kh another(TempS)に適用することにより補正値khを決定してもよい。補正値算出テーブルMap kh another(TempS)は、ROM72内にルックアップテーブルの形式にて記憶されている。
 この補正値算出テーブルMap kh another(TempS)によれば、空燃比センサ素子温度TempSが特定温度(例えば、800℃)よりも高くなるほど、補正値khは1.0以下の範囲において小さくなるように求められる。即ち、この補正値khによれば、推定された空燃比センサ素子温度TempSが特定温度よりも高くなるほど、空燃比変動指標量AFDを減少させる補正がなされ、その補正により空燃比変動指標量補正値が得られる。
 更に、補正値算出テーブルMap kh another(TempS)によれば、空燃比センサ素子温度TempSが特定温度(例えば、800℃)よりも低くなるほど、補正値khは1.0以上の範囲において大きくなるように求められる。即ち、この補正値khによれば、推定された空燃比センサ素子温度TempSが特定温度よりも低くなるほど、空燃比変動指標量AFDを増大させる補正がなされ、その補正により空燃比変動指標量補正値が得られる。
 従って、この補正値khによっても、空燃比変動指標量AFDが「空燃比センサ素子温度が特定温度(例えば、800℃)である場合に得られる空燃比変動指標量」に規格化される。つまり、第1判定装置のインバランス判定手段に含まれる比較準備手段は、推定された空燃比センサ素子温度TempSが特定温度(例えば、800℃)よりも低くなるほど前記取得された空燃比変動指標量AFDを増大させる補正を空燃比変動指標量AFDに施すとともに、推定された空燃比センサ素子温度TempSが特定温度(800℃)よりも高くなるほど前記取得された空燃比変動指標量AFDを減少させる補正を空燃比変動指標量AFDに施すことにより空燃比変動指標量補正値を得るように構成されていてもよい。
<第2実施形態>
 次に、本発明の第2実施形態に係る判定装置(以下、単に「第2判定装置」と称呼する。)について説明する。
 第2判定装置は、空燃比変動指標量AFDをそのまま(即ち、空燃比変動指標量AFDを空燃比センサ素子温度TempSに基いて補正することなく)インバランス判定用パラメータXとして採用する。一方、第2判定装置は、インバランス判定用閾値Xthを空燃比センサ素子温度TempSに基いて決定する。即ち、第2判定装置は、空燃比センサ素子温度TempSが大きいほどインバランス判定用閾値Xthが大きくなるように、空燃比センサ素子温度TempSに基づいてインバランス判定用閾値Xthを求める。その他の点は第1判定装置と同様である。
(実際の作動)
 第2判定装置のCPU71は、図14に代わる図17に示した「空燃比気筒間インバランス判定ルーチン」をサンプリング時間ts(4ms)が経過する毎に実行する点のみにおいて、第1判定装置と相違する。従って、以下、この相違点を中心として説明する。
 図17に示したルーチンは、図14のルーチンのステップ1450及びステップ1455を、ステップ1710及びステップ1720にそれぞれ置換した点のみにおいて、図14のルーチンと相違している。そこで、以下、ステップ1710及びステップ1720の処理について説明する。なお、図17に示したステップのうち既に説明したステップと同一の処理を行うためのステップには、そのような既に説明したステップに付された符号と同一の符合を付している。
 CPU71は、ステップ1445にて空燃比センサ素子温度TempS取得するとステップ1710に進み、取得した空燃比センサ素子温度TempSを、図18に示した閾値決定テーブルMapXth(TempS)に適用することによりインバランス判定用閾値Xthを決定する。
 この閾値決定テーブルMapXth(TempS)によれば、インバランス判定用閾値Xthは空燃比センサ素子温度TempSが高いほどが大きくなるように決定される。
 なお、CPU71は、閾値決定テーブルMapXth(TempS)に代わる閾値決定テーブルMapXth(TempS,Ga)に、ステップ1445にて取得した空燃比センサ素子温度TempS及びエアフローメータ61により計測されている吸入空気流量Gaを適用することにより、インバランス判定用閾値Xthを決定してもよい。この閾値決定テーブルMapXth(TempS,Ga)によれば、空燃比センサ素子温度TempSが高いほどインバランス判定用閾値Xthが大きくなるように、且つ、吸入空気流量Gaが大きいほどインバランス判定用閾値Xthが大きくなるように、空燃比センサ素子温度TempS及び吸入空気流量Gaに基いてインバランス判定用閾値Xthが決定される。
 このようにインバランス判定用閾値Xthを、空燃比センサ素子温度TempSのみならず、吸入空気流量Gaにも基いて決定するのは、空燃比センサ67の出力値Vabyfsの応答性が、保護カバー(67b、67c)の存在に起因して、吸入空気流量Gaが小さいほど低下するからである。
 次に、CPU71はステップ1720に進み、ステップ1440にて求めた空燃比変動指標量AFDをインバランス判定用パラメータXとして採用する。なお、CPU71は、空燃比変動指標量AFDに正の定数Cpを乗じた値をインバランス判定用パラメータXとして採用してもよい。
 その後、CPU71はステップ1460以降に進み、ステップ1720にて取得されたインバランス判定用パラメータXと、ステップ1710にて決定されたインバランス判定用閾値Xthと、を比較することにより、第1判定装置のCPU71と同様のインバランス判定を実行する。即ち、CPU71は、インバランス判定用パラメータXがインバランス判定用閾値Xthよりも大きければ空燃比気筒間インバランス状態が発生したと判定し、インバランス判定用パラメータXがインバランス判定用閾値Xthよりも小さければ空燃比気筒間インバランス状態は発生していないと判定する。
 以上、説明したように、第2判定装置のインバランス判定手段は、第1判定装置のインバランス判定手段と同様、所定のパラメータ取得条件が成立している期間であるパラメータ取得期間(パラメータ取得許可フラグXkyoka=1)において、「空燃比センサ67が配設された部位を通過する排ガス」の空燃比の変動が大きくなるほど大きくなる空燃比変動指標量AFDを、空燃比センサ67の出力値Vabyfsに基づいて取得するとともに(図17のステップ1405乃至ステップ1440)、その取得された空燃比変動指標量AFDに基いて求められるインバランス判定用パラメータXと所定のインバランス判定用閾値Xthとの比較を実行し(図17のステップ1460)、インバランス判定用パラメータXがインバランス判定用閾値Xthよりも大きいとき空燃比気筒間インバランス状態が発生したと判定し(図17のステップ1465)、且つ、インバランス判定用パラメータXがインバランス判定用閾値Xthよりも小さいとき空燃比気筒間インバランス状態が発生していないと判定する(図17のステップ1470)。
 加えて、第2判定装置のインバランス判定手段は、空燃比変動指標量補正値を求める代わりに、推定された空燃比センサ素子温度TempSが高くなるほどインバランス判定用閾値Xthが大きくなるように、その推定された空燃比センサ素子温度TempSに基いてインバランス判定用閾値Xthを決定するように構成されている(図17のステップ1710、及び、図18)。
 前述したように、空燃比センサ素子温度TempSが低いほど空燃比センサの応答性は低下するから、空燃比センサ素子温度TempSが低いほど空燃比センサの出力値Vabyfsに基づいて取得される空燃比変動指標量AFDは小さくなる。換言すると、空燃比センサ素子温度TempSが高いほど空燃比センサの応答性は上昇するから、空燃比センサ素子温度TempSが高いほど空燃比センサの出力値Vabyfsに基づいて取得される空燃比変動指標量AFDが大きくなる。
 これに対応するように、第2判定装置においては、推定された空燃比センサ素子温度TempSが高くなるほどインバランス判定用閾値Xthは大きくなり、推定された空燃比センサ素子温度TempSが低くなるほどインバランス判定用閾値Xthは小さくなる。即ち、第2判定装置におけるインバランス判定用閾値Xthは、「空燃比センサ素子温度TempSに依存して変化する空燃比センサの応答性がインバランス判定用パラメータXに及ぼす影響」を考慮した値となる。その結果、空燃比センサ素子温度に関わらず、インバランス判定を精度良く実行することができる。
<第3実施形態>
 次に、本発明の第3実施形態に係る判定装置(以下、単に「第3判定装置」と称呼する。)について説明する。
 第3判定装置は、第1判定装置に対して以下の点のみにおいて相違している。
・固体電解質層671の実際のアドミタンスYactと所定の目標値(目標アドミタンスYtgt)との差が小さくなるようにヒータ678の発熱量を制御するヒータ制御手段を備える点。
・第1判定装置が「固体電解質層671の実際のアドミタンスYactに基づいて空燃比センサ素子温度TempSを推定する。」のに対し、第3判定装置は「ヒータ678を流れる電流の量に応じた値」に基いて空燃比センサ素子温度TempSを推定するように構成されている点。
 以下、これらの相違点について説明する。
 図19の実線Y1は、経時変化する前の空燃比センサ67のアドミタンスY(固体電解質層671のアドミタンスY)と、空燃比センサ素子温度TempSと、の関係を示している。アドミタンスYは空燃比センサ素子温度TempSが高くなるほど大きくなる。従って、電気制御装置70は、空燃比センサ67の実際のアドミタンスYactと所定の目標アドミタンスYtgtとの差が小さくなるようにヒータ678の通電量(ヒータ678に流れる電流)を制御することにより、ヒータ678の発熱量を制御する(ヒータ制御を行う)。
 ところが、空燃比センサ67の使用時間が長くなると空燃比センサ67は経時変化する。その結果、図19の破線Y2により示した「経時変化した空燃比センサ67のアドミタンスY」は、実線Y1により示した「経時変化する前の空燃比センサ67のアドミタンスY」よりも小さくなる。
 このため、ヒータ制御により実際のアドミタンスYactが目標アドミタンスYtgtに一致していたとしても、空燃比センサ67が経時変化しているか否かに応じて空燃比センサ素子温度は相違する。従って、空燃比センサ素子温度を実際のアドミタンスYactに基づいて推定すると、その推定された空燃比センサ素子温度は実際の空燃比センサ素子温度と相違する。この結果、実際のアドミタンスYactに基づいて推定された空燃比センサ素子温度TempSを用いて空燃比変動指標量補正値(インバランス判定用パラメータ)を取得すると、その空燃比変動指標量補正値(インバランス判定用パラメータ)は気筒別空燃比差を精度の良く表す値とならない可能性が高い。
 そこで、上述したように、第3判定装置は、「ヒータ678に流れる電流の量に応じた値」に基いて空燃比センサ素子温度TempSを推定する。
