WO2011065384A1 - 光デバイス - Google Patents

光デバイス Download PDF

Info

Publication number
WO2011065384A1
WO2011065384A1 PCT/JP2010/070943 JP2010070943W WO2011065384A1 WO 2011065384 A1 WO2011065384 A1 WO 2011065384A1 JP 2010070943 W JP2010070943 W JP 2010070943W WO 2011065384 A1 WO2011065384 A1 WO 2011065384A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrode
optical device
optical
optical waveguide
Prior art date
Application number
PCT/JP2010/070943
Other languages
English (en)
French (fr)
Inventor
亨 滝澤
野崎 孝明
洋輔 阿部
Original Assignee
シチズンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズンホールディングス株式会社 filed Critical シチズンホールディングス株式会社
Priority to US13/511,830 priority Critical patent/US8666205B2/en
Priority to JP2011543273A priority patent/JP5685549B2/ja
Priority to CN201080052993.7A priority patent/CN102667578B/zh
Publication of WO2011065384A1 publication Critical patent/WO2011065384A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4266Thermal aspects, temperature control or temperature monitoring
    • G02B6/4268Cooling
    • G02B6/4272Cooling with mounting substrates of high thermal conductivity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3505Coatings; Housings; Supports
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/02Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 fibre
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/307Reflective grating, i.e. Bragg grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/20LiNbO3, LiTaO3
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/60Temperature independent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to an optical device in which an optical element in which an optical waveguide is formed is bonded on a substrate.
  • An optical waveguide formed in an optical element or the like is a structure for confining light in the optical waveguide and guiding the light to a necessary place using a difference in refractive index between the optical waveguide portion and its periphery.
  • the material used for the optical waveguide has a large refractive index, and characteristics such as size and refractive index may change due to thermal expansion or thermo-optic effect due to temperature. For this reason, measures for keeping the temperature of the optical waveguide constant are generally taken.
  • a crystalline material such as lithium niobate (LiNbO 3 : LN) or lithium tantalate (LiTaO 3 : LT) is used.
  • Polarization inversion is performed to give a wavelength conversion function in the crystal. This device is often used in combination with a laser diode (LD). The polarization inversion period is determined according to the wavelength to be converted. If the polarization inversion period is shifted due to the temperature, the wavelength conversion efficiency is lowered.
  • a temperature control means is adopted so as to keep the temperature of the optical waveguide constant.
  • a temperature control means is adopted so as to keep the temperature of the optical waveguide constant.
  • Patent Document 1 by forming a thin film heater on an optical waveguide and heating the optical waveguide with this thin film heater, the temperature of the optical waveguide becomes constant regardless of the surrounding environment. To prevent a decrease in the wavelength conversion efficiency of the second harmonic generation element.
  • a thin film heater is formed of a conductive film formed on an optical element, and temperature control is performed by heating the optical waveguide by passing a current through the conductive film. Therefore, in order to supply current to the thin film heater, it is necessary to form an electrode on the optical element and separately provide wiring for conducting connection with the electrode.
  • the optical element is used by being mounted on a substrate or the like. For this reason, it is necessary to provide a region for mounting on the optical element.
  • the conventional technique has a problem that the area of the optical element using an expensive crystal material is increased. Further, the conventional technique has a problem that the steps for mounting the optical element and conducting connection of the thin film heater are complicated.
  • the optical device of the present invention adopts the configuration described below.
  • the optical waveguide and the thin film heater for heating the optical waveguide are formed on the surface facing the substrate of the optical element,
  • the optical element and the substrate are joined by a first joining portion and a second joining portion made of a metal material, and the thin film heater and the wiring on the substrate are connected via the first joining portion and the second joining portion.
  • Conductive connection Further, the first joint and the second joint are positioned with the optical waveguide interposed therebetween.
  • the first and second joints serve as joints between the optical device and the substrate, and serve as electrical connection points for supplying current to the thin film heater.
  • the optical device of the present invention includes a first electrode and a second electrode formed on the thin film heater, and a first metal wiring and a second metal formed on the substrate.
  • the first electrode and the first metal wiring are bonded to form a first bonding portion
  • the second electrode and the second metal wiring are bonded to form a second bonding portion. It is characterized by forming.
  • the optical device of the present invention includes a plurality of first electrodes, a plurality of second electrodes, a plurality of first metal wirings, and a plurality of second metal wirings in addition to the above-described configuration.
  • Each first electrode and each first metal wiring are joined to form a first joint, and each second electrode and each second metal wiring are joined to each other. Two junctions are formed.
  • a plurality of thin film heaters are formed in the optical element, and any one of the first electrodes and any one of the second electrodes are formed on each thin film heater. It is characterized by that. If each of the first joint and the second joint is one, the current supply to the thin film heater is two. Therefore, the current is supplied to the entire thin film heater, and the current cannot be supplied to a desired place. However, there are a plurality of joints, and it is possible to control the temperature at a desired position by supplying a current from a predetermined external position.
  • the optical device of the present invention is characterized in that the metal material forming the first joint portion and the second joint portion of the optical device according to the present invention is Au. Since the connection part is an intermetallic joint between Au and Au, electrical conduction is possible.
  • the optical device of the present invention is characterized in that, in addition to the above-described configuration, the first joint portion and the second joint portion of the optical device of the present invention have a micro-bump structure.
  • contact is not a surface contact but a point contact, so that a metal clean surface necessary for metal-to-metal bonding can be easily obtained at the time of bonding, so that bonding is facilitated.
  • the optical device of the present invention is characterized in that, in addition to the above-described configuration, the substrate and the optical element are bonded by surface activated bonding at the bonding portion. Bonding is achieved by activating the micro bump surface and the opposite surface with plasma. Therefore, it is possible to perform bonding at a low temperature instead of a bonding method in which heat is applied like bonding between Au and Sn. Become.
  • the optical device of the present invention is characterized in that, in addition to the above-described configuration, the thin film heater of the optical device of the present invention is formed of a transparent electrode. Considering only the function as a thin film heater, there is no need for a transparent electrode. However, since there is a waveguide that guides light in the vicinity of the thin film heater, if this thin film heater is not transparent to light when it is irradiated with powerful light such as a laser, it absorbs light energy. Can be damaged.
  • the optical device of the present invention is formed of indium oxide (ITO), zinc oxide (ZnO), tin oxide or a film doped with impurities in addition to the above-described structure. It is characterized by that.
  • the optical device of the present invention is characterized in that the optical element in the optical device of the present invention is a wavelength conversion element that converts the wavelength of light guided through the optical waveguide.
  • the optical element in the optical device of the present invention is a wavelength conversion element that converts the wavelength of light guided through the optical waveguide.
  • a laser beam having a wavelength in the near-infrared region may be used, and a second harmonic generation (SHG) element may be used as the wavelength conversion element.
  • SHG second harmonic generation
  • the optical device of the present invention includes, on the substrate, a laser diode, an optical waveguide that guides the light emitted from the laser diode, and a wavelength conversion element that converts the wavelength of the light guided through the optical waveguide.
  • the fiber Bragg grating is provided along the optical axis direction of the optical waveguide, is made of a material having good thermal conductivity, includes a base substrate on which the substrate is mounted, and the base substrate is located on one end side.
  • the fiber Bragg is bonded to the substrate on which the laser diode is mounted, and a space is formed between the wavelength conversion element and the fiber Bragg grating between the substrate and the other end side.
  • An end portion of the grating supports the substrate using a support base having good thermal conductivity.
  • the heat of the laser diode can be efficiently radiated to the base substrate.
  • a space is formed below the wavelength conversion element and the fiber Bragg grating and is not easily affected by the heat of the laser diode.
  • the first electrode and the second electrode provided in the wavelength conversion element are respectively positioned at end positions of the wavelength conversion element with the optical waveguide interposed therebetween.
  • an oxide film having a predetermined height is formed on a portion of the substrate where the first metal wiring and the plurality of second metal wirings are provided.
  • the space height between the wavelength conversion elements is increased. According to this configuration, the height of the space between the substrate and the optical element can be increased, and the thermal conductivity can be decreased.
  • the substrate is provided with a portion where the material of the substrate is processed into a porous shape in a portion where the first metal wiring and the plurality of second metal wirings are provided, It is characterized by low conductivity.
  • the optical device of the present invention is provided with a plurality of the first electrode and the second electrode divided along the optical waveguide, and the divided first electrodes and the second electrodes. Is provided with an intrusion prevention wall made of the same material as the first electrode and the second electrode and electrically insulated from the first electrode and the second electrode. Further, the adhesive is prevented from entering the adhesive when the wavelength conversion element is fixed to the substrate. According to this configuration, the first electrode and the second electrode are divided to reduce the bonding area with the substrate.
  • the optical element can be bonded using an adhesive, and the intrusion prevention wall is provided inside the adhesive. To prevent intrusion.
  • the optical device of the present invention is characterized in that a plurality of grooves that do not penetrate are formed on the lower surface of the substrate. According to this configuration, the thermal resistance of the substrate can be increased by the plurality of grooves.
  • the optical device of the present invention is characterized in that a recess is formed in the lower surface of the substrate leaving an edge of the substrate. According to this configuration, the thermal resistance of the substrate can be increased by the plurality of grooves.
  • the wavelength conversion element has a heater provided in parallel along the optical waveguide, and a lead-out portion connected to the heater from the first electrode and the second electrode.
  • the first electrode, the second electrode, and the lead-out portion are made of the same material, and the first electrode and the second electrode are connected to the first metal wiring and the second electrode of the substrate. It is used for joining with metal wiring and is also used as an electrode of the heater. According to this configuration, the temperature of the optical waveguide can be controlled by providing the heater along the optical waveguide, and it is not necessary to individually derive the heater electrodes.
  • the substrate and the optical element are joined by a joint portion made of a metal material, and the thin film heater is conductively connected through the joint portion, thereby eliminating the need to separately provide a wiring for the conductive connection. It is possible to reduce the size by eliminating an extra area on the optical element, and to simplify the manufacturing process.
  • FIG. 1 is an explanatory diagram illustrating a configuration of an optical device according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing the configuration of the optical device according to the second embodiment of the present invention.
  • FIG. 3 is an explanatory diagram showing the configuration of the optical device according to the third embodiment of the present invention.
  • FIG. 4 is a front view showing the configuration of the optical device according to the fourth embodiment of the present invention.
  • FIG. 5 is a front view showing the configuration of another optical device according to the fourth embodiment of the present invention.
  • FIG. 6 is a front view showing the configuration of another optical device according to Embodiment 4 of the present invention.
  • FIG. 7-1 is a side view showing a bonding structure between the wavelength conversion element and the substrate.
  • FIG. 7-2 is a side view showing a bonding structure between the wavelength conversion element and the substrate.
  • FIG. 7C is a side view of the bonding structure between the wavelength conversion element and the substrate.
  • FIG. 8-1 is a side view showing the configuration of the optical device according to the fifth embodiment of the present invention.
  • FIG. 8B is a top view of the optical device shown in FIG.
  • FIG. 8C is a side view illustrating the configuration of another optical device according to the fifth embodiment.
  • FIG. 9A is a front view illustrating the configuration of the optical device according to the sixth embodiment.
  • FIG. 9-2 is a front view illustrating the configuration of another optical device according to the sixth embodiment.
  • FIG. 9C is a front view of the configuration of another optical device according to the sixth embodiment.
