WO2011070719A1 - Appareil d'analyse d'électrolyte - Google Patents

Appareil d'analyse d'électrolyte Download PDF

Info

Publication number
WO2011070719A1
WO2011070719A1 PCT/JP2010/006576 JP2010006576W WO2011070719A1 WO 2011070719 A1 WO2011070719 A1 WO 2011070719A1 JP 2010006576 W JP2010006576 W JP 2010006576W WO 2011070719 A1 WO2011070719 A1 WO 2011070719A1
Authority
WO
WIPO (PCT)
Prior art keywords
standard solution
electromotive force
concentration
electrolyte
electrolyte analyzer
Prior art date
Application number
PCT/JP2010/006576
Other languages
English (en)
Japanese (ja)
Inventor
晴 李
三村 智憲
福薗 真一
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to CN201080055376.2A priority Critical patent/CN102648407B/zh
Priority to US13/514,187 priority patent/US8871080B2/en
Priority to EP10835650.2A priority patent/EP2511699B1/fr
Publication of WO2011070719A1 publication Critical patent/WO2011070719A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes

Definitions

  • the present invention relates to an electrolyte analyzer for analyzing ionic components contained in a biological sample such as blood and urine, and more particularly to an electrolyte analyzer having a mechanism capable of detecting an abnormality of the analyzer.
  • the most popular electrolyte analyzer for analyzing ion components such as sodium, potassium, and chlorine contained in biological samples such as blood and urine is to measure specific ions in the sample using an ion selective electrode. It is a device to do. In the electrolyte analyzer using this ion selective electrode, a standard solution with a known concentration is measured in advance, the slope is calculated using the obtained electromotive force, and the internal standard solution and the sample are alternately measured. The concentration of specific ions in the sample is measured from the potential difference.
  • Such an electrolyte analyzer is described in Patent Documents 1 and 2, for example.
  • the measurement data of the standard solution may be poor due to deterioration of the diluting solution or contamination with foreign matter. Since such a phenomenon is likely to occur when a reagent is added, the sample should always be calibrated using a new reagent and standard solution, assuming that the reagent is not added. It is recommended to measure
  • JP-A-8-35944 Japanese Patent Laid-Open No. 2001-4586
  • the operation status of the electrolyte analyzer using the ion selective electrode varies, and a reagent that is not originally permitted in the instruction manual of the electrolyte analyzer may be added.
  • Use of a reagent whose expiration date has passed, or leaving the reagent in the air for a long time after opening the reagent may cause deterioration of the reagent due to falling bacteria in the air.
  • a known concentration sample diluted at a constant magnification is measured using such a diluent, it is necessary to confirm whether or not the influence of the gradually deteriorated diluent is present.
  • the handling of the electrolyte analyzer is very complicated.
  • the expiration date of the electrode and the number of times of measurement are set, but the use of the measurement may be continued even if the service life is exceeded. For example, when using an electrode that has exceeded its service life, it has been difficult to sense gradually changing ion selectivity and changes in electromotive force.
  • the object of the present invention is to easily confirm the deterioration of the reagent that has deteriorated due to the expiration of the expiration date or due to the addition of the electrode based on the calibration measurement result using a sample with a known concentration every day, or the deterioration of the electrode beyond the service life. It is possible to provide an electrolyte analyzer that can perform measurement data with high reliability.
  • the present invention is configured by the following means to solve the above problems.
  • a calibration result obtained by measuring a sample having a known concentration is stored, and a slope value of the calibration result and an internal standard solution concentration are stored. Extracts fluctuation patterns of change over time such as values, electromotive force of internal standard solution, electromotive force of low concentration standard solution / high concentration region standard solution, electromotive force of calibrator.
  • the balance rate between the electromotive force of the internal standard solution and the electromotive force of the low-concentration region standard solution / high-concentration region standard solution is calculated, and the fluctuation pattern of the balance rate with time is extracted.
  • Electrode degradation, reagent degradation, etc. can be easily confirmed from the variation pattern of calibration results using a sample of known concentration.
  • the present invention taking advantage of calibration measurement results using a known concentration sample performed on a daily basis, deterioration of reagents and electrodes used in an electrolyte analyzer using an ion selective electrode, contamination of foreign substances in the reagents, An artificial setting mistake can be easily confirmed, and the reliability of measurement data can be improved by finding various problems before the trouble occurs.
  • the present invention relates to a plurality of items of electrolyte calibration results obtained by measuring a sample having a known concentration in a management system for an electrolyte analyzer using an ion selective electrode when measuring a patient sample such as blood and urine mainly in a clinical test.
  • the characteristics of the fluctuation pattern are extracted from the fluctuation pattern of the liquid, the electromotive force balance rate between the internal standard solution and the electromotive force of the low concentration standard solution / high concentration region standard solution is calculated, and the variation pattern of the electromotive force balance rate and the electrolyte calibration are calculated.