(実際の作動)
 第3判定装置のCPU71は、図12乃至図14に示したルーチンを第1判定装置のCPU71と同様に実行する。更に、第3判定装置のCPU71は、空燃比センサ素子温度を制御するために、所定時間が経過する毎に図20にフローチャートにより示した「空燃比センサヒータ制御ルーチン」を実行する。
<空燃比センサヒータ制御>
 従って、所定のタイミングになると、CPU71は図20のステップ2000から処理を開始してステップ2010に進み、目標アドミタンスYtgtを設定する。目標アドミタンスYtgtは機関10の暖機完了前(冷却水温THWが閾値冷却水温THWth以下)において、第1温度(例えば、600℃)に対応する値に設定され、機関10の暖機完了後において「第1温度よりも高い第2温度(例えば、750℃)」に設定される。
 次に、CPU71はステップ2020に進み、実際のアドミタンスYactが「目標アドミタンスYtgtに正の所定値αを加えた値」よりも大きいか否かを判定する。
 このとき、ステップ2020の条件が成立していると、CPU71はステップ2020にて「Yes」と判定してステップ2030に進み、ヒータデューティDutyを所定量ΔDだけ減少する。次いで、CPU71はステップ2040に進み、ヒータデューティDutyに基いてヒータ678に通電する。この場合、ヒータデューティDutyが減少されているので、ヒータ678への通電量(電流)が減少し、ヒータ678の発熱量が減少する。その結果、空燃比センサ素子温度が低下する。その後、CPU71はステップ2095に進んで、本ルーチンを一旦終了する。
 これに対し、CPUがステップ2020の処理を実行する時点において、実際のアドミタンスYactが「目標アドミタンスYtgtに正の所定値αを加えた値」以下であると、CPU71はステップ2020にて「No」と判定してステップ2050に進む。CPU71はステップ2050にて、実際のアドミタンスYactが「目標アドミタンスYtgtから正の所定値αを減じた値」よりも小さいか否かを判定する。
 このとき、ステップ2050の条件が成立していると、CPU71はステップ2050にて「Yes」と判定してステップ2060に進み、ヒータデューティDutyを所定量ΔDだけ増大する。次いで、CPU71はステップ2040に進み、ヒータデューティDutyに基いてヒータ678に通電する。この場合、ヒータデューティDutyが増大されているので、ヒータ678への通電量(電流量)が増大し、ヒータ678の発熱量が増大する。その結果、空燃比センサ素子温度が上昇する。その後、CPU71はステップ2095に進んで、本ルーチンを一旦終了する。
 他方、CPUがステップ2050の処理を実行する時点において、実際のアドミタンスYactが「目標アドミタンスYtgtから正の所定値αを減じた値」よりも大きいと、CPU71はそのステップ2050にて「No」と判定し、ステップ2040に直接進む。この場合、ヒータデューティDutyは変化しないので、ヒータ678への通電量も変化しない。その結果、ヒータ678の発熱量は変化しないので、空燃比センサ素子温度も大きく変化しない。その後、CPU71はステップ2095に進んで、本ルーチンを一旦終了する。
 このように、ヒータ制御により、実際のアドミタンスYactが「目標アドミタンスYtgtの近傍の範囲(Ytgt−αからYtgt+αまでの範囲)内に制御される。換言すると、空燃比センサ素子温度は、目標アドミタンスYtgtに応じた値に略一致させられる。
 加えて、第3判定装置のCPU71は、図14に示したルーチンと同じルーチンを実行する。但し、このCPU71はステップ1445に進んだとき、第1判定装置のCPU71とは異なる方法により空燃比センサ素子温度TempSを推定する。
 具体的に述べると、第3判定装置のCPU71は、所定時間(サンプリング時間ts)が経過する毎にヒータデューティDutyのなまし値SDを取得している。なまし値SDは、なまし値SDの更新時点のヒータデューティDutyをDuty(n)と表記し、更新後のなまし値SDをSD(n)、更新前(即ち、サンプリング時間tsが経過する前の時点)のなまし値SDをSD(n−1)と表記するとき、下記の(15)式により算出される。βは0から1までの任意の定数である。
SD(n)=β・SD(n−1)+(1−β)・Duty(n)  …(15)
 CPU71は、ステップ1445においてなまし値SDを読み込み、そのなまし値SDが大きいほど空燃比センサ素子温度TempSが高くなるように、なまし値SDに基づいて空燃比センサ素子温度TempSを推定する。
 次に、CPU71はステップ1450に進み、ステップ1445にて推定した空燃比センサ素子温度TempSを、図16に示した補正値算出テーブルMap kh(TempS)(又は、補正値算出テーブルMap kh another(TempS))に適用することにより、補正値khを決定する。その後、CPU71はステップ1455にて、「ステップ1440にて取得した空燃比変動指標量AFD」に「ステップ1450にて取得した補正値kh」を乗じた値(=kh・AFD)を空燃比変動指標量補正値として取得するとともに、その空燃比変動指標量補正値そのものをインバランス判定用パラメータXとして取得(決定)する。
 次いで、CPU71はステップ1460以降に進み、インバランス判定用パラメータXとインバランス判定用閾値Xthとの比較に基づいてインバランス判定を実行する。即ち、CPU71は、インバランス判定用パラメータXがインバランス判定用閾値Xthよりも大きければ空燃比気筒間インバランス状態が発生したと判定し、インバランス判定用パラメータXがインバランス判定用閾値Xthよりも小さければ、空燃比気筒間インバランス状態は発生していないと判定する。以上が、第3判定装置の実際の作動である。
 なお、第3判定装置(及び後述する他の判定装置)のCPU71は、固体電解質層671の実際のインピーダンスZactと目標値(目標インピーダンスZtgt)との差が小さくなるようにヒータの発熱量を制御してもよい。インピーダンスZはアドミタンスYの逆数であるから、インピーダンスZが大きくなるほど空燃比センサ素子温度TempSは小さくなる。従って、CPU71は、実際のインピーダンスZactが「目標インピーダンスZtgtに正の所定値γを加えた値」よりも大きいとき、ヒータデューティDutyを所定量ΔDだけ増大する。更に、CPU71は、実際のインピーダンスZactが「目標インピーダンスZtgtから正の所定値γを減じた値」よりも小さいとき、ヒータデューティDutyを所定量ΔDだけ減少する。
 更に、第3判定装置のCPU71は、「ヒータに流れた電流の量に応じた値(なまし値SD)」のみならず、「排ガスの温度に相関を有する機関10の運転パラメータ」に基いて空燃比センサ素子温度TempSを推定するように構成され得る。「排ガスの温度に相関を有する機関10の運転パラメータ」は、例えば、排ガス温度センサにより検出される排ガス温度検出値、エアフローメータ61により測定される吸入空気流量Ga、負荷KL及び機関回転速度NE等の中から一つ以上選択される。
 実際の排ガス温度は、これらのパラメータの値が大きいほど高くなる。従って、CPU71は、これらのパラメータから選択した値が大きいほど、空燃比センサ素子温度TempSが高くなるように空燃比センサ素子温度TempSを推定する。
 以上、説明したように、空燃比センサ67は、電流が流されることにより発熱し、「固体電解質層671と排ガス側電極層672と大気側電極層673とを含むセンサ素子部」を加熱するヒータ678を備える。更に、第3判定装置は、固体電解質層671の実際のアドミタンスYactと所定の目標値(目標アドミタンスYtgt)との差が小さくなるようにヒータ678の発熱量を制御するヒータ制御手段を備える(図20)。加えて、第3判定装置の素子温度推定手段は、少なくとも「ヒータ678を流れる電流の量に応じた値(なまし値SD)」に基いて空燃比センサ素子温度TempSを推定するように構成されている(第3判定装置における図14のステップ1445)。
 ヒータ678に流れる電流の大きさ(Duty)はヒータ678の発熱量と強い相関を有するから、空燃比センサ素子温度TempSとの相関が強い。従って、ヒータに流れた電流の量に応じた値(なまし値SD)に基いて空燃比センサ素子温度TempSを推定することにより、空燃比センサ67が経時変化しているか否かに依らず、空燃比センサ素子温度を精度良く推定することができる。その結果、精度の良いインバランス判定用パラメータXを取得することができるので、インバランス判定を精度良く行うことができる。
 更に、その素子温推定手段は、排ガスの温度に相関を有する機関10の運転パラメータに基いて空燃比センサ素子温度TempSを推定するように構成され得る。
 空燃比センサ素子温度は排ガスの温度にも依存する。従って、上記構成によれば、より精度良く空燃比センサ素子温度TempSを推定することができる。その結果、精度の良いインバランス判定用パラメータXを取得することができるので、インバランス判定を精度良く行うことができる。
 なお、第3判定装置のCPU71は、ヒータデューティDutyのなまし値SDに代え、ヒータ678を流れる実際の電流値(ヒータ電流)Iのなまし値SIを「ヒータ678を流れる電流の量に応じた値」として求め、その値SIに基づいて空燃比センサ素子温度TempSを推定してもよい。
<第4実施形態>
 次に、本発明の第4実施形態に係る判定装置(以下、単に「第4判定装置」と称呼する。)について説明する。
 第4判定装置は、第3判定装置に対して以下の点のみにおいて相違している。
・第3判定装置が、「ヒータに流れた電流の量に応じた値」に基いて推定された空燃比センサ素子温度TempSに基づいて「インバランス判定用パラメータX」を決定しているのに対し、第4判定装置は、「ヒータに流れた電流の量に応じた値」に基いて推定された空燃比センサ素子温度TempSに基づいて「インバランス判定用閾値Xth」を決定する点。
 以下、この相違点について説明する。
(実際の作動)
 第4判定装置のCPU71は、図12、図13、図17に示したルーチンを第2判定装置のCPU71と同様に実行する。更に、第4判定装置のCPU71は、図20に示したルーチンを第3判定装置のCPU71と同様に実行する。
 但し、第4判定装置のCPU71は図17のステップ1445に進んだとき、そのステップ1445において、「上記(15)式に従って別途計算されているヒータデューティDutyのなまし値SD」を取得する。そして、そのCPU71は、なまし値SDが大きいほど空燃比センサ素子温度TempSが高くなるように、なまし値SDに基づいて空燃比センサ素子温度TempSを推定する。