  • FIG. 9A is a front view illustrating the configuration of the optical device according to the sixth embodiment.
  • FIG. 9-2 is a front view illustrating the configuration of another optical device according to the sixth embodiment.
  • FIG. 9C is a
  • FIG. 10A is a plan view illustrating the structure of the heater.
  • FIG. 10-2 is a side view illustrating the structure of the heater.
  • FIG. 10C is a side view of the polarization inversion electrode.
  • FIG. 11A is an explanatory diagram of detecting the voltage applied to the heater through a plurality of divided electrodes.
  • FIG. 11B is an explanatory diagram of detecting the voltage applied to the heater through the plurality of divided electrodes.
  • FIG. 1 is an explanatory diagram illustrating a configuration of an optical device 20 according to a first embodiment of the present invention.
  • FIG. 1A is a cross-sectional view of the optical device 20.
  • FIG.1 (b) is a top view of the optical device 20, and shows the state seen from the downward direction of Fig.1 (a).
  • FIG. 1B shows only some members constituting the optical device 20.
  • FIG. 1A shows a cross section of a portion indicated by AA ′ in FIG.
  • the optical device 20 has a configuration in which an optical element 6 on which an optical waveguide 8 for guiding light is formed is bonded to a substrate 2.
  • an optical element 6 on which an optical waveguide 8 for guiding light is formed is bonded to a substrate 2.
  • the optical waveguide 8 is formed on the surface of the optical element 6 facing the substrate 2.
  • the optical waveguide 8 a case where the optical element 6 is formed of LiNbO 3 (lithium niobate, LN: Lithium Niobate) will be described. In this case, a method called a proton exchange (PE) method is often used.
  • PE proton exchange
  • the optical element made of LiNbO 3 is immersed in pyrophosphoric acid in a state where the position where the PE method is desired to be performed (the place where the optical waveguide is formed) is opened, so that Li in LiNbO 3 and pyrophosphoric acid Ion exchange between protons. Thereafter, annealing is performed to stabilize the optical characteristics. The shape of this ion exchange region is controlled by the opening width, annealing time, and the like.
  • the optical waveguide 8 thus formed has a higher refractive index than the surrounding LiNbO 3 and can easily guide light.
  • a polarization inversion region is formed in the optical waveguide 8 in order to convert the wavelength of light incident from one end of the element as a fundamental wave.
  • the domain-inverted region refers to a region in which the polarization states of LiNbO 3 constituting the optical element 6 are different from each other by 180 ° with a specific period. This period is designed as a wavelength conversion element according to the wavelength to be used, the temperature environment to be used, etc., and is formed with a period of about several ⁇ m.
  • the polarization is reversed in a direction different from the spontaneous polarization by 180 °. There are several methods for reversing the polarization, but there is typically a high electric field application method in which a high electric field is applied to reverse the polarization direction.
  • a transparent conductive film is formed as the thin film heater 4 on the surface where the optical waveguide 8 is formed.
  • an indium oxide (ITO) film can be used as the transparent conductive film for forming the thin film heater 4.
  • ITO indium oxide
  • the thin film heater 4 by forming the thin film heater 4 with a conductive film that is transparent to the light guided through the optical waveguide 8, strong light such as a laser is guided through the optical waveguide 8, and the thin film heater 4 is generated by this strong light. Even when the light is irradiated, damage to the thin film heater 4 due to absorption of this light can be suppressed.
  • a transparent conductive film for forming the thin film heater 4 a similar effect can be expected by using zinc oxide (ZnO), tin oxide, or a film doped with impurities in addition to the indium oxide (ITO) film.
  • a first electrode 10a located on one side with respect to the waveguide 8 and a second electrode 10b located on the other side are formed.
  • the first metal wiring 16 a and the second metal wiring 16 b are formed on the substrate 2.
  • micro bumps 18 are formed at positions corresponding to the first electrode 10a and the second electrode 10b formed in the optical element 6.
  • the first electrode 10a and the second electrode 10b formed on the optical element 6 and the first metal wiring 16a and the second metal wiring 16b formed on the substrate 2 are made of, for example, gold (Au). Formed as a material.
  • the first electrode 10a and the second electrode 10b formed using this gold (Au) as a material, and the first metal wiring 16a and the second metal wiring 16b are bonded by, for example, room temperature activation bonding. .
  • This room temperature activation bonding is performed by exposing the micro bumps 18 on the first metal wiring 16a and the second metal wiring 16b and the surfaces of the first electrode 10a and the second electrode 10b to argon (Ar) plasma. By activating and applying pressure at a low temperature, the microbumps 18 are crushed and the clean surfaces are exposed, and each microbump 18 is bonded to the first electrode 10a and the second electrode 10b by metal-to-metal bonding. .
  • the first electrode 10 a located on one side of the waveguide 8 and the first metal wiring 16 a form a first joint 12, and the waveguide 8
  • the second electrode 10b located on the other side and the second metal wiring 16b form the second bonding portion 14.
  • the optical element 6 is bonded to the substrate 2 by the first bonding portion 12 and the second bonding portion 14. At this time, the first junction 12 and the second junction 14 are not located directly under the waveguide 8 but are located on both sides of the waveguide 8. It is possible to avoid weighting 8.
  • the first metal wiring 16 a is electrically connected to the thin film heater 4 through the first joint 12, and the second metal wiring 16 b is connected to the thin film heater 4 through the second joint 12. Electrically connected. Therefore, by passing a current between the first metal wiring 16a and the second metal wiring 16b, a current flows through the thin film heater 4 as shown by the applied current 27 in FIG. Heat is transmitted to the optical waveguide 8 and the optical waveguide 8 is heated, and temperature control becomes possible.
  • the substrate 2 and the optical element 6 are joined by the first joint 12 and the second joint 14 made of a metal material, and these joints are made.
  • the thin film heater 4 is conductively connected through the section.
  • FIG. 2 is an explanatory diagram showing the configuration of the optical device 30 according to the second embodiment of the present invention.
  • FIG. 2A is a cross-sectional view of the optical device 30.
  • FIG. 2B is a plan view of the optical device 30 and shows a state seen from below in FIG. For the sake of explanation, FIG. 2B shows only some members constituting the optical device 30.
  • FIG. 2A shows a cross section of a portion indicated by BB ′ in FIG.
  • the optical device 30 according to the second embodiment of the present invention has a configuration in which the optical element 6 in which the optical waveguide 8 for guiding light is formed is bonded to the substrate 2.
  • the optical device 30 of Example 2 is different from the optical device 20 of Example 1 in the electrodes formed on the optical element 6 and the metal wiring formed on the substrate 2.
  • a plurality of first metal wirings (in the example shown in FIG. 2B, the first metal wirings 16a1, 16a2, and 16a3) are formed on the substrate 2.
  • a plurality of second metal wirings (second metal wirings 16b1, 16b2, and 16b3 in the example shown in FIG. 2B) are formed on the substrate 2.
  • the optical device 30 includes a plurality of first electrodes (in the example shown in FIG. 2B, the first electrodes 10a1, 10a2, and 10a3) on the thin film heater 4 of the optical element 6. Is formed. Further, in the optical device 30, a plurality of second electrodes (second electrodes 10b1, 10b2, 10b3 in the example shown in FIG. 2B) are formed on the thin film heater 4 of the optical element 6.
  • the first metal wirings 16a1, 16a2, 16a3 and the second metal wirings 16b1, 16b2, 16b3 are formed in the optical element 6 and correspond to the first electrodes 10a1, 10a2, 10a3 and the second electrodes 10b1, 10b2, 10b3.
  • Micro bumps 18 are formed at the positions.
  • the first electrodes 10a1, 10a2, 10a3, the second electrodes 10b1, 10b2, 10b3, the first metal wires 16a1, 16a2, 16a3 and the second metal wires 16b1, 16b2, 16b3 are made of, for example, gold (Au) And bonded as shown in FIG. 2 by room temperature activation bonding.
  • the first electrode 10a1, 10a2, 10a3 and the first metal wiring 16a1, 16a2, 16a3 form the first joint portion 12, and the second electrode 10b1, 10b2, 10b3 and the first metal wiring 16b1, 16b2,
  • the second joint portion 14 is formed by 16b3.
  • the optical element 6 is bonded to the substrate 2 by the first bonding portion 12 and the second bonding portion 14.
  • first metal wirings 16a1, 16a2, and 16a3 are electrically connected to the thin film heater 4 through the first joint portion 12, respectively, and the second metal wirings 16b1, 16b2, and 16b3 are respectively connected to the second metal wirings 16b1, 16b2, and 16b3. It is electrically connected to the thin film heater 4 through the joint 14.
  • the region 22 of the thin film heater 4 generates heat, and the optical waveguide 8 The area is heavily heated.
  • the region 24 of the optical waveguide 8 is preferentially heated, so that the first metal wiring 16a3 and the second metal wiring 16
  • the applied current 28c between 16b3 By flowing the applied current 28c between 16b3, the region 26 of the optical waveguide 8 is preferentially heated.
  • the optical device 30 can optimally heat the optical waveguide 8 by selecting and combining the metal wirings through which current flows.
  • the optical waveguide 8 is positioned on the side facing the substrate 2, and the thin film heater 4 is formed on the waveguide 8, so that the optical waveguide 8 is on the opposite side of the substrate 2.
  • the effect of temperature control by heating the optical waveguide 8 by the thin film heater 4 can be increased.
  • the optical waveguide 8 is positioned on the side facing the substrate 2, the height of the optical element can be adjusted with reference to the upper surface of the substrate 2. Therefore, height adjustment with the light emitting element can be easily performed in optical coupling with other light emitting elements such as a laser diode.
  • FIG. 3 is an explanatory diagram showing the configuration of the optical device 40 according to the third embodiment of the present invention.
  • a sectional view of the optical device 40 of the third embodiment is the same as the sectional view of the optical device 30 of the second embodiment shown in FIG.
  • FIG. 3 is a plan view of the optical device 40 and shows only a part of members constituting the optical device 40.
  • the optical device 40 of Example 3 has a configuration in which an optical element 6 in which an optical waveguide 8 for guiding light is formed is bonded to a substrate 2.
  • the optical device 40 of Example 3 is different from the optical device 30 of Example 2 in the shape of the thin film heater 4 formed on the optical element 6.
  • a plurality of thin film heaters are formed on the substrate 2.
  • thin film heaters 4a, 4b, and 4c are formed on the substrate 2.
  • the first electrode 10a1 and the second electrode 10b1 are formed on the thin film heater 4a
  • the first electrode 10a2 and the second electrode 10b2 are formed on the thin film heater 4b.
  • a first electrode 10a3 and a second electrode 10b3 are formed on the heater 4c.
  • the first metal wiring 16a1 is electrically connected to the thin film heater 4a via the first bonding portion 12, and the second metal wiring 16b1 is connected to the thin film heater 4a via the second bonding portion 14. And electrically connected.
  • the first metal wiring 16a2 is electrically connected to the thin film heater 4b through the first joint 12, and the second metal wiring 16b2 is connected to the thin film heater 4b through the second joint 14. And electrically connected.
  • the first metal wiring 16a3 is electrically connected to the thin film heater 4c via the first joint 12, and the second metal wiring 16b3 is connected to the thin film heater 4c via the second joint 14. Electrically connected.
  • the optical device 40 having such a configuration, for example, as shown in FIG. 3, by applying a current between the first metal wiring 16 a 1 and the second metal wiring 16 b 1, it is applied only to the region 22 of the thin film heater 4.
  • the current 28a flows to generate heat, and only this region of the optical waveguide 8 is heated.
  • the applied current 28b flows only in the region 24 of the thin film heater 4 to generate heat, and only this region of the optical waveguide 8 is heated. Is done.
  • the applied current 28c flows only in the region 26 of the thin film heater 4 to generate heat, and only the region 26 of the optical waveguide 8 is heated.
  • the optical device 40 by applying the applied current 28a between all the first metal wirings 16a1, 16a2, 16a3 and all the second metal wirings 16b1, 16b2, 16b3, it is possible to heat all the regions of the optical waveguide 8. it can.
  • the plurality of thin film heaters 4a, 4b, and 4c are formed, and the thin film heaters 4a, 4b, and 4c are different from each other. By being connected to, it becomes possible to reliably perform partial heating of the optical waveguide 8 as compared with the optical device 30 of the second embodiment.
  • an example of an optical waveguide formed by the PE method has been shown. However, the same effect can be expected even when a different optical waveguide forming method is used.
  • An example is a ridge type optical waveguide. Instead of increasing the refractive index of a part of LiNbO 3 as in the PE method, an optical waveguide is created by processing LiNbO 3 itself, and the difference in refractive index between LiNbO 3 and the surrounding air is used. Thus, the light is guided.
  • FIG. 4 is a front view showing the configuration of the optical device 50 according to the fourth embodiment of the present invention.
  • a temperature control structure of the optical element will be described.
  • a laser diode (LD) 51, a wavelength conversion element (PPLN) 52, and a fiber Bragg grating (FBG) 53 are mounted as a plurality of optical elements.
  • the thin film heater 4 described above is provided below the wavelength conversion element 52.
  • the substrate 2 is made of, for example, silicon (Si).
  • the substrate 2 is provided on a metal base substrate 55 having good heat conduction characteristics.
  • the temperature control shown in FIG. 1) The temperature of the optical element on the substrate 2 is made constant so that the wavelength of the wavelength conversion element 52 and the conversion wavelength of the FBG 53 are aligned. 2)
  • the heat generated from the LD 51 is radiated to the outside and kept at the external environmental temperature + 5 ° C.