  • an electrolyte calibration result obtained by measuring a standard solution of known concentration in the present invention includes a slope, an internal standard solution measurement concentration, a correction factor, an internal standard solution measurement electromotive force, a low concentration region standard solution electromotive force, and a high concentration region.
  • the standard electromotive force and the measured electromotive force of the calibrator are the targets.
  • the fluctuation pattern in the present invention is an electromotive force calculated from the shift tendency and drift tendency of each item in the electromotive force calibration result, the electromotive force of the internal standard solution, and the electromotive force of the low concentration region standard solution / high concentration region standard solution.
  • the balance rate shift tendency and drift tendency are targeted.
  • FIG. 1 is a schematic configuration diagram of an electrolyte analyzer using an ion selective electrode applied to the present invention.
  • a set amount of liquid is sucked from a sample dispensing nozzle 102 by a sample dispensing nozzle 102 and discharged to a dilution tank 109.
  • the diluent in the diluent bottle 103 is discharged into the dilution tank 109 by the operation of the electromagnetic valve 105 and the diluent syringe 104 of the diluent, and the sample discharged from the sample container 101 into the dilution tank 109 is diluted.
  • the diluted sample in the dilution tank 109 is transferred to the sodium ion selection electrode 110, the potassium ion selection electrode 111, and the chlorine ion selection electrode 112 by the operations of the sipper syringe 118, the sipper syringe suction electromagnetic valve 117, and the pinch valve 113. Sucked.
  • the comparison electrode solution in the comparison electrode solution bottle 116 is sucked into the comparison electrode 114 by the operation of the comparison electrode solution electromagnetic valve 115, the sipper syringe 118, and the sipper syringe suction electromagnetic valve 117, and the electromotive force is corrected.
  • the internal standard solution in the internal standard solution bottle 106 is discharged into the dilution tank 109 by the operation of the internal standard solution solenoid valve 108 and the internal standard solution syringe 107, and the diluted sample and the internal standard solution are discharged.
  • each electromotive force is measured.
  • slope sensitivity and an electromotive force of an internal standard solution and a sample with a known concentration are obtained. Further, the concentration is calculated from the potential difference between the internal standard solution and the sample.
  • the first embodiment is an example in the case of performing calibration measurement using a known concentration sample.
  • the fluctuation trend pattern extraction 202 of each item is automatically executed in the electrolyte analyzer.
  • the variation pattern of each item of the obtained electrolyte calibration result is compared with the special variation pattern already stored in the electrolyte analyzer 203, and when it matches the special pattern, the electrolyte analysis using the ion selective electrode
  • the device alerts alarm 204. If it does not coincide with the special pattern, the process proceeds to step 205 of determination of the electrolyte quality control result.
  • FIG. 3 is a screen example of a system for managing the deterioration of the diluent with respect to the measurement value management method according to the present invention.
  • the electrolyte calibration result diagram for one month is displayed, and the variation pattern of each item is extracted and displayed.
  • Slope 301 and fluctuation pattern 302 measured concentration value 303 and fluctuation pattern 304 of the internal standard solution, internal standard solution and low concentration region standard solution / high concentration region standard solution electromotive force 305 and variation pattern 306, calibrator electromotive force 307
  • the fluctuation pattern 308, the electromotive force balance rate 309, and the fluctuation pattern 310 are displayed. Drift and shift fluctuation patterns were observed only for the chlorine ion item.
  • the triangular marker is the electromotive force of the high concentration region standard solution
  • the square marker is the electromotive force of the low concentration region standard solution
  • the round marker is the internal It represents the electromotive force of the standard solution.
  • the color of the line and the shape of the marker in the above example are merely examples, and are not limited to the expression method.
  • the electromotive force of the internal standard solution of chlorine ions, the electromotive force 315 of the low concentration region standard solution / high concentration region standard solution, and the fluctuation patterns 316 and 318 of the calibrator 317 are also drift fluctuations, but the occurrence of sodium ions and potassium ions.
  • the power is stable. Since the chloride ion slope 312 and the electromotive force balance rate 318 have the same drift fluctuations, it can be estimated that they are due to the diluent, and those that have exceeded the expiration date or due to deterioration of the diluent due to repeated reagent additions. I can confirm. Therefore, in this case, the alarm 321 is generated.
  • a display method by clicking the icon of the alarm 321, it is possible to have a function of confirming the alarm contents and the comment 322 of the probable cause.
  • FIG. 4 shows an example of a screen of a system for managing the mixing of potassium ions in the diluent with respect to the measurement value management method according to the present invention.