 次に、CPU71はステップ1710に進み、ステップ1445にて「なまし値SD」に基いて取得した空燃比センサ素子温度TempSを、図18に示した閾値決定テーブルMapXth(TempS)に適用することにより、インバランス判定用閾値Xthを決定する。推定された空燃比センサ素子温度TempSが低くなるほどインバランス判定用閾値Xthは小さくなる。
 次に、CPU71はステップ1720に進み、ステップ1440にて求めた空燃比変動指標量AFDをインバランス判定用パラメータXとして採用する。そして、CPU71はステップ1460以降に進み、インバランス判定用パラメータXとインバランス判定用閾値Xthとの比較に基づいてインバランス判定を実行する。即ち、CPU71は、インバランス判定用パラメータXがインバランス判定用閾値Xthよりも大きければ空燃比気筒間インバランス状態が発生したと判定し、インバランス判定用パラメータXがインバランス判定用閾値Xthよりも小さければ、空燃比気筒間インバランス状態は発生していないと判定する。以上が、第4判定装置の実際の作動である。
 なお、第4判定装置のCPU71は第3判定装置のCPU71と同様、「ヒータに流れた電流の量に応じた値(なまし値SD)」のみならず、上述した「排ガスの温度に相関を有する機関10の運転パラメータ」に基いて空燃比センサ素子温度TempSを推定するように構成され得る。また、第4判定装置は、ヒータデューティDutyのなまし値SDに代え、ヒータ678を流れる実際の電流値(ヒータ電流)Iのなまし値SIを「ヒータ678を流れる電流の量に応じた値」として求め、その値SIに基づいて空燃比センサ素子温度TempSを推定してもよい。
 以上、説明したように、第4判定装置は、第3判定装置と同様、少なくとも「ヒータ678を流れる電流の量に応じた値(なまし値SD、SI)」に基いて空燃比センサ素子温度TempSを推定するように構成された素子温度推定手段を備える(図17のステップ1445)。従って、第4判定装置は、空燃比センサ67が経時変化しているか否かに依らず、空燃比センサ素子温度TempSを精度良く推定することができる。その結果、「空燃比センサ素子温度TempSに依存して変化する空燃比センサの応答性がインバランス判定用パラメータXに及ぼす影響」を考慮したインバランス判定用閾値Xthが得られるので、インバランス判定を精度良く実行することができる。
<第5実施形態>
 次に、本発明の第5実施形態に係る判定装置(以下、単に「第5判定装置」と称呼する。)について説明する。
 第5判定装置は、パラメータ取得許可条件が成立したとき(パラメータ取得許可フラグXkyokaが「1」であるとき)の目標アドミタンスYtgtをパラメータ取得条件が成立していないとき(パラメータ取得許可フラグXkyokaが「0」であるとき)の目標アドミタンスYtgt(=Ytujo)よりも所定値ΔYだけ増大させる点においてのみ、第3判定装置と相違している。
 より具体的に述べると、第5判定装置のCPU71は、図20に代わる図21にフローチャートにより示した「空燃比センサヒータ制御ルーチン」を所定時間が経過する毎に実行するようになっている。なお、図21に示したステップのうち既に説明したステップと同一の処理を行うためのステップには、そのような既に説明したステップに付された符号と同一の符合を付している。
 CPU71は所定のタイミングにてステップ2100から処理を開始してステップ2110に進むと、パラメータ取得許可フラグXkyokaの値が「0」であるか否かを判定する。
 このとき、パラメータ取得許可フラグXkyokaの値が「0」であれば、CPU71はステップ2110にて「Yes」と判定してステップ2110に進み、目標アドミタンスYtgtを通常値Ytujoに設定する。通常値Ytujoは、空燃比センサ67が活性状態にあり、排ガスの空燃比が安定している限り出力値Vabyfsがその排ガスの空燃比に応じた値となる値に定められている。例えば、通常値Ytujoは、センサ素子温度が700℃程度であるときのアドミタンスYである。通常値Ytujoに対応する空燃比センサ素子温度は「通常温度及び第1温度t1」とも称呼される。その後、CPU71はステップ2020以降に進む。
 これに対し、CPUがステップ2110の処理を実行する時点において、パラメータ取得許可フラグXkyokaの値が「1」であれば、CPU71はステップ2110にて「No」と判定してステップ2130に進み、目標アドミタンスYtgtを「通常値Ytujoに正の所定値ΔYを加えた値(Ytujo+ΔY)」に設定する。即ち、CPU71は、目標アドミタンスYtgtを通常値Ytujoよりも増大する。その後、CPU71はステップ2020以降に進む。
 この「通常値Ytujoに正の所定値ΔYを加えた値(Ytujo+ΔY)」は、上昇値Ytupとも称呼される。上昇値Ytupは、空燃比センサ67が活性状態にあり、且つ、空燃比センサ67の応答性が「排ガスの空燃比の変動に出力値Vabyfsが十分に追従できる程度」になる値に定められている。例えば、上昇値Ytupは、センサ素子温度が850℃程度であるときのアドミタンスYである。上昇値Ytupに対応するセンサ素子温度は「上昇温度及び第2温度t2」とも称呼される。
 この結果、CPU71がステップ2020以降の処理を行うことにより、空燃比変動指標量AFDの元データとなる基本指標量(検出空燃比変化率ΔAF)を取得する期間(パラメータ取得期間)の空燃比センサ素子温度が、通常時(検出空燃比変化率ΔAFを取得しないパラメータ非取得期間)の空燃比センサ素子温度よりも高くなる。従って、検出空燃比変化率ΔAFが「空燃比センサの応答性が高くなっている状態」において取得される。この結果、気筒別空燃比差をより精度よく表す空燃比変動指標量AFDを得ることができる。
 但し、この第5判定装置のCPU71は、第3判定装置のCPU71と同様、「ヒータに流れた電流の量に応じた値」に基いて空燃比センサ素子温度TempSを推定するとともに、その推定された空燃比センサ素子温度TempSに基いて空燃比変動指標量AFDを補正し、その補正により得られた空燃比変動指標量補正値(=kh・AFD)をインバランス判定用パラメータXとして取得(決定)する。これにより、空燃比センサ67が経時変化しているか否かに関わらず、インバランス判定用パラメータXが「空燃比センサ67の応答性が特定の応答性であるときに得られるインバランス判定用パラメータ」に一致する。更に、第5判定装置は、そのインバランス判定用パラメータXとインバランス判定用閾値Xthとの比較に基づいてインバランス判定を実行する。
 以上、説明したように、第5判定装置のインバランス判定手段は、ヒータ制御手段が、「パラメータ取得期間における前記センサ素子部の温度を、パラメータ取得期間以外の期間における前記センサ素子部の温度、よりも高くするセンサ素子部温度上昇制御」をそのパラメータ取得期間において実行するように、ヒータ制御手段に指示するように構成されている(図21のステップ2110を参照。)。
 また、ヒータ制御手段は、センサ素子部温度上昇制御を実行するように指示されたとき、目標値(目標アドミタンスYtgt、目標インピーダンスZtgt)を、前記素子部温度上昇制御の実行を指示されていないときの値と相違させることにより、前記センサ素子部温度上昇制御を実現するように構成されている(図21のステップ2120及び2130を参照。)。即ち、目標値が目標アドミタンスYtgtであれば、素子部温度上昇制御の実行を指示されていないときの値は通常値Ytujoであり、センサ素子部温度上昇制御の実行を指示されたときの値は上昇値Ytup(=Ytujo+ΔY)である。これに対し、目標値が目標インピーダンスZtgtであれば、素子部温度上昇制御の実行を指示されていないときの値は通常値Ztujoであり、センサ素子部温度上昇制御の実行を指示されたときの値は上昇値Ztup(=Ztujo−ΔZ、ΔZ>0)である。
 これによれば、インバランス判定用パラメータXが気筒別空燃比差をより精度良く表す値になるので、インバランス判定をより精度良く行うことができる。更に、通常時には空燃比センサ素子温度は相対的に低い温度(通常温度、第1温度t1)に維持されるので、常に空燃比センサ素子温度を相対的に高い温度(上昇温度、第2温度t2)に維持しておく場合に比較して、空燃比センサ67の劣化(経時変化)が早期化することを回避することができる。
<第6実施形態>
 次に、本発明の第6実施形態に係る判定装置(以下、単に「第6判定装置」と称呼する。)について説明する。
 第6判定装置は、パラメータ取得許可条件が成立したとき(パラメータ取得許可フラグXkyokaが「1」に設定されたとき)の目標アドミタンスYtgtをパラメータ取得条件が成立していないとき(パラメータ取得許可フラグXkyokaが「0」であるとき)の目標アドミタンスYtgt(=Ytujo)よりも所定値ΔYだけ増大させる点においてのみ、第4判定装置と相違している。
 即ち、第6判定装置は、第5判定装置と同様、ヒータ制御手段が「センサ素子部温度上昇制御」をパラメータ取得期間において実行するように、ヒータ制御手段に指示するインバランス判定手段を備える(図21のステップ2110を参照。)。
 また、第5判定装置のヒータ制御手段と同様、第6判定装置のヒータ制御手段は、センサ素子部温度上昇制御を実行するように指示されたとき、目標値(目標アドミタンスYtgt、目標インピーダンスZtgt)を、前記素子部温度上昇制御の実行を指示されていないときの値と相違させることにより、前記センサ素子部温度上昇制御を実現するように構成されている(図21のステップ2120及び2130を参照。)。
 より具体的に述べると、第6判定装置のCPU71は、図20に代わる図21にフローチャートにより示した「空燃比センサヒータ制御ルーチン」を所定時間が経過する毎に実行するようになっている。従って、パラメータ取得許可フラグXkyokaの値が「0」であれば、目標アドミタンスYtgtは通常値Ytujoに設定される。パラメータ取得許可フラグXkyokaの値が「1」であれば、目標アドミタンスYtgtは「上昇値Ytup(=Ytujo+ΔY)」に設定される。
 この結果、CPU71がステップ2020以降の処理を行うことにより、空燃比変動指標量AFDの元データとなる基本指標量(検出空燃比変化率ΔAF)を取得する期間(パラメータ取得期間)の空燃比センサ素子温度が、通常時(検出空燃比変化率ΔAFを取得しないパラメータ非取得期間)の空燃比センサ素子温度よりも高くなる。従って、検出空燃比変化率ΔAFが「空燃比センサの応答性が高くなっている状態」において取得される。この結果、気筒別空燃比差をより精度よく表す空燃比変動指標量AFD及びインバランス判定用パラメータXを得ることができる。
 但し、この第6判定装置のCPU71は、第4判定装置のCPU71と同様、「ヒータに流れた電流の量に応じた値」に基いて空燃比センサ素子温度TempSを推定するとともに、その推定された空燃比センサ素子温度TempSに基いてインバランス判定用閾値Xthを決定する。
