WO2011065478A1 - Substrate processing apparatus and method for manufacturing display element - Google Patents

Substrate processing apparatus and method for manufacturing display element Download PDF

Info

Publication number
WO2011065478A1
WO2011065478A1 PCT/JP2010/071124 JP2010071124W WO2011065478A1 WO 2011065478 A1 WO2011065478 A1 WO 2011065478A1 JP 2010071124 W JP2010071124 W JP 2010071124W WO 2011065478 A1 WO2011065478 A1 WO 2011065478A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
unit
processing apparatus
sheet substrate
substrate holding
Prior art date
Application number
PCT/JP2010/071124
Other languages
French (fr)
Japanese (ja)
Inventor
章 宮地
徹 木内
圭 奈良
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2011543319A priority Critical patent/JP5887935B2/en
Priority to CN201080048800.0A priority patent/CN102666323B/en
Priority to KR1020187019872A priority patent/KR101906129B1/en
Priority to KR1020187007930A priority patent/KR101880017B1/en
Priority to KR1020127009105A priority patent/KR101843545B1/en
Publication of WO2011065478A1 publication Critical patent/WO2011065478A1/en
Priority to HK13101660.2A priority patent/HK1174316A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/067Sheet handling, means, e.g. manipulators, devices for turning or tilting sheet glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2249/00Aspects relating to conveying systems for the manufacture of fragile sheets
    • B65G2249/04Arrangements of vacuum systems or suction cups
    • B65G2249/045Details of suction cups suction cups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present invention relates to a substrate processing apparatus and a display element manufacturing method.
  • This application claims priority based on Japanese Patent Application No. 2009-268789 filed in Japan on November 26, 2009, the contents of which are incorporated herein by reference.
  • an organic electroluminescence (organic EL) element As a display element constituting a display device such as a display device, for example, an organic electroluminescence (organic EL) element is known.
  • the organic EL element has an anode and a cathode on a substrate and an organic light emitting layer sandwiched between the anode and the cathode.
  • holes are injected from an anode into an organic light emitting layer to combine holes and electrons in the organic light emitting layer, and display light can be obtained by emitted light at the time of the combination.
  • an electric circuit connected to, for example, an anode and a cathode is formed on a substrate.
  • a method for producing an organic EL element for example, a method called a roll-to-roll method (hereinafter simply referred to as “roll method”) is known (for example, see Patent Document 1).
  • roll method a single sheet-like substrate wound around a substrate supply side roller is sent out, and the substrate is transported while being wound up by a substrate recovery side roller.
  • a light emitting layer, an anode, a cathode, an electric circuit, and the like constituting an organic EL element are sequentially formed on a substrate in a processing apparatus.
  • An object according to the present invention is to provide a substrate processing apparatus and a display element manufacturing method excellent in processing accuracy.
  • a substrate processing apparatus includes a processing unit that performs predetermined processing on a substrate, and a substrate holding unit that moves relative to the processing unit and holds a substrate while forming a surface to be processed of the substrate.
  • a display element manufacturing method includes a processing step of performing a predetermined process on a surface to be processed of a substrate, and a substrate holding step of holding the substrate while forming the surface to be processed of the substrate by the substrate holding portion. And a moving step of moving the substrate holding portion disposed on the endless support member in the substrate transport direction.
  • FIG. 1B is a bb cross-sectional view of the organic EL element in FIG. 1A.
  • FIG. 1C is a cc cross-sectional view of the organic EL element in FIG. 1A.
  • the figure which shows the structure of a conveyance mechanism The figure which shows the structure of a conveyance mechanism.
  • substrate Sectional drawing of the partition formed in a sheet
  • Sectional drawing of the droplet apply
  • FIG. 1A is a plan view showing a configuration of an organic EL element.
  • 1B is a cross-sectional view taken along line bb in FIG. 1A.
  • 1C is a cross-sectional view taken along the line cc in FIG. 1A.
  • a gate insulating layer I is formed on the gate electrode G.
  • a source electrode S of the source bus line SBL is formed on the gate insulating layer I, and a drain electrode D connected to the pixel electrode P is formed.
  • An organic semiconductor layer OS is formed between the source electrode S and the drain electrode D. This completes the field effect transistor.
  • a light emitting layer IR is formed on the pixel electrode P, and a transparent electrode ITO is formed on the light emitting layer IR.
  • a partition wall BA (bank layer) is formed on the sheet substrate FB.
  • source bus lines SBL are formed between the barrier ribs BA.
  • the gate bus line GBL is also formed between the partition walls BA in the same manner as the source bus line SBL.
  • the organic EL element 50 is suitably used for a display device such as a display device and a display unit of an electronic device.
  • a display device such as a display device and a display unit of an electronic device.
  • an organic EL element 50 formed in a panel shape is used.
  • TFT thin film transistor
  • a pixel electrode In manufacturing such an organic EL element 50, it is necessary to form a substrate on which a thin film transistor (TFT) and a pixel electrode are formed.
  • TFT thin film transistor
  • a pixel electrode In order to accurately form one or more organic compound layers (light-emitting element layers) including a light-emitting layer on the pixel electrode on the substrate, a partition BA (bank layer) is easily and accurately formed in the boundary region of the pixel electrode. It is desirable.
  • FIG. 2 is a schematic diagram illustrating a configuration of a substrate processing apparatus 100 that performs processing using a flexible sheet substrate FB.
  • the substrate processing apparatus 100 is an apparatus that forms the organic EL element 50 shown in FIGS. 1A to 1C using a belt-shaped sheet substrate FB.
  • the substrate processing apparatus 100 includes a substrate supply unit 101, a substrate processing unit 102, a substrate collection unit 103, and a control unit 104.
  • the sheet substrate FB is transported from the substrate supply unit 101 to the substrate recovery unit 103 via the substrate processing unit 102.
  • the control unit 104 controls the overall operation of the substrate processing apparatus 100.
  • an XYZ orthogonal coordinate system is set, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system.
  • the sheet substrate FB is conveyed in the X-axis direction
  • the direction orthogonal to the X-axis direction is the Y-axis direction
  • the direction orthogonal to the X-axis direction and the Y-axis direction (that is, the vertical direction) is Z.
  • Z Axial direction.
  • the rotation (inclination) directions around the X axis, Y axis, and Z axis are the ⁇ X, ⁇ Y, and ⁇ Z directions, respectively.
  • the sheet substrate FB for example, a heat-resistant resin film, stainless steel, or the like can be used.
  • the resin film is made of polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, vinyl acetate resin, etc. Can be used.
  • the dimension in the Y direction of the sheet substrate FB is, for example, about 1 m to 2 m, and the dimension in the X direction is, for example, 10 m or more. Of course, this dimension is only an example and is not limited thereto.
  • the dimension in the Y direction of the sheet substrate FB may be 50 cm or less, or 2 m or more.
  • substrate FB may be 10 m or less.
  • the flexibility in the present embodiment refers to the property that the substrate can be bent without being broken or broken even when a predetermined force of at least its own weight is applied to the substrate. The flexibility varies depending on the material, size, thickness, environment such as temperature, etc. of the substrate.
  • the sheet substrate FB preferably has a smaller coefficient of thermal expansion so that the dimensions do not change even when subjected to heat of about 200 ° C., for example.
  • an inorganic filler can be mixed with a resin film to reduce the thermal expansion coefficient.
  • the inorganic filler include titanium oxide, zinc oxide, alumina, silicon oxide and the like.
  • the substrate supply unit 101 is connected to a supply side connection unit 102 ⁇ / b> A provided in the substrate processing unit 102.
  • the substrate supply unit 101 supplies, for example, the sheet substrate FB wound in a roll shape to the substrate processing unit 102.
  • the substrate recovery unit 103 recovers the sheet substrate FB that has been processed by the substrate processing unit 102.
  • the substrate supply unit 101 is not limited to the configuration in which the sheet substrate FB is accommodated in a rolled state, and for example, the sheet substrate FB is accommodated in a state in which the sheet substrate FB is folded several times. It doesn't matter.
  • the folded state includes a state in which no crease is formed and the substrate is not broken or broken even when a predetermined force of at least about its own weight is applied to the substrate.
  • FIG. 3 is a diagram illustrating a configuration of the substrate processing unit 102.
  • the substrate processing unit 102 includes a transport unit 105, an element forming unit 106, an alignment unit 107, and a substrate cutting unit 108.
  • the substrate processing unit 102 forms each component of the organic EL element 50 on the sheet substrate FB while conveying the sheet substrate FB supplied from the substrate supply unit 101, and the sheet on which the organic EL element 50 is formed. This is the part that sends out the substrate FB to the substrate recovery unit 103.
  • the element forming unit 106 includes a partition forming unit 91, an electrode forming unit 92, and a light emitting layer forming unit 93.
  • the partition wall forming portion 91, the electrode forming portion 92, and the light emitting layer forming portion 93 are arranged in the order of the partition wall forming portion 91, the electrode forming portion 92, and the light emitting layer forming portion 93 from the upstream side to the downstream side in the transport direction of the sheet substrate FB. ing.
  • each structure of the element formation part 106 is demonstrated.
  • the partition wall forming unit 91 includes an imprint roller 110 and a thermal transfer roller 115.
  • the partition forming unit 91 forms the partition BA on the sheet substrate FB sent from the substrate supply unit 101.
  • the sheet substrate FB is pressed by the imprint roller 110, and the sheet substrate FB is heated to the glass transition point or more by the thermal transfer roller 115 so that the pressed partition wall BA maintains its shape. Therefore, the mold shape formed on the roller surface of the imprint roller 110 is transferred to the sheet substrate FB.
  • the sheet substrate FB is heated to, for example, about 200 ° C. by the thermal transfer roller 115.
  • the roller surface of the imprint roller 110 is mirror-finished, and a fine imprint mold 111 made of a material such as SiC or Ta is attached to the roller surface.
  • the fine imprint mold 111 forms a thin film transistor wiring stamper and a color filter stamper.
  • the imprint roller 110 forms the alignment mark AM on the sheet substrate FB using the fine imprint mold 111.
  • the fine imprint mold 111 has a stamper for the alignment marks AM.
  • the electrode forming portion 92 is provided on the + X side of the partition wall forming portion 91, and for example, a thin film transistor using an organic semiconductor is formed. Specifically, after forming the gate electrode G, the gate insulating layer I, the source electrode S, the drain electrode D, and the pixel electrode P as shown in FIGS. 1A to 1C, the organic semiconductor layer OS is formed.
  • the thin film transistor may be an inorganic semiconductor type or an organic semiconductor type.
  • an inorganic semiconductor thin film transistor an amorphous silicon type is known, but a thin film transistor using an organic semiconductor may be used. If a thin film transistor is formed using this organic semiconductor, the thin film transistor can be formed by utilizing a printing technique or a droplet coating technique.
  • field effect transistors FETs as shown in FIGS. 1A to 1C are particularly preferable.
  • the electrode forming unit 92 includes a droplet applying device 120, a heat treatment device BK, a cutting device 130, and the like.
  • a droplet applying device 120 for example, a droplet applying device 120G used when forming the gate electrode G, a droplet applying device 120I used when forming the gate insulating layer I, the source electrode S, A droplet applying device 120SD used when forming the drain electrode D and the pixel electrode P, a droplet applying device 120OS used when forming the organic semiconductor OS, and the like are used.
  • FIG. 4 is a plan view showing the configuration of the droplet applying apparatus 120.
  • FIG. 4 shows a configuration when the droplet applying device 120 is viewed from the + Z side.
  • the droplet applying device 120 is formed long in the Y-axis direction.
  • the droplet applying device 120 is provided with a driving device (not shown).
  • the droplet applying device 120 can be moved, for example, in the X direction, the Y direction, and the ⁇ Z direction by the driving device.
  • a plurality of nozzles 122 are formed in the droplet applying device 120.
  • the nozzle 122 is provided on the surface of the droplet applying device 120 that faces the sheet substrate FB.
  • the nozzles 122 are arranged, for example, along the Y-axis direction, and two rows (nozzle rows) of the nozzles 122 are formed, for example.
  • the control unit 104 can apply the droplets to all the nozzles 122 at once, and can individually adjust the timing of applying the droplets to each nozzle 122.
  • an inkjet method or a dispenser method can be employed.
  • the inkjet method include a charge control method, a pressure vibration method, an electromechanical conversion method, an electrothermal conversion method, and an electrostatic suction method.
  • the use of the material is less wasteful, and a desired amount of the material can be accurately disposed at a desired position.
  • the amount of one drop of metal ink applied by the droplet application method is, for example, 1 to 300 nanograms.
  • the droplet applying device 120G applies metal ink into the partition wall BA of the gate bus line GBL.
  • the droplet applying device 120I applies an electrically insulating ink of polyimide resin or urethane resin to the switching unit.
  • the droplet applying device 120SD applies metal ink in the partition BA of the source bus line SBL and in the partition BA of the pixel electrode P.
  • the droplet applying device 120OS applies the organic semiconductor ink to the switching unit between the source electrode S and the drain electrode D.
  • Metal ink is a liquid in which a conductor having a particle diameter of about 5 nm is stably dispersed in a solvent at room temperature, and carbon, silver (Ag), gold (Au), or the like is used as the conductor.
  • the compound forming the organic semiconductor ink may be a single crystal material family or an amorphous material, and may be a low molecule or a polymer. Particularly preferred among the compounds forming the organic semiconductor ink include a single crystal or ⁇ -conjugated polymer of a condensed ring aromatic hydrocarbon compound typified by pentacene, triphenylene, anthracene and the like.
  • the heat treatment apparatus BK is disposed on the + X side (downstream side in the substrate transport direction) of each droplet applying apparatus 120.
  • the heat treatment apparatus BK can radiate, for example, hot air or far infrared rays to the sheet substrate FB.
  • the heat treatment apparatus BK uses these radiant heats to dry or bake (bake) the droplets applied to the sheet substrate FB and harden them.
  • the cutting device 130 is provided on the + X side of the droplet applying device 120SD and on the upstream side of the droplet applying device 120OS.
  • the cutting device 130 cuts the source electrode S and the drain electrode D formed by the droplet applying device 120SD using, for example, laser light.
  • the cutting device 130 includes a light source (not shown) and a galvanometer mirror 131 that irradiates the laser light from the light source onto the sheet substrate FB.
  • a laser having a wavelength to be absorbed is preferable for the metal film to be cut. Further, by using a pulsed laser, thermal diffusion can be prevented and damage other than the cut portion can be reduced.
  • a femtosecond laser with a wavelength of 760 nm is preferable.
  • a femtosecond laser irradiation unit using a titanium sapphire laser as a light source is used.
  • the femtosecond laser irradiation unit irradiates the laser beam LL with a pulse of 10 KHz to 40 KHz, for example.
  • the distance between the source electrode S and the drain electrode D that determines the performance of the field effect transistor can be accurately cut. ing.
  • the distance between the source electrode S and the drain electrode D is, for example, about 3 ⁇ m to about 30 ⁇ m.
  • a carbon dioxide laser or a green laser can be used.
  • the galvanometer mirror 131 is disposed in the optical path of the laser beam LL.
  • the galvanometer mirror 131 reflects the laser beam LL from the light source onto the sheet substrate FB.
  • the galvanometer mirror 131 is provided to be rotatable in the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction, for example. As the galvano mirror 131 rotates, the irradiation position of the laser beam LL changes.
  • a thin film transistor or the like can be formed by utilizing a printing technique or a droplet coating method technique without using a so-called photolithography process. Yes.
  • a printing technique a droplet coating technique, or the like
  • the partition wall BA is formed by using the partition wall forming portion 91, ink bleeding and spreading are prevented.
  • the distance between the source electrode S and the drain electrode D that determines the performance of the thin film transistor is formed by laser processing or machining.
  • the light emitting layer forming portion 93 is disposed on the + X side of the electrode forming portion 92.
  • the light emitting layer forming unit 93 forms, for example, the light emitting layer IR and the pixel electrode ITO which are components of the organic EL device on the sheet substrate FB on which the electrodes are formed.
  • the light emitting layer forming unit 93 includes a droplet applying device 140 and a heat treatment device BK.
  • the light emitting layer IR formed by the light emitting layer forming portion 93 contains a host compound and a phosphorescent compound (also referred to as a phosphorescent compound).
  • the host compound is a compound contained in the light emitting layer.
  • a phosphorescent compound is a compound in which light emission from an excited triplet is observed and emits phosphorescence at room temperature.
  • a droplet applying device 140 for example, a droplet applying device 140Re that forms a red light emitting layer, a droplet applying device 140Gr that forms a green light emitting layer, a droplet applying device 140Bl that forms a blue light emitting layer, an insulating material.
  • a droplet applying device 140I that forms a layer, a droplet applying device 140IT that forms a pixel electrode ITO, and the like are used.
  • an ink jet method or a dispenser method can be adopted as in the case of the droplet applying device 120 described above.
  • a device for forming these layers for example, a droplet applying device
  • the droplet applying device 140Re applies the R solution onto the pixel electrode P.
  • the discharge amount of the R solution is adjusted so that the film thickness after drying becomes 100 nm.
  • the R solution for example, a solution obtained by dissolving a red dopant material in 1,2-dichloroethane in polyvinyl carbazole (PVK) as a host material is used.
  • the droplet applying device 140Gr applies the G solution onto the pixel electrode P.
  • the G solution for example, a solution in which a green dopant material is dissolved in 1,2-dichloroethane in a host material PVK is used.
  • the droplet applying device 140B1 applies the B solution onto the pixel electrode P.
  • the solution B for example, a solution in which a blue dopant material is dissolved in 1,2-dichloroethane in a host material PVK is used.
  • the droplet applying device 120I applies an electrically insulating ink to a part of the gate bus line GBL or the source bus line SBL.
  • the electrically insulating ink for example, polyimide resin or urethane resin ink is used.
  • the droplet applying device 120IT applies ITO (Indium Tin Oxide) ink on the red, green, and blue light emitting layers.
  • ITO Indium Tin Oxide
  • a compound in which several percent of tin oxide (SnO 2 ) is added to indium oxide (In 2 O 3 ) is used.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • the transparent conductive film preferably has a transmittance of 90% or more.
  • the heat treatment apparatus BK is disposed on the + X side (downstream side in the substrate transport direction) of each droplet applying apparatus 140.
  • the heat treatment apparatus BK can emit hot air, far-infrared rays, and the like to the sheet substrate FB, similarly to the heat treatment apparatus BK used in the electrode forming unit 92.
  • the heat treatment apparatus BK uses these radiant heats to dry or bake (bake) the droplets applied to the sheet substrate FB and harden them.
  • the transport unit 105 includes a plurality of rollers RR and a transport mechanism TR disposed at positions along the X direction.
  • the roller RR may be a rubber roller that sandwiches the sheet substrate FB from both sides, or may be a roller RR with a ratchet as long as the sheet substrate FB has perforation.
  • some of the rollers RR are movable in the Y-axis direction orthogonal to the transport direction.
  • the transport mechanism TR is disposed at a position corresponding to the electrode forming portion 92 and the light emitting layer forming portion 93 in the element forming portion 106 in the X direction.
  • Alignment unit 107 has a plurality of alignment cameras CA (CA1 to CA8) provided along the X direction.
  • the alignment camera CA may pick up an image with CCD or CMOS under visible light illumination, process the picked-up image to detect the position of the alignment mark AM, or irradiate the alignment mark AM with the laser light and scatter the light. Even if light is received, the position of the alignment mark AM may be detected.
  • the alignment camera CA1 is disposed on the + X side of the thermal transfer roller 115.
  • the alignment camera CA1 detects the position of the alignment mark AM formed by the thermal transfer roller 115 on the sheet substrate FB.
  • the alignment cameras CA2 to CA8 are respectively arranged on the + X side of the heat treatment apparatus BK. Alignment cameras CA2 to CA8 detect the position of alignment mark AM on sheet substrate FB that has passed through heat treatment apparatus BK.
  • the sheet substrate FB may expand and contract in the X axis direction and the Y axis direction through the thermal transfer roller 115 and the heat treatment apparatus BK.
  • the alignment camera CA By disposing the alignment camera CA on the + X side of the thermal transfer roller 115 that performs heat treatment or on the + X side of the heat treatment apparatus BK in this way, it is possible to detect the positional deviation of the sheet substrate FB due to thermal deformation or the like. Yes.
  • the detection results from the alignment cameras CA1 to CA8 are transmitted to the control unit 104. Based on the detection results of the alignment cameras CA1 to CA8, the control unit 104 adjusts, for example, the ink application position and timing of the droplet application device 120 and the droplet application device 140, and supplies the sheet substrate FB from the substrate supply unit 101. Adjustment of the speed and the conveyance speed of the roller RR, adjustment of movement in the Y direction by the roller RR, adjustment of the cutting position and timing of the cutting device 130, and the like are performed.
  • FIG. 5 is a diagram illustrating a configuration of the transport mechanism TR.
  • the plurality of transport mechanisms TR shown in FIG. 3 have the same configuration.
  • the transport mechanism TR disposed corresponding to the droplet applying device 120 among the plurality of transport mechanisms TR will be described as an example.
  • the transport mechanism TR includes a belt mechanism 10, a belt driving mechanism 20, and an air pad mechanism 40.
  • the belt mechanism 10 and the belt driving mechanism 20 are disposed on the ⁇ Z side with respect to the sheet substrate FB.
  • the air pad mechanism 40 is disposed on the + Z side with respect to the sheet substrate FB.
  • the belt mechanism 10 is disposed around the belt drive mechanism 20 along the ⁇ Y direction.
  • the belt mechanism 10 includes a rotating unit 11 and a suction holding plate (substrate holding unit) 12.
  • the rotating part 11 is configured by connecting a plurality of support members 13 in an endless manner. Specifically, support members 13 adjacent to each other in the ⁇ Y direction are connected to each other by a common shaft member 14 so as to be rotatable. This configuration is provided continuously in the ⁇ Y direction, and the rotating portion 11 is formed in an endless shape.
  • the belt mechanism 10 is provided so as to be rotatable in the ⁇ Y direction by the belt drive mechanism 20.
  • the adsorption holding plate 12 is provided on the outer peripheral surface of each support member 13.
  • the suction holding plate 12 is a plate-like member formed in a rectangular shape, for example.
  • the suction holding plate 12 has a suction holding surface 12a that sucks and holds the sheet substrate FB.
  • the suction holding surface 12 a is provided outside the belt mechanism 10.
  • FIG. 6 is a diagram when the transport mechanism TR is viewed from the + Z side. As shown in FIG. 6, the suction holding plate 12 is formed so as to protrude in the Y direction with respect to the sheet substrate FB. As shown in FIGS. 5 and 6, the transport mechanism TR holds the sheet substrate FB by the four suction holding plates 12 (S) at the center in the X direction.