  • the thin film heater 4 in the part of the wavelength conversion element 52 is constantly heated to the maximum environmental temperature + 5 ° C.
  • the base substrate 55 is devised for bonding to the substrate 2.
  • the portion of the substrate 2 on which the LD 51 is mounted is bonded to the base substrate 55 over the length L1 of the LD 51.
  • the portion ahead of the LD 51 that is, the portion of the substrate 2 on which the wavelength conversion element 52 and the FBG 53 are provided, forms a space 56 between the base substrate 55 over the length L2 to insulate.
  • the concave portion 55 a is formed on the base substrate 55 by grinding or the like, and a portion to be bonded to the substrate 2 is not provided.
  • a support base 57 having good thermal conductivity is provided at the end of the FBG 53, and the FBG 53 is supported by the support base 57.
  • the support base 57 is not limited to the one having thermal conductivity according to the design of the thermal control, and one having heat insulation may be used.
  • the heat generation of the LD 51 is directly radiated from the substrate 2 to the base substrate 55 or is transmitted only in the length direction on the substrate 2.
  • the temperature in the length direction (horizontal direction in the figure) of the substrate 2 has a temperature gradient as shown.
  • the LD 51 is controlled to 45 ° C. by heat radiation.
  • heat from the LD 51 is transmitted in the length direction of the substrate 2 and the temperature gradually decreases.
  • the thin film heater 4 constantly controls heating so that the wavelength conversion element 52 is 45 ° C., thereby compensating for the temperature gradient.
  • a plurality of optical elements (LD 51, wavelength conversion element 52, FBG 53) on the substrate 2 are fixed at a predetermined temperature with a simple structure in which the recess 55a is formed in the base substrate 55. Can be retained.
  • FIG. 5 is a front view showing the configuration of another optical device 50 according to the fourth embodiment of the present invention.
  • the structure of the optical device shown in FIG. 5 is the same as that of FIG. 4, and the temperature control is different.
  • Heat generated from the LD 51 is radiated to the outside and kept at the external environmental temperature + 5 ° C. 2)
  • the temperatures of the wavelength conversion element 52 and the FBG 53 are controlled to be the same as LD + 5 ° C. 3)
  • the wavelength conversion element 52 is corrected and heated by the thin film heater 4 so that the wavelength of the FBG 53 and the conversion wavelength of the wavelength conversion element 52 coincide.
  • the wavelength of the FBG 53 is selected in advance so that the wavelength of the FBG 53 and the conversion wavelength of the wavelength conversion element 52 coincide only by heating.
  • a plurality of optical elements (LD 51, wavelength conversion element 52, FBG 53) on the substrate 2 can be held at a constant temperature with a simple structure in which the recess 55a is formed in the base substrate 55. Further, the temperature of the optical device 50 can be changed according to the external environment temperature.
  • FIG. 6 is a front view showing the configuration of another optical device 50A of Embodiment 4 of the present invention.
  • the heat generated by the LD 51 is radiated to the outside as much as possible. 6 differs from the structure shown in FIG. 5 in that the above-described thin film heater 4 is provided below the wavelength conversion element 52 and the FBG 53. Further, the front surface of the lower surface of the base substrate 55 is bonded to a radiator 58 that is at ambient temperature. For this reason, the heat generated from the LD 51 is radiated to the radiator 58 via the substrate 2 and is radiated to the external environment via the radiator 58.
  • FIGS. 7-1 to 7-3 are side views showing the joint structure between the wavelength conversion element 52 and the substrate 2, respectively. As shown in these drawings, a space is formed between the substrate 2 and the space immediately below the wavelength conversion element 52 for heat insulation. With the structure shown in FIGS. 7-1 to 7-3, the wavelength conversion element 52 is maintained at a constant temperature at a high temperature.
  • a space portion 71 corresponding to the height H1 of the first electrode 10a and the first metal wiring 16a (the second electrode 10b and the second metal wiring 16b) is formed.
  • an oxide film 72 is formed on the substrate 2 where the first metal wiring 16a and the second metal wiring 16b are formed.
  • the height H2 of the space 71 can be formed higher by the height of the oxide film 72.
  • a recess 74 is formed by etching or the like in the substrate 2 between the first metal wiring 16a and the second metal wiring 16b.
  • the height H3 can be formed high.
  • the wavelength conversion element 52 is configured to increase the thermal resistance Rw to the side portions (both side portions with the optical waveguide 8 in the center). With the structure shown in FIGS. 8-1 to 8-3, the wavelength conversion element 52 is kept at a constant temperature at a high temperature.
  • FIG. 8-1 is a side view showing the configuration of the optical device 80 according to the fifth embodiment of the present invention.
  • the first electrode 10a and the second electrode 10b which are fixed portions of the optical device, are arranged at both ends of the wavelength conversion element 52, and the first electrode 10a, the second electrode 10b, The distance L between is increased. Further, the height H of the wavelength conversion element 52 is formed low. Thereby, the thermal resistance with the optical waveguide 8 part provided in the center is increased, and the optical waveguide 8 part is thermally insulated.
  • FIG. 8-2 is a top view of the optical device 80 shown in FIG. 8-1.
  • the joint portion of the wavelength conversion element 52 to the substrate 2 is divided. That is, the first electrode 10a and the second electrode 10b are partially formed in a direction along the length direction of the optical waveguide 8 when viewed from the top.
  • the first electrode 10a and the second electrode 10b are formed in a rectangular shape and separated in the length direction of the optical waveguide 8, and the first metal wiring 16a on the substrate 2 side and the second electrode 10b are separated from each other. To the metal wiring 16b.
  • the area of the joint which is a portion that conducts heat to the substrate 2 is reduced.
  • the low-heat conductive adhesive 81 is used and both ends of the wavelength conversion element 52 are arranged in the length direction. It is made to adhere to the substrate 2. Thereby, the fixed intensity
  • the first electrode 10a and the second electrode 10b are divided in the length direction of the wavelength conversion element 52, but a plurality of divided first electrodes 10a (a plurality of second electrodes 10b).
  • An intrusion prevention wall 82 made of the same metal material (Au) as those of the first electrode 10a and the second electrode 10b is provided between the first electrode 10a and the second electrode 10b.
  • the intrusion prevention wall 82 itself is formed by etching or the like simultaneously with the first electrode 10a and the second electrode 10b in a state where they are electrically insulated. By providing this intrusion prevention wall 82, it is possible to prevent intrusion into the adhesive 81 (in the direction of the optical waveguide 8 shown in FIG. 8-2).
  • the intrusion prevention wall 82 is formed as thin as possible in width W so as not to affect the heat.
  • an oxide film 72 shown in FIG. 7-2 is provided in addition to the structure shown in FIGS. 8-1 and 8-2, and the gap between the wavelength conversion element 52 and the substrate 2 is provided. It is good also as a structure which increases height and increases thermal resistance.
  • FIG. 8-3 is a side view illustrating the configuration of another optical device 80 according to the fifth embodiment.
  • a nanocrystal portion 83 formed by microcrystalline silicon in a porous shape is formed on the upper surface side of the substrate 2 made of silicon at a predetermined height H (about 10 ⁇ m).
  • a first metal wiring 16 a and a second metal wiring 16 b are formed on the nanocrystal portion 83.
  • This nanocrystal portion 83 can increase the thermal resistance.
  • FIGS. 9-1 to 9-3 Next, the configuration of the optical device 90 according to the sixth embodiment of the present invention will be described with reference to FIGS. 9-1 to 9-3.
  • the thermal resistance RL in the length direction of the substrate 2 (the optical axis direction of the optical waveguide 8) is increased.
  • FIG. 9A is a front view illustrating the configuration of the optical device 90 according to the sixth embodiment. In the structure shown in FIG. 9A, the portion of the substrate 2 on which the LD 51 is mounted is bonded to the base substrate 55 over the length L1 of the LD 51, as described with reference to FIG.
  • the portion ahead of the LD 51 forms a space 56 between the base substrate 55 over the length L2 to insulate.
  • a support base 57 with good thermal conductivity is provided at the end of the FBG 53, and the FBG 53 is supported by the support base 57.
  • a support member 91 made of a heat insulating material is provided on the base substrate 55 at the end portion position of the substrate 2 to support the end portion of the substrate 2.
  • the substrate 2 is thinly formed by etching or the like.
  • the LD 51 part directly radiates heat from the substrate 2 to the radiator 58 via the base substrate 55.
  • the support member 91 is not limited to the one having thermal conductivity according to the design of the thermal control, and one having heat insulation may be used.
  • FIG. 9-2 is a front view illustrating the configuration of another optical device 90 according to the sixth embodiment. For convenience, only the substrate 2 is shown. A plurality of grooves 92 are formed in the lower surface of the substrate 2. The groove 92 is provided without penetrating up to the top of the substrate 2 in order to maintain the strength of the substrate 2. The opening of the groove 92 can be any shape such as a circle or a square.
  • FIG. 9-3 is a front view showing the configuration of another optical device 90 of the sixth embodiment.
  • a recess 93 is formed in the lower surface of the substrate 2.
  • the recess 93 is provided by hollowing out the inside leaving the edge of the substrate.
  • Example 7 FIGS. 10-1 and 10-2 Next, the configuration of the optical device 100 according to the seventh embodiment of the present invention will be described.
  • FIG. 10A is a plan view illustrating the structure of the heater
  • FIG. 10B is a side view illustrating the structure of the heater.
  • the first electrode 10a and the second electrode 10b made of Au are divided into a plurality of parts (see FIG. 8-2). Then, from the plurality of first electrodes 10 a side, lead portions 101 a made of the same Au are provided toward the optical waveguide 8, respectively, and a heater made of Au in parallel along the optical waveguide 8 is provided at the tip of the lead portion 101 a.
  • a lead-out portion 101b made of Au is provided from each of the plurality of second electrodes 10b toward the optical waveguide 8, and a heater 102b made of Au in parallel along the optical waveguide 8 is provided at the tip of the lead-out portion 101b. Is provided.
  • the optical waveguide 8 is provided in the convex ridge portion, but the optical waveguide 8 is not limited to being provided in the ridge structure portion.
  • the heaters 102a and 102b can be disposed close to the optical waveguide 8, and the optical waveguide 8 is directly heated by the heaters 102a and 102b. I can do it now.
  • the first electrode 10a and the second electrode 10b which are the electrodes of the wavelength conversion element 52, are shared as the electrodes of the heaters 102a and 102b.
  • the waveguide 8 can be efficiently heated most recently, and the temperature of the optical waveguide 8 can be controlled constant.
  • the first electrode 10a, the second electrode 10b, the lead-out portions 101a and 101b, and the heaters 102a and 102b can be easily patterned with the same material (for example, Au), and the same electrode as the electrode to be joined
  • the material can also function as a heater, and it is not necessary to individually derive the electrodes of the heaters 102a and 102b.
  • the pattern size can be adjusted to a resistance value suitable for pulse width modulation control such as 5V.
  • a resistance value suitable for pulse width modulation control such as 5V.
  • the resistance ratio of Au ⁇ 2.35 ⁇ 10 ⁇ 8 ⁇ m
  • L 1 ⁇ 10 ⁇ 3 m
  • A 2 ⁇ 0.5 ⁇ 10 ⁇ 12 m 2 .
  • 5 V when 5 V is applied as pulse width modulation, it is 1.06 W at 235 mA, so the length of the derivation units 101 a and 101 b may be about 2 mm.
  • FIG. 10-3 is a side view showing the electrode for inversion of polarization.
  • the width of the polarization inversion electrode 105 is not provided over the entire width of the wavelength conversion element 52 but with a predetermined width W1 corresponding to the ridge portion of the optical waveguide 8.
  • the polarization inversion electrode 105 is formed of an ITO film.
  • Reference numeral 106 denotes an adhesive layer. Thereby, the heat conduction in the electrode 105 part for polarization inversion by the ITO film can be reduced.
  • FIGS. 11A and 11B are explanatory diagrams for detecting the applied voltage of the heater through a plurality of divided electrodes.
  • the temperature control can be performed in a block manner using the plurality of first electrodes 10a and second electrodes 10b described above, the applied voltage between the electrodes at this time is accurately determined by a general four-terminal method as shown in the figure. Can be detected.
  • a plurality of first electrodes 10a will be described as an example.
  • FIG. 11A when detecting the voltage applied to the heater 102a2 (R2), the voltage V is detected by the pair of first electrodes 10a2 and 10a3 of the heater 102a2.
  • a current may be supplied from both the adjacent electrodes 10a2 and 10a3 10a1 and 10a4.
  • the voltage applied to the heater 102a3 (R3) is detected, the voltage V is detected by the pair of first electrodes 10a3 and 10a4 of the heater 102a3.
  • a current may be supplied from both the adjacent electrodes 10a3 and 10a4 10a2 and 10a5.
  • the optical device according to the present invention has a waveguide for guiding light, and is an element having both mounting and temperature control functions with a minimum mounting area.
  • the structure can be applied to an element and the size is reduced.
  • Optical element 8 Optical waveguide 10a, 10a1, 10a2, 10a3 First electrode 10b, 10b1, 10b2, 10b3 Second electrode 12 First joint 14 Second joint Part 16a, 16a1, 16a2, 16a3 First metal wiring 16b, 16b1, 16b2, 16b3 Second metal wiring 18 Micro bump 20, 30, 40 Optical device 22, 24, 26 Region 27, 28a, 28b, 28c Applied current 51 Laser diode (LD) 52 Wavelength Conversion Element 53 Fiber Bragg Grating (FBG) 55 Base substrate 55a Concave portion 56 Space portion 57 Support base 58 Radiator 101a, 101b Lead-out portion 102a, 102b Heater
  • LD Laser diode
  • FBG Fiber Bragg Grating