 これにより、空燃比センサ67が経時変化しているか否かに関わらず、空燃比センサ素子温度TempSを精度良く推定することができる。その結果、「空燃比センサ素子温度TempSに依存して変化する空燃比センサの応答性がインバランス判定用パラメータXに及ぼす影響」を考慮したインバランス判定用閾値Xthが得られるので、インバランス判定を精度良く実行することができる。
 更に、通常時には空燃比センサ素子温度は相対的に低い温度(通常温度、第1温度t1)に維持されるので、常に空燃比センサ素子温度を相対的に高い温度(上昇温度、第2温度t2)に維持しておく場合に比較して、空燃比センサ67の劣化(経時変化)が早期化することを回避することができる。
<第7実施形態>
 次に、本発明の第7実施形態に係る判定装置(以下、単に「第7判定装置」と称呼する。)について説明する。
 第7判定装置は、機関10の今回の始動後において未だインバランス判定の結果が得られていない場合にパラメータ取得許可条件が成立したとき(パラメータ取得許可フラグXkyokaが「1」に設定されたとき)、目標アドミタンスYtgtを変更することなく通常時の目標アドミタンス(通常値Ytujo)に維持しておき、その状態において空燃比変動指標量AFDを得る。そして、第7判定装置は、ヒータに流れた電流の量に応じた値に基いて空燃比センサ素子温度TempSを推定する。
 次に、第7判定装置は、第5判定装置と同様、空燃比変動指標量AFDを「推定した空燃比センサ素子温度TempS」により補正した値を暫定的な空燃比変動指標量補正値として求め、その暫定的な空燃比変動指標量補正値を暫定的なインバランス判定用パラメータXとして採用する。
 次に、第7判定装置は、暫定的なインバランス判定用パラメータXが高側閾値XHithよりも大きいとき、空燃比気筒間インバランス状態が発生したと判定する。この判定が得られた場合、第7判定装置は、少なくとも、次に機関10が始動された後にパラメータ取得条件が成立するまで、目標アドミタンスYtgtを上昇値Ytupに設定しない。
 一方、第7判定装置は、暫定的なインバランス判定用パラメータXが「高側閾値XHithよりも小さい低側閾値XLoth」よりも小さいとき、空燃比気筒間インバランス状態は発生していないと判定する。この判定が得られた場合、第7判定装置は、少なくとも、次に機関10が始動された後にパラメータ取得条件が成立するまで、目標アドミタンスYtgtを上昇値Ytupに設定しない。
 他方、第7判定装置は、暫定的なインバランス判定用パラメータXが「高側閾値XHithと低側閾値XLothとの間」であるとき、インバランス判定の結果を出すことを保留する。インバランス判定の結果を出すことを保留することは、インバランス判定を保留するとも表現される。
 更に、第7判定装置は、インバランス判定を保留した場合においてパラメータ取得条件が成立すると、目標アドミタンスYtgtを上昇値Ytupに設定し、空燃比センサ素子温度を上昇させる。これにより、空燃比センサ67の応答性が高くなる。
 第7判定装置は、この状態において、第3及び第5判定装置と同様、空燃比変動指標量AFDを取得するとともに、「ヒータに流れた電流の量に応じた値」に基いて空燃比センサ素子温度TempSを推定し、その推定された空燃比センサ素子温度TempSに基いて空燃比変動指標量AFDを補正し、その補正により得られた空燃比変動指標量補正値(=kh・AFD)をインバランス判定用パラメータXとして取得(決定)する。その後、第7判定装置は、第3及び第5判定装置と同様、そのインバランス判定用パラメータXとインバランス判定用閾値Xthとの比較に基づいてインバランス判定を実行する。
(実際の作動)
 第7判定装置のCPU71は、図12及び図13に示したルーチンを他の判定装置と同様に実行する。更に、第7判定装置のCPU71は、図22乃至図24に示したルーチンを所定時間が経過する毎に実行する。図12及び図13のルーチンは説明済みであるので、図22乃至図24のルーチンについて説明する。なお、図22乃至図24に示したステップのうち既に説明したステップと同一の処理を行うためのステップには、そのような既に説明したステップに付された符号と同一の符合を付している。
 CPU71は、図22に示された空燃比センサヒータ制御ルーチンを実行することにより、以下の総ての条件が成立した場合にステップ2250にて目標アドミタンスYtgtを上昇値Ytupに設定し、それ以外の場合にステップ2240にて目標アドミタンスYtgtを通常値Ytujoに設定する。
・パラメータ取得許可フラグXkyokaの値が「1」である(ステップ2210での「No」との判定を参照。)。
・機関10の今回の始動後においてインバランス判定結果が未だ得られていない(ステップ2220での「Yes」との判定を参照。)。
・インバランス判定が保留されている(ステップ2230での「Yes」との判定を参照。)。
 更に、CPU71はステップ2020乃至ステップ2060までの処理により、ヒータ制御を実行する。
 CPU71は、所定のサンプリング時間tsが経過する毎に、図23にフローチャートにより示した「第1インバランス判定ルーチン」を実行するようになっている。このルーチンによれば、以下の総ての条件が成立した場合にステップ2320にて空燃比変動指標量AFDが取得される。このステップ2320の処理は、図14のステップ1410乃至ステップ1440の処理を含む。
・パラメータ取得許可フラグXkyokaの値が「1」である(ステップ2305での「Yes」との判定を参照。)。
・機関10の今回の始動後においてインバランス判定結果が未だ得られていない(ステップ2310での「Yes」との判定を参照。)。
・インバランス判定が保留されていない(ステップ2315での「Yes」との判定を参照。)。
 そして、CPU71は、ステップ2325にて空燃比変動指標量AFDの取得が完了したことを確認すると、以下に述べるステップ2330乃至ステップ2340の処理を順に行い、ステップ2345に進む。
 ステップ2330:CPU71は、ヒータデューティDutyのなまし値SDに基いて空燃比センサ素子温度TempSを推定する。
 ステップ2335:CPU71は、ステップ2330にて推定した空燃比センサ素子温度TempSを、図16に示した補正値算出テーブルMap kh(TempS)(又は、補正値算出テーブルMap kh another(TempS))に適用することにより、補正値khを決定する。
 ステップ2340:CPU71は、「ステップ2320にて取得した空燃比変動指標量AFD」に「ステップ2335にて取得した補正値kh」を乗じた値(=kh・AFD)を暫定的な空燃比変動指標量補正値として取得するとともに、その暫定的な空燃比変動指標量補正値そのものを暫定的なインバランス判定用パラメータXとして取得(決定)する。
 その後、CPU71は以下の処理を行い、ステップ2395に進む。
・暫定的なインバランス判定用パラメータXが高側閾値XHithよりも大きいとき、空燃比気筒間インバランス状態が発生したと判定する(ステップ2345及びステップ2350)。
・暫定的なインバランス判定用パラメータXが低側閾値XLothよりも小さいとき、空燃比気筒間インバランス状態が発生していないと判定する(ステップ2355及びステップ2360)。
・暫定的なインバランス判定用パラメータXが高側閾値XHith以下であり且つ低側閾値XLoth以上であるとき、インバランス判定を保留する(ステップ2345、ステップ2355及びステップ2365)。
 CPU71は、所定のサンプリング時間tsが経過する毎に、図24にフローチャートにより示した「第2インバランス判定ルーチン」を実行するようになっている。このルーチンによれば、以下の総ての条件が成立した場合にステップ2440にて空燃比変動指標量AFDが取得される。このステップ2440の処理は、図14のステップ1410乃至ステップ1440の処理を含む。
・パラメータ取得許可フラグXkyokaの値が「1」である(ステップ2410での「Yes」との判定を参照。)。
・機関10の今回の始動後においてインバランス判定結果が未だ得られていない(ステップ2420での「Yes」との判定を参照。)。
・インバランス判定が保留されている(ステップ2430での「Yes」との判定を参照。)。
 そして、CPU71は、ステップ2450にて空燃比変動指標量AFDの取得が完了したことを確認すると、以下に述べるステップ2460乃至ステップ2480の処理を順に行い、ステップ1460に進む。
 ステップ2460:CPU71は、ヒータデューティDutyのなまし値SDに基いて空燃比センサ素子温度TempSを推定する。
 ステップ2470:CPU71は、ステップ2460にて推定した空燃比センサ素子温度TempSを、図16に示した補正値算出テーブルMap kh(TempS)(又は、補正値算出テーブルMap kh another(TempS))に適用することにより、補正値khを決定する。
 ステップ2480:CPU71は、「ステップ2440にて取得した空燃比変動指標量AFD」に「ステップ2470にて取得した補正値kh」を乗じた値(=kh・AFD)を最終的な空燃比変動指標量補正値として取得するとともに、その最終的な空燃比変動指標量補正値そのものを最終的なインバランス判定用パラメータXとして取得(決定)する。
 その後、CPU71はステップ1460以降に進み、ステップ2480にて取得された最終的なインバランス判定用パラメータXと、インバランス判定用閾値Xthと、を比較することにより、第3及び第5判定装置のCPU71と同様のインバランス判定を実行する。即ち、CPU71は、インバランス判定用パラメータXがインバランス判定用閾値Xthよりも大きければ空燃比気筒間インバランス状態が発生したと判定し(ステップ1460及びステップ1465)、インバランス判定用パラメータXがインバランス判定用閾値Xthよりも小さければ空燃比気筒間インバランス状態は発生していないと判定する(ステップ1460及びステップ1470)。
 以上、説明したように、第7判定装置によれば、空燃比センサ素子温度を通常温度に維持した状態において空燃比変動指標量AFDを取得し、ヒータ678に流れる電流に応じた値に基いて空燃比センサ素子温度TempSを推定し、その空燃比センサ素子温度TempSに基いて空燃比変動指標量AFDを補正して空燃比変動指標量補正値を取得する。更に、CPU71は、その空燃比変動指標量補正値を暫定的なインバランス判定用パラメータXとして取得し、その暫定的なインバランス判定用パラメータXを用いてインバランス判定を行う。
 その結果、空燃比気筒間インバランス状態が発生したか否かが判定できた場合、空燃比センサ素子温度を上昇温度へと上昇させない。従って、空燃比センサ67が早期に劣化することを回避することができる。