  • FIG. 7 and 8 are diagrams showing the configuration of one suction holding plate 12.
  • FIG. 7 is a view when the suction holding plate 12 is viewed from the + Z side
  • FIG. 8 is a view showing the configuration of the AA ′ cross section in FIG.
  • the suction holding plate 12 has a configuration in which a holding member 15 and a suction pad 16 are arranged on a support plate 17, respectively.
  • the holding member 15 is disposed substantially at the center of the support plate 17 in the Y direction, and is formed to have a dimension that covers the processing target FBA of the sheet substrate FB shown in FIG. 7 in the Y direction. Therefore, at least the portion to be processed FBA of the sheet substrate FB is held by the holding member 15.
  • the surface on the + Z side of the holding member 15 is a holding surface 15a for holding the sheet substrate FB.
  • the holding member 15 is formed so that the holding surface 15a is flat. For this reason, the to-be-processed part FBA of the sheet
  • the suction pads 16 are arranged one by one on both end sides in the Y direction with respect to the holding member 15.
  • the suction pad 16 sucks a position of the sheet substrate FB that deviates from the processed portion FBA toward the edge in the Y direction (for example, a position other than the processed portion FBA of the sheet substrate FB).
  • the suction pad 16 is held by a pad support member 17b and is configured to have a negative pressure on the suction surface 16a on the + Z side in FIGS.
  • the suction pad 16 vacuum-sucks the sheet substrate FB with the suction surface 16a.
  • the ⁇ Z side of the suction pad 16 is connected to a pad support member 17 b and a pipe 16 b formed in the support plate 17, and the pipe 16 b is connected to a pipe 17 c outside the support plate 17.
  • the pipe 17c is connected to a pump mechanism 18 shown in FIG. 9, and the suction surface 16a is formed at a negative pressure by the pump mechanism 18.
  • the suction surface 16a is formed so as to be flush with the holding surface 15a of the holding member 15. Accordingly, the suction holding surface 12a formed by the suction holding plate 12 is formed by the holding surface 15a and the suction surface 16a formed to be flush with each other.
  • the sheet substrate FB is adsorbed on the adsorption surfaces 16a provided at both ends in the Y direction of the adsorption holding surface 12a, and is not adsorbed on the central holding surface 15a in the Y direction.
  • the pad support member 17b is provided so as to be movable in the Y direction by the Y direction actuator 17a. With this configuration, the position of the suction pad 16 in the Y direction can be moved in the Y direction.
  • the sheet substrate FB is sucked by the two suction pads 16, the + Y side suction pad 16 is moved in the + Y direction, and the ⁇ Y side suction pad 16 is moved in the ⁇ Y direction.
  • Tension can be applied to the sheet substrate FB in the Y direction while maintaining the holding state on the holding surface 15a.
  • FIG. 9 is a cross-sectional view showing the configuration of the pump mechanism 18 connected to the suction pad 16.
  • the pump mechanism 18 includes a fixed cylindrical shaft 30, a rotating cylinder 31, and a suction pump 32.
  • the fixed cylindrical shaft 30 is formed in a cylindrical shape as viewed in the Y direction, and is held in a fixed position.
  • the fixed cylindrical shaft 30 has a convex portion 30a, a suction supply port 30b, and an air release port 30c.
  • Two convex portions 30 a are provided on the + Z side of the outer surface of the fixed cylindrical shaft 30.
  • the convex portions 30 a are provided along the Y direction across both ends of the fixed cylindrical shaft 30 in the Y direction.
  • the suction supply port 30 b is an opening formed along the Y direction inside the fixed cylindrical shaft 30, and is connected to the suction pump 32.
  • the suction supply port 30b is provided with a branch portion 30d formed in the + Z direction in the drawing.
  • the branch portion 30d is formed so as to be connected between the two convex portions 30a. For this reason, the suction action of the suction pump 32 extends between the two convex portions 30a via the suction supply port 30b and the branch portion 30d.
  • the atmosphere release port 30c is formed between both ends of the fixed cylindrical shaft 30 in the Y direction, and is connected to the atmosphere at both ends.
  • the air release port 30c has a branch portion 30e.
  • the branch part 30e is connected to a position deviated from between the two convex parts 30a.
  • the rotating cylinder 31 is provided so as to surround the fixed cylindrical shaft 30.
  • the rotating cylinder 31 is disposed with a certain gap between the rotating cylinder 31 and the fixed cylindrical shaft 30 via spacers 33 provided at both ends in the Y direction, for example.
  • the inner surface of the rotating cylinder 31 is in contact with the two convex portions 30 a of the fixed cylindrical shaft 30 through the spacer 33 without any gap. For this reason, the space between the outer surface of the fixed cylindrical shaft 30 and the inner surface of the rotating cylinder 31 is in a state divided into the space S1 and the space S2 by the two convex portions 30a. Among these, the space S1 is sucked by the suction pump 32, and the space S2 is always released to the atmosphere.
  • the rotary cylinder 31 is provided with a plurality of openings 31a along the ⁇ Y direction. Each opening 31a is connected to the pipe 16c. Of the plurality of openings 31 a, the opening 31 a connected to the space S ⁇ b> 1 is sucked by the suction pump 32. The rotating cylinder 31 is rotated in accordance with the rotational speed of the belt mechanism 10 by a rotating mechanism (not shown), and the sucked opening 31a is switched with rotation. In the present embodiment, the suction action is exerted on the openings 31a connected to the four rotating parts 11 that support the sheet substrate FB.
  • the pump mechanism 18 performs suction before the suction holding plate 12 closest to the ⁇ Y side among the four suction holding plates 12 reaches the position holding the sheet substrate FB. It is preferable that the suction holding plate 12 on the most + Y side is removed from the position where the sheet substrate FB is held and suction is released (released to the atmosphere) at the same time.
  • the belt drive mechanism 20 includes a base portion 21, a belt pressing portion 22, and a belt pressing actuator 23.
  • the base 21 is fixed with respect to other parts (for example, a floor part or a surface plate part) of the substrate processing part 102 so that the position does not fluctuate.
  • a plurality of belt pressing portions 22 are arranged along the ⁇ Y direction with respect to the base portion 21, and the rotation portions 11 corresponding to the respective suction holding plates 12 of the belt mechanism 10 are routed (for example, the rotation route of the rotation portion 11 or The outer periphery of the rotating belt mechanism 10 or the like is provided so as to press outward.
  • the belt mechanism 10 is supported by the plurality of belt pressing portions 22.
  • the front end of the belt pressing portion 22 is in contact with the belt mechanism 10 via a roller that can rotate in the ⁇ Y direction.
  • a plurality of belt pressing portions 22 are provided along the rotation direction of the belt mechanism 10.
  • the plurality of belt pressing portions 22 are arranged according to the pitch of the suction holding plate 12.
  • four belt pressing portions 22 are arranged on the + Z side of the base portion 21 so as to press one by one against the four suction holding plates 12 that hold the sheet substrate FB.
  • four belt pressing portions 22 are arranged on the + X side and the ⁇ X side of the base portion 21 so that the belt mechanism 10 does not bend.
  • the plurality of belt pressing portions 22 for example, four belt pressing portions 22 arranged on the + Z side of the base portion 21 are respectively connected to the belt pressing actuator 23.
  • These belt pressing portions 22 are provided by a belt pressing actuator 23 so as to be movable in the Z direction in the figure.
  • positioned at the + Z side of the base 21 are pressed by the + Z side.
  • the four suction holding plates 12 are disposed at a position where the droplet applying device 120 is processed and in the vicinity thereof.
  • the suction holding plate 12 is pressed by the belt pressing unit 22 at least at the processing position of the droplet applying device 120.
  • the eight belt pressing portions 22 disposed on the + X side and the ⁇ X side of the base portion 21 are fixed to the base portion 21, respectively.
  • the belt pressing part 22 may be comprised with the member which has high rigidity, and may be comprised with an elastic member like a spring.
  • the air pad mechanism 40 (gas layer forming part) includes a pad member 41, an airflow adjusting mechanism 42, and a pipe 43.
  • one pad member 41 is provided on the upstream side (+ X side) and the downstream side ( ⁇ X side) of the droplet applying device 120.
  • Each pad member 41 is provided with a plurality of gas ejection ports 41a for ejecting gas (eg, air, inert gas such as nitrogen) on the ⁇ Z side, and a plurality of gas suction ports 41b for sucking gas.
  • the gas ejection port 41 a and the gas suction port 41 b are connected to the airflow adjustment mechanism 42 via the pipe 43, respectively.
  • the air flow adjusting mechanism 42 adjusts the ejection amount of the gas ejection port 41a and the suction amount of the gas suction port 41b. By adjusting the ejection amount and the suction amount by the air flow adjusting mechanism 42, a gas layer (gas layer or receiving portion) is formed on the ⁇ Z side of the pad member 41 with a constant layer thickness in the Z direction. It is like that.
  • the transport mechanism TR is disposed across the droplet applying apparatuses 140R, 140G, and 140B.
  • the TR may be configured to be provided individually for each of the droplet applying apparatuses 140R, 140G, and 140B, or may be configured to extend over two of the three droplet applying apparatuses 140. .
  • the transport mechanism TR is individually provided for the droplet applying apparatuses 120G, 120I, and 120SD, but is not limited to this configuration.
  • the configuration may be such that the droplet coating apparatuses 120G, 120I, and 120SD are disposed across two droplet coating apparatuses 120, or the two droplet coating apparatuses 120 may be disposed across two.
  • the substrate processing apparatus 100 forms elements on the sheet substrate FB in the substrate processing unit 102 while supplying the sheet substrate FB from the substrate supply unit 101 to the substrate processing unit 102. .
  • the sheet substrate FB is transported by the roller RR and the transport mechanism TR.
  • the control unit 104 adjusts the rotation speed of each roller RR in the substrate processing unit 102 and the rotation speed of the belt mechanism 10 of the transport mechanism TR according to the supply speed of the sheet substrate FB supplied from the substrate supply unit 101. To do. In addition, the control unit 104 detects whether or not the roller RR is displaced in the Y-axis direction, and when it is displaced, moves the roller RR to correct the position. Further, the control unit 104 causes the position correction of the sheet substrate FB to be performed by moving the roller RR.
  • the sheet substrate FB supplied from the substrate supply unit 101 to the substrate processing unit 102 is first transported to the partition wall forming unit 91.
  • the sheet substrate FB is sandwiched and pressed between the imprint roller 110 and the thermal transfer roller 115, and the partition BA and the alignment mark AM are formed on the sheet substrate by thermal transfer.
  • FIG. 10 is a view showing a state in which the partition walls BA and the alignment marks AM are formed on the sheet substrate FB.
  • FIG. 11 is an enlarged view of a part of FIG.
  • FIG. 12 is a diagram showing a configuration along a section DD ′ in FIG. 10 and 11 show a state when the sheet substrate FB is viewed from the + Z side.
  • the partition wall BA is formed in the element formation region 60 at the center in the Y direction of the sheet substrate FB.
  • the element formation region 60 includes a region for forming the gate bus line GBL and the gate electrode G (gate formation region 52), the source bus line SBL, the source electrode S, A region for forming the drain electrode D and the anode P (source / drain formation region 53) is partitioned.
  • the gate formation region 52 is formed in a trapezoidal shape in a cross-sectional view.
  • the source / drain formation region 53 has the same shape.
  • the width W ( ⁇ m) in the partition wall BA is the line width of the gate bus line GBL.
  • the width W is preferably about 2 to 4 times the droplet diameter d ( ⁇ m) applied from the droplet applying apparatus 120G.
  • the cross-sectional shapes of the gate formation region 52 and the source / drain formation region 53 are V-shaped or U-shaped in cross-section so that the sheet substrate FB is easily peeled after the fine imprint mold 111 presses the sheet substrate FB. It is preferable to have a shape. As other shapes, for example, a rectangular shape in a sectional view may be used.
  • a pair of alignment marks AM is formed in the edge regions 61 at both ends in the Y direction of the sheet substrate FB.
  • the partition wall BA and the alignment mark AM are formed at the same time because the mutual positional relationship is important.
  • a predetermined distance PY between the alignment mark AM and the gate formation region 52 is defined in the Y-axis direction, and the alignment mark AM and the source / drain formation region 53 are defined in the X-axis direction.
  • a predetermined distance PX is defined. Therefore, based on the positions of the pair of alignment marks AM, it is possible to detect the deviation in the X-axis direction, the deviation in the Y-axis direction, and the ⁇ rotation of the sheet substrate FB.
  • a pair of alignment marks AM is provided for each of the plurality of rows of barrier ribs BA in the X-axis direction.
  • the alignment mark AM is provided for each row of barrier ribs BA.
  • the alignment mark AM may be provided not only in the edge region 61 of the sheet substrate FB but also in the element formation region 60. 10 and 11, the alignment mark AM has a cross shape, but may have another mark shape such as a circular mark or an oblique straight mark.
  • the sheet substrate FB is conveyed to the electrode forming unit 92 by the conveying roller RR.
  • the electrode forming section 92 droplets are applied by each droplet applying device 120, and electrodes are formed on the sheet substrate FB.
  • the control unit 104 operates the air pad mechanism 40 of the transport mechanism TR and the pump mechanism 18 before the sheet substrate FB is transported to the transport mechanism TR. By this operation, an air layer AR (see FIG. 20) having a constant thickness is formed on the ⁇ Z side of the pad member 41, and the suction operation on the suction pad 16 of the rotating unit 11 is started.
  • the sheet substrate FB is conveyed to the conveyance mechanism TR, the sheet substrate FB is adsorbed to the adsorption surface 16a by the adsorption pad 16 and is held on the holding surface 15a of the holding member 15. Therefore, the sheet substrate FB is held by the suction holding surface 12a.
  • the control unit 104 applies tension to the sheet substrate FB to increase the flatness of the sheet substrate FB by moving the pad support member 17b in the Y direction as necessary.
  • the control unit 104 moves the belt pressing unit 22 to the + Z side as shown in FIG. 20, and the sheet substrate is placed on the gas layer AR formed on the ⁇ Z side of the pad member 41. Press FB.
  • the sheet substrate FB is pressed to the ⁇ Z side also on the pad member 41 side by the reaction.
  • the surface ARc on the ⁇ Z side of the gas layer AR is used as a reference surface, and the sheet substrate FB is sandwiched between the gas layer AR and the suction holding surface 12a, so that the flatness of the processing surface FBc of the sheet substrate FB is improved. Will be maintained.
  • the control unit 104 conveys the sheet substrate FB in the + X direction by rotating the belt mechanism 10 while maintaining flatness on the processing surface FBc of the sheet substrate FB. Thereafter, the control unit 104 causes the same operation to be performed in the transport mechanism TR on the downstream side of the substrate processing unit 102.
  • the control unit 104 starts the operation of the droplet applying device 120 while maintaining the flatness of the processing surface FBc of the sheet substrate FB.
  • the gate bus line GBL and the gate electrode G are formed on the sheet substrate FB by the droplet applying device 120G.
  • 13A and 13B are views showing a state of the sheet substrate FB on which droplet application is performed by the droplet applying apparatus 120G.
  • the droplet applying device 120G applies metal ink to the gate forming region 52 of the sheet substrate FB on which the partition walls BA are formed, for example, in the order of 1 to 9. This order is, for example, the order in which the ink is applied linearly with the tension between the metal inks.
  • FIG. 13B is a diagram illustrating a state in which, for example, one drop of metal ink is applied. As shown in FIG. 13B, since the partition wall BA is provided, the metal ink applied to the gate formation region 52 is held without being diffused. In this manner, the droplet applying device 120G applies the metal ink to the entire gate forming region 52.
  • FIG. 14A is a diagram illustrating a state of the gate formation region 52 after the metal ink is dried. As shown in FIG. 14A, by drying the metal ink, the conductors included in the metal ink are laminated in a thin film shape. Such a thin film-like conductor is formed on the entire gate formation region 52, and as shown in FIG. 14B, the gate bus line GBL and the gate electrode G are formed on the sheet substrate FB.
  • the sheet substrate FB is conveyed to the ⁇ Z side of the droplet applying apparatus 120I.
  • the electrically insulating ink is applied to the sheet substrate FB.
  • electrically insulating ink is applied onto the gate bus line GBL and the gate electrode G passing through the source / drain formation region 53.
  • FIG. 15 shows a state in which the gate insulating layer I is formed in a circular shape so as to straddle the partition BA, but it is not particularly necessary to form the gate insulating layer I beyond the partition BA.
  • the sheet substrate FB is transported to the ⁇ Z side of the droplet applying apparatus 120SD.
  • metal ink is applied to the source / drain formation region 53 of the sheet substrate FB.
  • metal ink is ejected in the order of 1 to 9 shown in FIG.
  • the sheet substrate FB After discharging the metal ink, the sheet substrate FB is conveyed to the ⁇ Z side of the heat treatment apparatus BK, and the metal ink is dried. After the drying process, the conductor contained in the metal ink is laminated in a thin film shape, and the source bus line SBL, the source electrode S, the drain electrode D, and the anode P are formed. However, at this stage, the source electrode S and the drain electrode D are connected.
  • FIG. 17 is a diagram illustrating a state in which the gap between the source electrode S and the drain electrode D is cut by the cutting device 130.
  • the cutting device 130 performs cutting while adjusting the irradiation position of the laser beam LL onto the sheet substrate FB using the galvanometer mirror 131.
  • the sheet substrate FB is transported to the ⁇ Z side of the droplet applying apparatus OS.
  • the organic semiconductor layer OS is formed on the sheet substrate FB.
  • Organic semiconductor ink is ejected across the source electrode S and the drain electrode D into a region overlapping the gate electrode G on the sheet substrate FB.
  • the sheet substrate FB is conveyed to the ⁇ Z side of the heat treatment apparatus BK, and the organic semiconductor ink is dried. After the drying treatment, semiconductors included in the organic semiconductor ink are laminated in a thin film shape, and an organic semiconductor OS is formed as shown in FIG. Through the above steps, the field effect transistor and the connection wiring are formed on the sheet substrate FB.
  • the sheet substrate FB is transported to the light emitting layer forming unit 93 by the transport roller RR (see FIG. 3).
  • red, green, and blue light emitting layers IR are formed by the droplet applying device 140Re, the droplet applying device 140Gr, the droplet applying device 140Bl, and the heat treatment device BK, respectively. Since the barrier ribs BA are formed on the sheet substrate FB, even when the red, green, and blue light emitting layers IR are continuously applied without heat treatment by the heat treatment apparatus BK, the solution is applied to the adjacent pixel regions. Overflow does not cause color mixing.
  • the insulating layer I is formed on the sheet substrate FB via the droplet applying device 140I and the heat treatment device BK, and the transparent electrode IT is formed via the droplet applying device 140IT and the heat treatment device BK.
  • the organic EL element 50 shown in FIGS. 1A to 1C is formed on the sheet substrate FB.
  • an alignment operation is performed. Is going.
  • the alignment operation will be described with reference to FIG.
  • a plurality of alignment cameras CA (CA1 to CA8) provided in each unit appropriately detect the alignment mark AM formed on the sheet substrate FB, and transmit the detection result to the control unit 104.
  • the control unit 104 causes the alignment operation to be performed based on the transmitted detection result.
  • control unit 104 detects the feeding speed of the sheet substrate FB based on the imaging interval of the alignment mark AM detected by the alignment camera CA (CA1 to CA8), and whether or not the roller RR is rotating at a predetermined speed, for example. Determine whether. When it is determined that the roller RR is not rotating at a predetermined speed, the control unit 104 issues an instruction for adjusting the rotation speed of the roller RR and applies feedback.
  • control unit 104 detects whether or not the position of the alignment mark AM in the Y-axis direction is shifted based on the imaging result of the alignment mark AM, and detects whether or not the sheet substrate FB is displaced in the Y-axis direction. To do. When the misregistration is detected, the control unit 104 detects how long the misregistration continues in a state where the sheet substrate FB is conveyed.
  • the time of positional deviation corresponds by switching the nozzle 122 which apply
  • FIG. If the deviation of the sheet substrate FB in the Y-axis direction continues for a long time, the position of the sheet substrate FB in the Y-axis direction is corrected by the movement of the roller RR.
  • the control unit 104 detects whether or not the sheet substrate FB is displaced in the ⁇ Z direction based on the positions of the alignment marks AM detected by the alignment camera CA in the X-axis and Y-axis directions.
  • the control unit 104 detects how long the positional deviation continues while the sheet substrate FB is conveyed, as in the case of detecting the positional deviation in the Y-axis direction. If the positional deviation time is short, it can be dealt with by switching the nozzle 122 that applies droplets among the plurality of nozzles 122 of the droplet applying apparatus 120. If the deviation continues for a long time, the two rollers RR provided at a position sandwiching the alignment camera CA that has detected the deviation are moved in the X direction or the Y direction to correct the position of the sheet substrate FB in the ⁇ Z direction.
  • the gas layer AR is controlled to be a layer having a uniform thickness, and an alignment operation, an electrode formation operation, and a light emitting layer formation are performed.
  • the layer thickness, the formation range of the gas layer AR, the supply rate or supply amount of the gas from the pad member 41, and the like are controlled according to the processing of the substrate processing unit 102 in the above embodiment, such as the operation and the cutting operation of the sheet substrate FB. It is preferable.
  • the substrate processing apparatus 100 moves with respect to the droplet applying apparatuses 120 and 140 that perform a predetermined process on the sheet substrate FB, and the droplet applying apparatuses 120 and 140. And a suction holding plate 12 that holds the sheet substrate FB while forming the processing target surface FBc of the sheet substrate FB. Further, according to the substrate processing apparatus 100 of the present embodiment, it is possible to perform processing on the sheet substrate FB while ensuring flatness on the processing surface FBc of the sheet substrate FB. Thereby, the substrate processing apparatus 100 which can form a highly accurate pattern with respect to a flexible substrate can be provided.
  • the transport mechanism TR is configured to be long in the transport direction (X direction) with respect to the floor portion of the substrate processing apparatus 100 and short in the vertical direction (Z direction) of the transport direction.
  • the present invention is not limited to this.
  • it may be configured to be long in the Z direction.
  • the sheet substrate FB is transported along the Z direction, and the processing for the sheet substrate FB is performed in the X direction or the Y direction.
  • the present invention is not limited to this.
  • the conveyance and formation of the processing surface FBc may be performed using the suction holding plate 12 on the ⁇ Z side of the base portion 21.
  • the droplet applying device 120 of the electrode forming unit 92 performs the above-described processing on the sheet substrate FB using the + Z side suction holding plate 12 of the base 21 to apply the droplets of the light emitting layer forming unit 93.
  • the apparatus 140 performs the above-described processing on the sheet substrate FB using the suction holding plate 12 on the ⁇ Z side of the base 21. As a result, the size of the substrate processing apparatus 100 itself is reduced, and the space for placing the substrate processing apparatus 100 is saved.
  • the transport mechanism TR is provided only at a position corresponding to the droplet applying apparatuses 120 and 140.
  • the transport mechanism TR may be disposed at another position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is a substrate processing apparatus which is provided with: a processing section, which performs predetermined processing with respect to a substrate; and a substrate holding section, which moves with respect to the processing section, and which holds the substrate, while having the processed surface of the substrate being formed.