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

 光デバイス(20)は、光導波路(8)が形成された光素子(6)が基板(2)に接合されたものであり、光素子(6)の基板(2)と向かい合う面に、光導波路(8)と、光導波路(8)を加熱する薄膜ヒータ(4)とが形成され、光素子(6)と基板(2)とは、金属材料からなる第1の接合部(12)と第2の接合部(14)により接合され、第1の接合部(12)と第2の接合部(14)を介して、薄膜ヒータ(4)と基板(2)上の配線とが導通接続したことを特徴とする。このような構成とすることにより、導通接続のための配線を別途設ける必要がなくなり、光素子6上の余分な領域を無くして小型化を可能し、製造工程を簡略化することが可能となる。

Description

光デバイス
 本発明は、光導波路が形成された光素子が基板上に接合された光デバイスに関する。
 光素子等に形成された光導波路は、光導波路部分とその周辺との屈折率差を用いて、光導波路内に光を閉じ込め、光を必要な場所へ導くための構造体である。光導波路に用いられる材料は屈折率が大きく、温度による熱膨張や熱光学効果によってサイズや屈折率等の特性が変化してしまうことがある。そのため光導波路の温度を一定に保つための対策が採られていることが一般的である。
 光導波路が形成された光素子、特に第二高調波発生素子においては、ニオブ酸リチウム(LiNbO3:LN)、タンタル酸リチウム(LiTaO3:LT)などの結晶材料が使われており、さらにこの結晶内に波長変換機能を持たせるために分極反転が施されている。このデバイスはレーザダイオード(LD)との組み合わせで使われることが多い。分極反転周期は変換する波長に応じて決まり、この分極反転周期が温度の影響でずれてしまうと波長の変換効率が低下してしまう。
 このため、光導波路の温度を一定にするように温度制御の手段が採られている。例えば下記特許文献1に明示されているように、光導波路上に薄膜ヒータを形成してこの薄膜ヒータで光導波路を加熱することにより、周囲の環境によらず光導波路の温度が一定になるように制御し、第2高調波発生素子の波長の変換効率の低下を防ぐものである。
特開平11-326966号公報(第6頁、図1)
 しかし、上述した従来技術では、以下のような問題がある。一般的に薄膜ヒータは光素子上に形成された導電膜からなり、この導電膜へ電流を流して光導波路を加熱することで温度制御が行われる。よって、薄膜ヒータへ電流を供給するために、光素子上に電極を形成し、この電極と導通接続するための配線を別途設ける必要がある。
 また、光素子は基板等に実装されて使用される。このため、実装するための領域を光素子上に設ける必要がある。以上より、従来技術では、高価な結晶材料を使用している光素子の面積が大きくなってしまう問題がある。また従来技術では、光素子の実装、薄膜ヒータの導通接続のための工程が複雑であるという問題がある。
 そこで、本発明は上記課題を解決し、光素子上の余分な領域を無くして小型化を可能とするとともに、製造工程を簡略化することを可能とする光デバイスを提供することを目的とする。
 上述した課題を解決し、目的を達成するため、本発明の光デバイスは下記記載の構成を採用するものである。
 本発明の光デバイスは、光導波路が形成された光素子が基板に接合された光デバイスにおいて、光素子の基板と向かい合う面に、光導波路と、光導波路を加熱する薄膜ヒータとが形成され、光素子と基板とは、金属材料からなる第1の接合部と第2の接合部により接合され、第1の接合部と第2の接合部を介して、薄膜ヒータと基板上の配線とが導通接続される。また、第1の接合部と第2の接合部は、光導波路を挟んで位置させる。この第1と第2の接合部が、光デバイスと基板間との接合箇所になるとともに、薄膜ヒータへ電流を供給するための電気的接続点になる。
 さらに本発明の光デバイスは、前述した構成に加えて、薄膜ヒータの上に形成された第1の電極および第2の電極と、基板上に形成された第1の金属配線および第2の金属配線と、を備え、第1の電極と第1の金属配線とが接合して第1の接合部を形成し、第2の電極と第2の金属配線とが接合して第2の接合部を形成することを特徴とする。
 さらに本発明の光デバイスは、前述した構成に加えて、複数の第1の電極と、複数の第2の電極と、複数の第1の金属配線と、複数の第2の金属配線と、を備え、各第1の電極と各第1の金属配線とがそれぞれ接合して、第1の接合部を形成し、各第2の電極と各第2の金属配線とがそれぞれ接合して、第2の接合部を形成することを特徴とする。
 さらに本発明の光デバイスは、前述した構成に加えて、光素子に複数の薄膜ヒータが形成され、各薄膜ヒータ上に、いずれかの第1の電極およびいずれかの第2の電極が形成されたことを特徴とする。第1の接合部と第2の接合部がそれぞれ1箇所では、薄膜ヒータへの電流供給が2箇所になってしまう。そのため薄膜ヒータ全体への電流供給になり、所望の場所への電流供給はできない。しかし接合部が複数あり、外部の所定の位置から電流を供給することで所望の位置での温度制御が可能となる。
 さらに本発明の光デバイスは、前述した構成に加えて、本発明における光デバイスの第1の接合部と第2の接合部を形成する金属材料は、Auであることを特徴とする。接続部がAuとAu間の金属間接合であるため、電気的な導通が可能となる。
 さらに本発明の光デバイスは、前述した構成に加えて、本発明における光デバイスの第1の接合部と第2の接合部はマイクロバンプ構造を有することを特徴とする。このマイクロバンプ構造にすることにより、面での接触ではなく、点での接触になるため、接合時に金属間接合に必要な金属の清浄面が出しやすいので、接合が容易になる。
 さらに本発明の光デバイスは、前述した構成に加えて、基板と光素子とが、接合部により表面活性化接合で接合されたことを特徴とする。このマイクロバンプ面と、対向する面をプラズマで活性化することで接合がなされるため、Au-Sn間の接合のように熱を印加しての接合方法ではなく、低温での接合が可能となる。
 さらに本発明の光デバイスは、前述した構成に加えて、本発明における光デバイスの薄膜ヒータは透明電極で形成されたことを特徴とする。薄膜ヒータとしての機能だけで考えれば、透明電極である必要性はない。しかし薄膜ヒータの近傍に光を導波させる導波路があるため、ここにレーザのような強力な光が照射された場合、この薄膜ヒータが光に対して透明でないと、光のエネルギーを吸収してしまい、損傷を受ける可能性がある。
 さらに本発明の光デバイスは、前述した構成に加えて、本発明における光デバイスの薄膜ヒータは、酸化インジウム(ITO)、または酸化亜鉛(ZnO)、酸化スズやこれらに不純物をドープした膜で形成されたことを特徴とする。
 さらに本発明の光デバイスは、前述した構成に加えて、本発明の光デバイスにおける光素子は、光導波路を導波する光を波長変換する波長変換素子であることを特徴とする。例えば一例を挙げると、近赤外領域の波長のレーザ光を用い、波長変換素子として第2高調波発生(SHG:Second Harmonic Generation)素子を用いる場合もある。
 さらに、本発明の光デバイスは、前記基板には、レーザダイオードと、前記レーザダイオードから出射された光を導波する光導波路と、前記光導波路を導波する光を波長変換する波長変換素子と、ファイバーブラッググレーティングとが前記光導波路の光軸方向に沿って設けられ、熱伝導性の良好な材質からなり、前記基板が搭載されるベース基板を備え、前記ベース基板は、一端側に位置する前記レーザダイオードが搭載された基板に接合されるとともに、前記波長変換素子から前記ファイバーブラッググレーティングまでの間には、前記基板との間に空間部が形成され、他端側に位置する前記ファイバーブラッググレーティングの端部が熱伝導性の良好な支持台を用いて前記基板を支持することを特徴とする。このように、レーザダイオードが位置する部分の基板だけをベース基板に接合することにより、レーザダイオードの熱をベース基板に効率的に放熱できる。また波長変換素子およびファイバーブラッググレーティング下部には空間部が形成されており、レーザダイオードの熱の影響を受けにくい。
 さらに、本発明の光デバイスは、前記波長変換素子に設けられた前記第1の電極および前記第2の電極は、前記光導波路を挟み、前記波長変換素子の端部位置にそれぞれ位置することを特徴とする。この構成によれば、中央の光導波路に対する熱抵抗を増やすことができる。
 さらに、本発明の光デバイスは、前記基板には、前記第1の金属配線と、複数の前記第2の金属配線が設けられる部分に、所定高さの酸化膜を形成し、前記基板と前記波長変換素子との間の空間高さを高くしたことを特徴とする。この構成によれば、基板と光素子との間の空間の高さを高くでき、熱伝導性を低くできる。
 さらに、本発明の光デバイスは、前記基板には、前記第1の金属配線と、複数の前記第2の金属配線が設けられる部分に、基板の材料をポーラス状に加工した箇所を設け、熱伝導性を低くしたことを特徴とする。
 さらに、本発明の光デバイスは、前記第1の電極および前記第2の電極を前記光導波路に沿って分割して複数設け、分割された前記第1の電極間、および前記第2の電極間には、前記第1の電極および前記第2の電極と同じ材質からなり、かつ前記第1の電極および前記第2の電極と電気的に絶縁された侵入防止壁を設け、前記侵入防止壁により、前記波長変換素子を前記基板に固着する際の接着剤の内部への侵入を防止したことを特徴とする。この構成によれば、第1の電極および第2の電極を分割することにより基板との接合面積が減少するが、接着剤を用いて光素子を接着でき、侵入防止壁はこの接着剤の内部への侵入を防止する。
 さらに、本発明の光デバイスは、前記基板の下面には、貫通しない複数の溝を形成したことを特徴とする。この構成によれば、複数の溝により基板の熱抵抗を高くすることができる。
 さらに、本発明の光デバイスは、前記基板の下面には、当該基板の縁部を残して凹部を開口形成したことを特徴とする。この構成によれば、複数の溝により基板の熱抵抗を高くすることができる。