 更に、第7判定装置は、暫定的なインバランス判定用パラメータXによっては空燃比気筒間インバランス状態が発生したか否かを判定できない場合(インバランス判定を保留した場合)、空燃比センサ素子温度を上昇温度へと上昇させ、その状態において空燃比変動指標量AFDを取得する。更に、その空燃比変動指標量AFDを得たときの空燃比センサ素子温度TempSをヒータ678に流れる電流に応じた値に基いて推定する。そして、第7判定装置は、推定した空燃比センサ素子温度TempSに基いて空燃比変動指標量AFDを補正することにより空燃比変動指標量補正値を取得し、その空燃比変動指標量補正値を最終的なインバランス判定用パラメータXとして取得する。更に、第7判定装置は、その最終的なインバランス判定用パラメータXを用いてインバランス判定を行う。従って、第1、第3及び第5判定装置と同様、気筒別空燃比差を精度良く表すインバランス判定用パラメータXが得られるので、インバランス判定を精度良く行うことができる。
<第8実施形態>
 次に、本発明の第8実施形態に係る判定装置(以下、単に「第8判定装置」と称呼する。)について説明する。
 第8判定装置は、第7判定装置と同様の空燃比センサヒータ制御を行う。即ち、機関10の今回の始動後において未だインバランス判定の結果が得られていない場合にパラメータ取得許可条件が成立したとき(パラメータ取得許可フラグXkyokaが「1」に設定されたとき)、目標アドミタンスYtgtを変更することなく通常時の目標アドミタンス(通常値Ytujo)に維持しておき、その状態において空燃比変動指標量AFDを得る。そして、第8判定装置は、その空燃比変動指標量AFDを暫定的なインバランス判定用パラメータXとして採用するとともに、空燃比変動指標量AFDを取得した期間においてヒータ678に流れた電流に応じた値に基いて空燃比センサ素子温度TempSを推定する。
 次に、第8判定装置は、高側閾値XHiを「推定した空燃比センサ素子温度TempS」に基いて決定するとともに、高側閾値XHithよりも小さい低側閾値XLothを「推定した空燃比センサ素子温度TempS」に基いて決定する。
 次に、第8判定装置は、暫定的なインバランス判定用パラメータXが高側閾値XHithよりも大きいとき、空燃比気筒間インバランス状態が発生したと判定する。この判定が得られた場合、第8判定装置は、少なくとも、次に機関10が始動された後にパラメータ取得条件が成立するまで、目標アドミタンスYtgtを上昇値Ytupに設定しない。
 一方、第8判定装置は、暫定的なインバランス判定用パラメータXが低側閾値XLothよりも小さいとき、空燃比気筒間インバランス状態は発生していないと判定する。この判定が得られた場合、第8判定装置は、少なくとも、次に機関10が始動された後にパラメータ取得条件が成立するまで、目標アドミタンスYtgtを上昇値Ytupに設定しない。
 他方、第8判定装置は、暫定的なインバランス判定用パラメータXが「高側閾値XHithと低側閾値XLothとの間」であるとき、インバランス判定を保留する。
 更に、第8判定装置は、第7判定装置と同様、インバランス判定の結果を出すことを保留した場合においてパラメータ取得条件が成立すると、目標アドミタンスYtgtを上昇値Ytupに設定し、空燃比センサ素子温度を上昇させる。これにより、空燃比センサ67の応答性が高くなる。
 第8判定装置は、この状態において、第4及び第6判定装置と同様、空燃比変動指標量AFDを取得するとともに、その空燃比変動指標量AFDをインバランス判定用パラメータXとして採用する。更に、第8判定装置は、その空燃比変動指標量AFDを取得している期間において「ヒータ678を流れる電流の量に応じた値」に基いて空燃比センサ素子温度TempSを推定し、その推定された空燃比センサ素子温度TempSに基いてインバランス判定用閾値Xthを決定する。その後、第8判定装置は、第4及び第6判定装置と同様、そのインバランス判定用パラメータXとインバランス判定用閾値Xthとの比較に基づいてインバランス判定を実行する。
(実際の作動)
 第8判定装置のCPU71は、図12及び図13に示したルーチンを他の判定装置と同様に実行する。更に、第8判定装置のCPU71は、図22、図25及び図26に示したルーチンを所定時間が経過する毎に実行する。図12、図13及び図22のルーチンは説明済みであるので、図25及び図26のルーチンについて説明する。なお、図25及び図26に示したステップのうち既に説明したステップと同一の処理を行うためのステップには、そのような既に説明したステップに付された符号と同一の符合を付している。
 CPU71は、所定のサンプリング時間tsが経過する毎に、図25にフローチャートにより示した「第1インバランス判定ルーチン」を実行するようになっている。このルーチンは、図23のステップ2335及びステップ2340を、図25のステップ2510及びステップ2520に置換した点のみにおいて、図23のルーチンと相違している。
 即ち、ステップ2325にて空燃比変動指標量AFDの取得が完了したことが確認されると、CPU71はステップ2330に進み、ヒータデューティDutyのなまし値SDに基いて空燃比センサ素子温度TempSを推定する。
 次いで、CPU71はステップ2510に進み、「ステップ2320にて取得した空燃比変動指標量AFD」をそのまま暫定的なインバランス判定用パラメータXとして取得(決定)する。
 次に、CPU71はステップ2520にて、「ステップ2330にて推定した空燃比センサ素子温度TempS」に基いて高側閾値XHithを決定するとともに、「ステップ2330にて推定した空燃比センサ素子温度TempS」に基いて低側閾値XLothを決定する。このとき、高側閾値XHith及び低側閾値XLothは、何れも空燃比センサ素子温度TempSが高いほど大きくなるように、決定される。
 その後、CPU71はステップ2345以降の処理を行い、ステップ2395に進む。この結果、暫定的なインバランス判定用パラメータXに基いてインバランス判定が行われるとともに、暫定的なインバランス判定用パラメータXが高側閾値XHith以下であり且つ低側閾値XLoth以上であるときインバランス判定が保留される。
 CPU71は、所定のサンプリング時間tsが経過する毎に、図26にフローチャートにより示した「第2インバランス判定ルーチン」を実行するようになっている。このルーチンは、図24のステップ2470及びステップ2480を、図26のステップ2610及びステップ2620に置換した点のみにおいて、図24のルーチンと相違している。
 即ち、ステップ2450にて空燃比変動指標量AFDの取得が完了したことが確認されると、CPU71はステップ2460に進み、ヒータデューティDutyのなまし値SDに基いて空燃比センサ素子温度TempSを推定する。
 次いで、CPU71はステップ2610に進み、「ステップ2440にて取得した空燃比変動指標量AFD」をそのまま最終的なインバランス判定用パラメータXとして取得(決定)する。
 次に、CPU71はステップ2620にて、「ステップ2460にて推定した空燃比センサ素子温度TempS」に基いてインバランス判定用閾値Xthを決定する。このステップは、図17のステップ1710と同様のステップである。従って、インバランス判定用閾値Xthは、空燃比センサ素子温度TempSが高いほど大きくなるように決定される。
 その後、CPU71はステップ1460以降の処理を行い、ステップ2610にて取得されたインバランス判定用パラメータXと、ステップ2620にて決定されたインバランス判定用閾値Xthと、を比較することにより、インバランス判定を実行する。即ち、CPU71は、インバランス判定用パラメータXがインバランス判定用閾値Xthよりも大きければ空燃比気筒間インバランス状態が発生したと判定し(ステップ1460及びステップ1465)、インバランス判定用パラメータXがインバランス判定用閾値Xthよりも小さければ空燃比気筒間インバランス状態は発生していないと判定する(ステップ1460及びステップ1470)。
 以上、説明したように、第8判定装置によれば、空燃比センサ素子温度を通常温度に維持した状態において空燃比変動指標量AFDを取得し、その空燃比変動指標量AFDを暫定的なインバランス判定用パラメータXとして取得する。更に、第8判定装置は、その空燃比変動指標量AFDを取得した期間における空燃比センサ素子温度TempSを、ヒータ678を流れた電流に応じた値に基いて推定する。加えて、第8判定装置は、高側閾値XHith及び低側閾値XLothのそれぞれを、推定した空燃比センサ素子温度TempSに基いて決定する。そして、第8判定装置は、暫定的なインバランス判定用パラメータXと、高側閾値XHith及び低側閾値XLothと、の比較に基いてインバランス判定を行う。
 その結果、空燃比気筒間インバランス状態が発生したか否かが判定できた場合、空燃比センサ素子温度を上昇温度へと上昇させない。従って、空燃比センサ67が早期に劣化することを回避することができる。
 更に、第8判定装置は、暫定的なインバランス判定用パラメータXによっては空燃比気筒間インバランス状態が発生したか否かを判定できない場合(インバランス判定を保留した場合)、空燃比センサ素子温度を上昇温度へと上昇させ、その状態において空燃比変動指標量AFDを取得し、その空燃比変動指標量AFDを最終的なインバランス判定用パラメータXとして取得する。更に、第8判定装置は、その空燃比変動指標量AFDを取得した期間における空燃比センサ素子温度TempSを、ヒータ678を流れた電流に応じた値に基いて推定する。加えて、第8判定装置は、推定した空燃比センサ素子温度TempSに基いてインバランス判定用閾値Xthを決定する。
 そして、第8判定装置は、その最終的なインバランス判定用パラメータXとインバランス判定用閾値Xthとを用いてインバランス判定を行う。従って、第2、第4及び第6判定装置と同様、気筒別空燃比差を精度良く表すインバランス判定用パラメータXが得られるので、インバランス判定を精度良く行うことができる。
 以上、説明したように、本発明の各実施形態に係る判定装置は、空燃比センサ67の応答性に強い相関を有する空燃比センサ素子温度(固体電解質層671の温度)を推定するとともに、その空燃比センサ素子温度に基いて「インバランス判定用パラメータ及び/又はインバランス判定用閾値」を決定する。従って、インバランス判定用パラメータ又はインバランス判定用閾値が、空燃比センサ素子温度に依存して変化する空燃比センサ67の応答性を反映した値となる。その結果、各実施形態に係る判定装置は、空燃比気筒間インバランス状態が発生したか否かを精度良く判定することができる。
 本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、空燃比変動指標量AFDは以下に述べるように求められるパラメータであってもよい。