Description

基板処理装置及び表示素子の製造方法Substrate processing apparatus and display element manufacturing method
 本発明は、基板処理装置及び表示素子の製造方法に関する。
 本願は、2009年11月26日に、日本に出願された特願2009-268789号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a substrate processing apparatus and a display element manufacturing method.
This application claims priority based on Japanese Patent Application No. 2009-268789 filed in Japan on November 26, 2009, the contents of which are incorporated herein by reference.
 ディスプレイ装置などの表示装置を構成する表示素子として、例えば有機エレクトロルミネッセンス(有機EL)素子が知られている。有機EL素子は、基板上に陽極及び陰極を有すると共に、これら陽極と陰極との間に挟まれた有機発光層を有する構成となっている。有機EL素子は、陽極から有機発光層へ正孔を注入して有機発光層において正孔と電子とを結合させ、当該結合時の発光光によって表示光が得られるようになっている。有機EL素子は、基板上に例えば陽極及び陰極に接続される電気回路などが形成されている。 As a display element constituting a display device such as a display device, for example, an organic electroluminescence (organic EL) element is known. The organic EL element has an anode and a cathode on a substrate and an organic light emitting layer sandwiched between the anode and the cathode. In the organic EL element, holes are injected from an anode into an organic light emitting layer to combine holes and electrons in the organic light emitting layer, and display light can be obtained by emitted light at the time of the combination. In the organic EL element, an electric circuit connected to, for example, an anode and a cathode is formed on a substrate.
 有機EL素子を作製する手法の1つとして、例えばロール・トゥー・ロール方式(以下、単に「ロール方式」と表記する)と呼ばれる手法が知られている(例えば、特許文献1参照)。ロール方式は、基板供給側のローラに巻かれた1枚のシート状の基板を送り出すと共に送り出された基板を基板回収側のローラで巻き取りながら基板を搬送し、基板が送り出されてから巻き取られるまでの間に、処理装置において、有機EL素子を構成する発光層や陽極、陰極、電気回路などを基板上に順次形成する手法である。 As one method for producing an organic EL element, for example, a method called a roll-to-roll method (hereinafter simply referred to as “roll method”) is known (for example, see Patent Document 1). In the roll method, a single sheet-like substrate wound around a substrate supply side roller is sent out, and the substrate is transported while being wound up by a substrate recovery side roller. In the processing apparatus, a light emitting layer, an anode, a cathode, an electric circuit, and the like constituting an organic EL element are sequentially formed on a substrate in a processing apparatus.
国際公開第2006/100868号パンフレットInternational Publication No. 2006/100868 Pamphlet
 しかしながら、このようなロール方式においては、例えば板厚が小さい基板を用いる場合、基板の平坦性を確保しづらいという問題があった。このため、発光層や電極などの形成処理やアライメント処理などにおける処理精度の向上が妨げられていた。 However, in such a roll system, for example, when a substrate having a small plate thickness is used, there is a problem that it is difficult to ensure the flatness of the substrate. For this reason, the improvement of the processing precision in formation processing, alignment processing, etc. of a light emitting layer, an electrode, etc. was prevented.
 本発明に係る態様は、処理精度に優れた基板処理装置及び表示素子の製造方法を提供することを目的とする。 An object according to the present invention is to provide a substrate processing apparatus and a display element manufacturing method excellent in processing accuracy.
 本発明に係る態様における基板処理装置は、基板に対して所定の処理を行う処理部と、当該処理部に対して移動すると共に、基板の被処理面を形成させつつ基板を保持する基板保持部とを備える。 A substrate processing apparatus according to an aspect of the present invention includes a processing unit that performs predetermined processing on a substrate, and a substrate holding unit that moves relative to the processing unit and holds a substrate while forming a surface to be processed of the substrate. With.
 本発明に係る態様における表示素子の製造方法は、基板の被処理面に対して所定の処理を行う処理工程と、基板保持部によって基板の被処理面を形成させつつ基板を保持する基板保持工程と、無端状の支持部材に配置された基板保持部を基板の搬送方向に移動させる移動工程と、を有する。 A display element manufacturing method according to an aspect of the present invention includes a processing step of performing a predetermined process on a surface to be processed of a substrate, and a substrate holding step of holding the substrate while forming the surface to be processed of the substrate by the substrate holding portion. And a moving step of moving the substrate holding portion disposed on the endless support member in the substrate transport direction.
 本発明に係る態様によれば、処理精度に優れた基板処理装置及び表示素子の製造方法を提供することができる。 According to the aspect of the present invention, it is possible to provide a substrate processing apparatus and a display element manufacturing method with excellent processing accuracy.
有機EL素子の構成図。The block diagram of an organic EL element. 図1Aにおける有機EL素子のb-b断面図。FIG. 1B is a bb cross-sectional view of the organic EL element in FIG. 1A. 図1Aにおける有機EL素子のc-c断面図。FIG. 1C is a cc cross-sectional view of the organic EL element in FIG. 1A. 基板処理装置の構成を示す図。The figure which shows the structure of a substrate processing apparatus. 基板処理部の構成を示す図。The figure which shows the structure of a board | substrate process part. 液滴塗布装置の構成を示す図。The figure which shows the structure of a droplet application apparatus. 搬送機構の構成を示す図。The figure which shows the structure of a conveyance mechanism. 搬送機構の構成を示す図。The figure which shows the structure of a conveyance mechanism. 搬送機構の構成を示す図。The figure which shows the structure of a conveyance mechanism. 搬送機構の構成を示す図。The figure which shows the structure of a conveyance mechanism. 搬送機構の構成を示す図。The figure which shows the structure of a conveyance mechanism. 基板処理部の隔壁形成の工程を示す図。The figure which shows the process of the partition formation of a board | substrate process part. シート基板に形成される隔壁の形状及び配置を示す図。The figure which shows the shape and arrangement | positioning of the partition formed in a sheet | seat board | substrate. シート基板に形成される隔壁の断面図。Sectional drawing of the partition formed in a sheet | seat board | substrate. 液滴の塗布動作を示す図。The figure which shows the application | coating operation | movement of a droplet. 隔壁間に塗布される液滴の断面図。Sectional drawing of the droplet apply | coated between partition walls. 隔壁間に形成される薄膜の断面図。Sectional drawing of the thin film formed between partition walls. 隔壁間に形成される薄膜の構成を示す図。The figure which shows the structure of the thin film formed between partition walls. シート基板にゲート絶縁層を形成する工程を示す図。The figure which shows the process of forming a gate insulating layer in a sheet | seat board | substrate. シート基板の配線を切断する工程を示す図。The figure which shows the process of cut | disconnecting the wiring of a sheet | seat board | substrate. ソースドレイン形成領域に薄膜を形成する工程を示す図。The figure which shows the process of forming a thin film in a source-drain formation area. 有機半導体層を形成する工程を示す図。The figure which shows the process of forming an organic-semiconductor layer. アライメントの一例を示す図。The figure which shows an example of alignment. 搬送機構の動作を示す図。The figure which shows operation | movement of a conveyance mechanism. 搬送機構の変形例を示す図。The figure which shows the modification of a conveyance mechanism.
 [第1実施形態] 
 以下、図面を参照して、本発明に係る第1実施形態を説明する。 
 (有機EL素子) 
 図1Aは、有機EL素子の構成を示す平面図である。図1Bは、図1Aにおけるb-b断面図である。図1Cは、図1Aにおけるc-c断面図である。
[First Embodiment]
Hereinafter, a first embodiment according to the present invention will be described with reference to the drawings.
(Organic EL device)
FIG. 1A is a plan view showing a configuration of an organic EL element. 1B is a cross-sectional view taken along line bb in FIG. 1A. 1C is a cross-sectional view taken along the line cc in FIG. 1A.
 図1A~図1Cに示すように、有機EL素子50は、シート基板FBにゲート電極G及びゲート絶縁層Iが形成され、さらにソース電極S、ドレイン電極D及び画素電極Pが形成された後、有機半導体層OSが形成されたボトムコンタクト型である。 As shown in FIGS. 1A to 1C, in the organic EL element 50, after the gate electrode G and the gate insulating layer I are formed on the sheet substrate FB, and the source electrode S, the drain electrode D, and the pixel electrode P are further formed, A bottom contact type in which an organic semiconductor layer OS is formed.
 図1Bに示すように、ゲート電極G上にゲート絶縁層Iが形成されている。ゲート絶縁層I上にはソースバスラインSBLのソース電極Sが形成されると共に、画素電極Pと接続したドレイン電極Dが形成されている。ソース電極Sとドレイン電極Dとの間には有機半導体層OSが形成されている。これで電界効果型トランジスタが完成することになる。また、画素電極Pの上には、図1B及び図1Cに示すように、発光層IRが形成され、その発光層IRには透明電極ITOが形成される。 As shown in FIG. 1B, a gate insulating layer I is formed on the gate electrode G. A source electrode S of the source bus line SBL is formed on the gate insulating layer I, and a drain electrode D connected to the pixel electrode P is formed. An organic semiconductor layer OS is formed between the source electrode S and the drain electrode D. This completes the field effect transistor. Further, as shown in FIGS. 1B and 1C, a light emitting layer IR is formed on the pixel electrode P, and a transparent electrode ITO is formed on the light emitting layer IR.
 図1B及び図1Cに示されるように、例えば、シート基板FBには隔壁BA(バンク層)が形成されている。そして図1Cに示すようにソースバスラインSBLが隔壁BA間に形成されている。このように、隔壁BAが存在することにより、ソースバスラインSBLが高精度に形成されると共に、画素電極P及び発光層IRも正確に形成されている。なお、図1B及び図1Cでは示されていないが、ゲートバスラインGBLもソースバスラインSBLと同様に隔壁BA間に形成されている。 As shown in FIGS. 1B and 1C, for example, a partition wall BA (bank layer) is formed on the sheet substrate FB. As shown in FIG. 1C, source bus lines SBL are formed between the barrier ribs BA. Thus, the presence of the partition BA allows the source bus line SBL to be formed with high accuracy, and the pixel electrode P and the light emitting layer IR to be accurately formed. Although not shown in FIGS. 1B and 1C, the gate bus line GBL is also formed between the partition walls BA in the same manner as the source bus line SBL.
 この有機EL素子50は、例えばディスプレイ装置などの表示装置をはじめ、電子機器の表示部などにも好適に用いられる。この場合、例えば有機EL素子50をパネル状に形成したものが用いられる。このような有機EL素子50の製造においては、薄膜トランジスタ(TFT)、画素電極が形成された基板を形成する必要がある。その基板上の画素電極上に発光層を含む1以上の有機化合物層(発光素子層)を精度良く形成するために、画素電極の境界領域に隔壁BA(バンク層)を容易に精度良く形成することが望ましい。 The organic EL element 50 is suitably used for a display device such as a display device and a display unit of an electronic device. In this case, for example, an organic EL element 50 formed in a panel shape is used. In manufacturing such an organic EL element 50, it is necessary to form a substrate on which a thin film transistor (TFT) and a pixel electrode are formed. In order to accurately form one or more organic compound layers (light-emitting element layers) including a light-emitting layer on the pixel electrode on the substrate, a partition BA (bank layer) is easily and accurately formed in the boundary region of the pixel electrode. It is desirable.
 (基板処理装置) 
 図2は、可撓性を有するシート基板FBを用いて処理を行う基板処理装置100の構成を示す概略図である。 
 基板処理装置100は、帯状のシート基板FBを用いて図1A~図1Cに示す有機EL素子50を形成する装置である。図2に示すように、基板処理装置100は、基板供給部101、基板処理部102、基板回収部103及び制御部104を有している。シート基板FBは、基板供給部101から基板処理部102を経て基板回収部103へと搬送されるようになっている。制御部104は、基板処理装置100の動作を統括的に制御する。
(Substrate processing equipment)
FIG. 2 is a schematic diagram illustrating a configuration of a substrate processing apparatus 100 that performs processing using a flexible sheet substrate FB.
The substrate processing apparatus 100 is an apparatus that forms the organic EL element 50 shown in FIGS. 1A to 1C using a belt-shaped sheet substrate FB. As illustrated in FIG. 2, the substrate processing apparatus 100 includes a substrate supply unit 101, a substrate processing unit 102, a substrate collection unit 103, and a control unit 104. The sheet substrate FB is transported from the substrate supply unit 101 to the substrate recovery unit 103 via the substrate processing unit 102. The control unit 104 controls the overall operation of the substrate processing apparatus 100.
 以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。水平面内のうちシート基板FBの搬送方向をX軸方向、水平面内においてX軸方向と直交する方向をY軸方向、X軸方向及びY軸方向のそれぞれと直交する方向(すなわち鉛直方向)をZ軸方向とする。また、X軸、Y軸、及びZ軸まわりの回転(傾斜)方向をそれぞれ、θX、θY、及びθZ方向とする。 In the following description, an XYZ orthogonal coordinate system is set, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system. In the horizontal plane, the sheet substrate FB is conveyed in the X-axis direction, in the horizontal plane the direction orthogonal to the X-axis direction is the Y-axis direction, and the direction orthogonal to the X-axis direction and the Y-axis direction (that is, the vertical direction) is Z. Axial direction. Further, the rotation (inclination) directions around the X axis, Y axis, and Z axis are the θX, θY, and θZ directions, respectively.
 シート基板FBとしては、例えば耐熱性の樹脂フィルム、ステンレス鋼などを用いることができる。例えば、樹脂フィルムは、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、酢酸ビニル樹脂、などの材料を用いることができる。シート基板FBのY方向の寸法は例えば1m~2m程度に形成されており、X方向の寸法は例えば10m以上に形成されている。勿論、この寸法は一例に過ぎず、これに限られることは無い。例えばシート基板FBのY方向の寸法が50cm以下であっても構わないし、2m以上であっても構わない。また、シート基板FBのX方向の寸法が10m以下であっても構わない。なお、本実施形態における可撓性とは、例えば基板に少なくとも自重程度の所定の力を加えても線断や破断することがなく、該基板を撓めることが可能な性質をいう。また、上記可撓性は、該基板の材質、大きさ、厚さ、又は温度などの環境、等に応じて変わる。 As the sheet substrate FB, for example, a heat-resistant resin film, stainless steel, or the like can be used. For example, the resin film is made of polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, vinyl acetate resin, etc. Can be used. The dimension in the Y direction of the sheet substrate FB is, for example, about 1 m to 2 m, and the dimension in the X direction is, for example, 10 m or more. Of course, this dimension is only an example and is not limited thereto. For example, the dimension in the Y direction of the sheet substrate FB may be 50 cm or less, or 2 m or more. Moreover, the dimension of the X direction of the sheet | seat board | substrate FB may be 10 m or less. Note that the flexibility in the present embodiment refers to the property that the substrate can be bent without being broken or broken even when a predetermined force of at least its own weight is applied to the substrate. The flexibility varies depending on the material, size, thickness, environment such as temperature, etc. of the substrate.
 シート基板FBは、例えば200℃程度の熱を受けても寸法が変わらないように熱膨張係数が小さい方が好ましい。例えば、無機フィラーを樹脂フィルムに混合して熱膨張係数を小さくすることができる。無機フィラーの例としては、酸化チタン、酸化亜鉛、アルミナ、酸化ケイ素などが挙げられる。 The sheet substrate FB preferably has a smaller coefficient of thermal expansion so that the dimensions do not change even when subjected to heat of about 200 ° C., for example. For example, an inorganic filler can be mixed with a resin film to reduce the thermal expansion coefficient. Examples of the inorganic filler include titanium oxide, zinc oxide, alumina, silicon oxide and the like.
 基板供給部101は、基板処理部102に設けられる供給側接続部102Aに接続されている。基板供給部101は、例えばロール状に巻かれたシート基板FBを基板処理部102へ供給する。基板回収部103は、基板処理部102において処理された後のシート基板FBを回収する。なお、基板供給部101においては、シート基板FBがロール状に巻かれた状態で収容されている構成に限られず、例えばシート基板FBが幾重にも畳まれた状態で収容されている構成であっても構わない。なお、当該畳まれた状態には、折り目がつかず、基板に少なくとも自重程度の所定の力を加えても線断や破断することない状態も含まれる。 The substrate supply unit 101 is connected to a supply side connection unit 102 </ b> A provided in the substrate processing unit 102. The substrate supply unit 101 supplies, for example, the sheet substrate FB wound in a roll shape to the substrate processing unit 102. The substrate recovery unit 103 recovers the sheet substrate FB that has been processed by the substrate processing unit 102. Note that the substrate supply unit 101 is not limited to the configuration in which the sheet substrate FB is accommodated in a rolled state, and for example, the sheet substrate FB is accommodated in a state in which the sheet substrate FB is folded several times. It doesn't matter. Note that the folded state includes a state in which no crease is formed and the substrate is not broken or broken even when a predetermined force of at least about its own weight is applied to the substrate.
 図3は、基板処理部102の構成を示す図である。 
 図3に示すように、基板処理部102は、搬送部105、素子形成部106、アライメント部107及び基板切断部108を有している。基板処理部102は、基板供給部101から供給されるシート基板FBを搬送しつつ、当該シート基板FBに上記の有機EL素子50の各構成要素を形成し、有機EL素子50が形成されたシート基板FBを基板回収部103へと送り出す部分である。
FIG. 3 is a diagram illustrating a configuration of the substrate processing unit 102.
As shown in FIG. 3, the substrate processing unit 102 includes a transport unit 105, an element forming unit 106, an alignment unit 107, and a substrate cutting unit 108. The substrate processing unit 102 forms each component of the organic EL element 50 on the sheet substrate FB while conveying the sheet substrate FB supplied from the substrate supply unit 101, and the sheet on which the organic EL element 50 is formed. This is the part that sends out the substrate FB to the substrate recovery unit 103.
 素子形成部106は、隔壁形成部91、電極形成部92及び発光層形成部93を有している。隔壁形成部91、電極形成部92及び発光層形成部93は、シート基板FBの搬送方向の上流側から下流側にかけて、隔壁形成部91、電極形成部92及び発光層形成部93の順に配置されている。以下、素子形成部106の各構成を説明する。 The element forming unit 106 includes a partition forming unit 91, an electrode forming unit 92, and a light emitting layer forming unit 93. The partition wall forming portion 91, the electrode forming portion 92, and the light emitting layer forming portion 93 are arranged in the order of the partition wall forming portion 91, the electrode forming portion 92, and the light emitting layer forming portion 93 from the upstream side to the downstream side in the transport direction of the sheet substrate FB. ing. Hereinafter, each structure of the element formation part 106 is demonstrated.
 隔壁形成部91は、インプリントローラ110及び熱転写ローラ115を有している。隔壁形成部91は、基板供給部101から送り出されたシート基板FBに対して隔壁BAを形成する。隔壁形成部91では、インプリントローラ110でシート基板FBを押圧するとともに、押圧した隔壁BAが形状を保つように熱転写ローラ115でシート基板FBをガラス転移点以上に熱する。このため、インプリントローラ110のローラ表面に形成された型形状がシート基板FBに転写されるようになっている。シート基板FBは、熱転写ローラ115によって例えば200℃程度に加熱されるようになっている。 The partition wall forming unit 91 includes an imprint roller 110 and a thermal transfer roller 115. The partition forming unit 91 forms the partition BA on the sheet substrate FB sent from the substrate supply unit 101. In the partition wall forming unit 91, the sheet substrate FB is pressed by the imprint roller 110, and the sheet substrate FB is heated to the glass transition point or more by the thermal transfer roller 115 so that the pressed partition wall BA maintains its shape. Therefore, the mold shape formed on the roller surface of the imprint roller 110 is transferred to the sheet substrate FB. The sheet substrate FB is heated to, for example, about 200 ° C. by the thermal transfer roller 115.
 インプリントローラ110のローラ表面は鏡面仕上げされており、そのローラ表面にSiC、Taなどの材料で構成された微細インプリント用モールド111が取り付けられている。微細インプリント用モールド111は、薄膜トランジスタの配線用のスタンパー及びカラーフィルタ用のスタンパーを形成している。 The roller surface of the imprint roller 110 is mirror-finished, and a fine imprint mold 111 made of a material such as SiC or Ta is attached to the roller surface. The fine imprint mold 111 forms a thin film transistor wiring stamper and a color filter stamper.
 インプリントローラ110は、微細インプリント用モールド111を用いて、シート基板FBにアライメントマークAMを形成する。シート基板FBの幅方向であるY軸方向の両側にアライメントマークAMを形成するため、微細インプリント用モールド111は、アライメントマークAM用のスタンパーを有している。 The imprint roller 110 forms the alignment mark AM on the sheet substrate FB using the fine imprint mold 111. In order to form alignment marks AM on both sides in the Y-axis direction, which is the width direction of the sheet substrate FB, the fine imprint mold 111 has a stamper for the alignment marks AM.
 電極形成部92は、隔壁形成部91の+X側に設けられており、例えば有機半導体を用いた薄膜トランジスタを形成する。具体的には、図1A~図1Cで示すようなゲート電極G、ゲート絶縁層I、ソース電極S、ドレイン電極D及び画素電極Pを形成した後、有機半導体層OSを形成する。 The electrode forming portion 92 is provided on the + X side of the partition wall forming portion 91, and for example, a thin film transistor using an organic semiconductor is formed. Specifically, after forming the gate electrode G, the gate insulating layer I, the source electrode S, the drain electrode D, and the pixel electrode P as shown in FIGS. 1A to 1C, the organic semiconductor layer OS is formed.
 薄膜トランジスタ(TFT)としては、無機半導体系のものでも有機半導体を用いたものでも良い。無機半導体の薄膜トランジスタは、アモルファスシリコン系のものが知られているが、有機半導体を用いた薄膜トランジスタであってもよい。この有機半導体を用いて薄膜トランジスタを構成すれば、印刷技術や液滴塗布法技術を活用して薄膜トランジスタを形成できる。また、有機半導体を用いた薄膜トランジスタの内、図1A~図1Cで示したような電界効果型トランジスタ(FET)が特に好ましい。 The thin film transistor (TFT) may be an inorganic semiconductor type or an organic semiconductor type. As an inorganic semiconductor thin film transistor, an amorphous silicon type is known, but a thin film transistor using an organic semiconductor may be used. If a thin film transistor is formed using this organic semiconductor, the thin film transistor can be formed by utilizing a printing technique or a droplet coating technique. Of the thin film transistors using organic semiconductors, field effect transistors (FETs) as shown in FIGS. 1A to 1C are particularly preferable.
 電極形成部92は、液滴塗布装置120や熱処理装置BK、切断装置130などを有している。 
 本実施形態では、液滴塗布装置120として、例えばゲート電極Gを形成する際に用いられる液滴塗布装置120G、ゲート絶縁層Iを形成する際に用いられる液滴塗布装置120I、ソース電極S、ドレイン電極D及び画素電極Pを形成する際に用いられる液滴塗布装置120SD、有機半導体OSを形成する際に用いられる液滴塗布装置120OSなどが用いられている。
The electrode forming unit 92 includes a droplet applying device 120, a heat treatment device BK, a cutting device 130, and the like.
In this embodiment, as the droplet applying device 120, for example, a droplet applying device 120G used when forming the gate electrode G, a droplet applying device 120I used when forming the gate insulating layer I, the source electrode S, A droplet applying device 120SD used when forming the drain electrode D and the pixel electrode P, a droplet applying device 120OS used when forming the organic semiconductor OS, and the like are used.
 図4は、液滴塗布装置120の構成を示す平面図である。図4では、液滴塗布装置120を+Z側から見たときの構成を示している。液滴塗布装置120は、Y軸方向に長く形成されている。液滴塗布装置120には不図示の駆動装置が設けられている。液滴塗布装置120は、当該駆動装置により、例えばX方向、Y方向及びθZ方向に移動可能になっている。 FIG. 4 is a plan view showing the configuration of the droplet applying apparatus 120. FIG. 4 shows a configuration when the droplet applying device 120 is viewed from the + Z side. The droplet applying device 120 is formed long in the Y-axis direction. The droplet applying device 120 is provided with a driving device (not shown). The droplet applying device 120 can be moved, for example, in the X direction, the Y direction, and the θZ direction by the driving device.