 さらに、本発明の光デバイスは、前記波長変換素子は、前記光導波路に沿って平行に設けられるヒータと、前記第1の電極および前記第2の電極から前記ヒータに接続される導出部を有し、前記第1の電極と前記第2の電極と前記導出部は同一の材質によりなり、前記第1の電極と前記第2の電極を前記基板の前記第1の金属配線および前記第2の金属配線との接合に用いるとともに、前記ヒータの電極として兼用することを特徴とする。この構成によれば、光導波路に沿ってヒータを設けることにより光導波路を温度制御でき、ヒータの電極を個別に導出する必要がない。
 本発明は、基板と光素子とを金属材料からなる接合部により接合し、かつ、この接合部を介して薄膜ヒータを導通接続させることにより、導通接続のための配線を別途設ける必要がなくなり、光素子上の余分な領域を無くして小型化を可能にし、製造工程を簡略化することが可能となる。
図1は、本発明の実施例1の光デバイスの構成を示す説明図である。 図2は、本発明の実施例2の光デバイスの構成を示す説明図である。 図3は、本発明の実施例3の光デバイスの構成を示す説明図である。 図4は、本発明の実施例4の光デバイスの構成を示す正面図である。 図5は、本発明の実施例4の他の光デバイスの構成を示す正面図である。 図6は、本発明の実施例4の他の光デバイスの構成を示す正面図である。 図7-1は、波長変換素子と基板との接合構造を示す側面図である。 図7-2は、波長変換素子と基板との接合構造を示す側面図である。 図7-3は、波長変換素子と基板との接合構造を示す側面図である。 図8-1は、本発明の実施例5の光デバイスの構成を示す側面図である。 図8-2は、図8-1に示した光デバイスの上面図である。 図8-3は、実施例5の他の光デバイスの構成を示す側面図である。 図9-1は、実施例6の光デバイスの構成を示す正面図である。 図9-2は、実施例6の他の光デバイスの構成を示す正面図である。 図9-3は、実施例6の他の光デバイスの構成を示す正面図である。 図10-1は、ヒータの構造を説明する平面図である。 図10-2は、ヒータの構造を説明する側面図である。 図10-3は、分極反転用の電極を示す側面図である。 図11-1は、分割された複数の電極を介してヒータの印加電圧を検知する説明図である。 図11-2は、分割された複数の電極を介してヒータの印加電圧を検知する説明図である。
 以下、本発明を実施するための形態を図面に基づいて具体的に説明する。
[実施例1:図1]
 まず、本発明の実施例1の光デバイスの構成について説明する。図1は、本発明の実施例1の光デバイス20の構成を示す説明図である。図1(a)は光デバイス20の断面図である。図1(b)は光デバイス20の平面図であり、図1(a)の下方から見た状態を示す。説明のため、図1(b)では光デバイス20を構成する一部の部材のみを示す。また、図1(a)は、図1(b)のA-A’で示す箇所の断面を示す。
 図1に示すように、本発明の実施例1の光デバイス20は、光を導波するための光導波路8が形成された光素子6が基板2に接合された構成を備える。以下、それぞれの構成について詳細に説明する。
 図1に示すように、光導波路8は光素子6の基板2と向かい合う面に形成される。光導波路8について、一例として、光素子6がLiNbO3(ニオブ酸リチウム、LN:Lithium Niobate)により形成された場合について述べる。この場合、プロトンエクスチェンジ(PE:Proton Exchange)法という方法が用いられることが多い。
 この場合、予めPE法を施したい位置(光導波路が形成される箇所)を開口した状態で、LiNbO3からなる光素子をピロ燐酸中に浸漬させることで、LiNbO3中のLiとピロ燐酸中のプロトン間でイオン交換を行う。その後でアニール処理を行うことで、光学特性を安定化させる。このイオン交換領域の形状は、開口幅やアニール処理時間等で制御される。このように形成した光導波路8は、周囲のLiNbO3に比べて屈折率が高くなり、光を導波しやすくなる。
 また、この光素子6が波長変換素子である場合には、光導波路8には基本波として素子の一端から入射される光の波長を変換するために、分極反転領域が形成されている。分極反転領域とは、光素子6を構成するLiNbO3の分極状態を、ある特定の周期で互いに180°異なる領域を形成したものをいう。この周期は波長変換素子として、使用する波長や使用する温度環境などによって設計され、約数μmの周期で形成されている。この領域を形成するためには、自発分極に対して180°異なる方向に分極反転させる。分極反転をさせる方法にはいくつかあるが、代表的なところでは高電界を印加して、分極方向を反転させる高電界印加法がある。
 また図1に示すように、光導波路8が形成されている面に、薄膜ヒータ4として透明導電膜が形成される。この薄膜ヒータ4を形成する透明導電膜として、一例として酸化インジウム(ITO)膜を用いることができる。ここで薄膜ヒータ4を、光導波路8を導波する光に対して透明な導電膜で形成することにより、レーザ等の強い光が光導波路8を導波して、この強い光により薄膜ヒータ4が照射された場合であっても、この光が吸収されることによる薄膜ヒータ4の損傷を抑えることができる。薄膜ヒータ4を形成する透明導電膜として、酸化インジウム(ITO)膜とは別に、酸化亜鉛(ZnO)、酸化スズ、またはこれらに不純物をドープした膜でも同様の効果が期待できる。
 さらに図1に示すように、薄膜ヒータ4の上に、導波路8に対して一方の側に位置する第1の電極10aと他の側に位置する第2の電極10bとが形成される。また、基板2上に第1の金属配線16aおよび第2の金属配線16bが形成される。第1の金属配線16aおよび第2の金属配線16bは、光素子6に形成された第1の電極10a、第2の電極10bに応じた位置にマイクロバンプ18が形成されている。
 光素子6に形成された第1の電極10aおよび第2の電極10bと、基板2上に形成された第1の金属配線16aおよび第2の金属配線16bとは、それぞれ例えば金(Au)を材料として形成される。この金(Au)を材料として形成された第1の電極10aおよび第2の電極10bと、第1の金属配線16aおよび第2の金属配線16bとは、例えば、常温活性化接合により接合される。
 この常温活性化接合は、第1の金属配線16aおよび第2の金属配線16b上のマイクロバンプ18と、第1の電極10aおよび第2の電極10bの表面をアルゴン(Ar)プラズマに曝すことで活性化させ、低温で圧力をかけることで、マイクロバンプ18が潰れて清浄面が露出し、各マイクロバンプ18と第1の電極10aおよび第2の電極10bとを金属間接合させる接合方法である。ここで図1に示すように、導波路8に対して一方の側に位置する第1の電極10aと第1の金属配線16aとで第1の接合部12をなし、導波路8に対して他方の側に位置する第2の電極10bと第2の金属配線16bとで第2の接合部14をなす。この第1の接合部12と第2の接合部14により、光素子6は基板2に接合された状態となる。このとき、第1の接合部12と第2の接合部14は導波路8の直下には位置しておらず、導波路8の両側部に位置しているため、常温活性化接合時に導波路8に加重が加わることを避けることができる。
 また、第1の金属配線16aは、第1の接合部12を介して薄膜ヒータ4と電気的に接続され、第2の金属配線16bは、第2の接合部12を介して薄膜ヒータ4と電気的に接続されている。よって、第1の金属配線16aと第2の金属配線16bとの間に電流を流すことにより、図1(b)の印加電流27に示すように薄膜ヒータ4に電流が流れて発熱し、この熱が光導波路8に伝わり光導波路8が加熱され、温度制御が可能となる。
 上述したように本発明の実施例1の光デバイス20は、基板2と光素子6とを金属材料からなる第1の接合部12および第2の接合部14により接合し、かつ、これらの接合部を介して薄膜ヒータ4を導通接続させるものである。これにより、本発明の実施例1の光デバイス20は、導通接続のための配線を別途設ける必要がなくなり、光素子6上の余分な領域を無くして小型化を可能とするとともに、製造工程を簡略化することを可能とするものである。
[実施例2:図2]
 次に、本発明の実施例2の光デバイスの構成について説明する。図2は、本発明の実施例2の光デバイス30の構成を示す説明図である。図2(a)は光デバイス30の断面図である。図2(b)は光デバイス30の平面図であり、図2(a)の下方から見た状態を示す。説明のため、図2(b)では光デバイス30を構成する一部の部材のみを示す。また、図2(a)は、図2(b)のB-B’で示す箇所の断面を示す。
 図2において、実施例1と同一の構成部材には同一の番号を付して、重複する説明は省略する。本発明の実施例2の光デバイス30は、光を導波するための光導波路8が形成された光素子6が基板2に接合された構成を備える。実施例2の光デバイス30は、光素子6に形成された電極と、基板2上に形成された金属配線とが、実施例1の光デバイス20と異なるものである。
 実施例2の光デバイス30は、基板2上に、複数の第1の金属配線(図2(b)に示す例では、第1の金属配線16a1、16a2、16a3)が形成される。また、光デバイス30は、基板2上に、複数の第2の金属配線(図2(b)に示す例では、第2の金属配線16b1、16b2、16b3)が形成される。
 また図2に示すように、光デバイス30は、光素子6の薄膜ヒータ4上に、複数の第1の電極(図2(b)に示す例では、第1の電極10a1、10a2、10a3)が形成される。さらに光デバイス30は、光素子6の薄膜ヒータ4上に、複数の第2の電極(図2(b)に示す例では、第2の電極10b1、10b2、10b3)が形成される。
 第1の金属配線16a1、16a2、16a3および第2の金属配線16b1、16b2、16b3は、光素子6に形成され第1の電極10a1、10a2、10a3および第2の電極10b1、10b2、10b3に応じた位置にマイクロバンプ18が形成されている。
 第1の電極10a1、10a2、10a3、第2の電極10b1、10b2、10b3、第1の金属配線16a1、16a2、16a3および第2の金属配線16b1、16b2、16b3は、例えば金(Au)を材料として形成され、常温活性化接合により、図2に示すように接合される。第1の電極10a1、10a2、10a3と第1の金属配線16a1、16a2、16a3とで第1の接合部12をなし、第2の電極10b1、10b2、10b3と第1の金属配線16b1、16b2、16b3とで第2の接合部14をなす。この第1の接合部12と第2の接合部14により、光素子6は基板2に接合された状態となる。