(P1)空燃比変動指標量AFDは、空燃比センサ67の出力値Vabyfsの軌跡長(基本指標量)又は検出空燃比abyfsの軌跡長(基本指標量)に応じた値であってもよい。例えば、検出空燃比abyfsの軌跡長は、一定サンプリング時間tsが経過する毎に出力値Vabyfsを取得するとともに、その出力値Vabyfsを検出空燃比abyfsへと変換し、その検出空燃比abyfsと、一定サンプリング時間ts前に取得した検出空燃比abyfsと、の差の絶対値を積算することによって求めることができる。
 この軌跡長は、単位燃焼サイクル期間毎に求められることが望ましい。複数の単位燃焼サイクル期間についての軌跡長の平均値(即ち、軌跡長に応じた値)を空燃比変動指標量AFDとして採用してもよい。なお、出力値Vabyfsの軌跡長及び検出空燃比abyfsの軌跡長は、機関回転速度NEが大きいほど大きくなる傾向を有するので、この軌跡長に基くインバランス判定用パラメータをインバランス判定に使用する場合、機関回転速度NEが大きいほどインバランス判定用閾値Xthを大きくすることが好ましい。
(P2)空燃比変動指標量AFDは、「空燃比センサ67の出力値Vabyfs又は検出空燃比abyfs」の変化率の変化率(即ち、これらの値の時間に関する二階微分値)を基本指標量として求め、その基本指標量に応じた値として求められてもよい。例えば、空燃比変動指標量AFDは、「空燃比センサ67の出力値Vabyfsの時間に関する二階微分値d(Vabyfs)/dt」の絶対値の単位燃焼サイクル期間における最大値、又は、「上流側空燃比センサ67の出力値Vabyfsにより表される検出空燃比abyfsの時間に関する二階微分値d(abyfs)/dt)」の絶対値の単位燃焼サイクル期間における最大値であってもよい。
 例えば、検出空燃比abyfsの変化率の変化率は次のようにして取得することができる。
・一定サンプリング時間tsが経過する毎に出力値Vabyfsを取得する。
・その出力値Vabyfsを検出空燃比abyfsへと変換する。
・その検出空燃比abyfsと、一定サンプリング時間ts前に取得した検出空燃比abyfsと、の差を検出空燃比abyfsの変化率として取得する。
・その検出空燃比abyfsの変化率と、一定サンプリング時間ts前に取得した検出空燃比abyfsの変化率と、の差を検出空燃比abyfsの変化率の変化率(二階微分値d(abyfs)/dt)として取得する。
 この場合、「単位燃焼サイクル期間内において複数得られた検出空燃比abyfsの変化率の変化率」の中から「その絶対値が最大である値」を代表値として選択し、そのような代表値を複数の単位燃焼サイクル期間に対して求め、得られた複数の代表値の絶対値の平均値を空燃比変動指標量AFDとして採用してもよい。
 更に、上記各判定装置は、微分値d(abyfs)/dt(検出空燃比変化率ΔAF)を基本指標量として採用し、その基本指標量の絶対値の単位燃焼サイクル期間における平均値に基く値を空燃比変動指標量AFDとして採用していた。
 これに対し、上記各判定装置は、微分値d(abyfs)/dt(検出空燃比変化率ΔAF)を基本指標量として取得し、単位燃焼サイクル期間において得られた複数の微分値d(abyfs)/dtのうち正の値を有するデータ中からその絶対値が最大の値P1を取得するとともに、同じ単位燃焼サイクル期間において得られた微分値d(Vabyfs)/dtのうち負の値を有するデータ中からその絶対値が最大の値P2を取得し、値P1の絶対値及び値P2の絶対値のうちの大きい方を基本指標量として採用してもよい。そして、上記各判定装置は、複数の単位燃焼サイクル期間に対して得られた基本指標量の絶対値の平均値を、空燃比変動指標量AFDとして採用してもよい。
 更に、上記各判定装置は、例えば、V型エンジンにも適用することができる。その場合、V型エンジンは右バンクに属する2以上の気筒の排気集合部よりも下流に右バンク上流側触媒(前記機関の排気通路であって前記複数の気筒のうちの少なくとも2以上の気筒の燃焼室から排出された排ガスが集合する排気集合部よりも下流側の部位に配設された触媒)を備え、左バンクに属する2以上の気筒の排気集合部よりも下流に左バンク上流側触媒(前記機関の排気通路であって前記複数の気筒のうちの少なくとも2以上の気筒以外の残りの2以上の気筒の燃焼室から排出された排ガスが集合する排気集合部よりも下流側の部位に配設された触媒)、を備えることができる。
 更に、V型エンジンは、右バンク上流側触媒の上流及び下流に右バンク用の上流側空燃比センサ及び下流側空燃比センサを備え、左バンク上流側触媒の上流及び下流に左バンク用の上流側空燃比センサ及び下流側空燃比センサを備えることができる。各上流側空燃比センサは、上記空燃比センサ67と同様、各バンクの排気集合部と各バンクの上流側触媒との間に配設される。この場合、右バンク用のメインフィードバック制御及びサブフィードバック制御が「右バンク用の上流側空燃比センサ及び下流側空燃比センサの各出力値」に基いて実行され、それとは独立して左バンク用のメインフィードバック制御及びサブフィードバック制御が「左バンク用の上流側空燃比センサ及び下流側空燃比センサの各出力値」に基いてが実行される。
 この場合、判定装置は、右バンク用の上流側空燃比センサの出力値に基いて右バンク用の「空燃比変動指標量AFDに応じたインバランス判定用パラメータX」を求め、それを用いて右バンクに属する気筒間において空燃比気筒間インバランス状態が発生しているか否かを判定することができる。
 同様に、判定装置は、左バンク用の上流側空燃比センサの出力値に基いて左バンク用の「空燃比変動指標量AFDに応じたインバランス判定用パラメータX」を求め、それを用いて左バンクに属する気筒間において空燃比気筒間インバランス状態が発生しているか否かを判定することができる。
 加えて、上記各判定装置は、インバランス判定用閾値Xth(高側閾値XHith及び低側閾値XLothを含む。)を、吸入空気流量Gaが大きいほど大きくなるように変更してもよい。これは、保護カバー67b及び67cの存在により、吸入空気流量Gaが小さいほど、空燃比センサ67の応答性が低くなるからである。
 更に、前記高側閾値XHithは前記インバランス判定用閾値Xth以上の値であり、前記低側閾値XLothは前記インバランス判定用閾値Xthよりも小さい値であることが好適である。但し、高側閾値XHithは、暫定的なインバランス判定用パラメータXが高側閾値XHithよりも大きいとき、明らかに空燃比気筒間インバランス状態が発生していると断定できる値であれば、前記インバランス判定用閾値Xthよりも小さい値であってもよい。同様に、低側閾値XLothは、暫定的なインバランス判定用パラメータXが低側閾値XLothよりも小さいとき、明らかに空燃比気筒間インバランス状態が発生していないと断定できる値であればよい。
 更に、上記各判定装置は、前記2以上の気筒の燃焼室に供給される混合気の空燃比が目標空燃比となるように前記指示燃料噴射量を制御する指示燃料噴射量制御手段を備える(図12及び図13のルーチン)。この指示燃料噴射量制御手段は、空燃比センサ67の出力値Vabyfsにより表される空燃比(検出空燃比abyfs)と目標空燃比abyfrとに基いて、それらが一致するように空燃比フィードバック量(DFi)を算出し、その空燃比フィードバック量(DFi)に基いて前記指示燃料噴射量を決定(調整・制御)する空燃比フィードバック制御手段を含んでいる(図12のステップ1240及び図13のルーチン)。また、指示燃料噴射量制御手段は、係る空燃比フィードバック制御手段を含むことなく、例えば、吸入空気流量と機関回転速度とから定まる筒内吸入空気量(一回の吸気行程において一つの気筒に吸入される空気量)Mcを目標空燃比abyfrによって除した値を前記指示燃料噴射量として決定(制御)するフィードフォワード制御手段であってもよい。即ち、図12のルーチンのメインフィードバック量DFiを「0」に設定してもよい。
 更に、上記各判定装置のヒータ制御手段は、実際のアドミタンスYactが「目標アドミタンスYtgtから正の所定値αを減じた値」よりも小さい場合には前記ヒータデューティDutyを100%に設定し(即ち、ヒータ678への通電量を最大値に設定し)、実際のアドミタンスYactが「目標アドミタンスYtgtに正の所定値αを加えた値」よりも大きい場合には前記ヒータデューティDutyを「0]に設定し(即ち、ヒータ678への通電量を最小値に設定し)、実際のアドミタンスYactが「目標アドミタンスYtgtから正の所定値αを減じた値」と「目標アドミタンスYtgtに正の所定値αを加えた値」との間にある場合には、ヒータデューティDutyを「0よりも大きく100%よりも小さい所定値(例えば、50%)」に設定するように構成されていてもよい。
 また、上記各判定装置におけるインバランス判定手段は、
 「前記センサ素子部温度上昇制御の実行を前記ヒータ制御手段に指示した時点」から所定の遅延時間Tdelayが経過した後に「空燃比変動指標量AFD(実際には、検出空燃比変化率ΔAF)の取得を開始する」ように構成されることが望ましい。
 ヒータ678への通電量を増大してから、空燃比センサ素子温度が実際に上昇するまでには所定の時間を有する。従って、上記のように構成すれば、空燃比センサ素子温度が高くなることにより空燃比センサ67の応答性が十分に高くなった時点以降において、空燃比変動指標量AFDを空燃比センサ67の出力値Vabyfsに基いて取得することができる。従って、気筒別空燃比差をより精度良く表すインバランス判定用パラメータXを取得することができる。
 この場合、前記インバランス判定手段は、前記所定の遅延時間Tdelayを前記排ガスの温度Texが高いほど短く設定するように構成され得る。排ガスの温度Texが高いほど空燃比センサ素子温度は迅速に上昇する。従って、排ガスの温度Texが高いほど、前記遅延時間Tdelayを短く設定することができる。
 排ガス温度Texは排ガス温度検出センサにより取得されてもよく、「排ガスの温度Texに相関を有する機関10の運転パラメータ(例えば、エアフローメータ61により測定される吸入空気流量Ga、負荷KL及び機関回転速度NE等)」に基いて推定されてもよい。
 より具体的には、各判定装置のインバランス判定手段は、図27に示したように、前記遅延時間Tdelayを「吸入空気流量Ga又は負荷KL」が大きいほど短く設定するように構成され得る。
 更に、第5及び第6判定装置は、機関10の始動後において機関10の暖機が終了した時点(完全暖機終了時点、具体的には、冷却水温THWが完全暖機を示す閾値冷却水温THWthとなった時点)」にて「前記センサ素子部温度上昇制御」をヒータ制御手段に開始させるとともに、「空燃比変動指標量AFDの取得が完了した時点」にて「前記センサ素子部温度上昇制御」をヒータ制御手段に終了させるように構成されてもよい。