 液滴塗布装置120には、複数のノズル122が形成されている。ノズル122は、液滴塗布装置120のうちシート基板FBとの対向面に設けられている。ノズル122は、例えばY軸方向に沿って配列されており、当該ノズル122の列(ノズル列)が例えば2列形成されている。制御部104は、全ノズル122に一括して液滴を塗布させることもできるし、各ノズル122について液滴を塗布させるタイミングを個別に調整することもできるようになっている。 A plurality of nozzles 122 are formed in the droplet applying device 120. The nozzle 122 is provided on the surface of the droplet applying device 120 that faces the sheet substrate FB. The nozzles 122 are arranged, for example, along the Y-axis direction, and two rows (nozzle rows) of the nozzles 122 are formed, for example. The control unit 104 can apply the droplets to all the nozzles 122 at once, and can individually adjust the timing of applying the droplets to each nozzle 122.
 液滴塗布装置120としては、例えばインクジェット方式やディスペンサー方式などを採用することができる。インクジェット方式としては、帯電制御方式、加圧振動方式、電気機械変換式、電気熱変換方式、静電吸引方式などが挙げられる。液滴塗布法は、材料の使用に無駄が少なく、しかも所望の位置に所望の量の材料を的確に配置できる。なお、液滴塗布法により塗布されるメタルインクの一滴の量は、例えば1~300ナノグラムである。 As the droplet applying device 120, for example, an inkjet method or a dispenser method can be employed. Examples of the inkjet method include a charge control method, a pressure vibration method, an electromechanical conversion method, an electrothermal conversion method, and an electrostatic suction method. In the droplet coating method, the use of the material is less wasteful, and a desired amount of the material can be accurately disposed at a desired position. The amount of one drop of metal ink applied by the droplet application method is, for example, 1 to 300 nanograms.
 図3に戻って、液滴塗布装置120Gは、ゲートバスラインGBLの隔壁BA内にメタルインクを塗布する。液滴塗布装置120Iは、スイッチング部にポリイミド系樹脂又はウレタン系樹脂の電気絶縁性インクを塗布する。液滴塗布装置120SDは、ソースバスラインSBLの隔壁BA内及び画素電極Pの隔壁BA内にメタルインクを塗布する。液滴塗布装置120OSは、ソース電極Sとドレイン電極Dとの間のスイッチング部に有機半導体インクを塗布する。 Referring back to FIG. 3, the droplet applying device 120G applies metal ink into the partition wall BA of the gate bus line GBL. The droplet applying device 120I applies an electrically insulating ink of polyimide resin or urethane resin to the switching unit. The droplet applying device 120SD applies metal ink in the partition BA of the source bus line SBL and in the partition BA of the pixel electrode P. The droplet applying device 120OS applies the organic semiconductor ink to the switching unit between the source electrode S and the drain electrode D.
 メタルインクは、粒子径が約5nmほどの導電体が室温の溶媒中で安定して分散をする液体であり、導電体として、カーボン、銀(Ag)又は金(Au)などが用いられる。有機半導体インクを形成する化合物は、単結晶材科でもアモルファス材料でもよく、低分子でも高分子でもよい。有機半導体インクを形成する化合物のうち特に好ましいものとしては、ペンタセンやトリフェニレン、アントラセン等に代表される縮環系芳香族炭化水素化合物の単結晶又はπ共役系高分子などが挙げられる。 Metal ink is a liquid in which a conductor having a particle diameter of about 5 nm is stably dispersed in a solvent at room temperature, and carbon, silver (Ag), gold (Au), or the like is used as the conductor. The compound forming the organic semiconductor ink may be a single crystal material family or an amorphous material, and may be a low molecule or a polymer. Particularly preferred among the compounds forming the organic semiconductor ink include a single crystal or π-conjugated polymer of a condensed ring aromatic hydrocarbon compound typified by pentacene, triphenylene, anthracene and the like.
 熱処理装置BKは、各液滴塗布装置120の+X側(基板搬送方向下流側)にそれぞれ配置されている。熱処理装置BKは、シート基板FBに対して例えば熱風や遠赤外線などを放射可能になっている。熱処理装置BKは、これらの放射熱を用いて、シート基板FBに塗布された液滴を乾燥又は焼成(ベーキング)し硬化させる。 The heat treatment apparatus BK is disposed on the + X side (downstream side in the substrate transport direction) of each droplet applying apparatus 120. The heat treatment apparatus BK can radiate, for example, hot air or far infrared rays to the sheet substrate FB. The heat treatment apparatus BK uses these radiant heats to dry or bake (bake) the droplets applied to the sheet substrate FB and harden them.
 切断装置130は、液滴塗布装置120SDの+X側であって液滴塗布装置120OSの上流側に設けられている。切断装置130は、例えばレーザ光などを用いて、液滴塗布装置120SDによって形成されるソース電極Sとドレイン電極Dとを切断する。切断装置130は、不図示の光源と、当該光源からのレーザ光をシート基板FB上に照射させるガルバノミラー131とを有している。 The cutting device 130 is provided on the + X side of the droplet applying device 120SD and on the upstream side of the droplet applying device 120OS. The cutting device 130 cuts the source electrode S and the drain electrode D formed by the droplet applying device 120SD using, for example, laser light. The cutting device 130 includes a light source (not shown) and a galvanometer mirror 131 that irradiates the laser light from the light source onto the sheet substrate FB.
 レーザ光の種類としては、切断する金属膜に対し、吸収する波長のレーザが好ましく、波長変換レーザで、YAGなどの2,3,4倍高調波がよい。またパルス型レーザを用いることで熱拡散を防止し、切断部以外の損傷を低減することができる。材料がアルミの場合、760nm波長のフェムト秒レーザが好ましい。 As the type of laser light, a laser having a wavelength to be absorbed is preferable for the metal film to be cut. Further, by using a pulsed laser, thermal diffusion can be prevented and damage other than the cut portion can be reduced. When the material is aluminum, a femtosecond laser with a wavelength of 760 nm is preferable.
 本実施形態では、例えば光源としてチタンサファイアレーザを使ったフェムト秒レーザ照射部を用いている。当該フェムト秒レーザ照射部は、レーザ光LLを例えば10KHzから40KHzのパルスで照射するようになっている。 In this embodiment, for example, a femtosecond laser irradiation unit using a titanium sapphire laser as a light source is used. The femtosecond laser irradiation unit irradiates the laser beam LL with a pulse of 10 KHz to 40 KHz, for example.
 本実施形態ではフェムト秒レーザを使用するため、サブミクロンオーダの加工が可能であり、電界効果型トランジスタの性能を決めるソース電極Sとドレイン電極Dと間隔を正確に切断することができるようになっている。ソース電極Sとドレイン電極Dと間隔は、例えば3μm程度から30μm程度である。 In this embodiment, since a femtosecond laser is used, processing on the order of submicron is possible, and the distance between the source electrode S and the drain electrode D that determines the performance of the field effect transistor can be accurately cut. ing. The distance between the source electrode S and the drain electrode D is, for example, about 3 μm to about 30 μm.
 上述したフェムト秒レーザ以外にも、例えば炭酸ガスレーザ又はグリーンレーザなどを使用することも可能である。また、レーザ以外にもダイシングソーなどで機械的に切断する構成としてもよい。 In addition to the femtosecond laser described above, for example, a carbon dioxide laser or a green laser can be used. Moreover, it is good also as a structure cut | disconnected mechanically with a dicing saw etc. besides a laser.
 ガルバノミラー131は、レーザ光LLの光路に配置されている。ガルバノミラー131は、光源からのレーザ光LLをシート基板FB上に反射させる。ガルバノミラー131は、例えばθX方向、θY方向及びθZ方向に回転可能に設けられている。ガルバノミラー131が回転することにより、レーザ光LLの照射位置が変化するようになっている。 The galvanometer mirror 131 is disposed in the optical path of the laser beam LL. The galvanometer mirror 131 reflects the laser beam LL from the light source onto the sheet substrate FB. The galvanometer mirror 131 is provided to be rotatable in the θX direction, the θY direction, and the θZ direction, for example. As the galvano mirror 131 rotates, the irradiation position of the laser beam LL changes.
 上記の隔壁形成部91及び電極形成部92の両方を用いることにより、いわゆるフォトリソグラフィ工程を使用しなくても、印刷技術や液滴塗布法技術を活用して薄膜トランジスタ等を形成できるようになっている。例えば印刷技術や液滴塗布法技術などが用いられる電極形成部92のみを用いた場合、インクのにじみや広がりのため精度よく薄膜トランジスタ等ができない場合がある。 By using both the partition wall formation portion 91 and the electrode formation portion 92, a thin film transistor or the like can be formed by utilizing a printing technique or a droplet coating method technique without using a so-called photolithography process. Yes. For example, when only the electrode forming portion 92 using a printing technique, a droplet coating technique, or the like is used, there is a case where a thin film transistor or the like cannot be accurately performed due to ink bleeding and spreading.
 これに対して、隔壁形成部91を用いることで隔壁BAが形成されるため、インクのにじみや広がりが防止されるようになっている。また薄膜トランジスタの性能を決めるソース電極Sとドレイン電極Dとの間隔は、レーザ加工又は機械加工により形成されるようになっている。 On the other hand, since the partition wall BA is formed by using the partition wall forming portion 91, ink bleeding and spreading are prevented. The distance between the source electrode S and the drain electrode D that determines the performance of the thin film transistor is formed by laser processing or machining.
 発光層形成部93は、電極形成部92の+X側に配置されている。発光層形成部93は、電極が形成されたシート基板FB上に、例えば有機EL装置の構成要素である発光層IRや画素電極ITOなどを形成する。発光層形成部93は、液滴塗布装置140及び熱処理装置BKを有している。 The light emitting layer forming portion 93 is disposed on the + X side of the electrode forming portion 92. The light emitting layer forming unit 93 forms, for example, the light emitting layer IR and the pixel electrode ITO which are components of the organic EL device on the sheet substrate FB on which the electrodes are formed. The light emitting layer forming unit 93 includes a droplet applying device 140 and a heat treatment device BK.
 発光層形成部93で形成される発光層IRは、ホスト化合物とリン光性化合物(リン光発光性化合物ともいう)が含有される。ホスト化合物とは、発光層に含有される化合物である。リン光性化合物は、励起三重項からの発光が観測される化合物であり、室温においてリン光発光する。 The light emitting layer IR formed by the light emitting layer forming portion 93 contains a host compound and a phosphorescent compound (also referred to as a phosphorescent compound). The host compound is a compound contained in the light emitting layer. A phosphorescent compound is a compound in which light emission from an excited triplet is observed and emits phosphorescence at room temperature.
 本実施形態では、液滴塗布装置140として、例えば赤色発光層を形成する液滴塗布装置140Re、緑色発光層を形成する液滴塗布装置140Gr、青色発光層を形成する液滴塗布装置140Bl、絶縁層を形成する液滴塗布装置140I及び画素電極ITOを形成する液滴塗布装置140ITなどが用いられている。 In the present embodiment, as the droplet applying device 140, for example, a droplet applying device 140Re that forms a red light emitting layer, a droplet applying device 140Gr that forms a green light emitting layer, a droplet applying device 140Bl that forms a blue light emitting layer, an insulating material. A droplet applying device 140I that forms a layer, a droplet applying device 140IT that forms a pixel electrode ITO, and the like are used.
 液滴塗布装置140としては、上記の液滴塗布装置120と同様、インクジェット方式又はディスペンサー方式を採用することができる。有機EL素子50の構成要素として例えば正孔輸送層及び電子輸送層などを設ける場合には、これらの層を形成する装置(例えば、液滴塗布装置など)を別途設けるようにする。 As the droplet applying device 140, an ink jet method or a dispenser method can be adopted as in the case of the droplet applying device 120 described above. When providing, for example, a hole transport layer and an electron transport layer as components of the organic EL element 50, a device for forming these layers (for example, a droplet applying device) is separately provided.
 液滴塗布装置140Reは、R溶液を画素電極P上に塗布する。液滴塗布装置140Reは、乾燥後の膜厚が100nmになるようにR溶液の吐出量が調整されるようになっている。R溶液としては、例えばホスト材のポリビニルカルバゾール(PVK)に赤ドーパント材を1、2-ジクロロエタン中に溶解した溶液が用いられる。 The droplet applying device 140Re applies the R solution onto the pixel electrode P. In the droplet applying device 140Re, the discharge amount of the R solution is adjusted so that the film thickness after drying becomes 100 nm. As the R solution, for example, a solution obtained by dissolving a red dopant material in 1,2-dichloroethane in polyvinyl carbazole (PVK) as a host material is used.
 液滴塗布装置140Grは、G溶液を画素電極P上に塗布する。G溶液としては、例えばホスト材PVKに緑ドーパント材を1、2-ジクロロエタン中に溶解した溶液が用いられる。 The droplet applying device 140Gr applies the G solution onto the pixel electrode P. As the G solution, for example, a solution in which a green dopant material is dissolved in 1,2-dichloroethane in a host material PVK is used.
 液滴塗布装置140Blは、B溶液を画素電極P上に塗布する。B溶液としては、例えばホスト材PVKに青ドーパント材を1、2-ジクロロエタン中に溶解した溶液が用いられる。 The droplet applying device 140B1 applies the B solution onto the pixel electrode P. As the solution B, for example, a solution in which a blue dopant material is dissolved in 1,2-dichloroethane in a host material PVK is used.
 液滴塗布装置120Iは、ゲートバスラインGBL又はソースバスラインSBLの一部に電気絶縁性インクを塗布する。電気絶縁性インクとしては、例えばポリイミド系樹脂又はウレタン系樹脂のインクが用いられる。 The droplet applying device 120I applies an electrically insulating ink to a part of the gate bus line GBL or the source bus line SBL. As the electrically insulating ink, for example, polyimide resin or urethane resin ink is used.
 液滴塗布装置120ITは、赤色、緑色及び青色発光層の上にITO(Indium Tin Oxide:インジウムスズ酸化物)インクを塗布する。ITOインクとしては、酸化インジウム(In)に数%の酸化スズ(SnO)を添加した化合物などが用いられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。透明導電膜は、透過率が90%以上であることが好ましい。 The droplet applying device 120IT applies ITO (Indium Tin Oxide) ink on the red, green, and blue light emitting layers. As the ITO ink, a compound in which several percent of tin oxide (SnO 2 ) is added to indium oxide (In 2 O 3 ) is used. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. The transparent conductive film preferably has a transmittance of 90% or more.
 熱処理装置BKは、各液滴塗布装置140の+X側(基板搬送方向下流側)にそれぞれ配置されている。熱処理装置BKは、電極形成部92で用いられる熱処理装置BKと同様、シート基板FBに対して例えば熱風や遠赤外線などを放射可能になっている。熱処理装置BKは、これらの放射熱を用いて、シート基板FBに塗布された液滴を乾燥又は焼成(ベーキング)し硬化させる。 The heat treatment apparatus BK is disposed on the + X side (downstream side in the substrate transport direction) of each droplet applying apparatus 140. The heat treatment apparatus BK can emit hot air, far-infrared rays, and the like to the sheet substrate FB, similarly to the heat treatment apparatus BK used in the electrode forming unit 92. The heat treatment apparatus BK uses these radiant heats to dry or bake (bake) the droplets applied to the sheet substrate FB and harden them.
 搬送部105は、X方向に沿った位置に配置される複数のローラRR及び搬送機構TRを有している。ローラRRが回転することにより、シート基板FBがX軸方向に搬送されるようになっている。ローラRRはシート基板FBを両面から挟み込むゴムローラであってもよいし、シート基板FBがパーフォレーションを有するものであればラチェット付きのローラRRであってもよい。複数のローラRRのうち一部のローラRRは搬送方向と直交するY軸方向に移動可能である。搬送機構TRは、X方向上において、素子形成部106のうち電極形成部92及び発光層形成部93に対応する位置に配置されている。 The transport unit 105 includes a plurality of rollers RR and a transport mechanism TR disposed at positions along the X direction. As the roller RR rotates, the sheet substrate FB is conveyed in the X-axis direction. The roller RR may be a rubber roller that sandwiches the sheet substrate FB from both sides, or may be a roller RR with a ratchet as long as the sheet substrate FB has perforation. Among the plurality of rollers RR, some of the rollers RR are movable in the Y-axis direction orthogonal to the transport direction. The transport mechanism TR is disposed at a position corresponding to the electrode forming portion 92 and the light emitting layer forming portion 93 in the element forming portion 106 in the X direction.
 アライメント部107は、X方向に沿って設けられた複数のアライメントカメラCA(CA1~CA8)を有している。アライメントカメラCAは、可視光照明下でCCD又はCMOSで撮像し、その撮像画像を処理してアライメントマークAMの位置を検出してもよいし、レーザ光をアライメントマークAMに照射して、その散乱光を受光してもアライメントマークAMの位置を検出しても良い。 Alignment unit 107 has a plurality of alignment cameras CA (CA1 to CA8) provided along the X direction. The alignment camera CA may pick up an image with CCD or CMOS under visible light illumination, process the picked-up image to detect the position of the alignment mark AM, or irradiate the alignment mark AM with the laser light and scatter the light. Even if light is received, the position of the alignment mark AM may be detected.
 アライメントカメラCA1は、熱転写ローラ115の+X側に配置されている。アライメントカメラCA1は、シート基板FB上に熱転写ローラ115によって形成されるアライメントマークAMの位置を検出する。アライメントカメラCA2~CA8は、それぞれ熱処理装置BKの+X側に配置されている。アライメントカメラCA2~CA8は、熱処理装置BKを経たシート基板FBのアライメントマークAMの位置を検出する。 The alignment camera CA1 is disposed on the + X side of the thermal transfer roller 115. The alignment camera CA1 detects the position of the alignment mark AM formed by the thermal transfer roller 115 on the sheet substrate FB. The alignment cameras CA2 to CA8 are respectively arranged on the + X side of the heat treatment apparatus BK. Alignment cameras CA2 to CA8 detect the position of alignment mark AM on sheet substrate FB that has passed through heat treatment apparatus BK.
 熱転写ローラ115及び熱処理装置BKを経ることにより、シート基板FBがX軸方向及びY軸方向に伸縮したりする場合がある。このように熱処理を行う熱転写ローラ115の+X側や、熱処理装置BKの+X側にアライメントカメラCAを配置することにより、熱変形などによるシート基板FBの位置ずれを検出することができるようになっている。 The sheet substrate FB may expand and contract in the X axis direction and the Y axis direction through the thermal transfer roller 115 and the heat treatment apparatus BK. By disposing the alignment camera CA on the + X side of the thermal transfer roller 115 that performs heat treatment or on the + X side of the heat treatment apparatus BK in this way, it is possible to detect the positional deviation of the sheet substrate FB due to thermal deformation or the like. Yes.
 アライメントカメラCA1~CA8による検出結果は、制御部104に送信されるようになっている。制御部104は、アライメントカメラCA1~CA8の検出結果に基づいて、例えば液滴塗布装置120や液滴塗布装置140のインクの塗布位置とタイミングの調整、基板供給部101からのシート基板FBの供給速度やローラRRの搬送速度の調整、ローラRRによるY方向への移動の調整、切断装置130の切断位置やタイミングなどの調整が行われるようになっている。 The detection results from the alignment cameras CA1 to CA8 are transmitted to the control unit 104. Based on the detection results of the alignment cameras CA1 to CA8, the control unit 104 adjusts, for example, the ink application position and timing of the droplet application device 120 and the droplet application device 140, and supplies the sheet substrate FB from the substrate supply unit 101. Adjustment of the speed and the conveyance speed of the roller RR, adjustment of movement in the Y direction by the roller RR, adjustment of the cutting position and timing of the cutting device 130, and the like are performed.
 (搬送機構) 
 次に、上記基板処理部102に設けられた搬送機構TRの構成を説明する。図5は、搬送機構TRの構成を示す図である。上記図3において示される複数の搬送機構TRは、それぞれ同様の構成となっている。このため、図5においては、当該複数の搬送機構TRのうち液滴塗布装置120に対応して配置された搬送機構TRを例に挙げて説明する。
(Transport mechanism)
Next, the configuration of the transport mechanism TR provided in the substrate processing unit 102 will be described. FIG. 5 is a diagram illustrating a configuration of the transport mechanism TR. The plurality of transport mechanisms TR shown in FIG. 3 have the same configuration. For this reason, in FIG. 5, the transport mechanism TR disposed corresponding to the droplet applying device 120 among the plurality of transport mechanisms TR will be described as an example.
 図5に示すように、搬送機構TRは、ベルト機構10、ベルト駆動機構20及びエアパッド機構40を有している。ベルト機構10及びベルト駆動機構20は、シート基板FBに対して-Z側に配置されている。また、エアパッド機構40は、シート基板FBに対して+Z側に配置されている。 As shown in FIG. 5, the transport mechanism TR includes a belt mechanism 10, a belt driving mechanism 20, and an air pad mechanism 40. The belt mechanism 10 and the belt driving mechanism 20 are disposed on the −Z side with respect to the sheet substrate FB. The air pad mechanism 40 is disposed on the + Z side with respect to the sheet substrate FB.
 ベルト機構10は、ベルト駆動機構20の回りにθY方向に沿って配置されている。ベルト機構10は、回転部11及び吸着保持板(基板保持部)12を有している。回転部11は、複数の支持部材13が無端状に接続されて構成されている。具体的には、θY方向に隣接する支持部材13同士が、1つの共通の軸部材14によって回動可能に連結されている。この構成がθY方向に連続して設けられており、回転部11は無端状に形成されている。ベルト機構10は、ベルト駆動機構20によってθY方向に回転可能に設けられている。 The belt mechanism 10 is disposed around the belt drive mechanism 20 along the θY direction. The belt mechanism 10 includes a rotating unit 11 and a suction holding plate (substrate holding unit) 12. The rotating part 11 is configured by connecting a plurality of support members 13 in an endless manner. Specifically, support members 13 adjacent to each other in the θY direction are connected to each other by a common shaft member 14 so as to be rotatable. This configuration is provided continuously in the θY direction, and the rotating portion 11 is formed in an endless shape. The belt mechanism 10 is provided so as to be rotatable in the θY direction by the belt drive mechanism 20.
 吸着保持板12は、各支持部材13の外周面上に設けられている。吸着保持板12は、例えば矩形に形成された板状部材である。吸着保持板12は、シート基板FBを吸着して保持する吸着保持面12aを有している。吸着保持面12aは、ベルト機構10の外側に設けられている。 The adsorption holding plate 12 is provided on the outer peripheral surface of each support member 13. The suction holding plate 12 is a plate-like member formed in a rectangular shape, for example. The suction holding plate 12 has a suction holding surface 12a that sucks and holds the sheet substrate FB. The suction holding surface 12 a is provided outside the belt mechanism 10.
 図6は、搬送機構TRを+Z側から見たときの図である。図6に示すように、吸着保持板12は、シート基板FBに対してY方向にはみ出すように形成されている。また、図5及び図6に示すように、搬送機構TRは、X方向で中央の4つの吸着保持板12(S)によってシート基板FBを保持している。 FIG. 6 is a diagram when the transport mechanism TR is viewed from the + Z side. As shown in FIG. 6, the suction holding plate 12 is formed so as to protrude in the Y direction with respect to the sheet substrate FB. As shown in FIGS. 5 and 6, the transport mechanism TR holds the sheet substrate FB by the four suction holding plates 12 (S) at the center in the X direction.
 図7及び図8は、1つの吸着保持板12の構成を示す図である。図7は吸着保持板12を+Z側から見たときの図であり、図8は図7におけるA-A´断面の構成を示す図である。 7 and 8 are diagrams showing the configuration of one suction holding plate 12. FIG. 7 is a view when the suction holding plate 12 is viewed from the + Z side, and FIG. 8 is a view showing the configuration of the AA ′ cross section in FIG.
 図7及び図8に示すように、吸着保持板12は、保持部材15及び吸着パッド16が支持板17上にそれぞれ配置された構成となっている。保持部材15は、支持板17のY方向のほぼ中央に配置されており、図7に示すシート基板FBの被処理部分FBAをY方向にカバーする寸法で形成されている。したがって、シート基板FBのうち少なくとも被処理部分FBAは保持部材15によって保持されるようになっている。 7 and 8, the suction holding plate 12 has a configuration in which a holding member 15 and a suction pad 16 are arranged on a support plate 17, respectively. The holding member 15 is disposed substantially at the center of the support plate 17 in the Y direction, and is formed to have a dimension that covers the processing target FBA of the sheet substrate FB shown in FIG. 7 in the Y direction. Therefore, at least the portion to be processed FBA of the sheet substrate FB is held by the holding member 15.