 また、第1の金属配線16a1、16a2、16a3は、それぞれ第1の接合部12を介して薄膜ヒータ4と電気的に接続され、第2の金属配線16b1、16b2、16b3は、それぞれ第2の接合部14を介して薄膜ヒータ4と電気的に接続されている。このように構成されていることにより、実施例2の光デバイス30では、光導波路8の部分的な加熱が可能になる。
 例えば、図2(b)に示すように、第1の金属配線16a1と第2の金属配線16b1間に印加電流28aを流すことで、薄膜ヒータ4の領域22が発熱し、光導波路8のこの領域が重点的に加熱される。同様に、第1の金属配線16a2と第2の金属配線16b2間に印加電流28bを流すことで光導波路8の領域24が重点的に加熱され、第1の金属配線16a3と第2の金属配線16b3間に印加電流28cを流すことで光導波路8の領域26が重点的に加熱される。
 また、全ての第1の金属配線16a1、16a2、16a3と全ての第2の金属配線16b1、16b2、16b3の間に印加電流28aを流すことで、光導波路8の全ての領域を加熱することができる。さらに、隣り合う金属配線どうしではなく、斜めに位置する金属配線どうし、例えば、第1の金属配線16a1と第2の金属配線16b2の間に電流を流し、光導波路8の所定の領域を加熱してもよい。このように、実施例2の光デバイス30は、電流を流す金属配線の選択、組み合わせにより、光導波路8の部分的な加熱を最適に行うことが可能になる。
 図1および図2に示すように、光導波路8が基板2と向かい合う側に位置し、この導波路8の上に薄膜ヒータ4が形成されることにより、光導波路8が基板2と反対側に形成される構成と比較して、薄膜ヒータ4による光導波路8の加熱による温度制御の効果を大きくすることができる。また、光導波路8が基板2と向かい合う側に位置することにより、基板2の上面を基準として光素子の高さを調整することができる。よって、レーザダイオード等の他の発光素子との光結合において、発光素子との高さ調整を容易に行うことが可能となる。
[実施例3:図3]
 次に、本発明の実施例3の光デバイスの構成について説明する。図3は、本発明の実施例3の光デバイス40の構成を示す説明図である。実施例3の光デバイス40の断面図は、図2(a)に示す実施例2の光デバイス30の断面図と同じになるので、省略する。図3は光デバイス40の平面図であり、光デバイス40を構成する一部の部材のみを示す。
 図3において、実施例1、2と同一の構成部材には同一の番号を付して、重複する説明は省略する。実施例3の光デバイス40は、光を導波するための光導波路8が形成された光素子6が基板2に接合された構成を備える。実施例3の光デバイス40は、光素子6上に形成された薄膜ヒータ4の形状が、実施例2の光デバイス30と異なるものである。
 実施例3の光デバイス40は、基板2上に、複数の薄膜ヒータ(図3に示す例では、薄膜ヒータ4a、4b、4c)が形成される。各薄膜ヒータ4a、4b、4c上にそれぞれ、第1の接合部12を形成するいずれかの第1の電極10aと、第2の接合部14を形成するいずれかの第2の電極10bとが形成される。図3に示す例では、薄膜ヒータ4a上に第1の電極10a1と第2の電極10b1とが形成され、薄膜ヒータ4b上に第1の電極10a2と第2の電極10b2とが形成され、薄膜ヒータ4c上に第1の電極10a3と第2の電極10b3とが形成される。
 以上より、第1の金属配線16a1は、第1の接合部12を介して薄膜ヒータ4aと電気的に接続され、第2の金属配線16b1は、第2の接合部14を介して薄膜ヒータ4aと電気的に接続される。同様に、第1の金属配線16a2は、第1の接合部12を介して薄膜ヒータ4bと電気的に接続され、第2の金属配線16b2は、第2の接合部14を介して薄膜ヒータ4bと電気的に接続される。また、第1の金属配線16a3は、第1の接合部12を介して薄膜ヒータ4cと電気的に接続され、第2の金属配線16b3は、第2の接合部14を介して薄膜ヒータ4cと電気的に接続される。
 このような構成を備える光デバイス40において、例えば、図3に示すように、第1の金属配線16a1と第2の金属配線16b1間に電流を流すことで、薄膜ヒータ4の領域22のみに印加電流28aが流れて発熱し、光導波路8のこの領域のみが加熱される。同様に、第1の金属配線16a2と第2の金属配線16b2間に電流を流すことで、薄膜ヒータ4の領域24のみに印加電流28bが流れて発熱し、光導波路8のこの領域のみが加熱される。さらに、第1の金属配線16a3と第2の金属配線16b3間に電流を流すことで、薄膜ヒータ4の領域26のみに印加電流28cが流れて発熱し、光導波路8の領域26のみが加熱される。
 また、全ての第1の金属配線16a1、16a2、16a3と全ての第2の金属配線16b1、16b2、16b3の間に印加電流28aを流すことで、光導波路8の全ての領域を加熱することができる。このように、実施例3の光デバイス40は、複数の薄膜ヒータ4a,4b、4cが形成され、各薄膜ヒータ4a、4b、4cがそれぞれ異なる第1の金属配線16aおよび第2の金属配線16bに接続されることにより、実施例2の光デバイス30と比較して、光導波路8の部分的な加熱を確実に行うことが可能となる。
 上述した各実施形態の説明では、PE法により形成された光導波路の例を示したが、異なる光導波路の形成方法を用いても同様の効果が期待できる。例えば一例としてはリッジ型光導波路がある。これは、PE法のように、LiNbO3の一部を高屈折率化するのではなく、LiNbO3自体を加工して光導波路を作成し、LiNbO3と周辺の空気との屈折率差を利用して光を導波する構造になっている。
[実施例4-1:図4]
 次に、本発明の実施例4の光デバイスの構成について説明する。図4は、本発明の実施例4の光デバイス50の構成を示す正面図である。実施例4では、光素子の温度制御の構造について説明する。基板2上には複数の光素子としてレーザダイオード(LD)51、波長変換素子(PPLN)52、ファイバーブラッググレーティング(FBG)53が搭載されている。図示のように、波長変換素子52の下部には上述した薄膜ヒータ4が設けられている。基板2は、例えばシリコン(Si)からなる。この基板2は、熱伝導特性の良好な金属製のベース基板55上に設けられている。
 図4に示す温度制御は、
1)波長変換素子52の波長と、FBG53の変換波長をそろえるために、基板2上の光素子を温度一定にする。
2)LD51からの発熱は、外部に放熱して外部環境温度+5℃に抑える。
3)波長変換素子52の部分の薄膜ヒータ4により、最高環境温度+5℃まで常時加熱する。
 このため、ベース基板55は、基板2との接合に工夫を施している。まず、LD51が搭載された基板2の部分は、LD51の長さL1にわたってベース基板55に接合させる。また、LD51から先の部分、すなわち、波長変換素子52とFBG53が設けられた基板2の部分は、長さL2にわたってベース基板55との間に空間部56を形成して断熱する。具体的には、ベース基板55に研削などで凹部55aを形成し、基板2と接合する箇所を設けない。FBG53の端部には、熱伝導性の良好な支持台57を設け、この支持台57でFBG53を支持する。ただし、この支持台57は、熱制御の設計に応じて熱伝導性を有するものに限らず、断熱性を有するものを用いてもよい。
 上記の構造によれば、LD51の発熱は、基板2からベース基板55に直接放熱されるか、基板2上の長さ方向にしか伝わらなくなる。このため、LD51の発熱のうち、基板2の長さ方向(図中水平方向)の温度は、図示のように温度勾配を有する。例えば、環境温度が40℃のとき、LD51は放熱により45℃に制御したとする。このとき、LD51からの熱が基板2の長さ方向に伝わり、少しずつ温度が下がる。また、薄膜ヒータ4により、波長変換素子52の部分が45℃になるように常時加熱制御され、温度勾配を補償する。
 上記の温度制御の構造によれば、ベース基板55に凹部55aを形成するだけの簡単な構造で基板2上の複数の光素子(LD51、波長変換素子52、FBG53)を予め定めた温度で一定に保持できる。
[実施例4-2:図5]
 次に、本発明の実施例4の他の光デバイスの構成について説明する。図5は、本発明の実施例4の他の光デバイス50の構成を示す正面図である。図5に示す光デバイスの構造は、図4と同様であり、温度制御が異なる。
 図5に示す温度制御では、
1)LD51からの発熱は、外部に放熱して外部環境温度+5℃に抑える。
2)波長変換素子52、およびFBG53の温度は、LD+5℃と同じになるように制御する。
3)ただし、FBG53の波長と、波長変換素子52の変換波長が一致するように、薄膜ヒータ4により波長変換素子52を補正加熱する。加熱だけでFBG53の波長と、波長変換素子52の変換波長が一致するように、予めFBG53の波長を選択する。
 上記の温度制御の構造によれば、ベース基板55に凹部55aを形成するだけの簡単な構造で基板2上の複数の光素子(LD51、波長変換素子52、FBG53)を一定温度に保持できる。また、外部環境温度に応じて光デバイス50の温度を変化させることができる。
[実施例4-3:図6、図7-1~図7-3]
 次に、本発明の実施例4の他の光デバイスの構成について説明する。図6は、本発明の実施例4の他の光デバイス50Aの構成を示す正面図である。図6に示す構造では、LD51の発熱は、できるだけ外部に放熱するようにする。図6の構造において、図5に示した構造と異なる点は、波長変換素子52とFBG53の下部に上述した薄膜ヒータ4を設ける。また、ベース基板55の下面前面は、環境温度にある放熱器58に接合する。このため、LD51からの発熱は、基板2を介して放熱器58に放熱し、放熱器58を介して外部環境に放熱する。
 また、図7-1~図7-3は、それぞれ波長変換素子52と基板2との接合構造を示す側面図である。これらの図に示すように、波長変換素子52の直下と基板2との間に空間部を形成して断熱する。これら図7-1~図7-3に示す構造により、波長変換素子52を高温で一定温度に保つようにする。