 機関10の始動後において機関の暖機が完了していない場合、排ガス中の水分が冷却されて水滴となり易い。このような水滴が空燃比センサ67に付着する(以下、「空燃比センサが被水する」とも表現する。)可能性が高い場合にセンサ素子部温度上昇制御によりセンサ素子部の温度を上昇させると、実際に空燃比センサ67が被水している場合にはセンサ素子部に大きな温度むらが生じ、センサ素子部が割れてしまう(破損する)虞がある。従って、機関の始動直後からセンサ素子部温度上昇制御を実行することは得策でない。
 一方、機関10の暖機が完了した時点以降、空燃比センサ67は被水し難い。従って、上記構成のように機関10の暖機が完了した時点にてセンサ素子部温度上昇制御を開始しても、空燃比センサ67が破損する可能性は低い。加えて、上記構成によれば、パラメータ取得条件が成立した時点において空燃比センサ素子温度が十分に高くなっている頻度を高められるので、精度の良いインバランス判定用パラメータを取得する機会を増大することができる。
 更に、上記各実施形態の判定装置は、空燃比センサ素子温度TempSに基く空燃比変動指標量AFDの補正により得られた空燃比変動指標量補正値をインバランス判定用パラメータXとして採用することと、空燃比センサ素子温度TempSに基くインバランス判定用閾値Xthの決定と、を併せて行ってもよい。
 また、上記実施形態においては空燃比変動指標量AFDを取得した後に空燃比変動指標量補正値を求めていたが、各実施形態は、検出空燃比変化率ΔAFが取得される毎に補正値khにより検出空燃比変化率ΔAFを補正し、その補正された検出空燃比変化率ΔAFに基づいて得られる空燃比変動指標量AFDを空燃比変動指標量補正値(即ち、インバランス判定用パラメータ)として取得するように構成されることもできる。

Claims (4)

  1.  複数の気筒を有する多気筒内燃機関に適用され、
     前記複数の気筒のうちの少なくとも2以上の気筒から排出された排ガスが集合する前記機関の排気通路の排気集合部又は同排気通路の同排気集合部よりも下流側の部位に配設された空燃比センサであって、固体電解質層、同固体電解質層の一面に形成された排ガス側電極層、同排ガス側電極層を覆うとともに前記排ガスが到達する拡散抵抗層及び同固体電解質層の他面に形成されるとともに大気室内に露呈された大気側電極層を有する空燃比検出部を含み、前記排ガス側電極層と前記大気側電極層との間に所定の電圧が印加されることにより前記固体電解質層に流れる限界電流に基いて前記空燃比センサが配設された部位を通過する排ガスの空燃比に応じた出力値を出力する空燃比センサと、
     前記少なくとも2以上の気筒のそれぞれに対応して配設されるとともに同2以上の気筒のそれぞれの燃焼室に供給される混合気に含まれる燃料であって指示燃料噴射量に応じた量の燃料をそれぞれ噴射する複数の燃料噴射弁と、
     所定のパラメータ取得条件が成立している期間であるパラメータ取得期間において前記空燃比センサが配設された部位を通過する排ガスの空燃比の変動が大きくなるほど大きくなる空燃比変動指標量を前記空燃比センサの出力値に基づいて取得するとともに、同取得された空燃比変動指標量に基いて求められるインバランス判定用パラメータと所定のインバランス判定用閾値との比較を実行し、同インバランス判定用パラメータが同インバランス判定用閾値よりも大きいとき空燃比気筒間インバランス状態が発生したと判定し、且つ、同インバランス判定用パラメータが同インバランス判定用閾値よりも小さいとき空燃比気筒間インバランス状態が発生していないと判定する、インバランス判定を実行するインバランス判定手段と、
     を備える内燃機関の空燃比気筒間インバランス判定装置において、
     前記インバランス判定手段は、
     前記パラメータ取得期間における前記固体電解質層の温度である空燃比センサ素子温度を推定する素子温度推定手段と、
     前記推定された空燃比センサ素子温度が特定温度よりも高くなるほど前記取得された空燃比変動指標量を減少させる補正及び/又は同推定された空燃比センサ素子温度が同特定温度よりも低くなるほど前記取得された空燃比変動指標量を増大させる補正を、前記取得された空燃比変動指標量に施すことにより空燃比変動指標量補正値を取得し、同空燃比変動指標量補正値に応じた値を前記インバランス判定用パラメータとして決定するインバランス判定用パラメータの決定と、
     前記推定された空燃比センサ素子温度が高くなるほど前記インバランス判定用閾値が大きくなるように前記推定された空燃比センサ素子温度に基いて前記インバランス判定用閾値を決定するインバランス判定用閾値の決定と、
     の少なくとも一方の決定を、前記インバランス判定用パラメータと前記インバランス判定用閾値との前記比較の実行前に行う比較準備手段と、
     を含む、
     空燃比気筒間インバランス判定装置。
  2.  請求項1に記載の空燃比気筒間インバランス判定装置であって、
     前記空燃比センサは、電流が流されることにより発熱し、前記固体電解質層と前記排ガス側電極層と前記大気側電極層とを含むセンサ素子部を加熱するヒータを備え、
     前記空燃比気筒間インバランス判定装置は、更に、前記固体電解質層の実際のアドミタンス又はインピーダンスに応じた値と所定の目標値との差が小さくなるように前記ヒータの発熱量を制御するヒータ制御手段を備え、
     前記素子温度推定手段は、少なくとも前記ヒータを流れる電流の量に応じた値に基いて前記空燃比センサ素子温度を推定するように構成された、
     空燃比気筒間インバランス判定装置
  3.  請求項2に記載の空燃比気筒間インバランス判定装置において、
     前記素子温度推定手段は、更に、前記排ガスの温度に相関を有する前記機関の運転パラメータに基いて前記空燃比センサ素子温度を推定するように構成された、
     空燃比気筒間インバランス判定装置。
  4.  請求項3に記載の空燃比気筒間インバランス判定装置において、
     前記インバランス判定手段は、
     前記ヒータ制御手段が、前記パラメータ取得期間における前記センサ素子部の温度を前記パラメータ取得期間以外の期間における前記センサ素子部の温度よりも高くするセンサ素子部温度上昇制御を同パラメータ取得期間において実行するように、前記ヒータ制御手段に指示するように構成され、
     前記ヒータ制御手段は、
     前記センサ素子部温度上昇制御を実行するように指示されたとき、前記目標値を、前記素子部温度上昇制御の実行を指示されていないときの値と相違させることにより、前記センサ素子部温度上昇制御を実現するように構成された、
     空燃比気筒間インバランス判定装置。
PCT/JP2009/071717 2009-12-18 2009-12-18 内燃機関の空燃比気筒間インバランス判定装置 WO2011074132A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09852321.0A EP2514957B1 (en) 2009-12-18 2009-12-18 Device for determining imbalance in air-fuel ratio between cylinders of internal combustion engine
JP2011503260A JP4968492B2 (ja) 2009-12-18 2009-12-18 内燃機関の空燃比気筒間インバランス判定装置
CN200980152326.3A CN102265016B (zh) 2009-12-18 2009-12-18 内燃机的气缸间空燃比不平衡判定装置
US13/516,841 US8401765B2 (en) 2009-12-18 2009-12-18 Inter-cylinder air-fuel ratio imbalance determination apparatus for internal combustion engine
PCT/JP2009/071717 WO2011074132A1 (ja) 2009-12-18 2009-12-18 内燃機関の空燃比気筒間インバランス判定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/071717 WO2011074132A1 (ja) 2009-12-18 2009-12-18 内燃機関の空燃比気筒間インバランス判定装置

Publications (1)

Publication Number Publication Date
WO2011074132A1 true WO2011074132A1 (ja) 2011-06-23

Family

ID=44166918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071717 WO2011074132A1 (ja) 2009-12-18 2009-12-18 内燃機関の空燃比気筒間インバランス判定装置

Country Status (5)

Country Link
US (1) US8401765B2 (ja)
EP (1) EP2514957B1 (ja)
JP (1) JP4968492B2 (ja)
CN (1) CN102265016B (ja)
WO (1) WO2011074132A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113216A (ja) * 2011-11-29 2013-06-10 Toyota Motor Corp 気筒間空燃比ばらつき異常検出装置
JP2013160054A (ja) * 2012-02-01 2013-08-19 Toyota Motor Corp 内燃機関の空燃比インバランス検出装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8560208B2 (en) * 2009-11-05 2013-10-15 Toyota Jidosha Kabushiki Kaisha Inter-cylinder air-fuel ratio imbalance determination apparatus for internal combustion engine
JP4962656B2 (ja) * 2009-12-09 2012-06-27 トヨタ自動車株式会社 内燃機関の空燃比気筒間インバランス判定装置
JP2012007496A (ja) * 2010-06-22 2012-01-12 Toyota Motor Corp 内燃機関の制御装置
JP2012092803A (ja) * 2010-10-28 2012-05-17 Toyota Motor Corp 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP5790523B2 (ja) * 2012-02-01 2015-10-07 トヨタ自動車株式会社 空燃比インバランス判定装置