 図7及び図8における保持部材15の+Z側の面は、シート基板FBを保持する保持面15aとなっている。保持部材15は、この保持面15aが平坦になるように形成されている。このため、保持面15aに保持されるシート基板FBの被処理部分FBAは、保持面15aによって平坦に保持される。 7 and 8, the surface on the + Z side of the holding member 15 is a holding surface 15a for holding the sheet substrate FB. The holding member 15 is formed so that the holding surface 15a is flat. For this reason, the to-be-processed part FBA of the sheet | seat board | substrate FB hold | maintained at the holding surface 15a is hold | maintained flat by the holding surface 15a.
 吸着パッド16は、保持部材15に対してY方向の両端側に1つずつ配置されている。吸着パッド16は、シート基板FBのうち被処理部分FBAからY方向の端辺側に外れた位置(例、シート基板FBのうち被処理部分FBA以外の位置)を吸着するようになっている。 The suction pads 16 are arranged one by one on both end sides in the Y direction with respect to the holding member 15. The suction pad 16 sucks a position of the sheet substrate FB that deviates from the processed portion FBA toward the edge in the Y direction (for example, a position other than the processed portion FBA of the sheet substrate FB).
 吸着パッド16は、パッド支持部材17bによって保持されており、図7及び図8における+Z側の吸着面16aにおいて負圧になるように構成されている。吸着パッド16は、当該吸着面16aでシート基板FBを真空吸着するようになっている。一例として、吸着パッド16の-Z側は、パッド支持部材17b及び支持板17内に形成された配管16bに接続されており、当該配管16bは支持板17の外部の配管17cに接続されている。配管17cは、図9に示すポンプ機構18に接続されており、当該ポンプ機構18によって吸着面16aが負圧に形成されるようになっている。 The suction pad 16 is held by a pad support member 17b and is configured to have a negative pressure on the suction surface 16a on the + Z side in FIGS. The suction pad 16 vacuum-sucks the sheet substrate FB with the suction surface 16a. As an example, the −Z side of the suction pad 16 is connected to a pad support member 17 b and a pipe 16 b formed in the support plate 17, and the pipe 16 b is connected to a pipe 17 c outside the support plate 17. . The pipe 17c is connected to a pump mechanism 18 shown in FIG. 9, and the suction surface 16a is formed at a negative pressure by the pump mechanism 18.
 この吸着面16aは、保持部材15の保持面15aとの間で面一状態となるように形成されている。したがって、吸着保持板12による吸着保持面12aは、互いに面一状態に形成された保持面15aと吸着面16aとによって形成される。シート基板FBは、吸着保持面12aのうちY方向の両端に設けられた吸着面16aにおいて吸着され、Y方向の中央の保持面15aにおいて吸着されない構成となっている。 The suction surface 16a is formed so as to be flush with the holding surface 15a of the holding member 15. Accordingly, the suction holding surface 12a formed by the suction holding plate 12 is formed by the holding surface 15a and the suction surface 16a formed to be flush with each other. The sheet substrate FB is adsorbed on the adsorption surfaces 16a provided at both ends in the Y direction of the adsorption holding surface 12a, and is not adsorbed on the central holding surface 15a in the Y direction.
 パッド支持部材17bは、Y方向用アクチュエータ17aによってY方向に移動可能に設けられている。この構成により、吸着パッド16のY方向の位置をY方向に移動させることができるようになっている。 The pad support member 17b is provided so as to be movable in the Y direction by the Y direction actuator 17a. With this configuration, the position of the suction pad 16 in the Y direction can be moved in the Y direction.
 この構成により、例えば2つの吸着パッド16においてシート基板FBを吸着した状態とし、+Y側の吸着パッド16を+Y方向に移動させ、-Y側の吸着パッド16を-Y方向に移動させることで、保持面15aでの保持状態を維持したままシート基板FBに対してY方向にテンションを加えることができる。 With this configuration, for example, the sheet substrate FB is sucked by the two suction pads 16, the + Y side suction pad 16 is moved in the + Y direction, and the −Y side suction pad 16 is moved in the −Y direction. Tension can be applied to the sheet substrate FB in the Y direction while maintaining the holding state on the holding surface 15a.
 図9は、吸着パッド16に接続されるポンプ機構18の構成を示す断面図である。 
 図9に示すように、ポンプ機構18は、固定円筒軸30、回転シリンダ31及び吸引ポンプ32を有している。
FIG. 9 is a cross-sectional view showing the configuration of the pump mechanism 18 connected to the suction pad 16.
As shown in FIG. 9, the pump mechanism 18 includes a fixed cylindrical shaft 30, a rotating cylinder 31, and a suction pump 32.
 固定円筒軸30は、Y方向視で円筒状に形成されており、位置が固定された状態で保持されている。固定円筒軸30は、凸部30a、吸引供給口30b及び大気解放口30cを有している。凸部30aは、固定円筒軸30の外面のうち+Z側に2箇所設けられている。凸部30aは、固定円筒軸30のY方向の両端部間に亘ってそれぞれY方向に沿って設けられている。 The fixed cylindrical shaft 30 is formed in a cylindrical shape as viewed in the Y direction, and is held in a fixed position. The fixed cylindrical shaft 30 has a convex portion 30a, a suction supply port 30b, and an air release port 30c. Two convex portions 30 a are provided on the + Z side of the outer surface of the fixed cylindrical shaft 30. The convex portions 30 a are provided along the Y direction across both ends of the fixed cylindrical shaft 30 in the Y direction.
 吸引供給口30bは、固定円筒軸30の内部にY方向に沿って形成された開口部であり、吸引ポンプ32に接続されている。吸引供給口30bには、図中+Z方向に形成された分岐部30dが設けられている。当該分岐部30dは、上記の2つの凸部30aの間に接続されるように形成されている。このため、吸引ポンプ32の吸引作用は、吸引供給口30b、分岐部30dを介して2つの凸部30aの間に及ぶようになっている。大気解放口30cは、固定円筒軸30のY方向の両端部間に亘って形成されており、当該両端部において大気に接続されている。大気解放口30cは、分岐部30eを有している。分岐部30eは、上記2つの凸部30aの間から外れた位置に接続されている。 The suction supply port 30 b is an opening formed along the Y direction inside the fixed cylindrical shaft 30, and is connected to the suction pump 32. The suction supply port 30b is provided with a branch portion 30d formed in the + Z direction in the drawing. The branch portion 30d is formed so as to be connected between the two convex portions 30a. For this reason, the suction action of the suction pump 32 extends between the two convex portions 30a via the suction supply port 30b and the branch portion 30d. The atmosphere release port 30c is formed between both ends of the fixed cylindrical shaft 30 in the Y direction, and is connected to the atmosphere at both ends. The air release port 30c has a branch portion 30e. The branch part 30e is connected to a position deviated from between the two convex parts 30a.
 回転シリンダ31は、固定円筒軸30を囲うように設けられている。回転シリンダ31は、例えばY方向の両端部などに設けられるスペーサ33を介して固定円筒軸30との間に一定の隙間を空けて配置されている。回転シリンダ31の内面は、スペーサ33を介して、固定円筒軸30の2つの凸部30aに隙間無く接触するようになっている。このため、固定円筒軸30の外面と回転シリンダ31の内面との間の空間は、2つの凸部30aによって空間S1と空間S2とに分割された状態になっている。このうち、空間S1は上記の吸引ポンプ32によって吸引された状態になっており、空間S2は常に大気解放された状態になっている。 The rotating cylinder 31 is provided so as to surround the fixed cylindrical shaft 30. The rotating cylinder 31 is disposed with a certain gap between the rotating cylinder 31 and the fixed cylindrical shaft 30 via spacers 33 provided at both ends in the Y direction, for example. The inner surface of the rotating cylinder 31 is in contact with the two convex portions 30 a of the fixed cylindrical shaft 30 through the spacer 33 without any gap. For this reason, the space between the outer surface of the fixed cylindrical shaft 30 and the inner surface of the rotating cylinder 31 is in a state divided into the space S1 and the space S2 by the two convex portions 30a. Among these, the space S1 is sucked by the suction pump 32, and the space S2 is always released to the atmosphere.
 回転シリンダ31は、θY方向に沿って複数の開口部31aが設けられている。各開口部31aは、上記の配管16cにそれぞれ接続されている。複数の開口部31aのうち空間S1に接続される開口部31aは、上記の吸引ポンプ32によって、内側部分が吸引されるようになっている。また、回転シリンダ31は、不図示の回転機構によってベルト機構10の回転速度に合わせて回転するようになっており、吸引される開口部31aが回転と共に切り替わるようになっている。本実施形態では、シート基板FBを支持する4つの回転部11に接続される開口部31aに対して吸引作用が及ぶ。 The rotary cylinder 31 is provided with a plurality of openings 31a along the θY direction. Each opening 31a is connected to the pipe 16c. Of the plurality of openings 31 a, the opening 31 a connected to the space S <b> 1 is sucked by the suction pump 32. The rotating cylinder 31 is rotated in accordance with the rotational speed of the belt mechanism 10 by a rotating mechanism (not shown), and the sucked opening 31a is switched with rotation. In the present embodiment, the suction action is exerted on the openings 31a connected to the four rotating parts 11 that support the sheet substrate FB.
 また、シート基板FBの受け渡しをスムーズにするため、このポンプ機構18は、4つの吸着保持板12のうち最も-θY側の吸着保持板12がシート基板FBを保持する位置に到達する前に吸引が開始され、最も+Y側の吸着保持板12がシート基板FBを保持する位置から外れると同時に吸引が解除(大気解放)されるように形成されていることが好ましい。 Further, in order to make the delivery of the sheet substrate FB smooth, the pump mechanism 18 performs suction before the suction holding plate 12 closest to the −θY side among the four suction holding plates 12 reaches the position holding the sheet substrate FB. It is preferable that the suction holding plate 12 on the most + Y side is removed from the position where the sheet substrate FB is held and suction is released (released to the atmosphere) at the same time.
 図5に戻って、ベルト駆動機構20は、基部21、ベルト押圧部22及びベルト押圧アクチュエータ23を有している。基部21は、基板処理部102の他の部分(例えば床部や定盤部など)に対して固定されており、位置が変動しないようになっている。ベルト押圧部22は、基部21に対してθY方向に沿って複数配置されており、ベルト機構10の各吸着保持板12に対応する回転部11を回転経路(例、回転部11の回転経路や回転するベルト機構10の外周など)の外側に押圧するように設けられている。ベルト機構10は、この複数のベルト押圧部22によって支持されている。ベルト押圧部22の先端は、θY方向に回転可能なローラを介してベルト機構10に当接されている。 Returning to FIG. 5, the belt drive mechanism 20 includes a base portion 21, a belt pressing portion 22, and a belt pressing actuator 23. The base 21 is fixed with respect to other parts (for example, a floor part or a surface plate part) of the substrate processing part 102 so that the position does not fluctuate. A plurality of belt pressing portions 22 are arranged along the θY direction with respect to the base portion 21, and the rotation portions 11 corresponding to the respective suction holding plates 12 of the belt mechanism 10 are routed (for example, the rotation route of the rotation portion 11 or The outer periphery of the rotating belt mechanism 10 or the like is provided so as to press outward. The belt mechanism 10 is supported by the plurality of belt pressing portions 22. The front end of the belt pressing portion 22 is in contact with the belt mechanism 10 via a roller that can rotate in the θY direction.
 ベルト押圧部22は、ベルト機構10の回転方向に沿って複数設けられている。複数のベルト押圧部22は、吸着保持板12のピッチに合わせて配置されている。一例として、ベルト押圧部22は、シート基板FBを保持する4つの吸着保持板12に対して1つずつ押圧するように基部21の+Z側に4つ配置されている。更に、ベルト押圧部22は、ベルト機構10が撓まないように基部21の+X側及び-X側に4つずつ配置されている。複数のベルト押圧部22のうち、例えば基部21の+Z側に配置される4つのベルト押圧部22は、それぞれベルト押圧アクチュエータ23に接続されている。これらのベルト押圧部22は、ベルト押圧アクチュエータ23によって図中Z方向に移動可能に設けられている。このため、基部21の+Z側に配置される4つの吸着保持板12は、+Z側に押圧されるようになっている。なお、当該4つの吸着保持板12は、液滴塗布装置120によって処理される位置及びその近傍に配置されている。このため、少なくとも液滴塗布装置120の処理位置において、吸着保持板12はベルト押圧部22によって押圧される。また、基部21の+X側及び-X側に配置された8つのベルト押圧部22は、基部21に対してそれぞれ固定されている。なお、一例として、ベルト押圧部22は、高い剛性を有する部材で構成されてもよいし、バネのような弾性部材で構成されてもよい。 A plurality of belt pressing portions 22 are provided along the rotation direction of the belt mechanism 10. The plurality of belt pressing portions 22 are arranged according to the pitch of the suction holding plate 12. As an example, four belt pressing portions 22 are arranged on the + Z side of the base portion 21 so as to press one by one against the four suction holding plates 12 that hold the sheet substrate FB. Furthermore, four belt pressing portions 22 are arranged on the + X side and the −X side of the base portion 21 so that the belt mechanism 10 does not bend. Among the plurality of belt pressing portions 22, for example, four belt pressing portions 22 arranged on the + Z side of the base portion 21 are respectively connected to the belt pressing actuator 23. These belt pressing portions 22 are provided by a belt pressing actuator 23 so as to be movable in the Z direction in the figure. For this reason, the four adsorption | suction holding plates 12 arrange | positioned at the + Z side of the base 21 are pressed by the + Z side. The four suction holding plates 12 are disposed at a position where the droplet applying device 120 is processed and in the vicinity thereof. For this reason, the suction holding plate 12 is pressed by the belt pressing unit 22 at least at the processing position of the droplet applying device 120. Further, the eight belt pressing portions 22 disposed on the + X side and the −X side of the base portion 21 are fixed to the base portion 21, respectively. In addition, as an example, the belt pressing part 22 may be comprised with the member which has high rigidity, and may be comprised with an elastic member like a spring.
 エアパッド機構40(気体層形成部)は、パッド部材41、気流調整機構42及び配管43を有している。パッド部材41は、例えば液滴塗布装置120の上流側(+X側)及び下流側(-X側)に1つずつ設けられている。各パッド部材41は、-Z側に気体(例、空気、窒素などの不活性ガス、等)を噴出する気体噴出口41aと、気体を吸引する気体吸引口41bとがそれぞれ複数設けられている。気体噴出口41a及び気体吸引口41bは、配管43を介して気流調整機構42にそれぞれ接続されている。気流調整機構42は、気体噴出口41aの噴出量と気体吸引口41bの吸引量とを調整する。気流調整機構42によって当該噴出量及び吸引量が調整されることにより、パッド部材41の-Z側には、Z方向に一定の層厚で気体の層(気体層又は受部)が形成されるようになっている。 The air pad mechanism 40 (gas layer forming part) includes a pad member 41, an airflow adjusting mechanism 42, and a pipe 43. For example, one pad member 41 is provided on the upstream side (+ X side) and the downstream side (−X side) of the droplet applying device 120. Each pad member 41 is provided with a plurality of gas ejection ports 41a for ejecting gas (eg, air, inert gas such as nitrogen) on the −Z side, and a plurality of gas suction ports 41b for sucking gas. . The gas ejection port 41 a and the gas suction port 41 b are connected to the airflow adjustment mechanism 42 via the pipe 43, respectively. The air flow adjusting mechanism 42 adjusts the ejection amount of the gas ejection port 41a and the suction amount of the gas suction port 41b. By adjusting the ejection amount and the suction amount by the air flow adjusting mechanism 42, a gas layer (gas layer or receiving portion) is formed on the −Z side of the pad member 41 with a constant layer thickness in the Z direction. It is like that.
 なお、図3に示すように、発光層形成部93において、搬送機構TRは液滴塗布装置140R、140G及び140Bに跨って配置されているが、この構成に限られることは無く、例えば搬送機構TRは、各液滴塗布装置140R、140G及び140Bに対して個別に設けられている構成としても構わないし、3つの液滴塗布装置140のうち2つに跨って配置された構成としても構わない。 As shown in FIG. 3, in the light emitting layer forming unit 93, the transport mechanism TR is disposed across the droplet applying apparatuses 140R, 140G, and 140B. However, the present invention is not limited to this configuration. The TR may be configured to be provided individually for each of the droplet applying apparatuses 140R, 140G, and 140B, or may be configured to extend over two of the three droplet applying apparatuses 140. .
 また、図3の電極形成部92において、搬送機構TRは、液滴塗布装置120G、120I及び120SDに対して個別に設けられているが、この構成に限られることは無く、例えば搬送機構TRは、これら液滴塗布装置120G、120I及び120SDに跨って配置された構成としても構わないし、3つの液滴塗布装置120のうち2つに跨って配置された構成としても構わない。 In addition, in the electrode forming unit 92 of FIG. 3, the transport mechanism TR is individually provided for the droplet applying apparatuses 120G, 120I, and 120SD, but is not limited to this configuration. The configuration may be such that the droplet coating apparatuses 120G, 120I, and 120SD are disposed across two droplet coating apparatuses 120, or the two droplet coating apparatuses 120 may be disposed across two.
 (基板処理装置の動作) 
 次に、上記のように構成された基板処理装置100の動作を説明する。 
 基板処理装置100は、図2に示すように、基板供給部101から基板処理部102に対してシート基板FBを供給しつつ、基板処理部102において当該シート基板FB上に素子を形成していく。基板処理部102では、図3に示すように、ローラRR及び搬送機構TRによってシート基板FBを搬送する。
(Operation of substrate processing equipment)
Next, the operation of the substrate processing apparatus 100 configured as described above will be described.
As shown in FIG. 2, the substrate processing apparatus 100 forms elements on the sheet substrate FB in the substrate processing unit 102 while supplying the sheet substrate FB from the substrate supply unit 101 to the substrate processing unit 102. . In the substrate processing unit 102, as shown in FIG. 3, the sheet substrate FB is transported by the roller RR and the transport mechanism TR.
 制御部104は、基板供給部101から供給されるシート基板FBの供給速度に合わせて、基板処理部102内の各ローラRRの回転速度や、搬送機構TRのベルト機構10の回転速度などを調整する。また、制御部104は、ローラRRがY軸方向にずれているか否かを検出し、ずれている場合にはローラRRを移動させて位置を補正する。また、制御部104は、ローラRRを移動させることによりシート基板FBの位置補正を併せて行わせる。 The control unit 104 adjusts the rotation speed of each roller RR in the substrate processing unit 102 and the rotation speed of the belt mechanism 10 of the transport mechanism TR according to the supply speed of the sheet substrate FB supplied from the substrate supply unit 101. To do. In addition, the control unit 104 detects whether or not the roller RR is displaced in the Y-axis direction, and when it is displaced, moves the roller RR to correct the position. Further, the control unit 104 causes the position correction of the sheet substrate FB to be performed by moving the roller RR.
 基板供給部101から基板処理部102に供給されたシート基板FBは、まず隔壁形成部91に搬送される。隔壁形成部91において、シート基板FBはインプリントローラ110と熱転写ローラ115とに挟まれて押圧され、熱転写によってシート基板に隔壁BA及びアライメントマークAMが形成される。 The sheet substrate FB supplied from the substrate supply unit 101 to the substrate processing unit 102 is first transported to the partition wall forming unit 91. In the partition forming part 91, the sheet substrate FB is sandwiched and pressed between the imprint roller 110 and the thermal transfer roller 115, and the partition BA and the alignment mark AM are formed on the sheet substrate by thermal transfer.
 図10は、シート基板FBに隔壁BA及びアライメントマークAMが形成された状態を示す図である。図11は、図10の一部を拡大して示した図である。図12は、図11におけるD-D´断面に沿った構成を示す図である。図10及び図11は、シート基板FBを+Z側から見たときの様子を示している。 FIG. 10 is a view showing a state in which the partition walls BA and the alignment marks AM are formed on the sheet substrate FB. FIG. 11 is an enlarged view of a part of FIG. FIG. 12 is a diagram showing a configuration along a section DD ′ in FIG. 10 and 11 show a state when the sheet substrate FB is viewed from the + Z side.
 図10に示すように、隔壁BAは、シート基板FBのY方向中央部の素子形成領域60に形成される。図11に示すように、隔壁BAを形成することにより、素子形成領域60には、ゲートバスラインGBL及びゲート電極Gを形成する領域(ゲート形成領域52)とソースバスラインSBL、ソース電極S、ドレイン電極D及び陽極Pを形成する領域(ソースドレイン形成領域53)とが区画されることになる。図12に示すように、ゲート形成領域52は、断面視で台形状に形成されている。図示を省略するが、ソースドレイン形成領域53についても同様の形状となっている。隔壁BA内の幅W(μm)は、ゲートバスラインGBLの線幅となる。この幅Wとしては、液滴塗布装置120Gから塗布される液滴直径d(μm)に対して2倍~4倍程度とすることが好ましい。 As shown in FIG. 10, the partition wall BA is formed in the element formation region 60 at the center in the Y direction of the sheet substrate FB. As shown in FIG. 11, by forming the partition wall BA, the element formation region 60 includes a region for forming the gate bus line GBL and the gate electrode G (gate formation region 52), the source bus line SBL, the source electrode S, A region for forming the drain electrode D and the anode P (source / drain formation region 53) is partitioned. As shown in FIG. 12, the gate formation region 52 is formed in a trapezoidal shape in a cross-sectional view. Although not shown, the source / drain formation region 53 has the same shape. The width W (μm) in the partition wall BA is the line width of the gate bus line GBL. The width W is preferably about 2 to 4 times the droplet diameter d (μm) applied from the droplet applying apparatus 120G.
 なお、ゲート形成領域52及びソースドレイン形成領域53の断面形状は、微細インプリント用モールド111がシート基板FBを押圧した後にシート基板FBが剥離しやすいように、断面視でV字形状又はU字形状とすること好ましい。この他の形状として、例えば断面視で矩形形状としても構わない。 Note that the cross-sectional shapes of the gate formation region 52 and the source / drain formation region 53 are V-shaped or U-shaped in cross-section so that the sheet substrate FB is easily peeled after the fine imprint mold 111 presses the sheet substrate FB. It is preferable to have a shape. As other shapes, for example, a rectangular shape in a sectional view may be used.
 一方、図10に示すように、アライメントマークAMは、シート基板FBのY方向両端部の縁領域61に一対形成される。隔壁BA及びアライメントマークAMは、相互の位置関係が重要であるため同時に形成される。図11に示すように、Y軸方向には、アライメントマークAMとゲート形成領域52との間の所定距離PYが規定されており、X軸方向には、アライメントマークAMとソースドレイン形成領域53との間の所定距離PXが規定されている。このため、一対のアライメントマークAMの位置に基づいて、シート基板FBのX軸方向のずれ、Y軸方向のずれ及びθ回転が検出可能となる。 On the other hand, as shown in FIG. 10, a pair of alignment marks AM is formed in the edge regions 61 at both ends in the Y direction of the sheet substrate FB. The partition wall BA and the alignment mark AM are formed at the same time because the mutual positional relationship is important. As shown in FIG. 11, a predetermined distance PY between the alignment mark AM and the gate formation region 52 is defined in the Y-axis direction, and the alignment mark AM and the source / drain formation region 53 are defined in the X-axis direction. A predetermined distance PX is defined. Therefore, based on the positions of the pair of alignment marks AM, it is possible to detect the deviation in the X-axis direction, the deviation in the Y-axis direction, and the θ rotation of the sheet substrate FB.
 図10及び図11では、アライメントマークAMが、X軸方向の複数行の隔壁BAごとに一対設けられているが、これに限られることは無く、例えば隔壁BA1行ごとにアライメントマークAMを設けるようにしても良い。また、シート基板FBにスペースがあれば、シート基板FBの縁領域61だけでなく素子形成領域60にアライメントマークAMを設けても良い。また、図10及び図11では、アライメントマークAMは十字形状を示したが、円形マーク、斜めの直線マークなど他のマーク形状であってもよい。 10 and 11, a pair of alignment marks AM is provided for each of the plurality of rows of barrier ribs BA in the X-axis direction. However, the present invention is not limited to this. For example, the alignment mark AM is provided for each row of barrier ribs BA. Anyway. If there is a space in the sheet substrate FB, the alignment mark AM may be provided not only in the edge region 61 of the sheet substrate FB but also in the element formation region 60. 10 and 11, the alignment mark AM has a cross shape, but may have another mark shape such as a circular mark or an oblique straight mark.
 続いてシート基板FBは、搬送ローラRRによって電極形成部92に搬送される。電極形成部92では、各液滴塗布装置120による液滴の塗布が行われ、シート基板FB上に電極が形成される。 Subsequently, the sheet substrate FB is conveyed to the electrode forming unit 92 by the conveying roller RR. In the electrode forming section 92, droplets are applied by each droplet applying device 120, and electrodes are formed on the sheet substrate FB.