 図7-1に示す構造では、第1の電極10aと第1の金属配線16a(第2の電極10bと第2の金属配線16b)の高さH1分の空間部71が形成される。図7-2に示す構造では、基板2には第1の金属配線16a、第2の金属配線16bが形成される箇所に酸化膜72をそれぞれ形成する。これにより、酸化膜72の高さ分だけ空間部71の高さH2を高く形成できる。図7-3に示す構造では、第1の金属配線16aと、第2の金属配線16bとの間の基板2にエッチング等により凹部74を形成し、この凹部74の凹み分だけ空間部71の高さH3を高く形成できる。これらの構造により、空間部71の高さを高くでき、基板2(LD51)から断熱できるようになる。
[実施例5:図8-1~図8-3]
 次に、本発明の実施例5の光デバイスの構成について図8-1~図8-3を用いて説明する。実施例5では、波長変換素子52について、側部(光導波路8を中央とした両側部)への熱抵抗Rwを増やす構成としている。これら図8-1~図8-3に示す構造により、波長変換素子52を高温で一定温度に保つようにする。
 図8-1は、本発明の実施例5の光デバイス80の構成を示す側面図である。図示のように、光デバイスの固定部である第1の電極10aと、第2の電極10bとを波長変換素子52の両端部に配置し、第1の電極10aと、第2の電極10bとの間の距離Lを長くする。また、波長変換素子52の高さHを低く形成する。これにより、中心に設けられた光導波路8部分との熱抵抗を増加させ、光導波路8部分を熱的に絶縁させる。
 図8-2は、図8-1に示した光デバイス80の上面図である。図示のように、基板2に対する波長変換素子52の接合部分を分割する。すなわち、第1の電極10aと、第2の電極10bを上面から見て光導波路8の長さ方向に沿った方向に部分的に形成する。図示の例では、第1の電極10aと、第2の電極10bを矩形状に形成して光導波路8の長さ方向でそれぞれ分離させ、基板2側の第1の金属配線16aと、第2の金属配線16bにそれぞれ接続する。第1の電極10aと、第2の電極10bを分割することにより、基板2に対して熱伝導する箇所である接合部の面積を減らす。
 上記の構造によれば、基板2に対する第1の電極10aと、第2の電極10bの接合面積が減少するため、低熱伝導性の接着剤81を用い、波長変換素子52の両端を長さ方向にわたって基板2に接着させる。これにより、基板2に対する波長変換素子52の固定強度を補うことができる。また、第1の電極10aと、第2の電極10bは、波長変換素子52の長さ方向で分割されているが、分割された複数の第1の電極10a(複数の第2の電極10b)の間にはそれぞれ、これら第1の電極10aと、第2の電極10bと同じ金属材料(Au)によりなる侵入防止壁82を設ける。侵入防止壁82自体は各々を電気的に絶縁した状態で第1の電極10aと、第2の電極10bと同時にエッチング等により形成する。この侵入防止壁82を設けることにより、接着剤81の内部(図8-2に示す光導波路8方向)への侵入を防止できる。この侵入防止壁82は、熱影響を与えないようにできるだけ幅Wを薄く形成する。
 実施例5の変形例としては、図8-1,図8-2に示した構造に加えて、図7-2に示した酸化膜72を設け、波長変換素子52と基板2との間の高さを高く、熱抵抗を増やす構成としてもよい。
 図8-3は、実施例5の他の光デバイス80の構成を示す側面図である。この図に示す構成では、シリコンからなる基板2の上面側にシリコンをポーラス状に微結晶化させたナノクリスタル部83を所定高さH(10μm程度)形成する。このナノクリスタル部83上に第1の金属配線16aと、第2の金属配線16bが形成される。このナノクリスタル部83により、熱抵抗を増やすことができる。
[実施例6:図9-1~図9-3]
 次に、本発明の実施例6の光デバイス90の構成について図9-1~図9-3を用いて説明する。実施例6では、基板2の長さ方向(光導波路8の光軸方向)の熱抵抗RLを増やす構成としている。図9-1は、実施例6の光デバイス90の構成を示す正面図である。図9-1に示す構造では、図6で説明したと同様に、LD51が搭載された基板2の部分は、LD51の長さL1にわたってベース基板55に接合させる。また、LD51から先の部分、すなわち、波長変換素子52とFBG53が設けられた基板2の部分は、長さL2にわたってベース基板55との間に空間部56を形成して断熱する。FBG53の端部には、熱伝導性の良好な支持台57を設け、支持台57でFBG53を支持する。また、基板2の端部位置のベース基板55には、熱絶縁性材質からなる支持部材91を設け、基板2の端部を支持する。そして、基板2はエッチング等で薄く形成する。LD51部分は基板2からベース基板55を介して放熱器58に直接放熱する。ただし、この支持部材91は、熱制御の設計に応じて熱伝導性を有するものに限らず、断熱性を有するものを用いてもよい。
 図9-2は、実施例6の他の光デバイス90の構成を示す正面図である。便宜上、基板2分だけを図示している。この基板2の下面には、複数の溝92を開口形成する。この溝92は、基板2の強度を維持するために基板2の上部までは貫通させずに設ける。溝92の開口は丸あるいは四角等任意の形状にできる。
 図9-3は、実施例6の他の光デバイス90の構成を示す正面図である。この基板2の下面には、凹部93を開口形成する。この凹部93は、基板2の強度を維持するために基板の縁部を残し内部をくり抜いて設ける。以上説明した図9-1~図9-3に示す構成により、基板2の熱抵抗を高くでき、波長変換素子52を高温で一定温度に保つことができる。
[実施例7:図10-1、図10-2]
 次に、本発明の実施例7の光デバイス100の構成について説明する。実施例7では、ヒータで光導波路8の直近を加熱する構成について説明する。図10-1は、ヒータの構造を説明する平面図、図10-2は、ヒータの構造を説明する側面図である。Auからなる第1の電極10aと、第2の電極10bは複数に分割して設ける(図8-2参照)。そして、この複数の第1の電極10a側からはそれぞれ光導波路8に向けて同じAuからなる導出部101aを設け、導出部101aの先端には、光導波路8に沿って平行にAuからなるヒータ102aを設ける。同様に、複数の第2の電極10b側からはそれぞれ光導波路8に向けてAuからなる導出部101bを設け、導出部101bの先端には、光導波路8に沿って平行にAuからなるヒータ102bを設ける。
 上記構成では、光導波路8を凸形状のリッジ部分に設ける構成としたが、光導波路8は、リッジ構造部分に設けるに限らない。上記構成ではリッジ部分の両側部の凹部の位置まで導出部101a、101bを延ばして形成するため、ヒータ102a、102bを光導波路8に近づけて配置でき、ヒータ102a、102bで光導波路8を直接加熱できるようになった。
 上記構成では、波長変換素子52の電極である第1の電極10a、第2の電極10bをヒータ102a、102bの電極として共用する構成であり、電極の材質でヒータ102a、102bを構成し、光導波路8を直近で効率的に加熱でき、光導波路8を一定に温度制御できる。また、第1の電極10a、第2の電極10b、導出部101a、101b、ヒータ102a、102bを同一の材質(例えばAu)で容易にパターン形成できるようになり、また、接合する電極と同一の材質でヒータの機能を兼用することができ、ヒータ102a、102bの電極を個別に導出する必要がない。
 このパターン形成時に、パターンのサイズを調整して例えば5V等のパルス幅変調制御に適した抵抗値にすることができる。上記のAu薄膜によるヒータ102a、102bの特性として、例えば、長さL=1mm、断面積A=2μm×0.5μmとしたとき、ヒータ抵抗R=ρL/A=23.5Ω、Auの抵抗比ρ=2.35×10-8Ωm、L=1×10-3m、A=2×0.5×10-122となる。これにより、パルス幅変調として5Vを印加するとき、235mAで、1.06Wとなるので、導出部101a、101bの長さは2mm程度とすればよい。
 また、図10-3は、分極反転用の電極を示す側面図である。図示のように、分極反転用の電極105の幅は、波長変換素子52の全幅に設けるのではなく、光導波路8のリッジ部分に対応して所定幅W1を有して設ける。分極反転用の電極105は、ITO膜で形成する。106は接着層である。これにより、ITO膜による分極反転用の電極105部分での熱伝導を減らすことができる。
 次に、図11-1、図11-2は、それぞれ分割された複数の電極を介してヒータの印加電圧を検知する説明図である。上述した複数の第1の電極10a、第2の電極10bを用いてブロック的に温度制御が行えるが、この際の電極間の印加電圧は、図示のような一般的な4端子法により正確に検出することができる。複数の第1の電極10aを例に説明する。例えば、図11-1に示すように、ヒータ102a2(R2)の印加電圧を検出する際には、このヒータ102a2の一対の第1の電極10a2、10a3により電圧Vを検出する。この際、これら一対の電極10a2、10a3の両隣10a1と、10a4から電流を供給すればよい。同様に、図11-2に示すように、ヒータ102a3(R3)の印加電圧を検出する際には、このヒータ102a3の一対の第1の電極10a3、10a4により電圧Vを検出する。この際、これら一対の電極10a3、10a4の両隣10a2と、10a5から電流を供給すればよい。
 この発明による光デバイスは、光を導波するための導波路を持ち、最小の実装面積で実装と温度制御の両方の機能を兼ね備えた素子であるため、実装と温度制御を必要とする他の素子への適用が可能であり、そのサイズを小型化する構造である。
 2 基板
 4、4a、4b、4c 薄膜ヒータ
 6 光素子
 8 光導波路
 10a、10a1、10a2、10a3 第1の電極
 10b、10b1、10b2、10b3 第2の電極
 12 第1の接合部
 14 第2の接合部
 16a、16a1、16a2、16a3 第1の金属配線
 16b、16b1、16b2、16b3 第2の金属配線
 18 マイクロバンプ
 20、30、40 光デバイス
 22、24、26 領域
 27、28a、28b、28c 印加電流
 51 レーザダイオード(LD)
 52 波長変換素子
 53 ファイバーブラッググレーティング(FBG)
 55 ベース基板
 55a 凹部
 56 空間部
 57 支持台
 58 放熱器
 101a、101b 導出部
 102a、102b ヒータ