US10030593B2 (en) 2014-05-29 2018-07-24 Cummins Inc. System and method for detecting air fuel ratio imbalance

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172473A (ja) 1997-06-19 1999-03-16 Denso Corp 空燃比検出装置
JP2000065782A (ja) 1998-08-25 2000-03-03 Denso Corp 積層型空燃比センサ素子
JP2001074693A (ja) 1998-10-13 2001-03-23 Denso Corp ガス濃度センサのヒータ制御装置
JP2002048761A (ja) 2000-08-07 2002-02-15 Denso Corp ガス濃度センサのヒータ制御装置
JP2003107035A (ja) * 2001-09-27 2003-04-09 Kyocera Corp 酸素センサ
JP2004069547A (ja) 2002-08-07 2004-03-04 Toyota Motor Corp 空燃比センサの制御装置
US7152594B2 (en) 2005-05-23 2006-12-26 Gm Global Technology Operations, Inc. Air/fuel imbalance detection system and method
JP2007017191A (ja) 2005-07-05 2007-01-25 Toyota Motor Corp 空燃比センサの異常検出装置
JP2009074559A (ja) * 2009-01-16 2009-04-09 Toyota Motor Corp 排ガスセンサの劣化検出装置
JP2009257245A (ja) * 2008-04-18 2009-11-05 Mitsubishi Electric Corp 内燃機関の制御装置
JP2009264287A (ja) * 2008-04-25 2009-11-12 Toyota Motor Corp 触媒劣化抑制装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635954B2 (ja) * 1987-05-12 1994-05-11 日本特殊陶業株式会社 空燃比検出装置
JPH06207544A (ja) * 1991-09-24 1994-07-26 Nippondenso Co Ltd 燃料噴射装置
JP2003328848A (ja) 2002-05-16 2003-11-19 Honda Motor Co Ltd 排ガスセンサの素子温を制御する装置
JP4130800B2 (ja) * 2003-12-26 2008-08-06 株式会社日立製作所 エンジンの制御装置
JP4935547B2 (ja) 2007-07-09 2012-05-23 トヨタ自動車株式会社 内燃機関の異常判定装置
JP4532399B2 (ja) * 2005-12-15 2010-08-25 トヨタ自動車株式会社 内燃機関の制御装置
US7401600B1 (en) * 2007-01-30 2008-07-22 Gm Global Technology Operations, Inc. Purge flow control to reduce air/fuel ratio imbalance
JP4840244B2 (ja) * 2007-04-26 2011-12-21 株式会社デンソー 空燃比制御装置及びエンジン制御システム
US7802563B2 (en) * 2008-03-25 2010-09-28 Fors Global Technologies, LLC Air/fuel imbalance monitor using an oxygen sensor
JP2011163229A (ja) * 2010-02-10 2011-08-25 Toyota Motor Corp 多気筒内燃機関の気筒間空燃比インバランス判定装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172473A (ja) 1997-06-19 1999-03-16 Denso Corp 空燃比検出装置
JP2000065782A (ja) 1998-08-25 2000-03-03 Denso Corp 積層型空燃比センサ素子
JP2001074693A (ja) 1998-10-13 2001-03-23 Denso Corp ガス濃度センサのヒータ制御装置
JP2002048761A (ja) 2000-08-07 2002-02-15 Denso Corp ガス濃度センサのヒータ制御装置
JP2003107035A (ja) * 2001-09-27 2003-04-09 Kyocera Corp 酸素センサ
JP2004069547A (ja) 2002-08-07 2004-03-04 Toyota Motor Corp 空燃比センサの制御装置
US7152594B2 (en) 2005-05-23 2006-12-26 Gm Global Technology Operations, Inc. Air/fuel imbalance detection system and method
JP2007017191A (ja) 2005-07-05 2007-01-25 Toyota Motor Corp 空燃比センサの異常検出装置
JP2009257245A (ja) * 2008-04-18 2009-11-05 Mitsubishi Electric Corp 内燃機関の制御装置
JP2009264287A (ja) * 2008-04-25 2009-11-12 Toyota Motor Corp 触媒劣化抑制装置
JP2009074559A (ja) * 2009-01-16 2009-04-09 Toyota Motor Corp 排ガスセンサの劣化検出装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113216A (ja) * 2011-11-29 2013-06-10 Toyota Motor Corp 気筒間空燃比ばらつき異常検出装置
US8833150B2 (en) 2011-11-29 2014-09-16 Toyota Jidosha Kabushiki Kaisha Apparatus and method for detecting abnormality of imbalance of air-fuel ratios among cylinders
JP2013160054A (ja) * 2012-02-01 2013-08-19 Toyota Motor Corp 内燃機関の空燃比インバランス検出装置
US9074545B2 (en) 2012-02-01 2015-07-07 Toyota Jidosha Kabushiki Kaisha Air-fuel ratio imbalance detecting device and air-fuel ratio imbalance detecting method for internal combustion engine

Also Published As

Publication number Publication date
EP2514957A1 (en) 2012-10-24
US20120277980A1 (en) 2012-11-01
JP4968492B2 (ja) 2012-07-04
EP2514957A4 (en) 2017-05-24
US8401765B2 (en) 2013-03-19
CN102265016A (zh) 2011-11-30
EP2514957B1 (en) 2018-05-02
JPWO2011074132A1 (ja) 2013-04-25
CN102265016B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
JP4962656B2 (ja) 内燃機関の空燃比気筒間インバランス判定装置
JP5545367B2 (ja) 内燃機関の燃料噴射量制御装置
JP5115657B2 (ja) 内燃機関の空燃比気筒間インバランス判定装置
JP5488307B2 (ja) 空燃比気筒間インバランス判定装置
JP4968492B2 (ja) 内燃機関の空燃比気筒間インバランス判定装置
JP2012007496A (ja) 内燃機関の制御装置
JP5196003B2 (ja) 内燃機関の空燃比気筒間インバランス判定装置
JP5494317B2 (ja) 多気筒内燃機関の異常判定装置
JP5041100B2 (ja) 内燃機関の空燃比気筒間インバランス判定装置
US9115661B2 (en) Fuel injection amount control system and fuel injection amount control device for multi-cylinder internal combustion engine
WO2012008057A1 (ja) 内燃機関の燃料噴射量制御装置
JP5170320B2 (ja) 内燃機関の空燃比気筒間インバランス判定装置
JP2012031776A (ja) 内燃機関の燃料噴射量制御装置
JP5447673B2 (ja) 内燃機関の燃料噴射量制御装置
US20120024272A1 (en) Fuel injection amount control system and fuel injection amount control device for multi-cylinder internal combustion engine
JP2012017657A (ja) 内燃機関の燃料噴射量制御装置
WO2011033687A1 (ja) 内燃機関の空燃比気筒間インバランス判定装置
JP5640662B2 (ja) 内燃機関の燃料噴射量制御装置
JP2012062775A (ja) 内燃機関の空燃比制御装置
JP2008008216A (ja) 内燃機関の空燃比制御用酸素濃度センサの異常判定装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152326.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011503260

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009852321

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13516841

Country of ref document: US