  • the electrolyte calibration result diagram for 2 months is displayed, and the fluctuation pattern of each item is extracted and displayed.
  • Slope 401 and fluctuation pattern 402 measured concentration value 403 and fluctuation pattern 404 of the internal standard solution, internal standard solution and low concentration region standard solution / high concentration region standard solution electromotive force 405 and variation pattern 406, calibrator electromotive force 407
  • the fluctuation pattern 408, the electromotive force balance rate 409, and the fluctuation pattern 410 are displayed.
  • a shift variation pattern was observed only for the potassium ion item.
  • the triangular marker is the electromotive force of the high concentration region standard solution
  • the square marker is the electromotive force of the low concentration region standard solution
  • the round marker is the internal It represents the electromotive force of the standard solution.
  • the background color, line color, and marker color in the above example are merely examples, and are not limited to the expression method.
  • the electromotive force of the internal standard solution of potassium ion and the electromotive force 315 of the low concentration region standard solution / high concentration region standard solution are stable, but low.
  • the fluctuation pattern 318 of the calibrator 317 and the fluctuation pattern 420 of the electromotive force balance rate 419 are similarly high-side shift fluctuations.
  • the alarm 421 is generated.
  • a display method by clicking an icon of the alarm 421, a function of confirming the alarm content and the comment 422 of the estimated cause can be provided.
  • FIG. 5 is a screen example of a system for managing the deterioration of the ion electrode in relation to the measurement value management method according to the present invention.
  • the electrolyte calibration result diagram for 3 months is displayed, and the fluctuation pattern of each item is extracted and displayed.
  • Slope 501 and fluctuation pattern 502 internal standard solution measured concentration value 503 and fluctuation pattern 504, internal standard solution and low concentration region standard solution / high concentration region standard solution electromotive force 505, variation pattern 506, calibrator electromotive force 507
  • the fluctuation pattern 508, the electromotive force balance rate 509, and the fluctuation pattern 510 are displayed.
  • FIG. 6 is an example of a screen of a system for managing the deterioration of the reference electrode in the measurement value management method according to the present invention.
  • the electrolyte calibration result diagram for one month is displayed, and the fluctuation pattern of each item is extracted and displayed.
  • Slope 601 fluctuation pattern 602, measured concentration value 603 of internal standard solution, fluctuation pattern 604, electromotive force 605 of internal standard solution and low concentration region standard solution / high concentration region standard solution, variation pattern 606, electromotive force 607 of calibrator
  • the fluctuation pattern 608, the electromotive force balance rate 609, and the fluctuation pattern 610 are displayed.
  • the variation patterns 606 and 608 of the standard solution electromotive force 605 and the calibrator electromotive force 607 of the three items of sodium ion, potassium ion, and chlorine ion are the same. Since a low-value side drift was observed, a decrease in electromotive force due to deterioration of the reference electrode commonly used for the three items can be confirmed. Therefore, in this case, the alarm 611 is generated. In addition, as a display method, by clicking the icon of the alarm 611, a function of confirming the alarm content and the comment 612 of the probable cause can be provided.
  • FIG. 7 shows an example of a screen of a system for managing standard solution concentration input values in relation to the measurement value management method according to the present invention.
  • the electrolyte calibration result diagram for one month is displayed, and the variation pattern of each item is extracted and displayed.
  • Slope 701, fluctuation pattern 702, measured concentration value 703 of internal standard solution, fluctuation pattern 704, internal standard solution and low concentration region standard solution / high concentration region standard solution electromotive force 705, variation pattern 706, calibrator electromotive force 707 The fluctuation pattern 708, the electromotive force balance rate 709, and the fluctuation pattern 710 are displayed.
  • the electromotive force 705 of the internal standard solution and the low concentration region standard solution / high concentration region standard solution 705 and the electromotive force 707 of the calibrator are stable, the sodium ion slope 702, the internal standard solution concentration 704, and the chloride ion slope Similarly, 714 and internal standard solution concentration 716 showed fluctuations in the high value side shift. Although the slope of the potassium ion was stable, the fluctuation 712 of the internal standard solution 711 of potassium ion showed a lower value side shift. The slopes of sodium ion, potassium ion, and chlorine ion, and the internal standard solution concentration of each are calculated using the electromotive force. Even though the electromotive force is stable, the slope and the internal standard solution concentration shift.
  • the input value of the standard solution concentration may be incorrect. Therefore, in this case, the alarm 717 is generated.
  • the icon of the alarm 717 by clicking the icon of the alarm 717, it is possible to have a function of confirming the alarm content and the comment 718 of the estimated cause.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