 制御部104は、シート基板FBが搬送機構TRに搬送される前に、搬送機構TRのエアパッド機構40を作動させると共に、ポンプ機構18を作動させる。この動作により、パッド部材41の-Z側に一定の厚さの空気の層AR(図20参照)が形成されると共に、回転部11の吸着パッド16における吸引動作が開始される。 The control unit 104 operates the air pad mechanism 40 of the transport mechanism TR and the pump mechanism 18 before the sheet substrate FB is transported to the transport mechanism TR. By this operation, an air layer AR (see FIG. 20) having a constant thickness is formed on the −Z side of the pad member 41, and the suction operation on the suction pad 16 of the rotating unit 11 is started.
 この状態でシート基板FBが搬送機構TRに搬送されると、シート基板FBは吸着パッド16によって吸着面16aに吸着されると共に保持部材15の保持面15a上に保持される。したがって、シート基板FBは、吸着保持面12aによって保持されることになる。制御部104は、必要に応じて、パッド支持部材17bをY方向に移動させることにより、シート基板FBにテンションを加えて、シート基板FBの平坦度を高めるようにする。 In this state, when the sheet substrate FB is conveyed to the conveyance mechanism TR, the sheet substrate FB is adsorbed to the adsorption surface 16a by the adsorption pad 16 and is held on the holding surface 15a of the holding member 15. Therefore, the sheet substrate FB is held by the suction holding surface 12a. The control unit 104 applies tension to the sheet substrate FB to increase the flatness of the sheet substrate FB by moving the pad support member 17b in the Y direction as necessary.
 制御部104は、シート基板FBにテンションを加えた後、図20に示すように、ベルト押圧部22を+Z側に移動させ、パッド部材41の-Z側に形成された気体層ARにシート基板FBを押し付ける。この動作においては、反作用によってパッド部材41側においてもシート基板FBを-Z側に押圧する。このように気体層ARの-Z側の面ARcを基準面とし、当該気体層ARと吸着保持面12aとでシート基板FBを挟持することにより、シート基板FBの被処理面FBcにおける平坦性が維持されることになる。制御部104は、シート基板FBの被処理面FBcにおける平坦性を維持しつつ、ベルト機構10を回転させることで、シート基板FBを+X方向に搬送させる。以下、制御部104は、基板処理部102の下流側の搬送機構TRにおいても同様の動作を行わせる。 After applying tension to the sheet substrate FB, the control unit 104 moves the belt pressing unit 22 to the + Z side as shown in FIG. 20, and the sheet substrate is placed on the gas layer AR formed on the −Z side of the pad member 41. Press FB. In this operation, the sheet substrate FB is pressed to the −Z side also on the pad member 41 side by the reaction. In this way, the surface ARc on the −Z side of the gas layer AR is used as a reference surface, and the sheet substrate FB is sandwiched between the gas layer AR and the suction holding surface 12a, so that the flatness of the processing surface FBc of the sheet substrate FB is improved. Will be maintained. The control unit 104 conveys the sheet substrate FB in the + X direction by rotating the belt mechanism 10 while maintaining flatness on the processing surface FBc of the sheet substrate FB. Thereafter, the control unit 104 causes the same operation to be performed in the transport mechanism TR on the downstream side of the substrate processing unit 102.
 このようにシート基板FBの被処理面FBcの平坦性を維持した状態で、制御部104は、液滴塗布装置120の動作を開始させる。例えば、最初に、シート基板FB上には、液滴塗布装置120GによってゲートバスラインGBL及びゲート電極Gが形成される。図13A及び図13Bは、液滴塗布装置120Gによって液滴塗布が行われるシート基板FBの様子を示す図である。 In this manner, the control unit 104 starts the operation of the droplet applying device 120 while maintaining the flatness of the processing surface FBc of the sheet substrate FB. For example, first, the gate bus line GBL and the gate electrode G are formed on the sheet substrate FB by the droplet applying device 120G. 13A and 13B are views showing a state of the sheet substrate FB on which droplet application is performed by the droplet applying apparatus 120G.
 図13Aに示すように、液滴塗布装置120Gは、隔壁BAが形成されたシート基板FBのゲート形成領域52に例えば1~9の順序でメタルインクを塗布する。この順序は、例えばメタルインク同士の張力で直線状に塗布される順序である。図13Bは、例えば1滴のメタルインクが塗布された状態を示す図である。図13Bに示すように、隔壁BAが設けられているため、ゲート形成領域52に塗布されたメタルインクは拡散せずに保持されることになる。このようにして、液滴塗布装置120Gはゲート形成領域52の全体にメタルインクを塗布する。 As shown in FIG. 13A, the droplet applying device 120G applies metal ink to the gate forming region 52 of the sheet substrate FB on which the partition walls BA are formed, for example, in the order of 1 to 9. This order is, for example, the order in which the ink is applied linearly with the tension between the metal inks. FIG. 13B is a diagram illustrating a state in which, for example, one drop of metal ink is applied. As shown in FIG. 13B, since the partition wall BA is provided, the metal ink applied to the gate formation region 52 is held without being diffused. In this manner, the droplet applying device 120G applies the metal ink to the entire gate forming region 52.
 ゲート形成領域52にメタルインクが塗布された後、シート基板FBは当該メタルインクの塗布された部分が熱処理装置BKの-Z側に位置するように搬送される。熱処理装置BKは、シート基板FB上に塗布されたメタルインクに熱処理を行い、当該メタルインク乾燥させる。図14Aは、メタルインクを乾燥させた後のゲート形成領域52の状態を示す図である。図14Aに示すように、メタルインクを乾燥させることにより、メタルインクに含まれる導電体が薄膜状に積層されることになる。このような薄膜状の導電体がゲート形成領域52の全体に形成され、図14Bに示すように、シート基板FB上にゲートバスラインGBL及びゲート電極Gが形成されることになる。 After the metal ink is applied to the gate formation region 52, the sheet substrate FB is transported so that the portion where the metal ink is applied is positioned on the −Z side of the heat treatment apparatus BK. The heat treatment apparatus BK performs heat treatment on the metal ink applied on the sheet substrate FB, and dries the metal ink. FIG. 14A is a diagram illustrating a state of the gate formation region 52 after the metal ink is dried. As shown in FIG. 14A, by drying the metal ink, the conductors included in the metal ink are laminated in a thin film shape. Such a thin film-like conductor is formed on the entire gate formation region 52, and as shown in FIG. 14B, the gate bus line GBL and the gate electrode G are formed on the sheet substrate FB.
 次に、シート基板FBは、液滴塗布装置120Iの-Z側に搬送される。液滴塗布装置120Iではシート基板FBに電気絶縁性インクが塗布される。液滴塗布装置120Iでは、例えば図15に示すように、ソースドレイン形成領域53を通過するゲートバスラインGBL上及びゲート電極G上に電気絶縁性インクが塗布される。 Next, the sheet substrate FB is conveyed to the −Z side of the droplet applying apparatus 120I. In the droplet applying device 120I, the electrically insulating ink is applied to the sheet substrate FB. In the droplet applying device 120I, for example, as shown in FIG. 15, electrically insulating ink is applied onto the gate bus line GBL and the gate electrode G passing through the source / drain formation region 53.
 電気絶縁性インクが塗布された後、シート基板FBは熱処理装置BKの-Z側に搬送され、熱処理装置BKによって当該電気絶縁性インクに熱処理が施される。この熱処理によって電気絶縁性インクが乾燥し、ゲート絶縁層Iが形成される。図15では、ゲート絶縁層Iが隔壁BA上に跨るように円形状に形成された状態を示しているが、特に隔壁BAを越えて形成する必要は無い。 After the electrical insulating ink is applied, the sheet substrate FB is transported to the −Z side of the heat treatment apparatus BK, and the heat treatment apparatus BK heat-treats the electrical insulation ink. By this heat treatment, the electrically insulating ink is dried, and the gate insulating layer I is formed. FIG. 15 shows a state in which the gate insulating layer I is formed in a circular shape so as to straddle the partition BA, but it is not particularly necessary to form the gate insulating layer I beyond the partition BA.
 ゲート絶縁層Iが形成された後、シート基板FBは液滴塗布装置120SDの-Z側に搬送される。液滴塗布装置120SDでは、シート基板FBのソースドレイン形成領域53にメタルインクが塗布される。ソースドレイン形成領域53のうちゲート絶縁層Iを跨ぐ部分については、例えば図16に示す1~9の順序でメタルインクが吐出される。 After the gate insulating layer I is formed, the sheet substrate FB is transported to the −Z side of the droplet applying apparatus 120SD. In the droplet applying device 120SD, metal ink is applied to the source / drain formation region 53 of the sheet substrate FB. For the portion of the source / drain formation region 53 straddling the gate insulating layer I, for example, metal ink is ejected in the order of 1 to 9 shown in FIG.
 メタルインクの吐出後、シート基板FBは熱処理装置BKの-Z側に搬送され、メタルインクの乾燥処理が行われる。当該乾燥処理後、メタルインクに含まれる導電体が薄膜状に積層され、ソースバスラインSBL、ソース電極S、ドレイン電極D及び陽極Pが形成される。ただし、この段階では、ソース電極Sとドレイン電極Dとの間が接続された状態になっている。 After discharging the metal ink, the sheet substrate FB is conveyed to the −Z side of the heat treatment apparatus BK, and the metal ink is dried. After the drying process, the conductor contained in the metal ink is laminated in a thin film shape, and the source bus line SBL, the source electrode S, the drain electrode D, and the anode P are formed. However, at this stage, the source electrode S and the drain electrode D are connected.
 次に、シート基板FBは、切断装置130の-Z側に搬送される。シート基板FBは、切断装置130において、ソース電極Sとドレイン電極Dとの間が切断される。図17は、ソース電極Sとドレイン電極Dとの間隔を切断装置130で切断した状態を示す図である。切断装置130では、ガルバノミラー131を用いてレーザ光LLのシート基板FBへの照射位置を調整しながら切断を行う。 Next, the sheet substrate FB is conveyed to the −Z side of the cutting device 130. The sheet substrate FB is cut between the source electrode S and the drain electrode D by the cutting device 130. FIG. 17 is a diagram illustrating a state in which the gap between the source electrode S and the drain electrode D is cut by the cutting device 130. The cutting device 130 performs cutting while adjusting the irradiation position of the laser beam LL onto the sheet substrate FB using the galvanometer mirror 131.
 ソース電極Sとドレイン電極Dとの間が切断された後、シート基板FBは、液滴塗布装置OSの-Z側に搬送される。液滴塗布装置OSでは、シート基板FB上に有機半導体層OSが形成される。シート基板FB上のうちゲート電極Gに重なる領域には、ソース電極S及びドレイン電極Dに跨るように有機半導体インクが吐出される。 After cutting between the source electrode S and the drain electrode D, the sheet substrate FB is transported to the −Z side of the droplet applying apparatus OS. In the droplet applying apparatus OS, the organic semiconductor layer OS is formed on the sheet substrate FB. Organic semiconductor ink is ejected across the source electrode S and the drain electrode D into a region overlapping the gate electrode G on the sheet substrate FB.
 有機半導体インクの吐出後、シート基板FBは熱処理装置BKの-Z側に搬送され、有機半導体インクの乾燥処理が行われる。当該乾燥処理後、有機半導体インクに含まれる半導体が薄膜状に積層され、図18に示すように、有機半導体OSが形成される。以上の工程により、シート基板FB上に電界効果型トランジスタ及び接続配線が形成されることになる。 After the organic semiconductor ink is discharged, the sheet substrate FB is conveyed to the −Z side of the heat treatment apparatus BK, and the organic semiconductor ink is dried. After the drying treatment, semiconductors included in the organic semiconductor ink are laminated in a thin film shape, and an organic semiconductor OS is formed as shown in FIG. Through the above steps, the field effect transistor and the connection wiring are formed on the sheet substrate FB.
 続いてシート基板FBは、搬送ローラRRによって発光層形成部93に搬送される(図3参照)。発光層形成部93では、液滴塗布装置140Re、液滴塗布装置140Gr、液滴塗布装置140Bl及び熱処理装置BKによって赤色、緑色、青色の発光層IRがそれぞれ形成される。シート基板FB上には隔壁BAが形成されているため、赤色、緑色及び青色の発光層IRを熱処理装置BKで熱処理することなく続けて塗布する場合であっても、隣接する画素領域へ溶液が溢れることにより、混色が生じることがない。 Subsequently, the sheet substrate FB is transported to the light emitting layer forming unit 93 by the transport roller RR (see FIG. 3). In the light emitting layer forming section 93, red, green, and blue light emitting layers IR are formed by the droplet applying device 140Re, the droplet applying device 140Gr, the droplet applying device 140Bl, and the heat treatment device BK, respectively. Since the barrier ribs BA are formed on the sheet substrate FB, even when the red, green, and blue light emitting layers IR are continuously applied without heat treatment by the heat treatment apparatus BK, the solution is applied to the adjacent pixel regions. Overflow does not cause color mixing.
 発光層IRの形成後、シート基板FBは液滴塗布装置140I及び熱処理装置BKを経て絶縁層Iが形成され、液滴塗布装置140IT及び熱処理装置BKを経て透明電極ITが形成される。このような工程を経て、シート基板FB上には図1A~図1Cで示した有機EL素子50が形成される。 After the formation of the light emitting layer IR, the insulating layer I is formed on the sheet substrate FB via the droplet applying device 140I and the heat treatment device BK, and the transparent electrode IT is formed via the droplet applying device 140IT and the heat treatment device BK. Through these steps, the organic EL element 50 shown in FIGS. 1A to 1C is formed on the sheet substrate FB.
 素子形成動作では、上記のようにシート基板FBを搬送させながら有機EL素子50を形成する過程で、シート基板FBがX方向、Y方向及びθZ方向にずれてしまうのを防ぐため、アライメント動作を行っている。以下、図19を参照して、アライメント動作を説明する。 In the element forming operation, in order to prevent the sheet substrate FB from shifting in the X direction, the Y direction, and the θZ direction in the process of forming the organic EL element 50 while transporting the sheet substrate FB as described above, an alignment operation is performed. Is going. Hereinafter, the alignment operation will be described with reference to FIG.
 アライメント動作においては、各部に設けられた複数のアライメントカメラCA(CA1~CA8)が適宜シート基板FBに形成されたアライメントマークAMを検出し、制御部104に検出結果を送信する。制御部104では、送信された検出結果に基づいて、アライメント動作を行わせる。 In the alignment operation, a plurality of alignment cameras CA (CA1 to CA8) provided in each unit appropriately detect the alignment mark AM formed on the sheet substrate FB, and transmit the detection result to the control unit 104. The control unit 104 causes the alignment operation to be performed based on the transmitted detection result.
 例えば、制御部104は、アライメントカメラCA(CA1~CA8)が検出するアライメントマークAMの撮像間隔などに基づいてシート基板FBの送り速度を検出し、ローラRRが例えば所定速度で回転しているか否かを判断する。ローラRRが所定速度で回転していないと判断した場合、制御部104は、ローラRRの回転速度の調整の指令を出しフィードバックをかける。 For example, the control unit 104 detects the feeding speed of the sheet substrate FB based on the imaging interval of the alignment mark AM detected by the alignment camera CA (CA1 to CA8), and whether or not the roller RR is rotating at a predetermined speed, for example. Determine whether. When it is determined that the roller RR is not rotating at a predetermined speed, the control unit 104 issues an instruction for adjusting the rotation speed of the roller RR and applies feedback.
 また、例えば制御部104は、アライメントマークAMの撮像結果に基づき、アライメントマークAMのY軸方向の位置がずれているか否かを検出し、シート基板FBのY軸方向の位置ずれの有無を検出する。位置ずれが検出された場合、制御部104は、シート基板FBを搬送させた状態で位置ずれがどの程度の時間継続しているかを検出する。 For example, the control unit 104 detects whether or not the position of the alignment mark AM in the Y-axis direction is shifted based on the imaging result of the alignment mark AM, and detects whether or not the sheet substrate FB is displaced in the Y-axis direction. To do. When the misregistration is detected, the control unit 104 detects how long the misregistration continues in a state where the sheet substrate FB is conveyed.
 位置ずれの時間が短時間であれば、液滴塗布装置120の複数のノズル122のうち液滴を塗布するノズル122を切り替えることによって対応する。シート基板FBのY軸方向のずれが長時間続くようであれば、ローラRRの移動によってシート基板FBのY軸方向の位置補正を行う。 If the time of positional deviation is short, it corresponds by switching the nozzle 122 which apply | coats a droplet among the several nozzles 122 of the droplet application apparatus 120. FIG. If the deviation of the sheet substrate FB in the Y-axis direction continues for a long time, the position of the sheet substrate FB in the Y-axis direction is corrected by the movement of the roller RR.
 また、例えば制御部104は、アライメントカメラCAが検出するアライメントマークAMのX軸及びY軸方向の位置に基づき、シート基板FBがθZ方向にずれているか否かを検出する。位置ずれが検出された場合、制御部104は、Y軸方向の位置ずれの検出時と同様、シート基板FBを搬送させた状態で位置ずれがどの程度の時間継続しているかを検出する。
 位置ずれの時間が短時間であれば、液滴塗布装置120の複数のノズル122のうち液滴を塗布するノズル122を切り替えることによって対応する。ずれが長時間続くようであれば、当該ズレを検出したアライメントカメラCAを挟む位置に設けられる2つのローラRRをX方向又はY方向に移動させ、シート基板FBのθZ方向の位置補正を行う。
For example, the control unit 104 detects whether or not the sheet substrate FB is displaced in the θZ direction based on the positions of the alignment marks AM detected by the alignment camera CA in the X-axis and Y-axis directions. When the positional deviation is detected, the control unit 104 detects how long the positional deviation continues while the sheet substrate FB is conveyed, as in the case of detecting the positional deviation in the Y-axis direction.
If the positional deviation time is short, it can be dealt with by switching the nozzle 122 that applies droplets among the plurality of nozzles 122 of the droplet applying apparatus 120. If the deviation continues for a long time, the two rollers RR provided at a position sandwiching the alignment camera CA that has detected the deviation are moved in the X direction or the Y direction to correct the position of the sheet substrate FB in the θZ direction.
 なお、本実施形態において、制御部104がエアパッド機構40を制御する際には、例えば気体層ARを均一の厚さの層になるように制御すると共に、アライメント動作や電極形成動作や発光層形成動作、シート基板FBの切断動作など、上記実施形態における基板処理部102の処理に応じて、層厚や気体層ARの形成範囲、パッド部材41からの気体の供給速度又は供給量などを制御することが好ましい。 In this embodiment, when the control unit 104 controls the air pad mechanism 40, for example, the gas layer AR is controlled to be a layer having a uniform thickness, and an alignment operation, an electrode formation operation, and a light emitting layer formation are performed. The layer thickness, the formation range of the gas layer AR, the supply rate or supply amount of the gas from the pad member 41, and the like are controlled according to the processing of the substrate processing unit 102 in the above embodiment, such as the operation and the cutting operation of the sheet substrate FB. It is preferable.
 以上のように、本実施形態における基板処理装置100は、シート基板FBに対して所定の処理を行う液滴塗布装置120及び140と、当該液滴塗布装置120及び140に対して移動すると共に、シート基板FBの被処理面FBcを形成させつつ当該シート基板FBを保持する吸着保持板12とを備える。また、本実施形態の基板処理装置100によれば、シート基板FBの被処理面FBcにおける平坦性を確保しつつシート基板FBに処理を行うことができる。これにより、可撓性を有する基板に対して高精度なパターンを形成できる基板処理装置100を提供することができる。 As described above, the substrate processing apparatus 100 according to this embodiment moves with respect to the droplet applying apparatuses 120 and 140 that perform a predetermined process on the sheet substrate FB, and the droplet applying apparatuses 120 and 140. And a suction holding plate 12 that holds the sheet substrate FB while forming the processing target surface FBc of the sheet substrate FB. Further, according to the substrate processing apparatus 100 of the present embodiment, it is possible to perform processing on the sheet substrate FB while ensuring flatness on the processing surface FBc of the sheet substrate FB. Thereby, the substrate processing apparatus 100 which can form a highly accurate pattern with respect to a flexible substrate can be provided.
 本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。 The technical scope of the present invention is not limited to the above-described embodiment, and appropriate modifications can be made without departing from the spirit of the present invention.
 例えば、上記実施形態においては、搬送機構TRを基板処理装置100の床部に対して搬送方向(X方向)に長手とし搬送方向の垂直方向(Z方向)に短手となるように構成したが、これに限られることは無く、例えば図21に示すようにZ方向に長手となるように構成しても構わない。この場合、シート基板FBがZ方向に沿って搬送されることになり、当該シート基板FBに対する処理はX方向又はY方向に行われることとなる。 For example, in the above embodiment, the transport mechanism TR is configured to be long in the transport direction (X direction) with respect to the floor portion of the substrate processing apparatus 100 and short in the vertical direction (Z direction) of the transport direction. However, the present invention is not limited to this. For example, as shown in FIG. 21, it may be configured to be long in the Z direction. In this case, the sheet substrate FB is transported along the Z direction, and the processing for the sheet substrate FB is performed in the X direction or the Y direction.
 また、上記実施形態においては、搬送機構TRのうち基部21の+Z側の吸着保持板12のみを用いて搬送及び被処理面FBcの形成を行う構成としたが、これに限られることは無く、例えば図21に示すように基部21の-Z側の吸着保持板12を用いて搬送及び被処理面FBcの形成を行う構成であっても構わない。この場合、例えば、電極形成部92の液滴塗布装置120は基部21の+Z側の吸着保持板12を用いてシート基板FBに対して上述の処理を行い、発光層形成部93の液滴塗布装置140は基部21の-Z側の吸着保持板12を用いてシート基板FBに対して上述の処理を行う。これにより、基板処理装置100の装置自体の大きさが小さくなり、基板処理装置100を配置するスペースが省スペース化される。 Further, in the above-described embodiment, only the + Z side suction holding plate 12 of the base 21 in the transport mechanism TR is used to form the transport and processing surface FBc, but the present invention is not limited to this. For example, as shown in FIG. 21, the conveyance and formation of the processing surface FBc may be performed using the suction holding plate 12 on the −Z side of the base portion 21. In this case, for example, the droplet applying device 120 of the electrode forming unit 92 performs the above-described processing on the sheet substrate FB using the + Z side suction holding plate 12 of the base 21 to apply the droplets of the light emitting layer forming unit 93. The apparatus 140 performs the above-described processing on the sheet substrate FB using the suction holding plate 12 on the −Z side of the base 21. As a result, the size of the substrate processing apparatus 100 itself is reduced, and the space for placing the substrate processing apparatus 100 is saved.
 また、上記実施形態において、搬送機構TRは液滴塗布装置120、140に対応する位置のみに設けるようにしたが、搬送機構TRは他の位置に配置しても構わない。 In the above embodiment, the transport mechanism TR is provided only at a position corresponding to the droplet applying apparatuses 120 and 140. However, the transport mechanism TR may be disposed at another position.
FB…シート基板 TR…搬送機構 FBA…被処理部分 S1…空間 S2…空間 10…ベルト機構 12…吸着保持板 12a…吸着保持面 13…支持部材 14…軸部材 15…保持部材 16…吸着パッド 16a…吸着面 17…支持板 17a…Y方向用アクチュエータ 18…ポンプ機構 20…ベルト駆動機構 22…ベルト押圧部 23…ベルト押圧アクチュエータ 30…固定円筒軸 31…回転シリンダ 40…エアパッド機構 41…パッド部材 43…配管 100…基板処理装置 104…制御部 105…搬送部 FB ... sheet substrate TR ... conveying mechanism FBA ... processed part S1 ... space S2 ... space 10 ... belt mechanism 12 ... adsorption holding plate 12a ... adsorption holding surface 13 ... support member 14 ... shaft member 15 ... holding member 16 ... adsorption pad 16a ... suction surface 17 ... support plate 17a ... actuator for Y direction 18 ... pump mechanism 20 ... belt drive mechanism 22 ... belt pressing part 23 ... belt pressing actuator 30 ... fixed cylinder shaft 31 ... rotating cylinder 40 ... air pad mechanism 41 ... pad member 43 ... Piping 100 ... Substrate processing apparatus 104 ... Control part 105 ... Conveying part