Claims (18)

  1.  光導波路が形成された光素子が基板に接合された光デバイスにおいて、
     前記光素子の前記基板と向かい合う面に、前記光導波路と、前記光導波路を加熱する薄膜ヒータとが形成され、
     前記光素子と前記基板とは、金属材料からなる第1の接合部と第2の接合部により接合され、
     前記第1の接合部と前記第2の接合部を介して、前記薄膜ヒータと前記基板上の配線とが導通接続され、
     前記第1の接合部と前記第2の接合部は、前記光導波路を挟んで位置することを特徴とする光デバイス。
  2.  前記薄膜ヒータの上に形成された第1の電極および第2の電極と、
     前記基板上に形成された第1の金属配線および第2の金属配線と、を備え、
     前記第1の電極と前記第1の金属配線とが接合して前記第1の接合部を形成し、
     前記第2の電極と前記第2の金属配線とが接合して前記第2の接合部を形成することを特徴とする請求項1に記載の光デバイス。
  3.  複数の前記第1の電極と、複数の前記第2の電極と、複数の前記第1の金属配線と、複数の前記第2の金属配線と、を備え、
     前記各第1の電極と前記各第1の金属配線とがそれぞれ接合して、前記第1の接合部を形成し、
     前記各第2の電極と前記各第2の金属配線とがそれぞれ接合して、前記第2の接合部を形成することを特徴とする請求項2に記載の光デバイス。
  4.  前記光素子に複数の前記薄膜ヒータが形成され、
     前記各薄膜ヒータ上に、いずれかの前記第1の電極およびいずれかの前記第2の電極が形成されたことを特徴とする請求項2に記載の光デバイス。
  5.  前記金属材料はAuであることを特徴とする請求項1に記載の光デバイス。
  6.  前記接合部はマイクロバンプ構造を有することを特徴とする請求項1に記載の光デバイス。
  7.  前記基板と前記光素子とは、前記接合部により表面活性化接合で接合されたことを特徴とする請求項1に記載の光デバイス。
  8.  前記薄膜ヒータは透明電極で形成されたことを特徴とする請求項1に記載の光デバイス。
  9.  前記薄膜ヒータは、酸化インジウム(ITO)、または酸化亜鉛(ZnO)、酸化スズやこれらに不純物をドープした膜で形成されたことを特徴とする請求項8に記載の光デバイス。
  10.  前記光素子は、前記光導波路を導波する光を波長変換する波長変換素子であることを特徴とする請求項1に記載の光デバイス。
  11.  前記基板には、レーザダイオードと、前記レーザダイオードから出射された光を導波する光導波路と、前記光導波路を導波する光を波長変換する波長変換素子と、ファイバーブラッググレーティングとが前記光導波路の光軸方向に沿って設けられ、
     熱伝導性の良好な材質からなり、前記基板が搭載されるベース基板を備え、
     前記ベース基板は、一端側に位置する前記レーザダイオードが搭載された基板に接合されるとともに、前記波長変換素子から前記ファイバーブラッググレーティングまでの間には、前記基板との間に空間部が形成され、他端側に位置する前記ファイバーブラッググレーティングの端部が熱伝導性の良好な支持台を用いて前記基板を支持することを特徴とする請求項1に記載の光デバイス。
  12.  前記波長変換素子に設けられた第1の電極および第2の電極は、前記光導波路を挟み、前記波長変換素子の端部位置にそれぞれ位置することを特徴とする請求項10に記載の光デバイス。
  13.  前記基板には、前記第1の金属配線と、複数の前記第2の金属配線が設けられる部分に、所定高さの酸化膜を形成し、前記基板と前記波長変換素子との間の空間高さを高くしたことを特徴とする請求項2に記載の光デバイス。
  14.  前記基板には、前記第1の金属配線と、複数の前記第2の金属配線が設けられる部分に、基板の材料をポーラス状に加工した箇所を設け、熱伝導性を低くしたことを特徴とする請求項2に記載の光デバイス。
  15.  前記第1の電極および前記第2の電極を前記光導波路に沿って分割して複数設け、
     分割された前記第1の電極間、および前記第2の電極間には、前記第1の電極および前記第2の電極と同じ材質からなり、かつ前記第1の電極および前記第2の電極と電気的に絶縁された侵入防止壁を設け、
     前記侵入防止壁により、前記波長変換素子を前記基板に固着する際の接着剤の内部への侵入を防止したことを特徴とする請求項13に記載の光デバイス。
  16.  前記基板の下面には、貫通しない複数の溝を形成したことを特徴とする請求項1に記載の光デバイス。
  17.  前記基板の下面には、当該基板の縁部を残して凹部を開口形成したことを特徴とする請求項1に記載の光デバイス。
  18.  前記波長変換素子は、
     前記光導波路に沿って平行に設けられるヒータと、
     第1の電極および第2の電極から前記ヒータに接続される導出部を有し、
     前記第1の電極と前記第2の電極と前記導出部は同一の材質によりなり、前記第1の電極と前記第2の電極を前記基板の第1の金属配線および第2の金属配線との接合に用いるとともに、前記ヒータの電極として兼用することを特徴とする請求項11に記載の光デバイス。
PCT/JP2010/070943 2009-11-25 2010-11-24 光デバイス WO2011065384A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/511,830 US8666205B2 (en) 2009-11-25 2010-11-24 Optical device
JP2011543273A JP5685549B2 (ja) 2009-11-25 2010-11-24 光デバイス
CN201080052993.7A CN102667578B (zh) 2009-11-25 2010-11-24 光学器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-267285 2009-11-25
JP2009267285 2009-11-25

Publications (1)

Publication Number Publication Date
WO2011065384A1 true WO2011065384A1 (ja) 2011-06-03

Family

ID=44066489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070943 WO2011065384A1 (ja) 2009-11-25 2010-11-24 光デバイス

Country Status (4)

Country Link
US (1) US8666205B2 (ja)
JP (1) JP5685549B2 (ja)
CN (1) CN102667578B (ja)
WO (1) WO2011065384A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841481A (zh) * 2011-06-22 2012-12-26 西铁城控股株式会社 光学器件以及光学器件的制造方法
JP2013041217A (ja) * 2011-08-19 2013-02-28 Citizen Holdings Co Ltd レーザ光源
JP2013097072A (ja) * 2011-10-28 2013-05-20 Citizen Holdings Co Ltd レーザ光源およびレーザ光源の製造方法
WO2013089806A1 (en) * 2011-12-15 2013-06-20 Kotura, Inc. System for managing thermal conduction on optical devices
KR20200134012A (ko) * 2019-05-21 2020-12-01 삼성전자주식회사 기판 구조체 및 이를 포함하는 반도체 패키지
WO2024166232A1 (ja) * 2023-02-08 2024-08-15 日本電気株式会社 光モジュール

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582868B2 (ja) * 2010-05-14 2014-09-03 シチズンホールディングス株式会社 光デバイス
FR3100082A1 (fr) 2019-08-19 2021-02-26 Stmicroelectronics (Crolles 2) Sas Modulateur de phase
US11994716B2 (en) * 2021-03-18 2024-05-28 Rockley Photonics Limited Waveguide heater
GB2612376A (en) * 2021-11-02 2023-05-03 Rockley Photonics Ltd Laser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001100054A (ja) * 1999-09-29 2001-04-13 Kyocera Corp 光電子混在基板
JP2001147335A (ja) * 1999-11-22 2001-05-29 Hitachi Cable Ltd 光導波路素子
JP2008192873A (ja) * 2007-02-06 2008-08-21 Seiko Epson Corp 光源装置、照明装置、モニタ装置及びプロジェクタ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073903B2 (ja) * 1986-12-08 1995-01-18 日本電信電話株式会社 光素子実装基板
JP3141811B2 (ja) * 1997-02-20 2001-03-07 日本電気株式会社 半導体レーザ装置、その製造方法
JPH10300960A (ja) * 1997-05-01 1998-11-13 Nippon Telegr & Teleph Corp <Ntt> Plc光送受信モジュール及びその製造方法
JPH11326966A (ja) 1998-05-12 1999-11-26 Ngk Insulators Ltd 第二高調波発生装置
JP3508990B2 (ja) * 1998-09-14 2004-03-22 日本電信電話株式会社 光素子搭載部構造
JP3858995B2 (ja) * 2002-07-02 2006-12-20 オムロン株式会社 光導波路装置の製造方法
US6870979B2 (en) * 2002-10-09 2005-03-22 The Furukawa Electric Co., Ltd Optical circuit, method for manufacturing optical circuit, optical circuit device and method for controlling optical circuit device
US7848599B2 (en) * 2009-03-31 2010-12-07 Oracle America, Inc. Optical device with large thermal impedance
US8078013B2 (en) * 2009-03-31 2011-12-13 Oracle America, Inc. Dual-layer thermally tuned optical device
JP5093527B2 (ja) * 2010-02-10 2012-12-12 日本電気株式会社 複合光導波路、波長可変フィルタ、波長可変レーザ、および光集積回路
US8971674B2 (en) * 2010-03-24 2015-03-03 Oracle International Corporation Optical device with high thermal tuning efficiency
JP5582868B2 (ja) * 2010-05-14 2014-09-03 シチズンホールディングス株式会社 光デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001100054A (ja) * 1999-09-29 2001-04-13 Kyocera Corp 光電子混在基板
JP2001147335A (ja) * 1999-11-22 2001-05-29 Hitachi Cable Ltd 光導波路素子
JP2008192873A (ja) * 2007-02-06 2008-08-21 Seiko Epson Corp 光源装置、照明装置、モニタ装置及びプロジェクタ

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841481A (zh) * 2011-06-22 2012-12-26 西铁城控股株式会社 光学器件以及光学器件的制造方法
JP2013029826A (ja) * 2011-06-22 2013-02-07 Citizen Holdings Co Ltd 光デバイス及び光デバイスの製造方法
JP2013041217A (ja) * 2011-08-19 2013-02-28 Citizen Holdings Co Ltd レーザ光源
US9136669B2 (en) 2011-08-19 2015-09-15 Citizen Holdings Co., Ltd. Laser light source
JP2013097072A (ja) * 2011-10-28 2013-05-20 Citizen Holdings Co Ltd レーザ光源およびレーザ光源の製造方法
WO2013089806A1 (en) * 2011-12-15 2013-06-20 Kotura, Inc. System for managing thermal conduction on optical devices
KR20200134012A (ko) * 2019-05-21 2020-12-01 삼성전자주식회사 기판 구조체 및 이를 포함하는 반도체 패키지
KR102613241B1 (ko) * 2019-05-21 2023-12-13 삼성전자주식회사 기판 구조체 및 이를 포함하는 반도체 패키지
WO2024166232A1 (ja) * 2023-02-08 2024-08-15 日本電気株式会社 光モジュール

Also Published As

Publication number Publication date
US8666205B2 (en) 2014-03-04
CN102667578A (zh) 2012-09-12
JP5685549B2 (ja) 2015-03-18
US20120243825A1 (en) 2012-09-27
CN102667578B (zh) 2015-09-23
JPWO2011065384A1 (ja) 2013-04-18

Similar Documents

Publication Publication Date Title
JP5685549B2 (ja) 光デバイス
US8515219B2 (en) Optical device
EP2141532B1 (en) Optical modulator device based on the electro-optic effect
US8265111B2 (en) Laser light source module
US8600197B2 (en) Optical control device
CN100410732C (zh) 光调制器
US20100046881A1 (en) Optical control device
JP6025150B2 (ja) 光デバイス
CN102841481A (zh) 光学器件以及光学器件的制造方法
JP2007266260A (ja) 位相制御機能を有する光半導体装置
CN115718381A (zh) 铌酸锂光收发器及其形成方法
JP4772564B2 (ja) 光半導体素子および光半導体装置
Yepez et al. Novel measures for thermal management of silicon photonic optical phased arrays
JP4899393B2 (ja) 導波路型可変光減衰器
US11977284B2 (en) Optical waveguide device, manufacturing method of optical modulation element, optical modulator, optical modulation module, and optical transmission apparatus
US20100309643A1 (en) Multi-chip hybrid-mounted device and method of manufacturing the same
JP7319582B2 (ja) 波長変換装置
JP2017181851A (ja) 光変調器
CN115857199A (zh) 铌酸锂光发射器及其形成方法
JPH0511294B2 (ja)
JP6417276B2 (ja) 光半導体素子
JP4369219B2 (ja) マトリクス光スイッチ
CN115728970A (zh) 光电集成结构及其形成方法
JPS58129402A (ja) 光導波器
JP2005181647A (ja) 光導波路部品及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052993.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833230

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011543273

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13511830

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10833230

Country of ref document: EP

Kind code of ref document: A1