Dans la pratique, les appareils d'analyse d'électrolyte fonctionnent dans diverses conditions et les problèmes rencontrés ici et là comprennent la dégradation de réactif à cause du remplissage en réactif, la contamination par une substance étrangère à cause du remplissage en réactif, la dégradation d'électrodes au-delà de leur durée de vie utile et l'introduction d'erreurs par des opérateurs. L'invention porte sur un procédé permettant de déterminer, à partir des profils de variation des résultats d'étalonnage quotidiens pour l'électrolyte, les valeurs mesurées anormales dues aux utilisations inappropriées. De façon spécifique, l'invention porte sur un procédé complet de gestion de la précision qui consiste à : extraire le profil de variation de chaque élément d'étalonnage à partir des résultats d'étalonnage quotidien pour l'électrolyte ; calculer les équilibres entre les forces électromotrices de la solution étalon interne et des solutions étalons à faible et haute concentration ; et comparer une combinaison de profils de variation avec des profils spécifiques enregistrés dans l'appareil d'analyse d'électrolyte pour déterminer la dégradation d'électrodes ou de réactif pour l'électrolyte, ou des erreurs d'entrée de valeurs de concentration de solution étalon, et émettre un avertissement.
PCT/JP2010/006576 2009-12-08 2010-11-10 Appareil d'analyse d'électrolyte WO2011070719A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080055376.2A CN102648407B (zh) 2009-12-08 2010-11-10 电解质分析装置的管理系统
US13/514,187 US8871080B2 (en) 2009-12-08 2010-11-10 Management system for an electrolyte analyzer
EP10835650.2A EP2511699B1 (fr) 2009-12-08 2010-11-10 Systeme de gestion pour un appareil d'analyse d'électrolyte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009278106A JP5331669B2 (ja) 2009-12-08 2009-12-08 電解質分析装置
JP2009-278106 2009-12-08