Claims (24)

  1.  基板に対して所定の処理を行う処理部と、
     前記処理部に対して移動すると共に、前記基板の被処理面を形成させつつ前記基板を保持する基板保持部と
     を備える基板処理装置。
    A processing unit for performing predetermined processing on the substrate;
    A substrate processing apparatus comprising: a substrate holding unit that moves relative to the processing unit and holds the substrate while forming a surface to be processed of the substrate.
  2.  前記基板保持部は、複数設けられる
     請求項1に記載の基板処理装置。
    The substrate processing apparatus according to claim 1, wherein a plurality of the substrate holding units are provided.
  3.  前記基板保持部は、前記被処理面を平坦にする保持面を有する
     請求項1又は請求項2に記載の基板処理装置。
    The substrate processing apparatus according to claim 1, wherein the substrate holding unit has a holding surface that flattens the surface to be processed.
  4.  前記基板保持部は、無端状の支持部材に配置されている
     請求項1から請求項3のうちいずれか一項に記載の基板処理装置。
    The substrate processing apparatus according to claim 1, wherein the substrate holding unit is disposed on an endless support member.
  5.  前記基板保持部は、前記処理部による処理位置で前記基板を保持する
     請求項1から請求項4のうちいずれか一項に記載の基板処理装置。
    The substrate processing apparatus according to claim 1, wherein the substrate holding unit holds the substrate at a processing position by the processing unit.
  6.  前記基板保持部を前記処理部側へ向けて押す押圧機構を更に備える
     請求項1から請求項5のうちいずれか一項に記載の基板処理装置。
    The substrate processing apparatus according to claim 1, further comprising a pressing mechanism that pushes the substrate holding unit toward the processing unit.
  7.  前記押圧機構によって押された前記基板保持部を受ける受部を更に備える
     請求項6に記載の基板処理装置。
    The substrate processing apparatus according to claim 6, further comprising a receiving unit that receives the substrate holding unit pressed by the pressing mechanism.
  8.  前記基板保持部との間に気体層を形成する気体層形成部を更に備え、
     前記受部として、前記気体層が用いられる
     請求項7に記載の基板処理装置。
    A gas layer forming part that forms a gas layer with the substrate holding part;
    The substrate processing apparatus according to claim 7, wherein the gas layer is used as the receiving unit.
  9.  前記基板保持部と前記受部とを用いて、前記被処理面の基準となる基準面を形成する
     請求項7又は請求項8に記載の基板処理装置。
    The substrate processing apparatus according to claim 7, wherein a reference surface serving as a reference for the processing target surface is formed using the substrate holding unit and the receiving unit.
  10.  前記気体層形成部は、前記基板保持部の移動方向に前記処理部を挟むように設けられる
     請求項9に記載の基板処理装置。
    The substrate processing apparatus according to claim 9, wherein the gas layer forming unit is provided so as to sandwich the processing unit in a moving direction of the substrate holding unit.
  11.  前記基板保持部を駆動する駆動部を更に備える
     請求項1から請求項10のうちいずれか一項に記載の基板処理装置。
    The substrate processing apparatus according to claim 1, further comprising a driving unit that drives the substrate holding unit.
  12.  前記基板を搬送する基板搬送部を更に備え、
     前記駆動部は、前記基板の搬送速度に応じて前記基板保持部を駆動する
     請求項11に記載の基板処理装置。
    A substrate transport unit for transporting the substrate;
    The substrate processing apparatus according to claim 11, wherein the driving unit drives the substrate holding unit according to a conveyance speed of the substrate.
  13.  前記基板保持部は、前記基板を吸着する吸着部を有する
     請求項1から請求項12のうちいずれか一項に記載の基板処理装置。
    The substrate processing apparatus according to claim 1, wherein the substrate holding unit includes an adsorption unit that adsorbs the substrate.
  14.  前記吸着部は、前記基板の吸着状態を切り替える切替機構を有する
     請求項13に記載の基板処理装置。
    The substrate processing apparatus according to claim 13, wherein the suction unit includes a switching mechanism that switches a suction state of the substrate.
  15.  前記切替機構は、前記基板保持部の位置に応じて前記吸着状態を切り替える
     請求項14に記載の基板処理装置。
    The substrate processing apparatus according to claim 14, wherein the switching mechanism switches the suction state according to a position of the substrate holding unit.
  16.  前記吸着部は、前記基板の縁部に対応して配置されている
     請求項13から請求項15のうちいずれか一項に記載の基板処理装置。
    The substrate processing apparatus according to claim 13, wherein the suction unit is disposed corresponding to an edge of the substrate.
  17.  前記基板保持部は、前記吸着部を移動する移動機構を有する
     請求項13から請求項16のうちいずれか一項に記載の基板処理装置。
    The substrate processing apparatus according to claim 13, wherein the substrate holding unit includes a moving mechanism that moves the suction unit.
  18.  基板の被処理面に対して所定の処理を行う処理工程と、
     基板保持部によって前記基板の被処理面を形成させつつ前記基板を保持する基板保持工程と、
     無端状の支持部材に配置された前記基板保持部を前記基板の搬送方向に移動させる移動工程と、
     を有する表示素子の製造方法。
    A processing step for performing a predetermined process on the surface to be processed of the substrate;
    A substrate holding step of holding the substrate while forming a surface to be processed of the substrate by the substrate holding unit;
    A moving step of moving the substrate holding portion disposed on the endless support member in the substrate transport direction;
    The manufacturing method of the display element which has.
  19.  前記被処理面の基準となる基準面を前記基板上に形成する形成工程を有する
     請求項18に記載の表示素子の製造方法。
    The method for manufacturing a display element according to claim 18, further comprising a forming step of forming a reference surface serving as a reference for the surface to be processed on the substrate.
  20.  前記形成工程は、前記基板に向けて気体を供給して前記基板上に気体層を形成することを含む
     請求項19に記載の表示素子の製造方法。
    The method of manufacturing a display element according to claim 19, wherein the forming step includes supplying a gas toward the substrate to form a gas layer on the substrate.
  21.  前記形成工程は、前記所定の処理に応じて前記気体層を制御することを含む
     請求項20に記載の表示素子の製造方法。
    The method for manufacturing a display element according to claim 20, wherein the forming step includes controlling the gas layer in accordance with the predetermined process.
  22.  前記基板保持部を前記基板側へ向けて押す押圧工程を有する
     請求項18から請求項21のうちいずれか一項に記載の表示素子の製造方法。
    The method for manufacturing a display element according to any one of claims 18 to 21, further comprising a pressing step of pressing the substrate holding portion toward the substrate.
  23.  前記基板保持工程は、前記基板保持部に前記基板を吸着させ、前記基板保持部の位置に応じて前記基板の吸着状態を切り替えることを含む
     請求項18から請求項22のうちいずれか一項に記載の表示素子の製造方法。
    The said board | substrate holding process includes making the said board | substrate holding part adsorb | suck the said board | substrate, and switching the adsorption state of the said board | substrate according to the position of the said board | substrate holding part. The manufacturing method of the display element of description.
  24.  可撓性を有する前記基板を前記搬送方向へ搬送する搬送工程を有する
     請求項18から請求項23のうちいずれか一項に記載の表示素子の製造方法。
    The method for manufacturing a display element according to any one of claims 18 to 23, further comprising a transporting step of transporting the flexible substrate in the transporting direction.
PCT/JP2010/071124 2009-11-26 2010-11-26 Substrate processing apparatus and method for manufacturing display element WO2011065478A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011543319A JP5887935B2 (en) 2009-11-26 2010-11-26 Substrate processing apparatus, display element manufacturing method, and substrate processing method
CN201080048800.0A CN102666323B (en) 2009-11-26 2010-11-26 Substrate processing apparatus and method for manufacturing display element
KR1020187019872A KR101906129B1 (en) 2009-11-26 2010-11-26 Substrate processing apparatus and method for manufacturing display element
KR1020187007930A KR101880017B1 (en) 2009-11-26 2010-11-26 Substrate processing apparatus and method for manufacturing display element
KR1020127009105A KR101843545B1 (en) 2009-11-26 2010-11-26 Substrate processing apparatus and method for manufacturing display element
HK13101660.2A HK1174316A1 (en) 2009-11-26 2013-02-06 Substrate processing apparatus and method for manufacturing display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-268789 2009-11-26
JP2009268789 2009-11-26