Publications (1)

Publication Number Publication Date
WO2011070719A1 true WO2011070719A1 (fr) 2011-06-16

Family

ID=44145286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006576 WO2011070719A1 (fr) 2009-12-08 2010-11-10 Appareil d'analyse d'électrolyte

Country Status (5)

Country Link
US (1) US8871080B2 (fr)
EP (1) EP2511699B1 (fr)
JP (1) JP5331669B2 (fr)
CN (1) CN102648407B (fr)
WO (1) WO2011070719A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5557751B2 (ja) * 2008-12-26 2014-07-23 株式会社日立ハイテクノロジーズ 精度管理方法
TWI580771B (zh) 2012-07-25 2017-05-01 奈寇公司 以控制系統及演算法爲基礎之分析器之設計開發與實施
JP5965248B2 (ja) * 2012-08-22 2016-08-03 株式会社日立ハイテクノロジーズ 電解質分析装置
CN102914565B (zh) * 2012-11-14 2015-03-18 深圳市锦瑞电子有限公司 电解质分析仪的定标方法
US10578599B2 (en) * 2015-05-08 2020-03-03 Suprasensor Technologies, Llc System, apparatus, and method for measuring ion concentration with a standard deviation correction
US20160341692A1 (en) * 2015-05-21 2016-11-24 Jeol Ltd. Electrolyte Measuring Apparatus and Electrolyte Measuring Method
EP3339849B1 (fr) * 2015-08-20 2021-03-10 Hitachi High-Tech Corporation Dispositif de mesure de concentration d'ions
CN105044159B (zh) * 2015-09-09 2018-05-22 深圳市新产业生物医学工程股份有限公司 电解质分析仪的测试方法
CA2999995C (fr) * 2015-09-30 2021-08-24 Siemens Healthcare Diagnostics Inc. Analyseur de fluide pour mesurer des ions de magnesium et procede d'etalonnage de capteur potentiometrique d'ions de magnesium a l'interieur de celui-ci
CN105675652A (zh) * 2016-02-19 2016-06-15 鸡西市天合科技有限公司 水稻田稻田水钾含量自动速测仪
JP6622665B2 (ja) * 2016-07-26 2019-12-18 株式会社日立ハイテクノロジーズ 電解質濃度測定装置
WO2020021837A1 (fr) * 2018-07-27 2020-01-30 株式会社日立ハイテクノロジーズ Système d'analyse automatique
US11491267B2 (en) 2018-07-27 2022-11-08 Fresenius Medical Care Holdings, Inc. Method for tailoring dialysis treatment based on sensed potassium concentration in blood serum or dialysate
JP6896684B2 (ja) 2018-09-13 2021-06-30 株式会社日立ハイテク 電解質濃度測定装置
US20220026387A1 (en) * 2018-12-06 2022-01-27 Hitachi High-Tech Corporation Automated analysis apparatus
JP7267865B2 (ja) * 2019-07-19 2023-05-02 株式会社日立ハイテク 分析装置及び分析方法
EP4099006A4 (fr) * 2020-01-29 2024-03-27 Hitachi High Tech Corp Appareil d'analyse d'électrolyte
EP4105651A4 (fr) * 2020-02-14 2024-03-27 Hitachi High Tech Corp Appareil d'analyse d'électrolyte
CN117677840A (zh) * 2021-08-03 2024-03-08 株式会社日立高新技术 电解质分析装置和分析方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835944A (ja) 1994-07-25 1996-02-06 Hitachi Ltd 臨床用電解質測定装置
JP2001004586A (ja) 1999-06-16 2001-01-12 Hitachi Ltd 電解質分析装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789108B2 (ja) * 1989-09-13 1995-09-27 株式会社日立製作所 電解質分析装置および電解質分析方法
US6464848B1 (en) * 1998-09-03 2002-10-15 Nec Corporation Reference electrode, a biosensor and a measuring apparatus therewith
US20040262170A1 (en) * 2003-06-27 2004-12-30 Steris Inc. Sensor for sensing a chemical component concentration using an electroactive material
JP2008039486A (ja) * 2006-08-02 2008-02-21 Olympus Corp 電解質分析装置及びその測定データ処理方法
EP1906179A1 (fr) * 2006-09-26 2008-04-02 F.Hoffmann-La Roche Ag Procédé de détection de résultats de mesure erronés à l'aide d'électrodes sélectives d'ions
JP5080211B2 (ja) * 2007-11-09 2012-11-21 ベックマン コールター, インコーポレイテッド 分析装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835944A (ja) 1994-07-25 1996-02-06 Hitachi Ltd 臨床用電解質測定装置
JP2001004586A (ja) 1999-06-16 2001-01-12 Hitachi Ltd 電解質分析装置

Also Published As

Publication number Publication date
US8871080B2 (en) 2014-10-28
CN102648407B (zh) 2014-11-19
JP2011122823A (ja) 2011-06-23
EP2511699A1 (fr) 2012-10-17
US20120261260A1 (en) 2012-10-18
CN102648407A (zh) 2012-08-22
EP2511699B1 (fr) 2018-07-25
JP5331669B2 (ja) 2013-10-30
EP2511699A4 (fr) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5331669B2 (ja) 電解質分析装置
EP1832879B1 (fr) Système de surveillance centralisé, système d'analyse et procédé de surveillance centralisé
CN112666234B (zh) 电解质浓度测定装置、电解质浓度测定方法
US9482682B2 (en) Reagent preparation apparatus and sample processing apparatus
EP2233929B1 (fr) Appareil de préparation de réactif et analyseur d'échantillons
JP5965248B2 (ja) 電解質分析装置
CN108572250B (zh) 确定分析物浓度的方法
JP2016188872A (ja) 電解質分析装置及び電解質分析方法
US20230075119A1 (en) Electrolyte Analysis Device
CN111788479B (zh) 自动分析装置、自动分析方法
JP5427975B2 (ja) 電解質分析装置の管理システム
US20240060931A1 (en) Electrolyte analysis device and method for identifying abnormality in same
JP7423752B2 (ja) 自動分析装置
JPWO2023002729A5 (fr)
EP2458389A1 (fr) Détection de positionnement incorrect de récipients de liquide
CN117677840A (zh) 电解质分析装置和分析方法
EP4271987A1 (fr) Lavage et détection simultanés et sélectifs dans des analyseurs à électrodes sélectives d'ions
CN116930522A (zh) 一种样本分析系统和浓度检测方法
JP2015125000A (ja) 電解質測定装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080055376.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010835650

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13514187

Country of ref document: US