Publications (1)

Publication Number Publication Date
WO2011065478A1 true WO2011065478A1 (en) 2011-06-03

Family

ID=44066582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071124 WO2011065478A1 (en) 2009-11-26 2010-11-26 Substrate processing apparatus and method for manufacturing display element

Country Status (5)

Country Link
JP (1) JP5887935B2 (en)
KR (3) KR101843545B1 (en)
CN (1) CN102666323B (en)
HK (1) HK1174316A1 (en)
WO (1) WO2011065478A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140107438A (en) * 2012-01-17 2014-09-04 에이에스엠엘 네델란즈 비.브이. Method of loading a flexible substrate and lithography apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210003358A (en) 2019-07-01 2021-01-12 삼성디스플레이 주식회사 Apparatus and method for manufacturing a display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293459A (en) * 1998-04-07 1999-10-26 Murata Mfg Co Ltd Multilayer film forming device
JP2006116435A (en) * 2004-10-21 2006-05-11 Seiko Epson Corp Liquid droplet discharge device, work adapted thereto, manufacturing method of electrooptical device, electrooptical device and electronic device
JP2007283634A (en) * 2006-04-17 2007-11-01 Fuji Xerox Co Ltd Liquid droplet ejection apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2639246B2 (en) * 1991-08-30 1997-08-06 凸版印刷株式会社 Substrate positioning device
JPH09306974A (en) * 1996-05-14 1997-11-28 Toshiba Corp Work holder
JP2003174074A (en) * 2001-12-06 2003-06-20 Seiko Epson Corp Substrate suction pad, substrate carrier, substrate processing system and substrate carrying method
JP4313284B2 (en) * 2004-11-15 2009-08-12 大日本スクリーン製造株式会社 Substrate processing equipment
JP2006245302A (en) * 2005-03-03 2006-09-14 Fuji Photo Film Co Ltd Sheet body holding mechanism and drawing device using the same
WO2006100868A1 (en) 2005-03-18 2006-09-28 Konica Minolta Holdings, Inc. Method of forming organic compound layer, process for producing organic el device, and organic el device
JP4672480B2 (en) * 2005-08-10 2011-04-20 東京エレクトロン株式会社 Application processing equipment
JP2008063020A (en) * 2006-09-04 2008-03-21 Olympus Corp Substrate carrying device, and substrate inspection system using it
JP4740414B2 (en) * 2007-04-24 2011-08-03 東京エレクトロン株式会社 Substrate transfer device
JP2008302487A (en) * 2007-06-11 2008-12-18 Olympus Corp Substrate sucking device, substrate transporting device, and outside appearance inspecting device
JP5092627B2 (en) * 2007-08-29 2012-12-05 凸版印刷株式会社 Substrate transfer device and substrate inspection device
JP2009218505A (en) * 2008-03-12 2009-09-24 Sumitomo Heavy Ind Ltd Unload chamber, and method for operating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11293459A (en) * 1998-04-07 1999-10-26 Murata Mfg Co Ltd Multilayer film forming device
JP2006116435A (en) * 2004-10-21 2006-05-11 Seiko Epson Corp Liquid droplet discharge device, work adapted thereto, manufacturing method of electrooptical device, electrooptical device and electronic device
JP2007283634A (en) * 2006-04-17 2007-11-01 Fuji Xerox Co Ltd Liquid droplet ejection apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140107438A (en) * 2012-01-17 2014-09-04 에이에스엠엘 네델란즈 비.브이. Method of loading a flexible substrate and lithography apparatus
JP2015510261A (en) * 2012-01-17 2015-04-02 エーエスエムエル ネザーランズ ビー.ブイ. Method for carrying in flexible substrate, device manufacturing method, apparatus for carrying in flexible substrate, and lithographic apparatus
KR101643679B1 (en) * 2012-01-17 2016-07-28 에이에스엠엘 네델란즈 비.브이. Method of loading a flexible substrate and lithography apparatus

Also Published As

Publication number Publication date
KR101880017B1 (en) 2018-07-18
JPWO2011065478A1 (en) 2013-04-18
HK1174316A1 (en) 2013-06-07
KR20180033596A (en) 2018-04-03
KR101906129B1 (en) 2018-10-08
CN102666323B (en) 2015-06-03
KR101843545B1 (en) 2018-03-30
JP5887935B2 (en) 2016-03-16
KR20120113699A (en) 2012-10-15
CN102666323A (en) 2012-09-12
KR20180084144A (en) 2018-07-24

Similar Documents

Publication Publication Date Title
JP5448256B2 (en) Display element manufacturing method, display element manufacturing apparatus, and display element
US9193560B2 (en) Leader member, substrate, substrate cartridge, substrate-processing apparatus, leader-connecting method, method of manufacturing display element, and apparatus for manufacturing display element
US9072210B2 (en) Substrate cartridge, substrate processing apparatus, substrate processing system, control apparatus, and method of manufacturing display element
JP5887935B2 (en) Substrate processing apparatus, display element manufacturing method, and substrate processing method
JP5556105B2 (en) Substrate cartridge, substrate processing apparatus, substrate processing system, control apparatus, and display element manufacturing method
US9379339B2 (en) Substrate cartridge, substrate-processing apparatus, substrate-processing system, substrate-processing method, control apparatus, and method of manufacturing display element
JP2011084402A (en) Substrate cartridge, substrate treatment apparatus, substrate treatment system, control apparatus and method of manufacturing display element
JP5360675B2 (en) Display element manufacturing method and display element manufacturing apparatus
JP5743005B2 (en) Manufacturing method of display element
JP5743004B2 (en) Electric circuit manufacturing method
KR101777096B1 (en) Substrate cartridge and its applications
WO2011055781A1 (en) Substrate cartridge, substrate processing apparatus, substrate processing system, substrate processing method, control apparatus, and method for manufacturing display element
JP2011098809A (en) Substrate cartridge, substrate processing device, substrate processing system, substrate processing method, control device and method of manufacturing display element

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048800.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833324

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543319

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127009105

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833324

Country of ref document: EP

Kind code of ref document: A1